
 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Office 2003 XML

By Evan Lenz, Mary McRae, Simon St. Laurent

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00538-5

Pages: 576

This book explores the relationship between XML and Office 2003, examining how the various products in the Office
suite both produce and consume XML. Beginning with an overview of the XML features included in the various Office
2003 components, Office 2003 XML provides quick and clear guidance to anyone who needs to import or export
information from Office documents into other systems.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Office 2003 XML

By Evan Lenz, Mary McRae, Simon St. Laurent

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00538-5

Pages: 576

 Copyright

 Preface

 Who Should Read This Book

 Who Should Not Read This Book

 Organization of This Book

 Supporting Books

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Acknowledgments

 Chapter 1. Microsoft Office and XML

 Section 1.1. Why XML?

 Section 1.2. Different Faces of XML

 Section 1.3. Different XML Faces of Office

 Section 1.4. Opening Office to the World

 Chapter 2. The WordprocessingML Vocabulary

 Section 2.1. Introduction to WordprocessingML

 Section 2.2. Tips for Learning WordprocessingML

 Section 2.3. WordprocessingML's Style of Markup

 Section 2.4. A Simple Example Revisited

 Section 2.5. Document Structure and Formatting

 Section 2.6. Auxiliary Hints in WordprocessingML

 Section 2.7. More on Styles

 Chapter 3. Using WordprocessingML

 Section 3.1. Endless Possibilities

 Section 3.2. Creating Word Documents

 Section 3.3. Extracting Information from Word Documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.4. Modifying Word Documents

 Section 3.5. Converting Between WordprocessingML and Other Formats

 Chapter 4. Creating XML Templates in Word

 Section 4.1. Clarifying Use Cases

 Section 4.2. A Working Example

 Section 4.3. Word's Processing Model for Editing XML

 Section 4.4. The Schema Library

 Section 4.5. How the onload XSLT Stylesheet Is Selected

 Section 4.6. Merged XML and WordprocessingML

 Section 4.7. Attaching Schemas to a Document

 Section 4.8. Schema-Driven Editing

 Section 4.9. Schema Validation

 Section 4.10. Document Protection

 Section 4.11. XML Save Options

 Section 4.12. Reviewing the XML-Specific Document Options

 Section 4.13. Steps to Creating the onload Stylesheet

 Section 4.14. Deploying the Template

 Section 4.15. Limitations of Word 2003's XML Support

 Chapter 5. Developing Smart Document Solutions

 Section 5.1. What's a Smart Document?

 Section 5.2. Creating a Smart Document Solution

 Section 5.3. Coding the Smart Document

 Section 5.4. Coding in VB.NET

 Section 5.5. Manifest Files

 Section 5.6. Other Files

 Section 5.7. Attaching the Smart Document Expansion Pack

 Section 5.8. Deploying Your Smart Document Solution

 Section 5.9. A Few Last Words on Smart Documents

 Section 5.10. Some Final Thoughts

 Chapter 6. Working with XML Data in Excel Spreadsheets

 Section 6.1. Separating Data and Logic

 Section 6.2. Loading XML into an Excel Spreadsheet

 Section 6.3. Editing XML Documents in Excel

 Section 6.4. Loading and Saving XML Documents from VBA

 Chapter 7. Using SpreadsheetML

 Section 7.1. Saving and Opening XML Spreadsheets

 Section 7.2. Reading XML Spreadsheets

 Section 7.3. Extracting Information from XML Spreadsheets

 Section 7.4. Creating XML Spreadsheets

 Section 7.5. Editing XML Maps with SpreadsheetML

 Chapter 8. Importing and Exporting XML with Microsoft Access

 Section 8.1. Access XML Expectations

 Section 8.2. Exporting XML from Access Using the GUI

 Section 8.3. Importing XML into Access Using the GUI

 Section 8.4. Automating XML Import and Export

 Chapter 9. Using Web Services in Excel, Access, and Word

 Section 9.1. What Are Web Services?

 Section 9.2. The Microsoft Office Web Services Toolkit

 Section 9.3. Accessing a Simple Web Service from Excel

 Section 9.4. Accessing More Complex Web Services

 Section 9.5. Accessing REST Web Services with VBA

 Section 9.6. Using Web Services in Access

 Section 9.7. Using Web Services in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 9.7. Using Web Services in Word

 Chapter 10. Developing InfoPath Solutions

 Section 10.1. What Is InfoPath?

 Section 10.2. InfoPath in Context

 Section 10.3. Components of an InfoPath Solution

 Section 10.4. A More Complete Example

 Section 10.5. Using InfoPath Design Mode

 Appendix A. The XML You Need for Office

 Section A.1. What Is XML?

 Section A.2. Anatomy of an XML Document

 Appendix B. The XSLT You Need for Office

 Section B.1. Sorting Out the Acronyms

 Section B.2. A Simple Template Approach

 Section B.3. A Rule-Based Stylesheet

 Section B.4. A More Advanced Example

 Section B.5. Conclusion

 Appendix C. The XSD You Need for Office

 Section C.1. What Is XSD?

 Section C.2. Creating a Simple Schema

 Section C.3. Schema Parts

 Section C.4. Working with XML Schema

 Appendix D. Using DTDs and RELAX NG Schemas with Office

 Section D.1. What Are DTDs?

 Section D.2. What Is RELAX NG?

 Section D.3. How Do I Convert DTDs and RELAX NG to XSD?

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Office 2003 XML, the image of a Malay palm civet, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
For many users, the appearance of Office 2003 has meant a slightly updated version of a familiar tool, another episode
in the continuous development of a popular and widely-used piece of software. For some users, however, the
appearance of Office 2003 is a herald of tumultuous change. This version of Office liberates the information stored in
millions of documents created using Microsoft's Office software over the past 15 years and makes it readily available to
a wide variety of software. At the same time, Office 2003 has substantially improved its abilities for working with data
that comes from external sources, making it much easier to use Office for the examination and analysis of information
that came from other sources.

XML, the Extensible Markup Language, lies at the heart of this new openness. XML has taken much of the world by
storm since its publication in 1998 as a World Wide Web Consortium (W3C) Recommendation. XML provides a standard
text-based format for storing labeled structured content. An enormous variety of tools for processing, creating, and
storing XML has appeared over the last few years, and XML has become a lingua franca that lets different kinds of
computers and different kinds of software communicate with each other—all while preserving a substantial level of
human accessibility.

This book explores the intersection between Office 2003 and XML in depth, examining how the various products in the
Office suite can both produce and consume XML. While this book generally focuses on Office 2003 itself, some
supporting technologies will be important pieces of the integration puzzle. Extensible Stylesheet Language
Transformations (XSLT) and W3C XML Schema (which Microsoft abbreviates XSD, for XML Schema Descriptions) are
two critical pieces for teaching various parts of Office about the structures of XML documents, while SOAP (an acronym
that no longer means anything) and HTTP will be important supporting technologies for communications between Office
and other programs.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Read This Book
This book is written for developers who want to be able to combine Office with other sources of information and
information processing. For example, you may be a systems integrator trying connect Office to other workflow
processing, you may be a power-user who wants to analyze XML data sets in Excel or Access, or you may be an
archivist who needs to extract crucial information from existing Office documents. There are many more possibilities out
there, of course.

This book is written for developers who already have an understanding of how to use the various programs in the
Microsoft Office suite. Some basic instruction in XML, XSLT, and schema-related technologies is provided in the
appendixes, but for the most part this book assumes that you come with an understanding of XML and related
technologies.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Not Read This Book
If all of your work is completely contained within the Office suite itself, you probably don't need this book unless you
have a particularly tricky problem integrating information among the programs. If, for instance, you just create Word
documents using templates, you may even be able to create XML documents using those templates without reading this
book. Similarly, developers who create self-contained spreadsheets and databases will most likely not need to learn
about these technologies.

If you have never used Microsoft Office or XML before, you may want to consider exploring those technologies in
greater depth before reading this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Organization of This Book
This book starts in Chapter 1 with an overview of the XML features included in the various Office 2003 components.
While most of the components have XML features, they all interact with XML quite differently, and comparing the stories
of each of the products makes sense before leaping into the component-specific details.

The rest of the book explores the individual applications in the Microsoft Office Suite, as all of them take different
approaches to working with XML. As learning Microsoft Word's internal XML format, WordprocessingML, is a crucial first
step for developing any XML applications around it, Chapter 2 examines how Word represents its documents in XML.
Chapter 3 explores the use of XSLT to convert WordML to other forms of XML, and then Chapter 4 returns to Word to
combine WordML, XSLT, XML Schema, and the Word user interface to create environments where users can create
custom XML documents. Chapter 5 takes a look at Smart Documents, a much more labor-intensive but very powerful
combination of Word's features with external code.

Excel offers a slightly different set of features for analyzing and processing XML and for saving spreadsheets as XML.
Chapter 6 explores how Excel lets users load and work with XML data in a variety of vocabularies, and Chapter 7 takes
a close look at creating and consuming SpreadsheetML.

The XML capabilities of Microsoft Access have been enhanced for Office 2003, and those features are described in
Chapter 8. Chapter 9 takes a look at a different set of XML features in Office, those specific to Web Services, and
examines how to use them in Excel, Access, and Word.

Chapter 10 takes a close look at InfoPath, an application Microsoft has added to the Enterprise version of the Office
suite specifically to let users interact with XML and Web Services through a forms-based interface.

The last section of the book is a collection of appendixes, introducing various XML technologies that may be useful in
working with Office. They aren't intended to substitute for a thorough understanding, but hopefully they will be enough
to get you started.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Supporting Books
Even if you feel you are ready for this book, you may want to explore some of the XML technologies in greater depth
than is possible here. The following lists offer some good places to start.

Appendix A provides a brief orientation to XML, but other books that go into far more depth are readily available. For a
solid grounding in XML, consider these books:

 Erik Ray, Learning XML (O'Reilly)

 Elliotte Rusty Harold & W. Scott Means, XML in a Nutshell (O'Reilly)

 Elizabeth Castro, XML for the World Wide Web: Visual QuickStart Guide (Peachpit Press)

Appendix B provides a brief orientation to XSLT, but many projects may require a more sophisticated understanding of
XSLT. For more information on XSLT, try these books:

 Michael Fitzgerald, Learning XSLT (O'Reilly)

 Doug Tidwell, XSLT (O'Reilly)

 Sal Mangano, XSLT Cookbook (O'Reilly)

 Michael Kay, XSLT Programmer's Reference (Wrox)

 Jeni Tennsion, XSLT & XPath: On the Edge (John Wiley & Sons)

 John E. Simpson, XPath and XPointer (O'Reilly)

Appendix C explores W3C XML Schema briefly, but this topic is definitely worthy of a much larger book. Some good
options include:

 Eric van der Vlist, XML Schema (O'Reilly)

 Priscilla Walmsley, Definitive XML Schema (Prentice-Hall)

Appendix D briefly describes how to use RELAX NG, a simpler alternative to W3C XML Schema, to create W3C XML
Schema files. For a more thorough explanation of RELAX NG, see:

 Eric van der Vlist, RELAX NG (O'Reilly)

You may also want to complement your XML knowledge with more information on the rapidly growing world of Web
Services. For a lot more detail, see:

 Ethan Cerami, Web Services Essentials (O'Reilly)

 James Snell, Doug Tidwell, and Pavel Kulchenko, Programming Web Services with SOAP (O'Reilly)

 Eric Newcomer, Understanding Web Services: SOAP, WSDL, and UDDI (Addison Wesley)

 Alex Ferrara and Matthew MacDonald, Programming .NET Web Services (O'Reilly)

O'Reilly also offers a collection of programming books on XML that may prove useful. They include:

 Niel M. Bornstein, .NET & XML (O'Reilly)

 Brett McLaughlin, Java & XML (O'Reilly)

 Erik T. Ray and Jason McIntosh, Perl & XML (O'Reilly)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Erik T. Ray and Jason McIntosh, Perl & XML (O'Reilly)

 Christopher Jones and Fred L. Drake, Jr., Python & XML (O'Reilly)

There are also many online resources for XML. Two particularly good places to start looking are XML.com and
xmlhack.com. XML.com is part of the O'Reilly Network, and covers the latest news in XML on a weekly basis. For
smaller stories and a less formal approach, try xmlhack.com. Both have a variety of links to other XML resources and
mailing lists.

There is an enormous number of books on Microsoft Office and its component applications. My best advice in this field is
to visit a bookstore and examine a few books to see which best fits your learning style and your interests. (The same is
true of the XML books, but the list above provides a starting point.) Also, if you'd like to know more about how Office's
competitor OpenOffice.org handles XML processing, see J. David Eisenberg's excellent OpenOffice.org XML Essentials at
http://books.evc-cit.info/.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

Pathnames, filenames, program names, and stylesheet names

Internet addresses, such as domain names and URLs

New items where they are defined

Constant Width is used for:

Command lines and options that should be typed verbatim

Names and keywords in programs, including method names, variable names, and class names

XML element tags

Constant-Width Bold is used for emphasis in program code lines.

Constant-Width Italic is used to indicate replaceable arguments within program code.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Office 2003 XML, by Evan Lenz, Mary McRae, and Simon St.Laurent. Copyright 2004 O'Reilly Media, Inc., 0-
596-00538-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made a few mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You can access
this page at:

http://www.orelly.com/catalog/officexml

For more information abut this book and others, see the O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments

From Evan Lenz

This project has been a wonderful challenge and personal learning experience. Thank you, Simon, for inviting me to
help write this book. You've been a joy to work with, both as my editor and as my co-author. Thanks also to Mary
McRae for joining us on short notice, bringing to light some important areas we were too scared to touch. I would also
like to thank technical reviewers Jeni Tennison and Jeff Maggard for their helpful insights. Jeni's comments in particular
were prompt, thorough, and (as always) spot-on.

There are a number of other people who, directly or indirectly, made it possible for me to help write this book. Special
thanks go to: James Cooper at Seattle University School of Law, for so generously allowing me time to work on this
book; writers like Michael Kay and Merold Westphal, who showed me that it's possible to be clear without compromising
rigor; my dad, Herbert A. Lenz, who always encouraged me to write; my grandfather, Herbert J. Lenz, who lived his life
as an example of what it means to give and love sacrificially; my beautiful wife, Lisa, and precious children, Samuel and
Morgan, for being patient and tolerant of Daddy's extra working hours; and, finally, to my Lord, who is leading me on a
journey—a journey on which this project has been an important step.

From Mary McRae

Learning the intricacies of a newly-developed application during beta testing is never easy, and would not have been
possible without the help of several individuals at Microsoft, including Jean Paoli, Joe Andreshak, Brian Jones, Martin
Sawicki, and Achint Srivastava. My co-workers, Dave Giusto, Rico McCahon, and Jeff Pouliot, were not only supportive,
but also instrumental in helping to resolve technical challenges. Special thanks go to co-authors Simon St.Laurent and
Evan Lenz for inviting me to be a part of this project, and most importantly to my family, Steve and Heather, for their
love and support, and for keeping the coffee flowing.

From Simon St.Laurent

I'd like to thank my wife, Tracey Cranston, for putting up with me over the course of writing this book. Without her
kindness, as usual, I'm sure I would have disappeared in a puff of flame and smoke sometime around the middle of the
last chapter. I'm delighted to have had Evan Lenz and Mary McRae as co-authors, and would like to thank Jeni
Tennison, Jeff Maggard, and Jeff Webb for their technical insights over the course of reviewing this book. Edd Dumbill
contributed a large portion of Appendix A and was kind enough to only gently chide me for pursuing and writing this
book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Microsoft Office and XML
Most people who use Microsoft Office see the individual applications as tools for getting their work done, not as general-
purpose interfaces to information. Sure, people regularly exchange Word, Excel, and PowerPoint files over email, and
there are lots of times when you need to reuse files you created earlier, but for the most part information created in
Microsoft Office stays in Microsoft Office, coming or going from elsewhere largely by cut-and-paste or by often imperfect
file conversions.

With the latest Windows-based version of Office, Microsoft has taken a risky step, opening up Office quite drastically.
Developers, even those who aren't using Microsoft Office—or even Microsoft Windows—will be able to easily process the
information inside of Word and Excel files. Instead of just creating Word documents, users will be able to create data
files that can be shared with other processes and systems. Excel users will be able to analyze data from a much wider
variety of sources, and Access users will be able to exchange information with other databases and programs much
more easily than before. Users of the Enterprise Edition of Office will also have a new forms-based interface, InfoPath,
for working with other programs.

All of these things are possible because Microsoft has chosen to integrate XML deeply into the core of Microsoft Office.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Why XML?
Extensible Markup Language (XML) defines a text-based format containing labels and structures. XML looks a lot like
HTML, the primary language used by web browsers, but XML lets users and developers create their own formats rather
than limiting them to a single vocabulary. The XML 1.0 specification appeared in 1998, and a wide variety of
applications have added XML functionality or been built around XML since then, from databases to stock tickers to
editors to web browsers to inventory systems. While XML still requires readers and writers of documents to have some
shared understandings about the documents they create and interpret, it provides a basic format that is easily
processed in a wide variety of different environments—it's even frequently human-readable.

If you've never worked with XML and need to know the technical details of how to read
and create XML documents, you should read Appendix A of this book. This chapter
provides a high-level view of what XML makes possible and why it makes sense for Office,
not a detailed explanation of what XML is.

Microsoft has been involved with XML for a long time. A Microsoft employee, Jean Paoli (later a product manager for
Microsoft Office), was one of the editors of the XML 1.0 specification at the World Wide Web Consortium (W3C).
Microsoft has been involved with nearly every XML specification at the W3C since, and has participated in a wide variety
of XML-related projects at other organizations as well. Microsoft began work on XML tools before the specification was
complete, building the MSXML toolkit into Internet Explorer and then expanding into .NET and Web Services
development. More and more Microsoft software has XML at its core, and this latest version of Office joins a large group
of Microsoft applications using XML.

XML has been a crucial part of Microsoft's drive to put its programs in more and more environments. XML makes it
possible for Microsoft programs to communicate with programs from IBM, Sun, Oracle, and others, and greatly
simplifies the task of integrating new tools with custom code. Developers can build applications around XML, and don't
have to worry about the internal details of components with which they share XML. Equally important, developers using
XML don't have to worry about being locked into a format that's proprietary to a single vendor, because XML is open by
design. The rules for what is and what is not a legitimate XML document are very clear, and while it's possible to create
XML that is difficult to read, a combination of strict grammatical rules and widely-shared best practices encourages
developers to create formats that are easy to work worth. XML also includes features that support internationalization
and localization, making it much easier to consistently represent information across language boundaries as well as
program boundaries.

By adding XML to the Microsoft Office mix, Microsoft both makes it much easier to integrate Office with Microsoft
programs that already understand XML (like SQL Server, SharePoint Server, and the toolkits in Visual Studio) and for
developers to create their own combinations of Microsoft Office and other software. This allows Microsoft to connect to a
much wider variety of software without making users worry about whether they'll be able to use that information
elsewhere. XML also lets users go much further in building custom applications around Microsoft Office.

XML itself is only one piece of a larger XML puzzle. Extensible Stylesheet Language Transformations (XSLT) is an XML-
based language for transforming one XML document into another, using templates. XSLT is at the heart of much of the
Office XML work, a key ingredient for moving from the XML you have to the XML Office needs and vice-versa. Another
specification, W3C XML Schema, provides descriptions of document structures which the various Office applications can
use as a foundation for their processing. Microsoft refers to this as XML Schema Definition language, or just XSD, but
the W3C itself didn't provide an acronym. Some sources refer to it as WXS (for W3C XML Schema), others as XSD,
some as XSDL, and some just as XML Schema. Because Microsoft generally refers to it as XSD, this book will do the
same.

One aspect of XML development in particular deserves special mention, because Microsoft has integrated it into Office
alongside the more generic XML editing and analysis functions. Web Services, built on the SOAP, WSDL, and UDDI
specifications, provide a set of tools for communicating with other programs using XML. You can still read and write files
from your local computer, a file server, or a web server, but Web Services expose additional functionality of programs
located anywhere on the network.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 Different Faces of XML
Each of the Office applications that works with XML is targeted to a particular set of XML uses. While many people think
of XML as a general-purpose format that can store any kind of information, there are some serious divisions in the way
XML is used and in the practices surrounding that use. While some of these sound like the usual programming divides,
where Visual Basic, C#, Perl, and Java programmers all look at the same information slightly differently, some of them
are more like the divisions between people who primarily use Word to create documents and people who primarily use
Access to create and present databases.

The most commonly discussed division in the XML world is the divide between documents and data. XML's predecessor,
Standard Generalized Markup Language (SGML) was used primarily for document management. While having structures
in documents was a key feature for organizations with huge numbers of documents like various departments of
defense, the U.S. Internal Revenue Service, airplane manufacturers, and publishers, the structures were generally seen
as labels applied to documents, not as structures defining the contents of the documents. Documents have to be
accessible to humans as well as computers, and document structures need to be able to keep up with the many
intricate structures humans create to solve particular problems.

Developers who focus on data structures typically see XML as a tool for creating labeled containers for information.
While there may be some variations in that data and perhaps even some intricate data structures, the contents are
generally expected to conform to the structures, not the other way around. Programmers who want to exchange data
typically start by defining structures, and build code around those structures. Many program structures, especially
efficient program structures, are very brittle and don't take kindly to changes because of different contexts or people
adding extra layers of labels and structures.

While these two camps are often seen as separate and mutually suspicious, they can and do mix. Many documents
contain some strongly structured information, like tables or lists, and sometimes data needs an escape hatch for
possibilities that can't all be predicted in advance. Databases have long had fields that can support information in "rich"
formats, from simple text with bold and italic to complex multimedia. XML is not a cure-all that can make all of these
different views on information play nicely together, but it does offer enormous inherent flexibility for representing
different kinds and styles of information. (Sadly, no XML features appear in Macintosh versions of Office.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Different XML Faces of Office
Microsoft Office has always bundled a set of tools specialized for working with information of particular kinds. The new
XML functionality continues that tradition, with each application in the bundle using XML in ways that fit its particular
task. Microsoft has also added a new application, InfoPath, to the Enterprise Edition of Microsoft Office, filling a common
business need for flexible forms-based interfaces to structured information.

1.3.1 Word: Editing Documents

Word began as a program that let people express their thoughts on paper, and most users tend to think of it as a
conveniently editable typewriter. Although Word has added more features over time, like mail merge capabilities and
web page editing, it is still squarely focused on documents. While it's possible to use Word as a calculator or a
database, its primary strength has always been the creation of documents.

Microsoft has taken Word's traditional document-orientation and extended it into the world of document-oriented XML.
Word already deals with structured documents through features like styles, footnotes, forms, and comments, and is
quite capable of supporting complex layers of variable structure. When asked what they want in an XML document
editor, many people cite their experience using Word—and Microsoft has pretty much given that to them.

Word embraces XML on two levels. Without much effort, users can save any Word document as XML, using a
vocabulary that reflects Word's native understanding of the document. Styles, formatting, comments, revision marks,
metadata, and everything else that normally goes into a .doc file are preserved. Better still, all this information (except
for embedded objects, stored as Base64-encoded strings) is readily accessible, and developers can use any XML tools
or even a text editor to explore and process it. Word can open these files as if they were .doc files as well, making it
possible for other applications to create XML documents explicitly for consumption by Microsoft Word.

Word takes these features to the next level by allowing developers to create their own XML vocabularies and edit those
documents using Word, as shown in Figure 1-1. This takes more effort as well as an understanding of XML, XSLT, and
XSD, but that understanding is only necessary to create the templates, not to use them. Once the templates are
created, users can simply edit XML within the ordinary confines of Word. They can even tell Word to show them the
same information with a different set of presentation choices, making it easy to reuse information or edit documents in
a form convenient for editing, while presenting it more formally later.

Figure 1-1. Editing an XML document in Microsoft Word 2003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although Word is a newcomer to XML, Microsoft has driven XML foundations deep into the program. Simply exposing
Word information as XML is a sizable step, but Word has aimed higher with its approach to letting users edit the XML of
their choice in Word rather than the XML of Microsoft's choice. This should make it much easier to use Word as an
interface to a much wider variety of XML-based systems, from Web Services to content management and workflow.

1.3.2 Excel: Analyzing Information

The spreadsheet was a wild new concept when VisiCalc first appeared back in 1981, and spreadsheets are still a
fascinating hybrid of data storage and data processing. Excel has grown over the years from a basic calculating tool to a
powerful set of features for analyzing and presenting largely numerical data. While many Excel spreadsheets quietly
process data on their creators' computers, others have evolved into programs by themselves, providing an interface to
problem-solving tools that people beyond their creators can use.

Excel has had its own XML format since Excel XP. While this format doesn't include quite everything—Visual Basic for
Applications code isn't included, and charts aren't either—this format includes enough information that it's possible for
application to mine Excel spreadsheets and extract their information. A common complaint about spreadsheets
(especially among database purists) is that information goes in but doesn't come out. Microsoft's XML Spreadsheet
format is relatively easy to interpret and provides a foundation for exchanging information between Excel and other
applications.

Excel 2003 goes beyond having an XML format. While it's certainly possible for other applications to create XML
Spreadsheet files containing their information, it's generally more convenient to be able to open whatever XML files are
already available (even without a schema) and analyze them within Excel, as shown in Figure 1-2. This makes it
possible to create a spreadsheet that can analyze any given XML document—say, monthly sales data—and keep using
that same spreadsheet on new data when it appears.

Figure 1-2. Working with XML data mapped into Microsoft Excel 2003.

The mapping features included in Excel make it much easier to create reusable spreadsheets, and simplify the task of
creating Excel-based applications for analyzing data. They also make it much easier to separate the raw data from the
Excel spreadsheet, letting the spreadsheet stay up to date even when the data it first analyzed isn't. To some extent
this is like connecting Excel to a database, but it's a good deal more flexible. If your document structures are simple
enough, you can also use Excel as a simple XML editor.

1.3.3 Access: Sharing Data

Access remains a relational database for the desktop, providing convenient local storage of structured information as
well as an interface for information on both local and remote databases. Of all the products in the Office suite, Access is
the strictest in demanding that information conform to predefined rules, using those structures as a foundation for all
the other work it performs.

Like Excel, Access has had some XML support in earlier versions, supporting an XML vocabulary for importing and
exporting information. Access 2003 substantially upgrades that XML support, however. New features include support for
XML data that is stored across multiple tables, integrated XSLT transformations when importing or exporting
information, and greater standards-compliance for both XSLT and XSD. You can see Access' XML export functionality in
Figure 1-3. These features are also now more accessible from applications built using Access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. These features are also now more accessible from applications built using Access.

Figure 1-3. Exporting XML in Microsoft Access 2003

Because Access is built on a relational database foundation, it doesn't really make sense to drive XML into its core. It's
possible to recreate tables in XML, but that loses the random access and indexing features that make relational
databases so good at quickly processing structured information. Storing XML documents inside of relational databases is
also possible, but again, the costs are high. Communicating with the outside world using XML seems to provide the best
balance between connecting Access to other programs and letting Access do what it does best.

1.3.4 InfoPath: Editing Structured Information

InfoPath is a new addition to Microsoft Office, and only comes in the Enterprise Edition of Office, though it is also
available for purchase as a standalone product. Unlike the other Office applications, which are largely self-sufficient,
InfoPath is designed to connect users to other services and other users, and was built for the explicit purpose of
working with XML. InfoPath provides both an environment for creating forms-based interfaces to structured information
(stored in XML, naturally) and a framework for connecting that information to web, web service, and email applications.
InfoPath can serve as a frontend to Microsoft's SharePoint Server, but it can also connect to other applications that can
process XML.

InfoPath fills a gap between the document-oriented vision of Word and the data-oriented approaches of Excel and
Access. A lot of information is too loosely structured to fit easily in a spreadsheet grid or a database table, but not
nearly as open-ended as Word makes possible. At the same time, InfoPath provides a more capable set of tools than
traditional browser-based HTML forms have provided, and has tied that information more tightly to workflow processes.

InfoPath builds on the same core of XML specifications as the other members of the Office suite: XML, XSLT, and XSD.
InfoPath provides a set of tools for creating forms based on the possibilities defined in an XSD schema, letting you drag
and drop components and customize them to meet your form-creation needs. An example of form-creation is shown in
Figure 1-4. The same information can be presented in multiple views, making it possible, for example, for a customer to
fill out a form with the information they know, and have other steps in the process add more information. There's no
need for retyping or for mysterious "Office Use Only" sections on forms in this model.

Figure 1-4. Designing a form in Microsoft InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InfoPath also takes advantage of XML to add some features that reflect how people typically work. Forms that collect a
lot of information can take a while to fill out, and people frequently start and stop to rest, collect information, or switch
to other tasks completely. Because InfoPath stores its information as XML, it's easy to stop the process, save the
results, and come back to them later. This also makes it possible, for instance, to send a partially filled-out form to
someone else and ask for help. Even if that other person doesn't have InfoPath, they may be able to open the file or
apply an XSLT transformation to view the information inside of it.

1.3.5 Other Members of the Office Family

While the XML features in Word, Excel, Access, and InfoPath are especially interesting (and receive the bulk of coverage
in this book), most of the other members of Microsoft's Office family of products have an XML story of some sort.

Two members of the Microsoft Office family, PowerPoint and Outlook, are notable for not having an XML story.
PowerPoint's developers have continued work on its HTML features, but XML support has been left for later versions.
Some developers use their own XML and XSLT to create HTML presentations, but this isn't exactly common practice.
Outlook is in a similar position, with new features but none of them XML-related. Future editions of this book may get to
explore PowerPoint and Outlook XML, but for now there is no such thing.

Microsoft FrontPage, traditionally a GUI editor for web pages, is growing into a slightly more general tool for creating
XSLT stylesheets that can then be easily used to create templates. The XSLT tools in FrontPage remain oriented toward
web development and not to general XSLT work, but they may prove very useful for developers who want to create
XML documents in Word and present them differently on the Web without users having to lift a finger.

Microsoft Visio has had its own XML format since Visio 2002, but the latest release adds support for Scalable Vector
Graphics (SVG), a W3C standard for describing graphics in XML. Visio can import SVG documents and work with them
much like regular Visio documents, adding its own markup where it needs to go beyond the capabilities of SVG but
preserving the original SVG. Developers who need to exchange diagrams or put them on the Web for readers who don't
themselves have Visio should find these features very useful.

For an example of working with Visio's XML format, see Recipe 11.1 of Sal Mangano's XSLT
Cookbook (O'Reilly). For more on SVG generally, see J. David Eisenberg's SVG Essentials
(O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Opening Office to the World
While the .doc and .xls file formats have served as de facto standard file formats for years, and developers have
created a variety of tools for getting information into and out of these formats, writing code that could produce or
consume them has never been much fun. Technologies like mail merges and ODBC connections have made it possible
to connect the Office applications to other tools, but this is the first time that Microsoft has taken large steps to make
Office data accessible through means other than the Office products themselves, and simultaneously has made the
applications much more agnostic about where their information comes from.

By freeing users from their applications' traditional perspectives on information sources, Microsoft has created a whole
new range of possibilities for using its applications as interactive browsers. Users who have been frustrated by the
limited interaction capabilities of web browsers can now access their data, and edit it, in familiar applications supporting
many different styles of information manipulation. For the most part, the applications continue to prefer working with
local documents and can read documents from the Web, but they have taken a big step toward integration with Web-
and XML-based infrastructure.

While the details of each application make a big difference in how the integration works, details which will be covered in
later chapters, it's worth examining some potential use cases for the new technology before proceeding into those
details.

1.4.1 Generating Word and Excel Documents from Databases

While much of the information that is currently managed by Microsoft Office users is created in Office and manipulated
primarily through Office, there is plenty of other information out there. There are also a lot of reasons why
organizations may want to keep even their document-like information in more conveniently managed and reused
database management systems. While Office has long had pieces for connecting to these systems to extract
information, dumping a relational database table into a Word or Excel file has required non-trivial programming. The
new XML capabilities open up new possibilities for this kind of work.

The key to this project lies in Microsoft's creation of application-specific XML formats for Word and Excel. Word's
WordprocessingML and Excel's SpreadsheetML are formats that these applications can open and interact with just as if
they were .doc or .xls files. (Some restrictions apply, especially for Excel, but enough is available to make this
technique useful.)

Developers can create XML documents from databases much the same way that they have created HTML documents
from databases for the past decade. Technologies like ASP, PHP, CGI, and all of their siblings are still up to the task.
Alternatively, if a database can provide an XML representation of information in response to a query, the server could
use XSLT to transform that representation, as shown in Figure 1-5. To create documents for Word, the developer would
generate WordprocessingML, while creating documents for Excel would involve generating SpreadsheetML.

Figure 1-5. Using XSLT to generate WordprocessingML or SpreadsheetML from a
custom XML vocabulary

Users of Office 2003 can then open these documents directly, as if they were ordinary Word or Excel files. This works
even if the documents are stored on the Web, thanks to Word and Excel's long-time support for opening Web
documents. If they need to exchange the information with people using older versions of Office, they can just use Save
As . . . and the .doc or .xls format for backward-compatibility. Nothing is lost in the transition from XML to the
traditional binary formats.

1.4.2 Separating Content from Presentation in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most users treat Word as a tool for creating content that looks the way they want it to look. The gold standard for Word
results has generally been the document's appearance on a piece of paper, not the elegance of how that appearance
was achieved. While the focus on presentation works well for a lot of applications, it breaks down when developers are
trying to use Word's familiar interface to create information that needs to be reused in other ways.

This book, for instance, was written in Word and the .doc files converted to FrameMaker using custom tools—tools that
only focus on a subset of Word's capabilities, its styles. Users who take advantage of Word's other style features create
problems for this converter, and the usual result is that some of the author's intentions are lost in translation.

Word's support for custom XML schemas offers a huge first step toward resolving this problem. Developers can create
templates that emphasize structured content rather than presentation, while still using an interface that looks familiar.
These templates can even offer users a choice of how to present the content, letting them work on the structures using
a view that makes them comfortable. For small projects, this can be a quick and effective way to build forms. For
larger, more complicated projects, a more sophisticated set of programming skills is necessary to make this work.

1.4.3 Separating Content from Analysis in Excel

Spreadsheets are wonderful tools for analyzing information. Within the basic confines of the grid system, developers
can store both data and tools for processing that data. This paradigm has worked well for twenty years, but it also
comes with some costs. Incredible amounts of information are stored in spreadsheets, much of it only in those
spreadsheets. Users often use old spreadsheets as the foundations for new ones, often cutting and pasting data in from
other sources.

With Excel 2003, it's pretty easy to create a spreadsheet that includes a list area (or areas) designed to hold
information retrieved from XML documents, as shown in Figure 1-6. Once the list is defined, the spreadsheet can add
information to the area or replace the content with new data. The list can be extended easily to include formulas as
well, if desired, and the rest of the spreadsheet can reference the list.

Figure 1-6. Using lists representing XML maps to create reusable Excel
spreadsheets that can be applied to different XML data sets

Thanks to these lists, users can keep a standard spreadsheet that they use to analyze information that appears on a
regular basis. When new data arrives in XML format—say, a quarterly sales report—those users can just tell Excel to
import the new data, and their spreadsheets will reflect the new data. The spreadsheets become small applications
themselves, complete with their own XML-based data formats. It's hard to imagine an easier way to write programs
that analyze business data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that analyze business data.

1.4.4 Creating and Editing XML in Excel

Excel's forte is analysis, but it also provides an easily understood user interface for working with simple structured data.
If you need to work with data that fits easily on a grid, Excel offers a convenient tool for working with that data. You
can create a list, type data directly into it, and save it as XML without ever seeing a tag. The XML itself can have a
slightly more complex structure than the simple grid, though that structure isn't presented to the person working in
Excel at all. It's easy to use Excel as a quick interface for creating or editing simple XML documents.

1.4.5 Annotating Word Documents with Additional Information

While Microsoft has described Word's support for custom XML as a feature that makes Word into an XML editor of sorts,
the custom markup support has a side effect that gives Word new functionality, whether or not users ever save their
files as XML. For many documents, presentation style is a good analog for structure, but there are times when you need
to be able to annotate documents in a finer-grained or more complex way than Word's existing styles and comments
interfaces provide.

By associating an XML Schema with a Word document, developers can create templates that look like ordinary Word
documents but have a hidden layer of additional information, which only surfaces when the document is saved as XML
or viewed with XML tags visible. It's more typical for documents to have a single structure, made visible through the
traditional WYSIWYG interface, but if you need the document to have two sets of structure, this is definitely an option.

1.4.6 Exchanging Information Between Access and the World

Microsoft Access has traditionally been a desktop application, sharing information among a small group of people.
Access now supports XML import and export to and from its tables, meaning that it's rapidly becoming easier to use an
Access database as a local host for information that may well come from or go to other systems.

Instead of treating Access databases as islands (or Access as a mere interface to more sophisticated database systems)
this new openness makes it easier to treat Access databases as the outer nodes in a hub-spoke system, as shown in
Figure 1-7. By picking up information from XML documents and storing it in the database, Access can act as a
convenient local container that provides a lot of analytical and interface tools. Access might make an excellent
temporary store for users analyzing complex data on disconnected laptops, or as a point of contact for users in remote
offices who periodically send and receive updated information. Access can also function as an intermediary between
XML and more complex, possibly legacy database systems that don't necessarily support XML but do support import
and export to and from Access.

Figure 1-7. A hub-spoke system of Access databases connected with XML

1.4.7 Interacting with Web Services Using InfoPath

Web Services have remained stubbornly buried behind layers of code. Although it's always been possible to write user
interfaces for them, it required a lot of interface-building programming. Expanding Web Services (and XML)
communications to include people as well as computers hasn't been particularly easy. InfoPath takes direct aim at this
project, drastically simplifying the task of designing and deploying interfaces to these services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

project, drastically simplifying the task of designing and deploying interfaces to these services.

Microsoft has made a lot of complete functionality for managing projects using these tools available through the
combination of SharePoint Server and InfoPath, but InfoPath can provide a friendly frontend interface to whatever
services you'd like. If you need to collect information from users, give them a testing interface to explore a Web
Service, or present information to users that they can use or change, InfoPath offers easy access to a wide variety of
information types.

1.4.8 Interacting with Web Services Using Excel, Access, or Word

Excel can also be used as an interface to SOAP-based Web Services, not just XML. Doing so requires installing a toolkit
and writing some Visual Basic for Applications code, but once you've done that, your Excel spreadsheet can serve as an
interface to whatever Web Service you choose. Excel XP supported similar functionality, so this isn't an major change,
but it's an important ingredient of the overall Office story.

The same toolkit used to integrate Web Services with Excel can be used with Access and Word. An Access database
might use an external web service to support complex calculations or as a source of regularly changing data, while
Word users might find Web Services a convenient source of information for documents that need autocompletion of
regularly changing or even calculated boilerplate text.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. The WordprocessingML Vocabulary
Microsoft Office Word 2003 marks the introduction of XML as a native format for Word documents. Any Word document
can now be opened in Word and saved as XML, thereby freeing documents from the tyranny of Word's proprietary .doc
format. This new format, called WordprocessingML, opens up a multitude of possibilities for generating and processing
Word documents. (Read Chapter 3 first if you want some immediate gratification regarding use cases for
WordprocessingML.) This chapter includes a basic introduction to WordprocessingML, along with some general technical
observations and guidelines for learning more. It is meant to complement, rather than replace, a detailed investigation
of the WordprocessingML schema.

An authoritative and thorough source for learning is the Microsoft-supplied XSD schema for
WordprocessingML. The "Microsoft Office 2003 XML Reference Schemas" package has been
released under a royalty-free license and includes each of the WordprocessingML schema
documents, as well as accompanying documentation. It can be found by starting at
http://www.microsoft.com/office/xml/.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Introduction to WordprocessingML
WordprocessingML is Microsoft's XML format for Word documents. It's what you get when you select Save As... and
choose "XML Document." WordprocessingML is a lossless format, which means that it contains all the information that
Word needs to re-open a document, just as if it had been saved in the traditional .doc format—all text, formatting,
styles, document metadata, images, macros, revision history, Smart Tags, etc. (The one exception is that
WordprocessingML does not embed TrueType fonts, which is only a disadvantage if the users opening the document do
not have the needed font installed on their system.) Indicative of Word's tremendous size and legacy, the
WordprocessingML schema file approaches 7,000 lines in length. Fortunately, a little bit of knowledge about
WordprocessingML can go a long way.

It was only recently that Microsoft began calling Word's XML format "WordprocessingML,"
whereas previously it was called, simply, "WordML" (as still reflected in the schema's
namespace URI). Why they decided to adopt this new name isn't entirely clear...though it
certainly is wordier.

To gain an advanced understanding of WordprocessingML, you'll need to first understand the fundamentals of Word
itself. While this chapter briefly touches on Word's global architecture and design, books such as the following can
provide a more solid foundation:

Word Pocket Guide, by Walter Glenn (O'Reilly)
Word 2000 in a Nutshell, by Walter Glenn (O'Reilly)

In this chapter, we'll examine several increasingly detailed examples of WordprocessingML. First, we'll take a look at the
definitive "Hello, World" example for WordprocessingML. Next, after learning some tips for working with
WordprocessingML, we'll take a tour through an example WordprocessingML document as output by Word. Then, we'll
systematically cover Word's primary formatting constructs: runs, paragraphs, tables, lists, sections, etc. Finally, we'll
take another look at one of Word's most important features: the style. Understanding how styles work—how they
interact with direct formatting and how they relate to document templates—is essential to an overall understanding of
WordprocessingML and Word in general.

2.1.1 A Simple Example

Example 2-1 shows a WordprocessingML document that one might create by hand in a plain text editor. This example
represents the simplest non-empty WordprocessingML document possible.

Example 2-1. A simple WordprocessingML document created by hand

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first thing to note about this example is the mso-application processing instruction (PI). This is a generic PI used by
various applications within the Microsoft Office System. Its purpose is to associate the given .xml file with a particular
application in the Office suite. In this case, the file is associated with Microsoft Word. This has a double effect: not only
is the Word application launched when a user double-clicks the file, but Windows Explorer renders the file using a
special Word XML icon. This behavior is enabled through an Explorer shell that is automatically installed with Office
2003. All XML documents saved by Word will include this PI. We'll see more uses of the mso-application PI in Chapter 7
and Chapter 10.

As mentioned above, Example 2-1 shows the simplest non-empty WordprocessingML document possible. The w:body
element is the only required child element of the w:wordDocument root element. It technically can be empty, but that
would make for a pretty boring first example. The w:p element stands for "paragraph," w:r stands for "run," and w:t
stands for "text." The namespace prefix w maps to the primary WordprocessingML namespace:
http://schemas.microsoft.com/office/word/2003/wordml.

Beware the default namespace! Word, in its longstanding attempt to be everything to
everybody, does something funny when you try to open a WordprocessingML document
that uses a default namespace, rather than the w (or some other) prefix, for elements in
the WordprocessingML namespace. It sees the naked (un-prefixed) body element and
thinks "This must be HTML!" The easiest way to avoid this problem is to always use an
XML declaration (e.g., <?xml version="1.0"?>) at the beginning of an XML document that will
be opened by Word. Word will consistently recognize the document as XML if the XML
declaration is present.

With few exceptions, all text in a given document is contained within a w:t element that's contained within a w:r element
that's contained within a w:p element. A final thing to note is that, except for the w:wordDocument element, none of the
elements in Example 2-1 (w:body, w:p, w:r, and w:t) can have attributes. As we'll see, properties are instead assigned
(to paragraphs and runs) using child elements. Figure 2-1 shows the result of opening our example document in Word.
We see "Hello, World!" in the default font and font size, in the default view. Word supplies these defaults, because they
are not explicitly specified in our WordprocessingML document.

Figure 2-1. Our hand-edited WordprocessingML file, opened in Word

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Tips for Learning WordprocessingML
Learning WordprocessingML—particularly how Word behaves when it encounters various markup constructs—is an
iterative process. You go back and forth between the text editor and the Word application, closing the document in
Word so you can make changes to it elsewhere, and then re-opening it to see what effects those changes have. You
make hypotheses and you test them. Anything you can do to speed up the iterations of this process will help. Below are
several pieces of advice to consider as you begin this educational journey.

Experiment

Since Microsoft has released fairly limited documentation of WordprocessingML so far, it is often best to learn
through experimentation. Create a document in Word that uses various formatting features you are interested
in. Save the document as XML. Then, investigate the WordprocessingML for the document, making note of how
various document structures are represented as XML. Internet Explorer can be a good tool for viewing
WordprocessingML documents. (See the sidebar "Using Internet Explorer to Inspect WordprocessingML
Documents.")

Don't try to learn everything

This tip offsets the first one. It is sometimes possible to get hung up on particular theoretical questions or
problems when experimenting with WordprocessingML. But if you want to remain productive, you should be
prepared to suspend understanding at various turns in your investigation. The beauty of WordprocessingML is
that you can accomplish quite a lot without understanding everything in the markup. For example, to create a
stylesheet that generates WordprocessingML documents, you would only need to prepare the document in Word
itself, save it as XML, and then copy and paste the bulk of it into your stylesheet, zeroing in on only the
elements that contain dynamic content.

Use the Reveal Formatting task pane

Word's Reveal Formatting task pane (press Shift-F1) provides a very helpful intermediate view of formatting
properties between the WordprocessingML itself and how the document actually looks. Moreover, if you check
the "Distinguish style source" checkbox (at the bottom of the task pane), it will identify the source of specific
formatting properties, distinguishing between those that are defined in a style and those that are applied as
direct formatting. This chapter includes some example screen shots that use the Reveal Formatting task pane.

Use the XML Toolbox

The XML Toolbox was quietly released by Microsoft as a plug-in for Word. It is Word's equivalent of View
Source, and it is a godsend. It lets you view the underlying WordprocessingML for a document or selection right
from within Word. You can also manually insert WordprocessingML, using the "Insert XML" dialog, shown in
Figure 2-2. Ultimately, it is not a substitute for saving as XML, as it leaves out some things (such as document
metadata and spelling errors). One caveat is that the XML Toolbox plug-in requires .NET Programmability
support. This means that the .NET Framework 1.1 must have been installed prior to the Office 2003 installation.
Get and read about this plug-in at http://msdn.microsoft.com/library/en-
us/dnofftalk/html/odc_office01012004.asp

Figure 2-2. The "Insert XML" dialog, available only with the XML Toolbox plug-in
for Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Internet Explorer to Inspect WordprocessingML Documents
Internet Explorer's default tree-view stylesheet for XML documents provides a handy, readable way to
investigate the structure of WordprocessingML documents. However, if you try opening a
WordprocessingML document in IE (e.g., by right-clicking the file and selecting Open With Internet
Explorer), IE turns around and launches Word, because it too is now trained to recognize and honor the
mso-application processing instruction. There are two techniques for getting around this.

The first technique is to simply remove the mso-application PI before opening the WordprocessingML
document in IE:

1. Save the Word document as XML and then close it.

2. Open the newly saved WordprocessingML document in Notepad.

3. Delete or comment out the mso-application PI and re-save.

IE will now display the document using its pretty XML tree view, and will continue to do so even if the
document is subsequently updated by Word to include the mso-application PI. Once you've initially opened
it in IE, you can refresh IE to see how changes to the document from within Word affect the underlying
WordprocessingML.

The second technique involves making a temporary global system change, obviating the need to
comment out the mso-application PI for each and every document you want to inspect.

1. Open the Registry Editor by selecting Start Run and typing regedit.

2. Find the sub-key named
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\11.0\Common\Filter\text/xml.

3. Right-click the Word.Document string value entry, and select Rename.

4. Change the name to something like Word.DocumentDISABLED.

This will make it easy to restore the setting later, by simply renaming it again and removing the
"DISABLED" part. With the WordprocessingML filter effectively disabled, IE will now open
WordprocessingML documents using its default XML tree-view stylesheet just like any other XML
document. Windows Explorer, however, will still continue to associate WordprocessingML documents with
Word, which is probably what you will always want.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 WordprocessingML's Style of Markup
If you have any XML or HTML markup background, then WordprocessingML's style of markup may surprise you.
WordprocessingML was not designed from a clean slate for the purpose of creating documents in XML markup. Instead,
it is an unveiling of the internal structures that have been present in Microsoft Word for years. Though certain features
have been added to make WordprocessingML usable outside the context of Word, by and large it represents a
serialization of Word's internal data structures: various kinds of objects associated with myriad property values. Indeed,
the object-oriented term "properties" permeates the WordprocessingML schema. If you want to make a run of text bold,
you set the bold property. If you want to indent a particular paragraph, you set its indentation property. And so on.

2.3.1 No Mixed Content

Mixed content describes the presence of text content and elements inside the same parent element. It is standard fare
in the world of markup, especially when using document-oriented markup. For example, in HTML, to make a sentence
bold and only partially italicized, you would use code such as the following:

This sentence has <i>mixed</i> formatting.

WordprocessingML, however, never uses mixed content. All of the text in a WordprocessingML document resides in w:t
elements, and w:t elements can only contain text (and no elements). The above sentence is represented much
differently in WordprocessingML. The hierarchy is flattened into a sequence of runs having different formatting
properties:

<w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

 <w:t>This sentence has </w:t>

</w:r>

<w:r>

 <w:rPr>

 <w:b/>

 <w:i/>

 </w:rPr>

 <w:t>mixed</w:t>

</w:r>

<w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

 <w:t> formatting.</w:t>

</w:r>

As you can see, all of the text occurs by itself (no mixed content), within w:t elements.

2.3.2 Properties Are Set Using Empty Sub-Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The above snippet illustrates another general principle in WordprocessingML's style of markup: properties are assigned
using empty sub-elements (e.g., w:b and w:i in the above example). For runs, the w:rPr element contains a set of empty
elements, each of which sets a particular property on the run. Similarly, for paragraphs (w:p elements), the w:pPr
element contains the paragraph formatting properties. For tables, table rows, and table cells, there are the w:tblPr,
w:trPr, and w:tcPr elements, respectively. In each case, the *Pr element must come first, so that the general structure of
paragraphs, runs, tables, table rows, and table cells looks like this:

Object

 Properties

 Content

The properties are defined first, and the content follows. If you have any experience with RTF (Rich Text Format), then
this pattern may look familiar. Before the advent of WordprocessingML, RTF was the most open format in which Word
was willing to save documents. A look at the same sentence after saving it as RTF is demonstrative:

{\b\insrsid3691043 This sentence has }

{\b\i\insrsid3691043 mixed}

{\b\insrsid3691043 formatting.}

The parallels should be fairly easy to draw, without understanding every detail. There are three runs (delineated by
curly braces). The first run has bold turned on by virtue of the \b command. The second run has both bold and italic
turned on by virtue of the \b and \i commands. And the third run goes back to using just bold and no italic. From this
perspective, WordprocessingML may look more like an XML format for RTF—an estimation that is not too far off the
mark.

To learn more about RTF, consider the RTF Pocket Guide (O'Reilly), by Sean M. Burke.

2.3.3 No Hierarchical Document Structures

Nested markup describes the use of element nesting to arbitrary depths. In addition to formatting text, nested markup
is useful for structuring documents. For example, a Docbook document may have sections and sub-sections nested to
an arbitrary depth, like this:

<article>

 <section>

 <title>Section 1</title>

 <para>This is the first section.</para>

 <section>

 <title>Section 1A</title>

 <para>This is a sub-section.</para>

 </section>

 </section>

</article>

The above document is represented much differently in WordprocessingML. The hierarchy is flattened into a sequence
of four paragraphs having different properties. Below is the w:body element, excerpted from such a document:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of four paragraphs having different properties. Below is the w:body element, excerpted from such a document:

<w:body>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Heading1"/>

 </w:pPr>

 <w:r>

 <w:t>Section 1</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is the first section.</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Heading2"/>

 </w:pPr>

 <w:r>

 <w:t>Section 1A</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is a sub-section.</w:t>

 </w:r>

 </w:p>

</w:body>

In Word, the paragraph is the basic block-oriented element, and paragraphs may not contain other paragraphs. Word
does, however, provide a workaround for hierarchical documents, through use of the wx:sub-section element. In fact, if
you were to open the above document and then save it from within Word, the result would include wx:sub-section
elements that reflect the hierarchy intended by the heading paragraphs. We'll look at how this works in detail later, in
Section 2.6.2.

2.3.4 All Attributes Are Namespace-Qualified

One more peculiarity worth noting about WordprocessingML markup is its use of namespace-qualified attributes. In
most XML vocabularies, attributes are not in a namespace. They are generally thought to "belong" to the element to
which they are attached. As long as the element is in a namespace, then no naming ambiguities should arise.
Namespace qualification, however, can be useful for "global attributes" that can be attached to different elements. Such
attributes do not belong to any particular element. The xml:space attribute is a good example of a global attribute. XSLT
also has some global attributes, such as the xsl:exclude-result-prefixes attribute, which can occur on any literal result
element (in any namespace). These are considered good use cases for qualifying attributes with a namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element (in any namespace). These are considered good use cases for qualifying attributes with a namespace.

WordprocessingML, however, does not follow this convention. While there are some "global attributes" in
WordprocessingML (such as the w:type attribute, which appears on the aml:annotation element, which we'll see),
WordprocessingML does not restrict its use of namespace qualification to those cases. Instead, it universally qualifies all
attributes across the board. For this reason, the key thing to remember when working with attributes in
WordprocessingML is that they always must have a namespace prefix (because there's no such thing as a default
namespace for attributes in XML).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 A Simple Example Revisited
Example 2-2 shows how our "Hello, World" example looks after opening it in Word, selecting Save As . . . , and saving
the file with a new name, HelloSaved.xml. For the sake of readability, we've added line breaks and indentation, neither
of which affects the meaning of the file. The highlighted lines in this example correspond to the lines that were present
in our original hand-edited WordprocessingML document in Example 2-1. Everything else is new.

Example 2-2. The same Word document, after Word saves it as XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:v="urn:schemas-microsoft-com:vml"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"

 xml:space="preserve">

 <o:DocumentProperties>

 <o:Title>Hello, World</o:Title>

 <o:Author>Evan Lenz</o:Author>

 <o:LastAuthor>Evan Lenz</o:LastAuthor>

 <o:Revision>4</o:Revision>

 <o:TotalTime>15</o:TotalTime>

 <o:Created>2003-12-06T22:45:00Z</o:Created>

 <o:LastSaved>2003-12-18T07:59:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>2</o:Words>

 <o:Characters>12</o:Characters>

 <o:Lines>1</o:Lines>

 <o:Paragraphs>1</o:Paragraphs>

 <o:CharactersWithSpaces>13</o:CharactersWithSpaces>

 <o:Version>11.5604</o:Version>

 </o:DocumentProperties>

 <w:fonts>

 <w:defaultFonts w:ascii="Times New Roman" w:fareast="Times New Roman"

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

 </w:fonts>

 <w:styles>

 <w:versionOfBuiltInStylenames w:val="4"/>

 <w:latentStyles w:defLockedState="off" w:latentStyleCount="156"/>

 <w:style w:type="paragraph" w:default="on" w:styleId="Normal">

 <w:name w:val="Normal"/>

 <w:rsid w:val="00B15979"/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 <w:sz w:val="24"/>

 <w:sz-cs w:val="24"/>

 <w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:default="on"

 w:styleId="DefaultParagraphFont">

 <w:name w:val="Default Paragraph Font"/>

 <w:semiHidden/>

 </w:style>

 <w:style w:type="table" w:default="on" w:styleId="TableNormal">

 <w:name w:val="Normal Table"/>

 <wx:uiName wx:val="Table Normal"/>

 <w:semiHidden/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 </w:rPr>

 <w:tblPr>

 <w:tblInd w:w="0" w:type="dxa"/>

 <w:tblCellMar>

 <w:top w:w="0" w:type="dxa"/>

 <w:left w:w="108" w:type="dxa"/>

 <w:bottom w:w="0" w:type="dxa"/>

 <w:right w:w="108" w:type="dxa"/>

 </w:tblCellMar>

 </w:tblPr>

 </w:style>

 <w:style w:type="list" w:default="on" w:styleId="NoList">

 <w:name w:val="No List"/>

 <w:semiHidden/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:semiHidden/>

 </w:style>

 </w:styles>

 <w:docPr>

 <w:view w:val="web"/>

 <w:zoom w:percent="100"/>

 <w:proofState w:spelling="clean" w:grammar="clean"/>

 <w:attachedTemplate w:val=""/>

 <w:defaultTabStop w:val="720"/>

 <w:characterSpacingControl w:val="DontCompress"/>

 <w:validateAgainstSchema/>

 <w:saveInvalidXML w:val="off"/>

 <w:ignoreMixedContent w:val="off"/>

 <w:alwaysShowPlaceholderText w:val="off"/>

 <w:compat/>

 </w:docPr>

 <w:body>

 <wx:sect>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800"

 w:header="720" w:footer="720" w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

 </wx:sect>

 </w:body>

</w:wordDocument>

The first thing that may come to mind when looking at this example is "Why does the XML contain so much more
information when all I did was save it?" Or perhaps you've begun to panic.

Don't. While all of this XML is certainly daunting at first glance, we'll see that for the most part its meaning is
straightforward. Take comfort in the fact that, while Word may create markup that's quite verbose, it can handle
markup that minimally conforms to its schema without complaining at all. This liberality in what Word accepts makes it
much easier to write applications that generate WordprocessingML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

much easier to write applications that generate WordprocessingML.

Let's take a tour through this document, examining each top-level element in turn. Getting an overall, top-down view of
what goes into a WordprocessingML document will help bring context to the more nitty-gritty, bottom-up examination
of the vocabulary that will follow later in this chapter.

2.4.1 The w:wordDocument Element

The root element of Example 2-2, w:wordDocument, has a large number of attributes:

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:v="urn:schemas-microsoft-com:vml"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 w:macrosPresent="no" w:embeddedObjPresent="no"

 w:ocxPresent="no" xml:space="preserve">

Actually, most of these are technically namespace declarations. They are present on every WordprocessingML document
that Word outputs, regardless of whether all the namespaces are actually used in the document. In WordprocessingML,
you can safely leave out all the namespace declarations except the ones you actually use, which will minimally include
the primary WordprocessingML namespace (normally mapped to the w prefix). Below is a list of the namespaces
declared in this document, along with a brief description of the purpose of each.

http://schemas.microsoft.com/office/word/2003/wordml

Mapped to the w prefix. All of the core WordprocessingML elements and attributes are in this namespace.

urn:schemas-microsoft-com:vml

Mapped to the v prefix. Elements in this namespace represent embedded Vector Markup Language (VML)
images.

urn:schemas-microsoft-com:office:word

Mapped to the w10 prefix. This namespace is used for legacy elements from Word Ten. It is used in HTML
output.

http://schemas.microsoft.com/schemaLibrary/2003/core

Mapped to the sl prefix. The sl:schema and sl:schemaLibrary elements are used with Word's custom XML schema
functionality, and are introduced in Chapter 4.

http://schemas.microsoft.com/aml/2001/core

Mapped to the aml prefix. The Annotation Markup Language (AML) elements are used to describe tracked
changes, comments, and bookmarks.

http://schemas.microsoft.com/office/word/2003/auxHint

Mapped to the wx prefix. Elements in this namespace provide "auxiliary hints" for processing WordprocessingML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapped to the wx prefix. Elements in this namespace provide "auxiliary hints" for processing WordprocessingML
documents outside of Word. They represent derivative information that is useful to us but that is of no internal
use to Word. See "Auxiliary Hints in WordprocessingML," later in this chapter.

urn:schemas-microsoft-com:office:office

Mapped to the o namespace. This is the namespace for "shared" document properties and custom document
properties. They are shared in that they also apply to other Office applications, such as Excel.

uuid:C2F41010-65B3-11d1-A29F-00AA00C14882

Mapped to the dt prefix. This is the XML Data Reduced (XDR) namespace, which, in WordprocessingML, qualifies
the dt (data type) attributes of a document's custom document property elements.

While some confusing legacy is evident in this list, the overall distinction between namespaces is helpful, particularly
between the wx and w namespaces, as we'll see.

The xml:space attribute is set to preserve, in order that whitespace characters (and even any instances of the empty w:tab
element) are interpreted correctly. As a matter of best practice, you should include xml:space="preserve" on the root
element of any WordprocessingML document you create.

The remaining three attributes of the w:wordDocument element are all optional and default to the value no.

w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"

These are consistency checks for when certain kinds of base64-encoded binary objects are embedded in the document.
Specifically, w:macrosPresent must be set to yes when the w:docSuppData element is present (containing toolbar
customizations, VBA macros, etc.); w:embeddedObjPresent must be set to yes when the w:docOleData element is present
(containing OLE objects from other applications, such as Excel); and w:ocxPresent must be set to yes when a w:ocx
element is present somewhere in the body of the document (representing a control from Word's Control Toolbox).
Unless your document contains any such objects, you can safely leave out these attributes.

The child elements of w:wordDocument, as included in this example, represent only a portion of the root element's
complete content model. Below is a list of all possible child elements in the order they are supposed to occur, according
to the WordprocessingML schema. Word tends to be lenient about WordprocessingML documents that contain these
elements in a different order, which suggests it does not validate documents against the published schema when they
are loaded. However, to be on the safe side, you should ensure that these elements are in the correct order in
WordprocessingML documents that you create. As mentioned before, w:body is the only required child element of
w:wordDocument. Only the highlighted elements in this list are actually present in Example 2-2.

w:ignoreSubtree
w:ignoreElements
o:SmartTagType

o:DocumentProperties

o:CustomDocumentProperties
sl:schemaLibrary

w:fonts

w:frameset
w:lists

w:styles

w:divs
w:docOleData
w:docSuppData
w:shapeDefaults
w:bgPict

w:docPr

w:body

Apart from the highlighted elements, the w:lists element is the only one in the above list that will receive further
coverage in this chapter.

2.4.2 The o:DocumentProperties Element

The o:DocumentProperties element in Example 2-2, shown again below, is in the general Office namespace (mapped to
the o prefix), because it includes properties, such as metadata and statistics, that are common to both Word and Excel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the o prefix), because it includes properties, such as metadata and statistics, that are common to both Word and Excel:

 <o:DocumentProperties>

 <o:Title>Hello, World</o:Title>

 <o:Author>Evan Lenz</o:Author>

 <o:LastAuthor>Evan Lenz</o:LastAuthor>

 <o:Revision>4</o:Revision>

 <o:TotalTime>15</o:TotalTime>

 <o:Created>2003-12-06T22:45:00Z</o:Created>

 <o:LastSaved>2003-12-18T07:59:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>2</o:Words>

 <o:Characters>12</o:Characters>

 <o:Lines>1</o:Lines>

 <o:Paragraphs>1</o:Paragraphs>

 <o:CharactersWithSpaces>13</o:CharactersWithSpaces>

 <o:Version>11.5604</o:Version>

 </o:DocumentProperties>

These elements are also serialized as such when Word saves a document as HTML. They correspond primarily to the
properties you see when you open the document Properties dialog (by selecting File Properties). Figure 2-3 shows
the Statistics tab of the file Properties dialog.

Figure 2-3. The Statistics tab of the Properties dialog, corresponding to values
inside the o:DocumentProperties element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are 12 more valid child elements of o:DocumentProperties not shown here, making a total of 26. A number of these
can be added to a document from within Word, at user option. For example, there is an element corresponding to each
of the fields in the Summary tab of the file Properties dialog, shown in Figure 2-4.

Figure 2-4. Other document properties can be populated at user option

2.4.3 The w:fonts Element

The w:defaultFonts element inside the w:fonts element specifies the default font for a document.

 <w:fonts>

 <w:defaultFonts w:ascii="Times New Roman" w:fareast="Times New Roman"

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

 </w:fonts>

A document's default font is applied to all of the document's paragraph styles that do not explicitly specify a font.
Normally, when you create a new blank document in Word, the default font setting as specified in the Normal.dot
document template is copied into the document. But our hand-coded WordprocessingML document (Example 2-1) isn't
"normal" in this sense. It was created outside of Word and contains no default font definition at all. Word gracefully
handles this scenario when it loads the document by automatically inserting a default font, as shown in Example 2-2.
Times New Roman is thus the "default default" font. In fact, Times New Roman is also the default font assigned to the
Normal.dot template when Word is first installed, or when it is forced to create a new Normal.dot template because
someone deleted the Normal.dot file.

The attributes on the w:defaultFonts element indicate which font should be used for each character encoding range
among ASCII, high ANSI, complex scripts, and East Asian characters. In Example 2-2, Times New Roman is the default
font for all of these ranges.

The w:fonts element may also contain zero or more w:font elements (zero in the case of Example 2-2) following the
w:defaultFonts element. The w:font elements are optional; you don't need to include a corresponding w:font element just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w:defaultFonts element. The w:font elements are optional; you don't need to include a corresponding w:font element just
to use a particular font. The only purpose of this element is to provide Word with descriptive information about a font
(using its seven possible child elements) that could be useful in the event that the font is not available on a user's
machine. In that case, Word can choose a reasonable alternative based on the information about the font provided in
the document.

2.4.4 The w:styles Element

The w:styles element includes definitions of all of a document's styles. Before looking at the WordprocessingML syntax
for defining styles, let's establish some basic terminology. A style is a group of formatting properties that can be applied
as a unit. There are four possible style types in Word:

paragraph
character
table
list

These style types apply respectively to paragraphs, runs, tables, and lists. Every paragraph, run, table, and list in a
Word document is necessarily associated with a style of the corresponding type. If a paragraph, run, table, or list in a
WordprocessingML document doesn't explicitly specify an associated style (as is the case in Example 2-2), then it takes
on the document's default style of the appropriate style type. Thus, styles are always involved, regardless of whether
you specifically make use of them.

Normally, when you create a new blank document in Word, all of the styles defined in the Normal.dot document
template are copied into the document. These include, at minimum, a default style definition for each style type.
However, our hand-coded WordprocessingML document does not include the w:styles element. Just as Word
automatically creates the w:fonts element when absent, Word automatically inserts four w:style elements, corresponding
respectively to the four style types (paragraph, character, table, and list):

Normal
Default Paragraph Font
Normal Table
No List

These four Word-defined styles are what we see inside the w:styles element in Example 2-2. Effectively, they are
implicitly present in any WordprocessingML document that does not explicitly define them. (However, to explicitly refer
to them from within the body of the document, they must also be explicitly present in the document's w:styles element.)
These "default default" styles are also the same four style definitions that are automatically copied into the Normal.dot
template when Word is first installed, or when it is forced to create a new Normal.dot template.

Now let's take a look at the content of the w:styles element, extracted from Example 2-2. Preceding the style definitions
themselves are two elements:

<w:versionOfBuiltInStylenames w:val="4"/>

<w:latentStyles w:defLockedState="off" w:latentStyleCount="156"/>

The w:versionOfBuiltInStylenames and w:latentStyles elements are used to refer to particular built-in styles when document
formatting protection is turned on. Since document protection is an important ingredient in building custom XML
solutions in Word, these elements will be covered in Chapter 4. For now, all you need to know is that there are no
formatting restrictions on this document. In fact, this document would be interpreted no differently if we were to
remove these two (optional) elements.

Next, there are four w:style elements, one for each of the "default default" styles listed above:

 <w:style w:type="paragraph" w:default="on" w:styleId="Normal">

 <w:name w:val="Normal"/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 <w:sz w:val="24"/>

 <w:sz-cs w:val="24"/>

 <w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:default="on"

 w:styleId="DefaultParagraphFont">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 w:styleId="DefaultParagraphFont">

 <w:name w:val="Default Paragraph Font"/>

 <w:semiHidden/>

 </w:style>

 <w:style w:type="table" w:default="on" w:styleId="TableNormal">

 <w:name w:val="Normal Table"/>

 <wx:uiName wx:val="Table Normal"/>

 <w:semiHidden/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 </w:rPr>

 <w:tblPr>

 <w:tblInd w:w="0" w:type="dxa"/>

 <w:tblCellMar>

 <w:top w:w="0" w:type="dxa"/>

 <w:left w:w="108" w:type="dxa"/>

 <w:bottom w:w="0" w:type="dxa"/>

 <w:right w:w="108" w:type="dxa"/>

 </w:tblCellMar>

 </w:tblPr>

 </w:style>

 <w:style w:type="list" w:default="on" w:styleId="NoList">

 <w:name w:val="No List"/>

 <w:semiHidden/>

 </w:style>

For now, we'll only look at the lines that are highlighted. The w:type attribute of each w:style element indicates the style
type (paragraph, character, table, or list). The presence of w:default="on" denotes that this style is the default style for its
style type. This attribute's default value is off.

Each style has two different names, as indicated by the w:styleId attribute and the w:name element. The w:styleId
attribute is for intra-document references only; it must be unique within the file. Styles can be referred to either from
within the document's body (to associate a paragraph with a certain paragraph style, for example) or from within
another style definition (to derive the style from another style, for example). The w:styleId attribute is unused apart
from these internal associations. In fact, Word doesn't preserve its value when it opens the document. When a
document is subsequently saved as XML, Word auto-generates a value for the w:styleId attribute, usually deriving it
from the style's primary name.

The primary name of a style is denoted by the w:val attribute of the w:name element. The primary name of a style is
what the user sees in the Style drop-down menu in the Word UI. Also, for styles that came from a template, the
primary name uniquely identifies the style in the attached template and is the basis by which styles are updated when
the "Automatically update document styles" document option is turned on. This name, like the w:styleId attribute, must
be unique within the file. Otherwise, Word will try to fix things up, probably not in the way that you intended.

For certain built-in styles, the style name displayed in the Word UI differs from the primary name of the style. For
example, the "Normal Table" style appears as "Table Normal" in the UI. This (dubious) privilege is restricted to Word's
built-in style names; there is no way in WordprocessingML to define a custom style whose UI name differs from its
primary name. Word, however, does throw us a bone when it saves such styles as XML. The wx:uiName element clues us
in to the distinction:

<wx:uiName wx:val="Table Normal"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<wx:uiName wx:val="Table Normal"/>

This element is strictly informational. If you were to remove it or change the wx:val attribute's value, Word would
behave no differently when opening the file. Elements and attributes in the namespace designated by the wx prefix are
for our benefit only and are of no internal use to Word.

2.4.5 The w:docPr Element

Have you ever wondered whether a particular option in the Word UI represents a property of the document you are
editing as opposed to a property of the application's state? The answer to your question may lie inside the w:docPr
element, which, like one of its siblings mentioned earlier, stands for "document properties." However, unlike the
information inside the o:DocumentProperties element, these document properties are unique to Word and describe
particular aspects of a document's state, options, and default settings, rather than metadata or statistics that are
common to multiple Office applications.

The Tools Options . . . dialog in the Word UI, with its many tabs, is rather notorious for being unclear about what
exactly the user is modifying, whether global application options or document options. By investigating the contents of
the w:docPr element, you can begin to identify which of these options are document-specific and which of them aren't.

The *Pr naming convention that w:docPr follows is common in WordprocessingML. As we'll see, a number of other
elements follow this convention, such as w:pPr (paragraph properties), w:rPr (run properties), w:tblPr (table properties),
w:trPr (table row properties), w:tcPr (table cell properties), and w:listPr (list properties). In fact, the baseline content
model of these elements is also similar: a sequence of mostly empty elements, each standing for a particular property
and each having zero or more attributes to set the values of that property. The most commonly used attribute is w:val.
You may have noticed by now that WordprocessingML favors putting not only elements but also attributes in its
namespace, which means you should get used to typing those w prefixes. (The attributeFormDefault value is set to
qualified in each of the WordprocessingML schema documents.)

The w:docPr element has 84 optional child elements. They are declared in the WordprocessingML schema as an ordered
sequence (as opposed to a repeating choice group), which suggests that they must occur in the declared order. In
reality, Word does not enforce this order, though it does appear to follow it in the WordprocessingML documents it
creates.

Now, let's look at the w:docPr element as output by Word in Example 2-2:

 <w:docPr>

 <w:view w:val="web"/>

 <w:zoom w:percent="100"/>

 <w:proofState w:spelling="clean" w:grammar="clean"/>

 <w:attachedTemplate w:val=""/>

 <w:defaultTabStop w:val="720"/>

 <w:characterSpacingControl w:val="DontCompress"/>

 <w:validateAgainstSchema/>

 <w:saveInvalidXML w:val="off"/>

 <w:ignoreMixedContent w:val="off"/>

 <w:alwaysShowPlaceholderText w:val="off"/>

 <w:compat/>

 </w:docPr>

The 11 child elements shown here provide a fairly representative sampling of these options.

The w:view element determines what view to use when opening the document. The default view for a WordprocessingML
document that does not specify a view is web, which is also Word's default view for opening XML documents in general.
That explains why we see the value web in this example:

<w:view w:val="web"/>

This value is the result of Word re-saving a WordprocessingML document that we constructed by hand, without
specifying a view. The five possible values of view are print, outline, normal, web, and master-pages (similar to outline but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specifying a view. The five possible values of view are print, outline, normal, web, and master-pages (similar to outline but
applies only to documents that refer to sub-documents).

The w:zoom element denotes the zoom percentage that should be set when opening the document:

<w:zoom w:percent="100"/>

If you change the zoom percentage from within Word and re-save (provided that you also make a substantive change
to the document's content to ensure that the file is actually updated), Word will save the document, recording the zoom
level that you last used. Alternatively, you could directly edit the zoom property in the WordprocessingML, causing Word
to display the document at some other zoom percentage the next time someone opens the file.

The w:proofState element records the state of the grammar and spelling checkers (clean or dirty) at the time Word saved
the document:

<w:proofState w:spelling="clean" w:grammar="clean"/>

Since actual spelling and grammar errors are recorded in the body of the document, this state check reflects not
whether there are errors in the document, but whether Word had a chance to finish checking for errors before the user
saved the document. Thus, its primary purpose is as an optimization hint for Word when it opens the document. Its
absence, however, could conceivably be a useful warning for applications that otherwise rely on Word having completed
its proofing.

The w:attachedTemplate property is one of the two elements representing Templates and Add-Ins options (along with the
w:linkStyles element):

<w:attachedTemplate w:val=""/>

Its value in this example is empty, which means simply that the default Normal.dot template is attached. Should you
attach a different template (through the Tools Templates and Add-Ins . . . dialog) and re-save, then this value
would be populated with the specific file location of a template. Alternatively, you could manually edit the XML attribute
value so that the next time Word opens the document, the new template will already be attached by virtue of your
manual change. Note, however, that unless the w:linkStyles element is also present inside the w:docPr element (as
explained later), the fact that a template is merely attached has no immediate effect on the document. The
w:attachedTemplate element defines a loose association whose potential is only realized when the w:linkStyles element is
also present.

The w:validateAgainstSchema, w:saveInvalidXML, w:ignoreMixedContent, and w:alwaysShowPlaceHolderText properties (among
several others not included in this example) are specific to Word's custom XML schema functionality (only available in
Office 2003 Professional or standalone Word 2003), which is discussed in Chapter 4.

The w:defaultTabStop element sets the interval between default tab stops in the document:

<w:defaultTabStop w:val="720"/>

While the Word UI exposes this value in inches (when you select Format Tabs...), the underlying value is stored in
twips, or 20ths of a point, or 1,440ths of an inch. (Completing this equation, there are 72 points in an inch.) Since the
value of the w:val attribute is 720 twips, the default tab stops for paragraphs in this document occur every half inch.
Thus, when Word opens the document, it displays the short vertical lines beneath the ruler, spaced every half inch, as
shown in Figure 2-5.

Figure 2-5. Default tab stops every half inch, or 720 twips

Once again, Word supplies this value as an application default, because our original hand-edited document (Example 2-
1) did not specify a default tab stop interval. As we'll see, individual paragraphs can define their own custom tab stops
too. For those paragraphs, the default tab stops only take effect to the right of the last custom stop.

The w:characterSpacingControl element is one of several Asian Typography options.

<w:characterSpacingControl w:val="DontCompress"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are three possible self-describing values (DontCompress, CompressPunctuation, or
CompressPunctuationAndJapaneseKana) that can be used to sets the compression option for East Asian characters. The
default value that Word outputs, as evident in our example, is DontCompress. Of course, this doesn't have any real effect
on our document, since it does not contain Asian characters.

Finally, the w:compat element is among the few w:docPr children that may themselves contain child elements
(w:mailMerge, w:hdrShapeDefaults, w:footnotePr, w:endnotePr, and w:docVars being the only others). It has 51 possible child
elements, corresponding to the compatibility options for a document that are set in the Compatibility tab of the Tools

 Options... dialog, as shown in Figure 2-6.

Figure 2-6. Compatibility options, corresponding to the child elements of
w:compat

The w:compat element is empty in Example 2-2, because our document does not set any particular compatibility options.

Before moving on, it would be good to point out one more common WordprocessingML convention. Among w:docPr's 84
possible child elements, 49 are declared using the same type in the WordprocessingML schema: the onOffProperty. The
declaration for the onOffProperty type in the WordprocessingML schema is as follows:

<xsd:complexType name="onOffProperty">

 <xsd:attribute name="val" type="onOffType" default="on"/>

</xsd:complexType>

The onOffType type referred to here allows for two possible values: on or off. As you can see, the attribute declaration
for w:val specifies a default value of on. This means that for the elements inside the w:docPr element that are defined
with this type, the presence of w:val="on" is always implied (and thus redundant), unless overridden by the value off.
However, this has no bearing at all on Word's behavior when the property element itself is absent. Default behavior in
those cases varies depending on the property, and the WordprocessingML schema itself does not generally cast any
light on that question, although annotations therein do sometimes help. Experimentation is probably the best way to
determine Word's default behavior when particular property elements are absent.

2.4.6 The wx:sect Element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, we get to the content of our document, residing inside the w:body element. Our hand-coded original (Example 2-
1) directly contained a w:p (paragraph) element inside the body. After saving, we now see that the paragraph element
has been inserted into an intervening wx:sect element. As mentioned earlier, the namespace mapped to the wx prefix
signals a piece of information that may be useful to us in processing the XML as output by Word, but that is ignored by
Word when opening a WordprocessingML file. The wx elements and attributes are of no use to Word internally. In this
case, we could remove the wx:sect element's start and end tags, leaving only its contents for Word to read, and Word
would behave no differently the next time it opens the file.

That's all well and good, you might be thinking, but what is the wx:sect element for? As you might guess, it stands for
"section." As is true with many Word documents, our "Hello World!" example document contains only one section, so
it's not particularly useful in this case. To learn what sections are and how they are defined using w:sectPr elements, see
"Sections" later in this chapter. And to learn how the wx:sect element is a useful aid to external processing, see Section
2.6.1 later in this chapter.

2.4.7 The w:body Element

It may seem strange to talk about the w:body element after the wx:sect element, when until now we've been traversing
our original example in document order. As already noted, however, the wx:sect element is a completely optional
intervening element between w:body and its content. So, while in Example 2-2 it is the wx:sect element that contains a
w:p element, that content model really belongs to w:body. Using a DTD-like syntax, we can express w:body's entire
content model (much more simply than its XSD definition), like this:

(w:p|w:tbl|w:cfChunk|w:proofErr|w:permStart|w:permEnd)*, w:sectPr?

In other words, w:body may contain any number of w:p, w:tbl, w:cfChunk, w:proofErr, w:permStart, and w:permEnd elements,
in any order, followed by an optional w:sectPr element. The w:p element represents a paragraph, the w:tbl element
represents a table, and the w:cfChunk element represents a "context-free" chunk of inline default fonts, styles, list
definitions, paragraphs, and tables.[1] We'll describe the purpose of the w:proofErr, w:permEnd, and w:permStart elements
later, in Section 2.5.6.

[1] At least, that is how the WordprocessingML schema advertises it. A plethora of experiments yields few answers
as to how this element is actually supposed to be used or how it is supposed to behave. Word tends to fix things
up, merging such inline definitions with the document's global definitions. This is one area where more
documentation from Microsoft is certainly needed.

The w:sectPr element, included in Example 2-2, defines the section properties for the last (and first, in this case) section
of the document. See "Sections," later in the chapter, for more information on how w:sectPr elements are interpreted.

The first part of the w:body element's content model (that is, not including the optional w:sectPr element) is worth
repeating:

(w:p | w:tbl | w:cfChunk | w:proofErr | w:permStart | w:permEnd)*

That's because it also functions as the content model for six other elements in WordprocessingML, namely w:hdr, w:ftr,
w:footnote, w:endnote, w:tc, and w:txbxContent. (The only exception is that w:tc may also contain an optional preceding
w:tcPr element.) The first two of these elements stand for "header" and "footer," respectively; they occur in the
property definitions for a particular section, i.e., inside the w:sectPr element. Footnotes and endnotes may occur inside
any "run," or w:r, element. The w:tc element represents a table cell; thus, tables may contain tables. Finally, the
w:txbxContent element represents a text box that is embedded inside a VML (Vector Markup Language) image embedded
somewhere inside a document's content.

This content model is actually more open than implied above. The WordprocessingML schema also allows any element
from any other namespace to occur here. This enables annotations from the AML (Annotation Markup Language)
namespace, as well as tags from a custom XML schema to be embedded inside WordprocessingML. (See Chapter 4.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.5 Document Structure and Formatting
Now that you've been inundated with information about lots of document-level constructs, let's move into the actual
content of a Word document and how it is represented in WordprocessingML. All Word documents contain three levels
of hierarchy: one or more sections containing zero or more paragraphs containing zero or more characters. A run is a
grouping of contiguous characters that have the same properties. Tables can occur where paragraphs can, and list
items are just a special kind of paragraph. You cannot have nested structures in WordprocessingML—sections within
sections, or paragraphs within paragraphs. The one exception to this rule is that tables may contain tables.

2.5.1 Runs

A "run" is the basic leaf container for a document's content and is represented by the w:r element. As we've seen, the
w:r element may contain w:t elements, which contain text. Including the w:t element, there are 24 valid child elements
of the w:r element, representing things like text, images, deleted text, hyphens, breaks, tabs, footnotes, endnotes,
footnote and endnote references, page numbers, field text, etc. We'll look at just a few of these.

The w:r element may occur in five separate element contexts: w:p, w:fldSimple, w:hlink, w:rt, and w:rubyBase. The first
one, the paragraph, is the most common. The w:fldSimple element represents a Word field, the w:hlink element
represents a hyperlink in Word, and the w:rt ("ruby text") and w:rubyBase elements are used together for laying out
Asian ruby text.

The run is not an essential part of a Word document in the same way that paragraphs and sections are. Rather, it is
WordprocessingML's way of grouping multiple characters (or other objects) that have the same property settings. To
illustrate this point, consider the following WordprocessingML paragraph:

<w:p>

 <w:r><w:t>H</w:t></w:r>

 <w:r><w:t>e</w:t></w:r>

 <w:r><w:t>l</w:t></w:r>

 <w:r><w:t>l</w:t></w:r>

 <w:r><w:t>o</w:t></w:r>

 <w:r><w:t> </w:t></w:r>

 <w:r><w:t>w</w:t></w:r>

 <w:r><w:t>o</w:t></w:r>

 <w:r><w:t>r</w:t></w:r>

 <w:r><w:t>l</w:t></w:r>

 <w:r><w:t>d</w:t></w:r>

</w:p>

The above paragraph is exactly equivalent to the paragraph below:

<w:p>

 <w:r>

 <w:t>Hello world</w:t>

 </w:r>

</w:p>

When Word saves a document as XML, it merges consecutive runs that have the same property settings. It also merges
consecutive w:t elements into a single w:t element. In the above paragraph's case, all of the run properties are assigned
through the document's default paragraph and character styles, because no explicit, local property settings are applied
(through the w:rPr element).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(through the w:rPr element).

2.5.1.1 Text and whitespace handling

The w:t element, which stands for "text," has no attributes and may only contain text. Being one of the few string-
valued elements in Word, it is also one of the few contexts in which whitespace is significant. The handling of
whitespace within the w:t element can be summarized in three basic rules:

1. Each space character (#x20) is preserved as a space and shows up as a space in Word.

2. Each line-feed character (#xA) and character reference to a carriage-return (#xD) is converted into a space.

3. Each tab character (#x9) is replaced by a w:tab element (broken out into a separate run).

The one exception is that when xml:space="default" is present, tab characters are instead converted to spaces (and w:tab
elements ignored altogether).

2.5.1.2 Tabs and breaks

The run inside the following WordprocessingML paragraph contains text as well as a text-wrapping break and a tab,
represented by the w:br and w:tab elements.

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:r>

 <w:t>This is the first line.</w:t>

 <w:br/>

 <w:t>This is a tab:</w:t>

 <w:tab/>

 <w:t>And this is some more text.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

The first thing to note here is that the presence of xml:space="preserve" is necessary for the w:tab element to be
interpreted correctly. Otherwise, the tab is stripped out when the document is loaded (even though it technically
doesn't constitute whitespace as far as XML is concerned). Again, for this reason, xml:space="preserve" should be
included on the root element of any WordprocessingML document you create.

The w:br element, like its HTML counterpart, inserts a break within the text flow. It is short for <w:br w:type="text-
wrapping"/>. The w:type attribute may have two other values: column and page, representing column and page breaks.
Figure 2-7 shows the result of opening this document in Word, with formatting marks turned on.

Figure 2-7. A text-wrapping break and a tab inside a single paragraph

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-7. A text-wrapping break and a tab inside a single paragraph

The bent arrow at the end of the first line indicates that this is a text-wrapping break (represented in WordprocessingML
by the w:br element) rather than the end of the paragraph. (Word users can insert text-wrapping breaks by pressing
Shift-Enter). The right-pointing arrow on the second line denotes the presence of a tab. The w:tab element inserts a tab
into the text flow, according to the tab settings for the current paragraph. In this case, since the tab stops for this
paragraph are not specified either locally or in the Normal paragraph style, the tab stops default to the application
default: every half inch (as specified by the document's w:defaultTabStop element).

2.5.1.3 Run properties

Among all the valid child elements of w:r, the w:rPr element is special. It stands for "run properties." All of the other
children of w:r may occur in any order, but the w:rPr element, when present, must come first. Its child elements
collectively set properties on the run, controlling primarily how text inside the run is to be displayed. There are 42
possible child elements of the w:rPr element, all of which are empty elements. Their various attribute values specify
formatting properties such as font, font size, font color, bold, italic, underline, strikethrough, character spacing, text
effects, etc. They correspond to the properties you see in Word's Font dialog box, accessed by selecting Format
Font . . . , as shown in Figure 2-8.

Figure 2-8. Word's font settings which correspond to run properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When font settings are applied using a local w:rPr element, such settings are called "local settings," "manual
formatting," or "direct formatting," as distinct from font settings applied through a selection's associated paragraph and
character styles. Individual font properties applied through direct formatting always override the corresponding
properties defined in the associated paragraph or character styles.

Example 2-3 shows the use of some of these formatting elements, each of which is highlighted.

Example 2-3. Applying various font properties

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:r>

 <w:rPr>

 <w:i w:val="on"/> <!— turns italics on —>

 <w:b/> <!— turns bold on —>

 </w:rPr>

 <w:t>This run is bold and italic. </w:t>

 <w:br/>

 </w:r>

 <w:r>

 <w:rPr>

 <w:u w:val="single"/> <!— single underline —>

 <w:rFonts w:ascii="Arial"/>

 </w:rPr>

 <w:t>This is Arial and underlined.</w:t>

 <w:br/>

 </w:r>

 <w:r>

 <w:rPr>

 <w:sz w:val="56"/> <!— 28-point font size —>

 </w:rPr>

 <w:t>This is big.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</w:wordDocument>

This example contains a single paragraph that contains three runs, each of which contains text. The first two runs also
contain trailing text-wrapping breaks (w:br elements), effectively separating the text of each run onto its own line. Each
run has different run properties specified in the w:rPr element. These properties, since they are applied as direct
formatting, override the corresponding settings in the Normal style (the "default default" paragraph style, as we saw
earlier).

The first run introduces the w:b and w:i elements:

 <w:rPr>

 <w:i w:val="on"/> <!-- turns italics on -->

 <w:b/> <!-- turns bold on -->

 </w:rPr>

The w:b and w:i elements stand for "bold" and "italic," respectively. They are among 19 of w:rPr's 42 possible child
elements that, like many of w:docPr's children, are declared with the onOffProperty type in the WordprocessingML
schema. This means that the default value of the w:val attribute is on. Thus, w:val="on" on the w:i element above is
technically redundant. As might be guessed, by turning these properties on, all of the text within the run will be
formatted in bold weight and italic style.

The presence of the w:val attribute is necessary to turn off a particular property, overriding
its setting in the style. For example, if you want to turn off bold for a particular portion of
text that's associated as a whole with a style in which the bold property is turned on, then
you would include <w:b w:val="off"/> inside the w:rPr element.

The second run in Example 2-3 introduces the w:u and w:rFonts elements:

 <w:rPr>

 <w:u w:val="single"/> <!-- single underline -->

 <w:rFonts w:ascii="Arial"/>

 </w:rPr>

The w:u element is similar to w:b and w:i, in that it is empty and has a w:val attribute. The difference is that, instead of
having only the values on and off, you have a choice between 18 different values, including single (as in this example)
and none. These values correspond to the choices in the "Underline style" drop-down menu in Word's Font dialog.

This run also specifies the Arial font, overriding the default Times New Roman font of the Normal style. This is done
using the w:rFonts element, which has the same declared type in the WordprocessingML schema as the global
w:defaultFonts element we saw earlier. Specifically, it allows the same attributes for specifying the fonts of different
character sets: w:ascii, w:h-ansi, w:cs, and w:fareast. In this case, only the w:ascii attribute is supplied, which means that
the other character sets still assume the default font.

The third and final run in our single-paragraph document sets the font size using the w:sz element:

 <w:rPr>

 <w:sz w:val="56"/> <!-- 28-point font size -->

 </w:rPr>

The value of the w:val attribute in this case is measured in half-points, or 10 twips, or 144ths of an inch. Thus, while its
value is 56 in the XML, the actual font size (in full points) is 28.

Finally, we see the result of opening this document in Word in Figure 2-9.

Figure 2-9. Direct formatting using local w:rPr elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-9. Direct formatting using local w:rPr elements

Figure 2-9 also shows how direct formatting is represented in the Word UI. In this case, the cursor is inside the third
run, containing the text "This is big." There are two things worth noting about how this direct formatting is represented:

The style drop-down box, as shown at the top right of the window, says "Normal + 28 pt." This is how all direct
formatting is represented here (style name + individual property settings).

The Reveal Formatting task pane, because "Distinguish style source" is checked, distinguishes between the font
size as set in the Normal style (12 pt) and the overriding font size as applied through Direct Formatting (28 pt).

2.5.1.4 Associating a run with a character style

In addition to specifying direct formatting, a run can explicitly associate itself with one of its document's character
styles. This is done using the w:rStyle element. Below are three runs excerpted from a document in which the
"Hyperlink" character style is defined. All three runs are associated with the "Hyperlink" style, but the middle run also
applies some direct formatting (italics):

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink"/>

 </w:rPr>

 <w:t>This just </w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink"/>

 <w:i/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:i/>

 </w:rPr>

 <w:t>looks</w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink"/>

 </w:rPr>

 <w:t> like a hyperlink.</w:t>

 </w:r>

Figure 2-10 shows the result of opening this document in Word, assuming it has defined the "Hyperlink" style in its
w:styles element (rendering the font blue and underlined).

Figure 2-10. A run of text associated with the "Hyperlink" style

Once again, the Reveal Formatting task pane shows the distinction between the properties applied through direct
formatting ("Italic") and the properties defined in a style ("Font color: Blue" and "Underline"). It also reveals the
character style for this run: "Hyperlink."

2.5.2 Paragraphs

Paragraphs are the basic block-oriented element in Word. All text content within a document is contained within
paragraphs, whether it's inside the main body of the document, a table cell, a header, a footer, a footnote, an endnote,
or a textbox embedded in an image. Normally, a new paragraph is created whenever a user hits the Enter key while
editing.

In WordprocessingML, a paragraph is represented by the w:p element. The area inside the w:p element could be called a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In WordprocessingML, a paragraph is represented by the w:p element. The area inside the w:p element could be called a
"run-level" context, because it is a context in which runs (w:r elements) may appear. Similarly, the area inside the
w:body element is a "block-level" context, because it is a context in which paragraphs and tables may appear. The
traditional distinction between a block and an inline element (or run) is that blocks are laid out on separate lines,
whereas inline elements (runs) are laid out continuously, without any hard line breaks.

The content model of the w:p element is simple enough that it's worth showing here (using a DTD-like notation):

w:pPr?,

(w:r|w:proofErr|w:permStart|w:permEnd|w:fldSimple|w:hlink|w:subDoc)*

This follows the same pattern as w:r's content model: an optional properties element followed by any of a number of
element choices in any order. (We didn't show w:r's entire content model because it has so many element choices.)

Three of the elements in w:p's content model, as we've seen, may also occur as children of w:body. The w:proofErr,
w:permStart, and w:permEnd elements are thus both block-level and run-level elements. They are explained later in
Section 2.5.6.

The w:fldSimple element represents a Word field, and the w:hlink element represents a hyperlink in Word. You may recall
that these elements are also run-level contexts, i.e., they themselves may contain runs. The w:subDoc element
represents a link to a sub-document of the current document.

As is the case with the w:body element, w:p's content model is actually more open than implied above. The
WordprocessingML schema also allows any element from any other namespace to occur here. This enables annotations
from the AML (Annotation Markup Language) namespace, as well as tags from a custom XML schema to be embedded
inside WordprocessingML. As we'll see in Chapter 4, Word renders custom XML tags differently depending on whether
they occur at the block level (inside w:body) or run level (inside w:p).

2.5.2.1 Paragraph properties

Among all the valid child elements of w:p, the w:pPr element is special. It stands for "paragraph properties." All of the
other children of w:p may occur in any order, but the w:pPr element, when present, must come first. Its child elements
collectively set properties on the paragraph, controlling how the paragraph will be displayed. There are 34 possible child
elements of the w:pPr element, many but not all of which are empty elements. Their various attribute values and child
elements specify paragraph properties such as alignment, indentation, spacing, tab stops, widow/orphan control,
paragraph borders, etc. Most of these properties correspond to the properties you see in Word's Paragraph dialog box,
accessed by selecting Format Paragraph..., as shown in Figure 2-11.

Figure 2-11. Word's Paragraph dialog, corresponding to properties inside the
w:pPr element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When paragraph settings are applied using a local w:pPr element, such settings are called "local settings," "manual
formatting," or "direct formatting," as distinct from settings applied through a paragraph's associated paragraph style.
Individual paragraph properties applied through direct formatting always override the corresponding properties defined
in the associated paragraph style. If this sounds familiar, it should. It's the same basic rule as for font settings. Local
w:rPr and w:pPr elements always override settings applied through (explicit or default) style association. Also, the
properties within the w:rPr and w:pPr elements are completely disjoint from each other, so there is no possibility of
conflict between these two elements.

Example 2-4 shows the use of some of these paragraph formatting elements, each of which is highlighted.

Example 2-4. Applying various paragraph properties

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:jc w:val="center" />

 </w:pPr>

 <w:r>

 <w:t>All work and no play makes Evan a dull boy.</w:t>

 </w:r>

 </w:p>

 <w:p />

 <w:p>

 <w:pPr>

 <w:spacing w:line="480" w:line-rule="auto" />

 <w:ind w:left="720" w:first-line="720" />

 </w:pPr>

 <w:r>

 <w:t>All work and no play makes Evan a dull boy. All work and no play makes Evan a

 dull boy. All work and no play makes Evan a dull boy. All work and no play

 makes Evan a dull boy.</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:ind w:left="2880" w:right="2880" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:ind w:left="2880" w:right="2880" />

 </w:pPr>

 <w:r>

 <w:t>All work and no play makes Evan a dull boy.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

The result of opening this document in Word is shown in Figure 2-12. Also, the Format Paragraph . . . dialog
shown earlier in Figure 2-11 reflects the paragraph settings of the third paragraph of this example (note that the
second paragraph is empty).

Figure 2-12. Applying paragraph properties as direct formatting

Example 2-4 contains four paragraphs. The second paragraph is empty and does not apply any direct formatting. The
other three each specify paragraph properties that override the corresponding settings in the Normal style (the "default
default" paragraph style).

The first paragraph is centered. The w:jc element represents the paragraph justification settings:

<w:jc w:val="center" />

Its w:val attribute value may be left, center, right, both, or one of several other options specific to East Asian text. The
first four values correspond to the "Left," "Centered," "Right,", and "Justified" options in the Alignment drop-down menu
in the Format Paragraph . . . dialog.

The second non-empty paragraph is double-spaced, indented on the left, and has a first-line indent. The double-spacing
effect is achieved through the w:spacing element:

<w:spacing w:line="480" w:line-rule="auto" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike the w:jc element, which has specific keywords corresponding to each of the UI options, the w:spacing element
specifies its values numerically—in twips. The w:line attribute's value of 480 (equivalent to 24 points), in conjunction
with the w:line-rule attribute's value of auto, represent the overall setting of "Double" in the Line Spacing drop-down
menu in the Format Paragraph . . . dialog, as shown earlier in Figure 2-11. When the w:line-rule attribute's value is
auto, then the w:line attribute's value is interpreted in a pre-defined way, regardless of the current paragraph's font size.
A value of 480 means "Double," 360 means "1.5 line," and 240 means "Single." The actual line spacing distance is
automatically adjusted according to the current font size, but the w:line attribute's value stays the same. The other
possible values of w:line-rule are exact and at-least. These correspond to the "Exactly" and "At least" options in the Line
Spacing drop-down menu and affect how the w:line value is interpreted. For example, a value of exact would fix the line
spacing distance to the specified value in the w:line attribute, regardless of the current font size. The w:spacing element
also has other attributes (not present in this example) that are used to determine the spacing before and after the
paragraph itself.

The indentation of the third paragraph (following the empty second paragraph) is specified using the w:ind element:

<w:ind w:left="720" w:first-line="720" />

The w:left attribute specifies the left indentation distance as 720 positive twips, or half an inch to the right of the page
margin. (Negative indent values move the text into the page margin.) The w:first-line attribute specifies a first-line
indent of another half inch. The effect of these settings on Word's ruler is shown in Figure 2-13.

Figure 2-13. A half-inch left indent and a half-inch first-line indent

The w:ind element may also have a w:hanging attribute which specifies a hanging indent. Its presence is mutually
exclusive with the w:first-line attribute, because the same paragraph cannot have both first-line and hanging indents. If
our example used a hanging indent rather than a first-line indent, then the WordprocessingML would look like this:

<w:ind w:left="720" w:hanging="720" />

And the ruler would look like Figure 2-14.

Figure 2-14. A half-inch left indent and a half-inch hanging indent

Interestingly enough, you can also supply negative values for the w:first-line and w:hanging attributes. Since a hanging
indent is essentially the opposite of a first-line indent, Word interprets a negative value as if you had supplied a positive
value of the other type of indent. In fact, when it subsequently saves the document as WordprocessingML, it replaces
one attribute with the other attribute (w:hanging with w:first-line or vice versa) and its negative value with its opposite
(positive) value. For example, if you open a document that has this:

<w:ind w:hanging="-720" />

then Word will normalize it to this instead:

<w:ind w:first-line="720" />

The two are equivalent.

The last paragraph in Example 2-4 has both right and left indents:

<w:ind w:left="2880" w:right="2880" />

The positive value (in twips) of 2880 in each of the w:left and w:right attributes means that the paragraph will be
indented two inches from the margin on each side.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indented two inches from the margin on each side.

The w:left, w:right, w:first-line, and w:hanging attributes all measure distance in twips. You can alternatively measure
distance in character spaces, by using the w:ind element's other four optional attributes instead: w:left-chars, w:right-
chars, w:first-line-chars, and w:hanging-chars.

2.5.2.2 Defining tab stops

Paragraphs can specify custom tab stops, overriding the document's default tab stop interval. This is done using the
w:tabs child element of a paragraph's w:pPr element. Example 2-5 shows a paragraph with custom tab stops as well as
some tabs inside the paragraph that make use of those stops.

Example 2-5. Defining custom tab stops

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:tabs>

 <w:tab w:val="left" w:pos="720" />

 <w:tab w:val="center" w:pos="3600" />

 <w:tab w:val="right" w:pos="6480" />

 </w:tabs>

 </w:pPr>

 <w:r>

 <w:tab/>

 <w:t>Left-aligned tab</w:t>

 <w:tab/>

 <w:t>Centered tab</w:t>

 <w:tab/>

 <w:t>Right-aligned tab</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Each w:tab element within the w:tabs element defines a different tab stop. Both the w:val and w:pos attributes are
required. The w:val attribute indicates the type of tab stop, controlling the alignment of text around it. Its value must be
one of left, center, right, decimal, bar, list, or clear. (The value clear enables tab stops defined in an associated paragraph
style to be explicitly cleared.) The w:pos attribute specifies the position of the tab stop on the ruler, as the number of
twips to the right of the left page margin. The w:tab element may also have an optional w:leader attribute, which sets the
style of the empty space in front of the tab. These properties correspond to the settings found in Word's Format
Tabs... dialog, shown in Figure 2-15, which here is populated with the same tab stops as defined in Example 2-5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-15. Tab stop definitions, corresponding to Example 2-5

Finally, the result of opening this file in Word is shown in Figure 2-16, with formatting marks turned on.

Figure 2-16. Three kinds of custom tab stops

The custom tab stops can be seen on the ruler, and the tabs themselves are signified by arrows in the document
content. The document's default tab stops (every half inch) are signified by small vertical lines below the ruler and do
not resume until after the last custom tab, beginning at the 5-inch mark.

2.5.2.3 Paragraph mark properties

You may be surprised to learn that the w:rPr element ("run properties") may also occur as a child of the w:pPr element.
Actually, it shows up quite often when editing documents in Word. For example, if you turn bold on, type a short
paragraph, and hit Enter, then the resulting paragraph in WordprocessingML will look like this:

 <w:p>

 <w:pPr>

 <w:rPr>

 <w:b/>

 </w:rPr>

 </w:pPr>

 <w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:rPr>

 <w:t>This text is bold.</w:t>

 </w:r>

 </w:p>

This may look redundant, but it isn't. By now, you should be familiar with the purpose of the second w:rPr element
above. It sets the properties (in this case, bold) on the run in which it is contained. However, the first w:rPr element
(inside the w:pPr element) functions differently than you might expect. Rather than setting properties of the runs inside
the paragraph, it represents properties of the paragraph's paragraph mark. If we removed the first w:rPr element
altogether, it would have no actual effect on the formatting of our document. In fact, we wouldn't even see a difference
in the Word UI—unless paragraph marks are turned on. In that case, we might notice whether or not the paragraph
mark itself is displayed in bold weight.

The run properties, or font settings, of a paragraph mark, though they do not directly affect the paragraph's formatting,
do have an effect on Word's behavior when subsequently editing the document. For that reason, you can think of the
paragraph mark properties as containing information about your document's editing state rather than its actual
formatting. For example, one practical effect of setting bold on a paragraph mark is that if the user selects the
paragraph mark (by double-clicking it) and drags and drops it to create a new paragraph, bold will be turned on by
default for runs entered in the new paragraph.

In practice, Word synchronizes the font settings of the paragraph mark with the font settings of the last run in the
paragraph. For example, if you are typing a paragraph and you hit Enter when italics are turned on, then the paragraph
mark of the paragraph you just created will also have italics turned on, as will the paragraph mark of the following
paragraph, at least initially. If, on the other hand, you turn italics off right before you hit the Enter key, then the last
part of your paragraph will still be italicized, but the paragraph mark won't be, and neither will the following paragraph's
paragraph mark.

One final example may help elucidate the function of paragraph mark properties. Consider the WordprocessingML
document in Example 2-6. It is devoid of any text content, but it does have one empty paragraph whose paragraph
mark has italics turned on.

Example 2-6. An empty paragraph with italics turned on

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:rPr>

 <w:i/>

 </w:rPr>

 </w:pPr>

 </w:p>

 </w:body>

</w:wordDocument>

If we open this document in Word, we'll see nothing but a blank document with a flashing cursor—an italicized flashing
cursor. This, again, reflects the document's editing state, rather than its formatting. Any time you create a new
paragraph while editing, Word tries to remember the formatting properties you had in effect on the last paragraph—
even when you create an empty paragraph, save the document, close it, and open it again later, which is what Example
2-6 demonstrates.

It's good to clear up the potential confusion surrounding w:pPr's seemingly redundant w:rPr child. Now that you're

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's good to clear up the potential confusion surrounding w:pPr's seemingly redundant w:rPr child. Now that you're
cognizant of what instances of this element do not represent, you can safely exclude them from WordprocessingML
documents that you create. Their absence will have negligible impact on the user's editing experience. Don't worry—
Word will still work its magic.

2.5.2.4 Associating a paragraph with a paragraph style

In addition to specifying direct formatting, a paragraph can explicitly associate itself with one of its document's
paragraph styles. This is done using the w:pStyle element. Below is a paragraph excerpted from a document in which the
"Heading1" paragraph style is defined:

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Heading1" />

 </w:pPr>

 <w:r>

 <w:t>This is a heading</w:t>

 </w:r>

 </w:p>

This paragraph will be formatted according to the explicitly associated paragraph style, provided that the containing
document has a style definition that looks something like this:

 <w:style w:type="paragraph" w:styleId="Heading1">

 <w:name w:val="Heading 1"/>

 <!-- other style options -->

 <w:pPr>

 <!-- paragraph property settings -->

 </w:pPr>

 <w:rPr>

 <!-- font property settings -->

 </w:rPr>

 </w:style>

2.5.3 Tables

Tables may occur anywhere that paragraphs may occur (and vice versa), which most commonly is directly inside the
w:body element (or inside an intervening wx:sect element when the WordprocessingML is output by Word). The other
contexts in which paragraphs and tables may occur are the w:hdr, w:ftr, w:footnote, w:endnote, w:tc, w:txbxContent, and
w:cfChunk elements, which we already introduced briefly.

The basic structure of the w:tbl element looks like this:

<w:tbl>

 <w:tblPr>...</w:tblPr>

 <w:tblGrid>

 <w:gridCol w:val="..."/>

 <w:gridCol w:val="..."/>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </w:tblGrid>

 <w:tr>

 <w:tc>...</w:tc>

 <w:tc>...</w:tc>

 ...

 </w:tr>

 <w:tr>...</w:tr>

 ...

</w:tbl>

The content model for the w:tbl element, using a DTD-like syntax, is:

aml:annotation*, w:tblPr, w:tblGrid,

(w:tr | w:proofErr | w:permStart | w:permEnd)+

In other words, the w:tbl element may contain zero or more aml:annotation elements, followed by a w:tblPr element and a
w:tblGrid element, followed by one or more w:tr, w:proofErr, w:permStart, or w:permEnd elements, in any order. The w:tblPr
element contains table-wide properties. The w:tblGrid element contains w:gridCol elements that define the widths of
columns in the table.

Table rows are represented by the w:tr element. The content model of the w:tr element, using the same notation, is:

w:tblPrEx?, w:trPr?, (w:tc | w:proofErr | w:permStart | w:permEnd)+

The w:tblPrEx element contains exceptions to the table-wide properties for this row only. The w:trPr element contains
table row properties for this row.

Table cells are represented by the w:tc element. The content model of the w:tc element, using the same notation, is:

w:tcPr?,(w:p | w:tbl | w:cfChunk | w:proofErr | w:permStart | w:permEnd)*

Thus, after optionally specifying the table cell properties (with the w:tcPr element), we are once again inside a block-
level context. At this point, paragraphs may contain the text for the table cell, or another table can be nested inside this
one.

We've repeatedly seen the trio of w:proofErr, w:permStart, and w:permEnd—now at row-level, cell-level, block-level, and
run-level contexts. See Section 2.5.6, later in this chapter, to find out what exactly these elements are for and how
they function.

Example 2-7 shows a simple table that references one of its document's table styles and additionally utilizes several
table formatting features.

Example 2-7. A sample table with a style and merged cells

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:styles>

 <w:style w:type="table" w:styleId="MyTableStyle">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:style w:type="table" w:styleId="MyTableStyle">

 <w:name w:val="My Table Style" />

 <w:tblPr>

 <w:tblBorders>

 <w:top w:val="single"/>

 <w:left w:val="single"/>

 <w:bottom w:val="single"/>

 <w:right w:val="single"/>

 <w:insideH w:val="single"/>

 <w:insideV w:val="single"/>

 </w:tblBorders>

 <w:tblCellMar>

 <w:left w:w="108" w:type="dxa" />

 <w:right w:w="108" w:type="dxa" />

 </w:tblCellMar>

 </w:tblPr>

 </w:style>

 </w:styles>

 <w:body>

 <w:tbl>

 <w:tblPr>

 <w:tblStyle w:val="MyTableStyle" />

 </w:tblPr>

 <w:tr>

 <w:tc>

 <w:p>

 <w:r>

 <w:t>First row, first column</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:vmerge w:val="restart" />

 </w:tcPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:tcPr>

 <w:p>

 <w:r>

 <w:t>First row, second column (merged with second row, second

 column)</w:t>

 </w:r>

 </w:p>

 </w:tc>

 </w:tr>

 <w:tr>

 <w:tc>

 <w:p>

 <w:r>

 <w:t>Second row, first column</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:vmerge />

 </w:tcPr>

 <w:p/>

 </w:tc>

 </w:tr>

 </w:tbl>

 </w:body>

</w:wordDocument>

The result of opening this WordprocessingML document in Word is shown in Figure 2-17.

Figure 2-17. A simple table, with automatically sized cells

There are a few things to note about this table:

The table is associated with "MyTableStyle," which is defined within the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The table is associated with "MyTableStyle," which is defined within the document.

The "MyTableStyle" style adds borders and cell-spacing to the table.

Word opens the document without complaint, even though it doesn't have a w:tblGrid element; Word
automatically sizes the cells to contain the content.

 The w:vmerge element is a table cell property that is used to vertically merge one table cell with another table
cell below it—similar to its horizontal equivalent, the w:hmerge element.

The w:tbl element as generated by Word tends to be much more verbose than this example, explicitly specifying
many individual property settings.

There is a lot that this example doesn't cover. To give you an idea just how much more there is to tables, the w:tblPr
element has 17 possible child elements (many of which contain their own children), the w:trPr element has 12 possible
child elements, and the w:tcPr element has 13 possible child elements. That's not to mention the w:tblPrEx (exceptions
for a specific row), w:tblStylePr (for table-style conditional override properties), and w:tblpPr (for specifying the position of
a table) elements. If you're writing WordprocessingML for tables, the main things you'll need to configure are the
properties of the table, rows, and cells. These work in the same way as the paragraph properties that we've looked at in
detail earlier, so we won't go into them here. A quick look at the properties dialogs for tables should give you an idea of
what's involved.

2.5.4 Lists

Lists are a rather strange beast in WordprocessingML. Though tables can get pretty hairy, they at least are generally
structured the way you would expect: tables containing rows containing cells. Lists, on the other hand, have no such
explicit structure in WordprocessingML. Instead, a list consists of a sequence of paragraphs that function as list items.
They do not have a common container, nor, unfortunately, does Word provide an auxiliary hint for list containers when
outputting WordprocessingML. The member paragraphs of a list are linked to one of its document's "list definitions."
These are responsible for maintaining the identity of a single list. When numbering restarts, for example, a new list
definition is automatically created. These list definitions, in turn, are linked to one of the document's "base list
definitions", which, if there is no subsequent list style link to traverse, define the actual formatting properties of the list.
If the phrase "spectacularly convoluted" comes to mind, just wait until you see an example of this.

2.5.4.1 What makes a paragraph a list item

A paragraph participates as a member of a list under one of these separate circumstances:

 It has a w:listPr element inside its w:pPr element, which refers to a specific list definition (via the w:ilfo element).

It is associated with a paragraph style that includes list formatting.

Let's take a look at how the first mechanism works. The following paragraph is a member of a list:

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is item one.</w:t>

 </w:r>

</w:p>

The w:ilfo element (whose name may stand for something like "item list format," though Microsoft has not documented
what it actually means) refers to one of the document's list definitions, identified by the number 1. The w:ilvl element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

what it actually means) refers to one of the document's list definitions, identified by the number 1. The w:ilvl element
specifies at what level of nesting this list item occurs. It is incremented each time a list is nested within another list.
Since there are nine possible levels of list indentation in Word (starting at 0), its value can be anywhere from 0 to 8. It
basically says, "Once you find the definition for how each level of this list is supposed to look, sign me up for the
formatting and indentation that are defined for level 0." Finding the list definition is the trick. But before we figure out
how that's done, let's take a look at how WordprocessingML lists compare with HTML lists.

2.5.4.2 Comparing HTML and WordprocessingML lists

Below is a simple nested list in HTML:

 <p>This is top-level item 1</p>

 This is second-level item 1

 This is second-level item 2

 This is top-level item 2

In WordprocessingML, a list like this is expressed much differently. Instead of using a hierarchical structure to express
the list hierarchy, we must represent the list as a flat sequence of four sibling paragraphs, assigning them to the same
list but to different levels within the list:

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is top-level item 1</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="1"/>

 <w:ilfo w:val="1"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is second-level item 1</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="1"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is second-level item 2</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is top-level item 2</w:t>

 </w:r>

</w:p>

For this list to display correctly, the document must contain at least one list definition (a w:list element with w:ilfo="1",
as we'll see) and a corresponding base list definition (w:listDef element), which contains the actual formatting
information for list items. Each paragraph's w:ilvl value represents how far it is nested in the list. The "top-level"
paragraphs are each at level 0, whereas the "second-level" paragraphs are each at level 1. Figure 2-18 shows how
Word renders this WordprocessingML list, using one of its built-in list styles.

Figure 2-18. A simple nested list in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5.4.3 Finding the list definitions

Now let's take a look at where the "list definitions" and "base list definitions" are actually defined. Unsurprisingly, they
are both to be found inside the top-level w:lists element, whose basic content model is a sequence of w:listDef elements
followed by a sequence of w:list elements:

<w:lists>

 <w:listDef ...>

 ...

 </w:listDef>

 <!-- more w:listDef elements -->

 <w:list ...>

 ...

 </w:list>

 <!-- more w:list elements -->

</w:lists>

The w:list elements represent what we're calling "list definitions," and the w:listDef elements represent what we're calling
"base list definitions."

Consider the first example list paragraph we saw earlier. This will be our starting point for finding the list definitions in
the same way that Word does. Here's the paragraph again:

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is item one.</w:t>

 </w:r>

</w:p>

Since our paragraph's w:ilfo element refers to the value 1, we need to find the list definition identified by the number 1.
In other words, we need to find a w:list element that looks something like this (whose w:ilfo attribute's value is 1):

<w:list w:ilfo="1">

 <w:ilst w:val="5"/>

</w:list>

Now that we've found the list definition, the next step is finding the "base list definition." We do that by looking at the
value provided by the w:ilst element. In this case, it is referring to a base list definition identified by the number 5.
Recalling that the base list definitions are represented by w:listDef elements and that they precede the w:list elements
inside the w:lists element, we continue to search further back in our WordprocessingML document. Eventually, we find

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inside the w:lists element, we continue to search further back in our WordprocessingML document. Eventually, we find
what we're looking for:

<w:listDef w:listDefId="5">

 ...

 <w:lvl w:ilvl="0">...</w:lvl>

 <w:lvl w:ilvl="1">...</w:lvl>

 <w:lvl w:ilvl="2">...</w:lvl>

 <w:lvl w:ilvl="3">...</w:lvl>

 <w:lvl w:ilvl="4">...</w:lvl>

 <w:lvl w:ilvl="5">...</w:lvl>

 <w:lvl w:ilvl="6">...</w:lvl>

 <w:lvl w:ilvl="7">...</w:lvl>

 <w:lvl w:ilvl="8">...</w:lvl>

</w:listDef>

The w:listDef element is identified by its w:listDefId attribute and contains one w:lvl element for each level of list nesting
for which it defines formatting. While you can create base list definitions that define fewer levels without a problem,
Word's built-in list styles define all nine levels of nesting. The content of the w:lvl element includes all kinds of
formatting information, such as indentation, tab stops, the number to start on, number format, and bullet images.

Once Word finds the base list definition, with all its formatting information, it then applies the appropriate level's
formatting to the paragraph, according to the value of the w:ilvl element that occurs in the paragraph's list properties.
Thus, Word applies the level 0 list item formatting to our example paragraph above.

2.5.4.4 List Styles

An even more complex variation of this approach occurs is when list styles are used. Unlike paragraph, table, and
character styles, which can be directly associated with paragraphs, tables, and runs (via the w:pStyle, w:tblStyle, and
w:rStyle elements, respectively), list styles are not directly associated with paragraphs in WordprocessingML—there is
not a corresponding element for direct list style references. For example, when an end user applies the built-in list style
"1 / a / i" to a paragraph, the paragraph is effectively associated with a list definition, but it is not directly associated
with the "1 / a / i" list style that was applied to it. The resulting WordprocessingML paragraph looks essentially no
different from the example paragraph we looked at earlier. Here it is again (with the only difference here being that the
w:ilfo element happens to refer to a list definition identified by the number 2):

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="2"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is item one.</w:t>

 </w:r>

</w:p>

This is what the WordprocessingML looks like when an end user applies a list style to a paragraph. Rather than being
directly associated with the list style, the paragraph refers to a list definition using the w:ilfo element—no differently

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directly associated with the list style, the paragraph refers to a list definition using the w:ilfo element—no differently
than when a list style is not involved. However, the list style association is still retained; it's just that you can't tell that
from looking at the paragraph alone. The list style association only becomes evident when we start traversing the
graph, and that's where things get complicated. First, the paragraph associates itself with the document's list definition
(w:list element), identified by the value 2:

<w:list w:ilfo="2">

 <w:ilst w:val="1"/>

</w:list>

The list definition, in turn, refers (via the w:ilst element) to a base list definition (w:listDef element) identified by the
value 1. So far, so good. Now, here is where a few extra levels of indirection appear. Whereas before we were done at
this point (the base list definition contained all the formatting properties for each level of the list), now we're only
halfway there. This time, the referenced base list definition doesn't contain any formatting properties (inside w:lvl
elements) at all. Instead, it contains yet another reference—the w:listStyleLink element:

 <w:listDef w:listDefId="1">

 <w:lsid w:val="27DC6005"/>

 <w:plt w:val="Multilevel"/>

 <w:tmpl w:val="0409001D"/>

 <w:listStyleLink w:val="1ai"/>

 </w:listDef>

This w:listDef element refers, via its w:listStyleLink element, to a list style definition whose w:styleId attribute's value is 1ai.
This corresponds to the "1 / a / i" style that the end user applied. Here is the document's list style definition that it
refers to:

 <w:style w:type="list" w:styleId="1ai">

 <w:name w:val="Outline List 1"/>

 <wx:uiName wx:val="1 / a / i"/>

 <w:basedOn w:val="NoList"/>

 <w:rsid w:val="00283CEE"/>

 <w:pPr>

 <w:listPr>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 </w:style>

As you can see, the list style definition, in turn, contains a reference to yet another list definition (identified by the
number 1). Dizzy yet?

 <w:list w:ilfo="1">

 <w:ilst w:val="0"/>

 </w:list>

This list definition refers to yet another base list definition, identified by the number 0. Finally, we are home free, as this
base list definition actually contains the list formatting properties Word needs in order to format each level of the list:

 <w:listDef w:listDefId="0">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:listDef w:listDefId="0">

 <w:lsid w:val="1B850634"/>

 <w:plt w:val="Multilevel"/>

 <w:tmpl w:val="0409001D"/>

 <w:styleLink w:val="1ai"/>

 <w:lvl w:ilvl="0">

 <w:start w:val="1"/>

 <w:lvlText w:val="%1)"/>

 <w:lvlJc w:val="left"/>

 <w:pPr>

 <w:tabs>

 <w:tab w:val="list" w:pos="360"/>

 </w:tabs>

 <w:ind w:left="360" w:hanging="360"/>

 </w:pPr>

 </w:lvl>

 <w:lvl w:ilvl="1">

 ...

 </w:lvl>

 <w:lvl w:ilvl="2">

 ...

 </w:lvl>

 <w:lvl w:ilvl="3">

 ...

 </w:lvl>

 <w:lvl w:ilvl="4">

 ...

 </w:lvl>

 ...

 <w:lvl w:ilvl="5">

 ...

 </w:lvl>

 <w:lvl w:ilvl="6">

 ...

 </w:lvl>

 <w:lvl w:ilvl="7">

 ...

 </w:lvl>

 <w:lvl w:ilvl="8">

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </w:lvl>

 </w:listDef>

In summary, w:ilfo refers to w:list, which refers to w:listDef, which refers to w:style, which refers to another w:list, which
refers to another w:listDef. Home, sweet home. Oh yeah, and the last w:listDef refers back to the same w:style through an
element called w:styleLink (which you can see in the last code snippet above)—thereby throwing in a little circularity for
good measure.

2.5.5 Sections

A section in Word is an area or set of areas within a document, characterized by the same page settings, such as
margin width, header and footer size, orientation, border, and print settings. These settings are accessible within the
Word UI through the File Page Setup . . . dialog, shown in Figure 2-19. Figure 2-19 also shows the five different
kinds of section breaks you can insert into a document: "Continuous," "New column," "New page," "Even page," and
"Odd page."

Figure 2-19. The Page Setup dialog for section settings

As mentioned previously, the structure of a Word document consists of one or more sections containing zero or more
paragraphs containing zero or more characters. WordprocessingML, however, does not reflect that hierarchy exactly. In
fact, there is no section container element in WordprocessingML proper. (As we'll see later in Section 2.6.1, the wx:sect
element helps to fill this void by acting as a surrogate container, thereby aiding external processing.) Rather, sections
are represented indirectly through the presence of section breaks. A section break is signified in WordprocessingML by
the presence of a w:sectPr element inside the w:pPr element of the section's last paragraph. Example 2-8 shows the
WordprocessingML for a document that contains two section breaks, and therefore three sections. The w:sectPr elements
are highlighted.

Example 2-8. Multiple sections in a document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-8. Multiple sections in a document

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:docPr>

 <w:view w:val="normal"/>

 </w:docPr>

 <w:body>

 <w:p>

 <w:pPr>

 <w:sectPr/>

 </w:pPr>

 <w:r>

 <w:t>First section</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Second section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:sectPr/>

 </w:pPr>

 <w:r>

 <w:t>Second section, second paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Third section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Third section, second paragraph</w:t>

 </w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:r>

 </w:p>

 <w:sectPr/>

 </w:body>

</w:wordDocument>

The first two w:sectPr elements in this document represent section breaks, because they each occur inside a w:pPr
element. One thing to keep in mind about WordprocessingML's way of representing section breaks is that it can be
deceiving. Specifically, the w:sectPr elements do not lexically divide the text of the document according to its true
section boundaries. For example, though from a first glance it may look as if the paragraph that says "Second section,
second paragraph" belongs to the third and final section, that is not the case. It only looks that way because the
w:sectPr element comes before the text of the paragraph in which it resides. This potential confusion is all the more
reason to look forward to Section 2.6.1, later in this chapter.

The last w:sectPr element in Example 2-8 does not occur inside the w:pPr element. Rather, it is a child of w:body,
following the last paragraph in the document. This is where Word always expects to see the final w:sectPr element of the
document. It does not represent a section break; rather, its job is simply to apply properties to the final (and possibly
only) section of the document. If it isn't there when Word loads the document, Word will add it. The presence of w:sectPr
inside a w:pPr element always denotes a section break, but the presence of w:sectPr as the last child of the w:body
element does not. It's important to keep this distinction in mind when generating WordprocessingML documents that
have multiple sections.

Figure 2-20 shows what we see when Word opens the document in Example 2-8.

Figure 2-20. Three sections separated by Next Page section breaks

In the "Normal" view (which we see automatically, thanks to Example 2-8s use of the w:view element), all section
breaks are visible. The first mystery of the empty w:sectPr section break element is answered: by default it stands for a
"Next Page" break. We could have explicitly specified this in our document by using the w:type child element of w:sectPr,
like this:

<w:sectPr>

 <w:type w:val="next-page"/>

</w:sectPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</w:sectPr>

Besides next-page, the other possible values (corresponding to the drop-down menu options we saw in Figure 2-19) are
next-column, continuous, even-page, and odd-page.

Of course, the insertion of section breaks is not the only responsibility of the w:sectPr element, which stands for "section
properties." Its content model, after all, includes 21 possible element children, which collectively represent the settings
a user can edit through the File Page Setup... dialog. The properties specified inside the w:sectPr element apply to
the section before the break that it represents (i.e., the section containing the paragraph with which the w:sectPr
element is associated).

Normally, when you create a new blank document in Word, all of the page settings defined in the Normal.dot document
template are copied into the document. These include margins, paper dimensions, vertical alignment, orientation, etc.
But our hand-coded WordprocessingML document (Example 2-8) isn't "normal" in this sense. It was created outside of
Word and specifies no page settings at all (as the w:sectPr elements are empty). Word gracefully handles this scenario
when it loads the document by automatically inserting its application defaults for page settings. These default page
settings are the same settings that are automatically copied into the Normal.dot template when Word is first installed,
or when it is forced to create a new Normal.dot template.

We can see Word's application defaults for margins and paper size in the Reveal Formatting task pane in Figure 2-20.
The underlying XML representation for these values looks something like this:

<w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800"

 w:header="720" w:footer="720" w:gutter="0"/>

</w:sectPr>

All of the attribute values shown here are expressed in twips, or 1,440ths of an inch. The w:pgSz element sets the page
size to 8.5" x 11." The w:pgMar element sets the margin widths around the page: one inch on the top and bottom, and
1.25 inches on the right and left. It also sets header and footer areas, each with a height of half an inch.

If you need to override the default page settings for a particular section, you can simply specify your own values, using
any of the other child elements of w:sectPr as necessary.

2.5.6 Proofing, Protection, and Annotation Markings

The w:proofErr, w:permStart, w:permEnd, and aml:annotation elements have shown up in various places so far without any
real explanation. One thing they have in common is that they are all used to mark up ranges of text in a Word
document: w:proofErr for spelling and grammar errors, w:permStart and w:permEnd for an editable area within a protected
document, and aml:annotation for annotating comments, bookmarks, and revisions within a document.

A range is a span of text defined by a start character position and an end character position. The distinctive thing about
ranges is that they can cross paragraph and section boundaries. From within a VBA application, a commonly used range
is the range that corresponds to the user's current selection. Individual sentences and words are also examples of
ranges that you can access through the Word object model, but they are not actually stored as part of the information
in a Word document. Instead, such ranges are purely derivative and calculated on the fly, as the Word or VBA
application demands. However, there are certain kinds of ranges that are necessary to be stored as part of the Word
document itself. These include the various kinds of annotations you can make to a document without affecting its actual
formatting, and markings that are automatically created, such as proofing marks for grammar and spelling.

There is a problem with representing such ranges of text in XML, because XML only allows you to represent a single
tree. The problem of needing to represent multiple, overlapping hierarchies (which is what such annotations amount to)
is commonly addressed in XML by inserting markers into the flow for the start and end positions of the range in
question. This is exactly what Word does, too.

Figure 2-21 shows a paragraph in Word in which three ranges are overlapping, namely a document protection range, a
grammar error range, and a comment annotation range.

Figure 2-21. Overlapping grammar, protection, and comment markings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The outer brackets surrounding the entire sentence delineate the boundaries of an editing region with particular
permissions; the inner parentheses delineate the boundaries of the text about which a comment was made; and the
squiggly line under "This were" is a grammar error automatically recognized and flagged as such by Word. Example 2-9
shows the underlying WordprocessingML for this document excerpt, as output by Word. The start and end markers for
each range, all of which are empty elements, are highlighted.

Example 2-9. Overlapping protection, proofing, and comment ranges

 <w:p/>

 <w:permStart w:id="0" w:edGrp="everyone"/>

 <w:proofErr w:type="gramStart"/>

 <w:p>

 <w:r>

 <w:t>This </w:t>

 </w:r>

 <aml:annotation aml:id="0" w:type="Word.Comment.Start"/>

 <w:r>

 <w:t>were</w:t>

 </w:r>

 <w:proofErr w:type="gramEnd"/>

 <w:r>

 <w:t> a grammatically</w:t>

 </w:r>

 <aml:annotation aml:id="0" w:type="Word.Comment.End"/>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 <aml:annotation aml:id="0" aml:author="Evan Lenz"

 aml:createdate="2003-12-22T12:15:00Z"

 w:type="Word.Comment" w:initials="edl">

 <aml:content>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="CommentText"/>

 </w:pPr>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 <w:annotationRef/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:r>

 <w:r>

 <w:t>Isn't that bad grammar?</w:t>

 </w:r>

 </w:p>

 </aml:content>

 </aml:annotation>

 </w:r>

 <w:r>

 <w:t> suspect sentence.</w:t>

 </w:r>

 <w:permEnd w:id="0"/>

 </w:p>

 <w:p/>

This example illustrates the use of start and end markers to annotate ranges of text, regardless of whether they overlap
each other or other elements, such as paragraphs. This explains, at long last, why these elements crop up in so many
places in the WordprocessingML schema. They need to occur as block-level elements as well as run-level elements. The
w:permStart element occurs in this example in a block context, as a sibling of paragraphs, whereas the corresponding
w:permEnd element occurs in a run context, before the end of the paragraph. Likewise, the first of the w:proofErr
elements occurs as a block-level element, before the beginning of the paragraph, but the second w:proofErr element,
which ends the range at the word "were," occurs as a run-level element.

2.5.6.1 Document protection

Now let's look at how each type of annotation works. The w:permStart and w:permEnd elements work together to identify
a range of text that has a particular editing permission enabled. The w:id attribute of each element is used to associate
the markers with each other. In this case, we know that they go together, because the w:id attribute value is 0 for both
of them:

 <w:permStart w:id="0" w:edGrp="everyone"/>

...

 <w:permEnd w:id="0"/>

The value of the w:edGrp attribute denotes a group of people who can edit this region of text. In this case, the value is
everyone, which means that there are no restrictions for this particular range. This is useful as a way of overriding a
global document protection policy in which the rest of the document is off-limits for making changes. For more
information on Word's document protection features, see Chapter 4.

2.5.6.2 Proof errors

The w:proofErr elements in Example 2-9 are used to identify the start and end points of a grammar error. The type of
each marker is denoted by the w:type attribute:

 <w:proofErr w:type="gramStart"/>

...

 <w:proofErr w:type="gramEnd"/>

Since grammar, as well as spelling, errors cannot overlap each other, there is no need for an ID attribute to associate
start and end markers with each other. Word knows that a grammar error ends at the first gramEnd marker that it finds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

start and end markers with each other. Word knows that a grammar error ends at the first gramEnd marker that it finds
after the gramStart marker. Spelling errors are represented in the same way, using the values of spellStart and spellEnd for
the w:type attribute. Thus, the w:proofError's w:type attribute has four possible values:

gramStart
gramEnd
spellStart
spellEnd

2.5.6.3 Comments and other annotations

Example 2-9 also demonstrates how comments are represented in WordprocessingML. Every comment is represented
using three separate aml:annotation elements. The three are associated with each other by having the same aml:id
attribute value (0 in Example 2-9s case). The first two aml:annotation elements are used to denote the start and end of
the range that the comment is about:

 <aml:annotation aml:id="0" w:type="Word.Comment.Start"/>

 ...

 <aml:annotation aml:id="0" w:type="Word.Comment.End"/>

The w:type attribute values distinguish the start and end markers from each other: Word.Comment.Start and
Word.Comment.End. The third aml:annotation element occurs inside a run (w:r element) that immediately follows the
comment end marker:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 ...

 </w:r>

This run is associated with the CommentReference character style, a built-in style that is automatically inserted into the
document when you insert a comment. So far, this looks like a normal run that might appear in the flow of document
text. The content of the run, however, does not consist of normal document text. Instead, inside the run, we see the
third and last aml:annotation element for this comment:

 <aml:annotation aml:id="0" aml:author="Evan Lenz"

 aml:createdate="2003-12-22T12:15:00Z"

 w:type="Word.Comment" w:initials="edl">

 ...

 </aml:annotation>

The aml:id attribute's value is 0, which associates this annotation with the previous two. The w:type attribute is
Word.Comment, which indicates that this element contains the actual content of the comment. The other three attributes
contain metadata about the comment, including who made the comment, their initials, and the date and time they
made it.

Inside the aml:annotation element is the aml:content element, which is used to contain the text of the comment:

 <aml:content>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="CommentText"/>

 </w:pPr>

 <w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 <w:annotationRef/>

 </w:r>

 <w:r>

 <w:t>Isn't that bad grammar?</w:t>

 </w:r>

 </w:p>

 </aml:content>

The comment text is represented using a sequence of Word paragraphs. These paragraphs are "out-of-band" in the
sense that they do not occur in the normal flow of document text. After all, they ultimately occur inside a w:r element. A
paragraph inside a run isn't normally allowed; it wouldn't make any sense. Only because of the intervening
aml:annotation and aml:content elements is the w:p element allowed to occur as a descendant of a w:r element.

In addition to comments, the aml:annotation element is also used to represent bookmarks and revision markings
(recorded when "Track Changes" is turned on). In each case, the type of annotation is identified by the value of the
w:type attribute, which has these possible values:

Word.Insertion
Word.Deletion
Word.Formatting
Word.Bookmark.Start
Word.Bookmark.End
Word.Comment.Start
Word.Comment.End
Word.Insertion.Start
Word.Insertion.End
Word.Deletion.Start
Word.Deletion.End
Word.Comment
Word.Numbering

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.6 Auxiliary Hints in WordprocessingML
Until now, we've managed to stick to a pretty strict diet of elements and attributes from the WordprocessingML
namespace, which has had times more pleasant than others. Now it's time to introduce a set of elements and attributes
from another namespace that are designed purely for the purpose of making your life easier. That's right, you guessed
it: the wx prefix is your friend (so long as it's mapped to the right namespace:
http://schemas.microsoft.com/office/word/2003/auxHint).

There are quite a few contexts in which elements and attributes from the wx namespace appear in WordprocessingML
documents saved by Word. We'll be focusing on some of the most significant of these: sections, sub-sections, and list
text, as well as formatting hints. These hints save consumers of WordprocessingML documents much grief and
processing power that would otherwise be spent on things like traversing the links of a list definition, for example.

Again, elements and attributes in the wx namespace represent information that could be useful to us in handling
WordprocessingML but that is of no internal use to Word. One implication of this distinction is that, while you may write
applications that depend on their presence, it hardly ever makes sense to write applications that output elements or
attributes in the wx namespace when generating WordprocessingML—except perhaps when doing incremental
processing of an existing document such that you want to maintain the auxiliary information that originally came from
Word. Even then, you're not really generating it; you're just forwarding it on.

2.6.1 Section Containers

Earlier in the chapter, in "Sections," we introduced WordprocessingML's non-intuitive way of representing a document's
sections—how the presence of a w:sectPr element is implicitly interpreted to mean that the current paragraph is the last
one in a section. Without a common container in which paragraphs of the same section are grouped together, it's not
only counterintuitive but more difficult to process than it would otherwise be. Fortunately, the wx:sect element, which
was introduced way back in Example 2-2, is Microsoft's answer to this problem. Whenever Word saves a document as
XML, it doesn't just output the content of the w:body element. Instead, it groups the paragraphs and tables inside the
body into wx:sect elements, corresponding to sections in the Word document.

To recognize the helpfulness of this feature, all we need to do is have Word open and to re-save the WordprocessingML
document from Example 2-8. No longer is it so difficult to figure out where the section boundaries are:

 <w:body>

 <wx:sect>

 <w:p>

 <w:pPr>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 </w:sectPr>

 </w:pPr>

 <w:r>

 <w:t>First section</w:t>

 </w:r>

 </w:p>

 </wx:sect>

 <wx:sect>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <wx:sect>

 <w:p>

 <w:r>

 <w:t>Second section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 </w:sectPr>

 </w:pPr>

 <w:r>

 <w:t>Second section, second paragraph</w:t>

 </w:r>

 </w:p>

 </wx:sect>

 <wx:sect>

 <w:p>

 <w:r>

 <w:t>Third section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Third section, second paragraph</w:t>

 </w:r>

 </w:p>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </wx:sect>

 </w:body>

Note that there are three wx:sect elements, one for each section, and that the paragraphs in each section are clearly
grouped together. As mentioned before, we could remove the start and end tags of each wx:sect element, and Word
would process the document no differently. Conversely, the meaning of the document as far as Word is concerned is
completely unaltered by the addition of the wx:sect element. It only considers the w:sectPr elements to determine where
the sections are. The same old rules apply: w:sectPr elements inside w:pPr elements represent section breaks, but the
last w:sectPr element (provided it follows the last paragraph inside the w:body element) does not represent a break, but
instead simply contains the properties of the last section.

An example using XPath can help demonstrate how the wx:sect element enables easier processing of WordprocessingML
documents outside of Word. If we were to write an XPath expression to select all of the paragraphs in, say, the third
section, this would be easy (assuming the appropriate namespace bindings):

/w:wordDocument/w:body/wx:sect[3]/w:p

However, without the aid of the wx:sect element, the task is still possible but not as straightforward and certainly not as
intuitive:

/w:wordDocument/w:body/w:p[count(preceding::w:sectPr)=2]

Clearly, the wx:sect element, though it may have looked cryptic at first sight, is a helpful aid to processing
WordprocessingML documents as output by Word.

2.6.2 Outline Levels and Sub-Sections

Word has a special paragraph property that we didn't mention earlier: the outline level. As might be guessed, the
outline level property has an effect on the display of a paragraph in Word's "Outline" view. Example paragraph styles
for which an outline level is defined include all of Word's built-in Heading styles. In fact, it's no accident that the Outline
view supports nine levels and that there are precisely nine Heading styles. Figure 2-22 shows how all of the Heading
styles are displayed in Outline view, along with some body text on each rung of the ladder. The body text has no outline
level specified, as is the case with most normal paragraphs. All of the Heading paragraphs, however, have the outline
level corresponding to their name. Heading 1 has Outline Level 1, Heading 2 has Outline Level 2, etc.

Figure 2-22. Word's built-in Heading styles, as displayed in Outline view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clearly, the document in Figure 2-22 follows a hierarchical structure (if rather deep). Many people author such
hierarchically organized documents in Word. Indeed, the Heading styles in conjunction with Outline view give them
incentives for doing so. Unfortunately none of that hierarchical structure made it into WordprocessingML, which remains
wedded to the flat-list-of-paragraphs paradigm. Sure, you can make a document look like it's hierarchically structured,
but underneath the covers it's just a sequence of paragraphs with various formatting properties applied. But all is not
lost. Once again, the wx namespace comes to the rescue, in what is arguably the most useful element of all the
auxiliary hints: the wx:sub-section element.

Whenever Word saves a WordprocessingML document that has an outline level specified on any of its paragraphs, then
at least a one-level depth tree of wx:sub-section elements will be present in the output. Specifically, any time Word
comes across a paragraph with an outline level, it establishes a new sub-section context equal in depth of sub-sections
to the outline level of the paragraph. For example, if the outline level is 3, then the paragraph will be contained within
three nested wx:sub-section elements. This stays in effect for following paragraphs either until it reaches another
paragraph with an outline level, or it comes to the end of the section (in which case all of the wx:sub-section elements
are closed). In the case of the document in Figure 2-22, it would output a structure similar to the following:

<wx:sub-section>

 Heading 1

 Body text

 Body text

 <wx:sub-section>

 Heading 2

 Body text

 Body text

 <wx:sub-section>

 Heading 3

 Body text

 Body text

 ...

 </wx:sub-section>

 </wx:sub-section>

</wx:sub-section>

You can achieve a similar effect with any custom paragraph style that you develop, simply by adding an outline level to
the style definition. While using styles is probably the best way to achieve this effect, the use of styles isn't required.
You can also apply the outline level property locally, as direct formatting on your paragraph. Example 2-10 finally
demonstrates the syntax for the outline level property, as specified inside a paragraph's w:pPr element. This document
contains a series of five paragraphs, two of which specify an outline level using the w:outlineLvl element, whose w:val
attribute value must be between 0 and 8 (exposed as 1 through 9 in the Word UI).

Example 2-10. Setting outline levels locally

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-10. Setting outline levels locally

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0"/>

 </w:pPr>

 <w:r><w:t>This is the top-level heading</w:t></w:r>

 </w:p>

 <w:p>

 <w:r><w:t>This is some text inside the top-level sub-

section.</w:t></w:r>

 </w:p>

 <w:p>

 <w:r><w:t>This is some more body text.</w:t></w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="1"/>

 </w:pPr>

 <w:r><w:t>This is a second-level heading</w:t></w:r>

 </w:p>

 <w:p>

 <w:r><w:t>This is some body text under the second-level

heading.</w:t></w:r>

 </w:p>

 </w:body>

</w:wordDocument>

First, let's see what this document looks like when opened in Word. Figure 2-23 shows both the Normal view and the
Outline view. The outline levels are completely invisible in the Normal view; the paragraphs look no different than any
other plain, boring paragraph. Outline view is another story.

Figure 2-23. Outline levels shown in Normal and Outline views

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-23. Outline levels shown in Normal and Outline views

Finally, we can see the wx:sub-section element in action by resaving the document as XML from within Word. Example 2-
11 shows the body content excerpted from the WordprocessingML document as saved by Word.

Example 2-11. A document body with outline levels, when saved as XML in Word

 <w:body>

 <wx:sect>

 <wx:sub-section>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0"/>

 </w:pPr>

 <w:r>

 <w:t>This is the top-level heading</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is some text inside the top-level sub-section.</w:t>

 </w:r>

 </w:p>

 <w:p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:p>

 <w:r>

 <w:t>This is some more body text.</w:t>

 </w:r>

 </w:p>

 <wx:sub-section>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="1"/>

 </w:pPr>

 <w:r>

 <w:t>This is a second-level heading</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is some body text under the second-level heading.</w:t>

 </w:r>

 </w:p>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

 </wx:sub-section>

 </wx:sub-section>

 </wx:sect>

 </w:body>

Example 2-11 demonstrates that Word interprets the outline levels to automatically structure the resulting
WordprocessingML into sub-sections, using wx:sub-section elements, which are highlighted. Again, outline levels are most
useful when they are associated with particular paragraph styles, rather than assigned directly to individual paragraphs
(which, in the Word UI, can only be done in Outline View). Provided that the user applies styles in the order that they
are intended, e.g., Heading 1 followed by Heading 2, etc., then the WordprocessingML that Word generates will be
structured into sub-sections that reflect the true hierarchical structure of the document, rather than merely a flat
sequence of paragraphs.

2.6.3 List Item Formatting Hints

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Anything Word wants to provide in the way of making lists easier to process is certainly welcome. As we saw earlier in
this chapter, lists in WordprocessingML are rather complicated to process. Generally, you can recognize the presence of
a list item by the presence of a w:listPr element inside a paragraph's w:pPr element. While that's a start, if you want to
find out anything about how the list item is formatted, including even whether it's a "numbered" or "bulleted" list, you
have to traverse a number of intra-document links. How many depends on whether and to what extent paragraph or list
styles are involved.

As a matter of fact, Word does rather consistently save us this trouble by outputting the wx:t element inside a
paragraph's w:listPr element. The wx:t element has three attributes: wx:val, wx:wTabBefore, and wx:wTabAfter. The wx:val
attribute specifies the actual text used for the number or bullet point of this particular list item. The wx:wTabBefore is
measured in twips and specifies the width of the tab preceding the line number. This usually corresponds to the
indentation of the list item from the page's left margin. The wx:wTabAfter, on the other hand, calculates the distance, in
twips, between the end of the text of the line number and the beginning of the editable area. It takes into consideration
the font size and length of the line number itself. For example, consider the second list item of the simple list in Figure
2-24.

Figure 2-24. A simple list item

The hint as it resultantly appears in this paragraph's w:listPr element (inside its w:pPr element) is as follows:

 <wx:t wx:val="a." wx:wTabBefore="1080" wx:wTabAfter="195" />

The wx:val attribute clearly relates that the line number text is "a." The wx:wTabBefore corresponds to the actual left
indent of this paragraph, namely .75 inches, or 1080 twips. And the wx:wTabAfter attribute represents the distance
between the "a." text and the contents of the list item—in other words, the gray, highlighted area following "a." in
Figure 2-24.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.7 More on Styles
Having come this far in the chapter, you should already know a few key aspects of how styles work in Word and
WordprocessingML:

A style is a grouping of property settings that can be applied as a unit.

There are four kinds of styles: paragraph, character, table, and list.

 Styles are defined using w:style elements inside a WordprocessingML document's w:styles element.

 Paragraphs, runs, and tables can be directly associated with a style of the appropriate kind through the
w:pStyle, w:rStyle, and w:tblStyle elements, respectively.

You should also know the basic syntax of the w:style element, and four aspects in particular:

The w:type attribute, indicating the type of style defined here (paragraph, character, table, or list)

The w:default attribute, indicating whether this style is the default style for its type

The w:styleId attribute for intra-document references to this style

The w:name element, indicating the style's primary name as exposed in the Word UI

In this section, we'll look at a few more aspects of how styles are defined, how default styles work (or don't), how to
derive styles, and how style conflicts are resolved.

2.7.1 A Document's Styles

All styles that are used within a document must also be defined in the document. This effectively means that you can't
leverage Word's built-in styles outside of Word; i.e., you can't simply refer to them by name. When a document uses a
built-in Word style, Word makes a copy of the built-in style, rather than merely a reference to it. From that point
forward, the style is part of the document and begins to exist independently of the built-in style from whence it came.
To see a definitive list of the styles that are contained in your document, through the Word UI, select Tools
Templates and Add-Ins... and then click the Organizer... button. The styles listed on the left should correspond one-to-
one with the w:style definitions in the WordprocessingML serialization of your document.

2.7.2 Default Styles

WordprocessingML's default style mechanism (using the w:default attribute) works well for paragraph and table styles. If
you have w:p and w:tbl elements in your document that do not explicitly associate themselves with a style (with w:pStyle
or w:tblStyle elements, respectively), then you can create sweeping formatting changes by simply changing the default
style to a different paragraph or table style inside the w:styles element. You do this by setting the w:default attribute to
on:

 <w:style w:type="paragraph" w:default="on" w:styleId="MyParagraphStyle">

 <w:name w:val="My Paragraph Style"/>

 ...

 </w:style>

On the other hand, the default style mechanism does not work for character styles and lists. If you try to specify a
custom default character style, for example, Word will ignore it and will simply set the "Default Paragraph Font"
character style as the default. For example, the w:default attribute shown here has no effect on Word's behavior:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character style as the default. For example, the w:default attribute shown here has no effect on Word's behavior:

 <w:style w:type="character" w:default="on" w:styleId="MyCharacterStyle">

 <w:name w:val="My Character Style"/>

 ...

 </w:style>

Effectively, this means that runs can only be associated with a character style explicitly—through the w:rStyle element,
like this:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="MyCharacterStyle"/>

 </w:rPr>

 <w:t>This text is associated with a custom character style.</w:t>

 </w:r>

Also, while you can freely customize the "Normal" paragraph style properties in your document, Word will discard any
changes you attempt to make to the "Default Paragraph Font." Thus, there is no defaulting mechanism for associating
runs with a particular character style (other than "Default Paragraph Font," which amounts to "no style"). In some
respects, this is disconcerting, as it doesn't seem to match up with what WordprocessingML's syntax implicitly
advertises. On the other hand, it reduces the possible combinations, thereby making the overall application of styles
somewhat easier to think about.

The w:default attribute is essentially "syntax sugar," making it easy to create WordprocessingML documents without
having to explicitly associate all of a document's paragraphs with a particular style (using a bunch of w:pStyle elements).
Since the w:default attribute is merely syntax sugar and not part of Word's internal data structures, Word does not
preserve your default style choices when it opens your document. Instead, Word always sets w:default="on" to the
"Normal" style definition when it outputs WordprocessingML, regardless of which paragraph style was the default in the
WordprocessingML document it originally opened. This doesn't affect your document's formatting; it just means that the
resulting WordprocessingML markup will be a little more verbose if most of your paragraphs don't use the "Normal"
style. In that case, your paragraph style will be explicitly referenced via w:pStyle elements, rather than implicitly via the
default style association:

 <w:p>

 <w:pPr>

 <w:pStyle w:val="MyParagraphStyle"/>

 </w:pPr>

 <w:r>

 <w:t>This paragraph is explicitly associated with a para style.</w:t>

 </w:r>

 </w:p>

2.7.3 Default Font Size for Paragraph Styles

There are two kinds of default font sizes in Word:

12 points, the font size of Word's built-in "Normal" style that gets automatically inserted into your document if
you don't explicitly define it using a w:style element

10 points, the font size of a paragraph style definition (w:style element) that does not explicitly specify a font
size using the w:sz element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

size using the w:sz element

We have already seen how the first default font size comes about. If you do not explicitly define the "Normal"
paragraph style in a document, then Word automatically inserts its built-in "Normal" style, whose font size is 12 points
(24 half-points). This scenario is exactly what we saw in Examples Example 2-1 and Example 2-2.

However, when you do define a paragraph style but do not explicitly specify the font size (using the w:sz element), then
the font size of your paragraph style defaults to 10 points (20 half-points). For this reason, if you do define the
"Normal" style in your document but without specifying a font size, then you will get a different result than if you didn't
define the style at all. Specifically, the font size of your document's text will be 10 points, rather than 12 points.
Example 2-12 shows a document that differs from Example 2-1 only in that it contains an empty definition for the
"Normal" paragraph style (as identified by the w:name element).

Example 2-12. Defining the "Normal" style without specifying a font size

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:styles>

 <w:style w:type="paragraph" w:default="on">

 <w:name w:val="Normal"/>

 </w:style>

 </w:styles>

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

When Word opens this document, the text "Hello, World!" is displayed in 10-point, rather than 12-point, Times New
Roman. This is because you defined the style in your document, but did not include a w:sz element (inside a w:rPr
element):

 <w:style w:type="paragraph" w:default="on">

 <w:name w:val="Normal"/>

 </w:style>

Word interprets such a paragraph style definition (regardless of whether it's the "Normal" style or some other
paragraph style) as having a font size of 10 points. The above definition is equivalent to this one, where the font size of
20 half-points is explicitly specified:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20 half-points is explicitly specified:

 <w:style w:type="paragraph" w:default="on">

 <w:name w:val="Normal"/>

 <w:rPr>

 <w:sz w:val="20"/>

 </w:rPr>

 </w:style>

The only case where a paragraph style's font size could be different than 10 points without explicitly specifying a font
size is when the style is derived from another paragraph style that has a different font size. As long as both the
w:basedOn and w:sz elements are absent, then you can be sure that the paragraph style's font size is 10 points. But if
there is a w:basedOn element and no w:sz element, then you would have to look at the base style to determine what the
font size is.

So, what is the default font size for a WordprocessingML document? The answer is: it depends on what you mean by
"default font size." If you're talking about the font size of Word's built-in "Normal" style, the answer is 12 points. If
you're talking about the default font size of paragraph style definitions, the answer is 10 points.

2.7.4 Derived Styles

In MS Word, editing styles is like drilling for oil in the Mariana Trench: by the time you finish the
descent through the menus, you're down so deep that you can get the bends trying to remember what
you started to do.

http://www.linuxjournal.com/article.php?sid=7120

One of the most powerful aspects of styles is the ability to base one style on another (in WordprocessingML, using the
w:basedOn element), overriding individual properties as necessary. We'll see a couple examples of derived styles later in
"A Pop Quiz," but the basic syntax looks like this:

 <w:style w:type="paragraph" w:styleId="MyDerivedStyle">

 <w:name w:val="My Derived Style"/>

 <w:basedOn w:val="MyBaseStyle"/>

 <!-- formatting information -->

 </w:style>

Using style derivation, you can base all of your paragraph styles, for example, on a base "Normal" style. Then, if you
want to make a global change to all of your styles, such as font size, you need only make the change in one place—in
the base style. This, of course, assumes that none of your derived styles override the base style's font size setting.
Unfortunately, the Word UI doesn't give any visual clues as to when a particular property of a derived style is merely
inherited from the base style or whether it is hard-wired to the style itself. This can make for some bewildering
behavior.

For example, say your document has a base style called "Normal," from which a number of different styles have been
derived, all of which merely inherit the font size property from "Normal." Whenever you update the font size of the
"Normal" style, all of the derived styles' font sizes will be updated accordingly. So far, so good. But suppose you now
want to derive another style, called "Code," that you know upfront should always be set to a font size of 9 points,
regardless of any changes to the base "Normal" style's font size. This is the tricky part. When you first create the
"Code" style and select a font size of 9 points, whether that size will end up being hard-wired to the "Code" style (which
is what you want) or whether the "Code" style will merely inherit the font size from "Normal" (not what you want)
completely depends on what the font size of "Normal" happens to be at the time you create the style. That's because
Word gives you no way of telling it to hard-wire the font size to this style. Instead, it makes an assumption based on
the current state of the base style. It assumes, in this case, that if the "Normal" font size is 9 points and you select 9
points when creating the "Code" style, you must want "Code" to always be the same size as "Normal." The only way to
get around this is to temporarily change the "Normal" style's font size to something other than 9 points, and then
create the new style, changing it back after you're done.

The introduction of WordprocessingML can largely alleviate this problem. By saving as XML, you get a readable
(assuming you've pretty-printed), as well as editable, dump of all of your document's style definitions, removing once
and for all any doubt about which of a style's properties are inherited and which are hard-wired to the style.

2.7.5 Resolving Conflicts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A given piece of text's formatting information can come from several different places, which raises the question of how
conflicts are handled. Even after resolving a document's derived-style inheritance tree, there are still plenty of potential
ambiguities, since you still have direct formatting, paragraph styles, and character styles to consider. Understanding
how these all interact is fundamental to an understanding of WordprocessingML. In this section, we'll look at how
potential conflicts are resolved—first for paragraph properties and then for font properties.

2.7.5.1 Paragraph property conflicts

A given paragraph can have paragraph properties applied to it in two ways:

Through the associated paragraph style

Through direct formatting

There is a simple rule for resolving conflicts between these two ways of applying paragraph properties: direct
formatting always wins. For example, you can be sure that the following paragraph will be centered, without ever
having to look at the MyParagraphStyle definition:

<w:p>

 <w:pPr>

 <w:pStyle w:val="MyParagraphStyle"/>

 <w:jc w:val="center"/>

 </w:pPr>

 <w:r>

 <w:t>This text is centered, regardless of what the associated paragraph

style says.</w:t>

 </w:r>

</w:p>

The w:jc element in the above snippet is an example of direct paragraph formatting. It is a paragraph property that is
applied locally to this specific paragraph, as opposed to being part of a style definition. Any time you see a property
setting applied within a local w:pPr element, you can be sure that it will take precedence over any conflicting settings in
the associated paragraph style.

2.7.5.2 Font property conflicts

While paragraph properties can only be applied in two ways, font properties can be applied to a given piece of text in
three different ways:

Through the associated paragraph style

Through the associated character style

Through direct formatting

For font properties, as with paragraph properties, direct formatting always wins. For example, you can be sure that the
run of text in the snippet below is italic and not bold without even looking at the MyParagraphStyle or MyCharacterStyle
definitions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definitions:

<w:p>

 <w:pPr>

 <w:pStyle w:val="MyParagraphStyle"/>

 </w:pPr>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="MyCharacterStyle"/>

 <w:i/>

 <w:b w:val="off"/>

 </w:rPr>

 <w:t>This text is italic and not bold, regardless of what the associated

paragraph and character styles say.</w:t>

 </w:r>

</w:p>

The w:i and w:b elements in the above snippet are examples of direct font formatting. They are font properties applied
locally to this specific run, as opposed to being part of a style definition. Any time you see a property setting applied
within a local w:rPr element, you can be sure that it will take precedence over any conflicting settings in the associated
paragraph or character styles.

While the rule that "direct formatting always wins" is sufficient to resolve all potential paragraph property conflicts, it
does not resolve all potential font property conflicts. Resolving font properties is a more complex problem, because—
unlike paragraph properties—font properties can be defined in both the character style and the paragraph style. What
happens when font property settings conflict between a run's associated paragraph and character styles?

To help answer this question, let's consider the different kinds of font properties that can be applied. Word's font
properties can be classified into two categories:

On/off properties

Everything else (multi-valued properties)

Examples of on/off properties are bold (w:b), italic (w:i), all caps (w:caps), and strikethrough (w:strike). Examples of the
other, multi-valued properties include underline (w:u), font (w:rFonts), font size (w:sz), and font color (w:color). For multi-
valued properties, the rule is simple: the character style takes precedence.

For the on/off properties, the rule isn't about which style has precedence; the paragraph and character styles are
considered equally. Instead, the rule is about how their settings are merged. Here's the rule: a given property is turned
on only when it is turned on in one style but not the other.

To help make this more explicit, Table 2-1 shows all four possible combinations for a particular on/off property and the
effective result of each.

Table 2-1. How on/off font properties are merged between a paragraph and
character style

Paragraph style Character style Result

Off Off Off

Off On On

On Off On

On On Off

Table 2-1 is essentially a truth table. The first two columns contain the inputs and the third column contains the XOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2-1 is essentially a truth table. The first two columns contain the inputs and the third column contains the XOR
("exclusive or") result. If you imagine representing a style's on/off property settings as a binary number (a series of 0s
and 1s), then to compute the final result, you would apply an XOR bitmask to the two binary numbers, i.e., to the
paragraph and character styles. That is in fact what Word does.

Let's bring this back down to earth with an example. At one time or another, you may have noticed Word's behavior
when you applied an italicized character style to text within an italicized paragraph. Rather than keeping the text italic,
this action had the opposite effect: the resulting text was not italicized. You may have thought that Word was just being
clever about interpreting your intentions. After all, if you wanted to emphasize a particular word in a paragraph that is
already emphasized as a whole, how else would Word do it? In reality, Word was just following the above rule. Since
the italic property was turned on in both the paragraph and the character styles, they effectively cancelled each other
out, and the result was not italicized. Example 2-13 illustrates exactly this scenario.

Example 2-13. Turning italics off using a character style

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:styles>

 <w:style w:type="paragraph" w:styleId="EmphasizedParagraph">

 <w:name w:val="Emphasized Paragraph"/>

 <w:rPr>

 <w:i/>

 <w:b/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:styleId="Emphasis">

 <w:name w:val="Emphasis"/>

 <w:rPr>

 <w:i/>

 <w:b w:val="off"/>

 </w:rPr>

 </w:style>

 </w:styles>

 <w:body>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="EmphasizedParagraph"/>

 </w:pPr>

 <w:r>

 <w:t>Most of this paragraph is italicized, but </w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Emphasis"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:rStyle w:val="Emphasis"/>

 </w:rPr>

 <w:t>this part is not.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Figure 2-25 shows what this document looks like when opened in Word. The last part of the paragraph is not italicized.
The "Reveal Formatting" task pane shows that the "Emphasis" style contributes the "Not Italic" effect. In any other
(non-italicized) paragraph, the "Emphasis" style would have exactly the opposite effect.

Figure 2-25. How Word renders Example 2-13

The other thing to note about this example is that the entire paragraph is rendered bold, even though the "Emphasis"
character style explicitly tries to turn bold off:

 <w:b w:val="off"/>

This behavior is consistent with the rule that if either (but not both) of the paragraph and character styles turns a
property on, then that property will effectively be turned on. The only times that explicitly turning a property off will
have an overriding effect are either when you are inheriting from another style (using the w:basedOn element) or when
you are applying direct formatting (using a local w:rPr element). In those cases, to turn a property off, you explicitly
turn it off. In contrast, if you want to use a character style to turn a property off, you have to do the counter-intuitive
thing: you turn the property on.

For most on/off font properties, explicitly turning them off in a character style has no
effect. However, there are a few exceptions to this rule, including the w:dstrike (double
strikethrough), w:noProof (ignore spelling/grammar errors for this run), and w:rtl (right-to-
left reading order) elements. Though each of these are on/off properties, they are
interpreted more like their multi-valued counterparts, i.e., they have an overriding effect.
The character style takes precedence over the paragraph style setting. For example, if a
run's paragraph style turns double strikethrough on, but its character style definition
includes <w:dstrike w:val="off"/>, then it will be rendered without the double strikethrough.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7.6 A Pop Quiz

Now it's time for a pop quiz. Considering what you now know about default styles, derived styles, direct formatting, and
how paragraph and character styles interact, try to figure out what formatting the runs in Example 2-14 have. There
are two runs of text, separated by a soft line break. For each run, ask yourself: Is it bold? Is it italic? Is it both?

Example 2-14. What formatting do I have?

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:styles>

 <w:style w:styleId="BaseParagraphStyle" w:type="paragraph">

 <w:name w:val="Base Paragraph Style"/>

 <w:rPr>

 <w:b/>

 <w:i/>

 </w:rPr>

 </w:style>

 <w:style w:styleId="DerivedParagraphStyle" w:type="paragraph"

 w:default="on">

 <w:name w:val="Derived Paragraph Style"/>

 <w:basedOn w:val="BaseParagraphStyle"/>

 <w:rPr>

 <w:i w:val="off"/>

 </w:rPr>

 </w:style>

 <w:style w:styleId="BaseCharacterStyle" w:type="character">

 <w:name w:val="Base Character Style"/>

 <w:rPr>

 <w:i/>

 </w:rPr>

 </w:style>

 <w:style w:styleId="DerivedCharacterStyle" w:type="character">

 <w:name w:val="Derived Character Style"/>

 <w:basedOn w:val="BaseCharacterStyle"/>

 <w:rPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:rPr>

 <w:b/>

 </w:rPr>

 </w:style>

 </w:styles>

 <w:body>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 <w:i w:val="off"/>

 </w:rPr>

 <w:t>What formatting do I have?</w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 </w:rPr>

 <w:br/>

 <w:t>And what formatting do I have?</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Okay, let's figure it out. The first thing we can do is determine what styles are used in the document. The document's
one paragraph doesn't explicitly associate itself with a paragraph style; it has no w:pStyle element. Therefore, it adopts
whatever the document's default paragraph style is. Looking at the document's style definitions, we see that the
"Derived Paragraph Style" definition is the default one:

 <w:style w:styleId="DerivedParagraphStyle" w:type="paragraph"

 w:default="on">

 <w:name w:val="Derived Paragraph Style"/>

Inside the document's paragraph are two runs, both of which are associated with the "Derived Character Style"
definition, using the w:rStyle element:

 <w:rStyle w:val="DerivedCharacterStyle"/>

The next thing we need to do is resolve the style derivations to determine exactly what formatting properties are
applied by each derived style. The "Base Paragraph Style" turns bold and italic on:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applied by each derived style. The "Base Paragraph Style" turns bold and italic on:

 <w:b/>

 <w:i/>

But the "Derived Paragraph Style" turns italic off:

 <w:i w:val="off"/>

Therefore, our document's default paragraph style consists of one font property setting: bold.

The "Base Character Style" turns italic on, and the "Derived Character Style" turns bold on. Nothing is overridden.
Therefore, the character style associated with our document's two runs has two font property settings: bold and italic.

Next, we look to the body of the document itself. The first run explicitly turns italic off, so we know that the first run will
not be italicized, as direct formatting always has the final word:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 <w:i w:val="off"/>

 </w:rPr>

 <w:t>What formatting do I have?</w:t>

 </w:r>

The next question is whether this run is bold or not. Since, as we've seen, both the fully resolved paragraph style and
the fully resolved character style turn bold on, that means bold will effectively be turned off. This is in keeping with the
rule that a property is on only if one but not both styles turns it on. Thus, the first run is rendered in neither bold nor
italic type.

The second run is the same as the first, except that italic is not explicitly turned off via direct formatting. In fact, there
is no direct formatting:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 </w:rPr>

 <w:br/>

 <w:t>And what formatting do I have?</w:t>

 </w:r>

We've already seen that the paragraph and character styles' bold settings cancel each other out, so the remaining
question is whether this run is italicized or not. Since the character style turns italic on but the paragraph style does
not, that means that italic will indeed be turned on, because it is turned on in one but not both of the paragraph and
character styles. Figure 2-26 shows the result of opening this document in Word (with paragraph marks turned on).

Figure 2-26. How Word renders Example 2-14

2.7.7 Dummy Styles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common advantage of using styles in Word is that they can help to enforce consistency of presentation throughout a
document. However, for an XML-oriented user, styles may at first seem to provide yet an additional advantage,
especially when they are defined in a template: a way to separate presentation from content in Word. In a limited way
they do, because within a document, the style definitions and the content are in distinct places, and changes to a
document's style are propagated to all instances of that style throughout the document. However, styles defined
externally in a template, rather than remaining separate from a document, are copied into the document when the
template is first attached. (This ensures that a document will display uniformly on different machines without requiring
all users to have access to the originally attached template.) When a template is attached, all of its styles are copied
into the document, and the template's role is essentially over. The document does retain a loose association with the
template (as represented by the w:attachedTemplate element), but for all practical purposes the template is no longer
needed—unless you elect to set the document's "Automatically update document styles" option to true, as shown in
Figure 2-27, in the "Templates and Add-ins" dialog box.

Figure 2-27. The "Automatically update document styles" checkbox

WordprocessingML represents this setting through the presence of an empty w:linkStyles element inside the w:docPr
element (short for <w:linkStyles w:val="on"/> because on is the default attribute value for w:val). When w:linkStyles is
present, the w:attachedTemplate reference gains new meaning. The next time Word opens the document, it immediately
copies all the style definitions within that template into the document once again, replacing any style definition that has
the same name as a style defined in the template. As long as this option is set, Word will continue to update the styles
in the document, whenever the document is opened.

There is a practical implication for the XML developer writing XSLT stylesheets to, say, generate Word document
reports. Provided that the user who opens the target Word document has access to its attached template, then styles in
the template can effectively be referenced without duplicating the entire style definition.

As long as the w:linkStyles option is set, you can rely on Word to supply all the style definitions for you as soon as it
opens the document. This greatly simplifies programs (such as XSLT stylesheets) that generate WordprocessingML
documents that use styles already defined in a template.

Remember that to use any style within a document, it always must be declared in the top-level w:styles element. You
can't just refer to a style from inside the w:body element, even if it's a built-in style. If you try to use a style without
declaring it, the style reference will be ignored and discarded. So you must declare the style, giving it an arbitrary
internal ID (using the w:styleId attribute) for reference from within the document body. (The w:styleId attribute's value
can be any string.) Then, to have Word replace a dummy style definition for you, you must additionally ensure all three
of the following:

The w:linkStyles element is present inside the w:docPr element

The value of the w:name element's w:val attribute is the same as the name of a style declared in the attached
template

The attached template is available to the user who initially opens the document

Example 2-15 shows a minimal WordprocessingML document created by hand that uses the Code,x style defined in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-15 shows a minimal WordprocessingML document created by hand that uses the Code,x style defined in the
O'Reilly Word template. Rather than defining the entire style in all its verboseness, along with the ripe potential for
error that would entail, this WordprocessingML document simply declares the style, using a dummy definition that
includes nothing other than the w:name element, which identifies it as the Code,x style. The only paragraph of the
document then is assigned that style using the w:pStyle element inside the w:pPr element. Thanks to the presence of the
w:linkStyles element, the complete style definition for Code,x is inserted automatically (along with all of the template's
other styles), as soon as Word opens the document.

Example 2-15. Replacing dummy style definitions via w:linkStyles

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:styles>

 <w:style w:styleId="Code">

 <w:name w:val="Code,x"/>

 </w:style>

 </w:styles>

 <w:docPr>

 <w:attachedTemplate w:val="C:\Documents and Settings\lenze.SEATTLEU\Application Data\

Microsoft\Templates\ora.dot"/>

 <w:linkStyles/>

 </w:docPr>

 <w:body>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Code"/>

 </w:pPr>

 <w:r>

 <w:t>This is a code example.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Word will always output complete style definitions in the WordprocessingML it creates. Accordingly, this technique
shouldn't be thought of as enabling the separation of presentation and content, but rather as a one-time macro of sorts
for getting Word to put all the styles in your document for you. Indeed, this describes the basic role that template
attachment plays in the first place.

2.7.8 Linked Styles

The w:link element, when present in a paragraph style definition, represents a link to a character style. Conversely,
when present in a character style definition, the w:link element represents a link to a paragraph style. Only paragraph

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when present in a character style definition, the w:link element represents a link to a paragraph style. Only paragraph
and character styles can be linked to each other. The key characteristic of a paragraph-character style link is that the
two styles are exposed in the primary Word UI as a single style, using the name of the paragraph style. Also, changes
to the character properties of one style are automatically propagated to the other. Word automatically creates a linked
character style when a user applies a paragraph style to only a portion of a paragraph, rather than to a paragraph as a
whole. The alternative would be to throw an error, chastising the user for trying to use a paragraph style on anything
but a complete paragraph. That being potentially bad business, Word instead gracefully falls back and automatically
creates a new character style by copying all of the paragraph style's character properties into the newly created style.
Thus a linked character style is born.

Figure 2-28 shows the creation of a linked character style named "Heading 1 Char." Word automatically creates the
style, because the user has tried to apply the "Heading 1" style to only a portion of a paragraph (the word "partial"). At
the top of the screen, the style is still listed simply as "Heading 1," though the Reveal Formatting task pane and the
Style dialog box both reveal the distinction between "Heading 1" and "Heading 1 Char."

Figure 2-28. An automatically created linked character style, "Heading 1 Char"

The style definitions in the resulting WordprocessingML are shown below, with the w:link elements highlighted:

 <w:style w:type="paragraph" w:styleId="Heading1">

 <w:name w:val="heading 1"/>

 <wx:uiName wx:val="Heading 1"/>

 <w:basedOn w:val="Normal"/>

 <w:next w:val="Normal"/>

 <w:link w:val="Heading1Char"/>

 <w:rsid w:val="00B33163"/>

 <w:pPr>

 <w:pStyle w:val="Heading1"/>

 <w:keepNext/>

 <w:spacing w:before="240" w:after="60"/>

 <w:outlineLvl w:val="0"/>

 </w:pPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:rPr>

 <w:rFonts w:ascii="Arial" w:h-ansi="Arial" w:cs="Arial"/>

 <wx:font wx:val="Arial"/>

 <w:b/>

 <w:b-cs/>

 <w:kern w:val="32"/>

 <w:sz w:val="32"/>

 <w:sz-cs w:val="32"/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:styleId="Heading1Char">

 <w:name w:val="Heading 1 Char"/>

 <w:basedOn w:val="DefaultParagraphFont"/>

 <w:link w:val="Heading1"/>

 <w:rsid w:val="00B33163"/>

 <w:rPr>

 <w:rFonts w:ascii="Arial" w:h-ansi="Arial" w:cs="Arial"/>

 <w:b/>

 <w:b-cs/>

 <w:kern w:val="32"/>

 <w:sz w:val="32"/>

 <w:sz-cs w:val="32"/>

 <w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

 </w:rPr>

 </w:style>

As you can see, all of the run properties from the "Heading 1" style are copied into the new "Heading 1 Char" style. The
w:link elements retain the association between the two styles by reference to the w:styleId attribute of the other style.
Word maintains the link between the styles and honors it by propagating any character property changes in one style to
the other. It's possible to create a "synthetic" WordprocessingML document outside of Word that links two styles that do
not share the same character properties. However, as soon as you try to change one of the styles within Word, all of
the character properties of each get merged together and are synchronized from that point forward.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Using WordprocessingML
While learning WordprocessingML can be fun and interesting in its own right, what's really exciting is the prospect of
being able to process the information in Word documents in new and fresh ways. No longer are you confined to the
world of VBA and the Microsoft object model. In fact, you're not even restricted to using Windows. Once you save a
Word document as XML, you can process it using any tool or environment that supports XML. And creating Word
documents with such tools is a snap. This chapter explores some tools and potential applications for WordprocessingML,
with an emphasis on XSLT. Essentially, what we present here is a mini-cookbook of XSLT scripts for WordprocessingML.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Endless Possibilities
We have to be careful when talking about use cases for generating and processing Word documents. By defining
categories too strictly, we might completely ignore possibilities that others have explored or have yet to explore. The
purpose of this chapter is to help open your mind as to what's possible now that the expanse of information found in all
the world's Word documents is suddenly capable of being unlocked and exposed as XML. The categories and examples
in this chapter are only the tip of the iceberg. Perhaps they will help trigger some of your own ideas and creativity.
When reading along, if you think of an example that we failed to cover, then we have succeeded in our goal!

That said, you can break down the scripts in this chapter into three basic categories:

Input is WordprocessingML

Output is WordprocessingML

Both input and output are WordprocessingML

We'll cover examples of each of these under the general activities of creating, extracting, modifying, and converting.
Creation produces WordprocessingML as output; extraction takes WordprocessingML as input; modification both takes
WordprocessingML as input and produces it as output; and conversion either takes WordprocessingML as input or
produces it as output.

Command-Line Tools
To execute the example stylesheets in this chapter, you'll need an XSLT processor. The Office 2003
Professional and standalone editions of Word 2003 come with an XSLT processor built-in (for onload and
onsave stylesheets, as introduced in Chapter 4), but the examples in this chapter assume you will be
invoking them outside of Word, for example, with a command-line processor. You can read about and
download one such utility, msxsl.exe, at this URL: http://msdn.microsoft.com/library/en-
us/dnxml/html/msxsl.asp.

The libxml project (hosted at http://www.xmlsoft.org) houses some quite useful command-line utilities
for XML processing. I personally use Cygwin (a Linux-like environment for Windows—see
http://www.cygwin.com) and the Cygwin distribution of the libxml tools. But there are also native
Windows binaries for each of the libxml tools, available at http://www.zlatkovic.com/libxml.en.html. One
particularly convenient tool in the libxml suite is the xmllint command. Its --format option, which inputs an
XML document and outputs a pretty-printed version of it (adding line breaks and indentation), is an
excellent tool for learning WordprocessingML and for helping to author stylesheets that create Word
documents. It was also instrumental in preparing many of the code examples of this book.

The libxslt project also contains its own XSLT processor, with a command-line tool called xsltproc. Other
freely-available XSLT processors you may want to try out include Saxon (http://saxon.sourceforge.net)
and Xalan (http://xml.apache.org/xalan-j/), both of which are Java-based processors.

WARNING: If you process or create WordprocessingML documents using XML tools that output line
endings using a linefeed character (LF) rather than a carriage return and linefeed pair (CRLF), and if your
documents contain Base64-encoded data such as VBA macros or embedded images, then you will need
to convert the line endings to CRLF before opening the document in Word. Otherwise, Word will not be
able to open the document correctly, even though it is well-formed XML. This is arguably a bug in Word's
XML processing behavior, but it can be explained by the fact that the Base64 specification requires that
individual lines end with a CRLF sequence in the canonical Base64 format. Fortunately, there are easy
workarounds. For example, in a Unix or Cygwin environment, you can run the unix2dos command on your
file, converting each instance of the LF character to a CRLF sequence.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Creating Word Documents
It's very easy to create Word documents from XSLT. We saw the definitive "Hello, World" example for
WordprocessingML in Chapter 2. Example 3-1 shows the "Hello, World" example for creating a Word document from
XSLT.

Example 3-1. Creating a Word document from XSLT

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

 </w:wordDocument>

 </xsl:template>

</xsl:stylesheet>

As you can see, there's little to it, beyond slapping xsl:stylesheet and xsl:template elements around the w:wordDocument
element. The only additional provisions you need to make are for generating the mso-application PI and the
xml:space="preserve" directive in the result. (Using the xsl:attribute element as opposed to a literal xml:space attribute
ensures that whitespace will be preserved in the result but not in the stylesheet.)

Obviously, Example 3-1 isn't terribly interesting in its own right. What is interesting is how you can extend it. With
XSLT's power and a basic knowledge of WordprocessingML at your disposal, you can create dynamic Word documents
quite easily. We'll take a look at one example of doing this: generating data-driven tables in Word.

3.2.1 Generating Data-Driven Tables

Oftentimes, Word documents need to contain tabular data. After all, that's what tables were made for. But it can be
quite a pain to manually update tabular data in Word, especially when it's large or frequently changing, such as when
generating reports from a database. When that data is exposed as XML—a feature increasingly supported among the
latest database products, then it becomes quite easy to generate data-driven Word tables using XSLT. Example 3-2
shows an XML document as output from Microsoft Office Access 2003. This example comes straight out of Chapter 8.
We've added some indentation for readability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We've added some indentation for readability.

Example 3-2. An example XML document generated from a database, books.xml

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd" generated="2003-03-26T13:49:17">

 <books>

 <ISBN>0596005385</ISBN>

 <Title>Office 2003 XML Essentials</Title>

 <Tagline>Integrating Office with the World</Tagline>

 <Short_x0020_Description>Microsoft has added enormous XML functionality to

Word, Excel, and Access, as well as a new application, Microsoft InfoPath.

This book gets readers started in using those features.

 </Short_x0020_Description>

 <Long_x0020_Description>Microsoft has added enormous XML functionality to

Word, Excel, and Access, as well as a new application, Microsoft InfoPath.

This book gets readers started in using those features.

 </Long_x0020_Description>

 <PriceUS>34.95</PriceUS>

 </books>

 <books>

 <ISBN>0596002920</ISBN>

 <Title>XML in a Nutshell, 2nd Edition</Title>

 <Tagline>A Desktop Quick Reference</Tagline>

 <Short_x0020_Description>This authoritative new edition of XML

in a Nutshell provides developers with a complete guide to the rapidly evolving XML space.

</Short_x0020_Description>

 <Long_x0020_Description>This authoritative new edition of XML in a Nutshell

provides developers with a complete guide to the rapidly evolving XML space.

Serious users of XML will find topics on just about everything they need,

including fundamental syntax rules, details of DTD and XML Schema creation,

XSLT transformations, and APIs used for processing XML documents. Simply put,

this is the only references of its kind among XML books.

 </Long_x0020_Description>

 <PriceUS>39.95</PriceUS>

 </books>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <books>

 <ISBN>0596002378</ISBN>

 <Title>SAX2</Title>

 <Tagline>Processing XML Efficiently with Java</Tagline>

 <Short_x0020_Description>This concise book gives you the information you

need to effectively use the Simple API for XML, the dominant API for efficient

XML processing with Java.</Short_x0020_Description>

 <Long_x0020_Description>This concise book gives you the information you

need to effectively use the Simple API for XML, the dominant API for efficient

XML processing with Java.</Long_x0020_Description>

 <PriceUS>29.95</PriceUS>

 </books>

</dataroot>

Let's say you want to only display the ISBN, title, tagline, and price of each book. You would start by creating an
example four-column table from within Word, formatted however you wish. Figure 3-1 shows one such table.

Figure 3-1. An example table created from within Word

The table headings in Figure 3-1 are formatted differently than the rest of the cells, using a character style called
"CellHeading." The rest of the table cells (containing the data) take on the document's "Normal" paragraph formatting.

Once the table template looks how you want it to look, you would save the document as XML. Then, from a text editor,
you would adapt the WordprocessingML into an XSLT stylesheet that generates dynamic tables, using documents like
books.xml (Example 3-2) as input. Example 3-3 shows just such a stylesheet (booktable.xsl). The key parts of the
stylesheet that make the resulting table dynamic are highlighted.

Example 3-3. Stylesheet for creating a dynamic books table in Word, booktable.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:output omit-xml-declaration="no" encoding="UTF-8"/>

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:styles>

 <xsl:copy-of select="$styles"/>

 </w:styles>

 <w:body>

 <w:tbl>

 <w:tblPr>

 <w:tblStyle w:val="TableGrid"/>

 </w:tblPr>

 <xsl:copy-of select="$heading-row"/>

 <xsl:apply-templates select="/dataroot/books"/>

 </w:tbl>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="books">

 <w:tr>

 <xsl:apply-templates select="ISBN"/>

 <xsl:apply-templates select="Title"/>

 <xsl:apply-templates select="Tagline"/>

 <xsl:apply-templates select="PriceUS"/>

 </w:tr>

 </xsl:template>

 <xsl:template match="books/*">

 <w:tc>

 <w:p>

 <w:r>

 <w:t>

 <xsl:value-of select="."/>

 </w:t>

 </w:r>

 </w:p>

 </w:tc>

 </xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsl:template>

 <xsl:variable name="heading-row">

 <w:tr>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="1216" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>ISBN</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="3032" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>Title</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="3770" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>Tagline</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="838" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>Price</w:t>

 </w:r>

 </w:p>

 </w:tc>

 </w:tr>

 </xsl:variable>

 <xsl:variable name="styles">

 <!-- list of w:style elements -->

 </xsl:variable>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

The root template rule in Example 3-3 looks similar to Example 3-1; it creates the mso-application PI, the w:wordDocument
root element, and the xml:space attribute:

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

Since our result document contains some custom styles, the stylesheet needs to output a w:styles element. To save
space and reduce clutter, we've encapsulated all of the w:style definitions into a global variable, $styles, and our
stylesheet copies that into the w:styles literal result element:

 <w:styles>

 <xsl:copy-of select="$styles"/>

 </w:styles>

Next, we create the w:body and w:tbl elements. The resulting table is associated with the TableGrid style, which is defined
in the result document's w:styles element:

 <w:body>

 <w:tbl>

 <w:tblPr>

 <w:tblStyle w:val="TableGrid"/>

 </w:tblPr>

Then, we create the first table row, which is the heading for our table. Just as we did with the w:style elements, we put
this row definition in another global variable, $heading-row, and copied it:

 <xsl:copy-of select="$heading-row"/>

The heading row dictates the width of each column, which means we don't have to define the column width for each of
the remaining rows. Word automatically gives them the same width as the heading row.

Finally, we begin processing each books element in the source document:

 <xsl:apply-templates select="/dataroot/books"/>

Elsewhere in the stylesheet, we define the template rules that create the rows and columns for our dynamic table. The
template rule for table rows matches up each books element in the source document with a table row in the result.
Then, inside the table row, we process the ISBN, Title, Tagline, and PriceUS elements, in that order:

 <xsl:template match="books">

 <w:tr>

 <xsl:apply-templates select="ISBN"/>

 <xsl:apply-templates select="Title"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates select="Title"/>

 <xsl:apply-templates select="Tagline"/>

 <xsl:apply-templates select="PriceUS"/>

 </w:tr>

 </xsl:template>

The template rule for table cells is quite simple. For each element inside the books element that is processed, it creates
a table cell containing a paragraph containing a run containing text. The text is simply the string value of the current
element in the source document:

 <xsl:template match="books/*">

 <w:tc>

 <w:p>

 <w:r>

 <w:t>

 <xsl:value-of select="."/>

 </w:t>

 </w:r>

 </w:p>

 </w:tc>

 </xsl:template>

Now, let's take a look at what the result looks like. Figure 3-2 shows the result of applying booktable.xsl (Example 3-3)
to books.xml (Example 3-2).

Figure 3-2. The result of applying booktable.xsl to books.xml

Creating dynamic Word documents is now so easy with Word 2003 that it just might be WordprocessingML's "killer
app." But before we jump to any conclusions, let's look at some of the other fun things we can do with
WordprocessingML.

While most constructs in WordprocessingML are straightforward to generate using XSLT,
there are certain things, such as VBA macros and embedded images, that cannot be
generated using vanilla XSLT. That's because they are encoded in WordprocessingML as
Base64 binary, and XSLT has no built-in facilities for processing or generating binary data.
However, by utilizing XSLT extension functions, you can get around the limitations of
standard XSLT. Oleg Tkachenko has demonstrated in a blog entry how an XSLT stylesheet
can generate images in a Word document, using XSLT extensions. For more information,
see http://www.tkachenko.com/blog/archives/000106.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 Extracting Information from Word Documents
XSLT can also be used to extract information from existing Word documents. This can be useful for tracking document
metadata, aggregating document fragments, listing tracked changes—the sky is the limit. In this section, we'll look at
three examples: dumping the text of a document, extracting metadata from a document, and listing a document's
comments.

3.3.1 Dumping a Document's Text Content

Sometimes, we are only interested in the textual content of a document and not its formatting. Because of the way that
WordprocessingML is structured, dumping all the text content of a document is a very straightforward task. In fact, the
empty XSLT stylesheet (shown in Example 3-4) gets us pretty close to what we want to do.

Example 3-4. The empty transformation, empty.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

All text content within a Word document is represented using text nodes in the WordprocessingML document. Since the
empty stylesheet does not specify any explicit template rules, only the built-in template rules (defined in the XSLT
recommendation) are applied. (See http://www.w3.org/TR/xslt#built-in-rule.) The built-in rule for elements is to keep
processing (apply templates to children), and the built-in rule for text nodes is to copy them. The resulting behavior of
the empty stylesheet is that all the text content of the source document is copied to the result tree without any element
markup.

While the empty stylesheet provides a useful and easy way to extract the text content of a Word document, the result
is not always easy to read. Figure 3-3 shows an example Word document (textToDump.xml) that has two paragraphs
containing formatted text.

Figure 3-3. A document with two paragraphs and various formatting,
textToDump.xml

If we apply the empty stylesheet (empty.xsl) to textToDump.xml, we will get a result that looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we apply the empty stylesheet (empty.xsl) to textToDump.xml, we will get a result that looks like this:

This is the first paragraph 172004-02-22T05:32:00Z2004-02-22T05:40:00Z129196 53

22211.5604This is the first paragraph. We have some bold formatting, as well as

some italic formatting. Of course, none of this formatting will be included in t

he text dump result.This is the second paragraph with various font sizes.

While it's true that all the text content of our document is included in this result, there are several problems. For one
thing, there is no visible separation between the text in the first and second paragraphs. Also, we see some other
gibberish at the beginning of the file; this text comes from the text inside the elements in the o:DocumentProperties
element in the source document (o:Title, o:LastSaved, etc.). To get a reasonable text dump, we clearly need a more
sophisticated stylesheet than the empty one.

We'll need to handle several other places where non-body text nodes can occur in WordprocessingML:

If the "Track Changes" feature was turned on when editing the document in Word, then deleted text is
represented as text inside w:delText elements.

Field instruction text is represented as text inside w:instrText elements.

 Embedded objects (VBA, bitmap images, etc.) are represented as Base64-encoded text.

Headers and footers show up as text nodes deep within the w:sectPr element.

Rather than having to enumerate all of the text that we don't want, it's easier to specify exactly what kind of text we
are interested in keeping around—namely, text inside w:t element descendants of the w:body element. The stylesheet in
Example 3-5 does just that. It shows a slightly more sophisticated way to extract the text content of Word documents,
taking into consideration the above-mentioned problems with the empty stylesheet.

Example 3-5. Extracting text content grouped by paragraph and excluding non-
body text, textDump.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:output method="text"/>

 <xsl:template match="text()"/>

 <xsl:template match="w:body//w:t/text()">

 <xsl:copy/>

 </xsl:template>

 <xsl:template match="w:p">

 <xsl:apply-templates/>

 <xsl:text>

</xsl:text>

 </xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

First of all, the stylesheet explicitly specifies that the output serialization should be text, which means that no XML
markup (e.g., character references) will appear in the result. Rather, it will just be straight text:

 <xsl:output method="text"/>

Unlike the empty stylesheet, the default template rule for text nodes in this stylesheet is to do nothing:

 <xsl:template match="text()"/>

The exception to this rule is that text nodes inside w:t element descendants of the w:body element should be copied:

 <xsl:template match="w:body//w:t/text()">

 <xsl:copy/>

 </xsl:template>

Finally, the stylesheet solves the problem of text from multiple paragraphs running together, by explicitly inserting two
line breaks after processing the text of each paragraph:

 <xsl:template match="w:p">

 <xsl:apply-templates/>

 <xsl:text>

</xsl:text>

 </xsl:template>

If we apply this improved stylesheet (textDump.xsl) to the Word document shown in Figure 3-3 (textToDump.xml),
we'll get a much more reasonable result:

This is the first paragraph. We have some bold formatting, as well as some itali

c formatting. Of course, none of this formatting will be included in the text du

mp result.

This is the second paragraph with various font sizes.

Now, we only see the actual text content of the document. Also, there is a clear separation between the two paragraphs
of the document (two line breaks).

For simple documents, the textDump.xsl stylesheet works just fine. However, there are many other formatting features
(tables, lists, etc.) that this stylesheet doesn't specifically support. There's a slippery slope between "extraction" and
"conversion," but since we're talking about extraction right now, we won't worry about turning this stylesheet into a
sophisticated Word-to-text converter. It still gets the job done—it dumps all the text content of the document to the
result regardless of what formatting features are used in the source document.

3.3.2 Extracting Metadata

In WordprocessingML, the o:DocumentProperties element stores various pieces of document metadata, such as author,
title, and company. An obvious extraction-oriented use case involves pulling that metadata out of the document for
isolated processing—or perhaps to load it into a database for continual synchronization with a repository of documents.
When extracting data, there are any number of target formats we could choose, such as prettily-formatted HTML, text,
or another Word document. For this example, we'll just stick with XML, and, since the o:DocumentProperties element
makes up a well-formed document all by itself, we'll just copy it straight on through. Sure, there are much more
exciting things we could do, but sometimes all we need is simple extraction. Example 3-6 shows a stylesheet
(extractMetadata.xsl) for extracting this information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-6. A stylesheet for extracting Word document metadata,
extractMetadata.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:o="urn:schemas-microsoft-com:office:office">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

 <xsl:copy-of select="/w:wordDocument/o:DocumentProperties"/>

 </xsl:template>

</xsl:stylesheet>

The xsl:output directive in this stylesheet instructs the XSLT processor (by way of indent="yes") to apply some nice
whitespace formatting to the result. What "nice" means is completely dependent on the XSLT processor you choose. In
the case of the xsltproc tool (see the earlier sidebar Command-Line Tools), we apply the command like this:

xsltproc extractMetadata.xsl Chapter4.xml

And we get the result shown in Example 3-7, which is certainly nice enough.

Example 3-7. The result of applying extractMetadata.xsl to an early draft of
Chapter 4

<?xml version="1.0"?>

<o:DocumentProperties xmlns:o="urn:schemas-microsoft-com:office:office">

 <o:Title>ORA Word Template</o:Title>

 <o:Author>Evan Lenz</o:Author>

 <o:LastAuthor>Evan Lenz</o:LastAuthor>

 <o:Revision>2</o:Revision>

 <o:TotalTime>1</o:TotalTime>

 <o:LastPrinted>2004-02-10T23:22:00Z</o:LastPrinted>

 <o:Created>2004-02-13T21:39:00Z</o:Created>

 <o:LastSaved>2004-02-13T21:39:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>21024</o:Words>

 <o:Characters>119839</o:Characters>

 <o:Company>O'Reilly and Associates, Inc</o:Company>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <o:Company>O'Reilly and Associates, Inc</o:Company>

 <o:Lines>998</o:Lines>

 <o:Paragraphs>281</o:Paragraphs>

 <o:CharactersWithSpaces>140582</o:CharactersWithSpaces>

 <o:Version>11.5604</o:Version>

</o:DocumentProperties>

3.3.3 Listing Comments

This book was authored in Word. Our excellent tech reviewers naturally used Word's comment feature to communicate
their critique of each chapter. While Word's built-in mechanisms for viewing comments generally sufficed for our
purposes, it was sometimes handy to get an alternative summary view of the comments for a particular chapter. With
Word 2003, such customized views can be made commonplace. All we had to do was write a simple XSLT stylesheet,
save the source document as XML, and apply the stylesheet to the saved WordprocessingML document. Example 3-8
shows a simple XSLT stylesheet (listComments.xsl) for extracting comments from a Word document and displaying
them in summary form in a new Word document. The relevant code for retrieving the comments is highlighted.

Example 3-8. A stylesheet to list all the comments in a document,
listComments.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core">

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:body>

 <xsl:apply-templates select="//aml:annotation[@w:type='Word.Comment']"/>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="aml:annotation">

 <w:p>

 <w:r>

 <w:t>From <xsl:value-of select="@aml:author"/>:</w:t>

 </w:r>

 </w:p>

 <xsl:copy-of select="aml:content/*"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:copy-of select="aml:content/*"/>

 <w:p/>

 </xsl:template>

</xsl:stylesheet>

This stylesheet, since it creates a new Word document as its result, starts off with the standard boilerplate for creating
WordprocessingML documents: the mso-application PI, the w:wordDocument root element, and the xml:space attribute:

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

Then, immediately inside the w:body element, it begins processing each and every aml:annotation element in the
document whose w:type attribute is equal to Word.Comment—in short, all of the document's comments:

 <xsl:apply-templates select="//aml:annotation[@w:type='Word.Comment']"/>

The template rule for aml:annotation elements then creates three or more paragraphs in the result for each matched
aml:annotation element. The first paragraph lists the author of this comment:

 <w:p>

 <w:r>

 <w:t>From <xsl:value-of select="@aml:author"/>:</w:t>

 </w:r>

 </w:p>

The number of middle paragraphs is determined by how many paragraphs are in the comment itself. The comment's
paragraphs occur inside the aml:content element. The stylesheet copies all such paragraphs straight through into the
result:

 <xsl:copy-of select="aml:content/*"/>

Finally, the stylesheet delineates each comment with an empty paragraph, making the summary view easier to read:

 <w:p/>

Figure 3-4 shows the result of applying this stylesheet (listComments.xsl) to an early draft of Chapter 10. As you can
see, each comment is identified first by the person who made the comment, and each is separated by a blank
paragraph.

Figure 3-4. The result of applying listComments.xsl to an early draft of this book's
Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4 Modifying Word Documents
There are plenty of use cases for processing Word documents in which both the input and output are Word documents.
Since XSLT is a particularly suitable tool for incrementally processing XML, it also works quite nicely for modifying Word
documents. An important tool for making incremental modifications to a document is the identity transformation.
Example 3-9 shows the canonical identity transformation, exactly as it appears in the XSLT recommendation itself
(http://www.w3.org/TR/xslt#copying).

Example 3-9. The identity transformation, identity.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

What is the identity transformation? Shown in Example 3-9, it's a stylesheet with one template rule that effectively
copies the source tree to the result tree unchanged. Here's how it works. The single template rule, with its pattern
@*|node(), matches all elements, attributes, comments, text, and processing instructions in the source tree. Each time
the template rule fires, a shallow copy of the node is created (using the xsl:copy element), and templates are applied to
all of the node's attributes and children. Thus, the entire source document is recursively copied, one node at a time.
(This powerful template rule and variations of it also appear in Chapter 4, in Example 4-9, saveDataOnly.xsl, and
Example 4-11, create-onload-stylesheet.xsl.)

By using the identity stylesheet as your departure point, you can incrementally alter its default copying behavior by
specifying exceptions to the rule, using custom template rules. Since this stylesheet serves as the baseline for each
example in this section, we'll use xsl:include to include it (as identity.xsl), rather than repeatedly list the identity
template rule inside each example.

3.4.1 Cleaning Up a Document for Publication

When Word saves documents, it includes a lot of information that you may not want to include in the final published
document that you share with others. Sensitive information might include previous authors, comments, deleted text,
revision marks, spelling and grammar error marks, and custom document properties. Example 3-10 shows a stylesheet
(cleanup.xsl) that removes all such information. Each template rule is accompanied by a descriptive comment, which is
highlighted in this listing. Rather than walking through the stylesheet step-by-step, we'll let it speak for itself.

Example 3-10. A stylesheet for cleaning up Word documents, cleanup.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core">

 <xsl:include href="identity.xsl"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:include href="identity.xsl"/>

 <!— Normalize document's view and zoom percentage (Normal at 100%) —>

 <xsl:template match="w:docPr">

 <xsl:copy>

 <w:view w:val="normal"/>

 <w:zoom w:percent="100"/>

 <xsl:apply-templates select="*[not(self::w:view or self::w:zoom)]"/>

 </xsl:copy>

 </xsl:template>

 <!— Remove all but the Author and Title document properties —>

 <xsl:template match="o:DocumentProperties">

 <xsl:copy>

 <xsl:copy-of select="o:Author|o:Title"/>

 </xsl:copy>

 </xsl:template>

 <!— Remove all custom document properties —>

 <xsl:template match="o:CustomDocumentProperties"/>

 <!— Remove all comments and comment references —>

 <xsl:template match="aml:annotation[starts-with(@w:type,'Word.Comment')]"/>

 <!— Remove all spelling and grammar errors —>

 <xsl:template match="w:proofErr"/>

 <!— Remove all deletions —>

 <xsl:template match="aml:annotation[@w:type='Word.Deletion']"/>

 <!— Remove all formatting changes —>

 <xsl:template match="aml:annotation[@w:type='Word.Formatting']"/>

 <!— Remove all insertion marks —>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!— Remove all insertion marks —>

 <xsl:template match="aml:annotation[@w:type='Word.Insertion']">

 <!-- Process content, but do not copy -->

 <xsl:apply-templates select="aml:content/*"/>

 </xsl:template>

</xsl:stylesheet>

As in all the rest of the examples in this section, we include the identity.xsl stylesheet, which establishes the default
copying behavior:

<xsl:include href="identity.xsl"/>

Everything after that is a custom template rule overriding the default behavior for a particular element. A common
pattern in this stylesheet is the use of empty xsl:template elements. These are used to remove elements from the result
document. Since an empty template rule does nothing when fired (overriding the default copying behavior), it
effectively strips out the matched node from the resulting document.

This stylesheet by no means provides the definitive cleanup for all the different kinds of documents you might want to
publish. More than likely, you'll want to customize it to meet your particular needs. For example, if you don't want to
strip out comments, then you would remove the template rule that strips out comments. Similarly, if you want to strip
out another kind of information not covered by this stylesheet, then you would add your own template rule for doing
that.

Let's take a look at cleanup.xsl in action. Figure 3-5 shows a document with lots of cruft—deleted text, tracked
insertions (underlined), a tracked formatting change, comments, and some spelling and grammar errors. It was saved
in "Web" view with a zoom percentage of 125%.

Figure 3-5. A document with comments, tracked changes, and proof errors,
dirty.xml

If we apply cleanup.xsl to the WordprocessingML representation of the document shown in Figure 3-5, then we'll get
the result shown in Figure 3-6.

Figure 3-6. clean.xml—the result of applying cleanup.xsl to dirty.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6. clean.xml—the result of applying cleanup.xsl to dirty.xml

Not only have all the comments, proof errors, and tracked changes been removed, but the document's view has also
been normalized to the "Normal" view with a zoom percentage of 100%.

If you publish your documents as WordprocessingML, then you have complete control over
what information is contained within them. However, only users that have Word 2003 will
be able to view your documents. When publishing .doc files instead, you'll have backward
compatibility on your side, but you won't have quite as much control over what metadata
is included. For example, whoever last saved the file will be listed under "Last saved by:"
(corresponding to the o:LastAuthor element in WordprocessingML).

3.4.2 Removing All Direct (Local) Formatting

A commonly promoted "best practice" in authoring Word documents is to use styles only and no direct formatting. While
there is a function in Word that allows you to remove direct formatting (by selecting text and pressing Ctrl-Space), it is
sometimes handy to apply such cleanup to an entire document ex post facto, using XSLT. Example 3-11 shows a
stylesheet that leaves the entire source document intact, except for the paragraph and run properties that have been
applied as direct formatting—those are removed.

Example 3-11. A stylesheet for removing direct run and paragraph formatting,
removeDirectFormatting.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:include href="identity.xsl"/>

 <!-- Remove all direct paragraph formatting -->

 <xsl:template match="w:p/w:pPr/*[not(self::w:pStyle)]"/>

 <!-- Remove all direct run formatting -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Remove all direct run formatting -->

 <xsl:template match="w:r/w:rPr/*[not(self::w:rStyle)]"/>

</xsl:stylesheet>

Once again, the default behavior for all nodes is to copy them through, because the stylesheet includes the identity.xsl
stylesheet.

There are two custom template rules in this stylesheet—one for direct paragraph formatting and one for direct run
formatting:

<xsl:template match="w:p/w:pPr/*[not(self::w:pStyle)]"/>

...

<xsl:template match="w:r/w:rPr/*[not(self::w:rStyle)]"/>

Both of these are empty, which means that matched nodes effectively get stripped from the result. All element children
of local w:pPr and w:rPr elements get stripped from the document—with one exception in each case. The w:pStyle and
w:rStyle elements are preserved. That's because these elements are used not to apply direct formatting but to associate
the paragraph or run with a particular style defined in the document. We need to preserve these associations;
otherwise, the stylesheet would strip out all of the document's formatting, not just direct formatting.

An alternative version of this stylesheet could be customized according to a particular Word template so that, rather
than just removing direct formatting, an appropriate style would be used instead. For example, when you come across
a run that has italics turned on as direct formatting (using the w:i element), you could convert that to a run that uses
the "Emphasis" character style instead (using the w:rStyle element). Such a conversion could go a long way in updating
legacy Word documents according to an organization's current authoring standards. Fortunately, with Word 2003's new
document protection features (introduced in Chapter 4), such restrictions can now be enforced at authoring time.

3.4.3 Removing Linked "Char" Styles

At the end of Chapter 2, in Section 2.7.8, we learned about the character styles that Word automatically creates when a
user tries to apply a paragraph style to only a portion of a paragraph. Word names the new character style by
appending the word "Char" to the end of the existing paragraph style's name. Unfortunately, Word does not provide a
way to delete a linked character style without deleting the paragraph style it is linked to. If a user tries to delete the
automatically created linked style, Word also deletes the corresponding paragraph style. However, by processing a
document's WordprocessingML representation outside of Word, we can overcome that restriction. Example 3-12 shows
a stylesheet that strips out linked character styles and references to them, while retaining the paragraph styles they are
linked to.

Example 3-12. A stylesheet for removing linked "Char" styles,
removeLinkedStyles.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:include href="identity.xsl"/>

 <!-- Remove all linked character styles -->

 <xsl:template match="w:style[@w:type='character' and w:link]"/>

 <!-- Remove the w:link element from linked paragraph styles -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Remove the w:link element from linked paragraph styles -->

 <xsl:template match="w:link"/>

 <!-- Remove w:rStyle elements that refer to linked character styles -->

 <xsl:template match="w:rStyle[@w:val = /w:wordDocument/w:styles/w:style

 [@w:type='character' and w:link]/@w:styleId]"/>

</xsl:stylesheet>

The first custom template rule (overriding the default copying behavior of identity.xsl) strips out all linked character
styles. A character style definition is easily identified as a w:style element that has a w:type attribute whose value is
character and that contains a w:link element:

<xsl:template match="w:style[@w:type='character' and w:link]"/>

In addition to stripping out all the linked character styles, we need to strip out otherwise dangling references to them.
These occur in two places. First, we strip out the remaining w:link elements (inside linked paragraph style definitions):

<xsl:template match="w:link"/>

Then, we strip out all of the document's w:rStyle elements that refer to linked character styles:

<xsl:template match="w:rStyle[@w:val = /w:wordDocument/w:styles/w:style

 [@w:type='character' and w:link]/@w:styleId]"/>

This pattern is a little more complex, but it is pretty straightforward when you break it down into its respective parts. If
we were to translate this pattern into English, it would read something like this:

"Match all w:rStyle elements whose w:val attribute is equal to the w:styleId attribute of any w:style element
that has both a w:link element and a w:type attribute equal to character."

The last part of this translation (beginning with the word "any") could be replaced with simply "any linked character
style," thereby reducing the translation to:

"Match all w:rStyle elements whose w:val attribute is equal to the w:styleId attribute of any linked
character style."

Since we know (from Chapter 2) that the w:styleId attribute is precisely what the w:rStyle element refers to in order to
associate a run with a particular character style, we can finally reduce the translation to our top-level intent: "Match all
references to linked character styles." When a matching w:rStyle element triggers the rule, nothing happens, thereby
excluding the linked character style reference from the result.

3.4.4 Adjusting Font Sizes

Word's style inheritance features can help reduce duplicate work when it comes to making global formatting changes to
your document. For example, if you want to double the size of all fonts in your document, you may only need to update
the "Normal" style, as long as all of your paragraph styles are based on the "Normal" style and do not explicitly override
the font size they inherit. However, when that's not the case or when your document also contains direct formatting,
such changes have to made in multiple places—a tedious and error-prone process.

Once again, WordprocessingML and XSLT come to the rescue. The stylesheet in Example 3-13 adjusts the font sizes
within a document (whether in style definitions or direct formatting) by multiplying them by a factor that you specify
(through xsl:param).

Example 3-13. A stylesheet for adjusting the font size of the "Normal" style,
adjustFontSize.xsl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adjustFontSize.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:include href="identity.xsl"/>

 <xsl:param name="factor" select="2"/>

 <!-- Adjust all w:sz elements (in style definitions or direct formatting) -->

 <xsl:template match="w:sz">

 <w:sz w:val="{floor(@w:val * $factor)}"/>

 </xsl:template>

 <!-- Account for Word's application default font size (10 points)

 in underived paragraph styles when the w:sz element isn't present -->

 <xsl:template match="w:style[@w:type='paragraph' and

 not(w:rPr/w:sz) and not(w:basedOn)]">

 <xsl:copy>

 <xsl:apply-templates select="@*|*[not(self::w:rPr)]"/>

 <w:rPr>

 <w:sz w:val="{floor(20 * $factor)}"/>

 <xsl:apply-templates select="w:rPr/*"/>

 </w:rPr>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

As with the other examples in this section, we include the identity.xsl stylesheet module, effecting the default copying
behavior of the stylesheet:

<xsl:include href="identity.xsl"/>

The xsl:param element supplies a default factor of 2, so that the default behavior of the stylesheet (when no external
parameters are supplied) is to double the font sizes:

<xsl:param name="factor" select="2"/>

The first template rule of the stylesheet matches all w:sz elements, whether they occur in a style definition or within a
local w:rPr element. The value of the resulting font size is the previous size multiplied by the specified factor. The floor()
function ensures that the result is an integer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function ensures that the result is an integer:

<xsl:template match="w:sz">

 <w:sz w:val="{floor(@w:val * $factor)}"/>

</xsl:template>

Our work would be done at this point, if it wasn't for one other scenario we need to handle: paragraph style definitions
that do not contain a w:sz element and that are not based on (do not derive from) another style. In that case, what is
the font size? The answer is: an application default, 10 points (as explained in Chapter 2). To handle that scenario, we
use a template rule that matches w:style elements that meet these conditions:

 <xsl:template match="w:style[@w:type='paragraph' and

 not(w:rPr/w:sz) and not(w:basedOn)]">

We make a shallow copy of the w:style element and then copy all of its attributes and element children, except for the
w:rPr element:

 <xsl:copy>

 <xsl:apply-templates select="@*|*[not(self::w:rPr)]"/>

Then, we create the w:sz element, nested inside a new w:rPr element. Its value is the application default (10 points)
expressed in hard-coded half-points (20), and multiplied by the specified factor, once again using the floor() function to
ensure that the result is an integer:

 <w:rPr>

 <w:sz w:val="{floor(20 * $factor)}"/>

Finally, we copy any remaining child elements of the w:rPr element, if present in the source document's style definition:

 <xsl:apply-templates select="w:rPr/*"/>

Now let's take a look at adjustFontSize.xsl in action. Figure 3-7 shows an early draft of this book's Chapter 2
(Chapter2.xml), using the normal font sizes dictated by the O'Reilly Word template.

Figure 3-7. A draft of Chapter 2 before font size adjustment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8 shows the result of applying adjustFontSize.xsl to Chapter2.xml, leaving the default factor of 2. As you can
see, the font sizes have doubled across the board.

Figure 3-8. The result of applying adjustFontSize.xsl to Chapter2.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5 Converting Between WordprocessingML and Other Formats
While it can be very easy to translate simple custom XML formats into WordprocessingML (as we saw with Example 3-
1), the reverse is not usually true—at least not when you're interested in preserving all aspects of a document's
formatting. The sheer size and complexity of WordprocessingML makes it a very daunting task to write a generic
stylesheet for converting WordprocessingML documents into some other format. For that reason, we won't include any
actual examples in this section. We can, however, point to some existing work that's being done in this area.

3.5.1 HTML

During the beta program for Office 2003, Microsoft released an XSLT stylesheet for converting WordprocessingML
documents to HTML. At just under 4,000 lines long, this stylesheet is an impressive and enlightening look at processing
Word documents in XML format. At the time of this writing, Microsoft has not yet released an updated version of the
stylesheet. Fortunately, the stylesheet will largely work as-is—provided that you update a few of the top-level
namespace declarations. You can find this stylesheet by searching for "wordml" at Microsoft's download center
(http://www.microsoft.com/downloads/search.aspx). It's quite possible that an updated version of the stylesheet will be
available by the time you read this.

3.5.2 PDF

Converting Word documents to PDF can, of course, be done using products like Adobe Distiller. However, another
possible way to perform this conversion is by way of XSL Formatting Objects (XSL-FO). Antenna House, Inc., maker of
a premier XSL-FO processor, has released a (for-pay) XSL stylesheet that does just that. For more information,
including some interesting discussion of the problem and solution, see
http://www.antennahouse.com/product/wordmltofo.htm.

3.5.3 OpenOffice.org

Since OpenOffice.org, the open source alternative to Microsoft Office, saves all of its files using XML format, it only
makes sense that there should be translations between WordprocessingML and the OpenOffice.org formats. Of course,
this is easier said than done. While nothing significant has been released so far, this is listed on the OpenOffice.org web
site as an open issue: "Develop support for Microsoft Office 2003 XML, i.e., WordprocessingML and SpreadsheetML."

3.5.4 Docbook

Just as Norm Walsh has created a suite of stylesheets for transforming Docbook to HTML and XSL-FO, it is only a
matter of time before someone releases a stylesheet for converting Docbook to WordprocessingML. Since Docbook
provides rich document structure and semantics, while WordprocessingML is only concerned with document formatting,
such a conversion would be a "down-translation." Accordingly, it should not, in principle, be difficult.

Converting from WordprocessingML to Docbook, on the other hand, is a much less straightforward task. Certainly the
wx:sub-section element (as described in Chapter 2) would be helpful for gleaning hierarchy from the Word document, but
overall such a translation would have to be very special-purpose—akin to converting PDF to a meaningful XML format.
Usually, such "up-translations" are special-purpose, one-time conversions that must use a variety of heuristics and
guesswork.

3.5.5 Special-Purpose Translations

While creating general-purpose, lossless translations of WordprocessingML into other formats is no doubt useful, there
are plenty of use cases for creating special-purpose translations specific to particular classes of documents. For
example, a set of documents created using the same template could be converted into a custom XML format. This could
be done by translating certain parts of the document into custom XML elements in the result, or even by translating
paragraph and character styles into custom XML elements. In fact, that's just what part of Chapter 4s primary example
does. In the content of press release documents, individual w:p elements are translated to para elements in the result,
and certain character styles within the paragraph are translated to custom XML elements in the result.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Creating XML Templates in Word
The standalone and Office 2003 Professional versions of Microsoft Office Word 2003 include additional XML functionality
not available in Office 2003 Standard. Specifically, they provide support for custom XML schemas. By providing your
own XSD schema, you can create solutions that enable end users to edit custom XML from within Word. While Word's
custom XML functionality does not provide as much power as a traditional XML editor, it does give you some helpful
building blocks for custom Word-based XML editing applications. Ultimately, if you want to build anything but the
simplest XML editing solutions, you will also need to utilize the Document Actions task pane through the use of Smart
Document technology, as introduced in Chapter 5.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Clarifying Use Cases
There are two broad use cases for Word's custom XML schema functionality, the first of which is the focus of this
chapter:

Using Word to edit custom XML documents that conform to your schema

Using custom tags to add richer meaning to Word documents

In many respects, the first use case—using Word as an XML editor—is the most exciting. As XML's role in software
engineering grows, one of the most difficult problems continues to be getting end users to create XML documents for all
our wonderful back-end systems to process. Word is so familiar and its usage so pervasive that XML editing solutions
based on it could take huge steps toward solving this problem. Unfortunately, the extent of Word's built-in custom XML
schema functionality leaves a lot to be desired, at least in comparison to other XML editing products on the market.
That doesn't mean you won't be able to create fully functional and powerful solutions based on Word, but it does mean
you will need to do more actual programming than you might have otherwise expected. Word's base XML schema
functionality supports simple business-template use cases (such as memos, purchase orders, and resumes), where the
choice of elements used is fixed, there are no optional elements, etc. To handle richer structures such as those found in
any document-oriented XML, at least in a user-friendly way, you will need to incorporate Smart Document
programming, as described in Chapter 5.

With the exception of support for mixed content, the InfoPath application provides much of
the built-in, schema-driven, and user-friendly structural editing support one might have
expected in Word. For more information, see Chapter 10.

The second use case—annotating Word documents with metadata—is essentially another flavor of the business-
template scenario. The distinction is that whereas in the first case Word is merely the editor of your underlying data
(and in principle could be replaced by any other editor), here you are interested in keeping Word documents around as
such, complete with their rich, Word-specific formatting. The XML tags might be used for better document retrieval, or
another process might glean the XML data out of the document and into a database, but either way your information is
firmly tied to the Word document in which it resides (whether stored as a .doc file or as WordprocessingML). Any
embedded XML data is supplementary and does not provide the whole story.

This chapter will present the basic components of Word's core XML schema functionality, including related document
options and how they are represented in WordprocessingML. We will see how schema attachment, onload and onsave
XSLT stylesheets, placeholder text, and document protection can work together to make a working XML editing solution
for Word, according to the first use case mentioned above (using Word as an XML editor).

While this chapter can be seen as a preparation for learning Smart Documents (in Chapter 5), it stands alone in its own
right. By the time you are done reading it, you will have traversed a complete XML editing solution in Word—what it is,
how it works, and how it was developed. We will push the limits of what can be done with XSLT and Word's base XML
functionality to see how far they can take us without venturing into Smart Document programming.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 A Working Example
Before we get into the how of creating XML editing solutions in Word, let's look at an example of what it is we're trying
to achieve. This example will reappear throughout the chapter.

Suppose a small Public Relations department wants to create press releases that look good as Word documents but that
also can integrate into other systems or that can be published in other formats. Consider also that the people who write
such press releases have experience with Word but have no understanding of XML.

By leveraging Word 2003's custom XML schema functionality (in the Office Professional or standalone versions), the IT
department can create an XML template[1] for Word that enables end users in the PR department to not only create
new press releases in XML but to edit existing ones too. Imagine that they have already defined an XML schema that
includes the basic information that a press release needs to represent. Example 4-1 shows just such a schema.

[1] The word "template" is heavily (and in many ways unavoidably) overloaded in this chapter. It can mean
anything from a .dot file to an XSLT instruction, from an XML view in Word to an empty XML "skeleton" document.
Most often, we use it to mean the general XML editing application, as in "the press release template." Of course,
context will be your best guide. Just don't get hung up on thinking it's a technical term; it's not.

Example 4-1. The press release schema, pressRelease.xsd

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://xmlportfolio.com/pressRelease"

 targetNamespace="http://xmlportfolio.com/pressRelease"

 elementFormDefault="qualified">

 <xsd:element name="pressRelease" type="prType"/>

 <xsd:complexType name="prType">

 <xsd:sequence>

 <xsd:element name="company" type="companyType"/>

 <xsd:element name="contact" type="contactType"/>

 <xsd:element name="date" type="xsd:date"/>

 <xsd:element name="title" type="xsd:string"/>

 <xsd:element name="body" type="bodyType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="companyType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="address" type="addressType"/>

 </xsd:sequence>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsd:complexType>

 <xsd:complexType name="addressType">

 <xsd:sequence>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:integer"/>

 <xsd:element name="phone" type="phoneType"/>

 <xsd:element name="fax" type="phoneType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="contactType">

 <xsd:sequence>

 <xsd:element name="firstName" type="xsd:string"/>

 <xsd:element name="lastName" type="xsd:string"/>

 <xsd:element name="phone" type="phoneType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="bodyType">

 <xsd:sequence>

 <xsd:element name="para" type="paraType" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paraType" mixed="true">

 <xsd:choice minOccurs="0">

 <xsd:element name="leadIn" type="xsd:string"/>

 </xsd:choice>

 </xsd:complexType>

 <xsd:simpleType name="phoneType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[0-9]{3}-[0-9]{3}-[0-9]{4}"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsd:pattern value="[0-9]{3}-[0-9]{3}-[0-9]{4}"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

The XML schema in Example 4-1 declares a title and a body that contains one or more paragraphs. It also contains
information about the company making the announcement and the contact person for this press release. Certain fields
require their text to conform to a particular format. Specifically, the zip code must be an integer value, the date must
conform to the ISO 8601 date format (xsd:date), and each phone number (three in all) must follow a specific format,
namely xxx-xxx-xxxx.

Now let's jump to the completed solution. The IT department delivers a single read-only file named New Press
Release.xml to the PR department. To create a new XML press release, PR department employees simply double-click
the file and begin filling out the template. To save their new press release, they select File Save, as usual. Editing
an existing press release is just as easy: double-click the existing press release file, make changes, and save changes.
All the while, users need not know that the actual format of the files they are creating and editing is XML, let alone that
it conforms to a special schema defined by the IT department.

This sounds simple enough, but what is the editing experience like for the user? How easily can they screw things up?
Well, the developers in our imaginary IT department are smart and have figured out a way to use a combination of
Word's new XML and document protection features in such a way that users won't be able to screw things up, at least
not without some deliberate effort. In fact, they created the solution with several assumptions in mind:

Users should not have to know anything about XML.

Users should not be able to inadvertently mess up the template in which they are editing.

Users should not be required to turn special options on or off.

The last assumption has a catch: while users may not be required to change any settings, they are required to leave
the default XML and save settings unchanged. As long as they simply edit documents and save them, all should go well.
Figure 4-1 shows what the user sees when first opening the New Press Release.xml file.

Figure 4-1. The initial editing view for creating new press release XML documents

The gray areas in the "press release" template in Figure 4-1 contain placeholder text, such as "Click here to enter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The gray areas in the "press release" template in Figure 4-1 contain placeholder text, such as "Click here to enter
company name." These are familiar constructs in Word templates and are thus familiar to experienced Word users.
What is not immediately evident is that these fields correspond to underlying XML elements, a fact which is successfully
hidden from the user's view.

The XML Document task pane shown in Figure 4-1 lists one or more "XML data views" that the user can choose from. In
this case, the options are "Elegant," "Data only," and "Browse" Here we only care about the default "Elegant"
view, so the user can simply ignore the task pane and begin editing. As soon as they begin editing, the "XML
Document" task pane permanently disappears, because it is not possible to choose a different view after changes have
been made to the document.

There are several additional things to note about the user's editing experience:

Invalid values in the document (such as a phone number in the wrong format) are flagged with a pink squiggly
underline. The user can see what the problem is by right-clicking it.

Word will not let the user save the document until all validation errors are resolved.

Word will not let the user edit any part of the document other than the fields they are supposed to edit. They
cannot, for example, inadvertently edit the "Press Release" heading or delete an entire field.

Word will not let the user apply any direct formatting to the text they enter, e.g., bold or italic.

Word will not let the user apply any styles to the text they enter, except for those that have been specifically
allowed.

Figure 4-2 shows the template after being filled out by a user.

Figure 4-2. The press release template after being filled out by a user

The editable regions shown in Figure 4-2 are bracketed and highlighted yellow; this is the default behavior for when
editing restrictions are in force. Also, the squiggly lines are gone, since each value now conforms to its required format.

You can also see in Figure 4-2 that all of the fields in the template are simple text fields—all, that is, except the body of
the press release. Here the user can enter multiple paragraphs and can apply some limited formatting. Specifically,
there is a character style called "Lead-in Emphasis," which is turned on by default when the user begins typing the body
text. This style is used to delineate the lead-in text for the press release. In Figure 4-2, the lead-in text happens to be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text. This style is used to delineate the lead-in text for the press release. In Figure 4-2, the lead-in text happens to be
"This is the lead-in." The only formatting effect that the style has is to make the text all-caps. After the user has
finished typing the lead-in text, they can turn the all-caps formatting off by selecting the other special character style
they have at their disposal: "No formatting." Figure 4-3 shows the entire style drop-down box that the user sees. Since
formatting restrictions are in force, the user only sees the styles they are allowed to apply.

Figure 4-3. The style drop-down box for the press release template

After the user is finished filling out the template and is satisfied with the result, they select File Save and get the
prompt shown in Figure 4-4.

Figure 4-4. Saving the press release XML document

Since the New Press Release.xml file is read-only, the user is prompted to select a new file name. Here is where the
user must not interfere with the document's default settings. In this case, "Apply transform" must remain checked, and
"Save data only" must remain unchecked. After entering a filename (MyPressRelease.xml in this case) and clicking
"Save," the user is given one final warning before the XML document is saved, shown in Figure 4-5.

Figure 4-5. Warning the user that WordprocessingML markup may be lost

The purpose of this warning is to alert the user that Word-specific formatting and document features are going to be
stripped out of the saved document. Users will have to get used to selecting "Continue," because this is precisely what
we want.

Finally, the MyPressRelease.xml file is saved with the filename and location that the user chose. The content of this file
is shown in Example 4-2 (with indentation added).

Example 4-2. The contents of the press release XML file saved by Word,
MyPressRelease.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyPressRelease.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?mso-application progid="Word.Document"?>

<pressRelease xmlns="http://xmlportfolio.com/pressRelease">

 <company>

 <name>ACME Corp.</name>

 <address>

 <street>555 Market St.</street>

 <city>Seattle</city>

 <state>WA</state>

 <zip>98101</zip>

 <phone>222-222-2222</phone>

 <fax>333-333-3333</fax>

 </address>

 </company>

 <contact>

 <firstName>John</firstName>

 <lastName>Doe</lastName>

 <phone>444-444-4444</phone>

 </contact>

 <date>2004-01-23</date>

 <title>This is the Headline</title>

 <body>

 <para xml:space="preserve"><leadIn>This is the lead-in,</leadIn> and this is

 not. The rest of the paragraph has no formatting either.</para>

 <para xml:space="preserve">This is the second paragraph. These are just regular

 Word paragraphs. They do not correspond to custom XML elements.</para>

 </body>

</pressRelease>

Note that all of the information that the user entered has been preserved in the final press release XML document. The
text in the text-only fields has been preserved verbatim, and the styled paragraphs of the press release body have been
converted to our press release schema's custom para and leadIn elements.

To make subsequent changes to this press release, the user would simply double-click the XML file. Word opens the file
and displays the view shown in Figure 4-6. This is very similar to the original template view, the only difference being
that all of the fields are already filled out.

Figure 4-6. Opening MyPressRelease.xml in Word again

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-6. Opening MyPressRelease.xml in Word again

When the user is done editing, they simply select File Save, and the XML file will be updated according to the
changes they made.

The rest of this chapter systematically covers the custom XML schema support in Word 2003 (standalone and Office
2003 Professional versions), while continually making reference back to this example. First, we'll detail the components
of Word's custom XML schema functionality and how they work. Then, with that knowledge in hand, we'll go step-by-
step through the creation of the press release template, in "Steps to Creating the onload Stylesheet." Then, in
"Deploying the Template," we'll look at how the application can be deployed in a corporate environment. Finally, we'll
conclude by addressing some important limitations of Word's custom XML support.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Word's Processing Model for Editing XML
When Word opens an arbitrary XML document (i.e., an XML document that is not WordprocessingML), that XML
document undergoes four primary processes from the time that it is opened to the time that it is saved, in this order:

1. When the document is first opened, an onload XSLT stylesheet (variously called an "XML data view" or
"solution" in the Word UI) is applied, transforming the raw XML into a WordprocessingML document, usually
intermixed, or merged, with custom XML tags from the original document.

2. A user edits the document, modifying the underlying merged representation.

3. Upon saving, all WordprocessingML elements and attributes are optionally stripped out, leaving only custom
XML markup. This option is called "Save data only."

4. Finally, an onsave XSLT stylesheet is optionally applied to the result of step 3. This option is called "Apply
transform."

This basic flow is illustrated in the data flow diagram in Figure 4-7.

Figure 4-7. Word's basic processing model for editing custom XML

Each arrow in Figure 4-7 represents an XML document in different states of transformation. Each process operates on
the result of the previous process. The last two processes, "Save data only" and "Apply custom transform," are both
optional. When an option is not elected, you can think of the process as being an identity transform, or a no-op. For
example, if "Save data only" is turned off, but "Apply transform" is turned on, then the latter effectively operates on the
result of process # 2, "User edits document."

In the next several sections of this chapter, we will detail each of these processes, including how the onload XSLT
stylesheet is selected, what the merged representation looks like, what editing functionality is available to the user, how
the "Save data only" option works and how to set it, and how an onsave XSLT transformation is selected. But first let's
take a look at the Schema Library, an important ingredient not explicitly evident in this diagram—important because it
is consulted both to determine what onload XSLT transformation to apply, and to enable on-the-fly schema validation
while editing the document.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 The Schema Library
The Schema Library is a collection of XML schemas and associated files located on the user's machine. Each machine
has its own schema library (with each schema library entry having the option of applying to all users or only to the
current user). Schema library entries are stored in the Windows Registry. Each schema library entry is identified by a
unique target namespace URI, refers to a schema document, and optionally refers to additional supporting files, such as
XSLT stylesheets.

The purpose of the schema library is to allow Word (and other applications, such as Excel) to locate schemas and XSLT
stylesheets for use in custom XML editing solutions. For example, when Word opens an arbitrary XML document, it
checks the schema library to see if there is an appropriate onload XSLT stylesheet to apply, based on the namespace of
the document's root element. Likewise, once the stylesheet has been applied, it associates the result document with
zero or more schemas in the schema library, depending on the namespace declarations present in the result of the
onload transformation. This association, called "schema attachment," enables on-the-fly schema validation.

Schema library entries can be manually created and modified through the Word UI. Figure 4-8 shows an example of a
schema library entry, as shown in the Schema Library dialog, which you can access by selecting Tools Templates
and Add-Ins . . . XML Schema Schema Library

Figure 4-8. A schema library entry as shown in the Word UI

The schema library entry shown in Figure 4-8 is what a user's machine must have in order for our press release
example to work correctly. There are several things to note about this entry:

The friendly name, or alias, for this entry is "Press Release," as shown in the "Select a schema" list.

The namespace URI is http://xmlportfolio.com/pressRelease, which corresponds to the namespace of press
release instance documents.

The schema document is stored as a file named pressRelease.xsd.

There is one "solution" (alias "Elegant") associated with this entry. This refers to an onload XSLT stylesheet,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is one "solution" (alias "Elegant") associated with this entry. This refers to an onload XSLT stylesheet,
which is stored as a file named pr2word.xsl. Elsewhere in the Word UI, this is called an "XML data view." Here it
is called a "solution."

Although schema library entries can be created manually on each user's machine using the dialog in Figure 4-8, there
are also automatic deployment mechanisms that approach the simplicity of the scenario described above (where the IT
department simply delivers a .xml template file to the PR department). These are discussed briefly later in Section 4.14.

Figure 4-9 shows the same schema library entry as represented in the Windows Registry Editor.

Figure 4-9. A schema library entry as shown in the Windows Registry Editor

Don't worry, you won't be needing to edit your registry directly. We included this just to help demystify how and where
the schema library information is stored. Should you want to investigate such entries yourself, the schema library for a
specific user is stored under HKEY_USERS\SID\SOFTWARE\Microsoft\Schema Library, and the schema library for all
users on a machine is stored under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Schema Library. As always, be
careful you don't make any accidental changes. The Registry Editor is not for the faint of heart.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5 How the onload XSLT Stylesheet Is Selected
When Word opens an XML file, it first checks to see if the file is a WordprocessingML document, by comparing the
namespace URI of the root element with the WordprocessingML namespace
(http://schemas.microsoft.com/office/word/2003/wordml). If they are not equal, then Word applies an XSLT
transformation to the document. Which stylesheet it applies depends on whether there is an entry in the machine's
schema library that corresponds to the namespace of the document's root element, and whether that entry has an
accompanying XSLT "solution." If Word does not find one, it applies its own default XSLT stylesheet. The flow chart in
Figure 4-10 details this logic.

Figure 4-10. How Word decides which XSLT stylesheet to apply, if any

We can relate this back to our press release example very easily. When an employee in our imaginary PR department
opens an XML document whose root element's namespace is http://xmlportfolio.com/pressRelease, then Word will apply the
default XSLT stylesheet associated with the "Press Release" solution. This is assuming that the user's machine has the
schema and accompanying stylesheets registered in its schema library (as was reflected in the example "Schema
Library" dialog in Figure 4-8). So the sequence (with respect to the flow chart in Figure 4-10) goes like this:

1. Word opens a press release XML document.

2. Is the root element's namespace the WordprocessingML namespace? No.

3. Is the root element's namespace in the schema library? Yes.

4. Does that schema library entry have an associated XSLT solution? Yes.

5. Word applies the "Elegant" stylesheet, pr2word.xsl, to our press release document.

6. Is the result document's root element in the WordprocessingML namespace? Yes, now it is.

7. Word displays the result.

In Figure 4-6, we saw an example of the result of this sequence—Word displaying the "Elegant" view of a newly opened
press release document.

On the other hand, if a user was to open a press release document without ever having installed the Press Release
schema in their machine's schema library, then the sequence would be different:

1. Word opens a press release XML document.

2. Is the root element's namespace the WordprocessingML namespace? No.

3. Is the root element's namespace in the schema library? No.

4. Word applies its own default XSLT stylesheet.

5. Word displays the result.

In this case, the user gets a very different view of the XML document, without any custom formatting specific to press
releases, and without any document protection features (editing and formatting restrictions) enabled. Figure 4-11
shows an example of Word's generic view for arbitrary XML documents. This view is called "Data only" in the Word UI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shows an example of Word's generic view for arbitrary XML documents. This view is called "Data only" in the Word UI
(not to be confused with the "Save data only" Save option).

Figure 4-11. The "Data only" view—what Word displays when opening an arbitrary
XML document

What we see in Figure 4-11 is the result of applying Word's default onload XSLT stylesheet to the press release XML
document from Example 4-2. You can find Word's default onload stylesheet on your hard disk at C:\Program
Files\Microsoft Office\OFFICE11\XML2WORD.XSL. This XML2WORD.XSL file contains the actual stylesheet that Word
executes to display the "Data only" view. It is a good example of how to write an onload XSLT stylesheet; it even
includes descriptive comments.

The loop that is present in the flow chart in Figure 4-10 reflects the fact that it is possible
to create a switching pipeline of XSLT transformations, where the next stylesheet in the
chain is determined based on the namespace of the previous result document's root
element. This is certainly not a normal (or probably even intended) scenario, but it does
raise some interesting possibilities. It gives you the ability to choose which view to apply
based on values in the source document (assuming the necessary schema library entries).
It probably always makes the most sense to just stick to conditional formatting within a
single stylesheet, but, hey, it was an interesting behavior to discover.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.1 Multiple Views for the Same Schema

It is possible in Word to create multiple views, i.e., multiple onload XSLT stylesheets, for the same schema. These are
represented as multiple associated "solutions" in the schema library, one of which must be the default. When a user
first opens an instance document, the non-default views are presented as alternative "XML data views" in the XML
Document task pane. Even when there is only one XSLT stylesheet associated with the schema—like the "Elegant" view
in our press release example—Word still shows the XML Document task pane, giving the user the option to view Word's
generic "Data only" view, or to browse to another XSLT file to apply. In any case, once the user makes any changes to
the document, the XML Document task pane will disappear and they will not be able to change the view again.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.6 Merged XML and WordprocessingML
We have seen how the onload stylesheet is selected. Now it's time to look at what the stylesheet actually produces. As
suggested by the processing model diagram in Figure 4-7, the typical result is a mixture of WordprocessingML and
custom XML elements from the source document. That is true for both of the examples we've looked at so far (Word's
built-in "Data only" stylesheet and our press release example's "Elegant" stylesheet).

In the last section, Figure 4-11 showed the result of applying Word's default "Data only" stylesheet (XML2WORD.XSL)
to a press release instance document, as displayed in the Word UI. The stylesheet generates paragraphs corresponding
to the original XML document's element hierarchy, indented to reflect the element nesting. The labeled start and end
tags (colored pink), such as pressRelease, company, and name, represent intervening elements not in the
WordprocessingML namespace. These custom tags are also included in the WordprocessingML representation; they do
not exist separately. They are merged together into one document.

Example 4-3 shows an excerpt of the result of this transformation. You can get to the full representation from within
Word either by re-saving the document as XML (un-checking the "Save data only" checkbox in the "Save As..." dialog
box first) or by viewing the WordprocessingML source using the handy XML Toolbox we introduced in Chapter 2. In this
excerpt, indentation has been added for readability, and custom tags from the original source XML document have been
highlighted.

Example 4-3. WordprocessingML with merged custom XML elements

 <w:body>

 <wx:sect>

 <ns2:pressRelease>

 <w:p/>

 <ns2:company>

 <w:p>

 <w:pPr>

 <w:ind w:left="360"/>

 </w:pPr>

 </w:p>

 <ns2:name>

 <w:p>

 <w:pPr>

 <w:ind w:left="720"/>

 </w:pPr>

 <w:r>

 <w:t>ACME Corp.</w:t>

 </w:r>

 </w:p>

 </ns2:name>

 <ns2:address>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ns2:address>

 <w:p>

 <w:pPr>

 <w:ind w:left="720"/>

 </w:pPr>

 </w:p>

 <ns2:street>

 <w:p>

 <w:pPr>

 <w:ind w:left="1080"/>

 </w:pPr>

 <w:r>

 <w:t>555 Market St.</w:t>

 </w:r>

 </w:p>

 </ns2:street>

 <ns2:city>

 <w:p>

 <w:pPr>

 <w:ind w:left="1080"/>

 </w:pPr>

 <w:r>

 <w:t>Seattle</w:t>

 </w:r>

 </w:p>

 </ns2:city>

 <!-- ... -->

 <w:p>

 <w:pPr>

 <w:ind w:left="720"/>

 </w:pPr>

 </w:p>

 </ns2:address>

 <w:p>

 <w:pPr>

 <w:ind w:left="360"/>

 </w:pPr>

 </w:p>

 </ns2:company>

 <!-- ... -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- ... -->

 <w:p/>

 </ns2:pressRelease>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800" w:header="720"

 w:footer="720" w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

 </wx:sect>

 </w:body>

The indentation of each paragraph in this result is defined using the w:ind element. The value of the w:left attribute in
each case is computed (by XML2WORD.XSL) based on the paragraph's depth within the merged source document's
element hierarchy.

The ns2 namespace prefix on each of the custom XML element names is an auto-generated prefix mapped to the press
release namespace, http://xmlportfolio.com/pressRelease, which is declared on the w:wordDocument root element (not
shown in this excerpt). Each custom XML element is an intervening element in the hierarchy between w:p elements and
the w:body element (ignoring the intervening wx:sect element). Wherever a w:p element may occur, so may a custom
XML element. All of the custom XML elements in this example are block-level custom elements, meaning that they
occur as siblings and parents of w:p or w:tbl elements (just w:p elements in this example).

Custom XML elements must be present for on-the-fly schema validation to work correctly. Also, by keeping the XML
tags around, it is easy to preserve them when the document is saved, simply by stripping out all of the
WordprocessingML markup (through the process called "Save data only," which we'll take a closer look at).

Although the result document of an onload XSLT transformation must be a WordprocessingML document, strictly
speaking it is not required to have any custom XML tags. However, in both of the examples shown so far—Word's built-
in "Data only" stylesheet (XML2WORD.XSL), and our press release example's "Elegant" stylesheet (pr2word.xsl)—the
result does include custom XML tags. (The reason you can't see them in the "Elegant" view is that they are hidden by
turning off the "Show XML Tags" option; see the next section.)

The only time you might not want to use custom tags is when you are sure you can translate from the plain
WordprocessingML format back to your custom XML format when the user saves the document (using an onsave XSLT
stylesheet), and when you don't need schema validation. By using styles in conjunction with editing and/or formatting
restrictions, you may be able to pull this off. Your onload and onsave XSLT stylesheets would need to translate between
your custom XML elements and special editing regions or styles that you have set up for this purpose. In fact, part of
our press release example does just this, as we'll see later in the section called "The `Apply Custom Transform'
Document Option." But even in that case, we rely on the use of custom XML tags and on-the-fly validation for other
parts of the editing view.

4.6.1 The "Show XML Tags" Option

Another thing to note about the pink tags displayed in Word's "Data only" view is that they can be made invisible.
Although the XML Structure task pane (which we'll introduce later) includes a checkbox for turning "Show XML Tags" on
and off, there is also a quick keystroke command that will do the trick. Ctrl-Shift-X toggles this option on and off. For
example, if you hit Ctrl-Shift-X after opening the document we saw in Figure 4-11, then the tags will disappear, leaving
the view shown in Figure 4-12.

Figure 4-12. The "Data only" view with "Show XML tags" turned off

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-12. The "Data only" view with "Show XML tags" turned off

The only difference between Figure 4-11 and Figure 4-12 is that the "Show XML tags" option is turned off in Figure 4-
12; otherwise, all of the document formatting is identical.

Word's generic "Data only" view and our press-release-specific "Elegant" view both contain custom XML tags. The
primary visible difference between them is that "Show XML tags" is turned on in the "Data only" view but turned off in
the "Elegant" view. If a particular document does not dictate whether the option should be turned on or off, then Word
defaults to the last setting chosen within the Word application. For this reason, both stylesheets explicitly specify the
intended setting, using the w:showXMLTags literal result element inside the w:docPr element. Here is the relevant excerpt
from XML2WORD.XSL, Word's default "Data only" stylesheet:

 <!-- set Word document properties for raw XML - save as raw XML and

show XML tags in the document -->

 <w:docPr>

 <w:view w:val="web" />

 <w:removeWordSchemaOnSave w:val="on" />

 <w:showXMLTags w:val="on" />

 </w:docPr>

As you can see, the w:showXMLTags option has the explicit value of on. In contrast, the "Elegant" stylesheet for press
releases, pr2word.xsl, explicitly turns this document option off:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

releases, pr2word.xsl, explicitly turns this document option off:

 <w:docPr>

 <!-- ... -->

 <w:showXMLTags w:val="off"/>

 </w:docPr>

Just to prove that the custom XML elements really are present in the "Elegant" press release view, Figure 4-13 shows
what the view would look like if a user turned "Show XML tags" on, for example, by pressing Ctrl-Shift-X.

Figure 4-13. The "Elegant" press release view after turning "Show XML tags" on

4.6.2 Block-Level, Run-Level, Row-Level, and Cell-Level Tags

In the merged representation of custom XML and WordprocessingML that we saw in Example 4-3, there were only
block-level custom tags, i.e., custom XML elements that occurred as siblings and parents of w:p (or w:tbl) elements. As
it happens, custom XML elements may also occur at other places within the WordprocessingML document hierarchy.
They may occur as "inline," or run-level, elements (siblings and parents of w:r elements), row-level elements (siblings
and parents of w:tr elements), and cell-level elements (siblings and parents of w:tc elements). In each case, they
behave slightly differently. In this section, we'll examine block-level and run-level custom tags. See "Table Rows and
Repeating Elements" later for a discussion of row-level and cell-level custom tags.

Run-level custom tags are necessary to support multiple elements within the same paragraph. Whenever mixed content
is needed, run-level tags are necessary. Word renders run-level tags slightly differently than their block-level, row-
level, and cell-level counterparts. Instead of labeling both the start and end tags, Word labels only the start tag and
colors both the start and end tags solid pink. Figure 4-14 shows a close up of Word's block-level and run-level tags in
an excerpt from our original press release template (with "Show XML tags" turned on).

Figure 4-14. Block-level versus run-level tags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The contact element is a block-level tag. It contains two paragraphs and itself is contained within a table cell, which, like
the main document body, is a legal block-level context. The firstName, lastName, phone, and date elements are all run-
level tags.

Example 4-4 shows the WordprocessingML that corresponds to the visual excerpt in Figure 4-14. We've left out some
details for now (particularly having to do with styles and editing restrictions) so that it would be easy to follow the basic
structure. All of the custom tags within this excerpt are highlighted.

Example 4-4. Block-level and run-level custom tags in WordprocessingML

 <w:tbl>

 <!-- ... -->

 <w:tr>

 <w:tc>

 <w:tcPr><!-- ... --></w:tcPr>

 <ns0:contact>

 <w:p>

 <w:r>

 <w:t>Contact: </w:t>

 </w:r>

 <ns0:firstName w:placeholder="[First]">

 <w:r>

 <w:t/>

 </w:r>

 </ns0:firstName>

 <w:r>

 <w:t> </w:t>

 </w:r>

 <ns0:lastName w:placeholder="[Last]"/>

 <w:r>

 <w:t/>

 </w:r>

 </ns0:lastName>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Phone: </w:t>

 </w:r>

 <ns0:phone w:placeholder="[xxx-xxx-xxxx]"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ns0:phone w:placeholder="[xxx-xxx-xxxx]"/>

 <w:r>

 <w:t/>

 </w:r>

 </ns0:phone>

 </w:p>

 </ns0:contact>

 </w:tc>

 <w:tc>

 <w:tcPr><!-- ... --></w:tcPr>

 <w:p>

 <w:r>

 <w:t>FOR IMMEDIATE RELEASE</w:t>

 </w:r>

 </w:p>

 <w:p>

 <ns0:date w:placeholder="[YYYY-MM-DD]"/>

 <w:r>

 <w:t/>

 </w:r>

 </ns0:date>

 </w:p>

 </w:tc>

 </w:tr>

 </w:tbl>

Once again, the namespace prefix (ns0) is an automatically generated prefix mapped to the namespace URI for our
press release schema. The ns0:contact element is a block-level element, in that it is a parent of w:p elements and could
have w:p (or w:tbl) element siblings. The ns0:firstName, ns0:lastName, ns0:phone, and ns0:date elements are all run-level
elements, in that they are contained in run-level contexts—as children of w:p elements and as siblings of w:r elements.
They themselves also contain w:r elements. Although all of these elements occur inside a table, none of them happen to
occur as row-level or cell-level elements.

4.6.3 Placeholder Text

Another thing that Example 4-4 shows is how placeholders for custom XML elements are represented in
WordprocessingML. The placeholder text is a property of the element instance itself, represented by the w:placeholder
attribute. Placeholder text is only visible on an element field when the "Show XML tags" option is turned off, when the
element is a leaf node (i.e., it contains no other custom XML tags), and when the element is currently empty of any text
content. Figure 4-15 shows what the placeholder text looks like for this excerpt, after turning "Show XML tags" back off.

Figure 4-15. Placeholder text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Placeholder text can be applied to any custom XML tag, whether block-level, run-level, row-level, or cell-level.

4.6.4 Table Rows and Repeating Elements

Without the help of Smart Documents, end users normally won't be able to create or delete custom XML elements (let
alone attributes) in a reliable and user-friendly way. Instead, they are limited to filling out static templates of fixed XML
elements. For the most part, this scenario is what our press release example illustrates. However, you can enable end
users to edit a repeating list of XML elements without invoking Smart Document technology by exploiting a special
property of row-level custom XML tags.

Here's how it works. Given a table row that has a row-level custom tag applied to it, the user can create new rows in
the table, complete with custom tags, simply by hitting the Tab key. This is easiest to explain by example. Consider the
WordprocessingML document in Example 4-5. It contains a table with one row and two cells, each of which are
contained within custom XML elements. Appropriately named, the myRow element is a row-level tag, and the myCell1
and myCell2 elements are cell-level tags.

Example 4-5. A table with row-level and cell-level custom tags

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:body>

 <myRoot>

 <w:p/>

 <w:tbl>

 <myRow>

 <w:tr>

 <myCell1>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="4000" w:type="dxa"/>

 </w:tcPr>

 <w:p/>

 </w:tc>

 </myCell1>

 <myCell2>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="4000" w:type="dxa"/>

 </w:tcPr>

 <w:p/>

 </w:tc>

 </myCell2>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </myCell2>

 </w:tr>

 </myRow>

 </w:tbl>

 <w:p/>

 </myRoot>

 </w:body>

</w:wordDocument>

Figure 4-16 shows that the user can easily create new rows in this document just by hitting the Tab key at the end of
each row. Each new row is contained within a myRow element, and each row contains myCell1 and myCell2 elements. The
final product you deliver to end users, of course, will have "Show XML tags" turned off, and will probably include some
meaningful labels, etc.

Figure 4-16. Using table rows to create repeating elements

This behavior also holds true for cell-level custom tags regardless of whether they are contained in a custom row-level
tag. For example, if we removed the myRow tags from Example 4-5, the myCell1 and myCell2 elements would still repeat
when the user inserts a new row into the table. Even block-level custom tags inside table cells exhibit this behavior—
provided that the initial block-level custom tag contains the entire content of the table cell, i.e., it has no sibling w:p or
w:tbl elements. Run-level tags in table cells never behave this way; they are never automatically replicated on table row
insertion.

When a new row is created, the newly created XML element automatically adopts the same placeholder text that the
original had. However, custom XML attributes (which, as we'll see, are represented as literal attributes on custom XML
elements) are not replicated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elements) are not replicated.

You can leverage the unique behavior of custom tags and table rows to allow end users to create new instances of a
repeating element type declared in your schema. Unfortunately, apart from the visible schema violation flags, the
definitions in your schema have no effect on the behavior of the table. If a custom XML tag is wired to a table row or
cell in one of the ways described above, then Word will replicate that tag on row insertion, regardless of how the
element is declared in the schema.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.7 Attaching Schemas to a Document
A given WordprocessingML document can have one or more schemas "attached" to it. The purpose of schema
attachment is to enable two things:

On-the-fly schema validation as the user edits the document

Schema-driven editing functionality

Schema validation happens automatically as a user edits the document. If a particular element declared in an attached
schema is present in the document and does not conform to the type defined in the schema, then Word will flag this as
an error. We've seen examples of this in our press release example, for certain simple types such as xsd:date.

Schema-driven editing functionality is exposed through the XML Structure task pane (covered below) and the Document
Actions task pane (covered in Chapter 5).

The Word UI allows you to manually attach schemas to the currently open document. Figure 4-17 shows the
appropriate dialog, which you can access by selecting Tools Templates and Add-Ins XML Schema.

Figure 4-17. Manually attaching an XML schema to a document

The "Available XML schemas" list contains the aliases for all of the schemas in the schema library. In this example, the
Press Release checkbox is checked, which means that the press release schema is attached to the current document.
Multiple schemas can be attached to the same document, just as elements from multiple namespaces can be used in
the same XML document.

The Add Schema... button lets you browse for an XSD schema document file in order to add it to your machine's
schema library. By default, it also attaches the schema to the document—automatically checking the corresponding
checkbox that newly appears in the "Available XML schemas" list. The Schema Library button opens the Schema Library
dialog, which we looked at earlier.

4.7.1 Demystifying Schema Attachment

If all you ever do is manually attach schemas through the Word UI, the process of "schema attachment" may seem a
little mysterious. The first thing to do is to stop thinking of it as a process. Instead, think of it as a property of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

little mysterious. The first thing to do is to stop thinking of it as a process. Instead, think of it as a property of the
underlying WordprocessingML document. Secondly, it's important to understand that Word treats namespaces and
schemas as virtually synonymous. That a "schema is attached" to a document means nothing more than the fact that a
non-WordprocessingML namespace declaration is present somewhere inside the WordprocessingML document. A "non-
WordprocessingML namespace declaration" is a declaration for any namespace other than the namespaces reserved for
Word that were introduced in Chapter 2. So when Word says that a schema is attached to a document, it really means
that a namespace is attached.

The fact that a schema is attached to the document is independent of whether a corresponding schema library entry is
present on the current user's machine. It doesn't even matter if the document contains an element or attribute that
uses the namespace.

Example 4-6 shows a simple WordprocessingML document with a schema attached, i.e., with a namespace declaration
that is not among one of Word's reserved namespaces.

Example 4-6. A WordprocessingML document with a "schema attached"

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:foo="http://xmlportfolio.com/pressRelease">

 <w:body/>

</w:wordDocument>

If someone in our imaginary PR department opened this document in Word and selected Tools Templates and
Add-Ins . . . XML Schema, they would see something very similar to the dialog box we saw in Figure 4-8
(assuming they already have the Press Release schema in their schema library). Specifically, the Press Release
checkbox would be checked. As far as Word is concerned, the mere presence of the namespace declaration (anywhere
in the document) means that the schema is attached, regardless even of whether any elements or attributes in the
document use the namespace.

What happens if the user doesn't have a corresponding schema library entry? In that case, the schema is no less
attached, because we've defined "schema attachment" as the presence of a non-WordprocessingML namespace
declaration. However, in this case, the attached schema would be considered "unavailable." Figure 4-18 shows how the
Word UI handles this scenario.

Figure 4-18. An attached, but unavailable, schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, a checkbox is still checked, meaning that "a schema is attached." The only difference is that, since
there is no corresponding schema library entry, this schema is considered to be "Unavailable." And without a
corresponding XSD schema document, schema validation and schema-driven editing are not possible.

Thus, for schema validation to work correctly, two conditions must hold:

The schema must be attached (the namespace must be declared in the document)

The schema must be available (in the machine's schema library).

Now let's relate all of this back to our primary use case—using Word as an XML editor. If you recall the basic processing
model, the first thing that happens when Word opens an arbitrary XML document is that an XSLT stylesheet is applied
to it, converting it to WordprocessingML. Even though the schema library is consulted to see which XSLT stylesheet to
apply (based on the namespace of the document's root element), no schemas have been attached at this point.

Whether a schema is ultimately attached to the document that the user edits is completely determined by whether the
result of the onload XSLT transformation includes any non-WordprocessingML namespace declarations. Of course, if the
result document contains any custom XML elements in your schema's namespace, then the schema will de facto be
attached (because you can't have an element without declaring its namespace). And since schema validation is usually
only useful when custom XML elements are already present, schema attachment is usually an automatic thing you don't
have to think about; it just happens. Even so, understanding how it works is helpful for debugging and for explaining
where unwanted "unavailable" schemas come from—namely, wayward namespace declarations in the result of the
onload transformation. (The onload XSLT stylesheets will therefore often use the exclude-result-prefixes and extension-
element-prefixes attributes to prevent unwanted namespace declarations appearing in the WordprocessingML document.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.8 Schema-Driven Editing
Schema-driven XML editing describes the ability to give the user choices according to the document context they are in,
guiding the editing process according to constraints in the schema, and keeping them from creating invalid documents.
For example, in the context of an element whose type definition consists of an exclusive xsd:choice group, the user could
be prompted to choose among the valid element choices in that context but disallowed from selecting more than one of
the choices. This kind of guided editing perfectly describes the aim of Smart Documents, introduced in Chapter 5.

Unfortunately, Word does not provide any sort of robust, schema-driven editing functionality out of the box. (Once
again, check out InfoPath in Chapter 10, if that's what you need.) However, there is some limited schema-aware editing
functionality available in Word, specifically through the XML Structure task pane and the Attributes dialog. We'll
examine those now and discuss how they can still be useful.

4.8.1 The XML Structure Task Pane

The XML Structure task pane is available whenever a document has a schema attached to it. It provides a tree view of
the custom XML elements in the merged instance document. Figure 4-19 shows the XML Structure task pane for our
press release template.

Figure 4-19. The XML Structure task pane

The tree view shows the local name of each custom XML element in the document. The small yellow "X" icons represent
schema validation errors. Since this document is our empty press release template, a number of elements are not yet
valid, because they are empty. Specifically, the zip, phone, fax, phone, and date elements are all invalid. You can see the
specific validation error by right-clicking the element name. In this case, the user has right-clicked "date," yielding a
pop-up message showing the details of the problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pop-up message showing the details of the problem.

By clicking on different parts of the tree, you can jump to different parts of the document. Though the main pane isn't
shown here, you can determine that the cursor is currently inside the company element, because "company" is
highlighted in the XML Structure task pane.

Clicking the "Show XML tags in the document" checkbox is equivalent to pressing Ctrl-Shift-X; it toggles the option on
or off.

Finally, the list at the bottom of the task pane gives you some choices of elements to insert into the document at the
current cursor position or to "apply" to your current selection in the document. If you click one of these names, Word
will insert a new instance of that element into the document. If the "List only child elements of current element"
checkbox is checked (which it is, by default), the list will contain only the possible children of the current element,
according to the schema. If it is unchecked, you'll get a list of all element names declared in the schema. In this case,
since the checkbox is checked and the current context is the company element, only the name and address elements are
listed. The list does not change according to what elements are already present in the document or what order they're
in; it's not that smart. In other words, it won't keep you from making invalid insertions.

Thus, the XML Structure task pane tells you if something's wrong, but it doesn't keep you from doing something wrong
in the first place. In that respect, it scores a 100% on validation, and something far less than 100% on schema-driven
editing. So, if the XML Structure task pane is just a poor man's version of schema-driven XML editing, what good is it?
If it's not user-friendly and doesn't keep users from getting into trouble, why is it a part of the Word application at all?
Fortunately, there is a good answer to this question. The XML Structure task pane, rather than being primarily a tool for
end users, is an excellent tool for developers in building custom XML editing solutions for Word. In fact, the XML
Structure task pane was used heavily in the creation of our press release template. See Section 4.13 later in this
chapter.

4.8.2 Editing Attributes

You may have noticed that our press release schema (conveniently) does not declare any attributes. There is a reason
for this. Without using Smart Documents, Word provides only one way to directly edit custom XML attributes: the
Attributes dialog. You can open the Attributes dialog either by right-clicking an element in the XML Structure task pane
or by right-clicking the custom XML tag itself (assuming "Show XML tags" is turned on). Figure 4-20 shows the
Attributes dialog for the date element in our press release template.

Figure 4-20. The Attributes dialog

Since our schema does not declare any attributes for the date element (or any other element for that matter), the list of
"Available attributes" is empty. If there were legal attributes for the date element, then the user could select one from
the list, enter its value in the Value text box, and click the Add button. The attribute would then be added to the
"Assigned attributes" list, and would be added as a normal XML attribute to the start tag of the date element in the
underlying WordprocessingML representation.

The Attributes dialog performs one other function; it lets you specify what the placeholder text for a particular element
instance should be. In this case, the placeholder text for the date element is [YYYY-MM-DD]. While this feature may seem
out of place in the Attributes dialog, in a certain sense it is appropriately positioned, because the underlying
representation of placeholder text (as we saw in Example 4-4) is an attribute, namely the w:placeholder attribute. In any
case, this is not something the end user would normally edit. This adds support to the argument that it's unreasonable
to force users to edit attributes using the Attributes dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to force users to edit attributes using the Attributes dialog.

Like the XML Structure task pane, the Attributes dialog may not be terribly useful for end users, but it can be handy for
developers in creating custom XML editing solutions, at least insofar as it allows you to insert placeholder text via the
Word UI, as you are constructing your template. See Section 4.13 later in this chapter.

4.8.2.1 A workaround for editing attributes

As implied above, the use of Smart Documents could allow users to edit attributes without using the generic Attributes
dialog. However, there is also a way to enable users to edit attribute values without resorting to Smart Document
programming. It is true that the Attributes dialog is the only way to directly edit custom XML attributes in Word, but by
using both an onload stylesheet and an onsave stylesheet, you can enable users to indirectly edit attributes without
using the Attributes dialog. Here's how it works. First, the onload XSLT stylesheet translates the attributes to elements,
so that users can edit them as elements. Then, the onsave stylesheet translates them back to attributes when the user
saves the document. In this approach, the schema in the schema library does not necessarily reflect the actual
structure of the XML documents being edited, but rather an intermediate structure that exists only for the purpose of
editing within Word. Such restructuring is a typical use case for onsave XSLT transformations, which we'll discuss in
"The `Apply Custom Transform' Document Option" later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.9 Schema Validation
When a schema is attached to a document, Word performs on-the-fly schema validation of the document's embedded
custom XML, visibly flagging errors as the user edits. However, since the custom XML tags are intertwined with
WordprocessingML elements, Word first needs to strip out the Word-specific markup before it can validate the
document. This is actually the same process—the "Save data only" process—that optionally occurs in step 3 of our
processing model diagram (in Figure 4-7), when a user saves the document. What is not evident in that diagram is the
fact that the "Save data only" process is also invoked repeatedly while the user is editing the document (during step 2).
The difference here is that, rather than permanently stripping out the WordprocessingML markup, it does so temporarily
just for the purpose of validation.

4.9.1 The "Ignore Mixed Content" Document Option

When Word strips out the WordprocessingML markup in order to validate the embedded XML document, by default it
leaves all text content (inside w:t elements) intact. Our press release template, however, includes boilerplate text that is
not actually part of our data. If this text is included in the remaining XML document, then it will be invalid according to
the press release schema. Example 4-7 shows what a press release XML document would look like if all of the text
remained intact after stripping out the WordprocessingML markup.

Example 4-7. An invalid press release document, including template boilerplate
text

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?mso-application progid="Word.Document"?>

<pressRelease xmlns="http://xmlportfolio.com/pressRelease"><company><name>ACME

Corp.</name><address><street>555 Market St.</street><city>Seattle</city>,

<state>WA</state> <zip>98101</zip>Phone <phone>222-222-2222</phone>Fax <fax>333-

333-3333</fax></address></company>Press Release<contact>Contact:

<firstName>John</firstName> <lastName>Doe</lastName>Phone: <phone>444-444-

4444</phone></contact>FOR IMMEDIATE RELEASE<date>2004-01-23</date><title>This is

the Headline</title><body><para>This is the lead-in, and this is not. The rest of

the paragraph has no formatting either.This is the second paragraph. These are just

regular Word paragraphs. They do not correspond to custom XML

elements.</para></body>-End-</pressRelease>

The highlighted segments of Example 4-7, such as Phone and FOR IMMEDIATE RELEASE, are pieces of boilerplate text from
the press release template. They are not supposed to be part of the data. Thus, merely stripping out the
WordprocessingML markup is not sufficient. It is also necessary to strip out the boilerplate text. How is this done? Well,
the boilerplate text in this example happens to represent the only mixed content text in the document, and Word
happens to provide a document option called "Ignore mixed content." By turning this option on, you can effectively strip
out the boilerplate text in this and other similar examples, for the purpose of validation.

The "Ignore mixed content" document option can be viewed as a parameter to the "Save data only" process. It affects
both on-the-fly schema validation as well as the document saving process when the "Save data only" document option
is turned on. (The precise behavior of this process is approximated using an XSLT stylesheet listed later in this chapter,
under "The `Save Data Only' Document Option".)

In our press release template, the "Ignore mixed content" document option is turned on, but the "Save data only"
document option is turned off. This means that mixed content text is stripped out for the purpose of on-the-fly schema
validation, but it is not stripped out when the document is saved. (Instead, our press release template uses a custom
onsave XSLT stylesheet applied directly to the merged XML and WordprocessingML representation.)

The "Ignore mixed content" document option is represented in WordprocessingML using the w:ignoreMixedContent
element. Our press release application's "Elegant" stylesheet, pr2word.xsl, turns the option on by generating a
w:ignoreMixedContent element in the result document, just like this one:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w:ignoreMixedContent element in the result document, just like this one:

 <w:docPr>

 <!-- ... -->

 <w:ignoreMixedContent/>

 <!-- ... -->

 </w:docPr>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.10 Document Protection
Microsoft Office Word 2003 introduces some powerful new document protection features. While these features are not
specifically XML-related, they can help to make custom XML editing solutions in Word more robust. There are two kinds
of document protection options: editing restrictions and formatting restrictions. Our press release template relies
heavily on both kinds of restrictions.

4.10.1 Editing Restrictions

Editing restrictions let you protect a document in various ways—for example, by making it read-only or by allowing
comments only. You can also make exceptions to the overall document policy for particular regions of the document.
Our press release template protects the entire document as read-only but designates particular areas of the document
as unrestricted. These areas correspond exactly to the custom XML leaf elements embedded in the WordprocessingML
template. By restricting user changes to the text within XML leaf nodes, you can ensure that users won't inadvertently
alter the template's boilerplate text, or worse, delete a custom XML element.

The global policy is set using the w:documentProtection element inside the w:docPr element:

 <w:docPr>

 <!-- ... -->

 <w:documentProtection w:edit="read-only" w:formatting="on"

 w:enforcement="on"/>

 <!-- ... -->

 </w:docPr>

This element specifies that the document is read-only, that formatting restrictions are also turned on, and that all such
restrictions are currently being enforced. The w:documentProtection element also takes an optional w:unprotectPassword
attribute which contains a hex-encoded password key. In that case, users will not be able to remove the document
protection without entering the correct password. The onload stylesheet for our press release template, pr2word.xsl,
turns document protection on by generating a w:documentProtection element just like the one shown above.

Individual exceptions to a document's read-only policy are represented in the body of the WordprocessingML document
using the w:permStart and w:permEnd elements. Example 4-8 shows an excerpt of our press release template's onload
stylesheet, pr2word.xsl. Both the custom XML elements and the w:permStart and w:permEnd elements are highlighted.

Example 4-8. Document protection boundaries and custom XML elements

 <w:tbl>

 <w:tblPr>

 <w:tblW w:w="0" w:type="auto"/>

 <w:tblInd w:w="475" w:type="dxa"/>

 </w:tblPr>

 <w:tblGrid>

 <w:gridCol w:w="5303"/>

 <w:gridCol w:w="4590"/>

 </w:tblGrid>

 <w:tr>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="5303" w:type="dxa"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:tcPr>

 <ns1:contact>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Contact"/>

 </w:pPr>

 <w:r>

 <w:t>Contact: </w:t>

 </w:r>

 <ns1:firstName w:placeholder="[First]">

 <w:permStart w:id="7" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of

 select="/ns1:pressRelease/ns1:contact/ns1:firstName"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="7"/>

 </ns1:firstName>

 <w:r>

 <w:t>

 <xsl:text> </xsl:text>

 </w:t>

 </w:r>

 <ns1:lastName w:placeholder="[Last]">

 <w:permStart w:id="8" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of

 select="/ns1:pressRelease/ns1:contact/ns1:lastName"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="8"/>

 </ns1:lastName>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </ns1:lastName>

 <w:r>

 <w:t>

 <xsl:text> </xsl:text>

 </w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Contact"/>

 </w:pPr>

 <w:r>

 <w:t>Phone: </w:t>

 </w:r>

 <ns1:phone w:placeholder="[xxx-xxx-xxxx]">

 <w:permStart w:id="9" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of

 select="/ns1:pressRelease/ns1:contact/ns1:phone"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="9"/>

 </ns1:phone>

 </w:p>

 </ns1:contact>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="4590" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Date"/>

 </w:pPr>

 <w:r>

 <w:t>FOR IMMEDIATE RELEASE</w:t>

 </w:r>

 </w:p>

 <w:p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:pPr>

 <w:pStyle w:val="Date"/>

 </w:pPr>

 <ns1:date w:placeholder="[YYYY-MM-DD]">

 <w:permStart w:id="10" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of select="/ns1:pressRelease/ns1:date"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="10"/>

 </ns1:date>

 </w:p>

 </w:tc>

 </w:tr>

 </w:tbl>

The w:edGrp attribute of each w:permStart element indicates that "everyone" is allowed to edit the given region. (The
value of "everyone" means that there are no restrictions. Other values may be groups defined on the local machine or
network.) The w:id attributes on the w:permStart and w:permEnd elements maintain the association between the start and
end elements of each range. The editable regions are carefully placed directly inside the custom XML elements, so that
users may edit the contents of the XML tags but may not move or delete the XML elements themselves.

The excerpt in Example 4-8 also illustrates how data is pulled from the source document into the merged XML and
WordprocessingML editing view—through the use of an xsl:value-of instruction inside each custom XML leaf element.

4.10.2 Formatting Restrictions

Formatting restrictions enable you to restrict formatting to a selection of zero or more styles. This also means that
users will not be able to apply direct formatting, such as italic or bold. Unlike editing restrictions, you cannot designate
different regions of the document to have different formatting restrictions. The restricted selection of styles is a global
setting for the entire document.

Formatting restrictions are enabled when the w:formatting and w:enforcement attributes of the w:documentProtection
element both have the value on (as shown above), and when the w:defLockedState attribute of the w:latentStyles element
(inside the top-level w:styles element) also has the value on:

 <w:latentStyles w:defLockedState="on" w:latentStyleCount="156"/>

Individual styles defined within the document are either locked or available, depending on the presence of the w:locked
element in the style's w:style definition. If w:locked is present (and not explicitly off), it means that the style is locked
and cannot be used. If not, then the style is among the limited selection of styles that the user can apply. Note that the
document may already contain paragraphs or runs that use locked styles. That is okay; users just won't be able to
create new runs or paragraphs that use those styles. (Note that the w:defLockedState attribute sets the "default locked
state" only for the built-in styles; it does not affect styles defined within the document, whose locked state is
determined solely based on the presence of the w:locked element.)

In our press release template, there are three styles available for the user to apply: a paragraph style called "Body
Text," a character style called "Lead-in Emphasis," and a character style called "No formatting." All of these are used for
the body text of the press release. The "Lead-in Emphasis" style is used normally only for the first phrase of the first
paragraph, as a traditional all-caps lead-in to the content of the press release. The "No formatting" style is based on the
built-in "Default Paragraph Font" style and does not include any additional formatting. Its purpose is to let the user
conveniently turn off the "Lead-in Emphasis" style after they are done typing the lead-in text.

You may be wondering, "Why use styles at all when the WordprocessingML markup is just going to get stripped out
when the document is saved?" The answer is that our press release template uses an onsave XSLT stylesheet to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when the document is saved?" The answer is that our press release template uses an onsave XSLT stylesheet to
convert a run having the "Lead-in Emphasis" style to an actual leadIn element in the saved XML document. Similarly,
the onload XSLT stylesheet converts a leadIn element in a newly opened press release XML document to a run having
the "Lead-in Emphasis" style. By defining these mappings, our imaginary IT department is able to support a limited
form of mixed content editing without having to invoke Smart Document programming.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.11 XML Save Options
When a user tries to save a document as XML, Word presents several options. The "Save As" dialog, shown again in
Figure 4-21, includes two checkboxes representing XML save options: the "Apply transform" checkbox and the "Save
data only" checkbox. These options correspond to the final two (optional) processes in our processing model diagram
(Figure 4-7).

Figure 4-21. XML save options in the "Save As" dialog

Rather than solely relying on the user to make the right choice, you can specify default save settings for a particular
document, obviating the need for user intervention. You can set these through the Word UI (in the Tools
Templates and Add-Ins . . . XML Schema XML Options dialog), or by declaring them in the underlying
WordprocessingML representation. In our primary XML editing scenario, the onload XSLT transformation that Word
applies when opening the document is what determines what the default XML save settings for a document will be.

In our press release template, the onload stylesheet turns "Save data only" off and "Apply custom transform" on. It
does this by generating declarations for these settings inside the w:docPr element. Below is the relevant excerpt from
the stylesheet:

 <w:docPr>

 <!-- ... -->

 <w:removeWordSchemaOnSave w:val="off"/>

 <w:useXSLTWhenSaving/>

 <w:saveThroughXSLT w:xslt="\\intra\pr\harvestPressRelease.xsl"/>

 </w:docPr>

The w:removeWordSchemaOnSave element corresponds to the "Save data only" option. Here, it is explicitly turned off. The
w:useXSLTWhenSaving element turns the "Apply custom transform" option on. Finally, the w:saveThroughXSLT element
specifies the file name of the particular XSLT stylesheet to apply when the w:useXSLTWhenSaving option is turned on.

4.11.1 The "Save Data Only" Document Option

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the "Save data only" option is turned on (via the w:removeWordSchemaOnSave element), Word strips all
WordprocessingML markup from the document when the user saves it, leaving only custom XML elements and
attributes. This is the same process that Word uses to prepare an embedded XML document for schema validation. In
both cases, the "Ignore mixed content" document option parameterizes the behavior of the process, optionally causing
it to subsequently strip out remaining mixed content text after it has stripped out the WordprocessingML markup.

Unlike Word's default onload rendering process for arbitrary XML documents (which the XML2WORD.XSL stylesheet
implements), its default onsave process ("Save data only") is not implemented in an XSLT stylesheet that you can view
—at least not one that's included in the files installed with Office. However, since it is important to understand exactly
what this process does, we've included in Example 4-9 an XSLT stylesheet that approximates its behavior. This
stylesheet is designed to produce the exact same result as the "Save data only" process, when selected as the
transform to apply when saving a document.[2]

[2] For this stylesheet to work as intended, the "Apply transform" checkbox must be checked, the saveDataOnly.xsl
file must be selected as the transform to apply, and the "Save data only" checkbox must be unchecked. The reason
it must be unchecked is that the saveDataOnly.xsl stylesheet is designed to be applied to the document instead of
the "Save data only" process, rather than in addition to it.

Example 4-9. An approximation of the "Save data only" process, saveDataOnly.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:v="urn:schemas-microsoft-com:office:vml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 xmlns:st="urn:schemas-microsoft-com:office:smarttags">

 <!-- UTF-8 encoding and standalone declaration -->

 <xsl:output encoding="UTF-8" standalone="no"/>

 <!-- *** -->

 <!-- Global Variables -->

 <!-- *** -->

 <!-- True if w:ignoreMixedContent is present and @w:val isn't "off" -->

 <xsl:variable name="ignoreMixedContent"

 select="/w:wordDocument/w:docPr/w:ignoreMixedContent

 [not(@w:val='off')]"/>

 <!-- Result of first pass (before optionally stripping mixed content text) -->

 <xsl:variable name="first-pass-result">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:variable name="first-pass-result">

 <xsl:apply-templates select="/*"/>

 </xsl:variable>

 <!-- *** -->

 <!-- Template rules in default mode -->

 <!-- *** -->

 <!-- Start here -->

 <xsl:template match="/">

 <!-- line break after XML declaration -->

 <xsl:text>
</xsl:text>

 <!-- Re-create any PIs preserved inside o:CustomDocumentProperties -->

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis" select="string(

 /w:wordDocument/o:CustomDocumentProperties/o:processingInstructions)"/>

 </xsl:call-template>

 <!-- Apply a second pass to strip mixed content text only if

 $ignoreMixedContent is true -->

 <xsl:choose>

 <xsl:when test="$ignoreMixedContent">

 <xsl:apply-templates select="msxsl:node-set($first-pass-result)/node()"

 mode="strip-mixed-content"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy-of select="$first-pass-result"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!— Replicate all elements by default

 (filtering out unnecessary namespace nodes) —>

 <xsl:template match="*">

 <xsl:element name="{local-name()}" namespace="{namespace-uri()}">

 <xsl:apply-templates select="@*|node()"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates select="@*|node()"/>

 </xsl:element>

 </xsl:template>

 <!— Copy attributes by default —>

 <xsl:template match="@*">

 <xsl:copy/>

 </xsl:template>

 <!— Preserve text inside w:t elements (other than headers, footers, etc.) —>

 <xsl:template match="w:t[not(ancestor::w:sectPr)]/text()">

 <xsl:copy/>

 </xsl:template>

 <!— Strip out all other text (field instructions, doc properties, etc.) —>

 <xsl:template match="text()"/>

 <!— Process children of, but do not copy, elements in Word's namespaces —>

 <xsl:template match="w:*|sl:*|aml:*|wx:*|w10:*|v:*|o:*|dt:*|st:*">

 <xsl:apply-templates/>

 </xsl:template>

 <!— Strip out all attributes in Word's namespaces —>

 <xsl:template match="@w:*|@sl:*|@aml:*|@wx:*|@w10:*|@v:*|@o:*|@dt:*|@st:*"/>

 <!-- *** -->

 <!-- Template rules in "strip-mixed-content" mode -->

 <!-- *** -->

 <!-- Copy elements, attributes, PIs, and text straight through -->

 <xsl:template match="@*|node()" mode="strip-mixed-content">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()" mode="strip-mixed-content"/>

 </xsl:copy>

 </xsl:template>

 <!-- But strip out mixed content text -->

 <xsl:template match="text()[preceding-sibling::* or following-sibling::*]"

 mode="strip-mixed-content"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- *** -->

 <!-- Named templates -->

 <!-- *** -->

 <!-- For re-creating PIs stored as text in o:CustomDocumentProperties;

 (See XML2WORD.XSL) -->

 <xsl:template name="create-pis">

 <xsl:param name="escaped-pis"/>

 <xsl:if test="$escaped-pis">

 <xsl:processing-instruction

 name="{substring-before(

 substring-after($escaped-pis,'<?'),

 ' ')}">

 <xsl:value-of select="substring-before(

 substring-after($escaped-pis,' '),

 '?>')"/>

 </xsl:processing-instruction>

 <xsl:text>
</xsl:text>

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis"

 select="substring-after($escaped-pis,'?>')"/>

 </xsl:call-template>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

The highlighted template rules in Example 4-9 define the essence of what the "Save data only" process does. They strip
out elements and attributes in any of the Word-specific namespaces but preserve all elements and attributes in other
namespaces. The rest of the stylesheet is concerned with implementing two other features of the "Save data only"
process: stripping mixed content and preserving processing instructions.

4.11.1.1 Stripping mixed content

Also like Word's built-in "Save data only" process, the stylesheet in Example 4-9 alters its behavior according to
whether the "Ignore mixed content" document option is turned on or off.

First, the stylesheet defines a global variable named $ignoreMixedContent that is true as long as the w:ignoreMixedContent
element is present and is not turned off.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element is present and is not turned off.

 <!-- True if w:ignoreMixedContent is present and @w:val isn't "off" -->

 <xsl:variable name="ignoreMixedContent"

 select="/w:wordDocument/w:docPr/w:ignoreMixedContent

 [not(@w:val='off')]"/>

Then, after stripping out the Word-specific markup, the stylesheet further processes the document if and only if
$ignoreMixedContent is true. This is implemented as a second pass (with the help of the msxsl:node-set() extension
function):

 <!-- Apply a second pass to strip mixed content text only if

 $ignoreMixedContent is true -->

 <xsl:choose>

 <xsl:when test="$ignoreMixedContent">

 <xsl:apply-templates select="msxsl:node-set($first-pass-result)/node()"

 mode="strip-mixed-content"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy-of select="$first-pass-result"/>

 </xsl:otherwise>

 </xsl:choose>

Finally, the template rules in the strip-mixed-content mode effect an identity transformation with one exception. The
operative template rule strips out all mixed content text in the document, i.e., all text nodes that have any element
siblings, by doing nothing:

 <xsl:template match="text()[preceding-sibling::* or following-sibling::*]"

 mode="strip-mixed-content"/>

Thus, the saveDataOnly.xsl stylesheet behaves like the "Save data only" process, stripping out mixed content text only
if the "Ignore mixed content" document option is turned on.

4.11.1.2 Preserving processing instructions

When opening an arbitrary XML document that has one or more processing instructions (PIs) outside the root element,
Word's default onload stylesheet (XML2WORD.XSL) preserves those PIs by escaping the PI markup as text and storing
the resulting string in a custom document property named o:processingInstructions (in the o:CustomDocumentProperties
element). Then, when the user saves the document, the "Save data only" process converts the escaped PI markup back
to literal processing instructions in the final XML document saved by Word.

The saveDataOnly.xsl stylesheet in Example 4-9 exhibits the same behavior. First, it calls a named template, passing it
the string value of the o:processingInstructions element:

 <!-- Re-create any PIs preserved inside o:CustomDocumentProperties -->

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis" select="string(

 /w:wordDocument/o:CustomDocumentProperties/o:processingInstructions)"/>

 </xsl:call-template>

Then, the template named create-pis does the actual work of converting the value of the $escaped-pis parameter to real

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then, the template named create-pis does the actual work of converting the value of the $escaped-pis parameter to real
processing instructions in the result document. It recursively parses the escaped PI markup until no processing
instructions are left:

 <!-- For re-creating PIs stored as text in o:CustomDocumentProperties;

 (See XML2WORD.XSL) -->

 <xsl:template name="create-pis">

 <xsl:param name="escaped-pis"/>

 <xsl:if test="$escaped-pis">

 <xsl:processing-instruction

 name="{substring-before(

 substring-after($escaped-pis,'<?'),

 ' ')}">

 <xsl:value-of select="substring-before(

 substring-after($escaped-pis,' '),

 '?>')"/>

 </xsl:processing-instruction>

 <xsl:text>
</xsl:text>

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis"

 select="substring-after($escaped-pis,'?>')"/>

 </xsl:call-template>

 </xsl:if>

 </xsl:template>

This PI re-creation process only works when the onload stylesheet preserves the PIs in exactly the way that the "Save
data only" process expects. If you want your own custom onload stylesheets to preserve PIs, take a look at the
XML2WORD.XSL file to see exactly how it's done. Basically, it converts a single PI to a string with these components:

'<?' <PITarget> <nbsp> <PIText> '?>'

Each subsequent escaped PI is concatenated to the end of the last one. And the final value is stored in the
o:processingInstructions element.

In our press release template, the onload stylesheet preserves PIs from the source document in the same way that the
XML2WORD.XSL stylesheet does. However, rather than using the "Save data only" process to re-create the PIs, the
press release template declares its own custom onsave stylesheet, which re-creates them in the same way that the
"Save data only" process would have. Of course, when you have control over both the onload and onsave stylesheets,
you can choose whatever mechanism you'd like for preserving PIs. The press release template could have used a
different approach, but the approach used by XML2WORD.XSL and the "Save data only" process works perfectly fine.
Rather than reinventing the wheel, the press release template takes the same approach.

One favorable consequence of preserving processing instructions from the source document is that the mso-application PI
is preserved in XML documents that Word edits, retaining the file's association with the Word application. This means
that users don't have to do anything special to open the file in Word; they just double-click it like any other Word
document. Conversely, the mso-application PI is only present in the saved document when it was already present in the
XML document that Word opened. Word does not automatically output the mso-application PI whenever it saves a custom
XML document. On the contrary, it is quite possible to open, edit, and save XML documents in Word without leaving any
evidence that Word was ever used to edit the file. The point is that you as the developer do have control over what
processing instructions appear in the result.

To force the presence of the mso-application (or any other) processing instruction in your
result document (regardless of whether it was present in the source document), you can
simply use the xsl:processing-instruction element in your onsave stylesheet. Or, if you are
using "Save data only" with no onsave stylesheet, you can use your onload stylesheet to
effectively hard-code the PI to the list of escaped PIs in the o:processingInstructions custom

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively hard-code the PI to the list of escaped PIs in the o:processingInstructions custom
document property. In this case, the "Save data only" process will regenerate the PI just
as if it was preserved from the source document.

4.11.2 The "Apply Custom Transform" Document Option

The "Apply Custom Transform" document option allows you to save an XML document through an onsave XSLT
stylesheet. As reflected in our original processing model diagram in Figure 4-7, what document the onsave stylesheet is
applied to depends on whether the "Save data only" option is turned on. If "Save data only" is turned off, then the
onsave stylesheet is applied directly to the WordprocessingML document. If "Save data only" is turned on, then the
onsave stylesheet is applied to the result of stripping the Word-specific markup from the merged XML and
WordprocessingML view.

Our press release template uses an onsave stylesheet called harvestPressRelease.xsl. Since the "Save data only" option
is turned off, this stylesheet is applied to the entire WordprocessingML document when the user saves it. The purpose
of harvestPressRelease.xsl is to behave just like the "Save data only" process, with some notable exceptions: it
converts w:p elements in the body of the press release to para elements in the result, and it converts a run with the
"Lead-in Emphasis" style to a leadIn element in the result.

The harvestPressRelease.xsl stylesheet behaves just like the "Save data only" process in the sense that it strips out all
Word-specific markup from the result, and, except for the para element, it leaves all custom tags intact. It turns out that
the saveDataOnly.xsl stylesheet introduced in the last section possesses more than academic interest. It not only can
be used to understand the precise behavior of the "Save data only" process, i.e., as a learning aid, but it can also be
used directly by custom onsave stylesheets that want to slightly alter its behavior. Our press release template's onsave
stylesheet does just that—it imports the saveDataOnly.xsl stylesheet, selectively modifying its behavior. Example 4-10
shows harvestPressRelease.xsl in its entirety.

Example 4-10. The onsave stylesheet for the harvestPressRelease.xsl template

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:pr="http://xmlportfolio.com/pressRelease"

 xmlns="http://xmlportfolio.com/pressRelease"

 exclude-result-prefixes="w pr">

 <xsl:import href="saveDataOnly.xsl"/>

 <!-- Skip by the single surrogate paragraph -->

 <xsl:template match="pr:para">

 <!-- Apply templates to all non-empty Word paragraphs -->

 <xsl:apply-templates select="w:p[normalize-space(.)]"/>

 </xsl:template>

 <!-- Convert w:p elements inside PR body to para elements -->

 <xsl:template match="pr:para/w:p">

 <para>

 <!-- This element contains mixed content; explicitly preserve space -->

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <xsl:apply-templates/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates/>

 </para>

 </xsl:template>

 <!-- Convert "Lead-in Emphasis" runs to leadIn elements -->

 <xsl:template match="w:r[w:rPr/w:rStyle/@w:val =

 /w:wordDocument/w:styles/w:style

 [w:name/@w:val='Lead-in Emphasis']/@w:styleId]">

 <!-- Only process this run if the immediately preceding

 run does not have the same style -->

 <xsl:if test="not(preceding-sibling::w:r[1]

 [w:rPr/w:rStyle/@w:val = current()/w:rPr/w:rStyle/@w:val]

)">

 <leadIn>

 <xsl:call-template name="merge-adjacent-style-runs"/>

 </leadIn>

 </xsl:if>

 </xsl:template>

 <!-- Merge adjacent runs that have the same style -->

 <xsl:template name="merge-adjacent-style-runs" match="w:r" mode="merge-runs">

 <xsl:apply-templates/>

 <!-- Recursively apply to the immediately following run

 only if it has the same style -->

 <xsl:apply-templates

 select="following-sibling::w:r[1]

 [w:rPr/w:rStyle/@w:val = current()/w:rPr/w:rStyle/@w:val]"

 mode="merge-runs"/>

 </xsl:template>

 <!-- Override mixed-content-stripping for text inside pr:para elements -->

 <xsl:template match="pr:para/text()" mode="strip-mixed-content">

 <xsl:copy/>

 </xsl:template>

</xsl:stylesheet>

As you can see, this stylesheet imports the saveDataOnly.xsl stylesheet we looked at earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, this stylesheet imports the saveDataOnly.xsl stylesheet we looked at earlier:

 <xsl:import href="saveDataOnly.xsl"/>

Now, let's briefly walk through each template rule in the stylesheet. The first custom rule that will get triggered is also
the first one listed in the document. It matches the single pr:para element (where pr maps to the press release
namespace) that contains the body text of the press release. Rather than creating a shallow copy of the element, as
saveDataOnly.xsl would have done by default, it instructs processing to skip by the element altogether and to process
its non-empty paragraph (w:p) children instead:

 <!-- Skip by the single surrogate paragraph -->

 <xsl:template match="pr:para">

 <!-- Apply templates to all non-empty Word paragraphs -->

 <xsl:apply-templates select="w:p[normalize-space(.)]"/>

 </xsl:template>

The next template rule matches the paragraph (w:p) children of pr:para. Each w:p element is effectively replaced by a
para element (in the press release namespace). The xml:space="preserve" attribute is programmatically added to the
result so that Word (and other potential processes) won't strip out what it deems to be insignificant whitespace from
the document when it loads it again. Since the para element contains mixed content, all child text nodes, including
whitespace-only text nodes, should be considered significant:

 <!-- Convert w:p elements inside PR body to para elements -->

 <xsl:template match="pr:para/w:p">

 <para>

 <!-- This element contains mixed content; explicitly preserve space -->

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <xsl:apply-templates/>

 </para>

 </xsl:template>

The next template rule gets triggered by runs that have the "Lead-in Emphasis" character style. The purpose of this
template rule is to convert such runs into leadIn elements. However, its job is complicated by the fact that Word has a
tendency to output adjacent runs that have the same style. Rather that creating a separate leadIn element for each of
these, this template rule, with help from the recursive template named merge-adjacent-style-runs, does just that; it
merges adjacent runs in the same style so that only one leadIn element is created per contiguous sequence:

 <!-- Convert "Lead-in Emphasis" runs to leadIn elements -->

 <xsl:template match="w:r[w:rPr/w:rStyle/@w:val =

 /w:wordDocument/w:styles/w:style

 [w:name/@w:val='Lead-in Emphasis']/@w:styleId]">

 <!-- Only process this run if the immediately preceding

 run does not have the same style -->

 <xsl:if test="not(preceding-sibling::w:r[1]

 [w:rPr/w:rStyle/@w:val = current()/w:rPr/w:rStyle/@w:val]

)">

 <leadIn>

 <xsl:call-template name="merge-adjacent-style-runs"/>

 </leadIn>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </leadIn>

 </xsl:if>

 </xsl:template>

Finally, harvestPressRelease.xsl must override one other aspect of saveDataOnly.xsl's behavior. Rather than strip out all
mixed content text (which saveDataOnly.xsl does when "Ignore mixed content" is turned on, as it is in the press release
template), it must preserve the mixed content text found inside the newly created pr:para elements. It does this by
overriding the default template rule for text nodes in the strip-mixed-content mode, explicitly copying text nodes that are
children of pr:para elements:

 <!-- Override mixed-content-stripping for text inside pr:para elements -->

 <xsl:template match="pr:para/text()" mode="strip-mixed-content">

 <xsl:copy/>

 </xsl:template>

Thus, the harvestPressRelease.xsl stylesheet behaves very similarly to Word's "Save data only" process. In fact, for
most of the elements in a press release document, it behaves identically, thanks to the saveDataOnly.xsl stylesheet
that it imports. However, by incrementally overriding the default behavior of saveDataOnly.xsl, it enables limited but
effective support for repeating paragraphs and mixed content.

4.11.3 When to Use These Options

Between the "Save data only" and "Apply custom transform" options, there are four possible combinations. When does
it make sense to choose one combination over another? Table 4-1 lists some possible use cases for each combination.

Table 4-1. XML save settings and corresponding use cases
"Save data

only"
"Apply custom

transform" Example use cases

off off Saving the document as WordprocessingML

on off Saving custom markup only (most common configuration for Smart
Documents)

off on Converting Word paragraphs to custom elements; converting styled text to
custom elements

on on Converting elements back to attributes; re-ordering or otherwise re-
structuring the document

When you are using an onsave XSLT stylesheet and you need to decide whether or not to turn "Save data only" on, ask
yourself these questions: Is all the information I need to create my final, saved XML document present in the XML
elements and attributes that are embedded in the Word document being edited? Or do I need to query some aspect of
the WordprocessingML markup, because the embedded XML tags do not tell the whole story? The onsave stylesheet for
our press release template, since it converts Word paragraphs to custom paragraphs, for example, indeed does need to
have access to the WordprocessingML markup. Therefore, the press release template takes the third approach shown in
this table; it turns "Save data only" off and "Apply custom transform" on.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.12 Reviewing the XML-Specific Document Options
So far, we've introduced a number of different XML-related document options in various contexts. Now let's take a look
at them together, including some new ones. You can configure most of these through the XML Options dialog. Figure 4-
22 shows the XML Options dialog with the default XML settings. To open this dialog, select Tools Templates and
Add-Ins XML Schema XML Options.

Figure 4-22. The XML Options dialog

The options in Figure 4-22 correspond to these elements in WordprocessingML:

1. w:removeWordSchemaOnSave —When enabled, Word removes all Word-specific markup from the document when
saving.

2. w:useXSLTWhenSaving —When enabled, Word applies an XSLT stylesheet to the document when saving.

3. w:saveThroughXSLT —When the "Apply custom transform" option is on, this element's w:xslt attribute determines
what stylesheet will be applied.

4. w:validateAgainstSchema —When enabled, Word validates the document while the user is editing it. This option is
turned on by default unless explicitly turned off.

5. w:doNotUnderlineInvalidXML —When enabled, Word does not display validation errors in the document being
edited.

6. w:ignoreMixedContent —When checked, Word strips out mixed content text for the purpose of validation, as well
as for the purpose of saving (when the "Save data only" option is on).

7. w:saveInvalidXML —When checked, Word will not disallow the user from saving a document as XML even though
the embedded XML document is invalid according to its schema.

8. w:alwaysShowPlaceholderText —When checked, Word automatically displays the name of each empty leaf element
as placeholder text when "Show XML tags" is turned off, and when the element does not explicitly specify its
own placeholder text.

Except for the w:saveThroughXSLT element, all of these options are Boolean options. Each of their corresponding
elements is defined in the WordprocessingML schema to use the onOffProperty type, which means that it is an empty
element and that it has a w:val attribute whose value can be either on or off. When the element is present but the
attribute is absent, then it defaults to on.

The other two checkboxes listed under "XML view options" in Figure 4-22 are not document-specific options and so do
not have a WordprocessingML representation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.13 Steps to Creating the onload Stylesheet
As we mentioned earlier, the XML Structure task pane, though not terribly useful to end users, is an important tool for
developers of Word XML templates. By using it to apply XML elements to different parts of a regular Word document,
you can create a merged document that contains both WordprocessingML and custom XML elements from your schema.
After saving it as XML (WordprocessingML and all), you suddenly have an example of what your onload stylesheet
needs to generate as a result document. Adapting this document to an XSLT stylesheet is often as simple as slapping
xsl:stylesheet and xsl:template elements around the document and replacing text inside leaf-node custom elements with
xsl:value-of instructions.

With this end in view, let's take a look at the necessary steps to preparing the press release template within Word.

4.13.1 Start with a Word Document

First, create a regular Word document that contains all of the formatting and boilerplate text you want to include in
your template. Our imaginary IT department's press release template began its life as a regular Word document,
adapted from a template available on Office Online. After simplifying it a bit to meet their requirements, they were
ready to begin. Figure 4-23 shows the pristine Word document before it was introduced to XML.

Figure 4-23. PressReleaseWordMLTemplate.xml, a regular Word document with no
custom XML

4.13.2 Attach a Schema

Once you have your regular Word document ready, the next thing to do is to attach your schema to it. We saw the
schema document for press releases, pressRelease.xsd, way back in Example 4-1. Select Tools Templates and
Add-Ins, and click the XML Schema tab to open the dialog shown in Figure 4-24.

Figure 4-24. The XML Schema dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-24. The XML Schema dialog

This dialog should look familiar, as we introduced it earlier in "Attaching Schemas to a Document." Click the Add
Schema . . . button and browse to find the file named pressRelease.xsd. After you select the schema file, you'll get the
Schema Settings dialog, shown in Figure 4-25.

Figure 4-25. The Schema Settings dialog

Enter a friendly name for this schema, such as "Press Release." Uncheck the "Changes affect current user only"
checkbox if you want this entry in the schema library to be available to all users on your machine. (Since this schema
library entry is initially for development purposes only, on the developer's machine, it probably doesn't matter what you
choose.)

4.13.3 Apply XML Tags

After hitting the OK button, you will see that the newly created "Press Release" checkbox has been checked for you in
the XML Schema dialog. After clicking OK once more, the XML Structure task pane will appear, as shown in Figure 4-26.

Figure 4-26. The XML Structure task pane immediately after attaching a schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-26. The XML Structure task pane immediately after attaching a schema

Click "pressRelease" at the bottom of the task pane to apply your schema's pressRelease element to the entire
document. You will see the dialog shown in Figure 4-27.

Figure 4-27. "Apply to entire document?" dialog

Select "Apply to Entire Document." The result is shown in Figure 4-28.

Figure 4-28. The XML Structure task pane after applying the pressRelease root
element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, you are ready to begin applying individual elements to their corresponding selections of text in the press
release document. To do this, select the text to be contained within the element, and then click the corresponding
element name at the bottom of the XML Structure task pane. Since the XML Structure task pane, by default, displays
only the elements that are legal in the current context, it works best to apply elements in a top-down order, e.g.,
company before name and address. Once you have applied all the elements of the document, your document should look
something like that in Figure 4-29.

Figure 4-29. The document after applying all XML elements

In Figure 4-29, most of the elements have been applied to places where you would expect, e.g., firstName to "John,"
lastName to "Doe." The one exception is the para element, which has not been applied to each of the two paragraphs in
the body of the press release but rather to all of the text within the body. Without utilizing Smart Document technology,
Word does not provide an easy way for end users to create repeating elements (except with table rows, which aren't
used here). Since the para element nevertheless needs to be repeating, we use regular Word paragraphs (w:p elements
instead of literal para elements) and convert back and forth between real para elements through the onload and onsave
stylesheets. The only reason we include a literal para element in the template is to enable the document to be valid. The
schema requires at least one para element to be present. Rather than creating a temporary, special-purpose schema in
which para elements are optional, we make the document valid by letting a single, fixed para element contain the Word
paragraphs. The onload and onsave stylesheets translate back and forth between this intermediate representation (one
para element containing multiple w:p elements) and the true, desired representation (a sequence of one or more para
elements). We'll see both sides of this translation shortly.

4.13.4 Convert Block-Level Leaf Tags to Run-Level Tags

When you apply XML tags to a document through the XML Structure task pane, Word automatically decides at what
level of the WordprocessingML hierarchy to insert the tags, based on the current selection. In Figure 4-29, the street
element, for example, got inserted as a block-level tag (inside a table cell), while the city and state elements got
inserted as run-level tags. This was necessary because city and state were applied to text within the same paragraph.
Oftentimes, you do not want to just stick with what Word chooses. While you can't always turn a run-level tag into a
block-level tag, you can certainly turn a block-level leaf tag (i.e., that contains no more custom elements) into a run-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block-level tag, you can certainly turn a block-level leaf tag (i.e., that contains no more custom elements) into a run-
level tag. And, as it turns out, there is a very good reason for doing so.

Block-level tags allow users to insert multiple Word paragraphs (w:p elements) inside them. Unless you have an onsave
stylesheet that specifically handles this case, the text from the multiple paragraphs will get merged together when the
WordprocessingML is stripped from the document. This inevitably causes whitespace formatting problems, e.g., the
absence of a space between the last sentence of one paragraph and the first sentence of the next. As it happens, our
press release template's onsave stylesheet does expect there to be multiple Word paragraphs (w:p elements) inside the
para element (from which it will derive corresponding para elements in the final result). But it does not expect multiple
paragraphs anywhere else in the template. Thus, it behooves us to change other block-level leaf tags to run-level tags
instead. In fact, we can generalize the advice: whenever possible, use run-level tags for leaf elements when all you
want is a single line of text. In the press release template, there are four such candidates for change: the name, street,
date, and title elements.

The easiest way to change a block-level tag into a run-level tag from within the Word UI is to place the cursor just to
the right of the end tag and hit the spacebar. Since there can't be text outside the block-level tag yet on the same line,
Word automatically converts the block-level tag to a run-level tag. Then, you can just hit Backspace to remove the
space character if you want. The tag will continue to be a run-level tag.

Figure 4-30 shows a close-up of the name and street elements in their default block-level state, before any changes are
made.

Figure 4-30. The name and street elements as block-level tags

And Figure 4-31 shows the name and street elements after we have changed them to run-level tags using the
space/Backspace technique described above.

Figure 4-31. The name and street elements as run-level tags

Provided that we also convert the date and title elements, our new template—supplemented with editing restrictions—
will now be more robust. It will prevent users from hitting Enter to create new paragraphs inside fields that are
designed to contain only one line of text.

4.13.5 Assign Placeholder Text

Once all of the custom tags are in place, you can assign placeholder text to each custom leaf element by right-clicking
the element in the main pane or in the XML Structure task pane and selecting Attributes In the Attributes dialog,
enter the placeholder text for the element in the "Placeholder text" text box, as shown in Figure 4-32.

Figure 4-32. Entering placeholder text for the name element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.13.6 Set the XML-Related Document Options

One thing to note about our template so far is that the document is still flagged as invalid, even though all of the
elements in the document have been applied to valid values. The XML Structure task pane alerts us to the problem,
shown up close in Figure 4-33.

Figure 4-33. Invalid mixed content text

Right-clicking the address element in the tree shows that the problem is that text is contained directly inside the address
element, which the schema disallows. Each mixed content text node is represented in the XML Structure task pane as
an ellipsis (...). For the address element, the culprits are the comma (,) between the city and state elements, and the
words Phone and Fax. These text nodes are not part of our data; instead, they are part of our template's boilerplate text.
To ignore mixed content for purposes of validation, we will need to turn on the "Ignore mixed content" document
option.

To view and modify the current document's XML options, click the "XML Options . . . " link at the bottom of the XML
Structure task pane. (This dialog is also accessible through a button on the Tools Templates and Add-Ins . . .
XML Schema dialog.) Here is where we can check the "Ignore mixed content" checkbox so that the boilerplate text in
our template gets stripped out for validation purposes. If we check this checkbox and click OK, then the XML Structure
task pane no longer complains that our document is invalid, as shown in Figure 4-34.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

task pane no longer complains that our document is invalid, as shown in Figure 4-34.

Figure 4-34. The XML Structure task pane with "Ignore mixed content" turned on

Note that the ellipses are now gone. Since "Ignore mixed content" is turned on, all mixed content text nodes are
ignored for validation purposes and no longer appear in the XML Structure task pane's tree view of the document. For
that reason, the validation errors are gone now too.

For now, we'll leave the XML save options alone. It is true that our ultimate onload stylesheet will need to turn the
"Apply custom transform" option on, pointing to the onsave stylesheet for our press release template,
harvestPressRelease.xsl. However, we are not there yet. For development purposes, we still need to save the template
we are currently preparing in Word as WordprocessingML, so that we can adapt it into an onload stylesheet. If we try to
prematurely set our ultimately desired save options, we'll be faced with the Catch-22 of not being able to save the
underlying WordprocessingML, because we've asked Word to apply our onsave stylesheet to it. Instead, the ultimately
desired save options will have to be set manually inside the w:docPr element in the onload stylesheet once we've
created it.

4.13.7 Enable Editing Restrictions

Now that you have assigned all of the XML elements in your document, along with placeholder text, it's time to turn on
editing restrictions, so that users don't inadvertently delete boilerplate text or custom XML elements. To do this, open
the Protect Document task pane, click the box next to "Allow only this type of editing in the document," and leave the
default type of restriction in the drop-down box—"No changes (Read only)." Figure 4-35 shows the Protect Document
task pane.

Figure 4-35. The Protect Document task pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, if you start enforcing the protection, no one will be able to edit any part of the document. That's obviously
not what you want. To designate a particular area within your document to be editable, you need to select the area and
then click the Everyone checkbox under "Exceptions" to indicate that the designated area can be edited by anyone.
With the "Show XML tags" option turned on, you can proceed throughout your document, selecting the text inside each
leaf custom XML tag and then clicking "Everyone."

Better yet, you can skip this tedious process by using a feature of the XML Toolbox plug-in (which we introduced in
Chapter 2). If you select XML Toolbox Document Protection Set All Nodes to EVERYONE Permission, as
shown in Figure 4-36, all of the text inside leaf node XML elements will be selected and delineated as editable by
"everyone."

Figure 4-36. Automating document protection with the XML Toolbox plug-in

The result of applying editing permissions either manually or through the XML Toolbox plug-in is shown in Figure 4-37.

Figure 4-37. Exceptions to the read-only editing restriction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You're almost done setting the editing restrictions. We just have one more recommendation. For the remaining block-
level leaf element (para), it helps to avoid certain usability problems if you include para's end tag inside the editable
region. Don't worry, the user won't be able to delete the tag. This just ensures that they will be able to hit Enter and
create a new paragraph as expected and that all paragraphs they do create stay within the editing region. To do this,
highlight the para end tag and click the "Everyone" checkbox in the Protect Document task pane. The result should look
like the close-up of the paragraph tags shown in Figure 4-38.

Figure 4-38. Extending the editing region to include the end tag of the para
element

Note that the editing region includes the end tag but not the start tag. If you included the start tag too, then the user
would be allowed to delete the para element, which is definitely not what you want.

Before we start enforcing protection, we first need to configure our formatting restrictions.

4.13.8 Enable Formatting Restrictions

To enable formatting restrictions, check the box next to "Limit formatting to a selection of styles" in the Protect
Document task pane. Then click the "Settings . . . " link. You will see the dialog shown in Figure 4-39.

Figure 4-39. The Formatting Restrictions dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the press release template, there are only three styles we want to let users have access to. Start by clicking the
"None" button to uncheck all of the styles. Then, scroll down the list and check the boxes next to "Body Text," "Lead-in
Emphasis," and "No formatting." Finally, click OK. The dialog box in Figure 4-40 asks you whether you want to remove
existing styles in the document that aren't in your allowed list of styles.

Figure 4-40. Do you want to strip out restricted styles from this document?

At this point, it is important that you click the No button. Otherwise, the other styles in the document that control how
the template looks and feels will get stripped out. Thus, there is a distinction between styles that the user is allowed to
apply and styles that are already present in the document.

4.13.9 Start Enforcing Protection

After specifying the formatting and editing restrictions, you can put those restrictions into effect by clicking the "Yes,
Start Enforcing Protection" button in the Protect Document task pane. You will then be prompted with the dialog shown
in Figure 4-41.

Figure 4-41. Optional password for removing document protection

Here, you can enter an optional password that users need to enter to turn document protection off. If you don't want to
specify a password, just click OK.

4.13.10 Convert the Document to an XSLT Stylesheet

We are finally ready to adapt the document's underlying WordprocessingML into an onload XSLT stylesheet. As we
already mentioned, converting the document to a stylesheet is often as simple as inserting xsl:value-of instructions into
key places in the document. While this is usually a straightforward task, it can also be somewhat tedious, depending on
how many elements are in your template.

4.13.10.1 A utility for generating onload stylesheets

Unfortunately (and strangely), Word does not provide a mechanism for generating onload XSLT stylesheets for you. To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately (and strangely), Word does not provide a mechanism for generating onload XSLT stylesheets for you. To
address this deficiency, we've developed a fairly simple stylesheet that can be applied as an onsave stylesheet to the
template you prepared in Word using the XML Structure task pane. The stylesheet is called create-onload-
stylesheet.xsl, and, as the name suggests, it creates an example onload stylesheet. (Yes, that's using XSLT to create
XSLT.) Chances are, you will need to manually tweak the resulting stylesheet, but for templates like our press release
example, it gets you about 90% of the way there. It does this simply by replacing text inside leaf-node custom
elements with xsl:value-of instructions.

Even though the press release template makes use of some heavy XSLT, it is quite
possible to build XML templates for Word without doing any XSLT coding at all. If your
template doesn't require an onsave stylesheet or any custom logic, then the create-
onload-stylesheet.xsl utility could be all that you need to generate your onload stylesheet.

To use this utility, check the "Apply transform" checkbox in the "Save As" dialog once you've finished preparing your
template in Word. Then click the Transform... button to browse for the file named create-onload-stylesheet.xsl. Lastly,
click Save. Just like that, you have transformed your static template prepared in Word to a dynamic template that can
be used as an onload stylesheet.

Example 4-11 shows the create-onload-stylesheet.xsl in its entirety. We'll take a closer look at certain parts of the
stylesheet to explain what they do. This stylesheet substantially emulates what you as a developer would otherwise
have to do manually to get from the merged XML template prepared in Word to a functioning onload stylesheet.

Example 4-11. create-onload-stylesheet.xsl, a utility for creating onload
stylesheets

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:out="dummy"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:v="urn:schemas-microsoft-com:office:vml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 xmlns:st="urn:schemas-microsoft-com:office:smarttags"

 exclude-result-prefixes="v st">

 <xsl:output indent="yes" encoding="utf-8"/>

 <!-- Use the "out" prefix for XSLT instructions in the result stylesheet -->

 <xsl:namespace-alias stylesheet-prefix="out" result-prefix="xsl"/>

 <!-- Create stylesheet root element and root template rule -->

 <xsl:template match="/">

 <out:stylesheet version="1.0">

 <out:template match="/">

 <xsl:apply-templates/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </out:template>

 </out:stylesheet>

 </xsl:template>

 <!-- By default, copy all elements, attributes, and text straight through

 so they will function as literal result elements, etc. -->

 <xsl:template match="@* | * | text()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

 <!-- Selectively copy attributes and top-level children of w:wordDocument -->

 <xsl:template match="w:wordDocument">

 <xsl:copy>

 <!-- Create xml:space attribute only in the final result

 of the onload transformation -->

 <out:attribute name="xml:space">preserve</out:attribute>

 <!-- Copy the rest of w:wordDocument's attributes -->

 <xsl:apply-templates select="@*[not(name()='xml:space')]"/>

 <!-- Copy any top-level elements that come before o:DocumentProperties -->

 <xsl:apply-templates select="o:DocumentProperties/preceding-sibling::*"/>

 <!-- Preserve only the o:Title property; leave out all private info -->

 <o:DocumentProperties>

 <xsl:copy-of select="o:DocumentProperties/o:Title"/>

 </o:DocumentProperties>

 <!-- Preserve processing instructions inside o:CustomDocumentProperties

 (in the same way that XML2WORD.XSL does) -->

 <o:CustomDocumentProperties>

 <out:if test="processing-instruction()">

 <o:processingInstructions dt:dt="string">

 <out:for-each select="processing-instruction()">

 <out:text><?</out:text>

 <out:value-of select="name()"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <out:text> </out:text>

 <out:value-of select="."/>

 <out:text>?></out:text>

 </out:for-each>

 </o:processingInstructions>

 <!-- Copy any other custom document properties -->

 <xsl:apply-templates select="o:CustomDocumentProperties/*"/>

 </out:if>

 </o:CustomDocumentProperties>

 <!-- Process the rest of the top-level children of w:wordDocument -->

 <xsl:apply-templates select="o:DocumentProperties/following-sibling::*

 [not(self::o:CustomDocumentProperties)]"/>

 </xsl:copy>

 </xsl:template>

 <!-- Set some XML-specific document options -->

 <xsl:template match="w:docPr">

 <xsl:copy>

 <!-- Process all other document options -->

 <xsl:apply-templates select="*[not(self::w:removeWordSchemaOnSave or

 self::w:showXMLTags)]"/>

 <!-- Turn "Save data only" back on (as it was likely only off in the

 first place so that this stylesheet could be applied) -->

 <w:removeWordSchemaOnSave/>

 <!-- Force "Show XML tags" to "off", as opposed to application state -->

 <w:showXMLTags w:val="off"/>

 <!-- Insert some commented-out XML document options that you may want

 to manually turn on -->

 <xsl:comment><![CDATA[

 These are some XML save options you may want to set:

 <w:ignoreMixedContent/>

 <w:useXSLTWhenSaving/>

 <w:saveThroughXSLT w:xslt=""/>

 <w:saveInvalidXML/>

]]></xsl:comment>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

]]></xsl:comment>

 </xsl:copy>

 </xsl:template>

 <!-- Remove these settings, because they were probably only set

 to enable this transformation in the first place -->

 <xsl:template match="w:useXSLTWhenSaving | w:saveThroughXSLT |

 w:saveInvalidXML"/>

 <!— Insert xsl:value-of instructions into custom run-level leaf tags

 (identified by the presence of placeholder text) —>

 <xsl:template match="*[@w:placeholder][ancestor::w:p]">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:copy-of select="w:permStart"/>

 <w:r>

 <xsl:copy-of select="(w:r/w:rPr)[1]"/>

 <w:t>

 <out:value-of>

 <xsl:attribute name="select">

 <xsl:call-template name="xpath-expression"/>

 </xsl:attribute>

 </out:value-of>

 </w:t>

 </w:r>

 <xsl:copy-of select="w:permEnd"/>

 </xsl:copy>

 </xsl:template>

 <!-- Wrap whitespace-only text in w:t elements with xsl:text to ensure

 that it doesn't get stripped when Word loads the onload stylesheet -->

 <xsl:template match="w:t[not(normalize-space(.))]">

 <xsl:copy>

 <out:text>

 <xsl:value-of select="."/>

 </out:text>

 </xsl:copy>

 </xsl:template>

 <!-- Generate XPath expressions for the select attributes of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Generate XPath expressions for the select attributes of

 xsl:value-of instructions that we create -->

 <xsl:template name="xpath-expression">

 <xsl:variable name="ancestor-elements"

 select="ancestor-or-self::*[not(self::w:* or self::sl:* or self::aml:* or

 self::wx:* or self::w10:* or self::v:* or

 self::o:* or self::dt:* or self::st:*)]"/>

 <xsl:for-each select="$ancestor-elements">

 <xsl:text>/</xsl:text>

 <xsl:value-of select="name()"/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

The highlighted template rule in Example 4-11 is the most important template rule of this stylesheet. Let's step through
it to see precisely what it does. Whereas the default behavior of the stylesheet is to copy all elements, attributes, and
text straight through, this template rule makes an exception for custom run-level leaf tags. It matches them using this
pattern:

 <xsl:template match="*[@w:placeholder][ancestor::w:p]">

This pattern matches elements that have both a w:placeholder attribute and an ancestor w:p element. The presence of
the w:placeholder attribute indicates that this is a leaf node (i.e., a custom tag that contains text only), and the presence
of an ancestor w:p element indicates that this must be a run-level tag (as opposed to a block-level, row-level, or cell-
level tag). The pattern assumes that you have explicitly specified placeholder text for all of your leaf elements, which is
true for the press release template and also a good practice in general.

Instead of just copying the element through as-is, the template rule creates a shallow copy of the element along with
its attributes (including the w:placeholder attribute):

 <xsl:copy>

 <xsl:copy-of select="@*"/>

Then, it copies the w:permStart element if present:

 <xsl:copy-of select="w:permStart"/>

Next, instead of copying all the runs and text straight through, it creates a single w:r element, preserving any run
properties that you defined when preparing the template in Word:

 <w:r>

 <xsl:copy-of select="(w:r/w:rPr)[1]"/>

Then, it creates a single w:t element that, instead of text, contains an xsl:value-of instruction:[3]

[3] The out prefix is used (in conjunction with the top-level xsl:namespace-alias instruction) to disambiguate
between XSLT instructions that are a part of this stylesheet and XSLT instructions that are part of the result
stylesheet. The XSLT processor treats out:value-of as a literal result element that will effectively output an
xsl:value-of instruction in the final result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsl:value-of instruction in the final result.

 <w:t>

 <out:value-of>

To generate the value of the select attribute, a template named xpath-expression is invoked, generating an XPath
expression that represents the precise path to the current custom element:

 <xsl:attribute name="select">

 <xsl:call-template name="xpath-expression"/>

 </xsl:attribute>

Finally, the open elements are closed and the w:permEnd element is copied through, if present:

 </out:value-of>

 </w:t>

 </w:r>

 <xsl:copy-of select="w:permEnd"/>

 </xsl:copy>

 </xsl:template>

The reason this is the most important template rule is that it inserts xsl:value-of instructions into the resulting stylesheet,
thereby making your Word template dynamic. When Word opens a press release XML document, for example, the
xsl:value-of instructions in the onload stylesheet dynamically populate the fields in the press release template with values
from the source XML document.

Whether you manually insert xsl:value-of instructions into the XML template you prepare in Word or you use a utility like
create-onload-stylesheet.xsl, your ultimate onload stylesheet should contain excerpts that look like this:

<ns1:street w:placeholder="12345 Main Street">

 <w:permStart w:id="1" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of select="/ns1:pressRelease/ns1:company/ns1:address/ns1:street"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="1"/>

</ns1:street>

The above is excerpted from pr2word.xsl, the onload stylesheet for our press release template. Again, ns1 is an auto-
generated namespace prefix mapped to the namespace for press release documents.

4.13.10.2 Manually customizing the onload stylesheet

Although the XSLT stylesheet created by create-onload-stylesheet.xsl may perfectly suffice for some templates, the
press release template needs some further customizations. In particular, it needs to handle the body text of press
release documents. As such, a stylesheet created by create-onload-stylesheet.xsl will not dynamically populate any
block-level elements, since the utility only supports run-level leaf elements. You will need to make some modifications
to the resulting stylesheet, because the body text is contained (necessarily) within a block-level element.

After finding the relevant spot in the resulting stylesheet, remove the hard-coded w:p elements inside the ns1:para
element. You want the contents of ns1:para to be dynamically populated based on the presence of para elements in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element. You want the contents of ns1:para to be dynamically populated based on the presence of para elements in the
source document being opened, so begin processing those:

 <ns1:body>

 <ns1:para w:placeholder="[Click here to enter body text]">

 <w:permStart w:id="12" w:edGrp="everyone" w:displacedBySDT="prev"/>

 <!-- ************* MANUAL CUSTOMIZATIONS *************** -->

 <xsl:apply-templates select="/ns1:pressRelease/ns1:body/ns1:para"/>

 <!-- *** -->

 </ns1:para>

 <w:permEnd w:id="12" w:displacedBySDT="next"/>

 </ns1:body>

Next, define some template rules that convert para elements in the source document to w:p elements, and leadIn
elements to runs having the "Lead-in Emphasis" style. All of the needed custom template rules are shown below:

 <!-- ************* MANUAL CUSTOMIZATIONS *************** -->

 <xsl:template match="ns1:para">

 <w:p>

 <w:pPr>

 <w:pStyle w:val="BodyText"/>

 <xsl:if test="not(node())">

 <w:rPr>

 <w:rStyle w:val="Lead-inEmphasis"/>

 </w:rPr>

 </xsl:if>

 </w:pPr>

 <xsl:apply-templates/>

 </w:p>

 </xsl:template>

 <xsl:template match="ns1:leadIn">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Lead-inEmphasis"/>

 </w:rPr>

 <xsl:apply-templates/>

 </w:r>

 </xsl:template>

 <xsl:template match="ns1:para/text()">

 <w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:r>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="ns1:leadIn/text()">

 <w:t>

 <xsl:copy/>

 </w:t>

 </xsl:template>

 <!-- *** -->

These are all very straightforward. There is just one twist. In the template rule for para elements, there is a test to see
if the current element is empty:

 <xsl:if test="not(node())">

 <w:rPr>

 <w:rStyle w:val="Lead-inEmphasis"/>

 </w:rPr>

 </xsl:if>

If you recall from Chapter 2, the w:rPr element, when inside the w:pPr element, signifies the run properties of the
paragraph mark. By assigning the "Lead-in Emphasis" style to the paragraph mark, you dictate the character style that
text will be in when the user begins typing. This is exactly the sort of behavior you want for lead-in text when a user is
first filling out the template. One way you'll know whether the user is filling out the template for the first time is if the
source document contains no data yet, i.e., if it contains a single empty para element—hence the test to see if the
current element is empty.

There is one more place where you need to make some manual modifications to the onload stylesheet. At this point,
you have finished defining the mappings between para elements in the source document and styled paragraphs in the
WordprocessingML document. However, you still haven't shown Word how to do the reverse—how to translate styled
paragraphs back to your custom XML. You do have the onsave stylesheet, harvestPressRelease.xsl, up and ready to go;
you just need to point Word to it. Edit the literal result elements inside w:docPr so that "Save data only" will be turned
off, "Apply custom transform" will be turned on, and the onsave stylesheet will be correctly referenced. Your changes
should look something like this:

 <!-- ************* MANUAL CUSTOMIZATIONS *************** -->

 <w:removeWordSchemaOnSave w:val="off"/>

 <w:useXSLTWhenSaving/>

 <w:saveThroughXSLT w:xslt="\\intra\pr\harvestPressRelease.xsl"/>

 <!-- *** -->

Finally, your final onload stylesheet, pr2word.xsl, is ready to deploy.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.14 Deploying the Template
There are a number of different ways to deploy XML editing solutions for Word. In this section, we'll look at one possible
way to deploy the press release template that works best in a corporate environment. Since deployment is an even
bigger topic in the context of Smart Documents, Chapter 5 will cover this topic in greater detail.

So far in this chapter, we have seen the contents (or partial contents, in the case of pr2word.xsl) of four of the press
release template's source files:

pressRelease.xsd (the press release schema)

pr2word.xsl (the onload stylesheet)

harvestPressRelease.xsl (the onsave stylesheet)

saveDataOnly.xsl (imported by the onsave stylesheet)

There are two more files we need to include (making a total of six): the initial XML template file, New Press
Release.xml, and a deployment manifest called manifest.xml. Together, these files help fulfill the generally twofold aim
of deployment:

Give users a way to create new XML documents (such as a template file to open)

Populate the schema library on each user's machine so that the solution will be invoked automatically when
opening existing XML documents

Now let's look at New Press Release.xml and manifest.xml in turn to see how they fulfill these goals.

4.14.1 The Initial XML Template File

The New Press Release.xml file, which we mentioned at the very beginning of the chapter, is what the IT department
delivers to the PR department. This could be deployed, for example, on a web site or on a local network share. Example
4-12 shows the contents of this file.

Example 4-12. The initial XML template, New Press Release.xml

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<?mso-solutionextension URI="http://xmlportfolio.com/pressRelease"

 manifestPath="\\intra\pr\manifest.xml"?>

<pressRelease xmlns="http://xmlportfolio.com/pressRelease">

 <company>

 <name/>

 <address>

 <street/>

 <city/>

 <state/>

 <zip/>

 <phone/>

 <fax/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fax/>

 </address>

 </company>

 <contact>

 <firstName/>

 <lastName/>

 <phone/>

 </contact>

 <date/>

 <title/>

 <body>

 <para/>

 </body>

</pressRelease>

This document consists of an empty "skeleton" instance of our schema. All of the expected elements are present, but
the leaf nodes are empty. They have not been filled out yet. When a user who already has the press release template
installed in their schema library opens this document, the pr2word.xsl stylesheet is applied to it, producing the press
release view we saw originally in Figure 4-1.

The key line that concerns us here is the mso-solutionextension PI:

<?mso-solutionextension URI="http://xmlportfolio.com/pressRelease"

 manifestPath="\\intra\pr\manifest.xml"?>

This processing instruction doesn't add any value for users who already have the press release template installed on
their machine. For users who don't, however, it instructs Word to retrieve the manifest file for this "solution." (The URI
pseudo-attribute contains the target namespace URI for the schema.) In this way, Word can automatically install the
necessary files into the machine's schema library without manual intervention. It automatically retrieves the manifest
file located at \\intra\pr\manifest.xml after confirming from the user that this is okay.

4.14.2 The Manifest File

The manifest file contains a reference to the schema and onload stylesheet files for the press release template. It could
also include other files, such as Smart Document code, secondary view stylesheets, etc. Example 4-13 shows the
manifest file for the press release template, manifest.xml.

Example 4-13. The manifest file for the press release template, manifest.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<manifest xmlns="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">

 <version>1.0</version>

 <uri>http://xmlportfolio.com/pressRelease</uri>

 <solution>

 <solutionID>sdfa097sdfa0</solutionID>

 <type>schema</type>

 <alias>Press Release</alias>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <alias>Press Release</alias>

 <file>

 <type>schema</type>

 <version>1.0</version>

 <filePath>\\intra\pr\pressRelease.xsd</filePath>

 </file>

 </solution>

 <solution>

 <solutionID>9a871342098vxcasdf</solutionID>

 <type>transform</type>

 <alias>Elegant</alias>

 <documentSpecific>false</documentSpecific>

 <context>http://schemas.microsoft.com/office/word/2003/wordml</context>

 <file>

 <type>primaryTransform</type>

 <version>1.0</version>

 <filePath>\\intra\pr\pr2word.xsl</filePath>

 </file>

 </solution>

</manifest>

When Word installs this "XML expansion pack," it retrieves each of the files referenced within the manifest. In this case,
it downloads the pressRelease.xsd and pr2word.xsl files and installs them into the schema library.

Ideally, the manifest would include all the files of our template, not just the schema and onload stylesheet files. This
would allow for a central point of deployment. However, as of this writing, we have not yet figured out a way to
reference onsave stylesheets installed in the schema library. Recall the relevant line from our onload stylesheet,
pr2word.xsl:

 <w:saveThroughXSLT w:xslt="\\intra\pr\harvestPressRelease.xsl"/>

The w:xslt attribute must point to the file location of an onsave stylesheet. According to the WordprocessingML schema,
the w:saveThroughXSLT element can also have a w:solutionID attribute, which sounds like precisely what we would use to
reference a stylesheet installed in the schema library. Unfortunately, Microsoft has not documented how to go about
making that reference, and everything we've tried so far has failed. For that reason, the manifest for the press release
template does not install the onsave stylesheet. Instead, the stylesheet must remain in a shared location to be
accessed directly each time it is used. In this case, that location is \\intra\pr\harvestPressRelease.xsl.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.15 Limitations of Word 2003's XML Support
As you've probably already figured out, there are some serious limitations to this first version of Word's custom XML
schema support. To conclude the chapter, we'll explicitly address some of these, if for no other reason than to assure
you that, no, you're not missing something.

4.15.1 Schemas and Namespaces

In Word 2003's world view, there is a one-to-one correspondence between schemas and namespace URIs. The schema
library can contain only one schema for a given namespace URI. In fact, Word uses "schema" as basically synonymous
with "namespace URI." Considering the fact that it is the namespace of a given XML document's root element that
determines what onload "XML data view" stylesheet to apply, this means that there are two important limitations to
keep in mind:

You cannot create two separate editing solutions (using different schemas) that have the same namespace URI

Any XML document you wish to edit in Word must have a namespace, which rules out, for example, Docbook.

This assumes that you need the onload stylesheet to be applied automatically without the user's intervention. If you are
willing to force users to manually browse for the XSLT stylesheet to apply, then it is possible to overcome both of these
limitations. Depending on your users, it may or may not be feasible to rely on their doing this. Also, if you want on-the-
fly schema validation to work, your stylesheet will need to transform the source XML document into an XML document
that is in a namespace that uniquely identifies an XML schema in the schema library. In that case, you would also need
to provide an onsave XSLT stylesheet to change or remove the namespace when the user saves the document.
However, these are burdens on the developer that can be overcome with a bit of cleverness. In the end, the real
question is whether it's feasible to require users to manually find the appropriate onload XSLT stylesheet each time they
open a particular type of XML document. If not, then you'll have to stick to using a unique namespace for each
document type's root element.

This problem is somewhat alleviated by the fact that Word, when it opens an arbitrary XML
document, also lists any XSLT stylesheets referenced through the xml-stylesheet PI, in its
list of "XML Data Views." For instance documents that don't use namespaces, this is the
only way to automatically associate the document with an XSLT stylesheet. If you're willing
to include an xml-stylesheet PI just for the sake of Word, then this may effectively solve this
bootstrapping problem without requiring too much user intervention.

4.15.2 Document Protection Doesn't Go Far Enough

Document protection is an independently introduced feature in Word 2003. It is not tightly integrated with the XML
editing features. It is up to the developer to maintain common boundaries between permission areas and custom XML
tags.

Formatting restrictions are all or nothing. You can't distinguish between the allowed styles for one field and the allowed
styles for another. There is no way to associate particular styles with particular elements except through the use of
Smart Documents.

Also, while formatting restrictions prevent the user from applying direct formatting and from using any forbidden styles,
it does not prevent the user from inserting tables, images, or other objects.

4.15.3 Document Protection Conflicts with Multiple Views

Editing restrictions unfortunately don't play nicely with XML data views. They are excessively sticky. In other words,
once the default onload stylesheet has been applied, Word fails to update the document protection settings for the
loaded document when it applies another view as elected by the user. In the press release template, for example, the
default view has editing restrictions turned on. If the user tries switching to the "Data only" or some other view, Word
chokes and is not able to make the transition correctly. Conversely, when the default view does not have editing
restrictions turned on, they won't be turned on when the user switches to a different view either, regardless of whether
the other view defines editing restrictions to be in force. Effectively, you have to choose between using document
protection and providing multiple editing views for the same document type. This is most likely buggy behavior
exploited by the press release template. Hopefully it will be addressed soon in a future update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exploited by the press release template. Hopefully it will be addressed soon in a future update.

4.15.4 Only One View at a Time

Once the user has begun editing a document after selecting a particular XML data view, they cannot subsequently
change the view. This limitation is more a logical consequence of Word's architecture for editing XML than it is a
particular deficiency of the product. The reason it is impossible to change the view is that the WordprocessingML
document that's a result of the onload stylesheet retains no knowledge of the source document from which it was
derived. Once the user makes a change to it, there is no way to automatically propagate those changes back to the
source document. It could have tried to apply the document's default save settings to reconstruct the document, but
this doesn't necessarily make sense for all of the use cases that the custom Word XML functionality is designed to
support.

Contrast this with InfoPath's "mapping" approach, which uses XSLT to define a single, round-trip mapping between the
source document and editing view, allowing users to switch views while in the middle of editing. See Chapter 10.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Developing Smart Document Solutions
Microsoft Word's built-in capabilities for integrating XML shown in the previous chapter provide a foundation for creating
XML documents in Word. The results, however, feel more like an import/export option than a complete application. In
many cases, that functionality is perfectly acceptable, but Microsoft also provides a set of options for creating more
interactive environments for editing XML documents in Word through the Smart Documents framework.

Smart Documents let you create templates that help users create the information that goes in the document, taking a
huge step beyond the material covered in the previous chapter, which showed how to build spaces in the document
where users could work. The Smart Document approach lets you integrate all kinds of data sources, from multiple XML
documents to web services, and expands Word's XML frontiers substantially.

At the same time, however, Smart Documents come with a price: they require working with managed code, the
application object model, and an API that is far from elegant. It takes a fair amount of effort to move from an XML-
enabled Word document to Smart Documents, and you'll need to evaluate your projects carefully to determine if the
benefits are worth the effort.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 What's a Smart Document?
A Smart Document has built-in intelligence that assists the information worker in the process of creating and updating
documents and spreadsheets. Smart Documents can query a web service for the latest financial information about a
company and automatically insert the returned data into the document. They can access a corporate database and
retrieve client information necessary to complete a contract. They can connect to a document repository or portal site
and retrieve reusable fragments, such as standard legal notices and disclaimers, or product and service descriptions,
and add them to a new or existing document. They can validate that a user has supplied all of the necessary
information before saving and forwarding it on to the next step in the workflow. Providing quick and easy access to
accurate, up-to-date information and eliminating the need for re-keying or copying from one application to another,
Smart Documents can be of tremendous benefit to the end user, especially for editing XML documents.

Word 2003's core XML support provides no method for associating elements in context with Word styles. This is
standard functionality in the market-leading XML-for-documents applications and is typically accomplished through
some type of stylesheet (DSSSL, FOSI, CSS, or proprietary solutions). As we saw in Chapter 4, an onload XSLT
stylesheet can apply styles to an existing XML instance when it is first opened in Microsoft Word. However, once any
changes have been made to the document, the XML Document task pane (which is used to select an onload stylesheet)
is no longer available. Without a Smart Document solution, not only would the end user have to manually select each of
the appropriate elements to be inserted into the document (using the XML Structure task pane or selecting "Apply XML
Element" from the pop-up menu), they would also need to manually associate formatting information with each text
fragment created.

Unlike traditional XML authoring applications such as Arbortext's Epic Editor or Adobe's FrameMaker, Smart Documents
are capable of keeping the markup under the covers; users can peek if they wish, but there is no requirement for them
to learn all about XML schemas and the particular vocabulary and grammar associated with their documents.

Smart Document technology is new in Office 2003 and designed to work with Word and Excel. An extension of the
Smart Tags API introduced in Office XP, Smart Documents extend the programmability of these desktop tools to
support development of solutions. A solution is dedicated to a particular task, such as writing a technical manual, a
sales proposal, a quarterly SEC filing, or an expense report, and incorporates functionality designed to make the
information worker's job easier. Smart Documents require an XML framework, and can include all of the features and
functionality of the applications themselves through the use of the Word or Excel Object Models. Smart Documents can
also be extended through the use of Web Services, SharePoint Services, and other database connectivity methods to
dynamically populate and update content. Smart Documents can also incorporate workflow capabilities, such as
checking on save that all required components have been supplied and then forwarding the document to a manager for
approval. Microsoft provides support for Smart Document development in several languages: Visual Basic 6.0, Visual
C++ 6.0, Visual Basic .NET, and Visual C# .NET.

The Smart Document SDK (sdocsdk.msi) can be downloaded from the Microsoft web site.
Since the location is subject to change, the best way to locate the file is to go to:
http://www.microsoft.com and search for sdocsdk.msi. The SDK includes documentation,
help files, and several sample applications (including source code) developed in each of the
four supported languages.

While it has been possible for quite some time to automate certain functions within the Microsoft Office Suite, a Smart
Document raises the art to a new level. The Microsoft Office 2003 "System" provides a robust software development
environment for building custom applications within no-longer-ordinary desktop tools. Rather than macros residing in
individual template or document files, Smart Document code is distributed via a .dll that is associated with the
document or spreadsheet through a manifest file. The developer is given access to the Task Pane where numerous
actions are displayed for the end user along with help content. New protection functionality means that user access can
be controlled on a granular level. You can restrict the use of styles, allowing you, rather than the end user, to control
the formatting through the Smart Document application. Sections of the document can be protected, ensuring that
required content is not accidentally removed. The document appears to have some level of intelligence about what it is
and how it works.

5.1.1 Smart Document Solutions

A solution, also referred to as an "expansion pack," consists of several components. At a minimum, an expansion pack
contains the following:

A .dll

A schema

A manifest file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A manifest file

In addition, it most likely will also include one or more templates and help files, XSLT files, and potentially media files
(images, audio or video clips, etc.). Microsoft Word solutions might also include document fragments.

While Smart Document solutions can be built for either Word or Excel, this chapter focuses
on the intricacies of developing solutions for Microsoft Office Word 2003.

5.1.2 Smart Document Components

Each component of a Smart Document plays an integral part in the overall solution. Care must be taken to ensure that
each component is synchronized with the others; if an element name has been modified in the schema and is the
subject of a Smart Document control, it must also be updated in the programming code and any XSLT files. Since
pointers to fragments are to absolute paths, care must be taken to ensure that each file is included in the installation
and placed in the appropriate location. The Smart Document components are as follows:

Schemas

Schemas are the foundation of any structured markup implementation. A schema defines a vocabulary and
grammar for a specific purpose, such as the creation of semiconductor datasheets, legal contracts, or user
manuals. "Vocabulary" refers to the unique identifiers assigned to each of the components of the information
set (i.e., elements), and "grammar" refers to the rules of how the words can be put together to form larger
groups. Careful analysis of the information set is required to ensure that the schema to be used will provide the
necessary support.

Styles and templates

Templates are, for the most part, empty documents that contain all the necessary information about a
particular document type to allow new document instances to be created. In particular, this includes page
layouts, styles, header/footer information, and fonts. There are four style categories in Word: paragraph,
character, list, and table. Each named style is based on one of these four types and contains numerous settings
that define the placement and appearance of any content associated with that specific style. For a Smart
Document solution, there is another critical component: a shell XML instance with placeholder text. Boilerplate
content may also be included.

XSL transformations

XSL transformations play a vital role in a Word Smart Document solution. As described in Chapter 4,
transformations can be called when either opening or saving a document, manipulating the source or resulting
data as necessary. Transformations can also be incorporated into the solution itself to apply styles and other
formatting characteristics, or otherwise affect the result of an action.

.dll files

The functionality of a Smart Document solution operates through the ISmartDocument interface. The properties
and methods of ISmartDocument, in conjunction with the objects, properties, and methods of the Word or Excel
Object Model, are the workhorses of the solution.

Manifest file

The manifest file is an XML instance that defines each of the expansion pack components and their locations. It
also contains other valuable information about the solution that can be used to automatically trigger updates.

Miscellaneous files

There can be numerous files associated with a Smart Document solution, including image, sound and video
files, document fragments, help files, Access database files, other XML files, and just about anything else that
may be necessary (or useful) for your particular application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Creating a Smart Document Solution
The document shown in Figures Figure 5-1 and Figure 5-2 was created using a fairly simple Smart Document solution.
The remainder of the chapter will walk through each of the steps involved in building a similar application. While far
from robust, it touches on each of the major capabilities incorporated into the Smart Document API and will hopefully
set your imagination in motion.

Figure 5-1. Article created with Smart Document solution

Figure 5-2. Article with XML Tag View on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Smart Document solutions can be created using Visual Basic 6, Visual Basic .NET, C++ 6, or C# .NET. The examples in
this section are all written using VB .NET; however, the Microsoft Office 2003 Smart Document SDK includes examples
in all four languages.

A number of articles relating to the creation of Smart Documents can be found on the
MSDN web site at http://msdn.microsoft.com/office.

The following components (schemas, XML instance, templates, and styles) will be used as the basis for the examples in
this section. The schema is fairly simplistic and included for demonstration purposes only; the intended usage is for
magazine article submissions.

5.2.1 Schemas

As mentioned in Chapter 2, Microsoft Office 2003 supports only W3C XML schemas. If you're working with existing
SGML or XML document instances, it's likely that you'll have DTDs rather than schemas associated with these instances.
This section provides some insight about migrating or extending existing XML environments to Microsoft Word. While far
from an exact science, the following guidelines will help you avoid problem areas. Only through experimentation will
you be able to determine what works best for your particular applications.

5.2.1.1 Existing Word environments

Chances are good that if your users are already using Microsoft Word to author, revise, and maintain their documents,
you'll be able to create a schema and build a suitable XML-based Smart Document solution. Documents that incorporate
information from external sources can take advantage of database connectivity and web services to automatically
populate information and ensure that it is always current.

5.2.1.2 Existing XML (or SGML) environments

Numerous organizations already take advantage of structured markup for document authoring, editing, and delivery. If
you are planning to develop a smart document solution using an existing DTD or schema, give careful consideration to
the applicability of such schemas to the goals of the tasks to be designed in Word. If you are working with a schema
that is fairly complex, it might be more appropriate to create subsets and build a suite of solutions focused on specific
tasks.

Characteristics of a complex schema include, but are not limited to:

More than a handful of elements allowed at common insertion points

Numerous elements with similar meaning that can easily be confused

Elements rarely used

Deep structures (common to DTDs and schemas that are designed to produce multi-volume information sets)

If your organization has an existing repository of XML documents, an analysis of the markup actually used versus what
is allowed by the schema can be a valuable resource. Not only will this aid in the development of any Smart Document
solutions, it can also serve to simplify any other tools already in existence that must be supported.

Refer to Appendix D for information on converting already-existing DTDs to schemas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refer to Appendix D for information on converting already-existing DTDs to schemas.

5.2.1.3 Starting from scratch

If your organization doesn't already have DTDs or schemas in place, you will need to either create your own, or find
schemas in the public domain suited to the task at hand. It's important to keep the goals of the project in mind while
developing schemas; these goals will play an important role in determining the level of granularity to be supported and
the specificity of the markup itself, while ensuring that markup will be interchangeable with any other known processes.

5.2.1.3.1 Customer-specific DTDs or schemas

The process of performing an analysis on an information set for the purpose of creating schemas can be quick and easy,
drawn out and complex, or anywhere in between. It depends on several factors:

Depth of information set (very complex markup models to support external processes, such as reference works
or aircraft documentation versus newspaper articles or consumer-oriented user guides)

Breadth of information set (multiple information delivery types from a single source, such as user guides,
administrative manuals, reference manuals, training materials, and marketing materials versus single-purpose
documents such as sales proposals or white papers)

External information sets (compatibility with other data sets that will become inputs, integrated with, or accept
result data from the solution)

Any and all potential users should have some input into the analysis; it is common for different departments to use
different names for similar components, or to view data in very different ways from each other. These differences do
not need to be reconciled; instead, unique Smart Document solutions can be created that are targeted to the various
groups. One common information set with XML at its core; different frontend applications designed to meet the needs of
the individual information worker: that's the power of XML!

5.2.1.3.2 DTDs or schemas developed by committee

Organizations often use industry-standard or consortia-developed schemas. One mistake to avoid is choosing an
existing schema rather than developing your own because it seems like the easier thing to do. Before making this
decision, it is important that an analysis is performed of your organization's information set, and that the goals and
objectives of your overall project are documented. The results can then be evaluated against the existing schema to
determine whether or not the chosen schema is appropriate for your organization. Chances are that once you've done
the analysis work, you'll discover that creating the actual schema is a simple task, and your organization won't be
dependent an outside group for maintenance and revisions.

When using a particular schema in order to meet governmental or corporate requirements, it is usually possible to
create a simplified subset for your particular application. The subset will be valid within the overall schema, yet the
developers and end users will not need to deal with some of the inherent complexities of these behemoths. Another
alternative is to create a mapping from your internal schema to the one required. This will allow your end users to work
in an environment that is familiar to them, yet still enable your organization to meet the stated requirements by
transforming the resulting information set.

Microsoft Word has always been suited to a certain class of documents, and this hasn't really changed in Office 2003. If
you are currently using Word to produce your documents, then chances are that you'll be able to build an XML-enabled
smart document solution to accommodate it. If your documents currently require a more sophisticated composition
tool, such as Adobe's FrameMaker, or a full-time dedicated XML editor, such as Arbortext's EpicEditor, then Word, even
with Smart Documents, most likely will not be able to support your requirements unless you are creating a simplified
solution.

5.2.1.4 The SDArticle schema

The SDArticle schema is by no means comprehensive, but it is enough to show how Smart Documents work. As shown
in Example 5-1, it consists of an article root element, followed by a title and introductory paragraphs. From there the
article is divided into four levels of sections, which contain a mix of paragraphs, lists, warnings, notes, and code blocks.
Inline elements consist of emphasis, subscript, superscript, and code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-1. The SDArticle example schema (whitespace added for readability)

<xs:schema targetNamespace="http://www.office-xml.com/ns/sdarticle"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.office-xml.com/ns/sdarticle"
 elementFormDefault="qualified">

<xs:element name='Article'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='ArticleTitle'/>
 <xs:choice maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='Section1'/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name='ArticleTitle'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='BulletList'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Item' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name='Code'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='CodeExample'>
 <xs:complexType mixed='true'>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Emphasis'/>
 <xs:element ref='Superscript'/>
 <xs:element ref='Subscript'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='Definition'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Para' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Emphasis'>
 <xs:complexType mixed='true'>
 <xs:attribute name='CDATA' default='italic'>
 <xs:simpleType>
 <xs:restriction base='xs:string'>
 <xs:enumeration value='bold'/>
 <xs:enumeration value='italic'/>
 <xs:enumeration value='underscore'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='Heading1'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Heading2'>
 <xs:complexType mixed='true'>
 </xs:complexType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:complexType>
 </xs:element>

 <xs:element name='Heading3'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Heading4'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Item'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Para' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Note'>
 <xs:complexType>
 <xs:choice maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='NumberList'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Item' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Para'>
 <xs:complexType mixed='true'>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Code'/>
 <xs:element ref='Emphasis'/>
 <xs:element ref='Superscript'/>
 <xs:element ref='Subscript'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section1'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading1'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 <xs:element ref='Section2' minOccurs='0' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section2'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading2'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 <xs:element ref='Section3' minOccurs='0' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section3'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading3'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 <xs:element ref='Section4' minOccurs='0' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section4'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading4'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name='Subscript'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Superscript'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Term'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='VariableEntry'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Term'/>
 <xs:element ref='Definition'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='VariableList'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='VariableEntry' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Warning'>
 <xs:complexType>
 <xs:choice maxOccurs='unbounded'>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:choice maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

While having a schema is important, it is also a good idea to create a sample instance for development and testing that
incorporates each of the elements (and their possible attribute values) and the context in which they can occur. This
helps to ensure that you don't leave anything out, whether in your style setup, your actions pane, or your
transformations. Example 5-2 shows just such a sample instance.

Example 5-2. A sample document conforming to the SDArticle schema

<?xml version="1.0" encoding="UTF-8"?>
<Article xmlns="http://www.office-xml.com/ns/sdarticle">
 <ArticleTitle>Article Title</ArticleTitle>
 <Para>This is the introductory paragraph.</Para>
 <Section1>
 <Heading1>Heading 1</Heading1>
 <Para>This is a paragraph. ... This is a paragraph.
 <Emphasis CDATA="italic">This sentence is in italics.</Emphasis>
 This is a paragraph.<Superscript>1</Superscript>
 </Para>
 <CodeExample>Code Example Code Example Code Example
 Code Example Code Example Code Example
 Code Example Code Example Code Example</CodeExample>
 <VariableList>
 <VariableEntry>
 <Term>Term1</Term>
 <Definition>
 <Para>Definition of term1.</Para>
 </Definition>
 </VariableEntry>
 <VariableEntry>
 <Term>Term2</Term>
 <Definition>
 <Para>Definition of term2.</Para>
 </Definition>
 </VariableEntry>
 </VariableList>
 <NumberList>
 <Item>
 <Para>Numbered list item 1</Para>
 </Item>
 <Item>
 <Para>Numbered list item 2</Para>
 </Item>
 ...
 </NumberList>
 <BulletList>
 <Item>
 <Para>Bulleted list item 1</Para>
 </Item>
 <Item>
 <Para>Bulleted list item 2</Para>
 </Item>
 ...
 </BulletList>
 <Note>
 <Para>This is a note. ... This is a note.</Para>
 <NumberList>
 <Item>
 <Para>Numbered list inside a note - item 1.</Para>
 </Item>
 <Item>
 <Para>Numbered list inside a note - item 2.</Para>
 </Item>
 </NumberList>
 </Note>
 <Warning>
 <Para>This is a warning. ... This is a warning.</Para>
 <BulletList>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <BulletList>
 <Item>
 <Para>Bulleted list inside a warning - item 1</Para>
 </Item>
 <Item>
 <Para>Bulleted list inside a warning - item 2</Para>
 </Item>
 </BulletList>
 </Warning>
 <Section2>
 <Heading2>Heading 2</Heading2>
 <Para>This is a paragraph. <Emphasis CDATA="italic">This sentence
 is bold.</Emphasis> This is a paragraph.<Superscript>2</Superscript>
 </Para>
 ...
 <Section3>
 <Heading3>Heading 3</Heading3>
 <Para>This is a paragraph. <Emphasis CDATA="italic">This sentence
 Is underscored.</Emphasis> This is a paragraph.
 <Superscript>3</Superscript>
 </Para>
 ...
 <Section4>
 <Heading4>Heading 4</Heading4>
 <Para>This is a paragraph. <Code>This is inline code.</Code>
 This is a paragraph.<Superscript>4</Superscript>
 </Para>
 ...
 </Section4>
 </Section3>
 </Section2>
 </Section1>
</Article>

Figure 5-3 shows Example 5-2 loaded into Word 2003.

Figure 5-3. Sample instance in Word 2003

5.2.2 Templates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Templates are keepers of styles. It is not uncommon to have several templates, each using the same set of style
names, but with different formatting characteristics and page layouts defined in each. This allows the same XML
schema, transformations, and Smart Document code to be used to create multiple document types.

5.2.3 Styles

The most common way to associate formatting characteristics with XML elements is through the use of styles. A style is
merely shorthand for any number of individual traits, such as font, point size, leading, indent, pre-space, post-space,
widow/orphan rules, hyphenation rules, and the like. While it is possible to use individual codes (often referred to as
primitives) to affect the desired visual appearance, it is typically avoided.

When creating a Smart Document solution, a set of styles should be created that conforms to the desired look. You will
need to create a separate style for each level of heading, for various types of paragraphs, and for any other unique
components that are part of your document set. You should also create character styles to apply inline formatting
characteristics such as bold, bold italic, superscripts, and the like. Office 2003 allows styles to be protected; by creating
named styles for each type of formatting required you can prevent the end user from creating new styles, modifying
existing styles, and using the formatting icons on the toolbar, ensuring a consistent appearance for your documents.

For more information on creating styles and templates, refer to Walter Glenn's Word 2000
in a Nutshell and Word Pocket Guide (O'Reilly).

The sample application will need several styles. Each of these styles will be applied to the document based on the
particular element. Elements alone will not be sufficient to identify the appropriate style; instead, we'll need to evaluate
the element in the context of its surroundings—its parent, ancestors and siblings. The paragraph style names (and their
associated schema elements) are listed in Table 5-1.

Table 5-1. Paragraph styles
Paragraph style name Element-in-context

ArticleTitle ArticleTitle

SectionHead1 Heading1

SectionHead2 Heading2

SectionHead3 Heading3

SectionHead4 Heading4

ParagraphDefault Para

NumberListItem <NumberList><Item><Para>

BulletListItem <BulletList><Item><Para>

Note <Note><Para>

NoteNumberListItem <Note><NumberList><Item><Para>

NoteBulletListItem <Note><BulletList><Item><Para>

Warning <Warning><Para>

WarningNumberListItem <Warning><NumberList><Item><Para>

WarningBulletListItem <Warning><BulletList><Item><Para>

VariableListEntry <VariableEntry>

CodeBlock <CodeExample>

Character styles, listed in Table 5-2, are also necessary. Note that several styles are determined by an attribute value
rather than by an element's positioning within the overall structure of the document instance.

Table 5-2. Character styles
Character style name Element-in-context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Italic <Emphasis type="italic">

Bold <Emphasis type="bold">

Underscore <Emphasis type="underscore">

Superscript <Superscript>

Subscript <Subscript>

InlineCode <Code>

As long as you keep the names of your styles consistent, you will be able to use the same
transformations and smart document solution code with multiple styles and templates.

Our sample XML instance in Word 2003, with styles associated as indicated above and with the Styles and Formatting
task pane displayed, is shown in Figure 5-4.

Figure 5-4. Sample XML instance in Word 2003

5.2.4 Shell Instance

Many Word templates contain placeholder text; that is, text that describes to the end user the type of content that is to
be inserted at a particular location within the document. When creating a template for a Smart Document solution, the
template should include a shell XML instance, containing at least the top-level element that will be used for the
particular document type as well as any required elements and structure guidelines. When tags are turned off (which is
anticipated to be the default mode for most Smart Document applications), the user will see, instead, placeholder text.
Not only does this serve as a form of help, it also ensures that the information worker knows exactly where content is
allowed within the XML document structure. Once the shell is in place, the Document Actions Task Pane will take over
the job of displaying the various options that are allowed at any particular point within the instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the job of displaying the various options that are allowed at any particular point within the instance.

5.2.5 Boilerplate

Another common feature of a template is boilerplate text. This may be default header/footer content, legal notices,
company descriptions, or any other information that is routinely included as part of the particular document type.
Storing the content directly in the template means it will be included automatically each time the template is used and
also provides a single location for updating.

A template, shown in Figure 5-5, has been created that contains the requisite page layout information along with the
styles listed in Tables Table 5-1 and Table 5-2. Since styles are linked to specific XML elements, the styles have been
protected, meaning that no additional styles can be added to the document, the styles cannot be changed, and only
those styles listed can be used. A minimal document instance is included as part of the template to get the end user
started.

Note the placeholder text (the shaded gray areas) as well as the grayed out areas on the toolbar. Since the styles have
been protected, the user does not have the option of selecting the bold, italic, justification, or other formatting icons.
Placeholder text is only displayed when tags are turned off, the anticipated mode for most end users.

Figure 5-5. Smart document authoring template with protected styles

5.2.6 XSL Transformations

XSLT plays a vital role in any Smart Document solution. As illustrated in Chapter 4, transformations are used to
integrate external schemas with WordprocessingML in order to create formatted Word documents. Transformations can
also be invoked when saving a document, including the built-in transform that extracts all Word-related markup, leaving
only the external schema-related markup in the result instance. A third use for transformations may not be quite as
obvious: transformations can be invoked as part of any action called from the Document Actions Task Pane. This allows
for styles to be applied as markup is inserted in the instance.

Only the InsertXML method, available on both Selection and Range objects, supports running transformations within
document actions. This can be very handy when inserting blocks of XML markup, associated styles, and placeholder
text. For instance:

Range.InsertXML("<VariableList></VariableList> ", "path\transform.xsl")

will insert the element VariableList and then call the named XSLT file. InsertXML must return a valid WordprocessingML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will insert the element VariableList and then call the named XSLT file. InsertXML must return a valid WordprocessingML
document; upon matching the root, all the necessary WordprocessingML markup is inserted down to the opening w:body
element. At that point, the appropriate template is selected (matching the element VariableList). Rather than executing
the numerous steps involved one by one, the transform, as shown in Example 5-3, performs all steps in a single pass.

Example 5-3. An XSLT transformation for applying style to markup inserted in an
instance

<xsl:template match="/">

 <w:body>
 <xsl:apply-templates select="*"/>
 </w:body>
 </w:wordDocument>
</xsl:template>

<xsl:template match="VariableList">
 <w:p/>
 <ns0:VariableList>
 <w:p>
 <w:pPr>
 <w:pStyle w:val="VariableListEntry"/>
 </w:pPr>
 <ns0:VariableEntry>
 <ns0:Term w:placeholder="Enter term here">
 <w:r>
 <w:rPr>
 <w:rStyle w:val="Term"/>
 </w:rPr>
 <w:r>
 <w:t/>
 </w:r>
 </w:r>
 </ns0:Term>
 <w:r>
 <w:tab/>
 </w:r>
 <ns0:Definition>
 <ns0:Para w:placeholder="Enter description or definition of term">
 <w:r>
 <w:t/>
 </w:r>
 </ns0:Para>
 </ns0:Definition>
 </ns0:VariableEntry>
 </w:p>
 </ns0:VariableList>
 <w:p/>
</xsl:template>

When creating action transformations, keep your WordprocessingML markup to a minimum; that is, only use what is
required to create a valid WordprocessingML document instance. Otherwise you may suffer from performance issues.

See Chapter 4 and Appendix B for more information on using XSLT with Word.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Coding the Smart Document
Now that you have the XML foundation laid, it's time to integrate the data with code for manipulating it.

5.3.1 Required Document Actions

For our Smart Document solution, several actions will be required:

Apply markup and style to inline components (superscript, subscript, bold, italic, underscore, and code).

Insert block-level components (paragraphs, code blocks, lists, notes, and warnings).

Insert additional entries into lists.

Insert boilerplate warnings.

Add a graphic.

Create a hyperlink to a specific location.

Each action will contain a caption, a description, and help information for the end user. Upon selection, the appropriate
markup will be inserted and styles applied. Pay careful attention to the Notes and Warnings; Microsoft Word, in this first
release of Smart Document functionality, doesn't always behave as expected.

In general, beware of the cursor location. The values returned by your code may not be
what you anticipated; this might be due to the current setting of the tag display.

Also, paragraph styles can only be applied to objects that look like a paragraph. If your
markup runs in with another style, it will either inherit the current style characteristics or
change the entire block to the new style.

5.3.2 Designing the Document Actions Task Pane

You have created, tested, tweaked, and refined your schemas. Your stylesheets are elegant, sophisticated, funky, or
whatever other look is suited to the task at hand. The XSL transformations take your existing XML instances and
magically convert them into documents any Word user would love. Unfortunately, the end users will never see most of
this work. Instead, they will use a very simple interface that masks the complexities buried deep inside the solution.
They will use it to add content, to manipulate the markup, and to serve as a guide throughout the document creation
and revision cycles.

Remember—it's all about end users. If your solution does not make users' jobs easier, increase their productivity, raise
the quality of the final products they produce, and provide other clearly visible benefits, end users will not use it. Or
they will not use it properly. The XML that comes out of the backend will be useless—or at least in need of some help.
The reason knowledge workers have been anxiously awaiting the time when they could work with their structured
content in Microsoft Word is because of Word's familiar interface. The goal of the UI designer is to ensure that the
Document Actions task pane meets their expectations.

Achieving this goal may not be easy. The Document Actions task pane is the end user's interface to the Smart
Document solution. It would be nice if the Microsoft Word developers had created a method by which you could
associate actions with a specific element, or even better yet, an element in context (such as title when its parent
element is table versus title when its parent element is chapter), but that isn't how it works. Actions are associated with
elements, but rather than limit the action to the confines of the element boundaries, the actions instead are inherited
by child and descendent elements as well. This means that if your structure contains five levels—<document><section>
<procedure><step><paragraph>—and the cursor is positioned somewhere within paragraph, any actions associated with
the document, section, procedure, step, and paragraph elements will be visible in the task pane.

The Document Actions task pane refreshes each time the location of the insertion point
within the document instance changes. Be sure to design the interface with this in mind,
eliminating lengthy re-draws whenever possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The task pane, shown in Figure 5-6, appears by default on the right-hand side of the application window. It
automatically displays any available document actions whenever a Smart Document solution is attached. As it takes up
only about 20% of the available real estate, it's important that the content associated with each of the actions is clear
and concise, taking maximum advantage of the limited space.

Figure 5-6. Authoring template and Document Actions task pane

For each Smart Document element defined, the task pane will display one or more controls associated with the element
(as long as the element is an ancestor of the current insertion point). There are only a few options available to help
format the display. In order to make the task pane as user-friendly as possible, each control group should begin with a
caption and possibly some very brief explanatory text indicating how the actual control(s) should be used, followed by
the controls themselves, and some help text that provides additional details about their usage.

Good user interface design principles call for consistent usage of display elements. While it
is possible to use all 15 control types within a single Smart Document solution, selecting
the best control for the task at hand and then using that same control for similar tasks will
shorten training time and help ensure proper usage.

5.3.3 The Word Object Model

If you've ever written Word macros or done Visual Basic for Applications (VBA) programming, you've probably
encountered the Word Object Model. An interactive map of the model can be found in Microsoft Office Word 2003 Help

 Microsoft Word Visual Basic Reference Microsoft Word Object Model. Unfortunately, all of the sample code
contained in the help files is written in VBA rather than VB.NET or any of the other languages used for creating Smart
Documents. All is not lost, however; there's a section in the Visual Studio Tools for Office help system that discusses
converting code from VBA to VB.NET.

The two most commonly used objects are Range and Selection. The Selection object represents the area currently

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The two most commonly used objects are Range and Selection. The Selection object represents the area currently
selected, or the current insertion point. The Range object can be either manually set or created from a Selection object.
In most of our code samples, we begin by determining the current cursor location and setting a Range object equivalent
to an XML element and its content (XML Node); that is, everything between a start and end element tag, including the
tags themselves. We then typically collapse the node so we can insert a new element, assign the appropriate style, and
then add placeholder text so the end user will know exactly where to enter the new content.

The Word object model is covered in depth in the Microsoft Word Visual Basic Reference included in the Microsoft Office
Word 2003 help files, and in Writing Word Macros by Steven Roman (O'Reilly). There are a number of additions to the
Word Object Model in Word 2003; a few are detailed below. They are the objects and methods most likely to be
referenced in a Smart Document application since they deal specifically with XML.

5.3.3.1 XML additions to the Word object model

The Word 2003 object model includes five new objects and collections as well as enhancements to the Application,
Document, Range, and Selection objects. These are documented in the Microsoft Office Word 2003 help files under
"What's New" as well as under their respective group headings. Some of the key pieces that you'll need for Smart
Documents development include:

InsertXML

The InsertXML method applies to both Range and Selection objects and is used to insert either
WordprocessingML or customer-specific schema elements and associated content. It can also be used in
conjunction with transformations, taking some minimal source data, running through a transform to apply
styles, and then inserting the results into the document instance.

Use caution when using the InsertXML method as it will replace any existing text in the
Range or Selection object.

XMLNode(s)

The XMLNodes collection represents each of the XML elements within a document. The XMLNode object is the
workhorse of a Smart Document and allows XML elements to be selected, added, deleted, or validated. It is also
used to add placeholder text. Numerous tests can be performed against an XMLNode, and it can be used to
access first child, last child, parent, previous sibling, and other objects.

XMLParentNode

The XMLParentNode property is used, as the name suggests, to return the parent node of the current XML node.
It is used in conjunction with ranges and selections:

Dim oParagraphNode As Word.XMLNode

oParagraphNode = Selection.XMLParentNode

In addition to being able to guide the information worker through the process of creating, revising, and updating
documents, most XML-related events can be captured and cause code to be executed:

XMLAfterInsert

Any time that new XML markup is inserted in the document, the XMLAfterInsert event will be accessible. If the
end user is inserting markup through the XML Structure task pane, this event could be used to add appropriate
style information or other WordprocessingML markup. It could also be used to populate required child elements,
mimicking some of the types of functions that could be programmed into the Document Actions task pane.

XMLBeforeDelete

While the Smart Document solution described in this chapter will handle the creation of an XML instance,
making modifications to that document could easily result in an instance that is no longer valid. This is
particularly true if the user tries to perform cut and paste operations. By trapping the XMLBeforeDelete event, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

particularly true if the user tries to perform cut and paste operations. By trapping the XMLBeforeDelete event, the
developer can ensure that the content to be deleted will not result in breaking the document structure by
preventing the deletion of any elements that would result in an invalid instance. Instead, additional actions
could be triggered that would guide the author through the editorial process.

XMLValidationError

Any time a validation error occurs within a document instance, the XMLValidationError event will be activated. It
returns the XML node that is invalid, and can be used to either remove the offending node or add the necessary
components to return the instance to a valid state.

XMLSelectionChange

Each time the parent node of the current cursor position changes, the XMLSelectionChange event is initiated. Both
the previous and new nodes can be evaluated, along with the reason:

Delete—the previous selection was deleted

Insert—text has been inserted

Move—the insertion point has been moved

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Coding in VB.NET
We're finally ready to begin writing the actual code, a task more tedious than difficult. The ISmartDocument interface is
cumbersome, requiring numerous steps to set up the task pane controls. A bit of planning before beginning to actually
write the code can be very beneficial. Here's what you're going to need to know:

the number of XML elements that will have actions associated with them

the actual name of each of those elements (including namespace)

The caption to be associated with each of those actions

The number of individual controls that will be used in each action

The name to be associated with each control

The caption to be associated with each control

The type (C_TYPE) to be associated with each control

The location of any external document fragments or images

The actual copy for document fragments that will be coded within the .dll

Help content for each control (either embedded within the .dll or external file references)

The individual choices for any list boxes, combo boxes, and radio groups

A description of each control's behavior

In order to write code that will integrate all of this, we'll review some of the basic features of the Word object model in
conjunction with Visual Basic. Each of these specific tasks is explained in more detail below.

5.4.1 Creating a New Project

Creating a Smart Document project in Visual Studio is a straightforward task. If you are familiar with the Microsoft
Office development environment, you might anticipate being able to use Visual Studio Tools for Office to automate the
process. Unfortunately, this isn't the case. Visual Studio Tools for Office (VSTO) is basically a set of wizards that
facilitate the creation of managed code development projects for Word documents, templates, and Excel spreadsheets.
It automatically associates the appropriate Office Primary Interop Assemblies (PIAs) with the project and uses the
custom properties dataset to associate the .dll with the actual document. Instead, we'll manually create the project and
reference the necessary libraries. The steps below walk you through creating a new Visual Basic project.

1. Launch Visual Studio .NET.

2. Create a New Project.

3. Select Visual Basic Projects as the Project Type.

4. Select Class Library as the Template.

5. Specify a name and location for your project. Your screen should now look like Figure 5-7.

Figure 5-7. Visual Studio .NET 2003 New Project window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-7. Visual Studio .NET 2003 New Project window

6. Verify that the information you provided is accurate, and click OK to generate the project.

The next step is to include the libraries for Word, Smart Tags, and Internet Explorer Controls (the last of which is
needed to enable a hypertext link, one of our requisite actions).

1. Right-click on References in the Solution Explorer and select Add Reference.

2. Select the COM tab, and locate Microsoft Smart Tags 2.0 Type Library.

3. Double-click to add the reference.

4. Locate Microsoft Word 11.0 Object Library.

5. Double-click to add the reference.

6. Locate Microsoft Internet Controls.

7. Double-click to add the reference.

Your Solution Explorer pane should look like Figure 5-8.

Figure 5-8. Visual Studio .NET Solution Explorer references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last bit of setup will make coding a bit simpler. We need to associate the Word and Smart Tag Primary Interop
Assemblies (PIAs) with our code. Insert the following two Imports statements into the code window:

Imports Microsoft.Office.Interop.SmartTag

Imports Word = Microsoft.office.Interop.Word

And finally, declare the class for the Smart Document:

Public Class ArticleSmartDocument

End Class

5.4.2 Declaring Constants

To get started, you need to declare a few constants. The first is a constant that references the namespace of the
external schema:

'Namespace constant

Const cNAMESPACE As String = "http://www.office-xml.com/ns/sdarticle"

You also need a constant for each of the elements within the external schema that will have a set of controls associated
with it. Remember, which controls are visible is dependent upon the current cursor location. Any controls that are
associated with the current element, its parent, or an ancestor will be displayed in the Document Actions task pane. By
looking at the ancestry of each of the desired actions, we can determine where best to place the controls. Once again,
our requisite actions are as follows:

Apply markup and style to inline components (superscript, subscript, bold, italic, underscore, and code).

Insert block-level components (paragraphs, code blocks, lists, notes and warnings).

Insert additional entries into lists.

Insert boilerplate warnings.

Add a graphic.

Create a hyperlink to a specific location.

The first action involves mixed content. It will insert the selected element at the current cursor location; therefore the
action should be displayed only if such elements would be valid. Since the only two elements that allow these elements
as children are Para and CodeExample, an action will need to be created for each of those two elements.

The next action involves inserting block-level structures. These can be inserted at numerous points throughout the
document instance; therefore it makes the most sense to place these controls on the Article element where they will
always be visible.

Similar to inline elements, the Item element is only allowed in one specific context—as child of a list. Similarly,
VariableEntry is only allowed in a variable list. Separate controls should be created for each of the three list type
elements.

The boilerplate Warning is another block-level structure; it already contains the actual content of the warning itself.

The last two actions do not involve the creation of markup. We'll place those on the root element as well.

Table 5-3 lists the actions we'll incorporate in this document.

Table 5-3. Actions used in the sample document

Desired action Elements Parent
elements

Control
element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Insert superscript, subscript, bold, italic, underscore, and inline
code

Emphasis

Subscript

Superscript

Para Para

Insert paragraphs, code blocks, lists, notes, and warnings

Para

VariableList

NumberList

BulletList

Note

Warning

Section1

Section2

Section3

Section4

Note

Warning

Article

Insert additional list items

Item

VariableEntry

NumberList

BulletList

VariableList

NumberList

BulletList

VariableList

Insert boilerplate warnings
Warning

Section1

Section2

Section3

Section4

Article

Insert a logo graphic
Article

Insert a hyperlink reference
Article

To define the constants for the individual elements, the element identifier is preceded by a pound (#) symbol and
appended to the namespace:

'Element constants

Public Const cARTICLE As String = cNAMESPACE & "#Article"

Public Const cPARAGRAPH As String = cNAMESPACE & "#Para"

Public Const cCODE As String = cNAMESPACE & "#CodeExample"

Public Const cBULLET_LIST As String = cNAMESPACE & "#BulletList"

Public Const cNUMBER_LIST As String = cNAMESPACE & "#NumberList"

Public Const cVARIABLE_ENTRY As String = cNAMESPACE & "#VariableEntry"

Make sure that the element identifier is spelled correctly, including proper capitalization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last constant defines the number of elements in our schema that will have controls associated with them; this is
simply a tally of the constants defined earlier:

'Number of types (or element constants)

Const cTYPES As Integer = 6

5.4.2.1 The ISmartDocument interface

In order to access the ISmartDocument interface, it must first be implemented in the class:

Implements ISmartDocument

All members of the interface must be implemented, whether or not they will actually be used. Omission is considered a
syntax error. In Visual Studio .NET 2003, merely entering the above line will automatically add each member to the
code window. If you are using Visual Studio .NET 2002, you will need to manually add each member.

Visual Studio .NET 2003 adds each of the requisite interfaces in alphabetical order; Table 5-4 shows them in order of
completion.

Table 5-4. Members of the ISmartDocument interface
Member name Description

SmartDocInitialize Runs when an expansion pack is attached to a document or a Smart Document is
opened

SmartDocXmlTypeCount Specifies the number of elements that have actions assigned to them

SmartDocXmlTypeName Name of an element with associated controls

SmartDocXmlTypeCaption Caption for a group of controls

ControlCount Specifies the number of controls

ControlID Unique number for an individual control

ControlNameFromID Associates a name with an ID

ControlCaptionFromID Specifies the Smart Document control captions

ControlTypeFromID Specifies the type of control

PopulateActiveXProps Specifies the content of the control type with the values provided

PopulateCheckbox Specifies the content of the control type with the values provided

PopulateDocumentFragment Specifies the content of the control type with the values provided

PopulateHelpContent Specifies the content of the control type with the values provided

PopulateImage Specifies the content of the control type with the values provided

PopulateListOrComboContent Specifies the content of the control type with the values provided

PopulateOther Specifies the content of the control type with the values provided

PopulateRadioGroup Specifies the content of the control type with the values provided

PopulateTextboxContent Specifies the content of the control type with the values provided

ImageClick Specifies actions to be performed when clicked by the user

InvokeControl Specifies actions to be performed when clicked by the user

OnCheckboxChange Specifies actions to be performed when clicked by the user

OnListOrComboSelectChange Specifies actions to be performed when clicked by the user

OnRadioGroupSelectChange Specifies actions to be performed when clicked by the user

OnPaneUpdateComplete Specifies actions to be performed when the task pane has been updated and populated

OnTextboxContentChange Specifies actions to be performed when the user changes the value of a text box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.2 SmartDoc Initialization and Foundations

The first few members of the ISmartDocument that you'll need to deal with handle initialization and basic setup.

5.4.2.2.1 SmartDocInitialize

Any actions that need to be run when a Smart Document is opened or attached, such as initializing variables, should be
called here. In our sample application, we do not have any required actions on initialize other than to set a constant to
the installation path of the Smart Document components. This will allow future references to file components without
having to explicitly identify the absolute path:

Public Sub SmartDocInitialize(ByVal ApplicationName As String, _

ByVal Document As Object, ByVal SolutionPath As String, _

ByVal SolutionRegKeyRoot As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocInitialize

' set strPath to installation path

 strPath = SolutionPath & "\"

End Sub

Remember the long list of items to gather before you actually begin to code your Smart Document actions? Here's
where they get put to good use as part of the tedious process required to set up the Smart Document task pane and tell
the application when each control should be displayed.

5.4.2.2.2 SmartDocXMLTypeCount

This is the first property that must be defined. It specifies the number of elements defined in the schema that will have
controls associated with them. This value is passed to SmartDocXMLTypeName. Since we created a constant earlier, we
can simply return its value:

Public ReadOnly Property SmartDocXmlTypeCount() As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCount

 Get

 Return cTYPES

 End Get

End Property

5.4.2.2.3 SmartDocXMLTypeName

Once the number of control sets has been defined, each one must now be assigned a name, which will be used to
reference the control set in the other properties. The names themselves are arbitrary:

Public ReadOnly Property SmartDocXmlTypeName(ByVal XMLTypeID As Integer) As String_

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeName

 Get

 Select Case XMLTypeID

 Case 1 'element Article

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 1 'element Article

 Return cARTICLE

 Case 2 'element Para

 Return cPARAGRAPH

 Case 3 'element CodeExample

 Return cCODE_EXAMPLE

 Case 4 'element BulletList

 Return cBULLET_LIST

 Case 5 'element NumberList

 Return cNUMBER_LIST

 Case 6 'element VariableEntry

 Return cVARIABLE_ENTRY

 End Select

 End Get

End Property

5.4.2.2.4 SmartDocXMLTypeCaption

While the name assigned in SmartDocXMLTypeName will be used by the actual code, the caption is what will be displayed
in the Document Actions task pane—formatted as a bold heading over the individual controls:

Public ReadOnly Property SmartDocXmlTypeCaption(ByVal XMLTypeID As Integer, _

ByVal LocaleID As Integer) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCaption

 Get

 Select Case XMLTypeID

 Case 1 'element Article

 Return "Article"

 Case 2 'element Para

 Return "Character Formatting (Paragraph)"

 Case 3 'element CodeExample

 Return "Character Formatting (Code Block)"

 Case 4 'element BulletList

 Return "Bulleted List Items"

 Case 5 'element NumberList

 Return "Numbered List Items"

 Case 6 'element VariableEntry

 Return "Variable List Items"

 End Select

 End Get

End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Property

A caption must be created for each Case defined earlier. The caption should be something that will be meaningful to
your end users.

Without a caption, any associated controls will not appear in the task pane. This can be
used to your benefit; while the default behavior is to always display controls that are
active based on current cursor location, setting one or more captions to null will prevent
them from being displayed.

The next few members of the ISmartDocument interface are about managing GUI components, called controls.

5.4.2.2.5 ControlCount

The ControlCount property defines how many individual controls will be used in each of the defined cases. For each of the
list elements only one control is needed; the appropriate option will be chosen and the action will be taken immediately.
In the inline scenario (for both paragraphs and code blocks) we'll need three: a text box, a choice group, and a submit
button. We'll need four for the root element: one for the block templates, one for the hypertext link, one for the logo
insertion, and one for the insertion of boilerplate text.

There are two additional controls that can be added to each element set: a separator and help content. While not
absolutely necessary, displaying help in the Document Actions task pane will provide the end user with an easily
accessible reference:

Public ReadOnly Property ControlCount(ByVal XMLTypeName As String) As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlCount

 Get

 Select Case XMLTypeID

 Case cARTICLE

 Return 6

 Case cPARAGRAPH

 Return 5

 Case cCODE_EXAMPLE

 Return 5

 Case cBULLET_LIST

 Return 3

 Case cNUMBER_LIST

 Return 3

 Case cVARIABLE_ENTRY

 Return 3

 End Select

 End Get

End Property

5.4.2.2.6 ControlID

Unique IDs must be assigned to each control in the task pane. This is important because it is common to have more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unique IDs must be assigned to each control in the task pane. This is important because it is common to have more
than one set of controls active at any point in time. Assigning IDs is a two-step process. The first step is to associate a
range of IDs with each element. The ControlIndex will always start with 1. Here we just increment each additional control
set by 100:

Public ReadOnly Property ControlID(ByVal XMLTypeName As String, _

ByVal ControlIndex As Integer) As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlID

 Get

 Select Case XMLTypeName

 Case cARTICLE

 Return ControlIndex

 Case cPARAGRAPH

 Return ControlIndex + 100

 Case cCODE_EXAMPLE

 Return ControlIndex + 200

 Case cBULLET_LIST

 Return ControlIndex + 300

 Case cNUMBER_LIST

 Return ControlIndex + 400

 Case cVARIABLE_ENTRY

 Return ControlIndex + 500

 Case Else

 Return 0

 End Select

 End Get

End Property

5.4.2.2.7 ControlNameFromID

The next step is to associate each individual control with a unique ID, based on the values declared above. We don't
have to list each and every name/ID pair; this method will take care of it for us:

Public ReadOnly Property ControlNameFromID(ByVal ControlID As Integer) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlNameFromID

 Get

 Return cNAMESPACE & ControlID.ToString

 End Get

End Property

5.4.2.2.8 ControlCaptionFromID

Now that each control has a unique ID, individual captions can be defined:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that each control has a unique ID, individual captions can be defined:

Public ReadOnly Property ControlCaptionFromID(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlCaptionFromID

 Get

 Select Case ControlID

 'element Article

 Case 1

 Return "Insert Authoring Templates"

 Case 2

 Return "Insert Logo"

 Case 3

 Return "Access our Web Site"

 Case 4

 Return "Insert Warnings"

 Case 5

 Return "Separator"

 Case 6

 Return "Help"

 'element Para

 Case 101

 Return "Enter word or phrase"

 Case 102

 Return "Select formatting style"

 Case 103

 Return "INSERT"

 Case 104

 Return "Separator"

 Case 105

 Return "Help"

 'element CodeExample

 Case 201

 Return "Enter word or phrase"

 Case 202

 Return "Select formatting style"

 Case 203

 Return "INSERT"

 Case 204

 Return "Separator"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return "Separator"

 Case 205

 Return "Help"

 'element BulletList

 Case 301

 Return "INSERT"

 Case 302

 Return "Separator"

 Case 303

 Return "Help"

 'element NumberList

 Case 401

 Return "INSERT"

 Case 402

 Return "Separator"

 Case 403

 Return "Help"

 'element VariableEntry

 Case 501

 Return "INSERT"

 Case 502

 Return "Separator"

 Case 503

 Return "Help"

 End Select

 End Get

End Property

Captions on individual controls are most often displayed directly above the control, captions for text boxes are displayed
to the left, and captions for buttons are displayed on the actual button.

In the case of an ActiveX control, the return value would be set to the GUID (Global Unique Identifier) of the control.

If an element only has a single control associated with it, the control caption can be used
to provide additional information that will be helpful to the end user.

5.4.2.2.9 ControlTypeFromID

The last step in defining the controls is to identify the specific type of control to be associated with each unique ID.
There are 15 control types:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are 15 control types:

C_TYPE.C_TYPE_ACTIVEX

C_TYPE.C_TYPE_BUTTON

C_TYPE.C_TYPE_CHECKBOX

C_TYPE.C_TYPE_COMBO

C_TYPE.C_TYPE_DOCUMENTFRAGMENT

C_TYPE.C_TYPE_DOCUMENTFRAGMENTURL

C_TYPE.C_TYPE_HELP

C_TYPE.C_TYPE_HELPURL

C_TYPE.C_TYPE_IMAGE

C_TYPE.C_TYPE_LABEL

C_TYPE.C_TYPE_LINK

C_TYPE.C_TYPE_LISTBOX

C_TYPE.C_TYPE_RADIOGROUP

C_TYPE.C_TYPE_SEPARATOR

C_TYPE.C_TYPE_TEXTBOX

This gives the developer a number of choices for designing the look and feel of the Document Actions task pane. While
it is possible to use all 15 control types in a single Smart Document solution, it isn't recommended. In particular, check
boxes, combo boxes, list boxes, and radio groups can all be applied to similar use cases.Choose one of these four
choice types and use it consistently throughout the application.

The ability to add ActiveX controls extends the possibilities available to the developer. There are hundreds of ActiveX
controls available from Microsoft and third-party developers, or you can custom-build your own. Using ActiveX controls
in Smart Documents can be a bit tricky, as they often do not behave as expected. If you are new to the world of
Microsoft application development, you may want to stick with the other control types until you become more familiar
with some of the intricacies of ActiveX objects.

Public ReadOnly Property ControlTypeFromID(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer) _

As Microsoft.Office.Interop.SmartTag.C_TYPE _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlTypeFromID

 Get

 Select Case ControlID

 'element Article

 Case 1

 Return C_TYPE.C_TYPE_RADIOGROUP

 Case 2

 Return C_TYPE.C_TYPE_IMAGE

 Case 3

 Return C_TYPE.C_TYPE_LINK

 Case 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 4

 Return C_TYPE.C_TYPE_DOCUMENTFRAGMENTURL

 Case 5

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 6

 Return C_TYPE.C_TYPE_HELPURL

 'element Para

 Case 101

 Return C_TYPE.C_TYPE_TEXTBOX

 Case 102

 Return C_TYPE.C_TYPE_LISTBOX

 Case 103

 Return C_TYPE.C_TYPE_BUTTON

 Case 104

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 105

 Return C_TYPE.C_TYPE_HELPURL

 'element CodeExample

 Case 201

 Return C_TYPE.C_TYPE_TEXTBOX

 Case 202

 Return C_TYPE.C_TYPE_COMBO

 Case 203

 Return C_TYPE.C_TYPE_BUTTON

 Case 204

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 205

 Return C_TYPE.C_TYPE_HELPURL

 'element BulletList

 Case 301

 Return C_TYPE.C_TYPE_CHECKBOX

 Case 302

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 303

 Return C_TYPE.C_TYPE_HELP

 'element NumberList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'element NumberList

 Case 401

 Return C_TYPE.C_TYPE_CHECKBOX

 Case 402

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 403

 Return C_TYPE.C_TYPE_HELP

 'element VariableEntry

 Case 501

 Return C_TYPE.C_TYPE_CHECKBOX

 Case 502

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 503

 Return C_TYPE.C_TYPE_HELP

 End Select

 End Get

End Property

5.4.2.3 Populating controls

Now that each of the individual controls has a unique identifier, a caption, and a type, the contents of the individual
controls can be populated. There are multiple methods involved, each one focused on a specific type (or types) of
control.

The ISmartDocProperties interface is a common set of key/value pairs that can be used to control the appearance of the
Document Actions task pane. They are accessed via the Populate methods.

The only method applicable to ISmartDocProperties is the write method, which is set through the use of key/value pairs:

Props.Write("Expanded", "False")

Table 5-5 lists the properties you can set with the write method and what they do.

Table 5-5. Writeable ISmartDocProperties keys
Property (key) Applies to Description

X All controls The left starting position in the task pane

Y All controls The starting distance from the top of the task pane or the previous
control

H All controls The height of the control

W All controls The width of the control

Align All controls Horizontal justification (left, right, center)

Layout All controls Direction of text flow in control (LTR, RTL)

SectionCaptionDirection All controls Direction of text flow in caption (LTR, RTL)

FontFace Text captions Typeface

FontSize Text captions Point size

FontStyle Text captions Special formatting (none, italic, underline, strikeout)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontWeight Text captions Weight (normal, bold)

NumberOfLines Text box, list box, combo
box Number of lines visible without scrolling

IsEditable Text box, list box, combo
box Whether or not the user can modify the contents (true, false)

ControlOnSameLine Text box, list box, combo
box Whether caption is displayed on same line as control (true, false)

PasswordCharacter Text box only Single character to be used to mask password entry

IsMultiline Text box only Whether text box allows multiple lines (true, false)

Border Images only Whether a border is displayed on image (true, false)

Expanded Fragments only Whether fragment should be displayed or collapsed (true, false)

ExpandHelp Help only Whether help should be displayed or collapsed (true, false)

ExpandToFill ActiveX only Whether ActiveX control should fill the task pane (true, false)

KeepAlive ActiveX only Whether control remains active when cursor position changes
(true, false)

5.4.2.3.1 PopulateActiveXProps

This method allows the developer to set the display parameters for each ActiveX control used in the solution. Custom
properties (that is, those other than defined for the ISmartdDocProperties interface, above) can be accessed by using the
appropriate key/value combinations as defined in the control:

Props.Write(Key:="Special", Value:="200")

5.4.2.3.2 PopulateCheckbox

A checkbox allows the end user to select an individual control. Three controls have been defined as
C_TYPE_CHECKBOX; the checked parameter indicates the initial state for the checkbox. The text that appears next to
the checkbox is set in the ControlCaptionFromID method. There are no additional formatting properties associated with the
checkboxes.

Public Sub PopulateCheckbox(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef Checked As Boolean) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateCheckbox

 Select Case ControlID

 Case 301

 Checked = False

 Case 401

 Checked = False

 Case 501

 Checked = False

 End Select

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.3.3 PopulateDocumentFragment

A document fragment can be expressed directly in the code, or it can be incorporated via a URL reference. In most
applications it is preferred to leave such fragments external to the code itself; this will allow for quick and easy
modifications to the fragments that would otherwise require the code itself to be modified, recompiled, and distributed.

External document fragments must contain valid WordML document instances; they can be created either by
transforming existing XML instances into the necessary merged fragments or created directly in Office 2003 and saved
as .xml.

In an effort to optimize space in the Document Actions task pane, fragments can be displayed or collapsed. By default,
fragments will be displayed. The example code below uses properties of the ISmartDocProperties interface to set the
display option to false.

As of this writing, the Smart Document SDK help file incorrectly identifies the key as
Expand rather than Expanded.

Public Sub PopulateDocumentFragment(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef DocumentFragment As String) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateDocumentFragment

 Select Case ControlID

 Case 4 'url

 DocumentFragment = strPath & "warning.xml"

 Props.Write("Expanded", "False")

 End Select

End Sub

5.4.2.3.4 PopulateHelpContent

Help provides online documentation for the knowledge worker. It can be collapsed in order to preserve real estate, but
should not be omitted. Formatting is done with XHTML and CSS. Help text can either be coded directly in your program
or can be maintained in separate files and referenced via a URL. When using the C_TYPE_HELPURL, the location must
be an absolute path.

Similar to document fragments, by default help content is expanded in the Document Actions Task Pane. It can be
collapsed by setting the property key ExpandHelp to False.

Not all XHTML and CSS elements are supported. Refer to the Smart Document SDK for
specifics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub PopulateHelpContent(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef Content As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateHelpContent

 Select Case ControlID

 Case 6 'url

 Content = strPath & "article.htm"

 Props.Write("ExpandHelp", "False")

 Case 105 'url

 Content = strPath & "para.htm"

 Props.Write("ExpandHelp", "False")

 Case 205 'url

 Content = strPath & "code.htm"

 Props.Write("ExpandHelp", "False")

 Case 303 'inline

 Content = "<html><body><p>Click in the box to add a new" & _

 "item to the list.</p></body></html>"

 Case 403 'inline

 Content = "<html><body><p>Click in the box to add a new" & _

 "item to the list.</p></body></html>"

 Case 503 'inline

 Content = "<html><body><p>Click in the box to add a new" & _

 "item to the list.</p></body></html>"

 End Select

End Sub

5.4.2.3.5 PopulateImage

Images can be displayed in the task pane and either incorporated into the document instance or used to activate a
control. Similar to help and document fragments, the path given must be an absolute path.

Public Sub PopulateImage(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef ImageSrc As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateImage

 Select Case ControlID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Select Case ControlID

 Case 2

 ImageSrc = strPath & "cover.jpg"

 End Select

End Sub

5.4.2.3.6 PopulateListOrComboContent

For each control defined as either a list box (displayed as a box showing each selection on an individual line) or combo
box (displayed as a drop-down list), the number of items must be declared along with the text to be associated with
each item. Setting the InitialSelected property to -1 ensures that no action will be selected by default.

Public Sub PopulateListOrComboContent(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef List As System.Array, ByRef Count As Integer, _

ByRef InitialSelected As Integer) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateListOrComboContent

 Select Case ControlID

 Case 102 'listbox

 Count = 5

 List(1) = "Bold"

 List(2) = "Italic"

 List(3) = "Underscore"

 List(4) = "Superscript"

 List(5) = "Subscript"

 InitialSelected = -1

 Case 202 'combo box

 Count = 5

 List(1) = "Bold"

 List(2) = "Italic"

 List(3) = "Underscore"

 List(4) = "Superscript"

 List(5) = "Subscript"

 InitialSelected = -1

 End Select

End Sub

5.4.2.3.7 PopulateOther

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.3.7 PopulateOther

While the separator and label controls don't really do anything, they provide visual clues to the end user. A liberal
sprinkling throughout is highly recommended. PopulateOther allows display options to be set for each of the control types
that do not have their own Populate method—buttons, labels, links, and separators.

Public Sub PopulateOther(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateOther

 Select Case ControlID

 Case 3 'link

 Case 5 'separator

 Case 104 'separator

 Case 204 'separator

 Case 302 'separator

 Case 402 'separator

 Case 502 'separator

 Case 103 'button

 Case 203 'button

 End Select

End Sub

5.4.2.3.8 PopulateRadioGroup

Another method for presenting a choice list to the end user is via a radio group. The user selects the specific option by
clicking on the appropriate radio button. Again, InitialSelected is set to -1 to ensure that the list will not have any option
set by default.

Public Sub PopulateRadioGroup(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef List As System.Array, ByRef Count As Integer, _

ByRef InitialSelected As Integer) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateRadioGroup

 Select Case ControlID

 Case 1

 Count = 7

 List(1) = "Paragraph"

 List(2) = "Code Block"

 List(3) = "Numbered List"

 List(4) = "Bulleted List"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 List(4) = "Bulleted List"

 List(5) = "Variable List"

 List(6) = "Warning"

 List(7) = "Note"

 InitialSelected = -1

 End Select

End Sub

5.4.2.3.9 PopulateTextboxContent

Text boxes allow the end user to enter text that is then returned to the Smart Document application for further
processing. In the sample application, text boxes are used to input inline content that is to have special markup
associated with it, such as emphasis, superscript, or subscript. PopulateTextboxContent will automatically supply default
information in the text box, such as a formatting template for a telephone number or date.

5.4.2.4 Defining document actions

We have finally reached the point in the process where we begin to actually do something, or at least write the code
that will allow the end user to cause an event to fire through the Document Actions task pane. Here's where the Word
Object Model will be put to use. Once each of the controls has been defined and populated, the actions can be
programmed. While it would have been more intuitive to have each method align with its populate counterpart, the
developer is left to reconcile the differences. For practical purposes, some methods are often intentionally left blank.
Refer to Figure 5-4 for a glimpse at the Document Actions task pane.

5.4.2.4.1 Adding a graphic: the ImageClick method

The ImageClick method is used to define the action to be taken when the user selects an image displayed in the task
pane. The code below will insert the image into the document itself. Since there are no positioning parameters
specified, it will automatically be placed according to the AutoShapeDefaults parameters as defined in the template.

The single line of code that does all of the work uses the Word Object Model to add a picture to the shapes collection of
the active document.

Public Sub ImageClick(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal Target As Object, _

ByVal Text As String, ByVal Xml As String, ByVal LocaleID As Integer, _

ByVal XCoordinate As Integer, ByVal YCoordinate As Integer) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ImageClick

 Dim strImage As String

 Select Case ControlID

 Case 2

 strImage = strPath & "cover.jpg"

 Target.Application.ActiveDocument.Shapes.AddPicture(strImage)

 End Select

End Sub

Figure 5-9 shows the result of clicking on the image in the Document Actions task pane. It has been positioned
according to the parameters defined for image placement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-9. Document Template after the image has been inserted

The next item on our list of actions is to apply markup and style to inline components (superscript, subscript, bold,
italic, underscore, and code). This requires three separate actions: capturing the contents of the text box, capturing the
specific type of formatting selected through either the list or combo box, and inserting the appropriate markup, text,
and style information when the user clicks on the Insert button.

5.4.2.4.2 OnTextboxContentChange

Whenever a user enters content into the textbox, this method will be activated. We need to capture any content
entered into textbox into a variable so we can insert it into the document later. There are two textboxes defined—one
used to insert inline elements in paragraphs, and a second used to insert inline elements in code blocks. First, two
variables must be defined:

Dim varCodeText As String

Dim varParaText As String

Now the contents of the text box can be stored for later use by using those variable names. Of course, you could just
insert it into the document instance at this point, or use the results to trigger some other action.

Public Sub OnTextboxContentChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Value As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.OnTextboxContentChange

 Select Case ControlID

 Case 101 'para inlines

 varParaText = Value

 Case 201 'code inlines

 varCodeText = Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 varCodeText = Value

 End Select

End Sub

5.4.2.4.3 OnListOrComboSelectChange

The next piece in our three-piece control is the results of the choice list presented to the end user. After entering text,
the user must choose one of the several possible inline types to be applied to the text. Selecting one of the options will
cause this event to fire. We'll need another variable:

 Dim varSelect As String

For each possible choice, we need to set the varSelect variable to a value that we can test on in our final step:

Public Sub OnListOrComboSelectChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Selected As Integer, ByVal Value As String) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.OnListOrComboSelectChange

 Select Case ControlID

 Case 102 'format options

 If Value = "Bold" Then

 varSelect = "bold"

 ElseIf Value = "Italic" Then

 varSelect = "italic"

 ElseIf Value = "Underscore" Then

 varSelect = "underscore"

 ElseIf Value = "Superscript" Then

 varSelect = "superscript"

 ElseIf Value = "Subscript" Then

 varSelect = "subscript"

 End If

 Case 202 'format options

 If Value = "Bold" Then

 varSelect = "bold"

 ElseIf Value = "Italic" Then

 varSelect = "italic"

 ElseIf Value = "Underscore" Then

 varSelect = "underscore"

 ElseIf Value = "Superscript" Then

 varSelect = "superscript"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 varSelect = "superscript"

 ElseIf Value = "Subscript" Then

 varSelect = "subscript"

 End If

 End Select

End Sub

5.4.2.4.4 InvokeControl

The InvokeControl method applies to buttons, hyperlinks, and document fragments. There are two buttons, one
hyperlink, and one fragment that must be defined.

The buttons used in combination with text boxes and choice lists are the third piece to the inlines puzzle. The only
action taken in the first two steps was to capture the values into variables. Again, we will need some new variables, this
time defined as XML nodes in the Word object model:

Dim oBoldNode As Word.XMLNode

Dim oItalicNode As Word.XMLNode

Dim oUnderscoreNode As Word.XMLNode

Dim oSubscriptNode As Word.XMLNode

Dim oSuperscriptNode As Word.XMLNode

First, we have to define the current cursor location as a selection. The next step is to test for the value of the variable
associated with the choice list. Once a match is found, the Add method is used to insert the appropriate element name.
The element node is then defined as a range (which includes both the start and end tags and any content), and the text
that was originally entered in the text box is inserted. The last step is to apply the appropriate character style to the
content.

For more information on the new XML objects incorporated into Word 2003, refer to
Section 5.3.3 in this chapter and the Microsoft Word Visual Basic Reference help files.

Note that bold, italic, and underscore all resolve to a single element, emphasis. Rather than having three distinct
elements, the role attribute is used instead. It has three possible values defined: bold, italic, and underscore. By
selecting the Attributes property of the XMLNode, attribute values can be populated without additional user
intervention.

 Case 103 'para

 Dim oWordRange As Word.Range = CType(Target, Word.Range)

 Dim localRange As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 localRange.Application.ActiveWindow.Selection

 If varSelect = "bold" Then

 oBoldNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oBoldNode.Range

 oBoldNode.Range.Text = varParaText

 oBoldNode.Attributes.Add("role", "")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oBoldNode.Attributes.Add("role", "")

 oBoldNode.SelectSingleNode("@role", "").NodeValue = "bold"

 oBoldNode.Range.Style = "Bold"

 ElseIf varSelect = "italic" Then

 oItalicNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oItalicNode.Range

 oItalicNode.Range.Text = varParaText

 oItalicNode.Attributes.Add("role", "")

 oItalicNode.SelectSingleNode("@role", "").NodeValue = "italic"

 oItalicNode.Range.Style = "Italic"

 ElseIf varSelect = "underscore" Then

 oUnderscoreNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oUnderscoreNode.Range

 oUnderscoreNode.Range.Text = varParaText

 oUnderscoreNode.Attributes.Add("role", "")

 oUnderscoreNode.SelectSingleNode("@role", "").NodeValue = "underscore"

 oUnderscoreNode.Range.Style = "Underscore"

 ElseIf varSelect = "superscript" Then

 oSuperscriptNode = selection.XMLNodes.Add("Superscript", cNAMESPACE)

 oWordRange = oSuperscriptNode.Range

 oSuperscriptNode.Range.Text = varParaText

 oSuperscriptNode.Range.Style = "Superscript"

 ElseIf varSelect = "subscript" Then

 oSubscriptNode = selection.XMLNodes.Add("Subscript", cNAMESPACE)

 oWordRange = oSubscriptNode.Range

 oSubscriptNode.Range.Text = varParaText

 oSubscriptNode.Range.Style = "Subscript"

 End If

 Case 203 'code

 Dim oWordRange As Word.Range = CType(Target, Word.Range)

 Dim localRange As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 localRange.Application.ActiveWindow.Selection

 If varSelect = "bold" Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If varSelect = "bold" Then

 oBoldNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oBoldNode.Range

 oBoldNode.Range.Text = varCodeText

 oBoldNode.Attributes.Add("role", "")

 oBoldNode.SelectSingleNode("@role", "").NodeValue = "bold"

 oBoldNode.Range.Style = "Bold"

 ElseIf varSelect = "italic" Then

 oItalicNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oItalicNode.Range

 oItalicNode.Range.Text = varCodeText

 oItalicNode.Attributes.Add("role", "")

 oItalicNode.SelectSingleNode("@role", "").NodeValue = "italic"

 oItalicNode.Range.Style = "Italic"

 ElseIf varSelect = "underscore" Then

 oUnderscoreNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oUnderscoreNode.Range

 oUnderscoreNode.Range.Text = varCodeText

 oUnderscoreNode.Attributes.Add("role", "")

 oUnderscoreNode.SelectSingleNode("@role", "").NodeValue = "underscore"

 oUnderscoreNode.Range.Style = "Underscore"

 ElseIf varSelect = "superscript" Then

 oSuperscriptNode = selection.XMLNodes.Add("Superscript", cNAMESPACE)

 oWordRange = oSuperscriptNode.Range

 oSuperscriptNode.Range.Text = varCodeText

 oSuperscriptNode.Range.Style = "Superscript"

 ElseIf varSelect = "subscript" Then

 oSubscriptNode = selection.XMLNodes.Add("Subscript", cNAMESPACE)

 oWordRange = oSubscriptNode.Range

 oSubscriptNode.Range.Text = varCodeText

 oSubscriptNode.Range.Style = "Subscript"

 End If

The end result of all of this code is shown in Figure 5-10. Here the user has entered the word "new" in the textbox, and
selected the style "Italic" from the list displayed. Figure 5-11 shows the results of clicking the INSERT button. The text
has been inserted in the paragraph, the attribute value has been set, and the appropriate style has been applied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-10. Document Actions with content and formatting selected

Figure 5-11. Document template with new content added

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The actions associated with the hyperlink and document fragment are to be executed upon selection. Let's start with
the hyperlink. While it looks like a hyperlink in the task pane, it isn't really. At least not yet. We need some code that
will do the navigating when the "link" is clicked. The following code implements the Internet Explorer Navigate method to
open a browser window and load the O'Reilly home page:

Public Sub InvokeControl(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal Target As Object, _

ByVal Text As String, ByVal Xml As String, ByVal LocaleID As Integer) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.InvokeControl

 Dim objNav As SHDocVw.InternetExplorer

 Select Case ControlID

 Case 3

 objNav = New SHDocVw.InternetExplorer

 objNav.Navigate("http://www.oreilly.com")

 objNav.Visible = True

'more to follow here

 End Select

End Sub

The last piece of our InvokeControl routine is to insert a selected document fragment. Word will display the first page of
any document fragment in the task pane. An alternative approach is to specify one file to use in the task pane display,
and another for the actual fragment to be inserted. Note in Figure 5-12 that the style associated with the Warning is
indented; the task pane also displays this style, making it a bit difficult to read without having to adjust the horizontal
positioning of the task pane. An alternate view could be created that does not reference the indented style, making it
easier for the end user to read.

Figure 5-12. Document template with warning boilerplate inserted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.4.5 OnCheckboxChange

Whenever a user clicks on a checkbox, it will activate the OnCheckboxChange method. Our sample application uses a
checkbox to indicate when the user would like to insert a new item into an existing list. Since there are three types of
lists (BulletList, NumberList, and VariableList) and we want to limit when the control is displayed on the task pane, they
have each been defined separately and will display only when the cursor is currently located within one of these three
elements.

For both BulletList and NumberList, we need to add an Item element along with a child Para element. Variable lists have a
VariableEntry child, which in turn contains a Term and Definition pair. The definition element requires at least one Para.

There is also paragraph-level formatting that must be applied to ensure that the new content is displayed properly.
BulletListItem, NumberListItem, and VariableListEntry are defined in the template for this purpose.

The following routine begins by setting the variable node to the element of the current cursor location. The
XMLParentNode is a bit deceiving; we're really looking for the name of the current element, but that's the way it works.
Once we have the XMLNode selected, we then test where we are, move up the tree if required, and finally arrive at the
BulletList element. The range is then collapsed back to a single cursor location and the Item element is added. Before
moving on, we insert a paragraph marker. This will move the new list entry onto a new line. We don't have to set the
style since it will automatically carry over the style from the previous paragraph. The range is again collapsed and the
Para element is inserted. The last step is to add placeholder text for the end user:

Public Sub OnCheckboxChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Checked As Boolean) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.OnCheckboxChange

 Select Case ControlID

 Case 301 'bullet list

 Dim range As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 range.Application.ActiveWindow.Selection

 Dim node As Word.XMLNode = selection.XMLParentNode

 If node.BaseName = "Para" Then

 node = node.ParentNode

 End If

 If node.BaseName = "Item" Then

 node = node.ParentNode

 End If

 If node.BaseName = "BulletList" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Item", cNAMESPACE)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 node = range.XMLNodes.Add("Item", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter list item here"

 End If

 End Select

 End Sub

The results will look like Figure 5-13.

Figure 5-13. Template with bulleted list inserted

The routine for numbered lists is basically the same and is not listed here (but is included in the sample code available
for download). The variable list entry, however, has an extra step or two. First, there are more elements in the tree to
test and ascend. Next, there are two child elements of VariableEntry: Term and Definition. Definition contains a required
child Para element. And both Term and Para should have placeholder text added:

 Select Case ControlID

 Case 501 'variable list

 Dim range As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 range.Application.ActiveWindow.Selection

 Dim node As Word.XMLNode = selection.XMLParentNode

 Dim Nnode As Word.XMLNode = selection.XMLParentNode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim Nnode As Word.XMLNode = selection.XMLParentNode

 If node.BaseName = "Para" Then

 node = node.ParentNode

 End If

 If node.BaseName = "Definition" Then

 node = node.ParentNode

 End If

 If node.BaseName = "Term" Then

 node = node.ParentNode

 End If

 If node.BaseName = "VariableEntry" Then

 node = node.ParentNode

 End If

 If node.BaseName = "VariableList" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("VariableEntry", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 Nnode = range.XMLNodes.Add("Term", cNAMESPACE)

 Nnode.PlaceholderText = "Enter term here"

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Definition", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter definition here"

 End If

 End Select

End Sub

This code will produce results like those shown in Figure 5-14.

Figure 5-14. Template with an additional variable list entry inserted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-14. Template with an additional variable list entry inserted

5.4.2.4.6 OnRadioGroupSelectChange

Our authoring templates for block-level items are associated with radio buttons. Whenever a user clicks on a radio
button, it will become selected and the OnRadioGroupSelectChange method will be activated. As with the list or combo box,
the appropriate selection must be identified from the set of options presented to the end user.

The code necessary to accomplish the set of tasks defined in the radio group control is more complex than the previous
examples. In order to code for these tasks, a combination of methods will need to be employed, including the possible
use of XPath, testing for valid children, and an additional validation pass before committing the results back to the end
user. Alternatively, the conditions could be narrowed, resulting in an easier coding implementation. However, that
would most likely result in severely hampering the Document Actions task pane with numerous controls and excessive
refreshes.

The code below uses XPath to locate a particular element and then insert the markup as the last node of that element.
It also demonstrates how to apply styles. Note that the lists, and particularly the variable list, have numerous children
that also need to be inserted. Another approach would be to insert just the first node, and then apply a transform that
would supply the remaining children. This method would give you more control over the exact placement of formatting.

Public Sub OnRadioGroupSelectChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Selected As Integer, ByVal Value As String) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.OnRadioGroupSelectChange

 Dim range As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = range.Application.ActiveWindow.Selection

 Dim node As Word.XMLNode = range.Document.SelectSingleNode("//ns:Section1", _

 "xmlns:ns='" & cNAMESPACE & "'")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Select Case ControlID

 Case 1 'authoring templates

 If Value = "Paragraph" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 range.InsertParagraphBefore()

 node.PlaceholderText = "Enter paragraph here"

 node.Range.Style = "ParagraphDefault"

 ElseIf Value = "Code Block" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("CodeExample", cNAMESPACE)

 range.InsertParagraphBefore()

 node.PlaceholderText = "Enter code sample here"

 node.Range.Style = "CodeBlock"

 ElseIf Value = "Numbered List" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("NumberList", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Item", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter list item here"

 node.Range.Style = "NumberListItem"

 ElseIf Value = "Bulleted List" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("BulletList", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Item", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter list item here"

 node.Range.Style = "BulletListItem"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ElseIf Value = "Variable List" Then

 Dim Nnode As Word.XMLNode = selection.XMLParentNode

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("VariableList", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("VariableEntry", cNAMESPACE)

 node.Range.Style = "VariableListEntry"

 range.SetRange(node.Range.End, node.Range.End)

 Nnode = range.XMLNodes.Add("Term", cNAMESPACE)

 Nnode.PlaceholderText = "Enter term here"

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Definition", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter definition here"

 ElseIf Value = "Warning" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Warning", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter warning here here"

 node.Range.Style = "Warning"

 ElseIf Value = "Note" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Note", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter note here"

 node.Range.Style = "Note"

 End If

 End Select

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The result of this code is shown in Figures Figure 5-15 and Figure 5-16

Figure 5-15. Document with authoring templates inserted

Figure 5-16. Document with authoring templates inserted (tags on)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This fairly simple example works well in our sample since we're beginning with a template and then creating a new
document. However, if we were editing an existing document, we would most likely want to place the block-level
elements at the next valid location in relation to the cursor position. This requires significantly more coding.

5.4.2.4.7 OnPaneUpdateComplete

Our sample did not need to use the OnPaneUpdateComplete method, which is triggered on two separate events: when a
document is first opened and the expansion pack loaded, and each time the cursor is placed within a different element.
Both of these events cause the task pane to be redrawn; once rendering is complete this method is activated.

If the code placed in the OnPaneUpdateComplete results in the task pane being reloaded, an
infinite loop will result.

5.4.2.5 Associating control types and methods

In summary, Table 5-6 lists each of the fifteen control types, the method used to populate their contents in the task
pane, and the method associated with selection of a specific control.

Table 5-6. Control types available in Smart Documents
Control type Populate method Activate method

ActiveX ActiveXProps
Button Other InvokeControl

Checkbox Checkbox OnCheckboxChange

Combo ListOrComboContent OnListOrComboSelectChange

DocumentFragment DocumentFragment InvokeControl

DocumentFragmentURL DocumentFragment InvokeControl

Help HelpContent

HelpURL HelpContent
Image Image ImageClick

Label Other
Link Other InvokeControl

Listbox ListOrComboContent OnListOrComboSelectChange

RadioGroup RadioGroup OnRadioGroupSelectChange

Separator Other
Text box TextboxContent OnTextboxContentChange

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5 Manifest Files
Once the code is complete, all of the components must be prepared and made ready for delivery. The manifest file is an
XML instance that identifies each of the components associated with the Smart Document expansion pack. It is the
equivalent of a packing list, identifying each of the components necessary to make the Smart Document solution run
and where they can be found. It is attached to a Word document or template through the Templates and Add-Ins menu
or through a processing instruction incorporated into the document instance itself:

<?mso-solutionextension URI="namespace" manifestPath="path">

If any components cannot be located, an error message will be returned to the end user. One of the novel uses of the
manifest file is to track versions. The most common Smart Document deployment scenario involves placing the files on
a server where each end user will access them. Once the update frequency value has been reached, the application will
check for a more recent version on the server (as indicated by the version number in the manifest file). While a schema
for the manifest file has been published and can be found in the Microsoft Office 2003 Smart Document SDK, it does not
appear that it is actually used for validation, as the samples provided in the SDK do not conform to it.

There are several key components to a manifest file, as follows:

manifest

The manifest element has two different content models, depending whether it is the root element or a child of
manifestCollection. When listed as part of a collection, it is nothing other than a pointer to the individual manifest
files, containing the URI and path for each. When used as the root element, it contains the version,
updateFrequency, uri, manifestURL, and solution elements.

version

The version element (major.minor) contains the release number for the expansion pack and is used to determine
whether or not a more recent expansion pack is available (see updateFrequency, below).

updateFrequency

The update frequency is expressed in minutes. Once this amount of time has elapsed, the user will be prompted
to check for an updated expansion pack. The version number of the expansion pack located on the server is
then compared with that on the user's system. If the version number on the server is higher, the new
expansion pack will be downloaded.

solution

Each solution element within a manifest file describes either one solution type (smart document, schema,
transform, or other) or one targetApplication type (Word or Excel). There can be multiple solution elements within
a single manifest. The solutionID element is required and contains the GUID associated with the .dll. An alias is
also required, and associates a user-friendly name with the solution. The file element is described below.

file

A file element should be included for each individual file that is associated with the solution. This includes help
files, document fragments, images, templates, and any other collections that are part of the overall Smart
Document solution.

For a managed solution, a unique Solution ID must be generated. A utility to generate unique identifiers, guidgen.exe,
shown in action in Figure 5-17, is included with Visual Studio .NET and can be found at C:\Program Files\Microsoft
Visual Studio .NET 2003\Common7\Tools\guidgen.exe. When the expansion pack is attached, the .dll is entered into the
registry with the specified key.

Figure 5-17. Create GUID user interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-17. Create GUID user interface

It should be noted that while the manifest file does have an associated schema, Microsoft
Office 2003 will not necessarily generate an error if the instance is not valid. This can be
tested by validating any of the manifest.xml files distributed with the Smart Document
SDK in Microsoft Office Word 2003.

Here is a sample manifest.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<manifest xmlns="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">

 <version>1.0</version>

 <updateFrequency>20160</updateFrequency>

 <uri>http://www.office-xml.com/ns/sdarticle</uri>

 <solution>

 <solutionID>{1E15F399-9BFF-4ac9-A68A-737788C1B462}</solutionID>

 <type>smartDocument</type>

 <alias lcid="1033">Essentials Article Solution</alias>

 <documentSpecific>false</documentSpecific>

 <targetApplication>Word.Application.11</targetApplication>

 <file>

 <runFromServer/>

 <type>solutionActionHandler</type>

 <managed/>

 <version>1.0</version>

 <filePath>SDEssentials.dll</filePath>

 <CLSNAME>SDEssentials.ArticleSmartDocument</CLSNAME>

 </file>

 <file>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>help/article.htm</filePath>

 </file>

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>help/para.htm</filePath>

 </file>

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>help/code.htm</filePath>

 </file>

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>images/cover.jpg</filePath>

 </file>

 </solution>

 <solution>

 <solutionID>schema</solutionID>

 <type>schema</type>

 <alias lcid="1033">SDArticle</alias>

 <file>

 <type>schema</type>

 <version>1.0</version>

 <filePath>SDArticle.xsd</filePath>

 </file>

 </solution>

</manifest>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.6 Other Files
A Smart Document solution is likely to contain numerous files—help files, templates, XSL transformations, document
fragments, and media clips, not to mention the actual .dll, manifest file, and schema. Each of these files should be listed
in the manifest; when the expansion pack is attached to the document or template, the application will check to ensure
that it can locate each referenced file.

It is important to note, however, that the references to these files in the .dll must be absolute pathnames or URLs. If
the Smart Document solution cannot locate a referenced file, it will just ignore it. Building in some error checking to test
that the files actually exist in the designated file locations is highly recommended.

One method for resolving the absolute pathname is to set a constant to the installation directory of the Smart
Document solution in the SmartDocInitialize method. By prepending this constant to the specific directory and filename,
the files can be located by the application and the developer does not have to worry about where they were actually
installed.

If a specific installation directory is not given in the manifest file, the solution is loaded in the schema folder under the
Application Data folder in the user's Documents and Settings folder (C:\Documents and Settings\<username>\Local
Settings\Application Data\Microsoft\Schemas).

Subdirectories appear to be flattened when copied to the installation directory; that is, if
you created subdirectories for components such as help files, images, and XML fragments,
those subdirectories will not be created when the solution is installed on the user's system;
instead the files will be aggregated into a single directory. Because of this behavior it is
strongly recommended that filenames are unique across the entire solution set.

When building and testing Smart Document solutions, it is a good idea to continually delete temporary files. Common
locations for these files are:

C:\Documents and Settings\username\Local Settings\Application Data\Microsoft\Schemas

C:\Documents and Settings\username\Local Settings\Application Data\Assembly

C:\Documents and Settings\username\Local Settings\Temp

5.6.1 Help files

Help files are created using a subset of XHTML. The most important thing to remember when creating help files is that
the task pane is only a small percentage of the overall screen size, and there are numerous components to be displayed
in this limited space. Keep help text clear and concise. In general, you will create one help file for each control included
in the Smart Document solution. Table 5-7 lists the supported elements.

Table 5-7. Supported elements in help file XHTML
Element Purpose

A Anchor for hypertext links

B Bold

BR Break

CENTER Centers text in task pane

FONT Font characteristics

H1-H6 Headings

I Italic

LI List item

OL Ordered (numbered) list

P Paragraph

SPAN Inline text block

U Underline

UL Unordered (bulleted) list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UL Unordered (bulleted) list

Here's a listing of the help file that's associated with the authoring templates control:

<p>Authoring Templates: There are several types of content blocks

that can be inserted in an article:</p>

 paragraph

 code block

 numbered list

 bulleted list

 term / definition list

 warning

 note

<p>It is possible to have more than one entry for any type; that is,

you may have three authors and two editors. Click on the radio button

next to the desired selection.</p>

<p>Logo: Select the appropriate logo from the images below.</p>

<p>Website: For additional help, click on the link below.</p>

<p>Required Warning: The Warning below, if needed, must be

incorporated into your document without modification. Click on the

content and it will automatically be inserted into your document.</p>

5.6.2 Document Fragments

The world of structured document authoring has been using fragments for quite some time, either managed as file
entities or as objects in a content management system. Smart Document technology opens this potential to Microsoft
Word 2003 users.

Let's say that you work in a law firm. More likely than not, you have a library of document fragments that can be used
to create contracts, wills and trusts, and other legal documents. Or maybe you have to search through existing
documents to find the right pieces you need, and then cut and paste. You can now access those components directly
through the task pane and can build in sufficient intelligence so that only relevant fragments are displayed. Or maybe
your sales and marketing group struggles with the process of creating proposals for your products and services. By
managing independent descriptions that are targeted to various types of customers (such as government, commercial,
or industry-specific) your salespeople will be able to quickly assemble proposals that contain the most up-to-date,
accurate information along with any boilerplate required by your legal department. Yet another common usage is in the
area of technical documentation. Warnings, cautions, and notes have legal implications and must typically go through
an approval process. Once approved, the text cannot be modified. By taking advantage of document fragments, the
content can be automatically inserted into the document making sure that no errors occurred during a copy and paste
operation, and the content can then be protected to prevent the end user from making any unauthorized changes.

By default, Word will display the first page of any document fragment in the task pane. For lengthy fragments this can
be cumbersome. Another option is to create two versions of the fragment—one that is displayed in the task pane and
the other containing the complete dataset. Document fragments must be valid WordprocessingML instances. The
easiest way to create such fragments is to use Microsoft Office Word 2003 with the Smart Document solution attached
as described in the next section. This enables you to take advantage of the templates and styles to apply your schema-
specific markup along with the necessary WordprocessingML markup and style information. When saving, save as XML.
Fragments can also be created by taking existing XML components and running them through an XSL transform. Here's
the listing for our Warning document fragment (with most of the heading information omitted). Note that it contains
both WordprocessingML (prefixed by w) and our own schema elements (prefixed by ns0):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

both WordprocessingML (prefixed by w) and our own schema elements (prefixed by ns0):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml" xmlns:v="urn:schemas-

microsoft-com:vml"

xmlns:w10="urn:schemas-microsoft-com:office:word" xmlns:sl="http://schemas.microsoft.

com/schemaLibrary/2003/core" xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint" xmlns:o="urn:

schemas-microsoft-com:office:office"

xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

xmlns:ns0="http://www.office-xml.com/ns/sdarticle"

w:macrosPresent="no" w:embeddedObjPresent="no"

w:ocxPresent="no" xml:space="preserve">

...

<w:body>

<ns0:Warning>

<ns0:Para>

<w:p><w:pPr><w:pStyle w:val="Warning"/></w:pPr><w:r>

<w:t>In order to run a Smart Document solution, the user will

need to have several components installed on their local system:

</w:t></w:r></w:p></ns0:Para></ns0:Warning>

<w:p/>

</w:body>

</w:wordDocument>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.7 Attaching the Smart Document Expansion Pack
Before you can use your Smart Document solution with a Microsoft Word document, you must attach the expansion
pack. As a developer, you will first want to run the "Disable XML Expansion Pack Manifest Security" utility included in
the Smart Document SDK. This will prevent you from having to re-sign the manifest file each time it is updated. Note,
however, that if you disable the security check, you will be reminded each time you attach the expansion pack that
security has been disabled. You will then be asked whether or not you wish to re-enable security. Beware—the default
response is yes.

Each time you make modifications to your code that you want to test in the user's environment, you will need to rebuild
your code, then detach and reattach the manifest file to the Word document or template. This will force the updated
code to be loaded into the temporary directories.

Word 2003 has been known to crash after detaching and then reattaching an expansion
pack. Be prepared.

To attach an expansion pack:

1. Open the Word document or template you wish to use with the expansion pack.

2. Select Tools Templates and Add-Ins . . . from the menu bar.

3. Select the XML Expansion Packs tab.

4. Click on the Add button.

5. Navigate to the manifest file and select it. The expansion pack should now download.

If there are problems locating any of the components defined in the expansion pack, an
error message will be generated.

6. When the alias you have defined for the Smart Document solution displays in the window, select it. Then click
Attach and OK.

If there are problems with the expansion pack itself, a cryptic error message about your
expansion pack being identified as either missing or invalid will be displayed. Unfortunately
it's not a very useful error message, and can point to a dozen or more problems.

To delete an expansion pack:

1. Open the Word document or template you wish to use with the expansion pack.

2. Select Tools Templates and Add-Ins . . . from the menu bar.

3. Select the XML Expansion Packs tab.

4. Highlight the name of the Expansion Pack and select Delete.

5. You will be prompted about whether or not you want to remove the expansion pack from your system. Click
Yes.

Do not use the Remove button; this will remove the expansion pack from that particular
document, but will not delete the expansion pack from its install location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.8 Deploying Your Smart Document Solution
There are a few requirements that must be met before an expansion pack can be installed. Most of these are related to
security issues, particularly if your solution is intended to be distributed via the Internet. If you aren't the system
administrator, you may need to find the person who is and enlist their services. This is not intended to be a thorough
discussion of security and installation; the subject encompasses entire volumes. Refer to the Microsoft Smart Document
SDK and MSDN for more detailed information.

5.8.1 Internal Deployment

The easiest way to distribute solutions is to run the "Disable XML Expansion Pack Manifest Security" utility included in
the Smart Document SDK. This is easy, but not necessarily secure. It is intended to be used in a development
environment only.

The best way to deploy and update a Smart Document solution is from a shared network location, a web server, or
another location accessible by all users. If possible, attach the expansion pack to any templates or other documents
that are part of the solution. That will eliminate the end user from having to attach the expansion pack manually.

When opening a Smart Document with an attached XML expansion pack that is located on a web server, Office checks
to see if the server is located within an intranet zone or is listed as a trusted site. If either of those conditions is true,
the expansion pack is retrieved and the standard security check is performed. If, however, neither of those two
conditions is true, the expansion pack will not be retrieved.

5.8.2 External Deployment

The optimum approach for external distribution is to create an installer package that will place each of the files in the
appropriate location and add the necessary entries to the registry. If it's a managed code solution, client computers
must have the Microsoft .NET Framework 1.1 and .NET Programmability Support installed. The optimum installation
procedure is as follows:

1. Install Microsoft .NET Framework 1.1 (available for download from Microsoft Windows Update).

2. Install Microsoft Office Professional Edition 2003—complete. This will automatically install the .NET
Programmability Support option (the Primary Interop Assemblies or PIAs necessary to make managed code run
with Word).

If Office 2003 is already in place, the following procedure will update the environment:

1. Install .NET Framework 1.1.

2. Select "Add or Remove Programs" from the Control Panel.

3. Locate Microsoft Office Professional Edition 2003 (or appropriate) and click Change.

4. Select "Add or remove features" and click Next.

5. Select "Choose advanced customization of applications" and click Next.

6. On the Advanced Customization panel, expand Microsoft Office Word by clicking on the plus sign (+).

7. The first option listed should be ".NET Programmability Support." Click on the down arrow icon to the left of the
option name. If not already installed, select "Run from My Computer." and then click Update.

5.8.3 COM Versus Managed Code

In all cases, Office 2003 requires that Smart Document developers sign the XML expansion pack manifest file. Internal
certificates can be created with the "Digital Certificate for VBA Projects" included with the Microsoft Office Tools kit. For
managed code solutions, there are two additional requirements:

The Microsoft .NET Framework 1.1 must be installed on the client computer.

 The assembly .dll must have FULLTRUST permissions explicitly granted on the user's machine.

Refer to the Smart Document SDK and online resources for more information about
managing security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

managing security.

5.8.4 Template Files

If your Smart Document solution contains one or more template (.dot) files, they should be placed in the default
template directory as specified in the File Locations tab in the Options menu. This will allow the end user to create new
documents by selecting File New from the menu bar and then selecting the appropriate template. Attaching the
expansion pack to the template will ensure that it is automatically enabled.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.9 A Few Last Words on Smart Documents
Now that you've seen the parts involved, it's worth considering which aspects of Smart Documents need your focus.

5.9.1 Range and Selection Objects

The Word object model consists of hundreds of objects, yet no two are more powerful than range and selection. These
two objects are used to identify the parts of the document that are to be manipulated by the accompanying code. What
is confusing is that, for most cases, either object can be used. The main difference is that a range is not visible to the
end user; that is, you can identify a range and manipulate it, and the end user's cursor location will not move. selection,
on the other hand, does exactly what you'd expect—literally highlighting the selection on the end user's screen. More
often than not, range is preferred over selection for several reasons, not the least of which is performance.

Both the range and selection objects have dozens of properties and methods associated with them—everything from cut,
insert, and delete to XMLNodes. For a thorough explanation of range and selection, see Writing Word Macros by Steven
Roman (O'Reilly).

5.9.2 Inserting Markup

One of the powerful features of Word is its ability to quickly change the "view" of any document on the screen. You can
turn individual formatting markers on or off, change the overall look from outline to print layout, view field codes or
placeholder text. What may not have been apparent in the past but now becomes clearly evident is what, if any, impact
these changes have on the cursor position. When determining what elements are allowed in context, the context
referred to is the current cursor location. When programming Smart Documents, you must determine the current view;
otherwise your tests may yield undesired results.

5.9.3 Validation

The "Valid elements for insertion" list as displayed in the XML Structure task pane does not pay attention to sequence
or occurrence. If the cursor is currently positioned within an element that has children, all of those child elements will
be displayed. Word will, however, display an error once an invalid child has been inserted, via both squiggly lines in the
document pane and symbols in the XML Structure view. The developer can take advantage of the XMLValidationError
method to prevent the user from creating an invalid instance and to provide additional guidance. If the user does not
use the XML Structure task pane to insert markup, this problem is avoided.

5.9.4 Inserting Styles

Microsoft Word has four types of styles: character, paragraph, list, and table. When applying styles to content, the
surrounding WordprocessingML markup becomes very important. If applying a paragraph-level style to some text
(paragraph styles and list styles), that content must be both preceded and followed by a paragraph marker. If the text
is not preceded by a paragraph marker, then when the style is applied it will be applied to the entire block; that is, to all
content until either a preceding paragraph marker is located or to the top of the document itself. Similarly, if the text
following the content to be formatted is not separated by a paragraph marker, it too will take on the particular style
characteristics meant to be associated with the content.

5.9.5 Stories or Streams

Word objects such as headers, footers, footnotes, endnotes, comments, and text frames are maintained separately
from the main body of a document. They each have their own object model and are accessible programmatically, but if
they contain XML markup, your resulting instance when saving the document will most likely result in errors. The best
way to handle these separate streams is through direct use of the Word tools; capture them on save by making use of
a transform that will convert the WordprocessingML to your specific markup and place the contents in the right location
within the XML document instance.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.10 Some Final Thoughts
While far from perfect, Smart Document technology gives the developer tremendous flexibility in creating intelligent
document applications that will readily handle time-consuming tasks such as locating information, retrieving it, and
inserting it into a document, as well as support for the creation of documents with built-in intelligence thanks to the
incorporation of XML markup. For the most part, applications developed as of this writing have proven to be fairly
stable, other than the areas specifically pointed out in this chapter.

While the resulting applications are working well, the development process tends to leave substantial amounts of
garbage that goes uncollected. Be sure to clean out all temp files regularly (at least daily) to avoid additional problems.
The frequent act of attaching/detaching manifest files/expansion packs may be necessary during development and
testing is likely to cause Word to crash. Be sure you don't have any other Word documents open while debugging; you
may end up losing some of your work.

As mentioned earlier, most sample applications provided in the Smart Document SDK or articles posted to the MSDN
web site revolve around "data islands" combined with generic content elements that hold all of the content that is not
associated with specific XML markup. For a number of applications, this approach is perfectly reasonable and should be
considered.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Working with XML Data in Excel
Spreadsheets
Microsoft Office Excel 2003 offers two rather different kinds of XML functionality. Excel (in the Professional and
Enterprise editions) allows users to build spreadsheets that load data from XML files, making it easy to analyze
information sent from various sources using the same spreadsheet. The data that a spreadsheet analyzes can be
separated from the logic used to analyze it very easily this way, making it simpler to create spreadsheets that work
more like ordinary applications. Excel 2003 (and XP) also offer the ability to save and open spreadsheets which are
themselves saved in Excel's own XML format; these features will be explored in Chapter 7.

The features described in this chapter are available only to users of the Professional or
Enterprise editions of Microsoft Office Excel. Sadly, the Standard edition does not include
these capabilities. If you have problems finding the XML features in your copy of Excel,
check to see which edition you're using. (The Small Business Edition appears to include the
Standard, not the Professional, version.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Separating Data and Logic
When spreadsheets first appeared, they brilliantly blurred the distinction between programming and information.
Spreadsheet users could enter their data and work on it without having to do things like "programming." All the
information could reside in a single file, readily shared, and copy and paste functionality along with a few basic
functions ensured that spreadsheets were easy to learn. An unknown but clearly vast amount of business decision-
making has rested on spreadsheets, and an incredible amount of business data is stored in spreadsheets.

This power has come at some cost, however. While spreadsheets are accessible, their mixing of data and logic has
created a few problems. While copy and paste works well for simple spreadsheets, it becomes complicated quickly if, for
example, users try to combine logic from multiple spreadsheets. Suddenly development style matters. Spreadsheet
software, with its smart copy and paste features and support for multiple workbooks, has done a lot to simplify this
process, but the work involved in making these pieces communicate is still very real. Mergers and acquisitions, for
instance, often face a serious challenge in reconciling the spreadsheets used by decision-makers at the various
organizations.

Even on a smaller scale, the combination of data and logic that make spreadsheets so powerful can create some
substantial annoyances. I work, for example, with data I need to analyze on a weekly, monthly, quarterly, and annual
basis. I use the same basic logic for all of this analysis. The company I work for makes it available in Excel
spreadsheets, generated from a database. I end up with an enormous number of largely duplicate spreadsheets over
time, as only the data has changed. There's no simple way for me to aggregate the information from multiple
spreadsheets, and if I want to make a change to the logic, I have to make that change every time I download new
information. That thoroughly discourages me from making logic changes.

Another cost of spreadsheets is that they act as roach motels: data comes in but it never
goes back out to databases, except as spreadsheets. This problem will be addressed in the
next chapter.

Excel has addressed these issues to some degree with features like ODBC integration with databases. Instead of storing
all the information in spreadsheets directly, the user can specify an area of the spreadsheet to be populated with
information from a database query. In places where you trust your users with such access or can provide secure
facilities to provide the information, this can be genuinely useful stuff. Users can analyze information using the CPU
power on their desktops, customize how they see the data, and manipulate it without ever (hopefully) having to request
development of custom processes. They can load new data into their spreadsheets whenever they need to do so,
without fear of overwriting the logic they've so painstakingly created.

Unfortunately, that scenario only works for a limited number of cases where users have direct (or nearly direct) access
to information. There are many untrusted users, as well as users who travel or are otherwise disconnected. There are
lots of users who need access to historical information, and may need to process that information a few times before
actually letting it into the final spreadsheet. There are users with intermittent connections, who access their information
through things like web servers and file servers.

In these cases, using XML as a base format for data works very nicely. XML files are self-contained, and are easily sent
as attachments in email or loaded from a file or web server without any special infrastructure. Instead of users having
direct access to a database, they can be given access to copies of the parts of the database that interest them. If users
want to tinker with the data—for forecasting, for instance, or just to make themselves feel briefly better about their
results—they can tinker without having any impact on the original data source. Users who want to aggregate
information from multiple data sources can do so using either Excel's own tools or the wide variety of XML-processing
tools available.

Users can also treat Excel as a tool for creating and manipulating XML data, provided that the data structures fit neatly
into Excel's expectations of columns and rows. While Excel is in some ways a more limited XML editor than Word, it also
provides a much simpler interface, one that is easy for users to set up and use themselves.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Loading XML into an Excel Spreadsheet
There are several different ways to load XML data into Excel. Some are useful mostly for quick exploration and maybe
some editing, while others are more appropriate for creating spreadsheets that use XML as a data source that can be
easily replaced with new data whenever appropriate. All of these mechanisms share a common approach for showing
XML data in the spreadsheet, so it's worth taking a moment to examine how Excel handles XML structures before
moving into the mechanics of importing data.

When Excel opens an XML file, it imports data from it. If you make changes to the XML file while Excel is working with
the data it has imported from that file, changes to the XML will not be reflected in the Excel spreadsheet.

6.2.1 Tables and Trees

Excel, like all spreadsheets, is built on a grid. Information is organized into rows and columns, and this worksheet grid
(as well as relationships among multiple worksheet grids in a workbook) is used to create cross-references between
different sections of information. Within the grid, Excel is enormously flexible. Information doesn't have to follow neat
table structures—pricing data could, if desired, run diagonally down a spreadsheet. It's easier to work with ranges of
information if it stays in a single row or column, though, so most spreadsheets combine table areas that contain raw
data and then either tables of results or cells along the fringes of the tables.

XML has no built-in notion of a grid. While it's certainly possible to represent a spreadsheet's rows and columns of cells
within a worksheet as XML (and Chapter 7 will explore how Microsoft's chosen to do this), there's no guarantee that any
given XML document will neatly fit into the native structures of Excel. There are a few simple but critical conditions that
must apply to XML documents for them to be used easily as source data for Excel:

Tree structures that produce rows

Excel works best on XML documents when they conform to its structural expectations. The root element of the
XML document should act as the primary container for a table of information. Each of the child elements of the
root element should represent a row. Each of the child elements (or attributes) of the row elements should
represent a cell in the grid. Roughly, this looks like:

<table>

 <row>

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 <cell-name3>...value...</cell-name3>

 <cell-name4>...value...</cell-name4>

 </row>

 <row>

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 <cell-name3>...value...</cell-name3>

 <cell-name4>...value...</cell-name4>

 </row>

</table>

Excel also works well with cells expressed as attributes:

<table>

 <row cell-name1="value" cell-name2="value" cell-name3="value"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <row cell-name1="value" cell-name2="value" cell-name3="value"

 cell-name4="value" />

 <row cell-name1="value" cell-name2="value" cell-name3="value"

 cell-name4="value" />

</table>

Attributes and elements can also be mixed:

<table>

 <row cell-name3="value" cell-name4="value">

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 </row>

 <row cell-name3="value" cell-name4="value">

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 </row>

</table>

Excel is pretty relaxed about the order in which these appear as well, as it uses the names of elements and
attributes rather than their order when creating a map.

It is possible to extract portions of XML documents that look like these structures,
even if the rest of the document looks different, but it does take a few extra steps.

Regular structure

When Excel works with an XML document, it represents the data as rows and columns. It's very difficult for
Excel to determine which rows and columns to create if the data of the document isn't consistent. It does make
a best effort, but there are limits. The occasional missing piece of information shouldn't cause drastic
difficulties, but extra information may not be imported, and consistency makes results much more predictable.

No mixed content

One of XML's best features for working with documents is the ability to mix elements and text together freely. A
classic simple use of mixed content is highlighting information in bold or italic:

<sentence>This is in bold and <i>this is in italic</i>.</sentence>

Unfortunately, these structures fit very badly with Excel's view of XML data as cells in a grid. If you need to
process XML data that includes mixed content, you should either use Word (which is designed to support it) or
pre-process your XML to strip out the extra markup.

Schema for type information (optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While Excel doesn't require XML Schema files that describe the XML documents you use, schemas can be a very
convenient tool both for describing the information that you'll be including in a spreadsheet to Excel and for
sanity-checking the documents users work with in the Excel environment. If there isn't a schema, Excel makes
a pretty good best effort to analyze data and guess what schema would be appropriate.

Limited depth

Excel does well with lists of information, but can really only present two levels of lists, representing rows and
cells. If a document has many layers of lists, or uses elements containing elements with the same name
(recursive markup, commonly used in lists), Excel will not be able to import all of the data.

Effectively, Excel only works well with a small subset of the many possible XML document structures. The Excel subset,
however, is an extremely common subset in practice. Enormous amounts of data are available in XML formats that
work well with Excel.

6.2.2 Opening XML Documents Directly

The standard Excel dialog box for opening files shows XML files (or files ending in the extension .xml) right along with
Excel spreadsheets, as shown in Figure 6-1.

Figure 6-1. XML files appearing in the Excel Open dialog box

Only one of the choices presented here is a traditional Excel spreadsheet, twoPlusTwo.xls. The other files are XML files.
XML files that Excel knows belong to Microsoft Word (thanks to the mso-application processing instruction), the ch02-x
series, are marked with the Word icon, while ch0601.xml, an Excel SpreadsheetML file, has the Excel icon. XML files
using other vocabularies get a different icon. On my system, they get a Mozilla logo, but they may have a different logo
on your system, depending on what XML-processing software you have installed.

Whatever logo appears, however, you can attempt to open any XML file. If the XML contains anything other than Excel's
own SpreadsheetML, covered in Chapter 7, you'll see the dialog box shown in Figure 6-2.

Figure 6-2. Dialog box for choosing how to handle XML document importation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. Dialog box for choosing how to handle XML document importation

If the XML document you open contains any elements named html, you won't see the
dialog box shown in Figure 6-2. Instead, Excel will attempt to open it as an HTML
document. It even seems to do this if the elements that look like HTML are in another
namespace.

6.2.2.1 Opening documents as a list

We'll start with a simple XML document recording (imaginary) sales of books to explore how these different options
work, shown in Example 6-1.

Example 6-1. A simple XML document for analysis in Excel

<?xml version="1.0" encoding="UTF-8"?>

<sales>

<sale>

<date>10/5/2003</date>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<PriceUS>34.95</PriceUS>

<quantity>200</quantity>

<customer ID="1025">Zork's Books</customer>

</sale>

<sale>

<date>10/5/2003</date>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<PriceUS>39.95</PriceUS>

<quantity>90</quantity>

<customer ID="1025">Zork's Books</customer>

</sale>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<sale>

<date>10/5/2003</date>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<PriceUS>29.95</PriceUS>

<quantity>300</quantity>

<customer ID="1025">Zork's Books</customer>

</sale>

<sale>

<date>10/7/2003</date>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<PriceUS>34.95</PriceUS>

<quantity>10</quantity>

<customer ID="1029">Books of Glory</customer>

</sale>

<sale>

<date>10/7/2003</date>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<PriceUS>39.95</PriceUS>

<quantity>25</quantity>

<customer ID="1029">Books of Glory</customer>

</sale>

<sale>

<date>10/7/2003</date>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<PriceUS>29.95</PriceUS>

<quantity>5</quantity>

<customer ID="1029">Books of Glory</customer>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<customer ID="1029">Books of Glory</customer>

</sale>

<sale>

<date>10/18/2003</date>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<PriceUS>29.95</PriceUS>

<quantity>15</quantity>

<customer ID="2561">Title Wave</customer>

</sale>

<sale>

<date>10/21/2003</date>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<PriceUS>39.95</PriceUS>

<quantity>15</quantity>

<customer ID="9021">Books for You</customer>

</sale>

</sales>

If you open this document from Excel and choose "Open as an XML List," you'll see the dialog box shown in Figure 6-3.

Figure 6-3. Excel's warning that no schema is in use

If you just go ahead and click OK, Excel will look at the document, infer a schema for it, build a list based on that
schema, and import the contents of the XML document into that list. You'll be rewarded with the spreadsheet result
shown in Figure 6-4.

Figure 6-4. The XML document shown in Example 6-1 presented as an XML list in
Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel

Excel not only imports the data from the XML document, it uses the element and attribute names as list headers. The
drop down tabs to the right of the list headers let you organize the information as you'd like, as shown in Figure 6-5.

Figure 6-5. Choosing a sort or filter from a drop-down

If you choose "Sort Ascending," for instance, you'd see the list sorted by ISBN, as shown in Figure 6-6.

Figure 6-6. Sorting the data from the XML document by ISBN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel also offers some basic functionality for totaling and averaging the contents of these lists. Right-clicking on the list
—anywhere inside the blue box—brings up a menu. If you choose List Total Row, you'll see an extra row appear at
the bottom of the list, as shown in Figure 6-7.

Figure 6-7. A total row added to the spreadsheet

By default, Excel just does a sum of the right-most column. That's common practice for spreadsheets, though in this
case it works badly, since the IDs aren't exactly addable. Clicking on the cells in the total row brings up a drop-down
tab. Figure 6-8 shows the choices it offers.

Figure 6-8. Total row options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For quantity, it might be nice to know the total number of units ordered. We'll select Count for ISBN so we know how
many orders we have. Figure 6-9 shows the results.

Figure 6-9. Total row results

This is somewhat useful, but odds are good that we want to be able to perform more sophisticated calculations on the
information. Fortunately, we can access the information in the list from the rest of Excel. For starters, we might well
want a column that provides the total cost of an order—the quantity times the price. Because this is just Excel data,
that's easily done. We'll add a "Total" header in cell H1, and then a formula, =D2*E2, in cell H2. If we copy that formula
from H2 to cells H3-9, we get the results shown in Figure 6-10.

Figure 6-10. Total column results

Because we put this column right next to the XML data, Excel added this column to the list, and gave it the same sort
and total capabilities of the rest of the list. Formulas can reference this data from other workbooks or from non-
adjacent cells, though they won't be built into the list the same way.

While Excel provides no means of referring to data in this list by list name and column, you can safely reference the
range and have Excel automatically adjust if a user reloads the XML document or modifies the information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range and have Excel automatically adjust if a user reloads the XML document or modifies the information.

This only works on a list that already has data in it. If you base your formulas on an empty
list, the ranges won't expand properly. The last row of the list is an entry area, which Excel
doesn't count when it adjusts ranges.

To show how to reference data, we'll create some formulas on Sheet2 that reference the range containing the XML data
in Sheet1, as shown in Figure 6-11.

Figure 6-11. Calculations on the XML data

If we go back to Sheet1, and right-click on the XML list area, the XML sub-menu lets you Import... new data. When we
import the data in ch0602.xml, a slightly extended version of the same information, Excel presents the data as shown
in Figure 6-12.

Figure 6-12. Adding more XML data

It's the same data, with a few extra sales. If we now return to Sheet2, as shown in Figure 6-13, we can see that the
sales figures and the formulas have updated smoothly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-13. Automatically updated calculations on the XML data

Excel only does this updating when new data is imported, not when changes are made to the original file, so you should
set user expectations appropriately. This is a very simple example, admittedly, but you can build much more
sophisticated spreadsheet applications on these same principles.

Using sample documents to create a list this way is very convenient, but you should be
aware that if you re-use the list on another XML document that contains more structures
than appeared in the original document, those extra structures won't get imported.

6.2.2.2 Opening documents as a read-only workbook

If you're extracting data from XML documents, you may find it useful to open them as read-only workbooks. The
presentation of the information is very different, and there's no option for exporting the XML back out of the
spreadsheet, but more explicit information about where the information came from is provided in the header rows. If
we open ch0601.xml and select "Open as a read-only workbook," we see the result shown in Figure 6-14.

Figure 6-14. Sales data loaded as a read-only workbook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Information about where the data came from is provided in the XPath-like headers. The #agg information seems to be
aggregated information, though in this case there's only one item per column.

The name "read-only workbook" is slightly misleading. You can make changes to the data, and you can save this file
elsewhere. The "read-only" just means that you can't make changes to the original XML document using this approach;
if you save the file, it's saved as an Excel workbook. It isn't nearly as flexible as the list approach, but it also lets you
extract information from a wider variety of documents. Given its lack of flexibility and Microsoft's lack of documentation
for the resulting format, this feature is probably best used only when you want to dump content from a document into
Excel and don't mind doing a lot of organization yourself.

6.2.2.3 Using the XML source task pane

Opening an XML document using the XML Source task pane produces results that are much like the list created by
opening the document as an XML list, but it allows you to have more control over what appears in the list and what
doesn't. Many XML documents, for example, have header information followed by repeating sections. If opened directly
as a list, Excel will produce a lot of columns that repeat the header information, when it really only appeared once.
Using the XML Source task pane lets you choose what elements or attributes you want to appear in the Excel grid, and
is especially useful when you only want to see or work with a subset of the information used in a document.

To show off the source task pane, we'll open ch0601.xml and select "Use the XML Source task pane." If, like
ch0601.xml, the XML document doesn't contain a reference to an XML Schema, Excel displays the same warning that
was shown in Figure 6-3, and then generates a schema based on what it finds in the document, producing the XML task
pane contents shown in Figure 6-15.

Figure 6-15. Using the XML Source task pane to select XML document parts for
display in Excel

To put information on to the spreadsheet, click on items in the task pane and drag them over to the grid. If you drag
the date over to cell A3, you'll see the result shown in Figure 6-16.

Figure 6-16. Adding a component from the XML Source pane adds a column, but
not the data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While we originally started out as if we were loading a document into Excel, Excel instead loaded the structure of the
document rather than its contents. Using the XML Source task pane means building the structure you want in the
spreadsheet from the parts in the XML document and then importing the XML document's content. If you drag more of
them over and align them side by side, Excel will create a single large list, as shown in Figure 6-17 (If some parts of a
document don't repeat, you can place them in cells that are not adjacent to the main body of the list.).

Figure 6-17. A list, created from the task pane

Populating that list takes an extra step. If the List toolbar is visible (and you can find it at View Toolbars if it isn't
already visible), you can click on the Import XML Data button, as the task pane advises, find your XML document, and
import it. If the toolbar isn't visible, right-clicking on the list will bring up a menu with an XML entry. Select Import . . .
from that menu, choose your XML document, and Excel will import the data. Figure 6-18 shows what Excel produces if
you import ch0601.xml into this list.

Figure 6-18. A filled-in list, with the List toolbar turned on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-18. A filled-in list, with the List toolbar turned on

At this point, you can work with the list the same way you could when the list was loaded directly. One important
feature of building the list this way that you don't get when documents are loaded directly is that you can also place
non-repeating elements on the spreadsheet. Let's suppose the sales element also contained an element named store,
identifying which store had these sales. Figure 6-19 shows the store element placed above the rest of the list, displaying
the value of store once and only once.

Figure 6-19. A filled-in list, with a single element above the repeating portion of
the list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.3 Working with XML Maps

Opening XML documents directly is a great way to get started or to quickly analyze information, but in the long run
you'll probably want to build spreadsheets that take a more structured approach. The XML Source pane lets you define
XML Maps, describing the relationships between XML document structures and the lists that actually appear in your
spreadsheet. These maps are built on XML Schemas, though they may either be schemas you specify or, as the
previous examples showed, schemas that Excel derived by example from documents.

Most interactions with XML Maps take place through the task pane's XML Source view, or through schemas or
documents which you use as a foundation for the map. Once you've created a map, there isn't much you can do
through the Excel interface to change its basic structures, so getting your schema right in the first place is a critical step
in creating spreadsheets that work with XML.

6.2.3.1 Excel and XML Schema

The XML Schema Recommendation provides a much more comprehensive set of tools for describing information than
Excel actually needs. As noted earlier, Excel is good primarily for interacting with certain kinds of document structures,
so some document-oriented features of XML Schema (like types that use mixed content) don't work with Excel.
Similarly, Excel has had its own set of types for internal consumption for over a decade, and retrofitting Excel with the
complete XML Schema datatype system probably would not be wise. Microsoft uses a combination of existing types to
support the larger XML Schema system, as shown in Table 6-1.

More information on creating schemas with a variety of tools is covered in Appendix C and
Appendix D.

Table 6-1. Mappings between XSD datatypes and Excel datatypes

XSD Datatype Excel
Format Limitations

time h:mm:ss If time zones are used, stored as text.

dateTime

m/d/yyyy
h:mm (may
vary with
local versions
of Excel)

No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

date

m/d/yyyy
(may vary
with local
versions of
Excel)

No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

gYear Number,
integers only

No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

gDay, gMonth Number,
integers only If time zones are used, stored as text.

gYearMonth mmm-yy
No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

gMonthDay d-mmm
anyType, anyURI, base64Binary, duration,
ENTITIES, ENTITY, hexBinary, ID, IDREF, IDREFS,
language, Name, NCName, NMTOKEN, NMTOKENS,
normalizedString, NOTATION, QName, string, token

Text

boolean Boolean

decimal, float, double General

Insignificant zeros will be dropped, and only
negative signs will be displayed. All of these
forms, despite their XSD differences, are used
in calculations using 15 digits of precision.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

byte, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger,
positiveInteger, short, unsignedByte, unsignedInt,
unsignedLong, unsignedShort.

General

These differences mean that you should not expect Excel to keep close track of the validation specified by the schema.
Excel will behave as it has always behaved, with a set of rules for mapping between Excel and XSD. Formats that are
represented as text will be imported or exported as they appear, while formats that have a more complex type may be
formatted by Excel in the spreadsheet and according to XSD rules in the XML.

Excel also performs similar simplifications on content models. Excel is not designed as an über-XML-document
processor, and it doesn't need the structural type information provided by XML Schema. From Excel's perspective, it
needs to know what data goes together as a row and in what columns. Simpler structures are more manageable, and
far less likely to break. While there may be times you need to work with XML that arrived with a complex schema, it
may be easier in such cases to break the documents into smaller pieces and use simpler schemas if possible.

6.2.3.2 Creating an XML Map

Although some of the techniques described earlier in Section 6.2.2Section 6.2.2 create XML Maps, there are times when
you'll want to incorporate data from XML documents in an existing spreadsheet, and those techniques don't work as
well for that.

To create an XML Map in an existing spreadsheet, you need to bring up the task pane (View Task Pane, if it's not
already there) and select XML Source from the drop-down menu at the top of the task pane. Unless you've done XML
work with this spreadsheet before, you should have an empty task pane, like the one shown in Figure 6-20.

Figure 6-20. The XML Source task pane, before any sources are listed

To create an XML Map, click on the XML Maps... button. The XML Maps dialog box, shown in Figure 6-21, will appear,
empty.

Figure 6-21. A fresh XML Maps dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a map, click the Add . . . button. For an example, we'll use a document structure that both fits the Excel grid
approach and tests out how it handles a variety of the XML Schema datatypes listed Table 6-1, using a contract
management system as a guide.

For more information about creating the XML Schemas that are the foundations for these
maps, see Appendix C. You may want to explore the tools mentioned at the end of that
Appendix for inferring schemas from documents in particular.

These are some pretty simple contracts, which are just about payments on birthdays, enough information to get a
sense of how Excel treats different datatypes. The schema for the contract description is listed in Example 6-2.

Example 6-2. A simple schema for contracts

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://simonstl.com/ns/example/contract" xmlns:contract="http://simonstl.

com/ns/example/contract">

 <xs:element name="contracts">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="contract:contract"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="contract">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="contract:recipient"/>

 <xs:element ref="contract:signing_date"/>

 <xs:element ref="contract:signing_time"/>

 <xs:element ref="contract:birthyear"/>

 <xs:element ref="contract:birthday"/>

 <xs:element ref="contract:male"/>

 <xs:element ref="contract:payment_amount"/>

 <xs:element ref="contract:years_to_pay"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="recipient" type="xs:string"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="recipient" type="xs:string"/>

 <xs:element name="signing_date" type="xs:date"/>

 <xs:element name="signing_time" type="xs:time"/>

 <xs:element name="birthyear" type="xs:gYear"/>

 <xs:element name="birthday" type="xs:gMonthDay"/>

 <xs:element name="male" type="xs:boolean"/>

 <xs:element name="payment_amount" type="xs:decimal"/>

 <xs:element name="years_to_pay" type="xs:integer"/>

</xs:schema>

We'll use this schema to create an XML map by clicking the Add... button and selecting this schema from the browse
dialog that appears. When the Multiple Roots dialog box shown in Figure 6-22 appears, select "contracts" from the list
and click OK.

Figure 6-22. Choosing the root element for the map

You'll be rewarded with the result shown in Figure 6-23, a new XML Map that is named contract_map, after the root
element, which describes the namespace http://simonstl.com/ns/example/contract.

Figure 6-23. The XML Map, ready to go

You may notice that your choices for manipulating this map are very limited. You can
rename it or delete it, but you can make no changes. Chapter 7 will explore how you can,
if necessary, make changes to XML Maps through SpreadsheetML's XML representation of
them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click OK, you'll see XML components ready to be used in the XML Source task pane, as shown in Figure 6-24.

Figure 6-24. XML components, ready for use

The XML Source pane uses a number of icons to describe the structure of the XML document, much like those used to
represent files and folders in the Windows Explorer. These icons are shown in Table 6-2.

Table 6-2. XML Source pane icons
Icon Description

Used to represent a container element that may appear one or many times, most typically the root
element of the document. (Root elements aren't actually optional, but perhaps Excel does this to support
the possibility of an empty map.)

Used to represent a container element that may only appear once, often an element that contains
attributes.

Used to represent a container element that may appear repeatedly, most typically an element that
represents rows.

Used to represent a data element that must appear once and that contains data rather than other
elements.

Used to represent a data element that may appear once (or not all), which contains data rather than other
elements. (The same icon, very slightly darker, is used for attributes.)

Used to represent a data element that may appear multiple times. These often give Excel trouble as they
often break out of the simple grid structure.

Used to represent the value of an element, typically when the element also has an attribute or attributes.
This allows you to put an element's content into the grid separately from the values of any attributes it
may have.

If you drag the ns1:contract icon to cell A1, you'll get a list based on this map set up and ready for use, as shown in
Figure 6-25.

Figure 6-25. A list based on the XML Map, ready for use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-25. A list based on the XML Map, ready for use

I tend to clean these up and remove the "ns1" prefixes, as you'll see in later examples. You can also dismiss the XML
Source pane, and bring it back up only if you need its "Verify Map for Export . . . " option.

If you select a cell in Row 2, and select Format Cells, you can see how Excel has formatted the data automatically.
For example, if you do this to the signing date, you'll see the result in Figure 6-26.

Figure 6-26. Cell formatting applied by Excel to dates

While Excel has used the schema to determine cell formatting, it is not currently using the datatypes in the schema for
any kind of data validation. If you import an XML document (or type in data) that doesn't correspond to Excel's
expectations, it will format it as text. To make Excel use the schema for validation—which only happens on import and
export in any event—you need to right-click on the list, select the XML sub-menu, and then select XML Map Properties.
The dialog box shown in Figure 6-27 will appear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dialog box shown in Figure 6-27 will appear.

Figure 6-27. The XML Map Properties dialog box

The "Validate data against schema for import and export" is always turned off by default. While that may seem strange
in contexts where you want validation to check user data, it also avoids some odd problems. It's possible that users will
want to import documents that have problems so that they can repair them. It's also possible that users will be so
frustrated by a document that they want to send it to someone else to sort out, without being told they can't save the
file.

We'll use two test documents to explore how this works. The first one, shown in Example 6-3, is a deliberately invalid
XML document, with all kinds of data that doesn't match the datatypes used by the schema. The second, shown in
Example 6-4, is a document that is valid against the schema we've used.

Example 6-3. An invalid document for use in the map

<contracts xmlns="http://simonstl.com/ns/example/contract">

<!--This document is NOT VALID.-->

<contract>

<recipient>Jedidiah Smith</recipient>

<signing_date>June 27, 1992</signing_date>

<signing_time>4 PM</signing_time>

<birthyear>62</birthyear>

<birthday>23 November</birthday>

<male>yes</male>

<payment_amount>$27</payment_amount>

<years_to_pay>two</years_to_pay>

</contract>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<contract>

<recipient>Jane Zinger</recipient>

<signing_date>April 22, 2001</signing_date>

<signing_time>6:30 PM</signing_time>

<birthyear>75</birthyear>

<birthday>19 July</birthday>

<male>no</male>

<payment_amount>$42</payment_amount>

<years_to_pay>four</years_to_pay>

</contract>

</contracts>

Example 6-4. A valid document for use in the map

<contracts xmlns="http://simonstl.com/ns/example/contract">

<!--This document is VALID.-->

<contract>

<recipient>Josiah Smith</recipient>

<signing_date>1999-06-03</signing_date>

<signing_time>09:03:22</signing_time>

<birthyear>1962</birthyear>

<birthday>--06-21</birthday>

<male>true</male>

<payment_amount>0004002.00200</payment_amount>

<years_to_pay>26</years_to_pay>

</contract>

<contract>

<recipient>Jane Zang</recipient>

<signing_date>1999-04-03</signing_date>

<signing_time>11:04:28</signing_time>

<birthyear>1968</birthyear>

<birthday>--04-23</birthday>

<male>false</male>

<payment_amount>000401.0200</payment_amount>

<years_to_pay>2</years_to_pay>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<years_to_pay>2</years_to_pay>

</contract>

</contracts>

If a user attempts to import Example 6-3 into this map, they'll get the list of warnings shown in Figure 6-28.

Figure 6-28. "Some data was imported as text" errors on import

While this may dissuade some users, it doesn't sound like a big deal, and all those "Complete"s are pretty reassuring.
The map also looks all right in Excel, if you aren't cued in to the formatting. Figure 6-29 shows the import results.

Figure 6-29. Bad results that look like they might be okay in Excel

If you export this map, as shown in the next section, Excel goes right ahead with it. If you use the "Verify Map for
Export" link on the XML Source task pane, Excel notifies you that "contract_map is exportable." The results of the
export, shown in Example 6-5, make it clear that Excel has imported and exported the document, as it's added the ns1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

export, shown in Example 6-5, make it clear that Excel has imported and exported the document, as it's added the ns1
prefix everywhere.

Example 6-5. The exported version of the broken document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns1:contracts xmlns:ns1="http://simonstl.com/ns/example/contract">

 <ns1:contract>

 <ns1:recipient>Jedidiah Smith</ns1:recipient>

 <ns1:signing_date>June 27, 1992</ns1:signing_date>

 <ns1:signing_time>4 PM</ns1:signing_time>

 <ns1:birthyear>62</ns1:birthyear>

 <ns1:birthday>23 November</ns1:birthday>

 <ns1:male>yes</ns1:male>

 <ns1:payment_amount>$27</ns1:payment_amount>

 <ns1:years_to_pay>two</ns1:years_to_pay>

 </ns1:contract>

 <ns1:contract>

 <ns1:recipient>Jane Zinger</ns1:recipient>

 <ns1:signing_date>April 22, 2001</ns1:signing_date>

 <ns1:signing_time>6:30 PM</ns1:signing_time>

 <ns1:birthyear>75</ns1:birthyear>

 <ns1:birthday>19 July</ns1:birthday>

 <ns1:male>no</ns1:male>

 <ns1:payment_amount>$42</ns1:payment_amount>

 <ns1:years_to_pay>four</ns1:years_to_pay>

 </ns1:contract>

</ns1:contracts>

If, however, we turn on "Validate data against schema for import and export," we'll get an extra error message, shown
in Figure 6-30.

Figure 6-30. An error message produced by failed validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Close that window, however, and you have the same imported result shown in Figure 6-29. Excel is not very interested
in blocking bad data. If you select the schema validation error and click Details . . . you'll see the information presented
in Figure 6-31.

Figure 6-31. A report on schema validation failure

This is somewhat more meaningful, but:

It only reports on the first of many errors it encountered.

It presents the element name in a form that's not familiar to many users.

The line, column, and offset information is inaccurate and useless.

Hopefully, future versions of Excel will provide better support for validation on import that is more helpful to users and
more useful for developers. Similarly, exporting this document produces the same result already shown in Example 6-5,
but produces a warning message, shown in Figure 6-32.

Figure 6-32. The error message from exporting an invalid XML document

Hopefully users will see this and at least know there's a problem, and perhaps being able to export XML will make it
easier for them to pass it to someone else who can clean it up before schema-dependent processing takes place.

If, on the other, we import Example 6-4, the valid document, we get no error messages and a spreadsheet whose
formatting conforms to the expectations described in Table 6-1. Figure 6-33 shows this valid document after import into
our list area.

Figure 6-33. A valid XML document, imported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-33. A valid XML document, imported

This document also exports perfectly well. Given good examples, users should be able to produce good results. If users
get used to seeing error messages with no obvious ill effects, though, it may cause trouble down the road.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Editing XML Documents in Excel
While Excel's powerful analysis tools make it an ideal application for processing the data found in XML documents,
Excel's expectation that data must appear in a grid limits its capabilities as a general XML editor. If you need to create
XML files that do fit Excel's interface, however, Excel may prove an excellent way to have users create XML documents
without ever realizing that they're doing so. The first few steps are much like those used to load XML data into Excel
spreadsheets, but the user is encouraged to add data and save the results. In this case, Excel serves as an editor for a
relatively simple class of XML documents.

As an example, we'll use a document format that is designed to represent a portion of a forest, and used to generate a
stand map. Stand maps are circular maps that represent one-fifth of an acre of land, as shown in Figure 6-34.

Figure 6-34. A stand map generated from an XML document

Though you can't see the color in this book, you can get the general idea. Trees are measured from a center point in a
forest, using their distance and their compass degree. The species and diameter at breast height (dbh) are also
recorded, and there may be additional notes. The data behind the map is generally recorded as a table, often on paper.
(The first stand map I made was on a four-foot circle of paper, recorded using markers, templates, a compass, and a
ruler.) While stand maps only represent a small section of a forest, they can provide baseline information for comparing
the different contents of different forests or sections of forests. For example, the forest shown in Figure 6-34 is largely

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the different contents of different forests or sections of forests. For example, the forest shown in Figure 6-34 is largely
maple, with some hemlocks and some large tulip poplars just outside the ring. The forest shown in Figure 6-35 is
largely black locust, with other species mixed in.

Figure 6-35. A stand map of a different forest, also generated from an XML
document

Creating these maps is beyond the capabilities of Excel's charting functions (that's done using XSLT with some
trigonometry extensions to generate Scalable Vector Graphics, or SVG), but Excel is very useful in this instance as a
tool for collecting data. Laptops have become more and more common in the forest, as they're far more convenient
than four-foot circular tables for collecting data.

The XML data format behind these maps is pretty simple. A sample is shown in Example 6-6.

Example 6-6. A description of a forest in XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-6. A description of a forest in XML

<forest xmlns="http://simonstl.com/ns/forest/">

<tree>

 <species>STM</species>

 <dbh>6</dbh>

 <height>13</height>

 <angle>6.5</angle>

 <radius>39</radius>

</tree>

<tree>

 <species>SM</species>

 <dbh>37.5</dbh>

 <height>67</height>

 <angle>12</angle>

 <radius>38.5</radius>

</tree>

<tree>

 <species>H</species>

 <dbh>31</dbh>

 <height>63</height>

 <angle>16</angle>

 <radius>29</radius>

 <note>snag</note>

</tree>

<tree>

 <species>SM</species>

 <dbh>6</dbh>

 <height>30</height>

 <angle>42</angle>

 <radius>52</radius>

</tree>

...</forest>

The schema for this data is similarly simple, as shown in Example 6-7.

Example 6-7. The schema for forest map information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-7. The schema for forest map information

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://simonstl.com/ns/forest/" xmlns:forest="http://simonstl.com/ns/

forest/">

 <xs:element name="forest">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="forest:tree"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="tree">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="forest:species"/>

 <xs:element ref="forest:dbh"/>

 <xs:element ref="forest:height"/>

 <xs:element ref="forest:angle"/>

 <xs:element ref="forest:radius"/>

 <xs:element minOccurs="0" ref="forest:note"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="species" type="xs:NCName"/>

 <xs:element name="dbh" type="xs:decimal"/>

 <xs:element name="height" type="xs:decimal"/>

 <xs:element name="angle" type="xs:decimal"/>

 <xs:element name="radius" type="xs:decimal"/>

 <xs:element name="note" type="xs:string"/>

</xs:schema>

Most of the declarations that directly affect users' work are those at the bottom of the schema. The abbreviations for
species are non-colonized names (NCNames), while the measurements are decimals and the notes are strings. Using this
schema, we'll create a map and put a list into a spreadsheet that users can treat as a recording device for their
measurements in the field.

Using the XML Source task pane, add a map to the spreadsheet, using the schema as a base. You'll need to select a
root (forest), and then the task pane will be populated with choices for inclusion in the spreadsheet, as shown in Figure
6-36.

Figure 6-36. The XML Map for the forest XML document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-36. The XML Map for the forest XML document

One mildly irritating feature of this map is the ns1 prefix Excel has applied to the element names. Fortunately, this is
only an issue when you work with the map directly, as it can be edited out of the list headers with no harm to the data
structure. Figure 6-37 shows what our new spreadsheet—with edited headers—looks like.

Figure 6-37. A spreadsheet for creating forest map XML

Using this interface is pretty easy. Researchers just enter one row per tree, filling out the required species, dbh, height,
angle, and radius, and adding a note if there's a reason. Figure 6-38 shows what this data entry process looks like.

Figure 6-38. Entering new forest information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-38. Entering new forest information

One especially nice feature of this spreadsheet is that the XML Source task pane isn't visible. There's no need for the
people working with this interface to understand that they're doing anything at all unusual. The sorting and filtering
features of the list are conveniences, but they don't interfere with the data entry. Tabbing from field to field works
beautifully.

Also, there's an extra sheet here, the key sheet, which is itself an imported XML document. Because this mapping
format is designed to be used around the world, in places that have very different species of trees, the species codes
are stored in a separate document that is reference by the XSLT that generates the map. The developers of this
spreadsheet have included that information as well. Mostly this is a convenience, to help humans remember codes, but
it also opens the possibility that those same humans might use the spreadsheet to modify the codes and their resulting
maps. (If you don't want to permit them to save the codes back out as XML, just cut the information and paste it back
in outside of a list context.) Figure 6-39 shows the key tab.

Figure 6-39. Additional key information, also stored as XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Researchers working in the field can save their spreadsheets as Excel files, and it'll be simple enough to extract the XML
information when they return to a place where they're analyzing them. If they want to extract the information in the
field, say to generate a map, they can right-click on their data and choose Export . . . from the XML menu. The results
of doing that with the data shown in Figure 6-38 are shown in Example 6-8.

Example 6-8. XML created through Excel's XML interfaces

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns1:forest xmlns:ns1="http://simonstl.com/ns/forest/">

 <ns1:tree>

 <ns1:species>P</ns1:species>

 <ns1:dbh>14</ns1:dbh>

 <ns1:height>40</ns1:height>

 <ns1:angle>10</ns1:angle>

 <ns1:radius>35</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>SM</ns1:species>

 <ns1:dbh>4</ns1:dbh>

 <ns1:height>15</ns1:height>

 <ns1:angle>12</ns1:angle>

 <ns1:radius>40</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>SM</ns1:species>

 <ns1:dbh>20</ns1:dbh>

 <ns1:height>50</ns1:height>

 <ns1:angle>15</ns1:angle>

 <ns1:radius>15</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>BN</ns1:species>

 <ns1:dbh>17</ns1:dbh>

 <ns1:height>40</ns1:height>

 <ns1:angle>22</ns1:angle>

 <ns1:radius>27</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>WO</ns1:species>

 <ns1:dbh>19</ns1:dbh>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ns1:dbh>19</ns1:dbh>

 <ns1:height>40</ns1:height>

 <ns1:angle>32</ns1:angle>

 <ns1:radius>42</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>SM</ns1:species>

 <ns1:dbh>3</ns1:dbh>

 <ns1:height>10</ns1:height>

 <ns1:angle>37</ns1:angle>

 <ns1:radius>12</ns1:radius>

 <ns1:note>oddly angled</ns1:note>

 </ns1:tree>

</ns1:forest>

Excel has, unfortunately, applied the ns1 prefix to everything, but the information comes through clearly and can be
processed by all the tools built around the format shown originally in Example 6-6.

Your data doesn't have to be this flat for Excel to be capable of editing it. It could, for instance, look like the data in
Example 6-9.

Example 6-9. A description of a forest in XML with some gratuitous structure

<forest xmlns="http://simonstl.com/ns/forest/">

<tree>

 <details>

 <species>STM</species>

 <dbh>6</dbh>

 <height>13</height>

 </details>

 <location>

 <angle>6.5</angle>

 <radius>39</radius>

 </location>

</tree>

<tree>

 <details>

 <species>SM</species>

 <dbh>37.5</dbh>

 <height>67</height>

 </details>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </details>

 <location>

 <angle>12</angle>

 <radius>38.5</radius>

 </location>

</tree>

<tree>

 <details>

 <species>H</species>

 <dbh>31</dbh>

 <height>63</height>

 <note>snag</note>

 </details>

 <location>

 <angle>16</angle>

 <radius>29</radius>

 </location>

</tree>

<tree>

 <details>

 <species>SM</species>

 <dbh>6</dbh>

 <height>30</height>

 </details>

 <location>

 <angle>42</angle>

 <radius>52</radius>

 </location>

</tree>

...</forest>

You could edit it in a spreadsheet that looked just like Figure 6-38. Excel doesn't mind the extra container elements at
all, so long as they don't interfere with its expectations for repeating list content.

If a map only represents part of an XML document, and you export it back to XML, only the
parts of the XML document that were shown by the map will be exported. Don't try to use
Excel to edit tables in larger documents, for instance!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Loading and Saving XML Documents from VBA
While the GUI provides a convenient way to work with whatever XML you encounter, you may want to create
applications that work with XML on a regular basis, and don't want the user of the spreadsheet to have to interact with
XML directly. Using Visual Basic for Applications, you can create spreadsheets that load XML and save XML through
Excel's maps without the user even needing to know where their data is coming from. The spreadsheet shown in
Figures 6-40 and 6-41 will be used to demonstrate how this works.

Figure 6-40. XML maps and user interface

Figure 6-41. A backstage area storing information used by the VBA code

The worksheet shown in Figure 6-40 contains four buttons, a checkbox linked to cell D2, and two XML maps. The left-
hand map expects data like that shown in Example 6-10, while the right-hand map expects data like that shown in cell
B4 of Figure 6-41 or like that shown in Example 6-11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B4 of Figure 6-41 or like that shown in Example 6-11.

Example 6-10. Simple product information format

<products>

 <item>

 <sku>34542</sku>

 <price>29.42</price>

 </item>

 <item>

 <sku>34546</sku>

 <price>19.24</price>

 </item>

 <item>

 <sku>34548</sku>

 <price>99.42</price>

 </item>

</products>

Example 6-11. Simple sales information format

<sales>

 <item>

 <sku>34542</sku>

 <quantity>10</quantity>

 </item>

 <item>

 <sku>34546</sku>

 <quantity>4</quantity>

 </item>

 <item>

 <sku>34548</sku>

 <quantity>1</quantity>

 </item>

</sales>

Rather than expecting users of the spreadsheet to import or export this information themselves using the GUI, this
spreadsheet provides buttons that import and export XML information. The first Import button on the left contains the
code shown in Example 6-12.

Example 6-12. Importing from an XML file to an Excel XML map

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-12. Importing from an XML file to an Excel XML map

Private Sub ImportFile_Click()

 Dim myMap As XmlMap

 'reference map by name

 Set myMap = ActiveWorkbook.XmlMaps("products_Map")

 Dim source As String

 source = Worksheets(2).Range("B1").Text

 Dim append As Boolean

 append = Range("D2").Value

 myMap.AppendOnImport = append

 myMap.AdjustColumnWidth = False

 myMap.Import (source)

End Sub

First, this code retrieves the first XML map in the Excel spreadsheet from the workbook's XmlMaps collection. Next, it
gets the source file from which it is to import from cell B1 of the worksheet shown in Figure 6-41. It collects the value
of cell D2 on the main worksheet so it can tell Excel whether to append new data or replace the existing data in the
map with the new data, by setting the AppendOnImport property of the map. To avoid columns changing sizes, the script
explicitly sets AdjustColumnWidth to false. Finally, it calls the map object's Import method, giving it the source argument
collected at the beginning. (That source can be a URL, not just a file reference.)

If the products.xml file listed in Example 6-10 is at the location specified by cell B1 of the Source sheet, you'll see a
result like that of Figure 6-42.

Figure 6-42. Result of the first import from a file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you check the "Append on Import" checkbox, thereby changing cell D2's contents to true, and then click Import
again, it will add the same three values to the map again, as shown in Figure 6-43.

Figure 6-43. Result of the second import from a file, with append

Its companion Export button is simpler, containing the code shown in Example 6-13.

Example 6-13. Exporting from an XML file to an Excel XML map

Private Sub ExportFile_Click()

 Dim myMap As XmlMap

 'reference map by number (6-12 referenced by name)

 Set myMap = ActiveWorkbook.XmlMaps(1)

 Dim dest As String

 dest = Worksheets(2).Range("B2").Text

 myMap.Export (dest)

End Sub

Like the Import version, it collects the first map in the workbook, and a location from the Sources worksheet. Instead of
importing, though, it uses the Export method to drop the XML in the file specified. If the spreadsheet looks like Figure
6-43, clicking the right-hand Export button will produce the code shown in Example 6-14.

Example 6-14. Exporting from an Excel XML map to an XML file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-14. Exporting from an Excel XML map to an XML file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <item>

 <sku>34542</sku>

 <price>29.42</price>

 </item>

 <item>

 <sku>34546</sku>

 <price>19.24</price>

 </item>

 <item>

 <sku>34548</sku>

 <price>99.42</price>

 </item>

 <item>

 <sku>34542</sku>

 <price>29.42</price>

 </item>

 <item>

 <sku>34546</sku>

 <price>19.24</price>

 </item>

 <item>

 <sku>34548</sku>

 <price>99.42</price>

 </item>

</products>

The map and buttons on the right-hand side behave differently. Rather than importing from and exporting to files, they
import from and export to strings, using the ImportXML and ExportXML methods instead of Import and Export. You
might want to do this if your data came from someplace other than a file, or if you need to do something to the XML
before the import or export takes place. The string import method is shown in Example 6-15 and the string export
method is shown in Example 6-16.

Example 6-15. Importing from an XML string to an Excel XML map

Private Sub ImportString_Click()

 Dim myMap As XmlMap

 Set myMap = ActiveWorkbook.XmlMaps(2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim sourceData As String

 sourceData = Worksheets(2).Range("B4").Text

 Dim append As Boolean

 append = Range("D2").Value

 myMap.AppendOnImport = append

 myMap.AdjustColumnWidth = False

 myMap.ImportXml (sourceData)

End Sub

Example 6-16. Exporting from an Excel XML map to an XML string

Private Sub ExportString_Click()

 Dim myMap As XmlMap

 Set myMap = ActiveWorkbook.XmlMaps(2)

 Dim result As String

 myMap.ExportXml result

 Worksheets(2).Range("B5").Value = result

End Sub

If the Sources sheet looks like Figure 6-41, clicking on the right-hand Import button of the Data sheet will produce the
result shown in Figure 6-44.

Figure 6-44. Importing from a string on the Sources sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-44. Importing from a string on the Sources sheet

If you now click on the right-hand Export button and then go look at the Sources sheet, you'll see the result shown in
Figure 6-45.

Figure 6-45. The Sources sheet after an export

While these examples are fairly simple, they've demonstrated several ways to get information into and out of Excel. You
can extend these examples with more VBA to create applications that update their data automatically, issue queries
against web sites and present results, or pass XML information to custom processes for further work.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Using SpreadsheetML
While many users will find Excel's easy import of XML documents useful, developers who need to read or create Excel
spreadsheets may find a completely different set of capabilities more relevant. The functionality provided in
Spreadsheet ML, which was also available in Microsoft Excel XP, allows developers to save spreadsheets as XML
documents and to open those XML spreadsheets in Excel. If you need to create or process spreadsheets using XML,
then this chapter will give you the foundations you need.

Microsoft offers the Office 2003 XML Reference Schemas from
http://microsoft.com/downloads/. If you want a complete definition of every component in
SpreadsheetML, the schema and its documentation are much more detailed than this
chapter can be.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Saving and Opening XML Spreadsheets
Excel treats XML spreadsheet files pretty much like regular .xls binary files. Microsoft has captured nearly all of the
information stored in Excel workbooks in its XML format, with some major exceptions, including embedded Visual Basic
for Applications (VBA), charting information, OLE objects, and drawing objects. It works very well for basic data import
and export, but not as well for more sophisticated spreadsheets. While you can, for example, use VBA and charting on
information stored in the XML maps described in Chapter 6, that functionality will be lost if you save the spreadsheet
itself in SpreadsheetML and don't keep a .xls copy.

If you need access to Excel features that SpreadsheetML doesn't support, you might try
tools like Spreadsheet::WriteExcel, a Perl module, available through http://cpan.org, or
POI, a Java library available at http://jakarta.apache.org/poi/. These both operate on .xls
files, not SpreadsheetML, and have their own limitations, but they tend to be different
limitations than those of SpreadsheetML.

From the Excel user's perspective, opening a SpreadsheetML XML document is just like opening a spreadsheet—with
one minor complication. Excel shows all the XML documents in the current directory as choices to open, when they may
not in fact contain SpreadsheetML. Excel looks for the mso-application processing instruction at the start of an XML
document. If it finds one, it marks the file with a Word, Excel, or other Office logo, as shown in Figure 7-1.

Figure 7-1. The Open dialog box showing SpreadsheetML, WordML, other XML, and
regular Excel files

If a user happens to pick an XML file that Excel doesn't understand automatically (even, for instance, a WordML file),
they'll be confronted with the dialog box shown in Figure 7-2.

Figure 7-2. The dialog box for opening XML files that don't contain SpreadsheetML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-2. The dialog box for opening XML files that don't contain SpreadsheetML

This dialog box is very useful for the functionality described in Chapter 6, but users who open XML files containing
SpreadsheetML will never have to deal with it—everything looks just like it does when opening a traditional .xls file.

Saving Excel files as SpreadsheetML files is similarly simple. The Save As dialog box, shown in Figure 7-3, offers an
"XML Spreadsheet (*.xml)" option right under the usual "Microsoft Excel Workbook (*.xls)" choice.

Figure 7-3. Saving a spreadsheet to the SpreadsheetML XML spreadsheet format

If you're especially gung-ho about working with XML spreadsheets, you can set "XML Spreadsheet" to be your default
file format in the Transition tab of the dialog box opened by selecting Options . . . from the Tools menu, as shown in
Figure 7-4.

Figure 7-4. Setting the SpreadsheetML XML spreadsheet format to be the default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using any of these approaches, you'll be able to read and write XML Spreadsheets from within XML.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Reading XML Spreadsheets
The SpreadsheetML vocabulary is generally much smaller than the WordML vocabulary, and more approachable. While
it also comes with lots of metadata, the structured nature of spreadsheets is easily captured with relatively concise
XML. We'll start with a very simple test spreadsheet, adding two numbers, as shown in Figure 7-5.

Figure 7-5. A simple spreadsheet for an initial test

This spreadsheet adds 2 and 2, using the SUM function in cell A3 to add the values of cells A1 and A2. If we save the
spreadsheet shown in Figure 7-5 as an XML Spreadsheet, Excel generates the XML file shown in Example 7-1.

Example 7-1. A simple Excel spreadsheet saved as XML

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40">

 <DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

 <Author>Simon St.Laurent</Author>

 <LastAuthor>Simon St.Laurent</LastAuthor>

 <Created>2003-03-19T20:21:31Z</Created>

 <LastSaved>2003-03-19T20:23:08Z</LastSaved>

 <Company>simonstl.com</Company>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Company>simonstl.com</Company>

 <Version>11.4920</Version>

 </DocumentProperties>

 <OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">

 <DownloadComponents/>

 <LocationOfComponents HRef="file:///C:\MSOCache\All%20Users\20000409-6000-11D3

 8CFE-0150048383C9\"/>

 </OfficeDocumentSettings>

 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">

 <WindowHeight>8955</WindowHeight>

 <WindowWidth>11355</WindowWidth>

 <WindowTopX>360</WindowTopX>

 <WindowTopY>120</WindowTopY>

 <ProtectStructure>False</ProtectStructure>

 <ProtectWindows>False</ProtectWindows>

 </ExcelWorkbook>

 <Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

 <Interior/>

 <NumberFormat/>

 <Protection/>

 </Style>

 </Styles>

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3" x:FullColumns="1"

 x:FullRows="1">

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

The spreadsheet begins with an XML declaration and a processing instruction identifying this document as an Excel.sheet:

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?mso-application progid="Excel.Sheet"?>

After those formalities, the Workbook element appears. The Workbook element is the root element for all SpreadsheetML
files, and contains most of the namespace declarations that will be used in the rest of the document:

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40">

Unlike Word, which prefixed all of its element and attribute names with w, Excel uses no namespace prefix by default,
using xmlns="urn:schemas-microsoft-com:office:spreadsheet" to declare its default namespace, the namespace you'll
undoubtedly find most important if you need to get to the data contained in the spreadsheet grid.

Because unprefixed attributes don't have a namespace, Excel also uses the declaration xmlns:ss="urn:schemas-microsoft-
com:office:spreadsheet" to associate the ss (for spreadsheet) prefix with the same URI. The elements in the document will
be unprefixed, while their attributes will be prefixed with ss, but all of these components will have precisely the same
namespace URI, "urn:schemas-microsoft-com:office:spreadsheet".

As we'll see, the declaration for the o prefix doesn't actually get used in this document. The x prefix is used for a few
attributes later, and the html prefix is used if there is HTML in the spreadsheet somewhere.

The first child element, DocumentProperties, contains the metadata about the document. While all of these elements use
no namespace prefix, the DocumentProperties element redefines the default namespace with its own xmlns attribute.
Unprefixed elements in this space have the same namespace URI as the o prefix elsewhere.

<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

 <Author>Simon St.Laurent</Author>

 <LastAuthor>Simon St.Laurent</LastAuthor>

 <Created>2003-03-19T20:21:31Z</Created>

 <LastSaved>2003-03-19T20:23:08Z</LastSaved>

 <Company>simonstl.com</Company>

 <Version>11.4920</Version>

 </DocumentProperties>

Most of this information is pretty straightforward. Perhaps the most interesting aspect is that the markup is extremely
similar to its counterpart in Word, except for whitespace and the meaningless namespace prefix. Excel stores less
information than Word, as Example 7-2 demonstrates, but content managers can rely on these pieces to collect
metadata from both Word and Excel files without concern for the surrounding context.

Example 7-2. WordML document properties (whitespace added for readability)

<o:DocumentProperties>

 <o:Title>Hello World</o:Title>

 <o:Author>Simon St.Laurent</o:Author>

 <o:LastAuthor>Simon St.Laurent</o:LastAuthor>

 <o:Revision>2</o:Revision>

 <o:TotalTime>0</o:TotalTime>

 <o:Created>2003-03-14T00:21:00Z</o:Created>

 <o:LastSaved>2003-03-14T00:21:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <o:Words>1</o:Words>

 <o:Characters>12</o:Characters>

 <o:Company>O'Reilly & Associates</o:Company>

 <o:Lines>1</o:Lines>

 <o:Paragraphs>1</o:Paragraphs>

 <o:CharactersWithSpaces>12</o:CharactersWithSpaces>

 <o:Version>11.4920</o:Version>

</o:DocumentProperties>

Getting back to the Excel markup, the next piece is pretty application-specific and probably not very useful to other
applications. Like the DocumentProperties element, it declares its own default namespace rather than using the o prefix
defined at the start of the document.

<OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">

 <DownloadComponents/>

 <LocationOfComponents HRef="file:///C:\MSOCache\All%20Users\20000409-6000-11D3

 8CFE-0150048383C9\"/>

 </OfficeDocumentSettings>

Next we have the ExcelWorkbook element, with information about the window settings and protected status of the
workbook:

<ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">

 <WindowHeight>8955</WindowHeight>

 <WindowWidth>11355</WindowWidth>

 <WindowTopX>360</WindowTopX>

 <WindowTopY>120</WindowTopY>

 <ProtectStructure>False</ProtectStructure>

 <ProtectWindows>False</ProtectWindows>

 </ExcelWorkbook>

Again, this element could have used the x prefix defined in the root element, but opts to redeclare the default
namespace. After this information about the presentation of the spreadsheet generally, we have information about the
styles used in the document, stored in the Styles element:

<Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Borders/>

 <Interior/>

 <NumberFormat/>

 <Protection/>

 </Style>

 </Styles>

Because this spreadsheet is very very simple, there are just a few defaults here. All of the cells in this stylesheet use
the Normal style, with no special formatting. Nevertheless, this empty set of elements gives you some idea of what you
can do here.

After these preparations, we reach the Worksheet elements. Each of these elements represents one complete worksheet
in Excel. Since Excel created three worksheets by default, there are three Worksheet elements here. Spreadsheets with
more or fewer worksheets will have as many Worksheet elements as appropriate. The first of the three Worksheet
elements is the one containing our data:

<Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3" x:FullColumns="1"

 x:FullRows="1">

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

The guts of the worksheet are stored in the Table element, while other information about the worksheet is stored in the
WorksheetOptions element. For the most part, if you're trying to extract the contents of spreadsheets or create new
spreadsheets from existing information, the Table element will be at the heart of your work. The Table element defines
the space it contains:

<Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3" x:FullColumns="1"

 x:FullRows="1">

The ss:ExpandedColumnCount indicates that this spreadsheet has one column, while ss:ExpandedRowCount indicates that
this spreadsheet has three rows. Knowing the number of rows and columns gives Excel a chance to prepare for the
incoming data. The x:FullColumns and x:FullRows attributes appear to do nothing.

In current versions of SpreadsheetML, multiple Table elements are permitted, but Excel
only uses the first of them. According to Microsoft's "Overview of SpreadsheetML," which
comes with the Microsoft Office XML Schemas mentioned at the start of this chapter, this
will let future versions of Excel "support multiple overlapping ranges by having multiple
Table elements."

The contents of the Table element represent the stylesheet as a set of Row elements which themselves contain Cell
elements:

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

Data></Cell>

 </Row>

The first two of these Row elements are identical, containing a Cell element whose Data element contains the value 2.
The ss:Type attribute identifies this information as a Number—a notable departure from the W3C XML Schema data
typing used elsewhere in the Office applications, but consistent with the mapping previously described in Table 6-1. The
third row contains a calculated result, the 4 inside of the Data element, as well as the type information and the formula
by which that result was calculated. The inclusion of calculated values may make some kinds of import from Excel much
easier, and you can always check for the presence of the ss:Formula attribute if you want to exclude calculated values
from your processing.

Looking more closely at the ss:Formula attribute, it's fairly clear that using these formulas in other contexts will require
reconstructing the table:

ss:Formula="=SUM(R[-2]C, R[-1]C)"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The formula reflects Excel's internal expectations for working with the information, most notably the expectation that
the entire table will be available for navigation using relative references between cells. The Row and Cell elements reflect
this same structure, so programs built around this XML have a good chance of interpreting these formulas, but decoding
them will take some custom logic (XSLT 1.0 won't easily build and navigate this grid) and an object model for storing all
the rows and cells at any given time. Depending on the type of information you need from the spreadsheet, this may
not matter. If you're importing it into another spreadsheet-like structure, you may have a lot of work to do. If you just
want the data, ignoring the formulas shouldn't be a problem.

The WorksheetOptions element contains other information about the worksheet's presentation and operation:

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

Again, the WorksheetOptions element redefines the default namespace, assigning the same value to no prefix that was
assigned to the x prefix at the start of the document. All of this information is considered specific to Excel, not to the
spreadsheet generally. While the data here can be useful if you're creating spreadsheet applications, it's not information
you'll use for the spreadsheet data itself.

The next two worksheets are empty, so they are represented by relatively minimal placeholders, followed by the closing
tag of Workbook:

<Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Workbook>

If all you're concerned with is extracting the data from the spreadsheet, you now have a solid set of basic parts: the
Workbook, Worksheet, Row, Cell, and Data elements. For getting information into and out of Excel, that core provides most
of the substance you'll need.

7.2.1 Working with More Complex Spreadsheets

While the 2+2=4 example does a nice job of showing the basic structure Excel uses to store spreadsheets in XML, the
odds are excellent that you'll need to work with more complicated spreadsheets and formulas. Excel also offers a few
structures—notably named cells and ranges—that can make it much easier to work with Excel data, reducing the
otherwise constant need to keep track of how an XML cell corresponds to a particular location on the spreadsheet grid.

We'll start with the spreadsheet shown in Figure 7-6, a list of items sold, with IDs, descriptions, prices, named ranges
for all of those, and a calculated total for each transaction.

Figure 7-6. A spreadsheet with more data and named ranges

The "Critters" named range includes the contents of the Critter column, and so on. When this spreadsheet is saved as
an XML document, the Worksheet element representing Sheet1 looks like Example 7-3.

Example 7-3. The Worksheet portion of the XML representation of Figure 7-6

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="9" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Row>

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data

ss:Type="Number">2857.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">3912</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Brontosaurus</Data><NamedCell ss

 Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">17.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">74</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number"

 1295</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9845</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Triceratops</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">12</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1092</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9625</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Vulcanodon</Data><NamedCell ss:Name=

"Critters"/>

 </Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">19</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">108</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2052</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">5903</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Stegosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">18.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">63</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1165.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">1824</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Monoclonius</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">16.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">133</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2194.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Megalosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">23</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">128</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2944</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">8649</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Barosaurus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">17</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1547</Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>8</ActiveRow>

 <ActiveCol>4</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

It has the same pattern of Row elements containing Cell elements (the Column information is strictly for formatting), and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It has the same pattern of Row elements containing Cell elements (the Column information is strictly for formatting), and
the same surrounding metadata, but it also now contains additional information in many of its Cell elements:

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]">

 <Data ss:Type="Number">2857.5</Data></Cell>

 </Row>

With the addition of the NamedCell element and its ss:Name attribute, we now have a way to select cells from the row by
name in addition to position. The XML spreadsheet also contains a summary of the named ranges in a Names element
that precedes the Worksheet elements:

 <Names>

 <NamedRange ss:Name="Critters" ss:RefersTo="=Sheet1!R2C2:R9C2"/>

 <NamedRange ss:Name="ID" ss:RefersTo="=Sheet1!R2C1:R9C1"/>

 <NamedRange ss:Name="Price" ss:RefersTo="=Sheet1!R2C3:R9C3"/>

 <NamedRange ss:Name="Quantity" ss:RefersTo="=Sheet1!R2C4:R9C4"/>

 </Names>

While the Names element is useful to Excel in loading a document, you may not find processing it (or even creating it)
with other applications, notably XSLT and XPath, to be much fun—once again, you need to have the grid available to
figure out (or assign) the references. Fortunately, Excel can recreate named ranges from just the NamedCell information,
so you don't need to worry about this extra step unless you want to.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Extracting Information from XML Spreadsheets
When the spreadsheet data arrives in a form like Example 7-3, it's easy to extract the data using tools like XSLT. All the
cells in the area used contain data, and it's just a simple table. If, for example, we wanted to extract the data in this
spreadsheet and produce a much lighter XML document containing just the data, the stylesheet might look like that
shown in Example 7-4.

Example 7-4. A simple stylesheet for extracting data from Excel tables

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 >

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="/">

 <xsl:apply-templates select="ss:Workbook"/>

</xsl:template>

<xsl:template match="ss:Workbook">

 <dinosaurs>

 <xsl:apply-templates select="ss:Worksheet[@ss:Name = 'Sheet1']"/>

 </dinosaurs>

</xsl:template>

<xsl:template match="ss:Worksheet">

 <xsl:apply-templates select="ss:Table" />

</xsl:template>

<xsl:template match="ss:Table">

 <xsl:apply-templates select="ss:Row[position() > 1]" />

</xsl:template>

<xsl:template match="ss:Row">

<sale>

 <IDnum><xsl:apply-templates select="ss:Cell[1]" /></IDnum>

 <critter><xsl:apply-templates select="ss:Cell[2]" /></critter>

 <price><xsl:apply-templates select="ss:Cell[3]" /></price>

 <quantity><xsl:apply-templates select="ss:Cell[4]" /></quantity>

 <total><xsl:apply-templates select="ss:Cell[5]" /></total>

</sale>

</xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

Note the namespace declarations in the root xsl:stylesheet element. If you forget any of these, your stylesheet won't
behave as expected, even though everything else looks right.

See Appendix B for more information if you're unfamiliar with XSLT and XSLT processing
tools.

Most of the work here is done by the last template, which just matches the rows in Sheet1. The prior templates guide
the stylesheet past all the Excel metadata, into Sheet1, and make sure that it skips the first Row element, which
contains the column titles. The last template puts the contents of the first Cell element into an element named IDnum,
the second Cell element into an element named critter, and so on. The results of running this stylesheet against the XML
document in Example 7-2 are shown in Example 7-5.

Example 7-5. Simple XML produced by using XSLT on SpreadsheetML

<dinosaurs xmlns="http://simonstl.com/ns/dinosaurs/" xmlns:ss="urn:schemas-microsoft-com:

office:spreadsheet">

<sale>

<IDnum>4627</IDnum>

<critter>Diplodocus</critter>

<price>22.5</price>

<quantity>127</quantity>

<total>2857.5</total>

</sale>

<sale>

<IDnum>3912</IDnum>

<critter>Brontosaurus</critter>

<price>17.5</price>

<quantity>74</quantity>

<total>1295</total>

</sale>

<sale>

<IDnum>9845</IDnum>

<critter>Triceratops</critter>

<price>12</price>

<quantity>91</quantity>

<total>1092</total>

</sale>

<sale>

<IDnum>9625</IDnum>

<critter>Vulcanodon</critter>

<price>19</price>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<price>19</price>

<quantity>108</quantity>

<total>2052</total>

</sale>

<sale>

<IDnum>5903</IDnum>

<critter>Stegosaurus</critter>

<price>18.5</price>

<quantity>63</quantity>

<total>1165.5</total>

</sale>

<sale>

<IDnum>1824</IDnum>

<critter>Monoclonius</critter>

<price>16.5</price>

<quantity>133</quantity>

<total>2194.5</total>

</sale>

<sale>

<IDnum>9728</IDnum>

<critter>Megalosaurus</critter>

<price>23</price>

<quantity>128</quantity>

<total>2944</total>

</sale>

<sale>

<IDnum>8649</IDnum>

<critter>Barosaurus</critter>

<price>17</price>

<quantity>91</quantity>

<total>1547</total>

</sale>

</dinosaurs>

This kind of extraction is easy, but it's fairly unusual that real-world spreadsheets will be this convenient. It's not
impossible, of course—I get a spreadsheet whose first sheet is structured like this once a week—but there are many
tougher cases. Lots of spreadsheets skip rows and cells, have areas that are used for different kinds of content, and
present additional challenges to developers who need to extract information from them. Fortunately, while every
spreadsheet is different, there are a few basic patterns that can help you reach into them. Figure 7-7 shows a
spreadsheet with much the same data as that in Figure 7-6, but with a few complicating factors.

Figure 7-7. A spreadsheet with gaps and individual data components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-7. A spreadsheet with gaps and individual data components

The first row contains a date identifying when the data is from, the second row is blank, rows three to eleven contain
the same data shown in Figure 7-6, and row twelve shows a total. Examining the Table element in the SpreadsheetML,
listed in Example 7-6, shows how Excel treats these skipped rows and columns.

Example 7-6. More complex XML produced from the spreadsheet in Figure 7-7

<Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="12" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime">2004-01-01T00:00:00.000

 </Data><NamedCell

 ss:Name="Date"/></Cell>

 </Row>

 <Row ss:Index="3">

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2857.5</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">3912</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Brontosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">74</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1295</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9845</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Triceratops</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">12</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1092</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9625</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Vulcanodon</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">19</Data><NamedCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:StyleID="s22"><Data ss:Type="Number">19</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">108</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2052</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">5903</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Stegosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">18.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">63</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1165.5</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">1824</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Monoclonius</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">16.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">133</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2194.5</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Megalosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">23</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">128</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2944</Data><NamedCell

 ss:Name="Total"/></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">8649</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Barosaurus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1547</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell ss:Index="4"><Data ss:Type="String">Total:</Data></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=SUM(R[-8]C:R[-1]C)">

 <Data ss:Type="Number">15147.5</Data><NamedCell

 ss:Name="GrandTotal"/></Cell>

 </Row>

 </Table>

Excel doesn't report blank rows or cells. Instead, the first Row or Cell element after the blanks has an ss:Index attribute
identifying its position. This means that stylesheets and other processors can't just count their way through the grid—
they have to keep track of where the SpreadsheetML says things go.

Converting this spreadsheet to XML like that shown in Example 7-4 will be somewhat more difficult. There are two
approaches that can be applied to this. The first approach, the stylesheet in Example 7-7, modifies the stylesheet
shown in Example 7-4, and the changes are highlighted.

Example 7-7. A modified stylesheet for dealing with the new spreadsheet

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 >

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="/">

 <xsl:apply-templates select="ss:Workbook"/>

</xsl:template>

<xsl:template match="ss:Workbook">

 <dinosaurs>

 <xsl:apply-templates select="ss:Worksheet[@ss:Name = 'Sheet1']"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </dinosaurs>

</xsl:template>

<xsl:template match="ss:Worksheet">

 <date><xsl:value-of select="ss:Table/ss:Row/ss:Cell[@ss:StyleID = 's21']" /> </date>

 <xsl:apply-templates select="ss:Table" />

</xsl:template>

<xsl:template match="ss:Table">

 <xsl:apply-templates select="ss:Row[position() > 2]" />

<!--Note that because Excel skips the blank row, the third row is in position 2-->

</xsl:template>

<xsl:template match="ss:Row[ss:Cell[4]]">

<sale>

 <IDnum><xsl:apply-templates select="ss:Cell[1]" /></IDnum>

 <critter><xsl:apply-templates select="ss:Cell[2]" /></critter>

 <price><xsl:apply-templates select="ss:Cell[3]" /></price>

 <quantity><xsl:apply-templates select="ss:Cell[4]" /></quantity>

 <total><xsl:apply-templates select="ss:Cell[5]" /></total>

</sale>

</xsl:template>

<xsl:template match="ss:Row">

<total><xsl:apply-templates select="ss:Cell[2]" /></total>

</xsl:template>

</xsl:stylesheet>

Running this stylesheet against the SpreadsheetML produces XML much like that shown in Example 7-6, shown here in
Example 7-8.

Example 7-8. XML produced by using XSLT on more complex SpreadsheetML

<dinosaurs xmlns="http://simonstl.com/ns/dinosaurs/" xmlns:ss="urn:schemas-microsoft-com:

office:spreadsheet">

<date>2004-01-01T00:00:00.000</date>

<sale>

<IDnum>4627</IDnum>

<critter>Diplodocus</critter>

<price>22.5</price>

<quantity>127</quantity>

<total>2857.5</total>

</sale>

<sale>

<IDnum>3912</IDnum>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<IDnum>3912</IDnum>

<critter>Brontosaurus</critter>

<price>17.5</price>

<quantity>74</quantity>

<total>1295</total>

</sale>

<sale>

<IDnum>9845</IDnum>

<critter>Triceratops</critter>

<price>12</price>

<quantity>91</quantity>

<total>1092</total>

</sale>

<sale>

<IDnum>9625</IDnum>

<critter>Vulcanodon</critter>

<price>19</price>

<quantity>108</quantity>

<total>2052</total>

</sale>

<sale>

<IDnum>5903</IDnum>

<critter>Stegosaurus</critter>

<price>18.5</price>

<quantity>63</quantity>

<total>1165.5</total>

</sale>

<sale>

<IDnum>1824</IDnum>

<critter>Monoclonius</critter>

<price>16.5</price>

<quantity>133</quantity>

<total>2194.5</total>

</sale>

<sale>

<IDnum>9728</IDnum>

<critter>Megalosaurus</critter>

<price>23</price>

<quantity>128</quantity>

<total>2944</total>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<total>2944</total>

</sale>

<sale>

<IDnum>8649</IDnum>

<critter>Barosaurus</critter>

<price>17</price>

<quantity>91</quantity>

<total>1547</total>

</sale>

<total>15147.5</total>

</dinosaurs>

A smarter approach uses the NamedCell element's ss:Name attribute, producing a similar result without relying on
changeable details like row and cell positions. The stylesheet in Example 7-9 uses XSLT predicates to test for these
attributes, yielding a stylesheet whose functionality is easier to discern. Places where this stylesheet references named
ranges and cells are highlighted in bold.

Example 7-9. A SpreadsheetML transform that relies on named range information

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 >

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="ss:Workbook">

 <dinosaurs>

 <xsl:apply-templates select="ss:Worksheet[@ss:Name = 'Sheet1']"/>

 </dinosaurs>

</xsl:template>

<xsl:template match="ss:Worksheet">

 <date><xsl:value-of select="ss:Table/ss:Row/ss:Cell[ss:NamedCell/@ss:Name = 'Date']" /></date>

 <xsl:apply-templates select="ss:Table" />

<total><xsl:value-of select="ss:Table/ss:Row/ss:Cell[ss:NamedCell/@ss:Name = 'GrandTotal']" /></total>

</xsl:template>

<xsl:template match="ss:Table">

 <xsl:apply-templates select="ss:Row[position() > 2]" />

</xsl:template>

<!--Only create sale elements for Rows which start with an ID-->

<xsl:template match="ss:Row[ss:Cell[1]/ss:NamedCell/@ss:Name='ID']">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsl:template match="ss:Row[ss:Cell[1]/ss:NamedCell/@ss:Name='ID']">

<sale>

 <IDnum><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='ID']" /> </IDnum>

 <critter><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Critters']" /></critter>

 <price><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Price']" /> </price>

 <quantity><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Quantity']" /></quantity>

 <total><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Total']" /> </total>

</sale>

</xsl:template>

<xsl:template match="ss:Row" />

</xsl:stylesheet>

This stylesheet will produce exactly the same output as the stylesheet in Example 7-7, which will look like the result in
Example 7-8.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Creating XML Spreadsheets
There are two basic routes to creating a SpreadsheetML document. The first route is perhaps best described as "start from
scratch," where you assemble a spreadsheet using the XML vocabulary. The other route uses Excel to build a template for
spreadsheets you create, accepting a certain amount of overhead for the convenience of using a familiar GUI (rather than a
collection of XML parts) to create a spreadsheet. In general, especially where styles are involved, I strongly recommend using
Excel to generate an initial SpreadsheetML file you can use as a model.

Whichever approach you choose, you don't need to provide as much information in your SpreadsheetML as Excel provides
when you save information out. Most of the metadata can be discarded, and Excel can also reconstruct named ranges if
necessary from the NamedCell elements inside of cells. Some data, like the ss:ExpandedColumnCount and ss:ExpandedRowCount
attributes on the Table element, may actually be better left out, as it takes extra effort to generate and may produce errors
when the spreadsheet is loaded if it's wrong. For the most part, you'll want to focus on creating the basic row and cell
structures, along with styles.

You can use whatever tool you like to generate SpreadsheetML. XSLT, Java, C#, PHP, Perl, Python, Visual Basic, and many
more will all work perfectly well. For complex spreadsheets with a lot of cross-references, I recommend working in whatever
environment you're most comfortable in, as getting large numbers of cross-references right is a challenge, especially if they
link among themselves. For simpler spreadsheets, though, XSLT's ready ability to take existing XML and add extra instructions
to it makes it a very convenient tool for generating SpreadsheetML.

To demonstrate, the stylesheet in Example 7-10 will take the XML shown earlier in Example 7-8 and convert it back into
SpreadsheetML. Critical pieces of logic are highlighted in bold.

Example 7-10. A stylesheet for generating SpreadsheetML

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:d="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:html="http://www.w3.org/TR/REC-html40"

 >

<xsl:output method="xml" omit-xml-declaration="no" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="d:dinosaurs">

<xsl:processing-instruction name="mso-application">progid= "Excel.Sheet"</xsl:processing-instruction>

<Workbook>

<!--Namespace declarations moved from Workbook to xsl:stylesheet-->

 <Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

 <Interior/>

 <NumberFormat/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Protection/>

 </Style>

 <Style ss:ID="s21">

 <NumberFormat ss:Format="mmm\-yy"/>

 </Style>

 <Style ss:ID="s22">

 <NumberFormat ss:Format=""$"#,##0.00"/>

 </Style>

 </Styles>

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="{count(d:sale)+4}" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime"><xsl:value-of

select="d:date"/></Data></Cell>

 </Row>

 <Row ss:Index="3">

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

<xsl:apply-templates select="d:sale" />

 <Row>

 <Cell ss:Index="4"><Data ss:Type="String">Total:</Data></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=SUM(R[-{count(d:sale)}]C:R[-1]C)"> <Data ss:Type="Number"></Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>12</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

</xsl:template>

<xsl:template match="d:sale">

 <Row>

 <Cell><Data ss:Type="Number"><xsl:value-of

 select="d:IDnum" /></Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String"><xsl:value-of select="d:critter" /></

Data><NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number"><xsl:value-of

 select="d:price" /></Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number"><xsl:value-of select="d:quantity" /></Data>

 <NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 <xsl:value-of select="d:total" /></Data></Cell>

 </Row>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Row>

</xsl:template>

<xsl:template match="d:date" />

<xsl:template match="d:total" />

</xsl:stylesheet>

There are a few pieces of this worth special attention. First, note that the SpreadsheetML is wrapped in XSLT; the
SpreadsheetML becomes part of the stylesheet. There's one extra namespace declaration:

 xmlns:d="http://simonstl.com/ns/dinosaurs/"

XSLT requires that references to parts of XML documents that have namespace URIs also have namespace prefixes. As a
result, all references in the stylesheet to elements in the original document will look like d:sale instead of just sale.

There's also one piece of the SpreadsheetML we need to recreate explicitly, and not just by including it in the document: the
processing instruction noted earlier that tells Windows this is an Excel spreadsheet. For that, we have to use:

<xsl:processing-instruction name="mso-application">progid=

 "Excel.Sheet"</xsl:processing-instruction>

Because the named ranges will vary depending on the number of sale elements in the original, this stylesheet won't generate
the Names element and its contents. Excel will recreate the named ranges from the NamedCell elements in any case.

This stylesheet creates a Table element complete with (accurate) ss:ExpandedColumnCount and ss:ExpandedRowCount attributes.

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="{count(d:sale)+4}"

 x:FullColumns="1" x:FullRows="1">

If calculating the number of rows or columns in your spreadsheet is going to be difficult, it will be better to leave off this
information, as it produces an error if wrong but little benefit if right.

The first row of the spreadsheet contains the date:

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime"><xsl:value-of select="d:date"/></Data></Cell>

 </Row>

The xsl:value-of element pulls the information from the date element of the XML document and puts its value into the Data
element. As we'll see at the end of the spreadsheet, regular processing of the date element (and the total element, which is
handled similarly) will have to be suppressed.

The heart of this stylesheet is again the part that generates the Row and Cell elements, like:

<xsl:template match="d:sale">

 <Row>

 <Cell><Data ss:Type="Number"><xsl:value-of select="d:IDnum" /></Data><NamedCell ss:Name="ID"/></Cell>

The xsl:template element will collect every sale element in the original and produce a Row element which itself contains Cell
elements matching its contents. Each Row contains the contents of one sale element. To keep XSLT from applying its default
templates to the date and total elements, which would drop their values into the SpreadsheetML as (unexpected) text, the last
code snippet explicitly specifies no processing for them with empty xsl:template elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code snippet explicitly specifies no processing for them with empty xsl:template elements.

<xsl:template match="d:date" />

<xsl:template match="d:total" />

The SpreadsheetML created by this stylesheet from the XML data in Example 7-8 looks like Example 7-11.

Example 7-11. A SpreadsheetML document created with XSLT

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40"

 xmlns:d="http://simonstl.com/ns/dinosaurs/">

 <Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

 <Interior/>

 <NumberFormat/>

 <Protection/>

 </Style>

 <Style ss:ID="s21">

 <NumberFormat ss:Format="mmm\-yy"/>

 </Style>

 <Style ss:ID="s22">

 <NumberFormat ss:Format=""$"#,##0.00"/>

 </Style>

 </Styles>

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="12" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime">2004-01-01T00:00:00.000</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime">2004-01-01T00:00:00.000</Data></Cell>

 </Row>

 <Row ss:Index="3">

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2857.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">3912</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Brontosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">74</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1295</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9845</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Triceratops</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">12</Data>

 <NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1092</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1092</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9625</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Vulcanodon</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">19</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">108</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2052</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">5903</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Stegosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">18.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">63</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1165.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">1824</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Monoclonius</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">16.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">133</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2194.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Megalosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">23</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">128</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2944</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">8649</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Barosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1547</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Index="4"><Data ss:Type="String">Total:</Data></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=SUM(R[-8]C:R[-1]C)">

 <Data ss:Type="Number">15147.5</Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>12</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

If you open the SpreadsheetML this stylesheet produces (which looks much like that in Example 7-2, minus some named
ranges, metadata, and formatting) in Excel, we get the result shown in Figure 7-8.

Figure 7-8. A spreadsheet generated as SpreadsheetML

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Editing XML Maps with SpreadsheetML
SpreadsheetML is primarily useful for getting information into and out of Excel from other programs. In general, it's
hard to imagine why you'd prefer to edit SpreadsheetML directly when Excel's graphical interface offers a much easier
way to see and edit your information. There is, however, one case where Excel doesn't provide a graphical interface,
and the SpreadsheetML provides a useful way to edit information that isn't otherwise accessible. Figure 7-9 shows a
spreadsheet from Chapter 6 that uses an XML Map.

Figure 7-9. A spreadsheet using an XML Map, previously shown in Figure 6-25

Example 7-12 shows a portion of the SpreadsheetML that is produced when you save the spreadsheet itself as
SpreadsheetML.

Example 7-12. Part of the SpreadsheetML for a spreadsheet containing an XML
Map

 <Worksheet ss:Name="Sheet1">

 <Names>

 <NamedRange ss:Name="_FilterDatabase" ss:RefersTo="=Sheet1!R1C1:R2C8"

 ss:Hidden="1"/>

 </Names>

 <Table ss:ExpandedColumnCount="8" ss:ExpandedRowCount="2" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="79.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="75"/>

 <Column ss:AutoFitWidth="0" ss:Width="78"/>

 <Column ss:AutoFitWidth="0" ss:Width="58.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="55.5"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Column ss:AutoFitWidth="0" ss:Width="55.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="38.25"/>

 <Column ss:AutoFitWidth="0" ss:Width="99.75"/>

 <Column ss:AutoFitWidth="0" ss:Width="78.75"/>

 <Row>

 <Cell ss:StyleID="s21"><Data ss:Type="String">recipient</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">signing_date</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">signing_time</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">birthyear</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">birthday</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">male</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">payment_amount</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">years_to_pay</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 </Row>

 <Row>

 <Cell ss:StyleID="s22"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s23"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s24"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s25"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s26"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s27"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s27"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s27"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

...

 <x2:MapInfo x2:HideInactiveListBorder="false"

 x2:SelectionNamespaces="xmlns:ns1='http://simonstl.com/ns/example/contract'">

 <x2:Schema x2:ID="Schema1" x2:Namespace="http://simonstl.com/ns/example/contract"><xs:

schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://simonstl.com/ns/example/contract" xmlns:contract="http://simonstl.

com/ns/example/contract">

 <xs:element name="contracts">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="contract:contract"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="contract">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="contract:recipient"/>

 <xs:element ref="contract:signing_date"/>

 <xs:element ref="contract:signing_time"/>

 <xs:element ref="contract:birthyear"/>

 <xs:element ref="contract:birthday"/>

 <xs:element ref="contract:male"/>

 <xs:element ref="contract:payment_amount"/>

 <xs:element ref="contract:years_to_pay"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="recipient" type="xs:string"/>

 <xs:element name="signing_date" type="xs:date"/>

 <xs:element name="signing_time" type="xs:time"/>

 <xs:element name="birthyear" type="xs:gYear"/>

 <xs:element name="birthday" type="xs:gMonthDay"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="birthday" type="xs:gMonthDay"/>

 <xs:element name="male" type="xs:boolean"/>

 <xs:element name="payment_amount" type="xs:decimal"/>

 <xs:element name="years_to_pay" type="xs:integer"/>

</xs:schema>

 </x2:Schema>

 <x2:Map x2:ID="contracts_Map" x2:SchemaID="Schema1" x2:RootElement="contracts">

 <x2:Entry x2:Type="table" x2:ID="2" x2:ShowTotals="false">

 <x2:Range>Sheet1!R2C1</x2:Range>

 <x2:HeaderRange>R1C1</x2:HeaderRange>

 <x:FilterOn>True</x:FilterOn>

 <x2:XPath>/ns1:contracts/ns1:contract</x2:XPath>

 <x2:Field x2:ID="recipient">

 <x2:Range>RC</x2:Range>

 <x2:XPath>ns1:recipient</x2:XPath>

 <x2:XSDType>string</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="signing_date">

 <x2:Range>RC[1]</x2:Range>

 <x2:XPath>ns1:signing_date</x2:XPath>

 <x2:XSDType>date</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="signing_time">

 <x2:Range>RC[2]</x2:Range>

 <x2:XPath>ns1:signing_time</x2:XPath>

 <x2:XSDType>time</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="birthyear">

 <x2:Range>RC[3]</x2:Range>

 <x2:XPath>ns1:birthyear</x2:XPath>

 <x2:XSDType>gYear</x2:XSDType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <x2:XSDType>gYear</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="birthday">

 <x2:Range>RC[4]</x2:Range>

 <x2:XPath>ns1:birthday</x2:XPath>

 <x2:XSDType>gMonthDay</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="male">

 <x2:Range>RC[5]</x2:Range>

 <x2:XPath>ns1:male</x2:XPath>

 <x2:XSDType>boolean</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="payment_amount">

 <x2:Range>RC[6]</x2:Range>

 <x2:XPath>ns1:payment_amount</x2:XPath>

 <x2:XSDType>decimal</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="years_to_pay">

 <x2:Range>RC[7]</x2:Range>

 <x2:XPath>ns1:years_to_pay</x2:XPath>

 <x2:XSDType>integer</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 </x2:Entry>

 </x2:Map>

 </x2:MapInfo>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Workbook>

There are several types of information relating to the XML map here. The Worksheet element's Table contains the rows
and cells that hold the actual data, with headers and style information, as well as a range named _FilterData. That really
just reflects choices that can be made (and unmade) through the GUI.

The information in the x2:MapInfo element, which comes after all the Worksheet elements, however, is information that is
created when you import an XML document or XSD schema. The only way to modify this information through Excel is to
delete it. If, however, you just want to tweak something in the schema—perhaps Excel guessed that a given field in an
XML document was a number rather than text or vice-versa—you can save the spreadsheet as SpreadsheetML, make
the changes to the x2:MapInfo element's contents, and re-open it in Excel.

Remember that SpreadsheetML doesn't represent everything in an Excel document. If the
spreadsheet whose map you want to alter already contains VBA, Charts, or other features
that SpreadsheetML doesn't capture, be certain to have them backed up and be prepared
for some cutting from the original spreadsheet and pasting into the new.

Editing the schema in the x2:Schema element works fine, so long as you produce a valid schema that conforms to Excel's
limited understanding of XSD. You'll need to manually ensure that the x2:Field elements still correspond to the contents
of that schema; if you change a type in the schema, be sure to change it in the x2:XSDType element of the
corresponding x2:Field element. You can also make changes to the x2:XPath element, if you need to change the location
in the document from which Excel retrieves the field's contents, typically if you add or remove a container element from
the XML document structure.

This kind of editing is definitely at your own risk, and likely best restricted to relatively small changes, but it does
provide a useful set of tools that aren't (yet) in Excel itself.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Importing and Exporting XML with
Microsoft Access
Relational databases and XML aren't always the best of friends. XML documents store information in hierarchies, while
relational databases store information in linked tables. XML document structures are typically much more open than
relational databases, which focus on regularity for better performance. Because of these differences, it doesn't make
sense to rebuild Microsoft Access as an XML application. Instead, Access uses XML as a means of communicating with
the outside world, capable of representing the information it stores as XML and also able to accept new or changed
information through XML messages. Add in a little XSLT, and you have a whole new interface for connecting Access to
different applications.

The XML features in Access are available in every copy of Office 2003; there's no
Standard/Professional/Enterprise distinction for you to worry about.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Access XML Expectations
Unlike most of the other Office applications, Access doesn't really have a custom vocabulary, though it adds a few
Office-specific pieces to things like the XML Schemas it generates. The vocabulary that Access speaks "natively" is
largely determined by the structures of your database, particularly the names of tables and the fields they contain. If
you've named your tables and your fields well, you may be pleasantly surprised to find that Access produces some very
readable XML. If not, you can't blame Microsoft, but fortunately they provide XSLT facilities for improving your results in
such cases.

While Microsoft doesn't provide an Access-specific vocabulary, Access definitely has expectations about the structures of
incoming and outgoing XML. The basic structures are very simple, though cases like multi-table export can require more
interpretation. The easiest way to learn about the expectations Access has for incoming data is to start with sample
information inside the database, and then export it. Close analysis of the exported material should tell you what Access
will want for an import.

Generally speaking, XML structures offer a range of structural possibilities that don't map easily to relational database
tables. XML doesn't typically worry about things like primary keys and foreign keys, nor are its structures defined as
relations between tables. Access does very well at working with a subset of XML structures that is (or can be made to
be) relational-database friendly, but there are some natural limitations, as well as fields of work where other pieces of
the Office suite are more appropriate tools.

For a wealth of information about XML and databases, including information about
mapping between XML and relational databases, see http://rpbourret.com/xml/index.htm.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Exporting XML from Access Using the GUI
Exporting XML from Access is much like exporting any other format from Access, though with a few extra pieces. There
are a number of possible variations in the export process, depending on whether you need to export a single table, a
linked group of tables, or a query.

8.2.1 Exporting a Single Table

For our initial example, we'll start with a database containing a table that defines a list of books. The design view for
that table is shown in Figure 8-1. It includes six fields of three different types.

Figure 8-1. A simple table for export

For the initial tests, there's just a little bit of information in this table. Exporting mature tables with thousands of
records can produce large XML files very quickly—definitely useful in real life but difficult for initial analysis. Figure 8-2
shows a partial view of the content in the test table.

Figure 8-2. Test data in the books table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exporting this table to XML involves a few steps, most of which will be familiar to developers who have exported
information from Access databases before. The process starts by selecting the books table in the database, then
selecting Export . . . from the File menu. The dialog box shown in Figure 8-3 will appear, and you'll need to select "XML
(*.xml)" from the "Save as type" drop-down box.

Figure 8-3. Selecting the destination for the export

When you perform the export, Access may actually create more files than just the XML file, but they'll all appear in the
same directory with the XML. Once you click the Export button, a small dialog box with basic options, shown in Figure
8-4, will appear.

Figure 8-4. Basic export options

For now, we'll accept the defaults and just hit OK. The result will be two files, books.xml and books.xsd. The books.xml
file will contain the information from the table, while books.xsd will contain an XML Schema description of that content,
annotated with a bit of information specific to Access and its Jet database engine.

The books.xml file, shown in Example 8-1, reflects the structure and content of the original table closely.

Example 8-1. A simple table export

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-1. A simple table export

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="books.xsd" generated="2003-03-

26T13:49:17">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel,

and Access, as well as a new application, Microsoft InfoPath. This book gets readers

started in using those features.</Short_x0020_Description>

<Long_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel, and

Access, as well as a new application, Microsoft InfoPath. This book gets readers started

in using those features.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space.</Short_x0020_

Description>

<Long_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space. Serious users of XML

will find topics on just about everything they need, including fundamental syntax rules,

details of DTD and XML Schema creation, XSLT transformations, and APIs used for processing

XML documents. Simply put, this is the only references of its kind among

XML books.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Short_x0020_Description>

<Long_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

</dataroot>

The root element of this document, dataroot, is the only piece of this document specific to Access:

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.

org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="books.xsd"

generated="2003-03-26T13:49:17">

It makes a namespace declaration for the od prefix, which is not actually used in this document, and it also includes a
pointer to the XML Schema describing this document's structure. Because the element names used here are not in any
namespace, the document uses the xsi:noNamespaceSchemaLocation attribute to identify the schema that should be used
for all of the elements in this document that have no namespace. It also includes one small bit of metadata in the
generated attribute, identifying the time and date when this XML document was created.

The dataroot element contains three child books elements, each indicating a row in the books table. Their contents map
fairly simply to the names and values of the table columns:

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space.</Short_x0020_

Description>

<Long_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space. Serious users of

XML will find topics on just about everything they need, including fundamental syntax

rules, details of DTD and XML Schema creation, XSLT transformations, and APIs used

for processing XML documents. Simply put, this is the only references of its kind

among XML books.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

The only significant variation here involves the column names which included spaces. Instead of Short Description, we
now have Short_x0020_Description, following a convention Microsoft has developed for representing spaces in XML
element names. (XML forbids spaces in element names, as they make it difficult to separate the element name from the
attributes, so Access uses _x0020_, the Unicode hex number for the space.)

The XML itself is pretty simple, and provides relatively little information about many of the things Access considers
important, like datatype, length, and all the details you can set in the Design view for tables. That information is kept in
the XML Schema, shown in Example 8-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-2. The schema Access created to describe its XML output

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-microsoft-

com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="books" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="books">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="ISBN " primary="yes" unique="yes"

clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ISBN" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Title" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Tagline" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:element name="Tagline" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Short_x0020_Description" minOccurs="0" od:jetType="memo" od:

sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Long_x0020_Description" minOccurs="0" od:jetType="memo" od:

sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="PriceUS" minOccurs="0" od:jetType="currency" od:sqlSType="money"

type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The xsd:schema element includes the namespace for XSD itself as well as a namespace declaration for the additional
Access-specific information that is used in the schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-

microsoft-com:officedata">

The next item is the declaration for the dataroot element. While Access always uses a dataroot element for its exports,
the contents of that dataroot element vary from export to export. In this particular case, the dataroot element may
contain zero or more books elements, as well as a dateTime attribute called generated:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contain zero or more books elements, as well as a dateTime attribute called generated:

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="books" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

The remainder of the schema is the declaration for the books element, which itself contains the declarations for all of its
child elements. (This style of schema is frequently referred to as "Russian doll," after the nesting wooden dolls, and
works well for simple structures like those created here.) The declaration begins with an annotation used by Access to
identify the primary key of the table:

<xsd:element name="books">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="ISBN " primary="yes" unique="yes"

clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

Schemas permit any kind of markup in the xsd:appinfo element, and Microsoft has used that freedom along with an index
element in its own od namespace to provide information Access can use to reconstruct the primary key.

The next element is an xsd:complexType, which contains an xsd:sequence containing the declarations for all of the child
elements that appear in a books element. All of the child elements are declared using xsd:element elements that contain
xsd:simpleType elements detailing the restrictions on the content of that particular component. For instance, the
declaration for the ISBN element looks like:

<xsd:element name="ISBN" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

Most of this is basic XML Schema, saying that this is an element named ISBN, which may or may not appear, and whose
contents are a string whose maximum length is eleven characters. The xsd:element itself contains two extra attributes,
both of them Microsoft-specific. The first, od:jetType, identifies the type of this field in Access, while the second,
od:sqlSType, identifies its type for Microsoft SQL Server.

Most of the other elements declared here follow a similar pattern with different xsd:maxLength values; those for the
memo-typed values are especially large. One notably different declaration is that for the PriceUS element, which is done
using attributes exclusively:

<xsd:element name="PriceUS" minOccurs="0" od:jetType="currency" od:sqlSType="money"

type="xsd:double"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type="xsd:double"/>

In this case, the type of xsd:double is enough to define the contents of the element—no further restrictions are needed,
so no xsd:simpleType, xsd:restriction, or facet-specific elements are needed. W3C XML Schema has no notion of a currency
type, so the data will be stored without a dollar sign. If you need to indicate explicitly that these are U.S. dollars, you
may want to add a separate column to the table indicating the units used by the currency.

8.2.2 Exporting Linked Tables

Exporting individual tables is useful, but there are times when you may want to export multiple tables and preserve the
relationships between them. Access allows you to export a set of tables, though it works most easily when only two
tables are involved.

For our first example, we'll add a table that contains information about (very fictional) promotions for the various
books. Figure 8-5 shows what this table looks like.

Figure 8-5. The promotions table

The promotions table links to the books table though its BookID field, as shown in Figure 8-6.

Figure 8-6. Relationships between the books and promotions tables

Exporting this pair of tables takes a few more steps, as Access lets you choose how the export works. The choice of
which table is the base table makes a big difference in the results of the export, so the examples below will export it
both ways. First, we'll start by exporting the books table again, but this time, we'll select More Options from the dialog
box shown in Figure 8-7.

Figure 8-7. Basic export options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-7. Basic export options

Clicking More Options brings up a larger dialog with many more choices, as shown in Figure 8-8.

Figure 8-8. The full version of the Export XML dialog box

In this case, all the information we need is on the first (Data) tab. Checking the "promotions" box and hitting the OK
button tells Access to export both the books table and the linked records of the promotions table, in this case, all of
them. Example 8-3 shows an abbreviated version of the export, with the new content from the promotions table in
bold.

Example 8-3. Exported linked tables

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ch0804.xsd" generated="2003-03-

31T16:37:01">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

<promotions>

<PromotionID>1</PromotionID>

<BookID>0596005385</BookID>

<Name>Palm civet bonus</Name>

<Venue>Anywhere interested</Venue>

<Description>A stuffed-animal palm civet, lovingly screen-printed to match the cover, with

every copy of the book.</Description>

<Cost>10000</Cost>

</promotions>

<promotions>

<PromotionID>3</PromotionID>

<BookID>0596005385</BookID>

<Name>Key chains</Name>

<Venue>Conferences</Venue>

<Description>keychains adorned with lovely palm civets and the title of the book.</Description>

<Cost>1000</Cost>

</promotions>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

<promotions>

<PromotionID>2</PromotionID>

<BookID>0596002378</BookID>

<Name>Free filters</Name>

<Venue>Online/Safari</Venue>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Venue>Online/Safari</Venue>

<Description>Bonus SAX filters, open source-licensed, for developers who visit the SAX2

book site.</Description>

<Cost>0</Cost>

</promotions>

</books>

</dataroot>

The general pattern here is much like the original export of the books table, except that zero or more promotions
elements—whose BookID holds the same value as the containing books element's ISBN element—now appear inside of
each books element. This works the same way that zero or more books elements appeared inside of the dataroot element.
All of the table columns are listed inside of each promotions element, making it easy to reconstruct the information in the
promotions table or to treat the information as a complete set of information about each book.

The schema has also changed only a little, as shown in Example 8-4.

Example 8-4. A schema for a set of related tables

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-microsoft-

com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="books" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="books">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="ISBN " primary="yes" unique="yes"

clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ISBN" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsd:element>

<xsd:element name="Title" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Tagline" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Short_x0020_Description" minOccurs="0" od:jetType="memo"

 od:sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Long_x0020_Description" minOccurs="0" od:jetType="memo"

 od:sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="PriceUS" minOccurs="0" od:jetType="currency"

 od:sqlSType="money" type="xsd:double"/>

<xsd:element ref="promotions" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="promotions">

<xsd:annotation>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="PromotionID " primary="yes"

 unique="yes" clustered="no"/>

<od:index index-name="BookID" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="bookspromotions" index-key="BookID " primary="no"

 unique="no" clustered="no"/>

<od:index index-name="PromotionID" index-key="PromotionID " primary="no"

 unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PromotionID" minOccurs="1" od:jetType="autonumber"

 od:sqlSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int"/>

<xsd:element name="BookID" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Name" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Venue" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Description" minOccurs="0" od:jetType="memo" od:sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Cost" minOccurs="0" od:jetType="currency" od:sqlSType="money"

type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The declaration of the books element is the same as it was, except that it now includes an xsd:element that references
the promotions element:

<xsd:element ref="promotions" minOccurs="0" maxOccurs="unbounded"/>

Because there may be more than one promotions element related to each book, the maxOccurs attribute is set to
unbounded. The use of a ref attribute to connect to the definition of the promotions element is a change from the prior
approach, which made all of these definitions in place. (This is pretty much a style choice—the earlier "Russian doll"
approach would have worked as well.)

After the closing of the xsd:element element defining the books field, the declaration of the promotions element appears:

<xsd:element name="promotions">

The first feature of the promotions element is an annotation that includes information about the indexes for the
promotions table, including a "bookspromotions" index on BookID, which is the connection between the books table and
the promotions table.

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="PromotionID " primary="yes" unique="yes"

 clustered="no"/>

<od:index index-name="BookID" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="bookspromotions" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="PromotionID" index-key="PromotionID " primary="no" unique="no"

 clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

The contents of the promotions element are defined, just like those of the books element, in an xsd:complexType containing
a sequence of declarations:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a sequence of declarations:

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PromotionID" minOccurs="1" od:jetType="autonumber" od:

sqlSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int"/>

Apart from the indexing information, these are pretty ordinary XML schemas, and the structures they describe are
typical of XML data. There is very little to their structure that requires interpretation beyond "this books element
contains these promotions, so I'll bet those promotions go with that book." Access can't, however, make that work for
many-to-one relationships. If, for instance, you used promotions as the primary table for export instead of books, you'd
be exporting a many-to-one relationship rather than one-to-many. As Figure 8-9 shows, Access warns you of the
difference with an intermediary entry named [Lookup Data], indicating that it will effectively be creating a lookup table
to connect the information.

Figure 8-9. Exporting related tables with a many-to-one relationship

Example 8-5 shows the results of exporting the promotions table and the books table, but using the promotions table as
the primary table.

Example 8-5. The export of tables related as many-to-one

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="promotions.xsd" generated="2003-

04-01T20:32:49">

<promotions>

<PromotionID>1</PromotionID>

<BookID>0596005385</BookID>

<Name>Palm civet bonus</Name>

<Venue>Anywhere interested</Venue>

<Description>A stuffed-animal palm civet, lovingly screen-printed to match the cover, with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Description>A stuffed-animal palm civet, lovingly screen-printed to match the cover, with

every copy of the book.</Description>

<Cost>10000</Cost>

</promotions>

<promotions>

<PromotionID>2</PromotionID>

<BookID>0596002378</BookID>

<Name>Free filters</Name>

<Venue>Online/Safari</Venue>

<Description>Bonus SAX filters, open source-licensed, for developers who visit the SAX2

book site.</Description>

<Cost>0</Cost>

</promotions>

<promotions>

<PromotionID>3</PromotionID>

<BookID>0596005385</BookID>

<Name>Key chains</Name>

<Venue>Conferences</Venue>

<Description>keychains adorned with lovely palm civets and the title of the book.</

Description>

<Cost>1000</Cost>

</promotions>

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description...</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

</dataroot>

The connections between the tables are no longer represented in the XML structures themselves; you have to know
that BookID and ISBN are connected to make the connections yourself. Once again, that information appears in the
exported schema, as shown in the fragment in Example 8-6.

Example 8-6. The declarations for the promotions element and its index
annotations

<xsd:element name="promotions">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="PromotionID " primary="yes" unique="yes" clustered="no"/>

<od:index index-name="BookID" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="bookspromotions" index-key="BookID " primary="no"

 unique="no" clustered="no"/>

<od:index index-name="PromotionID" index-key="PromotionID " primary="no"

 unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>...

The last table export pattern we'll explore involves a many-to-many relationship between authors and books. As shown
in Figure 8-10, this relationship is implemented with an intermediary table, which permits many authors to work on
many books.

Figure 8-10. Related tables with a many-to-many relationship, expressed as two
one-to-many relationships

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Access will let you traverse this relationship in an XML export, as shown in Figure 8-11.

Figure 8-11. Exporting related tables with a many-to-many relationship

This time the export will use both of the styles shown above, whether you start by exporting the authors table with the
books table, because the style of the export is determined by the nature of the join. One-to-many relationships are
represented using containment, while many-to-one relationships are represented as separate pieces. In this case, the
many-to-many relationship includes both of those choices.

Once again, the [Lookup Data] provides a warning that reassembling some of these relationships is going to require
extra lookup work on the part of the consuming application. (Access does this extra work automatically, as we'll see in
Section 8.3, later in this chapter.) The results of this export are structurally a combination of our earlier exports, as
shown in Example 8-7.

Example 8-7. A many-to-many export combining containment and lookup

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ch0806.xsd" generated="2003-04-

01T21:01:50">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

<authorBookLink>

<bookISBN>0596005385</bookISBN>

<authorID>1</authorID>

</authorBookLink>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

<authorBookLink>

<bookISBN>0596002920</bookISBN>

<authorID>3</authorID>

</authorBookLink>

<authorBookLink>

<bookISBN>0596002920</bookISBN>

<authorID>4</authorID>

</authorBookLink>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

<authorBookLink>

<bookISBN>0596002378</bookISBN>

<authorID>2</authorID>

</authorBookLink>

</books>

<authors>

<AuthorID>1</AuthorID>

<GivenName>Simon</GivenName>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<FamilyName>St.Laurent</FamilyName>

<FullName>Simon St.Laurent</FullName>

</authors>

<authors>

<AuthorID>2</AuthorID>

<GivenName>David</GivenName>

<FamilyName>Brownell</FamilyName>

<FullName>David Brownell</FullName>

</authors>

<authors>

<AuthorID>3</AuthorID>

<GivenName>Elliotte</GivenName>

<FamilyName>Harold</FamilyName>

<FullName>Elliotte Rusty Harold</FullName>

</authors>

<authors>

<AuthorID>4</AuthorID>

<GivenName>Scott</GivenName>

<FamilyName>Means</FamilyName>

<FullName>W. Scott Means</FullName>

</authors>

</dataroot>

Each of the books elements now contains one or more authorBookLink elements that hold an authorID element. The value
of that authorID element maps to an AuthorID element inside of an authors element. It takes a little traversing and
sorting to reach an author's name from a book, but the connections are all still intact.

8.2.3 Exporting a Query

All this traversing isn't much fun for developers used to working with XML's container approach. Fortunately, relational
databases have long offered another choice for interacting with their information: queries that provide specific views of
information. Queries don't by themselves provide nested views, but they certainly make it easier to present some kinds
of information, notably that with many-to-many relationships. The mechanics of exporting queries are much like those
of exporting single tables, and the results are similar.

Access supports SQL queries, obviously, as that's at the heart of its functionality. Access
does not, however, support other standards for querying, like XQuery.

To demonstrate, we'll export a SQL query named booksByAuthor, which uses the books, authorBookLink, and authors
tables to create a list of books sorted by author. The SQL for the query expresses the relationships that an XML
processor working with the linked table export would otherwise have to deal with:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

processor working with the linked table export would otherwise have to deal with:

SELECT authors.GivenName, authors.FamilyName, books.ISBN, books.Title

FROM books INNER JOIN (authors INNER JOIN authorBookLink ON authors.AuthorID =

 authorBookLink.authorID) ON books.ISBN = authorBookLink.bookISBN

ORDER BY authors.FamilyName;

The interface for exporting a query is exactly the same as that for a table, except that there is no option for exporting
linked information. When you export a query, all the information you want to export must be in that query. Exporting
the query produces the result shown in Example 8-8.

Example 8-8. An exported query

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="booksByAuthor.xsd"

generated="2003-04-02T14:47:59">

<booksByAuthor>

<GivenName>David</GivenName>

<FamilyName>Brownell</FamilyName>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

</booksByAuthor>

<booksByAuthor>

<GivenName>Elliotte</GivenName>

<FamilyName>Harold</FamilyName>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

</booksByAuthor>

<booksByAuthor>

<GivenName>Scott</GivenName>

<FamilyName>Means</FamilyName>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

</booksByAuthor>

<booksByAuthor>

<GivenName>Simon</GivenName>

<FamilyName>St.Laurent</FamilyName>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

</booksByAuthor>

</dataroot>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</dataroot>

Just as in a tabular representation of the query, information repeats, notably the ISBN and title of XML in a Nutshell,
which has two authors. The schema exported for queries follows the same pattern as exports of a single table.

8.2.4 Presentation and Transformation

While the XML export features described above are certainly useful, the export formats shown are really only the
beginning of what you can do. These formats represent the limits of what Access itself understands, but Access also
provides hooks for other approaches, including a presentation form for web browsers and much broader capabilities for
XSLT integration.

Access' support for XSLT transformations on export works only when you export data
using the GUI interface.

We'll transform the result of the query export shown above in Example 8-8 using an XSLT stylesheet. The stylesheet
itself, shown in Example 8-9, is extremely simple, merely creating paragraphs and adding labels. The most exciting
thing that happens is that the authors' GivenName and FamilyName end up on the same line, separated by a space.

Example 8-9. A simple stylesheet for producing HTML from the booksByAuthor
query

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

>

<xsl:output method="xml" omit-xml-declaration="yes"

 encoding="US-ASCII"/>

<xsl:template match="dataroot" >

<html>

 <head>

 <title>Exported Query</title>

 </head>

 <body>

 <xsl:for-each select="booksByAuthor">

 <p>

 <xsl:text>Author: </xsl:text>

 <xsl:value-of select="GivenName"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="FamilyName"/>

 </p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p>ISBN: <xsl:value-of select="ISBN"/></p>

 <p>Title: <xsl:value-of select="Title"/></p>

 <hr />

 </xsl:for-each>

 </body>

</html>

</xsl:template>

</xsl:stylesheet>

To apply this transformation to the data, follow the same process for exporting it normally, until you reach the Export
XML dialog box shown previously in Figure 8-11. Here, you click the Transforms . . . button, revealing the dialog box
shown in Figure 8-12.

Figure 8-12. The Transforms dialog box

Click the Add . . . button, and you can browse your filesystem to add an XSLT stylesheet to your options. Once you've
done that, you can select a transformation and click OK.

This time, when you perform the export, Access applies the XSLT stylesheet to the outgoing data, producing the result
shown in Example 8-10.

Example 8-10. Results of an XSLT-enhanced export

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-10. Results of an XSLT-enhanced export

<html>

<head><title>Exported Query</title></head>

<body>

<p>Author: David Brownell</p>

<p>ISBN: 0596002378</p>

<p>Title: SAX2</p>

<hr/>

<p>Author: Elliotte Harold</p>

<p>ISBN: 0596002920</p>

<p>Title: XML in a Nutshell, 2nd Edition</p>

<hr/>

<p>Author: Scott Means</p>

<p>ISBN: 0596002920</p>

<p>Title: XML in a Nutshell, 2nd Edition</p>

<hr/><p>Author: Simon St.Laurent</p>

<p>ISBN: 0596005385</p>

<p>Title: Office 2003 XML Essentials</p>

<hr/>

</body>

</html>

In a web browser, this looks like Figure 8-13.

Figure 8-13. Transformed query results in a web browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately, Access will produce a blank file if the stylesheet includes <xsl:output
method="html" />, so the HTML produced by this method will only work in more recent
browsers.

These foundations will let you bypass the Access reports and HTML generation capabilities if you want to create custom
reports, web views, or share information with systems that don't find the XML that Access generates directly amenable.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Importing XML into Access Using the GUI
Access provides fewer options for importing XML, but what it provides is simple and reasonably solid. Access lets you
import data that looks roughly like the data it exports, and only as tables or additions to tables. This can be a great way
to load new data into a database or add newly updated information, but it does make it difficult to transfer complex
interrelated structures between databases. A single document may contain XML that refers to multiple tables, of course,
and XSLT transformations on import can help as well.

To get started, we'll import the code shown in Example 8-11 into the Access database previously used for exporting.

Example 8-11. New data for import

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ch0802.xsd">

<books>

<ISBN>0596002637</ISBN>

<Title>Practical RDF</Title>

<Tagline>Solving Problems with the Resource Description Framework</Tagline>

<Short_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web.</Short_x0020_Description>

<Long_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web - anything from library catalogs and

worldwide directories to bioinformatics, Mozilla internal data structures, and knowledge

bases for artificial intelligence projects.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596003838</ISBN>

<Title>Content Syndication with RSS</Title>

<Tagline>Sharing Headlines and Information Using XML</Tagline>

<Short_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds.</Short_x0020_Description>

<Long_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds. Originally developed by Netscape in 1999, RSS (which can stand for

RDF Site Summary, Rich Site Summary, or Really Simple Syndication) is an XML-based format

that allows Web developers to create a data feed that supplies headlines, links, and

article summaries from a web site</Long_x0020_Description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

article summaries from a web site</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

<books>

<ISBN>0596002912</ISBN>

<Title>XPath and XPointer</Title>

<Tagline>Locating Content in XML Documents</Tagline>

<Short_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else?</Short_x0020_Description>

<Long_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else? XPath and XPointer are two closely related tools that play a key

role in XML processing by allowing developers to find these needles and manipulate

embedded information.</Long_x0020_Description>

<PriceUS>24.95</PriceUS>

</books>

</dataroot>

To get started, select "Get External Data" from the File menu, and select "Import" The dialog box shown in Figure
8-14 will appear.

Figure 8-14. Initial import dialog box

You may have to select XML from the "Files of type" drop-down menu at the bottom, as the dialog initially defaults to
Access formats. Select the file ch0811.xml, and click Import. The Import XML dialog box shown in Figure 8-15 will
appear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-15. Import dialog box showing structure of XML documents

You can click on the plus sign to the left of "books" if you want to inspect the structure. If you just click OK right now,
Access will create a new table, books1 (or whatever number avoids a conflict), to import the XML into Access without
conflicting with the prior XML table. That may be perfectly fine, as it gives you a chance to compare the new data with
the old before merging the two. Access provides two more options, however: one that lets you just create a new table
based on the structure of the XML file, and another that lets you append the data in the XML file to an existing table. In
this case, we know the new books are different from the old books, so click on Options and select "Append Data to
Existing Table(s)," as shown in Figure 8-16.

Figure 8-16. Import dialog box showing more complex structure of XML
documents, as well as append options

If you click OK now, the extra books will be added to the existing books table, as shown in Figure 8-17.

Figure 8-17. The results of importing a document and appending its data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Access refuses to import XML data that causes a conflict with existing key relationships. For example, if you import that
same document again the same way, you'll be rewarded with the ImportErrors table shown in Figure 8-18.

Figure 8-18. The results of importing a document and appending its data when the
data is already there

Using the Transform . . . button shown in Figure 8-16, you can also perform conversions that make it easier to import
data that doesn't arrive in a form that meets Access' expectations. For example, suppose information about a new book
arrived in the form shown in Example 8-12.

Example 8-12. An attribute-based XML document for import

<update>

<books ISBN="0596003277" Title="Learning XSLT" Tagline="A Hands-On

Introduction to XSLT and XPath" Short_x0020_Description="A gentle

introduction to the complex intricacies of XSLT" Long_x0020

_Description="A gentle introduction to the complex intricacies of

XSLT and XPath, walking through the spec from simple work to

complex." PriceUS="34.95" />

</update>

In Example 8-12, all of the data is stored in attributes, and Access won't even look at attributes during an import. To
get this information into Access, you'll need to use a transformation, like the generic one shown in Example 8-13, which
converts all attributes into child elements.

Example 8-13. A stylesheet for transforming attributes into elements

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!--Derived from recipe 6.1 of Sal Mangano's XSLT Cookbook-->

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:template match="@*">

 <xsl:element name="{local-name(.)}" namespace="{namespace-uri(..)}">

 <xsl:value-of select="."/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="."/>

 </xsl:element>

</xsl:template>

<xsl:template match="node()">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

When applied to Example 8-12, the stylesheet in Example 8-13 will produce the result shown in Example 8-14, which
Access can import easily. (Note that Access doesn't care what the name of the root element is; update is simply a useful
description for human consumption.)

Example 8-14. An elementized version of Example 8-12

<?xml version="1.0" encoding="UTF-8"?>

<update>

<books>

<ISBN>0596003277</ISBN>

<Title>Learning XSLT</Title>

<Tagline>A Hands-On Introduction to XSLT and XPath</Tagline>

<Short_x0020_Description>A gentle introduction to the complex intricacies of XSLT</Short_

x0020_Description>

<Long_x0020_Description>A gentle introduction to the complex intricacies of XSLT and

XPath, walking through the spec from simple work to complex.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

</update>

If you tell Access to import ch0812.xml, the file shown in Example 8-12, you won't have much to choose from in the
Import XML dialog box, as shown in Figure 8-19.

Figure 8-19. Access' initial reaction to the document that stores data in attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click on Options and then on Transform . . . , you'll be able to add the stylesheet, much as you did for the export
transformation. Add the stylesheet to the list of transformations and select ch0813, as shown in Figure 8-20.

Figure 8-20. Selecting a stylesheet for transformation

When you click OK, Access applies the transformation to the document, modifying the display of components you see,
producing the result in Figure 8-21.

Figure 8-21. A transformed document ready for import

In this case, the table already exists, so be sure to select "Append Data to Existing Table(s)." When you click OK, the
data from Example 8-12 will be added to the table books, as shown in Figure 8-22.

Figure 8-22. The result of importing a transformed document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-22. The result of importing a transformed document

While transformations work well for some kinds of import problems, they suffer from one major limitation: they have to
be applied manually. The techniques for importing XML with Visual Basic for Applications, explored in the next section,
do not support the use of stylesheets for transformation on import.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Automating XML Import and Export
While the GUI is certainly the most flexible way to learn about Access' XML support, it can be tricky to explain if you're
using XML to distribute information to users or collect information from them. Rather than tell users to go through a
multi-step process, you can use the Visual Basic for Applications Application.ImportXML and Application.ExportXML methods
to create buttons or other interfaces that let users get information in and out more easily.

Of the two methods, Application.ImportXML is by far the simpler. It only takes two argument: a data source—most likely a
file reference or a URL—and an options constant. The choices for the options are acAppendData, acStructureAndData (the
default), and acStructureOnly. These correspond to the behaviors described in Section 8.3.

For an example of how this might work, the XML in Example 8-15 is available at
http://simonstl.com/ora/updateBook.xml.

Example 8-15. An online XML update file

<update>

<books>

<ISBN>0596003722</ISBN>

<Title>XSLT Cookbook</Title>

<Tagline>Solutions and Examples for XML and XSLT Developers</Tagline>

<Short_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations.</Short_x0020_Description>

<Long_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations, including structural changes, and conversion to XHTML, SVG, and

programming code.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

</update>

To import this, create a form with a button on it, and add this code to the button:

Private Sub Command0_Click()

 Application.ImportXML "http://simonstl.com/ora/updateBook.xml", _

 acAppendData

End Sub

When you click on the button, which might look like Figure 8-23, your database will retrieve the XML from
http://simonstl.com/ora/updateBook.xml and add its contents to the database.

Figure 8-23. A button for importing XML data from the Web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-23. A button for importing XML data from the Web

If your books table looked like Figure 8-22, it will now look like Figure 8-24.

Figure 8-24. The result of the automated importation of an XML document

As noted earlier, you can't apply a transformation when importing XML through Visual
Basic for Applications, so the imported XML file must meet Access' structural expectations
to start with. If you're providing XML specifically for the purpose of distributing it to Access
databases, this shouldn't be a problem, but it may require some code, a temporary
download, or some kind of proxy if your Access database has to import data that Access
can't interpret automatically.

The Application.ExportXML method provides somewhat more control and functionality than its ImportXML companion,
though it also lacks direct transformation capabilities. It takes eight arguments, listed here:

ObjectType

Most typically acExportTable, acExportQuery, or acExportReport, though you can also experiment with acExportForm,
acExportFunction, acReport, acServerView, or acStoredProcedure.

DataSource

A string containing the name of the Access object—typically the table or query—you want to export.

DataTarget

The path to the XML document you want to export. Leave this blank if you're just exporting a schema.

SchemaTarget

The path to the XML Schema document you want to export. If you're just exporting data and not a schema,
leave this blank.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

leave this blank.

PresentationTarget

The path to the XSLT that Access generates for creating an Internet Explorer interface to access data. Note that
this is not a place for specifying an XSLT transformation.

ImageTarget

A path to a directory that will be used for exporting images if you're exporting a report.

Encoding

The encoding to use for the exported text files. This may be either acUTF16 (for UTF-16), or acUTF8 (for UTF-8).
UTF-8 is the default.

OtherFlags

This field holds an integer that is the sum of several flags. Starting from a value of zero, add acEmbedSchema if
you to embed a schema inside of the XML file instead of in a separate file. Add acExcludePrimaryKeyAndIndexes if
you don't want the schema to contain index information. Add acLiveReportSource if this is to be connected to a
Microsoft SQL Server database. Add acPersistReportML if you want to look at the ReportML Access uses internally.
Add acRunFromServer if you want to create Active Server Pages (ASP) rather than HTML output for the
PresentationTarget.

You can also specify additional objects to export as extra arguments after these, perhaps if you wanted to export
multiple tables simultaneously. Most typically, you'll use just three arguments, as shown in this method:

Private Sub Command1_Click()

 Application.ExportXML acExportTable, "books", _

 "C:\xml\booksExport.xml"

End Sub

When this code is used for the button shown in Figure 8-25, if you've done all the imports along the way, the results at
C:\xml\booksExport.xml will look like Example 8-16.

Figure 8-25. A button for exporting XML to your hard drive

Example 8-16. The results of exporting all of the data in the books table using the
button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

button

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" generated="2004-02-06T15:42:40">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel,

and Access, as well as a new application, Microsoft InfoPath. This book gets readers

started in using those features.</Short_x0020_Description>

<Long_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel, and

Access, as well as a new application, Microsoft InfoPath. This book gets readers started

in using those features.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space.</Short_x0020_

Description>

<Long_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space. Serious users of XML

will find topics on just about everything they need, including fundamental syntax rules,

details of DTD and XML Schema creation, XSLT transformations, and APIs used for processing

XML documents. Simply put, this is the only references of its kind

among XML books.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Short_x0020_Description>

<Long_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

<books>

<ISBN>0596002637</ISBN>

<Title>Practical RDF</Title>

<Tagline>Solving Problems with the Resource Description Framework</Tagline>

<Short_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web.</Short_x0020_Description>

<Long_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web - anything from library catalogs and

worldwide directories to bioinformatics, Mozilla internal data structures, and knowledge

bases for artificial intelligence projects.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596003838</ISBN>

<Title>Content Syndication with RSS</Title>

<Tagline>Sharing Headlines and Information Using XML</Tagline>

<Short_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds.</Short_x0020_Description>

<Long_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds. Originally developed by Netscape in 1999, RSS (which can stand for

RDF Site Summary, Rich Site Summary, or Really Simple Syndication) is an XML-based format

that allows Web developers to create a data feed that supplies headlines, links, and

article summaries from a web site</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

<books>

<ISBN>0596002912</ISBN>

<Title>XPath and XPointer</Title>

<Tagline>Locating Content in XML Documents</Tagline>

<Short_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else?</Short_x0020_Description>

<Long_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else? XPath and XPointer are two closely related tools that play a key

role in XML processing by allowing developers to find these needles and manipulate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

role in XML processing by allowing developers to find these needles and manipulate

embedded information.</Long_x0020_Description>

<PriceUS>24.95</PriceUS>

</books>

<books>

<ISBN>0596003277</ISBN>

<Title>Learning XSLT</Title>

<Tagline>A Hands-On Introduction to XSLT and XPath</Tagline>

<Short_x0020_Description>A gentle introduction to the complex intricacies of XSLT</Short_

x0020_Description>

<Long_x0020_Description>A gentle introduction to the complex intricacies of XSLT and

XPath, walking through the spec from simple work to complex.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596003722</ISBN>

<Title>XSLT Cookbook</Title>

<Tagline>Solutions and Examples for XML and XSLT Developers</Tagline>

<Short_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations.</Short_x0020_Description>

<Long_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations, including structural changes, and conversion to XHTML, SVG, and

programming code.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

</dataroot>

The facilities Access provides for getting XML into and out of databases, while not especially flexible, should be enough
for you to transfer data among databases easily.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Using Web Services in Excel, Access, and
Word
The web services facilities in Microsoft Office are largely separate from the XML features covered elsewhere in this
book, although Microsoft has often sold XML and web services as the same thing. Web services, after all, use XML as a
key part of their program-to-program communication. On the other hand, most of the ways that Microsoft Office
supports XML are very distinct from web services. The web services support in most parts of Office is completely
separate from the rest of the XML support, relying on Visual Basic for Applications (VBA) and the Microsoft Office Web
Services Toolkit, which generates code programmers can use to access Web Services.

It's worth noting that the web services field is in significant flux. SOAP has moved from
Version 1.1 to 1.2, a new version of WSDL is under development, and UDDI may
eventually be replaced with other technologies. For now, be certain to test the services
you use, and keep an eye out for new versions of the Office Web Services Toolkit.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 What Are Web Services?
In a general sense, web services are programs you can access over the Web. In their broadest definition, tools like
Google, Amazon, Mapquest, and other web-based applications are certainly web services. More typically, web services,
as opposed to the regular Web, are about program-to-program communication. Web sites can make information
available to other programs, and many are using XML to spare the other programs the difficulties of processing HTML.
Over the last three years, web services has developed into a specialty of its own, built on a protocol called SOAP.

SOAP—formerly the Simple Object Access Protocol, but now an acronym without an official expansion—uses an XML
vocabulary and a set of rules for sending XML over HTTP. (HTTP, the HyperText Transfer Protocol, is the protocol at the
heart of the Web, most commonly used to transfer HTML from servers to clients.) SOAP is most frequently used as a
framework for sending remote procedure calls (RPC) between programs, and that's how the examples in this chapter
will use it. The Microsoft Office Web Services Toolkit creates code that makes Word or Excel a client application, capable
of calling SOAP-based services on other computers.

There are two other layers to the web services supported by Office. Web Services Description Language (WSDL)
provides a machine-readable description of a web service, identifying things like the methods it supports and the
parameters and return values for those methods. Given a WSDL file, an application (or a programmer) can determine
how to interact with a web service. The Microsoft Office Web Services Toolkit uses WSDL files to create its code. If the
WSDL file is written correctly, the resulting code will be able to interact with the SOAP-based web service smoothly.

The WSDL file will tell the Toolkit what code to create, but there's still one problem: the Toolkit needs to know where to
find the WSDL file. UDDI (Universal Description, Discovery, and Integration) is designed to help with this problem by
providing a common framework for describing and organizing web services in public or private directories. UDDI servers
store information describing services and their providers, helping developers to find services they trust and can use.

There are other ways to provide and use web services. XML-RPC, described at
http://xmlrpc.com/, preceded SOAP and provides support for function calls over HTTP.
Microsoft Office doesn't provide direct support for XML-RPC.

You can also use HTTP calls to send XML between clients and servers without using SOAP, in what is often called
Representational State Transfer, or REST. For more on REST, see
http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage. It's probably easiest to think of REST much as you think of
the Web; it uses basic HTTP functionality to exchange information between programs and servers much the same way
that browsers use HTTP to exchange information between browsers and servers. You can use some REST-based
services in Office by combining HTTP calls with the built-in XML functionality described in earlier chapters, or through
VBA.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 The Microsoft Office Web Services Toolkit
Unlike the rest of the XML functionality in Word, Excel, and Access, if you want to use SOAP-based web services, you'll
need to download a separate package, the Microsoft Office Web Services Toolkit. (InfoPath has web services support
built into it.) As the URL for this package has changed a few times, it's easiest to go to
http://www.microsoft.com/downloads/search.aspx and search for "Office Web Services Toolkit." Separate versions are
available for Office XP and Office 2003. Once you've installed it, you'll be able to have Office generate VBA code for
accessing and using web services. Microsoft's support for SOAP comes with the toolkit, and has also become part of
Windows with Windows XP.

It is possible to create VBA code that accesses SOAP services without using the Toolkit, but
doing so requires much greater knowledge of both VBA and SOAP than this chapter
assumes. If you're feeling intrepid, see Chapter 8 of Matthew MacDonald's Office 2003
XML for Power Users (APress).

Unlike the other XML features described in this book, using the Microsoft Office Web Services Toolkit works the same
way across applications, except for InfoPath. Once you've learned how to interact with a web service in Excel, you can
use the same code to work with it in Word or Access. The only thing that needs to change is the integration between
your VBA code and the object model for the particular application and document you're working with. It's probably
easiest to start your development in Excel, as the Excel grid makes it easy to set up test environments where inputs
occupy particular cells and outputs are placed into particular cells by the VBA code.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Accessing a Simple Web Service from Excel
Once you've installed the toolkit, you can start connecting your spreadsheet to web services. To get to the Web Service
References Tool (its name inside of all of the applications), you'll need to go to Tools Macro Visual Basic
Editor. On the Tools menu of the Visual Basic Editor, you'll find Web Services References. Selecting that will bring up
the dialog box shown in Figure 9-1.

Figure 9-1. The Microsoft Office Web Services Toolkit in action

You can use the search features in the top left of this dialog to find services through Microsoft's UDDI service, or you
can choose instead to enter a URL for the WSDL file at the lower left. The toolkit defaults to UDDI, and UDDI hosted by
Microsoft at that, as you'll see if you click the More button. If you'd like to try looking for a service through UDDI, enter
a keyword or business name in the appropriate location, and then click the Search button at the bottom. If you enter
"currency" under keyword, click the More button, and click Search, you'll have a brief wait while the toolkit queries
Microsoft and then you'll see something like Figure 9-2.

Figure 9-2. Searching for services using the UDDI support of the Microsoft Office
Web Services Toolkit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Currencyws service offers two methods: GetLicRate and GetRate. (As the documentation for them is identical, it's
difficult to say what the difference is.) Clicking the Test button will let you visit a page where you can test the services,
if the provider of the service offers testing. If you were to check the box next to "Currencyws" and click Add, the toolkit
would generate code to let you access the service.

Instead, because UDDI hasn't really taken off, and most consumers of web services are using their own or other
people's private services, we'll experiment with the other option, the Web Service URL. This lets you work with any
service whose providers offer a WSDL file describing it, whether or not it's been registered with UDDI.

You can find a listing of public services at http://xmethods.net/, though you should definitely test to make sure that the
services still work before you integrate them with your documents. Many services also require license keys and
sometimes license payments, but for this example we'll use one that is available for free. It returns the IP address for a
given domain name. We'll start by telling Excel which service we'd like to use, in this case,
http://www.cosme.nu/services/dns.php?wsdl. Enter that value in the URL: box at the bottom left and click Search. A
search result for the DNS service will appear in the top right, as shown in Figure 9-3. Check the box to its left.

Figure 9-3. Telling the Web Services Toolkit to generate code for a specific web
service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clicking the Add button will make Excel generate VBA code for invoking the service, as shown in Figure 9-4.

Figure 9-4. VBA code for accessing the DNS service generated by the Web Services
Toolkit

Next, close the Visual Basic Editor and set up a very simple spreadsheet like the one shown in Figure 9-5.

Figure 9-5. A spreadsheet for adding web services

To demonstrate how to call a service, add a button for calling the service. Display the Control Toolbar by right-clicking
on a toolbar and choosing Control Toolbox from the pop-up menu. Click the button icon, and then click on the
spreadsheet wherever you'd like the button to go. Right-click the button, and choose Properties from the pop-up menu.
Under Name, enter GetData; under Caption, enter Get IP Address. (These names can be anything you like.) Close the
Properties dialog box, and your spreadsheet should look something like Figure 9-6.

Figure 9-6. Spreadsheet with button for calling web services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-1. Code for calling simple web service

Private Sub GetData_Click()

 Dim info As New clsws_dns

 Dim name As String

 Dim IP As String

 name = Range("B2").Text

 IP = info.wsm_dns(name)

 Set IPRange = Range("B3")

 IPRange.Value = IP

End Sub

This code is pretty simple. It references the object the toolkit created for the web service, clsws_dns, and creates
variables for the name and IP address. It collects the name from cell B2, calls the web service at wsm_dns with the
name as an argument, and then puts the value returned into cell B3. The method name, wsm_dns, is set by the Web
Services Toolkit and appears in the comments at the top of the generated code, as you can see if you look back to
Figure 9-4.

Once you've entered this code and closed the Visual Basic Editor, you can then leave design mode by making sure the
triangle and ruler icon at the left of the Control Toolbar isn't highlighted. The spreadsheet will now let you enter a
domain name in cell B2. Clicking on the "Get IP Address" button will invoke the web service, using the generated
wsm_dns method, and put the IP address corresponding to that domain name in cell B3. Figures 9-7 and 9-8 show this
spreadsheet in action with different domain names.

Figure 9-7. A retrieved IP address for oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-8. A retrieved IP address for simonstl.com

IP address resolution is one of the simpler services out there, but there are many cases where services this simple can
be very useful in a spreadsheet, including currency convertors, price retrieval, postal code processing, and much more.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Accessing More Complex Web Services
While one return value for a method or function is a fairly normal approach in programming languages, SOAP is capable
of returning values that are more complex. To demonstrate, the next example will test a service that returns
information about a given US Zip Code, including the city, state, area code, and time zone.

Information about the service, including an HTML testing form that lets you see what results the service will produce, is
available at http://webservicex.net/uszip.asmx?op=GetInfoByZIP. Its WSDL file is at
http://webservicex.net/uszip.asmx?WSDL. If you test it with the Zip Code 13053, it will report back:

<?xml version="1.0" encoding="utf-8" ?>

<NewDataSet>

 <Table>

 <CITY>Dryden</CITY>

 <STATE>NY</STATE>

 <ZIP>13053</ZIP>

 <AREA_CODE>607</AREA_CODE>

 <TIME_ZONE>E</TIME_ZONE>

 </Table>

</NewDataSet>

The test reports back without a SOAP envelope. As the Web Services Toolkit will handle all the processing of the SOAP
envelope and just hands your code the message inside, that won't be a problem for you. The Table here (and the <any
/> in the schema in the WSDL file where these would appear) will lead the Web Services Toolkit to generate code that
returns an IXMLDOMNodeList, as shown in Figure 9-9.

Figure 9-9. Generated code returning XML rather than a value

To work with this more complex data, the spreadsheet will have one source cell (for the Zip Code) and four result cells,
as well as a button that will execute the web service call, as shown in Figure 9-10.

Figure 9-10. Spreadsheet base for running the web service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-10. Spreadsheet base for running the web service

The code behind the "Get ZIP Info" button—which is named ZipCoder—is an extension of Example 9-1. It adds a few
variables, and uses some XPath to extract the values of the XML elements returned by the SOAP call, as shown in
Example 9-2.

Example 9-2. Calling a more complex web service

Private Sub ZipCoder_Click()

Dim zipResolver As clsws_USZip

Set zipResolver = New clsws_USZip

Dim zip As String

Dim city As String

Dim state As String

Dim areaCode As String

Dim timeZone As String

zip = Range("B1").Text

Dim returnedNodes As MSXML2.IXMLDOMNodeList

Set returnedNodes = zipResolver.wsm_GetInfoByZIP(zip)

city = returnedNodes.Item(0).selectSingleNode("//CITY").Text

state = returnedNodes.Item(0).selectSingleNode("//STATE").Text

areaCode = returnedNodes.Item(0).selectSingleNode("//AREA_CODE").Text

timeZone = returnedNodes.Item(0).selectSingleNode("//TIME_ZONE").Text

Set cityRange = Range("B3")

cityRange.Value = city

Set stateRange = Range("B4")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set stateRange = Range("B4")

stateRange.Value = state

Set areaCodeRange = Range("B5")

areaCodeRange.Value = areaCode

Set timeZoneRange = Range("B6")

timeZoneRange.Value = timeZone

End Sub

The main difference is in the way that information is returned from the web services call. Instead of the data coming
back as a string, it comes back as a list of XML nodes, more precisely an MSXML2.IXMLDOMNodeList. To extract the
individual values from the XML, the selectSingleNode method takes an XPath and returns the first node matching the
XPath, here returning the CITY element, the text of which is then put into the city variable:

Dim returnedNodes As MSXML2.IXMLDOMNodeList

Set returnedNodes = zipResolver.wsm_GetInfoByZIP(zip)

city = returnedNodes.Item(0).selectSingleNode("//CITY").Text

Once the information is extracted, it's put into cells. If you enter a Zip Code into cell B1 and then click "Get ZIP Info," it
puts the corresponding information into cells B3-B6, as shown in Figure 9-11.

Figure 9-11. Information about a Zip Code retrieved through a web service

You may encounter a problem with some services in which they return XML as a string, and the Toolkit returns that
string rather than a searchable node list. To demonstrate, we'll connect to a different service that returns complex
information, but reports it in the WSDL as a string. It's a stock quote application, which you can explore at
http://www.webservicex.net/stockquote.asmx. The test page looks like Figure 9-12; note that the placeholder shown in
the SOAP response's GetQuoteResult element near the bottom is a string.

Figure 9-12. Test page for a web service that returns XML content as text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-12. Test page for a web service that returns XML content as text

A sample return value for the service looks like:

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://www.webserviceX.NET/">

<StockQuotes><Stock><Symbol>GLW</Symbol><Last>12

.90</Last><Date>2/20/2004</Date><Time>4:01pm</

Time><Change>-0.11</Change><Open>13.01</

Open><High>13.01</High><Low>12.66</

Low><Volume>15572300</Volume><MktCap>17.325B</

MktCap><PreviousClose>13.01</PreviousClose><PercentageChange>-0

.85%</PercentageChange><AnnRange>4.54 - 13.89</

AnnRange><Earns>-0.18</Earns><P-E>N/A</

P-E><Name>CORNING INC</Name></

Stock></StockQuotes></string>

There's XML in there, but for some reason the service's creator chose to present it as text. It should look like:

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://www.webserviceX.NET/">

 <StockQuotes>

 <Stock>

 <Symbol>GLW</Symbol>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Symbol>GLW</Symbol>

 <Last>12.90</Last>

 <Date>2/20/2004</Date>

 <Time>4:01pm</Time>

 <Change>-0.11</Change>

 <Open>13.01</Open>

 <High>13.01</High>

 <Low>12.66</Low>

 <Volume>15572300</Volume>

 <MktCap>17.325B</MktCap>

 <PreviousClose>13.01</PreviousClose>

 <PercentageChange>-0.85%</PercentageChange>

 <AnnRange>4.54 - 13.89</AnnRange>

 <Earns>-0.18</Earns>

 <P-E>N/A</P-E>

 <Name>CORNING INC</Name>

 </Stock>

 </StockQuotes>

</string>

When the toolkit returns the string value, it will at least convert the < to < and > to >, making it easy to parse with
a different part of the MSXML toolkit. Once again, build a spreadsheet to hold the information, with a button to call the
service, as shown in Figure 9-13.

Figure 9-13. A spreadsheet for the stock quote service

Behind the button, the code shown in Example 9-3 will handle the conversion from text to XML and extract the contents
of the XML to fields in the Excel spreadsheet.

Example 9-3. Processing XML returned by a web service as text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-3. Processing XML returned by a web service as text

Private Sub GetQuote_Click()

Dim symbol As String

Dim stockObject As New clsws_StockQuote

Dim xmlDoc As MSXML2.DOMDocument

symbol = Range("B1").Text

Set xmlDoc = New MSXML2.DOMDocument

xmlDoc.LoadXml (stockObject.wsm_GetQuote(symbol))

Range("A6").Value = xmlDoc.selectSingleNode("//Last").Text

Range("B6").Value = xmlDoc.selectSingleNode("//Date").Text

Range("C6").Value = xmlDoc.selectSingleNode("//Time").Text

Range("D6").Value = xmlDoc.selectSingleNode("//Change").Text

Range("E6").Value = xmlDoc.selectSingleNode("//Open").Text

Range("F6").Value = xmlDoc.selectSingleNode("//High").Text

Range("G6").Value = xmlDoc.selectSingleNode("//Low").Text

Range("H6").Value = xmlDoc.selectSingleNode("//Volume").Text

End Sub

The highlighted portions show where MSXML2.DOMDocument, in particular its LoadXML method, is used in place of
MSXML2.IXMLDOMNodeList. This accepts the string from the Toolkit, and parses it into XML, which can then be processed
normally. The results look like Figure 9-14.

Figure 9-14. Results of checking a stock quote

If you ever have trouble with the values the toolkit hands you, take a close look at the generated code to see what type
of data it is passing back to your application. Depending on how the service was initially structured, you may have to do
some extra work.

There is no intrinsic limit on the amount of information a web service can return, and you may in fact want to present
more complex information than these examples have shown. If the service returns a lot of data, XPath combined with
the selectSingleNode and selectNodes methods will become a critical tool for picking out just the information you want.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the selectSingleNode and selectNodes methods will become a critical tool for picking out just the information you want.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Accessing REST Web Services with VBA
While the Microsoft Office Web Services Toolkit doesn't provide direct support for REST-based services, REST is simple
enough in practice that it doesn't really need a toolkit. All it requires is support for HTTP, which VBA offers through the
MSXML2.XMLHTTP object. Using this object, you can create HTTP requests and process the responses. Since a lot of the
SOAP web services described previously offer simple HTTP versions, it's easy to create a comparison, so this example
will use the GetInfoByZIP service shown earlier. If you visit http://webservicex.net/uszip.asmx?op=GetInfoByZIP, you'll
see the test form in Figure 9-15.

Figure 9-15. Test form that supports the web service

If you enter "13062" and click the Invoke button, you'll see something like Figure 9-16.

Figure 9-16. A test invocation of the web service using GET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What has happened here is that the form sent the zip code information as part of a GET query—note the query string in
the address bar—and received an XML document in return. For many web services, there's no need for anything more
complicated.

Integrating this simple version of the web service into Excel is easy. Start by creating a new spreadsheet that looks like
Figure 9-17, itself an echo of Figure 9-10.

Figure 9-17. Spreadsheet base for running the REST web service

There's no need to use the Microsoft Office Web Services Toolkit for this example; the VBA code for the button in
Example 9-4 alone is all you need.

Example 9-4. EREST-based code for retrieving Zip Code information

Private Sub ZipCoderREST_Click()

Dim zip As String

Dim query As String

zip = Range("B1").Text

'assemble query string

query = "http://webservicex.net/uszip.asmx/GetInfoByZIP?USZip=" + zip

'define XML and HTTP components

Dim zipResult As New MSXML2.DOMDocument

Dim zipService As New MSXML2.XMLHTTP

'create HTTP request to query URL - make sure to have

'that last "False" there for synchronous operation

zipService.Open "GET", query, False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'send HTTP request

zipService.send

'parse result

zipResult.LoadXml (zipService.responseText)

'extract result contents into appropriate cells

Range("B3").Value = zipResult.selectSingleNode("//CITY").Text

Range("B4").Value = zipResult.selectSingleNode("//STATE").Text

Range("B5").Value = zipResult.selectSingleNode("//AREA_CODE").Text

Range("B6").Value = zipResult.selectSingleNode("//TIME_ZONE").Text

End Sub

Instead of calling a generated object, this code constructs an HTTP request. If you enter "13062" into cell B1 and click
the Get ZIP Info (REST) button, you'll see the result shown in Figure 9-18.

Figure 9-18. Result of running the REST version of the Zip Code web service

The REST HTTP version is both simpler and more portable, and demands less code on the server side as well. Why
wouldn't you use REST rather than SOAP throughout your work? If you control both ends of the transaction, this is a
very appealing option, as it lets you use whatever web tools you like, not just tools specifically oriented toward SOAP
web services. However, there are many services that are available only through SOAP, and a growing number of
programmers who know how to work with SOAP. It's best to have both approaches in your toolbox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programmers who know how to work with SOAP. It's best to have both approaches in your toolbox.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Using Web Services in Access
While web services aren't likely to factor into the tables at the heart of an Access database, they can be very useful in
forms and reports. To demonstrate, the following example will use the Zip Code web service shown earlier as a way of
filling in an address form without the user having to type in the city or state.

To get started, create a database, and then fire up the Microsoft Office Web Services Toolkit. The steps for generating
code to work with a web service in Access are precisely the same as they were in Excel, so you can open the Visual
Basic Editor and follow the same steps to create a web service wrapper associated with the WSDL file
http://webservicex.net/uszip.asmx?WSDL. Once you have created that wrapper, make a table containing basic address
information, like the address table shown in Figure 9-19.

Figure 9-19. The address table that forms the base of the example

A basic form, created using the Form Wizard's "columnar" option, provides users (and the web service) with access to
the information in the table. The design of the form is shown in Figure 9-20.

Figure 9-20. The form that will host the web service, shown just before the After
Update event is triggered

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For my own convenience, I've set the Auto Tab property of the City, State, and AreaCode fields to "No," leaving them
accessible if I need to change them but keeping them out of the way because that information should fill automatically
once a Zip Code is entered into the ZIPCode field. (To set this property, right click on the field and select Properties.
You can find Auto Tab under either the Other tab or the All tab.) The crucial modification this form needs, however, is
adding the code shown in Example 9-5.

Example 9-5. AfterUpdate code for updating fields when a Zip Code is entered

Private Sub ZIPCode_AfterUpdate()

Dim zipResolver As clsws_USZip

Set zipResolver = New clsws_USZip

Dim returnedNodes As MSXML2.IXMLDOMNodeList

'Send the web service the text value of the ZIPCode field

Set returnedNodes = zipResolver.wsm_GetInfoByZIP(Me.ZIPCode.Text)

'Put the results in the City, State, and AreaCode fields

Me.City = returnedNodes.Item(0).selectSingleNode("//CITY").Text

Me.State = returnedNodes.Item(0).selectSingleNode("//STATE").Text

Me.AreaCode = returnedNodes.Item(0).selectSingleNode("//AREA_CODE").Text

End Sub

To add the code, right-click on the ZIPCode field and select Properties In the Event tab, click in the field to the
right of After Update, and then click on the ellipsis button to the right of that. Select Code Builder from the dialog box,
and enter the code shown in Example 9-5. Close the Visual Basic Editor, and switch the form from Design View to Form
View. As you enter values and reach the Zip Code value, the form should look like Figure 9-21.

Figure 9-21. The data just after the Zip Code's After Update event is triggered

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-21. The data just after the Zip Code's After Update event is triggered

Once you tab to the next field, the VBA code will call the web service and enter the values it retrieves into the City,
State, and Area Code fields, as shown in Figure 9-22.

Figure 9-22. A form letter with fields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Every time the user makes a change to the Zip Code and leaves the field, the City, State, and Area Code fields will
update accordingly. The user can still make changes to those fields after the update, and those changes will remain
provided that there are no further changes to the Zip Code.

You can also use the REST version of this service in Access by substituting the code shown in Example 9-6 for the code
in Example 9-5. If you use this, there's no need to use the Web Services Toolkit at all.

Example 9-6. REST version of Access web services call

Private Sub ZIPCode_AfterUpdate()

Dim query As String

'assemble query string

query = "http://webservicex.net/uszip.asmx/GetInfoByZIP?USZip=" + _

 Me.ZIPCode.Text

'define XML and HTTP components

Dim zipResult As New MSXML2.DOMDocument

Dim zipService As New MSXML2.XMLHTTP

'create HTTP request to query URL - make sure to have

'that last "False" there for synchronous operation

zipService.Open "GET", query, False

'send HTTP request

zipService.send

'parse result

zipResult.LoadXml (zipService.responseText)

Me.City = zipResult.selectSingleNode("//CITY").Text

Me.State = zipResult.selectSingleNode("//STATE").Text

Me.AreaCode = zipResult.selectSingleNode("//AREA_CODE").Text

End Sub

The REST code produces exactly the same behavior shown in Figures Figure 9-21 and Figure 9-22. The core logic of this
example is the same as it was in Example 9-4, just as Example 9-5 echoes Example 9-2. The only difference between
using web services in Excel and using them in Access is the objects provided by the application context. This book can't
begin to teach you everything about the object models in these applications, but once you learn those, the web services
integration is simple.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 Using Web Services in Word
Word uses the same facilities as Excel and Access, though it's a bit tougher to see how web services fit with Word.
Unlike spreadsheets or databases, word processors rarely have discrete fields for entering particular data, and users
don't typically expect calculations to happen (except perhaps for spell-checking) as they work on a document. Still, if
you're reading this section you may have a critical use case in mind, so it's worth exploring how to integrate web
services with Word.

One new feature of Word, the Research Pane, makes heavy use of web services.
Unfortunately, it does so by requiring people who want to provide information to the
Research Pane to create web services that meet the pane's expectations. Creating web
services is far beyond the scope of this book, but a tutorial on creating services for the
Research Pane with Visual Studio.NET is available at
http://www.devx.com/codemag/Article/18214?trk=DXRSS_XML.

To demonstrate, the example uses a form letter, combining some regular text with text form fields entered from Word's
Forms Toolbar. (The Insert Fields menu option only lets you enter fields with calculated values, so the Forms
Toolbar is definitely the way to go.) The form letter looks like Figure 9-23; hopefully your own form letter will be slightly
more normal.

Figure 9-23. Adding the USZip service to the Word document

Making this into a SOAP web service-consuming document requires using the Microsoft Office Web Services Toolkit. Just
as in Excel and Access, go to Tools Macros Visual Basic Editor (or Alt-F11). Once in the Visual Basic Editor,
go to Tools Web Services References As shown in Figure 9-24, enter the web service URL
http://webservicex.net/uszip.asmx?WSDL, and click Add.

Figure 9-24. Entering code for field activity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-24. Entering code for field activity

Unlike Access or Excel, you'll need to add the code in the Visual Basic Editor directly, in the Project for this document—
Project (Conspiracy) in this case—in "Microsoft Word Objects," "This Document," as shown in Figure 9-25.

The actual code is that in Example 9-7, which again resembles Examples 9-5 and 9-2.

Example 9-7. Code for putting information retrieved from a web service into Word
forms

Sub zipCodePlacer()

 Dim zip As String

 zip = ActiveDocument.Fields(5).Result.Text

 Dim zipResolver As clsws_USZip

 Set zipResolver = New clsws_USZip

 Dim returnedNodes As MSXML2.IXMLDOMNodeList

 'Send the web service the text value of the ZIPCode field

 Set returnedNodes = zipResolver.wsm_GetInfoByZIP(zip)

 ActiveDocument.Fields(3).Result.Text = _

 returnedNodes.Item(0).SelectSingleNode("//CITY").Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 returnedNodes.Item(0).SelectSingleNode("//CITY").Text

 ActiveDocument.Fields(3).Update

 ActiveDocument.Fields(4).Result.Text = _

 returnedNodes.Item(0).SelectSingleNode("//STATE").Text

 ActiveDocument.Fields(4).Update

End Sub

This time the integration is with Word's form fields, accessible by number through the ActiveDocument.Fields() collection.
The zip argument comes from field number 5 (Word counts fields from 1, not zero), and the results go into fields 3 and
4. This code still needs to be connected to the field for the Zip Code. To do that, right-click on the field and select
Properties. From the Run Macro on Exit drop-down box, select zipCodePlacer, as shown in Figure 9-25.

Figure 9-25. Connecting the field to the code

(If you want, you can also uncheck "Fill-in enabled" on the properties for the city and state fields to take them out of
the tab order for the document.) Once you've done this, there's one last step: protecting the document. Go to Tools

 Protect Document (or select Protect Document in the Task Pane). You'll see the Protect Document pane, as shown
in Figure 9-26.

Figure 9-26. The document protection pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Check the checkbox under "Editing restrictions," select "Filling in forms," and then click "Yes, Start Enforcing
Protection." Click OK in the confirmation dialog box (you don't need to enter a password), and the document will be
ready to use. Filling in the first few fields does nothing unusual; it's not until you enter the Zip Code field that anything
will happen. Figure 9-27 shows a document just before tabbing out of the Zip Code field, and Figure 9-28 shows the
document afterwards, when the web service call has filled in the city and state fields.

Figure 9-27. The document before the Zip Code web service is called

Figure 9-28. The document after the SOAP-based Zip Code web service is called,
with city and state information filled in

Figure 9-29. The document after the REST-based Zip Code web service is called,
with city and state information filled in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with city and state information filled in

This should spare the conspirator a small amount of typing, provided of course that their computer is on a network and
the web service is operating. You can also do the same thing with the REST version of the service. The only change is in
the code, shown in Example 9-8.

Figure 9-29 shows the result of entering a Zip Code in the document using the REST-based code. As usual, it's very
much like its SOAP-based alternative.

Example 9-8. REST version of code for updating Word forms with retrieved
information

Sub zipCodePlacer()

Dim zip As String

zip = ActiveDocument.Fields(5).Result.Text

Dim query As String

'assemble query string

query = "http://webservicex.net/uszip.asmx/GetInfoByZIP?USZip=" + _

 zip

'define XML and HTTP components

Dim zipResult As New MSXML2.DOMDocument

Dim zipService As New MSXML2.XMLHTTP

'create HTTP request to query URL - make sure to have

'that last "False" there for synchronous operation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'that last "False" there for synchronous operation

zipService.Open "GET", query, False

'send HTTP request

zipService.send

'parse result

zipResult.LoadXml (zipService.responseText)

ActiveDocument.Fields(3).Result.Text = _

 zipResult.SelectSingleNode("//CITY").Text

ActiveDocument.Fields(3).Update

ActiveDocument.Fields(4).Result.Text = _

 zipResult.SelectSingleNode("//STATE").Text

ActiveDocument.Fields(4).Update

End Sub

This just scratches the surface of what you can do with web services of various kinds in Office, but hopefully it's a start
on which you can build your own projects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. Developing InfoPath Solutions
InfoPath is a brand new product in the Microsoft Office System. Unlike Word, Excel, and Access, InfoPath was built from
the ground up to create and edit XML. It carries much of the same promise as the rest of Office's new XML functionality:
to bring XML to the masses. Or perhaps more precisely, it promises to get XML from the masses. By enabling everyday
Office users to fill out XML-based business forms for everything from status reports to press releases to invoices to
memos, InfoPath has the potential to open the floodgates to the creation of XML data in the enterprise.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 What Is InfoPath?
InfoPath encompasses both a development environment for building business forms and a run-time forms application
meant to be deployed on the end user's desktop. InfoPath "solutions," as they're called, are developed to enable end
users to create and edit particular kinds of XML documents without having to know anything about XML. A different
solution is developed for each kind of information that needs to be gathered, where "each kind of information"
corresponds to an XML document type, or schema. Figure 10-1 shows one of the sample forms that come bundled with
InfoPath. An average business user can fill out this form to create a valid instance of an XML schema—for meeting
agendas in this case. Notable features of this form include the use of InfoPath's built-in date picker control and the use
of repeating sections (one for each agenda item).

Figure 10-1. One of InfoPath's sample forms being filled out

InfoPath solutions are heavily standards-based. Apart from an XML-based manifest file, called a form definition file, you
can build a solution entirely using XSLT, XSD, and HTML. Form controls, text, and layout are described using HTML and
CSS, supplemented with InfoPath-specific annotations. XSLT is used to transform the XML document being edited into
the HTML-based form view. And information from an associated XSD schema serves to enforce validation on-the-fly, as
the user fills out the form. By accessing the InfoPath object model, you can use ECMAScript and the DOM to further
customize the behavior of the editor as necessary. Most importantly, when a user fills out a form, the data created by
InfoPath is pure XML, valid according to your schema. Unlike Word, there is no InfoPath equivalent to the .doc
proprietary format, or even to WordprocessingML, Word's proprietary XML vocabulary (see Chapter 2).

The InfoPath application supports two top-level tasks: filling out forms and designing forms. The task of filling out forms
is the responsibility of end users, but the task of designing forms is up to you, the developer.[1] InfoPath running in
design mode is an indispensable tool for building InfoPath solutions, but it ultimately is not the only way to develop
solutions. Since solutions themselves are thoroughly XML-based, you can develop them "by hand," by using InfoPath in
design mode, or by using your XML toolkit of choice. In many cases, a combination of these approaches is appropriate.

[1] When I refer to a "user" or "end user" in this chapter, I'm referring to someone who fills out forms in InfoPath,
not someone who designs them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not someone who designs them.

This chapter will walk through two complete InfoPath solutions, one quite minimal and the other more feature-rich, that
were developed "by hand," in order to expose the technical details of how a solution is put together. Only then will the
InfoPath form designer be introduced in all its WYSIWYG convenience and power. At that point, you'll have a greater
understanding of what InfoPath in design mode does under the hood, and you'll be able to use it to greater effect. If
you're like me, you want the freedom to escape the confines of the GUI when necessary—to treat the form designer as
just another tool in your arsenal, rather than the sole crutch on which your development depends. In the final section of
the chapter, called Section 10.5.5, we'll take a look at various approaches to developing solutions using a combination
of hand editing and InfoPath in design mode.

Section 10.2, compares InfoPath to similar XML editing products and approaches. If you would rather go straight to the
technical details, skip ahead to Section 10.3.

Please understand that since the InfoPath application is an extremely feature-rich product, we cannot hope to cover it
exhaustively in a single chapter. Instead, we'll try to cover the essentials of what goes into the creation of an InfoPath
solution. Along the way, we'll make key observations about the InfoPath processing model and include tips on using
InfoPath design mode in conjunction with manual modifications to the solution files themselves.

For further study, see the "Microsoft Office 2003 XML Reference Schemas" package,
available at http://www.microsoft.com/office/xml/. It includes a developer reference that
documents all of the elements and attributes in the InfoPath form definition file format.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 InfoPath in Context
While WYSIWYG (What You See Is What You Get) and forms-based XML editing together compose a relatively new field,
InfoPath is by no means the first kid on the block. Before delving into the details of InfoPath's particular approach, let's
take a step back and examine some of the common design problems that engineers of related products face, and how
they are often solved. Then we'll be able to understand InfoPath's design in a wider context.

10.2.1 The Problem

Say you have an application that requires data to be gathered, stored, and presented. You also need to repurpose that
data in different contexts, whether doing analysis on it or presenting it via different media. So you decide to use XML.
Next you design an XML schema for your documents. So far, so good. Now you face a more difficult problem. How do
you get your users to enter information in the format that you need? In other words, how do you get them to create
XML? Well, you could try to teach them XML. While the thought of everyone in the world speaking our favorite language
is a touching one, it's also unrealistic. Your job isn't quite done yet. You need to provide a user-friendly way for people
to create XML without having to know or care that it's XML they're creating.

10.2.2 Alternative Approaches

XML editing applications such as InfoPath represent just one way to solve this problem. Two other approaches to
gathering XML include building a custom application and using a generic server-side framework.

10.2.2.1 Building a custom application

Once you've decided on a particular XML schema, you could write a custom application designed to gather information
in that schema. Whether you build this as a desktop application written in VB (Visual Basic) or as a web application
using HTML forms, it will be hard-wired to your particular schema. The problem with this approach is that it tends to get
reinvented every time a new kind of information needs to be gathered. After going through this experience two or three
times, you'll long for a more generic framework that lets you just plug in an XML schema and make a few tweaks each
time you need to gather a new kind of information.

10.2.2.2 Generic server-side frameworks

Chances are, someone has implemented a generic form-to-data management solution for your favorite server-side web
application platform, whether J2EE, .NET, Perl, Python, or PHP. An example of an XML-oriented framework that is Java-
based is called JXForms. Based on Apache Cocoon, it supports the automated mapping between HTML forms and XML
documents according to the schema that you specify. It's also based on XForms, a W3C recommendation which we'll
talk about shortly in "InfoPath versus XForms." For more information on the JXForms framework, see
http://cocoon.apache.org/2.1/userdocs/flow/jxforms.html.

Server-side frameworks such as JXForms can save you a lot of development time building repetitive custom
applications, but they also have some severe limitations:

User interactivity is restricted to that provided by vanilla HTML forms, which does not allow for more
sophisticated features such as structural editing (e.g., repeating and optional elements) and rich-text editing.

The client-side implementation (using HTML forms) is tightly coupled to the server-side process that translates
the submitted values to XML, i.e., the client-server contract includes not only the XML schema but an additional
mapping between HTTP parameters and values in the generated document.

10.2.3 Rich-Client XML Editors

A number of products designed to address the limitations of HTML forms have been cropping up in various shapes and
sizes in the last few years. In comparing the various rich-client XML editors, I've found it helpful to see where they land
across different dichotomies. These aren't always true dichotomies, as some products clearly fall on both sides.
InfoPath, for example, could be characterized as both data-oriented and document-oriented (to a limited extent).
Rather than trying to navigate the shifting landscape of XML editors here, I'll limit my focus to InfoPath and how its
approaches compare to other products in general.

10.2.3.1 Browser-based versus desktop deployment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2.3.1 Browser-based versus desktop deployment

There is a growing number of browser-based XML editors on the market, built to run on a variety of different platforms.
Deployment formats include ActiveX controls (Windows only), Java applets, and Mozilla-only JavaScript modules.
Browser-based editors, in many ways, provide the best of both worlds when it comes to XML editing and web
functionality. As a browser plug-in, the editor is automatically installed or updated when a user loads a page in which
it's embedded. This makes it possible to deploy XML editing applications over the Web at large. And in a corporate
environment, it means that the IT department won't have to worry about yet another installation or upgrade on users'
machines.

InfoPath is not a browser-based application, and at the time of this writing Microsoft has not revealed any plans to
release it as such. As a member of the Office family, it must be installed on the desktop of each user who intends to use
it to fill out forms. There are, however, some significant advantages of this approach. Most notable is the ability for
users to save filled-out forms on their own machines, in addition to being able to submit them, for example, to a web
service. Before a user has finalized his work, he can save it to his machine for later editing, or email it to a co-worker
for further review just like any other Office document. Security restrictions make this impossible for the browser-based
editors. As a desktop application, InfoPath also provides sophisticated native functionality not available in any of the
browser-based editors, such as the ability to export to an Excel spreadsheet, or merge multiple filled-out forms into the
same view.

10.2.3.2 Document-oriented versus data-oriented

The distinction between document-oriented and data-oriented XML is a tenuous but useful one. Whether a given XML
editor can rightly be called document-oriented depends at least partially on its support for mixed content, i.e., elements
that can contain both elements and text content. Mixed content is used wherever words or phrases within a passage
need to be semantically marked up, or formatted, inline. Mixed content, in many ways, is where XML shines in
comparison to other data formats.

Unfortunately, while InfoPath provides very powerful structural editing constructs, it does not currently support the use
of mixed content. The one exception—and this may just suffice for many use cases—is InfoPath's support for "rich text"
editing. The vocabulary used for embedded rich text is XHTML, to varying levels of restriction ranging from plain (no
formatting) to rich (font formatting, paragraphs, lists, hyperlinks, etc.). Despite lack of general support for mixed
content, the embedded XHTML editor makes it conceivable to use InfoPath as a frontend to a web content management
system.

10.2.3.3 Bundled versus standalone development tool

Vendors of some XML editors provide a development tool that helps speed the development of XML editing solutions, in
whatever format they're represented. To varying extents, you will need to rely on the development tool at least to get
started developing editing applications. Unless the vocabularies and formats used to define a solution are fully
documented and/or standardized (i.e., they use XForms), you should count on spending some time with the
development tool.

InfoPath is no exception to this rule. It does not support XForms, and neither does it come, at least at the time of this
writing, with documentation for every aspect of solution development. Fortunately, in the case of InfoPath, that doesn't
mean you have to buy an extra license. On the question of whether the development tool comes "bundled" or
"standalone," InfoPath has a unique answer: not only is the form design tool bundled with the run-time form module,
but they are one and the same application. This peculiar packaging may make perfect sense from a marketing
perspective, but it's potentially confusing from a user's perspective. Fortunately again, InfoPath solutions can be
configured such that a form's design can be "protected," so that an end user filling out the form won't accidentally drop
into design mode, in which they find themselves editing the controls themselves rather than their values.

10.2.3.4 Declarative versus procedural configuration

Most editors allow a certain amount of their behavior to be configured declaratively. For example, an XML Schema is a
declarative specification of constraints on the values and structure of instance documents. It can be used to validate a
document as it's being edited. And XSLT can be used to describe how the document looks while it's being edited.
InfoPath employs both XSD and XSLT within editing solutions.

Most editors can also be configured through a procedural scripting interface, such as a JavaScript API (Application
Programming Interface). Ideally, scripting will be kept to a minimum—used only in cases where the declarative
configuration mechanisms do not suffice. For those kinds of customizations, InfoPath provides a complete object model
and lets you choose between JScript and VBScript for accessing it.

The release of the InfoPath SP1 Preview introduced .NET programmability support.
Microsoft has also released the InfoPath 2003 Toolkit for Visual Studio .NET. Searching for
"InfoPath" at http://www.microsoft.com/downloads/search.asp should yield both results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to using XSD and XSLT, InfoPath allows a remarkable amount of custom functionality to be configured
declaratively. The form definition file that's included with every solution allows you to create custom menus and
buttons, associating them with named actions from a set of built-in "editing components." You can also specify custom
error conditions for business rules that can't be or aren't described in your XSD schema. This too is done declaratively,
using XPath expressions, which by the way is much like the approach that Schematron
(http://xml.ascc.net/schematron/) takes to validating XML. Finally, InfoPath allows you to declaratively specify a remote
submission mechanism, such as:

Submitting XML to a web service

HTTP POST of text/xml content

For other submission mechanisms, such as HTTP POST with application/x-www-form-urlencoded content, you can specify
the submission behavior using custom scripting. We'll see an example of this in the second example solution in this
chapter.

10.2.3.5 "Mapping" versus "Merging"

All XML editing products oriented to end users have the same basic problem to solve. They must somehow translate
back and forth between the underlying XML being edited and the friendly editing view that the user sees. They
generally have both of the following:

An XML- or HTML-based editing view vocabulary

A way of translating between the editing view vocabulary and the XML document being edited.

In Word and InfoPath, we have examples of each of the two broad approaches to solving this problem. Word's approach
could be characterized as "merging," because its editing view consists of WordprocessingML with embedded custom
XML tags from the XML document being edited. It translates between the editing view and pure XML by way of two
XSLT stylesheets:

1. An onload stylesheet for merging the custom XML tags into a WordprocessingML editing view

2. An onsave stylesheet for extracting the custom XML tags from the merged WordprocessingML editing view

For more information, see "Word's Processing Model for Editing XML," in Chapter 4.

On the other hand, InfoPath's approach could be characterized as "mapping" rather than "merging." InfoPath's editing
view vocabulary consists of HTML and CSS, as rendered by the Internet Explorer engine. Unlike Word, the editing view
itself does not directly contain custom XML tags. Rather, HTML nodes in the editing view are mapped, or bound, to XML
nodes in the source document being edited. This is done by way of a single XSLT stylesheet, supplemented as
necessary with annotations in the InfoPath namespace. Separate onload and onsave stylesheets are not necessary. The
bindings established by the stylesheet specify a complete, round-trip mapping between the source document and the
editing view.

10.2.4 InfoPath versus XForms

A discussion of InfoPath in context would be incomplete without reference to XForms, a W3C recommendation for the
next generation of web forms. XForms is slated to replace traditional HTML forms altogether in XHTML 2.0. It is
completely XML-based, from the vocabulary through which a form's controls are declared to the format of the data as it
is submitted back to a web server. InfoPath and XForms have some major similarities:

They both provide a way for end users to create and edit XML documents using a user-friendly forms-based
interface.

They both use XSD schemas as a declarative validation mechanism.

They both are designed to serve as a frontend to web services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

They both are designed to serve as a frontend to web services.

Despite their similarities, XForms and InfoPath ultimately have different emphases. InfoPath represents a single
implementation that runs only on the Microsoft Windows PC platform. Accordingly, it is optimized for usability on that
platform. In contrast, XForms is a specification meant to have many different implementations, enabling the
interoperability of web forms on a wide range of different clients. Rather than optimizing for a single user interface,
XForms abstracts away from the particular device by separating form controls from how they are presented. While
InfoPath provides some minimal accessibility features such as tab indexes and access keys, XForms is designed from
the ground up for accessibility. Illustrative of this design goal is XForms' requirement that every form control have a
label.

Despite InfoPath's heavy emphasis on web services integration, it is ultimately not meant to serve as the next-
generation web client. Rather, it is designed to thrive in corporate intranet environments, replacing paper forms and
supporting enterprise data and content management applications. As a member of the Microsoft Office System, it
provides sophisticated offline functionality not addressed by web-based technologies such as XForms.

There has been some hubbub over the fact that InfoPath does not support XForms even though in many ways it seems
like just the type of application the XForms specification is meant to address. There is a wide range of perspectives one
can choose to take on this. Some may decry InfoPath as yet another Microsoft product that chooses to go its own way
rather than following the standards. While there may be some validity to this claim, it starts to appear untenable when
you consider the actual extent to which InfoPath solutions are based on existing W3C standards, such as XSLT, XSD,
and HTML.

Still others may side-step the debate altogether, choosing instead to go out and implement an XForms profile that
compiles to an InfoPath solution (hint hint), something not entirely inconceivable given the open format of InfoPath's
form templates.

Ultimately, it's hard not to get excited when products like InfoPath come on the scene, whether they support XForms or
not. In either case, the most important electronic asset, our data, remains open. Products like InfoPath and
implementations of XForms help to make vendor lock-in a thing of the past.

The XForms specification can be viewed at http://www.w3.org/TR/xforms. To learn more about XForms, consider these
books:

 Micah Dubinko, XForms Essentials (O'Reilly)

 T. V. Raman, XForms: XML Powered Web Forms (Addison Wesley)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 Components of an InfoPath Solution
A form, in InfoPath terms, is an XML document that is associated with a particular form template and that conforms to
the XML schema defined by that form template, though as we'll see in our first example solution, the use of a schema is
not required. Such files are created every time a user fills out a new form using an existing form template.[2] A form
template, or solution, consists of a set of XML, XSLT, XSD, and optional script files that work together to define
everything about how the form looks and behaves, how it binds to the underlying XML document's elements and
attributes, and how the data is validated. A form template occurs as one of the following:

[2] The word "form" crops up a lot when talking about InfoPath. Attempting to restrict usage to the precise sense
defined here would be awkward and misleading. Instead, context will clarify whether I'm referring to the XML
document being edited, the InfoPath solution as a whole, or the actual files that make up the solution.

A set of files, including an XML-based form definition file (an .xsf file) that declares all of the other files in the
set, relative to its own location

 A form template package (an .xsn file), which consists of all of the form template files, including the form
definition file, compressed into a single cabinet archive (just like a .cab file, only with the .xsn extension)

To fill out a new form, a user simply opens an existing form template (.xsn or .xsf file). The form template might reside
on the user's own computer, but more often it is retrieved from a central location such as a web server. This allows
multiple people to use the same form template. InfoPath then launches the form in its initial empty state. To make
changes to a form that has already been filled out, a user would open the existing XML file, make changes, and save
those changes, either locally on his or her own computer for later editing, or remotely via a submission mechanism
defined in the form template. Saved forms can even be emailed to other InfoPath users for subsequent editing.

When InfoPath opens an existing, filled-out form, it checks whether it has write access to
the document. When opening a file marked as read-only, InfoPath prompts the user with a
warning that starts with "This form cannot be filled out", and asks the user "Do you want
to open a read-only version of this form?" This is all well and good for XML files on the file
system, but for a web server that doesn't have WebDAV or Front Page Server Extensions
enabled, it is a bewildering and meaningless message, especially when the server
otherwise perfectly handles form submissions. Until this issue is addressed by a newer
version of InfoPath, the practical impact is that users either need to learn to ignore this
message, or you need to expose write access on the web server to filled-out forms, even if
you intend for users to normally submit, rather than save, completed forms.

One of the best ways to learn how InfoPath solutions work is to examine and experiment with the sample forms that
come bundled with the application. First select File Design a Form... Customize a Sample. Then choose one
of the many sample forms that can be customized. To view the individual form template files for that solution, or for
any other .xsn file in design mode, select File Extract Form Files... All of the files will be output into the directory
that you choose.

10.3.1 The InfoPath Processing Instructions

XML documents edited by InfoPath retain their association with the InfoPath application in general and with a specific
solution in particular through the use of special processing instructions (PI) inserted into the prolog of the instance
document. All XML files created by or edited using InfoPath automatically include these PIs. To manually associate an
XML document with the InfoPath application, use the now familiar mso-application PI:

<?mso-application progid="InfoPath.Document"?>

<doc>...</doc>

This will associate the file with the InfoPath application. Windows Explorer will render the file using the InfoPath icon
and will launch InfoPath when a user opens the file. But if you only include an mso-application PI, InfoPath will display an
error message when trying to open the file. To avoid this, you'll also need to associate the document with a particular
solution, by using the mso-infoPathSolution PI. Example 10-1 shows a complete XML document whose PIs associate it with
both the InfoPath application and a particular InfoPath solution.

Example 10-1. An InfoPath "form," myAnnouncement.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-1. An InfoPath "form," myAnnouncement.xml

<?mso-application progid="InfoPath.Document"?>

<?mso-infoPathSolution href="manifest.xsf" PIVersion="1.0.0.0"?>

<announcement>

 <headline>Building closes early</headline>

 <body>The building will be closing an hour early today, at 9pm.</body>

</announcement>

The href pseudo-attribute in Example 10-1 points to the location of a form definition file (*.xsf) or form template
package (*.xsn). The PIVersion pseudo-attribute is required. The current version of the PI is 1.0.0.0; future versions may
introduce new features or be interpreted differently.

There are also two optional pseudo-attributes not shown here. The solutionVersion pseudo-attribute can be used to
identify the version of the solution that was last used to edit the file. This is useful in the context of managing solution
upgrades. And the productVersion pseudo-attribute is used to identify the version of the InfoPath application that was
used to edit this file. Both of these pseudo-attributes are automatically included in the solution PI when InfoPath saves
a filled-out form.

Some of the example XML document instances in this chapter use a relative pathname to
refer to the form template in the mso-infoPathSolution PI. This makes it possible to
experiment with these files on your own computer just by putting them into the same
directory. However, when deploying the form, you should publish it to a central location
such as a web server where multiple users can access it. Subsequent instance documents
created by InfoPath (when a user saves or submits a filled-out form) will then refer to this
absolute URL or network path. See "Publishing a Form from Design Mode," later in this
chapter.

10.3.2 A Simple Form Definition File

The form definition file, or "solution manifest," is the starting point for defining an InfoPath solution by hand. Example
10-2 shows a simple form definition file that includes only the bare minimum of what's required to define a form
template. No optional features are utilized.

Example 10-2. A minimal form definition file, manifest.xsf

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

xmlns:xsf=

"http://schemas.microsoft.com/office/infopath/2003/solutionDefinition">

 <xsf:views>

 <xsf:view name="Announcement Form">

 <xsf:mainpane transform="announcement.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:package>

 <xsf:files>

 <xsf:file name="announcement.xsl"/>

 </xsf:files>

 </xsf:package>

</xsf:xDocumentClass>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsf:xDocumentClass>

From this minimal example, we see that the root element, xsf:xDocumentClass, has a required attribute,
solutionFormatVersion, and two required element children, xsf:views and xsf:package (whose relative order is insignificant).
The attribute indicates the version of the form definition file format we're using; in this case, it's 1.0.0.0. The xsf:views
element must contain at least one xsf:view element. Each view in turn must have one xsf:mainpane element that refers to
an XSLT stylesheet in its transform attribute. The stylesheet referred to here is what transforms the source XML
document into the form's HTML-based editing view. The xsf:package element contains a reference to each of the files
used in the solution. This example declares only one file, the required XSLT stylesheet.

Filenames referred to by xsf:file elements must all be pathnames that are relative to the location of the form definition
file itself. This will ensure that they are resolved correctly whether InfoPath opens the solution via the form definition
file (*.xsf) or via a form template package (*.xsn).

All internal references to subordinate files, such as included or imported stylesheet modules or schema files, must be
relative and must also be declared in the form definition file using corresponding xsf:file elements.

InfoPath keeps a local cache of a solution's files so that when an end user re-opens a
document associated with a particular solution, InfoPath will check the form template files
for updates only if the form definition file has been modified since InfoPath last opened it.
If you want changes to your solution's XSLT stylesheet to take effect, for example, then
you'll also need to re-save, or touch, the form definition file, even if you didn't make any
changes to it. This will cause InfoPath to check for updates on all of the solution's files the
next time it opens that solution. Understanding this ahead of time will keep you from
pulling your hair out when trying to tweak individual files in unpackaged form templates.

10.3.3 Defining a Form Using Only an XSLT Stylesheet

The minimal form definition file we saw in Example 10-2 declares only one additional file, the XSLT stylesheet. To a
limited extent, the stylesheet on its own is sufficient to define a round-trip mapping between a source document and an
editing view. Even a schema is not necessary. This is how it works: the XSLT stylesheet is interpreted in such a way
that implicit bindings are automatically created between HTML nodes in the editing view and XML nodes in the source
document. We will explore two types of implicit bindings in this chapter:

Text bindings

Structural bindings

Our current solution example will illustrate text bindings. Our second solution example, which we'll see later in "A More
Complete Example," will additionally illustrate structural bindings.

Text bindings are established in the following manner: any instances of the xsl:value-of instruction in the stylesheet will
automatically be rendered as editable text boxes in the resulting InfoPath form, provided that the following two
conditions hold:

1. In the stylesheet, the xsl:value-of element must occur as the only child element of a valid HTML element, such as
span.

2. When the stylesheet is applied, the XPath expression in the select attribute must evaluate to a node-set
containing exactly one element node or one attribute node.

If one of these conditions does not apply, then the value will still be displayed as instructed by the stylesheet, but the
field will not be editable. In the event that both conditions apply but you nevertheless don't want the field to be
editable, you can disable this behavior by annotating the XSLT instruction as follows:

 <xsl:value-of select="expression " xd:disableEditing="yes" />

The presence of xd:disableEditing="yes" will keep InfoPath from automatically establishing the text binding and making
the field editable. The xd prefix (recalling InfoPath's pre-release code name, "XDocs") in the above and subsequent
examples must map to the InfoPath namespace URI:

http://schemas.microsoft.com/office/infopath/2003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://schemas.microsoft.com/office/infopath/2003

Example 10-3 shows an XSLT stylesheet that transforms an XML document into a simple HTML view, displaying the
values of two elements in the source document and establishing implicit text bindings for them.

Example 10-3. An XSLT-defined editing view, announcement.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/announcement">

 <html>

 <head>

 <title>Announcement</title>

 </head>

 <body>

 <h1>

 <xsl:value-of select="headline"/>

 </h1>

 <p>

 <xsl:value-of select="body"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

We now have three files:

A form definition file, manifest.xsf, shown in Example 10-2

The declared stylesheet, announcement.xsl, shown in Example 10-3

An instance document, myAnnouncement.xml, shown in Example 10-1

Provided that these three files are in the same directory, double-clicking the myAnnouncement.xml file will cause
InfoPath to launch in editing mode and display the document using the editing view defined by announcement.xsl. The
resulting view is shown in Figure 10-2.

Figure 10-2. Opening a filled-out form, myAnnouncement.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Opening a filled-out form, myAnnouncement.xml

Note that the headline field is highlighted with a box around it. This is what an editable text box looks like when
instantiated as an HTML h1 element. The end user can make edits as necessary and then simply tab or click into the
body field to make changes there as well. The HTML h1 and p element nodes are said to be bound to the XML headline
and body nodes, respectively. Every time the user registers a change, that change is propagated to the underlying XML,
and the XSLT stylesheet is immediately reapplied. The change is registered when the user takes the focus off the field
that was changed (usually by tabbing to the next field).

The automatic bindings via the xsl:value-of instructions work in our example, because both of the two previously
mentioned conditions are satisfied as follows:

Each pertinent xsl:value-of instruction in the stylesheet occurs as the only element child of a valid HTML element
(h1 and p, respectively).

Each of the two XPath expressions evaluates to a node-set containing only one node (headline and body,
respectively).

InfoPath's use of text bindings to create editable fields allows virtually any HTML element that can contain text to
function as a text box. Thus, text boxes are created using text bindings, rather than using the HTML input element, as
might otherwise have been expected.

This mechanism is certainly a convenient way to get started, but editing requirements tend to be more complex than
what this feature supports. For all but the simplest document types, more will be needed.

10.3.3.1 Conditional formatting

Before moving on to further ways of binding HTML nodes in the view to XML nodes in the source, let's take a detour
down the strange and wonderful road of conditional formatting. Conditional formatting describes the ability to alter
some aspect of the editing view according to some condition in the XML source document. It's a commonly expected
feature of forms-based XML editors.

A consequence of InfoPath's processing model, in which the XSLT stylesheet is reapplied every time the user registers a
change, is that you can specify conditional formatting rules directly in XSLT. This is useful, for example, for rendering
derived number values in black type but changing them to red when they become negative. Usefulness aside, you can
get an idea of the potential this construct has by taking a look at Example 10-4. This stylesheet is the same as our
original announcements.xsl stylesheet, except for the addition of a conditional statement.

Example 10-4. Conditional formatting expressed in XSLT

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/announcement">

 <html>

 <head>

 <title>Announcement</title>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </head>

 <body>

 <xsl:choose>

 <xsl:when test="starts-with(headline,'SpEcIaL CoDe')">

 <div style="font-family: Arial;">

 <xsl:value-of select="headline"/>

 </div>

 <div style="font-family: Comic Sans MS;">

 <xsl:value-of select="headline"/>

 </div>

 <div style="font-family: Wingdings;">

 <xsl:value-of select="headline"/>

 </div>

 <p style="font-size: 50px;">

 CONGRATS! YOU UNLOCKED THE SPECIAL CODE!!

 </p>

 </xsl:when>

 <xsl:otherwise>

 <h1>

 <xsl:value-of select="headline"/>

 </h1>

 </xsl:otherwise>

 </xsl:choose>

 <p>

 <xsl:value-of select="body"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Our solution will continue to behave exactly as it did before, until some unsuspecting user enters a value in the headline
field that starts exactly with the string SpEcIaL CoDe. At the moment the user takes the focus off the field (by tabbing to
the next one), they'll get the surprise shown in Figure 10-3. The change is registered, the text content of the headline
element is updated, the XSLT is reapplied, and, with great satisfaction, our condition succeeds.

Figure 10-3. Fun with conditional formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-3. Fun with conditional formatting

Regardless of the presence of a conditional statement, this example also demonstrates another possibility: multiple
HTML nodes in the view being bound to the same XML node in the source. In this view we have a total of four text
boxes even though they are bound to a total of only two XML nodes. As you would expect, when the user registers a
change to one of the three "SpEcIaL CoDe" fields, the other fields are updated accordingly—or they disappear
altogether if the field's value no longer starts with our very special code.

Keep in mind that an HTML node in the view does not have to be bound to an XML node in the source for it to display its
value, or some derivative thereof. As it happens, each of the HTML nodes in our example creates an implicit binding to
the underlying XML node, resulting in the proliferation of text boxes. But if one of the xsl:value-of instructions had
xd:disableEditing="yes", or if one of the two necessary conditions on it did not apply, then the binding would not occur and
no text box would result. The value, however, would still display as instructed by the stylesheet. Another way to disable
the automatic text binding is to wrap the select expression in the XPath string() function. In that case, the same result is
displayed, but the binding is disabled, because the expression evaluates to a string rather than to a node-set.

One final thing to note about Figure 10-3 is the presence of the squiggly lines under each instance of "SpEcIaL CoDeS",
even the Wingdings rendition. This is the InfoPath spelling checker in action. The spelling checker and AutoComplete
features are turned on by default for HTML nodes that are implicitly bound to XML source nodes. To override this
behavior, you need to declare and parameterize the corresponding xField control in the form definition file. See Section
10.4.4.6 later in this chapter.

10.3.4 Explicitly Binding HTML Nodes to XML Nodes

We've now seen a mechanism by which HTML nodes in the view are implicitly bound to XML nodes in the source
document being edited. You can also explicitly specify bindings in the HTML view by annotating the XSLT stylesheet with
attributes in the InfoPath namespace. The most important of these attributes is xd:binding. (We'll see an example that
uses the xd:binding attribute later in this chapter, under "Date picker control.") By attaching this attribute to an HTML
element in the XSLT stylesheet, you are telling InfoPath to bind that element to a particular node in the XML source
tree. The value of the xd:binding attribute is an XPath expression that is evaluated in the current XSLT context. It selects
the element or attribute node to which this HTML element will be bound. This explicit binding takes precedence over any
implicit binding that would otherwise occur.

The other primary annotation that InfoPath uses is the xd:xctname attribute, which identifies the type of control that a
particular HTML element functions. While, under certain circumstances, the InfoPath editor will not work correctly if the
xd:xctname attribute is not present (e.g., the date picker control requires its presence), it is primarily needed only by
InfoPath design mode rather than editing mode. Except for the specific controls that require it, you can generally avoid
this attribute when creating solutions by hand. That means you don't need to know the xd:xctname attribute's possible
values, shown here:

PlainText
RichText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichText
DropDown
ListBox
DTPicker
DTPicker_DTButton
CheckBox
OptionButton
Section
RepeatingSection
RepeatingTable
BulletedList
ListItem_Plain
NumberedList
PlainList
Button
InlineImage
ExpressionBox
inkpicture

Again, since you generally don't need to worry about the xd:xctname attribute, this list is not directly useful except to
illustrate what kinds of controls InfoPath supports. The items in this list correspond to available controls in InfoPath
design mode's Controls task pane (shown later in this chapter, in Figure 10-11).

10.3.5 Specifying an Initial XML Template

When a user opens an XML file that is already associated with an InfoPath solution via the InfoPath PIs, InfoPath
launches the file with the form view defined by that solution. However, when a user directly opens a form definition file
(*.xsf) or package (*.xsn) in order to fill out a new form, InfoPath needs an "empty" XML template, or skeleton, from
which to begin. This initial XML template is specified in the form definition file, using the xsf:initialXmlDocument element
child of the xsf:fileNew element. Example 10-5 shows our minimal form definition file with the additional specification of
an initial XML template. Note that, as is the case with all of a solution's files, the initial XML template must also be
declared in the list of files within the xsf:package element.

Example 10-5. Specifying the initial XML document

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition">

 <xsf:views>

 <xsf:view name="Announcement Form">

 <xsf:mainpane transform="announcement.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:package>

 <xsf:files>

 <xsf:file name="announcement.xsl"/>

 <xsf:file name="template.xml"/>

 </xsf:files>

 </xsf:package>

 <xsf:fileNew>

 <xsf:initialXmlDocument caption="Announcement" href="template.xml"/>

 </xsf:fileNew>

</xsf:xDocumentClass>

The initial XML template file normally consists mostly of empty elements and attributes but can also include default
values, such as an initial value of 0 for a decimal-valued field. Example 10-6 shows an example initial XML template.
Note that the mso-infoPathSolution PI must be included and must refer to the relative path of the form definition file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the mso-infoPathSolution PI must be included and must refer to the relative path of the form definition file.

Example 10-6. An example initial XML template, template.xml

<?mso-infoPathSolution href="manifest.xsf"

 PIVersion="1.0.0.0"?>

<?mso-application progid="InfoPath.Document"?>

<announcement>

 <headline></headline>

 <body></body>

</announcement>

10.3.6 Adding a Schema

While using a schema is not required, it buys you a lot in terms of automatic data validation. Fields that should be
dates, for example, will be flagged as invalid if anything other than a valid date is entered into it. Example 10-7 shows a
schema that we could add to our example solution.

Example 10-7. A simple XSD schema, announcement.xsd

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="unqualified">

 <xsd:element name="announcement">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="headline">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="body" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

This schema requires that the headline element's value not exceed 40 characters in length. To see what effect this will
have on our solution, we first need to add it to the solution. Example 10-8 shows the final version of our minimal form
definition file, with the schema declared using the xsf:documentSchema element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definition file, with the schema declared using the xsf:documentSchema element.

Example 10-8. Declaring a schema in the form definition file

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition">

 <xsf:views>

 <xsf:view name="Announcement Form">

 <xsf:mainpane transform="announcement.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:package>

 <xsf:files>

 <xsf:file name="announcement.xsl"/>

 <xsf:file name="template.xml"/>

 <xsf:file name="announcement.xsd"/>

 </xsf:files>

 </xsf:package>

 <xsf:fileNew>

 <xsf:initialXmlDocument caption="Announcement" href="template.xml"/>

 </xsf:fileNew>

 <xsf:documentSchemas>

 <xsf:documentSchema location="announcement.xsd"/>

 </xsf:documentSchemas>

</xsf:xDocumentClass>

Finally, Figure 10-4 shows the resulting behavior of the InfoPath editor when the user types in a headline that exceeds
40 characters. Namely, it displays a friendly message alerting the user to the problem.

Figure 10-4. Automatic schema validation in action

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 A More Complete Example
So far we've looked at only the bare minimum of what goes into making an InfoPath solution. Now we'll jump in from
the opposite extreme and show a complete, working example. In addition to illustrating more features of the form
definition file, this example will further demonstrate how InfoPath interprets certain XSLT constructs to establish implicit
bindings between HTML nodes in the form view and XML nodes in the source document. So far, we've seen how text
bindings are established, using the xsl:value-of instruction. This example will additionally demonstrate the use of
structural bindings, as we'll see in Section 10.4.3.

While the example in this section illustrates a great deal of functionality, there are still a
number of features not covered here. I recommend consulting the InfoPath online Help
system to fill in the gaps. In particular, consult the "InfoPath XSF Reference" for
comprehensive coverage of the form definition file format, including a reference for the
XSF schema. From the InfoPath Help task pane, select Table of Contents InfoPath
Developer's Reference InfoPath XSF Reference.

Figure 10-5 shows our example form from the user's perspective. It is a form for creating new "events," which might
ultimately be displayed in the context of an event calendar. The "Title" field is surrounded by a blue border. This is
InfoPath's built-in behavior for indicating the currently active field, which is independent of how the view stylesheet
instructs the field to be rendered. The field is also underlined in red, because the schema requires the field to be non-
empty (see Section 10.4.1 later in this section). Until the user fills out the field, the document will remain invalid.
Likewise, the date and time fields remain underlined until the user enters valid data.

Figure 10-5. A sample InfoPath form before being filled out

The "Form Tips" task pane is a custom HTML-based task pane specific to our solution. Apart from giving the user some
form entry tips, it actually serves some auxiliary roles in our solution, as we'll see in Section 10.4.5.

Figure 10-6 shows the same form after being mostly filled out. The user has added the optional "Location" section and
is currently selecting a date using InfoPath's built-in date picker control.

Figure 10-6. Our sample form while being filled out

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-6. Our sample form while being filled out

Figure 10-7 shows that the "Description" field may contain more than one paragraph. This is called a "repeating
section." The contextual editing menu, which appears either when the user clicks the blue down-arrow on the left or
right-clicks anywhere inside the section, displays buttons for inserting and removing paragraphs. Also, the text within
the paragraph can be formatted. The text formatting buttons, such as bold and italic, are enabled in InfoPath's
formatting toolbar. This type of field is called a "rich text" field.

Figure 10-7. Structural context menu buttons for repeating elements

Figure 10-8 shows the contextual editing menu for the section labeled "Single-day event with time." The option to
replace the element with another kind of scheduling for the event corresponds to a choice group in the XML schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replace the element with another kind of scheduling for the event corresponds to a choice group in the XML schema.

Figure 10-8. Structural editing context menu button for replacing an element in a
choice group

Figure 10-9 shows the section and corresponding structural editing context menu after replacing the element.

Figure 10-9. Structural editing context menu button after replacing element

Finally, whether the form is saved to the user's hard drive or submitted to a backend system, the resulting XML is
shown in Example 10-9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shown in Example 10-9.

Example 10-9. The instance XML created by filling out the event form

<?mso-application progid="InfoPath.Document"?>

<?mso-infoPathSolution PIVersion="1.0.0.0"

 href="http://myserver/events/solution.xsn" language="en-us"

 productVersion="11.0.5329" ?>

<event>

 <title>Pizza Party</title>

 <description>

 <p xmlns="http://www.w3.org/1999/xhtml">Here we describe our party in

italics or bold.</p>

 <p xmlns="http://www.w3.org/1999/xhtml">This is a second paragraph in which to

describe our party.</p>

 </description>

 <location>Top of the Space Needle</location>

 <when>

 <single-day date="2003-09-13" start-time="20:00:00" end-time="23:00:00"/>

 </when>

</event>

This XML document conforms to the schema included in our solution. Note that the rich text vocabulary used is indeed
XHTML, with em and strong elements for italic and bold, respectively.

10.4.1 The XSD Schema

Example 10-10 shows the top-level schema document for our solution's XSD schema.

Example 10-10. The XSD schema for events, schema.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <xs:import namespace="http://www.w3.org/1999/xhtml"

 schemaLocation="paragraphs.xsd"/>

 <xs:element name="event">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="title"/>

 <xs:element ref="description"/>

 <xs:element ref="location" minOccurs="0"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element ref="location" minOccurs="0"/>

 <xs:element ref="when"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="description">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="xhtml:p"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="location" type="xs:string"/>

 <xs:element name="when">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="single-day"/>

 <xs:element ref="multi-day"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="single-day">

 <xs:complexType>

 <xs:attribute name="date" use="required" type="xs:date"/>

 <xs:attribute name="start-time" use="required" type="xs:time"/>

 <xs:attribute name="end-time" type="xs:time"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:complexType>

 </xs:element>

 <xs:element name="multi-day">

 <xs:complexType>

 <xs:attribute name="start-date" use="required" type="xs:date"/>

 <xs:attribute name="end-date" use="required" type="xs:date"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Primary things to note about this schema include:

The title element must not be empty.

The description element must contain one or more xhtml:p elements.

The location element is optional.

The content of when consists of a choice between a single-day element or a multi-day element.

The date- and time-related fields must have xsd:date and xsd:time values, respectively.

Example 10-11 shows the imported schema document that declares the xhtml:p element. The (highlighted) content
model of this element is precisely what InfoPath considers rich text content, i.e., mixed content with any number of
elements in the XHTML namespace. If you want to use rich text editing in InfoPath, your schema must have a type
definition that looks like this.

Example 10-11. The schema for XHTML paragraphs, paragraphs.xsd

<xs:schema targetNamespace="http://www.w3.org/1999/xhtml"

 elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="p">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:any namespace="http://www.w3.org/1999/xhtml"

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xs:schema>

The constraints imposed by our schema are all enforced by InfoPath in editing mode. In particular, InfoPath notifies the
user if the underlying document becomes invalid, whether by drawing a red underline or box around the invalid field, or
showing a dialog box indicating that the user may not, for example, remove the one remaining xhtml:p element. As far
as InfoPath in editing mode is concerned, validation is where the role of schemas ends. The schema is not directly used
by the InfoPath XML editor to generate UI, but only to validate intermediate editing results. Another way of saying this
is that the schema solely has restrictive, rather than generative, semantics.

However, InfoPath in design mode is another matter. In fact, should we decide to create a solution in design mode
starting with this schema (which is exactly what we'll look at doing in "Creating a Simple Solution from an XSD
Schema"), it turns out that we need to make one internal change to our schema in order for the full range of
functionality in design mode to be available to us.

10.4.1.1 Making a concession for design mode

The schema as listed above works perfectly well for our hand-made solution in InfoPath editing mode. When starting
with this schema in design mode, however, InfoPath fails to recognize the xhtml:p element as a "field" having data type
"XHTML," ironically because of the fact that the complex type declaration (whether named or anonymous, as above)
occurs inside a schema document whose target namespace is the XHTML namespace. To get around that, we can
simply offload the type declaration to another imported schema document, using an arbitrary target namespace.
Example 10-12 shows the updated paragraphs.xsd schema document. We'll use this revision from now on instead, in
order to facilitate our design mode example later on.

Example 10-12. The revised schema document for XHTML paragraphs,
paragraphs.xsd

<xs:schema targetNamespace="http://www.w3.org/1999/xhtml"

 elementFormDefault="qualified"

 xmlns:rich="http://oreilly.com/dummy-namespace-for-rich-text-decl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://oreilly.com/dummy-namespace-for-rich-text-decl"

 schemaLocation="xhtmlType.xsd"/>

 <xs:element name="p" type="rich:xhtml"/>

</xs:schema>

Example 10-13 shows xhtmlType.xsd, which paragraphs.xsd imports.

Example 10-13. The XHTML type declaration schema document, xhtmlType.xsd

<xs:schema elementFormDefault="qualified"

 targetNamespace="http://oreilly.com/dummy-namespace-for-rich-text-decl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="xhtml" mixed="true">

 <xs:sequence>

 <xs:any namespace="http://www.w3.org/1999/xhtml"

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

This is not a concession you will normally have to make. (Of course, you'll never have to make it if you never use
design mode.) It is unique to situations in which you want to use and edit specific elements in the XHTML namespace
with greater control than what the black box of rich text editing gives you. We could have simply made the description
element a rich text field, but in that case we would not have been able to enforce the rule that it contain only a
sequence of xhtml:p elements.

10.4.2 The Initial XML Template

Example 10-14 shows the initial XML document template that InfoPath works from when a user tries to fill out a new
form. The optional location element is absent by default, and the default choice for the content of the when element is
single-day, without the optional end-time attribute. Also, the infoPathSolution PI refers to the relative path of the form
definition file.

Example 10-14. The initial XML document, template.xml

<?mso-application progid="InfoPath.Document"?>

<?mso-infoPathSolution href="manifest.xsf" PIVersion="1.0.0.0"?>

<event>

 <title></title>

 <description>

 <p xmlns="http://www.w3.org/1999/xhtml"></p>

 </description>

 <when>

 <single-day date="" start-time=""/>

 </when>

</event>

10.4.3 The XSLT Stylesheet

Example 10-15 shows the complete XSLT stylesheet that defines our solution's default editing view. The stylesheet
consists of pure XSLT sprinkled with some annotations in the xd namespace. The highlighted start and end tags in this
example identify all of the HTML nodes in the result tree that have bindings to XML nodes in the source tree, whether
implicitly or explicitly (using the xd:binding attribute).

Example 10-15. The default view stylesheet, default.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xd="http://schemas.microsoft.com/office/infopath/2003"

 xmlns:xdFmt=

 "http://schemas.microsoft.com/office/infopath/2003/xslt/formatting"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <xsl:template match="/event">

 <html>

 <head>

 <style type="text/css">

 body { font-family: Verdana; }

 .optionalPlaceHolder { padding-left: 20px;

 behavior: url(#default#xOptional);

 font-size: xx-small;

 font-weight: normal; }

 .field { border: 1pt solid #dcdcdc; font-size: x-small; }

 </style>

 </head>

 <body>

 <h1>Create New Event</h1>

 <table cellspacing="2" cellpadding="10">

 <colgroup span="1" width="100" valign="top"

 style="font-weight: bold;"/>

 <colgroup span="1" width="450" valign="top"/>

 <tr>

 <td>Title:</td>

 <td>

 <div class="field">

 <xsl:value-of select="title"/>

 </div>

 </td>

 </tr>

 <tr>

 <td>Description:</td>

 <td>

 <xsl:apply-templates select="description/xhtml:p"/>

 </td>

 </tr>

 <xsl:choose>

 <xsl:when test="location">

 <xsl:for-each select="location">

 <tr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <tr>

 <td>Location:</td>

 <td>

 <div class="field">

 <xsl:value-of select="."/>

 </div>

 </td>

 </tr>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td colspan="2" class="optionalPlaceholder"

 xd:xmlToEdit="locationElement" tabindex="0">

 <xsl:text>Click here to add optional Location</xsl:text>

 </td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 <tr>

 <td>When:</td>

 <td>

 <xsl:apply-templates select="when/*"/>

 </td>

 </tr>

 </table>

 <input type="button" value="Submit Event" xd:CtrlId="btnCreate"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="xhtml:p">

 <p class="field">

 <xsl:copy-of select="node()"/>

 </p>

 </xsl:template>

 <xsl:template match="single-day">

 <div>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <div>

 <div style="font-weight: bold;">Single-day event with time:</div>

 <table>

 <colgroup span="1" width="100" style="padding: 5px;"/>

 <tr>

 <td>Date: </td>

 <td>

 <xsl:call-template name="make-date-picker">

 <xsl:with-param name="date-node" select="@date"/>

 </xsl:call-template>

 </td>

 </tr>

 <tr>

 <td>

 <xsl:if test="@end-time">Start </xsl:if>

 <xsl:text>Time: </xsl:text>

 </td>

 <td>

 <xsl:call-template name="make-time-field">

 <xsl:with-param name="time-node" select="@start-time"/>

 </xsl:call-template>

 </td>

 </tr>

 <xsl:choose>

 <xsl:when test="@end-time">

 <xsl:for-each select="@end-time">

 <tr>

 <td>End time: </td>

 <td>

 <xsl:call-template name="make-time-field">

 <xsl:with-param name="time-node" select="."/>

 </xsl:call-template>

 </td>

 </tr>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td colspan="2" class="optionalPlaceholder"

 xd:xmlToEdit="end-time" tabindex="0">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:text>Click here to add optional End Time</xsl:text>

 </td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 </table>

 </div>

 </xsl:template>

 <xsl:template match="multi-day">

 <div>

 <div style="font-weight: bold;">Multi-day event:</div>

 <table>

 <colgroup span="1" width="100" style="padding: 5px;"/>

 <tr>

 <td>Start date: </td>

 <td>

 <xsl:call-template name="make-date-picker">

 <xsl:with-param name="date-node" select="@start-date"/>

 </xsl:call-template>

 </td>

 </tr>

 <tr>

 <td>End date: </td>

 <td>

 <xsl:call-template name="make-date-picker">

 <xsl:with-param name="date-node" select="@end-date"/>

 </xsl:call-template>

 </td>

 </tr>

 </table>

 </div>

 </xsl:template>

 <xsl:template name="make-date-picker">

 <xsl:param name="date-node"/>

 <span class="field"

 xd:binding="$date-node"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xd:binding="$date-node"

 xd:xctname="DTPicker_DTText"

 contentEditable="true"

 style="BEHAVIOR: url(#default#CalPopup)

 url(#default#urn::controls/Binder)

 url(#default#Formatting);

 width: 100;"

 xd:innerCtrl="_DTText"

 xd:boundProp="xd:num"

 xd:datafmt='"date","dateFormat:Short Date;"'>

 <xsl:attribute name="xd:num">

 <xsl:value-of select="$date-node"/>

 </xsl:attribute>

 <xsl:value-of select="xdFmt:formatString($date-node,

 'date',

 'dateFormat:Short Date;')"/>

 <button style="height:18px; width:20px;

 BEHAVIOR: url(#default#DTPicker);"

 tabindex="-1">

 </button>

 </xsl:template>

 <xsl:template name="make-time-field">

 <xsl:param name="time-node"/>

 <span class="field"

 xd:binding="$time-node"

 contentEditable="true"

 xd:xctname="PlainText"

 xd:datafmt='"time","noSeconds:1;"'

 xd:boundProp="xd:num"

 style="BEHAVIOR: url(#default#urn::controls/Binder)

 url(#default#Formatting);

 width: 100;">

 <xsl:attribute name="xd:num">

 <xsl:value-of select="$time-node"/>

 </xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="xdFmt:formatString($time-node,

 'time',

 'noSeconds:1;')"/>

 </xsl:template>

</xsl:stylesheet>

10.4.3.1 Text bindings

The title field shows an example of a text binding:

 <div class="field">

 <xsl:value-of select="title"/>

 </div>

This is the same kind of binding that we saw in our first stylesheet, in Example 10-3. Our current example has one
other implicit text binding, corresponding to the location field. As we've seen, text bindings cause the corresponding
HTML element to be rendered as an editable field in the InfoPath editing view. To make these fields look more like
actual text boxes, they are each associated with the CSS class, field, which is declared inside the HTML document head
and which adds a thin border to the element:

 .field { border: 1pt solid #dcdcdc; font-size: x-small; }

This serves no function other than to make the element look more like a form field to the user.

10.4.3.2 Rich text bindings

A rich text binding is essentially no different than a text binding, except that it maps an HTML element in the result tree
to an XHTML-valued XML element in the source tree, i.e., an element that can contain XHTML elements. This stylesheet
contains one rich text binding shown in the template rule for xhtml:p elements:

 <xsl:template match="xhtml:p">

 <p class="field">

 <xsl:copy-of select="node()"/>

 </p>

 </xsl:template>

Like the rules for the implicit creation of regular text bindings, the following two conditions must be met for a rich text
binding to be created when an xsl:copy-of instruction is present:

The xsl:copy-of instruction must be the only child element of a valid HTML element (p in this case).

The expression in the select attribute must evaluate to a node-set containing zero or more text nodes and
elements in the XHTML namespace that share the same parent element in the source document (xhtml:p in this
case).

This text binding causes the HTML p element in the editing view to be rendered as an editable field, just as with a
regular text binding. However, for it to function as a rich text field, there is one further requirement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regular text binding. However, for it to function as a rich text field, there is one further requirement:

The form definition file must explicitly declare this field, with rich text editing enabled.

Until this final condition is met, the field will behave like any other text binding, with the formatting toolbar disabled.
See Section 10.4.4.6, later in this chapter, to learn how to declare a rich text binding using the xsf:xmlToEdit element.

10.4.3.3 Structural bindings

Unless explicitly disabled, structural bindings are implicitly created whenever an XSLT template rule, named template,
or xsl:for-each instruction, if it has any literal result elements as immediate children, is invoked. The binding occurs
between the "current node," in XSLT terms, and each HTML element in the result tree that is created by a literal result
element that is the immediate child of the xsl:template or xsl:for-each element. For example, the template rule that
matches xhtml:p elements creates a structural binding between the p element in the result tree and the xhtml:p element
in the source tree:

 <xsl:template match="xhtml:p">

 <p class="field">

 <xsl:copy-of select="node()"/>

 </p>

 </xsl:template>

This structural binding occurs because xhtml:p is the current node, and the HTML p literal result element is the
immediate child of xsl:template. Thus, it turns out that the resulting HTML p element, unlike any other element created
by our stylesheet, has not one, but two bindings: a (rich) text binding and a structural binding. Both bindings map
between the same two nodes.

Our stylesheet creates a number of structural bindings, one for each literal result element that is an immediate child of
xsl:template or xsl:for-each. All of their corresponding start and end tags are highlighted in Example 10-15. Scanning down
the stylesheet, we see structural bindings for html, tr, p, div, tr, and div, each of which maps to the current node at that
point in stylesheet processing. On the other hand, the last two templates in the stylesheet, which happen to be named
templates (make-date-picker and make-time-field) as opposed to template rules, do not create structural bindings. This is
because their respective span element children explicitly prevent those bindings from being created by invoking
xd:disableEditing="yes".

All of this begs the question, "What is the point of a structural binding?" The answer is that, whereas text bindings
(whether rich or not) enable text editing, structural bindings enable structural editing. Examples of structural editing
actions were included in Figures 10-7, 10-8, and 10-9, under friendly names like "Insert Paragraph Below", and
"Replace with All-day or Multi-day Event." However, structural editing actions are not automatically available just
because there is a structural binding. The structural binding is merely a prerequisite for structural editing. To enable
structural editing, the form definition file must explicitly declare buttons, associate them with editing actions, and map
them to XML nodes in the source document. These mappings, if they are to have any effect on the form, rely on the
presence of corresponding structural bindings. To see how this is done, see "Editing components" later in this chapter.

10.4.3.4 Date picker control

The precise rules for how to create a date picker control are not documented by InfoPath. The best approach, at this
point, is to learn and follow by example. The make-date-picker template, shown again below, explicitly establishes a
binding with an XML source node through the use of the xd:binding attribute. It is evaluated in the current XSLT context;
in this case, the bound node is whatever value is passed to the template through the date-node parameter. This allows
us to reuse the template for each date picker control we need to create in our form.

 <xsl:template name="make-date-picker">

 <xsl:param name="date-node"/>

 <span class="field"

 xd:binding="$date-node"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xd:binding="$date-node"

 xd:xctname="DTPicker_DTText"

 contentEditable="true"

 style="BEHAVIOR: url(#default#CalPopup)

 url(#default#urn::controls/Binder)

 url(#default#Formatting);

 width: 100;"

 xd:innerCtrl="_DTText"

 xd:boundProp="xd:num"

 xd:datafmt='"date","dateFormat:Short Date;"'>

 <xsl:attribute name="xd:num">

 <xsl:value-of select="$date-node"/>

 </xsl:attribute>

 <xsl:value-of select="xdFmt:formatString($date-node,

 'date',

 'dateFormat:Short Date;')"/>

 <button style="height:18px; width:20px;

 BEHAVIOR: url(#default#DTPicker);"

 tabindex="-1">

 </button>

 </xsl:template>

The span element child of xsl:template (which prevents a structural binding via xd:disableEditing="yes") contains two child
elements: span and button. These must occur as adjacent sibling elements for the correct behavior to result. The span
element has a number of attributes in the xd namespace, most (if not all) of which must be present for the date picker
control to work correctly. The xd:num attribute (which initializes the date picker control, determining what calendar date
will be highlighted) is created using the xsl:attribute instruction only because that is how the InfoPath form designer
outputs the attribute. It will also work just fine if you use a literal result attribute and an attribute value template
instead (as in xd:num="{$date-node}").

The contentEditable attribute, which is an extension to HTML that's supported by Internet Explorer, is also required. The
CSS BEHAVIOR property is part of IE's behavioral extensions to CSS. The URL-based values are specific to InfoPath. The
xd:datafmt attribute defines a translation from what the user types in to the underlying value to be stored. Specifically, it
allows the user to enter a wide range of date formats, such as 9/22/03 or September 22, 2003, while storing the value
using the ISO 8601 format, i.e., 2003-09-23. Conversely, the xdFmt:formatString() extension function is used to translate
from the XML source value in the standard format to the localized format indicated by the second two arguments
passed to the function. When the user tabs out of the field, its value, regardless of how the user entered the data, will
be displayed in the localized format, e.g., 9/22/03. Finally, the button element creates the calendar icon button that,
when clicked, displays the calendar date picker shown back in Figure 10-6. When the user selects a date, that date
value populates the node to which the preceding span element is bound.

10.4.3.5 Time field formatting

To create a time-valued field, as well as a number of other types of InfoPath form controls, you should again take the
approach of learning and doing by example. This is where InfoPath's sample forms are indispensable. For many kinds of
controls, the sample forms represent the only documentation that's currently available, if you want to create such
controls by hand. The declaration of the time field in our example is similar to that of the date picker. A named
template, make-time-field, can be reused for each time field we want to create in the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4.4 The Form Definition File

Example 10-16 shows the entire form definition file for our example solution.

Example 10-16. The form definition file, manifest.xsf

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

 xmlns:xsf=

 "http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"

 xmlns:xhtml="http://www.w3.org/1999/xhtml"

 publishUrl="http://myserver/events/solution.xsn">

 <xsf:package>

 <xsf:files>

 <xsf:file name="template.xml"/>

 <xsf:file name="schema.xsd"/>

 <xsf:file name="paragraphs.xsd"/>

 <xsf:file name="xhtmlType.xsd"/>

 <xsf:file name="script.js"/>

 <xsf:file name="helper.html"/>

 <xsf:file name="default.xsl"/>

 <xsf:file name="view2.xsl"/>

 </xsf:files>

 </xsf:package>

 <xsf:fileNew>

 <xsf:initialXmlDocument caption="Event" href="template.xml"/>

 </xsf:fileNew>

 <xsf:documentSchemas>

 <xsf:documentSchema location="schema.xsd"/>

 </xsf:documentSchemas>

 <xsf:scripts language="jscript">

 <xsf:script src="script.js"/>

 </xsf:scripts>

 <xsf:taskpane caption="Form Entry Tips" href="helper.html"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsf:views default="Event Form">

 <xsf:view name="Event Form">

 <xsf:mainpane transform="default.xsl"/>

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToPreview" caption="Preview This Event"/>

 </xsf:toolbar>

 <xsf:menuArea name="msoStructuralEditingContextMenu">

 <xsf:button action="xCollection::insertAfter"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Below"

 showIf="immediate"/>

 <xsf:button action="xCollection::insertBefore"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Above"

 showIf="immediate"/>

 <xsf:button action="xCollection::remove"

 xmlToEdit="pRepeating"

 caption="Remove Paragraph"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="single-to-multi"

 caption="Replace with All-day or Multi-day Event"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="multi-to-single"

 caption="Replace with Single-day Event with Time"

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="end-time"

 caption="Remove End Time"

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="locationElement"

 caption="Remove Location"

 showIf="immediate"/>

 </xsf:menuArea>

 <xsf:editing>

 <xsf:xmlToEdit name="pRepeating" item="xhtml:p" container="/event">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsf:xmlToEdit name="pRepeating" item="xhtml:p" container="/event">

 <xsf:editWith component="xCollection">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="description">

 <p xmlns="http://www.w3.org/1999/xhtml"/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="pRich" item="xhtml:p">

 <xsf:editWith component="xField" type="formatted"/>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="single-to-multi"

 item="single-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

 <multi-day start-date="" end-date=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="multi-to-single"

 item="multi-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

 <single-day date="" start-time=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="end-time"

 item="@end-time"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 item="@end-time"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when/single-day">

 <xsf:attributeData attribute="end-time" value=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="locationElement"

 item="location"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment followingSiblings="when">

 <location/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 </xsf:editing>

 <xsf:unboundControls>

 <xsf:button name="btnCreate"/>

 </xsf:unboundControls>

 </xsf:view>

 <xsf:view name="Preview Event">

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToForm" caption="Go Back To Form"/>

 </xsf:toolbar>

 <xsf:mainpane transform="view2.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:customValidation>

 <xsf:errorCondition match="single-day/@end-time"

 expression="translate(.,':','') <= translate(../@start-time,':','')">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 expression="translate(.,':','') <= translate(../@start-time,':','')">

 <xsf:errorMessage type="modeless"

 shortMessage="End time must come after start time.">

 The event's end time must be later than the event's start time.

 </xsf:errorMessage>

 </xsf:errorCondition>

 <xsf:errorCondition match="multi-day/@end-date"

 expression="translate(.,'-','') <= translate(../@start-date,'-','')">

 <xsf:errorMessage type="modeless"

 shortMessage="End date must come after start date.">

 The event's end date must be later than the event's start date.

 </xsf:errorMessage>

 </xsf:errorCondition>

 </xsf:customValidation>

 <xsf:submit caption="Submit Event" showStatusDialog="no">

 <xsf:useScriptHandler/>

 </xsf:submit>

</xsf:xDocumentClass>

This form definition file illustrates a number of advanced features:

Support for multiple views—in this case, the default view (default.xsl), which was shown in Example 10-15, and
a secondary view (view2.xsl, not shown in this chapter)

The use of an HTML task pane (helper.html), shown later in Example 10-17

The declaration of a script file that uses JScript (script.js), shown later in Example 10-18

The declaration of custom buttons associated with structural editing actions

The use of custom validation rules over and above the XSD schema (using the xsf:customValidation element)

The declaration of a form submission mechanism whose behavior is defined by a custom script (using the
xsf:useScriptHandler element)

All of these features and their corresponding XSF declarations are well documented in InfoPath's online Help system or
secondary Microsoft documentation. For purposes of this tutorial, we'll take a closer look specifically at how structural
editing actions are enabled.

10.4.4.1 Creating toolbars, menus, and buttons

To enable any structural editing action or a custom action, a button must first be created. The form definition file allows
you to create custom toolbars that contain menus or buttons. Menus (described using the xsf:menu element), in turn,
can contain buttons or more menus. The form definition file in Example 10-16 includes one custom toolbar declaration
for each view. The declaration for the default view's custom toolbar is shown again below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for each view. The declaration for the default view's custom toolbar is shown again below:

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToPreview" caption="Preview This Event"/>

 </xsf:toolbar>

The button declared here is used to switch to the form's secondary view by invoking the OnClick handler for the named
button, i.e., SwitchToPreview. The secondary view likewise has its own toolbar and button for switching back to the
default view. See Example 10-18 for the script that contains the instructions that implement these actions.

In addition to custom toolbars, InfoPath contains nine built-in named menu areas:

msoFileMenu
msoEditMenu
msoInsertMenu
msoViewMenu
msoFormatMenu
msoToolsMenu
msoTableMenu
msoHelpMenu
msoStructuralEditingContextMenu

It should be obvious which menus in the UI each of these corresponds to. The last one, msoStructuralEditingContextMenu,
is the only menu area used by our example solution, as declared in Example 10-16. This menu contains each of the
buttons declared using the xsf:button declarations, shown again below:

 <xsf:menuArea name="msoStructuralEditingContextMenu">

 <xsf:button action="xCollection::insertAfter"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Below"

 showIf="immediate"/>

 <xsf:button action="xCollection::insertBefore"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Above"

 showIf="immediate"/>

 <xsf:button action="xCollection::remove"

 xmlToEdit="pRepeating"

 caption="Remove Paragraph"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="single-to-multi"

 caption="Replace with All-day or Multi-day Event"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="multi-to-single"

 caption="Replace with Single-day Event with Time"

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="end-time"

 caption="Remove End Time"

 showIf="immediate"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="locationElement"

 caption="Remove Location"

 showIf="immediate"/>

 </xsf:menuArea>

The structural editing context menu is what the user sees when he or she right-clicks a section that has structural
editing actions enabled on it, or left-clicks the blue down-arrow icon that automatically appears at the top left corner of
a section when the mouse hovers over it. The showIf attribute on each button declaration causes the button to be
displayed in the menu only when the user's selection is in certain contexts. The showIf attribute has three possible
values:

immediate
enabled
always

The value immediate (which is used in all the instances above) is the most restrictive of the three. If showIf="immediate",
then the button will only be included in the menu when its associated editing action is immediately applicable to the
user's current HTML selection. What is precisely meant by "immediately applicable" depends on the particular editing
action. A value of enabled means that the button will be displayed only when it is enabled (not otherwise grayed out). A
button is enabled not only when the editing action is immediately applicable to the user's selection, but also when the
user's selection is some descendant of that immediately applicable context. Finally, a value of always means that the
button will be displayed in the context menu at all times, regardless of the user's current selection and regardless of
whether the button is enabled or disabled (grayed out).

Rather than associating itself by name with custom OnClick event handling script (as with the buttons for switching
between views), each of the xsf:button elements above declaratively associates itself with an action of a built-in editing
component (see Section 10.4.4.2), by way of the action attribute. The value of this attribute is the name of the editing
component, followed by a scope operator (::), followed by one of the actions available for that editing component. The
button must also associate itself with an actual node in the source document, that node's view in the HTML document,
and a configured instance of the editing component. This is all done in a single swoop by referring, in the xmlToEdit
attribute, to an xsf:xmlToEdit element declared under the xsf:editing element inside the view's configuration. Finally, the
caption attribute's value is what the user actually sees when using these buttons.

10.4.4.2 Editing components

An editing component is a collection of actions for editing certain kinds of XML nodes. Each component is configurable in
its own way. There are six kinds of editing components. Table 10-1 shows the name, purpose, and associated actions of
each.

Table 10-1. The six editing components and their associated actions
Name Purpose Actions

xCollection
For a repeating list, or table, of elements insert, insertBefore, insertAfter,

remove, removeAll

xOptional
For optional elements or attributes insert, remove

xReplace
For choice groups of alternative elements replace

xTextList
For plain, bulleted, or numbered lists (also corresponds to a
repeating sequence of elements) split, merge, remove

xField
For text bindings, i.e. text boxes and rich text boxes (none)

xImage
For embedded images (none)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before continuing, let me warn you that the next several paragraphs are rather dense. They are an attempt to
succinctly cover a complex topic, i.e., how editing control associations (declared using xsf:xmlToEdit elements) are
established. If you get tripped up on a single point, don't stop reading. Try to forge on through the examples in the
following sections. Things may become clear in retrospect. Most likely, they will only truly become clear after doing
some experimentation of your own. In any case, this should get you started on the right track.

Each xsf:xmlToEdit element within the xsf:editing element in a view's configuration represents an XML editing control. It
defines an association between nodes in the source document and a particular editing component, along with
parameterization of the editing component's behavior.

The item and container attributes on each xsf:xmlToEdit element together define where the control is in the HTML editing
view, by way of the structural and/or text bindings to XML source nodes that have already been established. The basic
syntax is like this:

<xsf:xmlToEdit name="someID" item="pattern" container="pattern"...>

The required name attribute of the xsf:xmlToEdit element is a unique identifier and is what xsf:button elements refer to in
their xmlToEdit attributes. The item attribute is always required, regardless of which editing component is being
associated. The container attribute is only required for certain editing components and optional for others. For example,
it is optional for xField, but it is required for xCollection, xOptional, and xReplace. (The editing component in question is
determined by the value of the component attribute of the xsf:editWith child element.)

Whereas the item and container attributes determine where the control is in the HTML editing view, the xsf:editWith child
element defines what the editing control is and does: which editing component it uses (through the component
attribute), and how that editing component is configured (through any additional attributes and child elements of the
xsf:editWith element). The basic syntax is like this:

 <xsf:editWith component="xSomeComponent"...>

 <!-- other child elements, depending on which component is being used -->

 </xsf:editWith>

The xsf:xmlToEdit element's container and item attributes' values must lie in the subset of XPath syntax that corresponds
to the syntax for XSLT patterns. In fact, they are interpreted in essentially the same way as XSLT patterns. The precise
definition of a pattern's behavior, as found in the XSLT recommendation, is that:

A node matches a pattern if the node is a member of the result of evaluating the pattern as an
expression with respect to some possible context; the possible contexts are those whose context node
is the node being matched or one of its ancestors. — http://www.w3.org/TR/xslt#patterns

A helpful way to think about how editing control associations occur is to consider the procedural task that InfoPath
performs while the user is editing. At any given point while a user is editing, InfoPath must determine whether or not to
activate an XML editing control based on the user's current HTML node selection. Its criteria for doing so depend on the
item and container attribute values of the various xsf:xmlToEdit declarations in the form definition file.

Here goes. Starting with the current HTML node selection, InfoPath traverses the ancestor nodes (in reverse document
order) until it finds an HTML node that is bound to an XML node that matches the item pattern of an xsf:xmlToEdit
element in the current view's configuration. If the container attribute is also present on a candidate xsf:xmlToEdit element,
then InfoPath continues to traverse the ancestors until it finds an HTML node that is bound to an XML node that satisfies
the container pattern. Provided that InfoPath finds an item node (and a container node, when specified) that is bound to
the current HTML selection or one of its ancestors, then the current selection will behave as declared within the
corresponding xsf:xmlToEdit element. Namely, the actions of the associated editing component will be available, and the
actions will behave as customized by the xsf:editWith element's additional attributes and elements.

Moreover, both the container and item HTML nodes are control-selectable, i.e., a dashed border appears around them
when the mouse hovers over them, and they can be selected by the user. An exception to this behavior is when the
container node binds to an element that is not normally selectable within the body of an HTML document. This is the
case with many of our example's declarations, in which the container XML node, the root event element, maps to the
editing view's root html element. Though the container HTML node (html) is not selectable in this case, its binding to a
node in the XML source document is still a necessary (and sufficient) condition for the editing control association to take
place. If it were not for the structural binding between event and html, most of our solution's editing controls would be
disabled.

An optional viewContext attribute on the xsf:xmlToEdit element can be added if there exists more than one HTML binding
to the same XML node. (We saw a facetious example of this back in Example 10-4.) In that event, the viewContext
attribute can be used to disambiguate two controls (i.e., xsf:xmlToEdit elements) that have the same context (item and
container attributes), by referring to the value of an HTML element's xd:CtrlId attribute value. Then an editing control with
a particular viewContext will apply only to an HTML selection that not only falls within the context specified by the item
and container attributes but also is, or is a descendant of, an HTML element whose xd:CtrlId attribute value equals the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and container attributes but also is, or is a descendant of, an HTML element whose xd:CtrlId attribute value equals the
value of the viewContext attribute.

That's how these things behave in the abstract. If you didn't comprehend it all, don't worry. Taking a look at some
concrete uses of the individual editing components in our example may help.

10.4.4.3 The xCollection editing component

The xCollection component is used to edit a repeating list of elements. In our example, the xhtml:p element is associated
with the xCollection editing component in order to enable actions such as xCollection::insertAbove and xCollection::insertBelow.
This declaration is shown again below:

 <xsf:xmlToEdit name="pRepeating" item="xhtml:p" container="/event">

 <xsf:editWith component="xCollection">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="description">

 <p xmlns="http://www.w3.org/1999/xhtml"/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

When a user clicks inside the HTML p element in the editing view, the above-declared XML editing control is activated,
because the p element falls within the context defined by the item and container attributes. Specifically:

p is bound to the xhtml:p element in the source document, which of course matches this declaration's item
pattern ("xhtml:p")

p has an ancestor HTML element that's bound to an XML node that satisfies the container pattern ("/event"),
namely the final ancestor element, the html root element of the editing view.

The xsf:editWith element, besides specifying which editing component to use (xCollection), in turn uses the
xsf:fragmentToInsert element and its child, xsf:chooseFragment, to specify what XML fragment to insert when a user invokes
the xCollection::insert, xCollection::insertAbove, or xCollection::insertBelow actions. When the user pushes the Insert Paragraph
Below button, for example, a new XML fragment will be inserted, namely an empty p element in the XHTML namespace.
Where the fragment will be inserted is determined by the parent attribute of the xsf:chooseFragment element. Its value is
an XPath expression that is evaluated in the context of the container node, i.e., using the container XML node as the
context node. If the parent attribute is absent, then the fragment is directly inserted as a child of the container node. In
other words, the parent attribute's value, when absent, defaults to ".". In our example, the parent attribute is present,
and the XPath expression description is evaluated using the root element, event, as the context node, yielding the source
document's description element. Therefore, the fragment to insert will be inserted as a child of the description element.

10.4.4.4 The xOptional editing component

The xOptional editing component corresponds to an optional element or attribute in the source document. Our example
contains an optional location element and an optional end-time attribute. The declarations for each are very similar, both
in the form definition file and in the XSLT stylesheet. In both cases, the stylesheet uses an xsl:choose statement to test
for the presence of the optional node. If present, the stylesheet processes the node using xsl:for-each, thereby
establishing a structural binding. But when the optional node is absent, it has no way of creating a binding to the node,
as there is no way to bind to an XML node that does not yet exist in the source document. The solution around this is to
create a placeholder link that refers to the XML fragment to insert via the xd:xmlToEdit attribute:

 <td colspan="2" class="optionalPlaceholder"

 xd:xmlToEdit="locationElement" tabindex="0">

 <xsl:text>Click here to add optional Location</xsl:text>

 </td>

The optionalPlaceholder CSS class is declared in the HTML document head. The linking behavior of the placeholder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The optionalPlaceholder CSS class is declared in the HTML document head. The linking behavior of the placeholder
element (a td in this case) is effected by using the CSS behavior, url(#default#xOptional), an InfoPath-specific property
included in our optionalPlaceholder class. The xd:xmlToEdit attribute refers to the locationElement editing control in the form
definition file:

 <xsf:xmlToEdit name="locationElement"

 item="location"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment followingSiblings="when">

 <location/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

The above blurb shows that the fragment to insert when a user invokes the xOptional::insert action is simply an empty
location element. The followingSiblings attribute on the xsf:chooseFragment element is necessary, because our schema
dictates that the location element, if present, must come before the when element. Otherwise, the default insertion
behavior would yield an invalid document. The default insertion behavior is to append the fragment as the last child of
the parent node (the event element in this case, because the parent attribute is absent). The followingSiblings attribute can
be used to override this default append behavior. Its value is an XPath expression evaluated in the context of the
parent node (the event element, in this case). The effective behavior is that the fragment will be inserted before all the
nodes in the node-set returned by the followingSiblings expression. In this case, that means the location element will be
inserted immediately before the when element.

The end-time control declaration shows how attributes are inserted, using the xsf:attributeData element:

 <xsf:xmlToEdit name="end-time"

 item="@end-time"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when/single-day">

 <xsf:attributeData attribute="end-time" value=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

10.4.4.5 The xReplace Editing Component

The xReplace editing component is usually used in conjunction with a choice group in the schema between two or more
alternative XML elements. In our example, the XSLT stylesheet initially establishes a structural binding by applying
templates to the child of the when element, regardless of which element (single-day or multi-day) is present:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

templates to the child of the when element, regardless of which element (single-day or multi-day) is present:

 <tr>

 <td>When:</td>

 <td>

 <xsl:apply-templates select="when/*"/>

 </td>

 </tr>

The matching template rule is applied, thereby establishing a structural binding between the single-day or multi-day
element and the div element contained within the matching xsl:template element, which will be one of these:

 <xsl:template match="single-day">

 <div>

 ...

 </div>

 </xsl:template>

 <xsl:template match="multi-day">

 <div>

 ...

 </div>

 </xsl:template>

The form definition file in turn declares two separate editing controls, one for each possible element:

 <xsf:xmlToEdit name="single-to-multi"

 item="single-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

 <multi-day start-date="" end-date=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="multi-to-single"

 item="multi-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsf:chooseFragment parent="when">

 <single-day date="" start-time=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

As can be seen above, the xReplace component is configured in a similar way to the xOptional and xCollection components.
It too uses the xsf:chooseFragment element to determine exactly what to replace the element with. In this case, the
single-day element is replaced with a multi-day element that includes its two (required) empty attributes, and the multi-day
element is replaced with a single-day element whose optional end-time attribute is absent.

10.4.4.6 The xField editing component

xField is the editing component that lets you customize the behavior of leaf node editing, or what we have been calling
"text bindings". Our form definition file associates the xhtml:p element with the xField component so that it can
customize its behavior—specifically by declaring type="formatted" on the xsf:editWith element, effectively making the text
binding behave as a rich text binding:

 <xsf:xmlToEdit name="pRich" item="xhtml:p">

 <xsf:editWith component="xField" type="formatted"/>

 </xsf:xmlToEdit>

The other legal values for the type attribute (when the component is xField) are plain, plainMultiline, formattedMultiline, and
rich.

This example illustrates the fact that the same node in the source document can be
associated with multiple editing components, since the form definition file also associates
xhtml:p with the xCollection editing component. Another common use case for associating an
element with multiple editing components is when an optional node can be removed (using
xOptional::remove) or replaced (using xReplace::replace). In that case, two separate
xsf:xmlToEdit declarations are necessary, one for xOptional and one for xReplace.

The xField component also supports the use of the proofing and autoComplete attributes on xsf:editWith. The value of these
attributes (yes or no) determines whether the given field will enable the proofing features (such as spell checking), and
form field auto-completion, respectively.

10.4.4.7 The xTextList editing component

Although our example doesn't use the xTextList editing component, it turns out that it probably should. As useful as
xCollection is in other contexts, it doesn't make editing paragraphs as easy as you might expect from a Microsoft
product. In Word, for example, to create a new paragraph or split an existing paragraph in two, you simply hit Enter.
And to merge paragraphs, you just hit the Backspace or Delete keys, depending on where the current insertion point is.
Thankfully, in InfoPath, you can use the xTextList editing component to expose this split-and-merge behavior that the
user expects. This is much better than forcing the user to switch back and forth between the keyboard and mouse,
typing sentences and then clicking "Insert Paragraph Below," or copying and pasting from one paragraph into the other
because xCollection doesn't automatically split or merge paragraphs.

So let's see what would be involved in updating our solution to use xTextList for paragraphs, rather than xCollection. The
XSLT stylesheet and all files other than the form definition file can remain unchanged. All we need to do in manifest.xsf
is delete all of the xCollection-oriented buttons, as well as the editing controls named pRepeating and pRich. In their place,
we add the following simple declaration:

 <xsf:xmlToEdit name="pList" item="xhtml:p">

 <xsf:editWith component="xTextList" type="formatted"/>

 </xsf:xmlToEdit>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsf:xmlToEdit>

This single declaration does everything that we tried to achieve using the xCollection component, only better. No more
buttons are necessary, because the split, merge, and remove actions are by default made available through the Enter,
Backspace, and Delete keys. And a separate xField declaration is no longer necessary, because xTextList also supports
the type attribute (with values of plain or formatted).

10.4.5 The HTML Task Pane

Our form definition file in Example 10-16 declared a custom HTML task pane:

 <xsf:taskpane caption="Form Entry Tips" href="helper.html"/>

Example 10-17 shows the contents of helper.html, our custom task pane document.

Example 10-17. The HTML task pane, helper.html

<html>

 <head>

 <style type="text/css">

 body { font-family: Verdana; font-size: xx-small; }

 </style>

 </head>

 <body>

 <form name="finalForm" action="http://myserver/process-events/" method="post">

 <input type="hidden" name="xml"/>

 </form>

 <h3>Form Tips</h3>

 Hit CTRL-ENTER to open a new paragraph while typing the event

description

 Right-click any item to see available actions

 Use CTRL-Z and CTRL-Y to undo and redo your changes

 Navigate forward and backward through the form using the TAB and SHIFT-

TAB keys

 </body>

</html>

This task pane displays some common InfoPath editing shortcuts for the user, such as hitting Ctrl-Enter to trigger the
xCollection::insertAfter action, which in this case functions to create a new paragraph. However, there is also a hidden
HTML form embedded in the document. This demonstrates just one possibility of how XML created by InfoPath could be
submitted to a web application other than through the built-in declarative submission mechanisms. The form doesn't do
anything by itself, but a script can be written to access it and submit it, as we'll see in Section 10.4.6. InfoPath's built-in
HTTP submission mechanism only supports HTTP POST of text/xml content, but this form and the accompanying script
used to populate and submit it generates an HTTP POST request with content of type application/x-www-form-urlencoded,
with the value of the xml parameter being the XML document that was created. The advantage is that it can be
integrated with an existing web application designed to work with HTML forms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integrated with an existing web application designed to work with HTML forms.

Submission of XML as content of type application/x-www-form-urlencoded, while useful as an
example, is not generally advisable, because it only supports ASCII characters. For an
application that requires international characters or any other character outside the ASCII
range, you should use a different submission mechanism.

10.4.6 The Script File

Our form definition file in Example 10-16 declared a script file:

 <xsf:scripts language="jscript">

 <xsf:script src="script.js"/>

 </xsf:scripts>

Example 10-18 shows the contents of script.js, our custom script file.

Example 10-18. The script file, script.js

function SwitchToPreview::OnClick()

{

 XDocument.View.SwitchView("Preview Event");

}

function SwitchToForm::OnClick()

{

 XDocument.View.SwitchView("Event Form");

}

function XDocument::OnSubmitRequest(eventObj)

{

 var xdoc = eventObj.XDocument;

 try

 {

 var finalForm = xdoc.View.Window.TaskPanes(0).HTMLDocument.finalForm;

 finalForm.xml.value = xdoc.DOM.xml;

 doSubmitHTMLForm(xdoc);

 }

 catch (ex)

 {

 eventObj.ReturnStatus = false;

 throw ex;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw ex;

 }

 eventObj.ReturnStatus = true;

}

function btnCreate::OnClick(eventObj)

{

 eventObj.XDocument.Submit();

}

function doSubmitHTMLForm(xdoc)

{

 var taskpaneDoc = xdoc.View.Window.TaskPanes(0).HTMLDocument;

 var finalForm = taskpaneDoc.finalForm;

 var resultWindow = taskpaneDoc.open(

 "http://myserver/pleaseWait",

 "result","scrollbars=yes,menubar=yes," +

 "resizable=yes,location=yes,toolbar=yes,status=yes");

 finalForm.target = "result";

 finalForm.submit();

 resultWindow.focus();

}

The functions defined in this short script file perform two primary tasks:

Switching between views

Submitting the created XML to a web server

The view-switching behavior is achieved by implementing the OnClick event handler for each of the two buttons that
were declared in the form definition file, in Example 10-16. The "Preview Event" view (defined by the view2.xsl
stylesheet, not listed in this chapter) declared one of these buttons, named SwitchToForm:

 <xsf:view name="Preview Event">

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToForm" caption="Go Back To Form"/>

 </xsf:toolbar>

 <xsf:mainpane transform="view2.xsl"/>

 </xsf:view>

To switch back to the default "Event Form" view (defined by default.xsl), the following single line of code is all that's
needed:

 XDocument.View.SwitchView("Event Form");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XDocument.View.SwitchView("Event Form");

When the user clicks the Go Back To Form button, the editing view switches back to the default form view that was
displayed when the form was first opened.

There is one other OnClick event handler implemented in this script file:

function btnCreate::OnClick(eventObj)

{

 eventObj.XDocument.Submit();

}

Unlike the view-switching buttons, this button (named btnCreate) was not declared in the form definition file but instead
was declared directly in default.xsl (Example 10-15), identified by the value of its xd:CtrlId attribute:

 <input type="button" value="Submit Event" xd:CtrlId="btnCreate"/>

To be successfully referenced, this button must also be declared within the xsf:unboundControls section of the form
definition file, within the xsf:view element:

 <xsf:unboundControls>

 <xsf:button name="btnCreate"/>

 </xsf:unboundControls>

Clicking on this button causes the solution's submission mechanism to be invoked. The form definition file specifies that
the submit action should, in turn, be handled by a custom script (as opposed to one of the other options, such as
xsf:useHttpHandler or xsf:webServiceAdapter):

 <xsf:submit caption="Submit Event" showStatusDialog="no">

 <xsf:useScriptHandler/>

 </xsf:submit>

The XDocument::OnSubmitRequest event is fired when the user attempts to submit the form. Finally, our corresponding
event handler populates the xml field in our HTML task pane's hidden form with the serialized XML document created by
the user, and submits it to a web server. At this point, we are using Internet Explorer's HTML document object model
API, accessible via the HTMLDocument property of the InfoPath TaskPane object:

 var taskpaneDoc = xdoc.View.Window.TaskPanes(0).HTMLDocument;

Though our HTML task pane did not show an example of it, it is also possible to do the converse, i.e., access the
InfoPath object model from script embedded in an HTML task pane document.

The complete InfoPath object model is well documented in InfoPath's online Help system,
under Table of Contents InfoPath Developer's Reference InfoPath Object Model
Reference.

10.4.7 The Cabinet Manifest

When it comes time to deploy your solution, you have several deployment options:

Individually publish all of the form template files, including manifest.xsf, to a shared location or web server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Individually publish all of the form template files, including manifest.xsf, to a shared location or web server

Use InfoPath design mode's "Publish Form..." feature to create and publish a .xsn file (see "Publishing a Form
from Design Mode" later in this chapter).

Use the makecab.exe utility to create a .xsn file at the command-line prompt

Example 10-19 shows a DDF ("diamond directive file") that can be fed to the makecab.exe utility (included with
Windows 2000 and XP) to package up all the form template files into a single CAB file, named event.xsn.

Example 10-19. A cabinet file manifest for solution deployment, cab-manifest.ddf

.Option Explicit

.Set CabinetNameTemplate=event.xsn

.Set Cabinet=on

.Set Compress=on

manifest.xsf

default.xsl

view2.xsl

template.xml

helper.html

schema.xsd

paragraphs.xsd

script.js

This file is not part of the InfoPath form template. Rather, it just provides a way to package the form template files into
a single .xsn file, without having to open the solution in design mode with all of the potential issues that can create.
(See "Developing Solutions that Play Nice with Design Mode," later in this chapter.) It can be executed using this
command:

makecab.exe /F cab-manifest.ddf

You should ensure that when you do publish your form template, regardless of the deployment method chosen, you
publish it to the same location as listed in the publishUrl attribute of the form definition file's root element,
xsf:xDocumentClass. Otherwise, InfoPath will refuse to open the form, complaining that it has moved from its original
location. For more information on this topic, see Section 10.5.4, later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 Using InfoPath Design Mode
By now you've probably noticed that this chapter is heavily biased toward the creation of solutions by hand. One of the
reasons for this is that you can only use the full power of XSLT when creating a solution if you do it by hand, rather
than through InfoPath design mode. Provided that you understand how InfoPath establishes implicit bindings from your
stylesheet, you should be able to avoid potential pitfalls by writing your stylesheet in such a way that only the bindings
you intend to create get created. You can do it, whether it means avoiding certain arrangements of XSLT instructions or
invoking xd:disableEditing="yes" in the right places.

The design mode of InfoPath is well documented in InfoPath's online Help system. The
focus of this chapter has been to expose the technical details of InfoPath solutions,
particularly where existing documentation is lacking, such as how InfoPath interprets view
stylesheets to establish node bindings. For that reason, this section provides only a cursory
overview of InfoPath design mode and happily refers you to the online Help system for a
more in-depth investigation.

That said, there are a number of reasons InfoPath in design mode may be useful to you:

As a tool for learning how valid solutions can be created

As a form design tool for developers or IT workers who aren't as XML-savvy

As an expedient way to create forms, given an existing XML schema, instance document, or web service

As an expedient way to configure other aspects of a solution besides the default view, e.g., secondary views,
submission behavior, web services integration, etc. (see "Developing Solutions that Play Nice with Design Mode"
later in this chapter).

As a solution packaging and deployment tool that supports automatic update notifications

As an IDE for InfoPath scripting, with the help of Microsoft Script Editor

InfoPath design mode provides a WYSIWYG environment for creating forms meant to be run by InfoPath in editing
mode. It has sophisticated support for the creation of HTML layout tables and lets you drag and drop different kinds of
form controls onto the form view canvas. You can begin creating a form in one of three ways:

1. From scratch.

2. From a "data source," which can be an XSD schema, an XML instance document, a WSDL-defined web service,
or a Microsoft Access or SQL Server database.

3. By customizing one of the sample forms that come bundled with InfoPath.

10.5.1 Creating a Simple Solution from an XSD Schema

If we had decided to create our event form example from within design mode, rather than by hand, we would only need
an example instance document, or better yet, a schema, to get started. Since we already have the schema (Example
10-10), let's take a quick look at what this would involve. Figure 10-10 shows a newly created form in design mode, not
unlike the one we created by hand.

Figure 10-10. Designing a form starting from an XSD schema "data source"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a new form starting with an XML schema, select File Design a Form...
New from Data Source. From within the Data Source Setup Wizard, choose "XML Schema
or XML data file," click Next, and finally click Browse to find the XML schema file.

InfoPath design mode utilizes as much information as possible from the schema to aid you in creating your form. In
fact, just by dragging and dropping from the Data Source task pane, shown on the right side of the window in Figure
10-10, we can create a functional form in just a few seconds.

The Data Source task pane provides an Explorer-like view of the underlying XML schema for the form you are
designing. Some icons signify groups, and others fields, in InfoPath's terminology. A field is an attribute or an element
that can contain only text, or rich text in the case of XHTML content. A group is an element that can contain element
children, i.e., other groups or fields. In XSD terms, fields (except for rich text fields) have simple content and groups
have complex content. When you drag an element or attribute onto the canvas, InfoPath automatically creates an
appropriate section (for a group) or form control (for a field). When more than one choice is equally appropriate, it
immediately prompts you to choose which control or section type you want.

In our example in Figure 10-10, the "Location" text box is selected. As a result, the corresponding location field to which
it is bound is automatically highlighted in the Data Source task pane. Note also that the optional section in which the
text box occurs is also bound to the location field. As you navigate through the form in design mode, you will see where
the binding for each control is in the data source tree.

When you want to have more control (no pun intended) over exactly what kinds of form controls or sections should
appear in your form, you can switch to the Controls task pane, shown in Figure 10-11.

Figure 10-11. The Controls task pane and the prompt to select a binding for the
"optional section" being dragged onto the canvas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you drag a control or section onto the canvas from the Controls task pane, you are immediately prompted to
choose what group or field in the data source to bind that control or section to. In the example shown in Figure 10-11,
the location field is chosen as the binding for the optional section being dragged onto the canvas. The resulting XSLT
view stylesheet created by InfoPath will include the "Click here to add" link for the location field when it is absent, and
will display the optional section itself when the location element is present. However, this is an example of a structural
binding, rather than a text binding, which means that, as such, the end user will not be able to edit the content of the
location field, but will only be able to add or remove it. To provide editing support, we additionally need to create a text
binding. We can do this either by dragging a Text Box control onto the canvas, inside the optional section, and then
selecting the location field when prompted for a binding, or we can start from the Data Source task pane instead and
simply drag the location field into the optional section we created for it. A corresponding Text Box control will
automatically be created. Either way, we end up with the location field having two bindings, a text binding and a
structural binding, just as was the case with the event form example we created by hand.

Another thing to note about Figure 10-10 is that the entire form appears exactly as InfoPath in design mode created it,
as a result merely of dragging-and-dropping fields, groups, sections, or controls onto the canvas. No additional edits
were made. Thus, it not only makes reasonable choices about what controls or section types to use, but it also
automatically tries to make the field names friendlier, so "location" becomes "Location," "start-time" becomes "Start
Time," etc.

We can relate some of these controls back to some terminology introduced earlier in the chapter under "The XSLT
Stylesheet," for the event form solution created by hand. Specifically, the Text Box and Rich Text Box controls result in
the creation of text bindings, and the various kinds of sections (optional, repeating, choice, etc.) result in the creation of
structural bindings and corresponding editing control declarations (xsf:xmlToEdit elements) in the form definition file.
Other kinds of bindings, such as those employed by the checkbox and radio button controls, can best be explored by
perusing the sample forms that come bundled with the InfoPath application.

10.5.2 Creating a Form from Scratch

When creating a new blank form rather than starting from a schema or instance document, InfoPath automatically
creates a schema for you as form controls are added to the design. To disable this default behavior, uncheck the
"Automatically create data source" checkbox in the Controls task pane. Table 10-2 shows the controls and the XSD
declarations they create in the schema for the fields to which they are bound. These mappings reveal not only how this
handy feature works, but, perhaps more importantly, it gives you some clues about how to design your own schemas
and forms. Specifically, it shows which controls make sense to bind to which data types.

Table 10-2. Controls for text and rich text bindings, and the automatically created
data source fields they bind to

Control(s) Data Source Type XSD Element Declaration

Text Box, List Box, Drop-Down List Box, Option
Button Element field (string) xsd:string-typed element

Rich Text Box Element field (XHTML) Complex-typed element with XHTML
content.

Date Picker Element field (date) xsd:date-typed element

Check Box Element field (boolean) xsd:boolean-typed element

Picture, Ink Picture Element field
(base64binary) xsd:base64binary-typed element

All of the controls that bind to automatically created element fields can also bind to attribute fields, with one exception.
The Rich Text Box control binds to an element field that can contain XHTML elements. Since attributes cannot contain
elements, Rich Text Box controls cannot bind to attribute fields. The Button, Hyperlink, and Expression Box controls can
never have bindings. The Expression Box control is essentially a way for you to create an xsl:value-of instruction from
within design mode. You specify the XPath expression whose value you want displayed. If necessary, editing will be
explicitly disabled in the resulting stylesheet, through use of the xd:disableEditing annotation, because Expression Box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explicitly disabled in the resulting stylesheet, through use of the xd:disableEditing annotation, because Expression Box
controls are meant primarily to display derived information, such as a sum of numbers. They are not used to establish
editing bindings.

10.5.3 The Layout and Views Task Panes

The Layout task pane provides a set of table-based layout templates to choose from and a set of table operations for
manipulating them. The Views task pane allows you to manage multiple views in your form template, each of which
corresponds to an instance of the xsf:view element in the form definition file.

10.5.4 Publishing a Form from Design Mode

Once you have finished designing your form, you have the option of publishing it through the InfoPath interface. Click
on "Publish Form..." in the Design Tasks task pane, and a wizard will guide you through the process. You have a choice
between three publication targets: shared folder, SharePoint form library, or web server. Publication to a web server
requires that WebDAV be enabled on the server. All of the form's files will be packaged into an .xsn file and saved at
the location that you specify.

Once you've selected your publishing target and location, you'll be prompted to provide a user-accessible location (URL
or network path) for your solution. This dialog is shown in Figure 10-12. The value of this field is used to populate the
publishUrl attribute of the xsf:xDocumentClass element, i.e., the root element of the form definition file. It identifies the
central location from which all users will initially retrieve the form and receive form updates. InfoPath uses the value of
the publishUrl attribute in two ways:

InfoPath assigns this value to the href pseudo-attribute of the mso-infoPathSolution PI when InfoPath saves a
filled-out form

InfoPath checks this value to verify that the form template has not moved from its original published location.

You will want to modify this field only if the user-accessible URL or path is different from the URL or path where you
originally put the file. Changing the value will be necessary, for example, if you need to publish the file to a web server
using a network drive but require your users to download the file via an HTTP URL.

Figure 10-12. Final step of the publishing wizard, where the publishUrl attribute is
set

10.5.5 Developing Solutions That Play Nice with Design Mode

There are a number of alternative approaches to developing InfoPath solutions. How much work should you do by
hand?[3] And how much work should you do in design mode? Table 10-3 lists possible alternative solution development
strategies.

[3] When I say "by hand," I really mean any way other than using InfoPath in design mode. One of the key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[3] When I say "by hand," I really mean any way other than using InfoPath in design mode. One of the key
advantages of the underlying XML syntax of solutions is not only that you can modify things manually, but you can
also use XML tools to generate, modify, or otherwise process solutions.

Table 10-3. Alternative solution development strategies

Development strategy Level of
risk

1. Never use design mode. Safe

2. Always use design mode. Safe

3. Build a solution in design mode, but customize and maintain it by hand, never going back to design
mode. Safe

4. Build a solution in design mode, customize a portion of it by hand, and maintain it both ways. Daring

5. Build a solution entirely by hand and later open it in design mode. Crazy?

Options 1, 2, and 3 are safe because they never burden InfoPath design mode with having to read in a form template
that it didn't itself create. Options 4 and 5 share the risk that InfoPath will have trouble opening your solution, because
your dirty little fingers have been touching it. And if InfoPath opens your solution without complaining, you run the risk
that parts of your solution will get overwritten. The primary problem is that, while the InfoPath XML editor will accept
virtually any XSLT stylesheet you throw at it, the InfoPath form designer is much more finicky.

From within design mode, changing a view that you have created by hand is always a risky
proposition. While this section describes a mechanism by which you can preserve manual
changes, a number of things could still go wrong. Always back up your form template files
before opening them in design mode.

For example, the form designer requires the xd:binding and xd:xctname attributes to be explicitly present on all controls in
the view stylesheet. Otherwise, it will not correctly identify all bindings or form controls, even though the editor has no
problem identifying them. There are a number of other limitations that design mode imposes. For example, it chokes on
common XSLT constructs such as xsl:call-template, but not without first displaying an error message specifying exactly
what is not supported. Again, this is a limitation of design mode, not the InfoPath XML editor. If you build or modify a
solution by hand, you can feel free to use any XSLT instruction you wish.

Does this effectively mean that, once you skirt design mode with a manual modification, there's no going back? Well, it
would, if it wasn't for another InfoPath feature called the preserve code block. This is a mechanism by which you can
mark portions of an XSLT view stylesheet as untouchable regions, for your eyes only. Note that you won't be able to
use the form designer to edit or customize the controls declared therein, and that's the whole point. This is done by
wrapping your manual customizations in a template rule annotated with mode="xd:preserve". The template rules in the
xd:preserve mode and the xsl:apply-templates instructions that invoke them will remain untouched. Note that all template
rules and named templates that you invoke from within a preserved code block will also need to be preserved, using
mode="xd:preserve". Otherwise, design mode will discard them, resulting in an invalid stylesheet, in the case of missing
named templates. For named templates, you will also have to add an arbitrary match attribute, so that it will still be
legal XSLT after you add a mode attribute. To ensure that your named-template-cum-template-rule doesn't match any
nodes, you can use a pattern that is guaranteed to match nothing, such as @*/*.

Example 10-20 shows our first example stylesheet (Example 10-3) with the entire view protected by the xd:preserve
mode.

Example 10-20. Using the xd:preserve mode to preserve manual stylesheet
changes

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/announcement">

 <html>

 <head>

 <title>Announcement</title>

 </head>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <body>

 <xsl:apply-templates select="." mode="xd:preserve"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="announcement" mode="xd:preserve">

 <h1>

 <xsl:value-of select="headline"/>

 </h1>

 <p>

 <xsl:value-of select="body"/>

 </p>

 </xsl:template>

</xsl:stylesheet>

Figure 10-13 shows the result of opening the corresponding form template in design mode. We only see a red box that
says "Preserve Code Block." This alerts us that custom stylesheet code is being skipped over. We can commence to
drag and drop other controls onto the form canvas, add text before or after the block, or create layout tables around
the block, moving it around as necessary.

Figure 10-13. Preserve code block

Example 10-21 shows the XSLT stylesheet as output by the form designer after making a small change (adding some
text to the bottom of the form). We see that it's much more verbose, including all of its CSS and namespace declaration
boilerplate. However, our template rule in the xd:preserve mode is indeed preserved unaltered, and our solution will
continue to work as expected in InfoPath's editing mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

continue to work as expected in InfoPath's editing mode.

Example 10-21. Stylesheet output by InfoPath design mode, with code blocks
preserved

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:msxsl="urn:schemas-

microsoft-com:xslt" xmlns:xd="http://schemas.microsoft.com/office/infopath/2003"

xmlns:x="urn:schemas-microsoft-com:office:excel"

xmlns:xdExtension="http://schemas.microsoft.com/office/infopath/2003/xslt/extension

"

xmlns:xdXDocument="http://schemas.microsoft.com/office/infopath/2003/xslt/xDocument

" xmlns:xdSolution="http://schemas.microsoft.com/office/infopath/2003/xslt/solution"

xmlns:xdFormatting="http://schemas.microsoft.com/office/infopath/2003/xslt/formatti

ng" xmlns:xdImage="http://schemas.microsoft.com/office/infopath/2003/xslt/xImage">

 <xsl:output method="html" indent="no"/>

 <xsl:template match="announcement">

 <html>

 <head>

 <style tableEditor="TableStyleRulesID">TABLE.xdLayout TD {

 BORDER-RIGHT: medium none; BORDER-TOP: medium none; BORDER-LEFT: medium none;

BORDER-BOTTOM: medium none

}

TABLE {

 BEHAVIOR: url (#default#urn::tables/NDTable)

}

TABLE.msoUcTable TD {

 BORDER-RIGHT: 1pt solid; BORDER-TOP: 1pt solid; BORDER-LEFT: 1pt solid; BORDER-

BOTTOM: 1pt solid

}

</style>

 <title>Announcement</title>

 <meta http-equiv="Content-Type" content="text/html"></meta>

 <style controlStyle="controlStyle">BODY{margin-

left:21px;color:windowtext;background-color:window;layout-grid:none;}

 .xdListItem {display:inline-block;width:100%;vertical-align:text-top;}

 .xdListBox,.xdComboBox{margin:1px;} .xdInlinePicture{margin:1px;

BEHAVIOR: url(#default#urn::xdPicture) } .xdLinkedPicture{margin:1px;

BEHAVIOR: url(#default#urn::xdPicture) url(#default#urn::controls/Binder) }

 .xdSection{border:1pt solid #FFFFFF;margin:6px 0px 6px 0px;padding:1px 1px 1px

5px;} .xdRepeatingSection{border:1pt solid #FFFFFF;margin:6px 0px 6px

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5px;} .xdRepeatingSection{border:1pt solid #FFFFFF;margin:6px 0px 6px

0px;padding:1px 1px 1px 5px;} .xdBehavior_Formatting {BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#Formatting);}

.xdBehavior_FormattingNoBUI{BEHAVIOR: url(#default#CalPopup)

url(#default#urn::controls/Binder) url(#default#Formatting);}

 .xdExpressionBox{margin: 1px;padding:1px;word-wrap: break-word;text-overflow:

ellipsis;overflow-

x:hidden;}.xdBehavior_GhostedText,.xdBehavior_GhostedTextNoBUI{BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#TextField)

url(#default#GhostedText);} .xdBehavior_GTFormatting{BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#Formatting)

url(#default#GhostedText);} .xdBehavior_GTFormattingNoBUI{BEHAVIOR:

url(#default#CalPopup) url(#default#urn::controls/Binder) url(#default#Formatting)

url(#default#GhostedText);} .xdBehavior_Boolean{BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#BooleanHelper);}

 .xdBehavior_Select{BEHAVIOR: url(#default#urn::controls/Binder)

url(#default#SelectHelper);} .xdRepeatingTable{BORDER-TOP-STYLE: none; BORDER-

RIGHT-STYLE: none; BORDER-LEFT-STYLE: none; BORDER-BOTTOM-STYLE: none; BORDER-

COLLAPSE: collapse; WORD-WRAP: break-word;}.xdTextBox{display:inline-block;white-

space:nowrap;text-overflow:ellipsis;;padding:1px;margin:1px;border: 1pt solid

#dcdcdc;color:windowtext;background-color:window;overflow:hidden;text-align:left;}

 .xdRichTextBox{display:inline-block;;padding:1px;margin:1px;border: 1pt

solid #dcdcdc;color:windowtext;background-color:window;overflow-x:hidden;word-

wrap:break-word;text-overflow:ellipsis;text-align:left;font-weight:normal;font-

style:normal;text-decoration:none;vertical-align:baseline;}

 .xdDTPicker{;display:inline;margin:1px;margin-bottom: 2px;border: 1pt solid

#dcdcdc;color:windowtext;background-color:window;overflow:hidden;}

 .xdDTText{height:100%;width:100%;margin-

right:22px;overflow:hidden;padding:0px;white-space:nowrap;}

 .xdDTButton{margin-left:-21px;height:18px;width:20px;behavior:

url(#default#DTPicker);} .xdRepeatingTable TD {VERTICAL-ALIGN:

top;}</style>

 </head>

 <body>

 <div>

 <xsl:apply-templates select="." mode="xd:preserve"/>

 </div>

 <div> </div>

 <div>This is some text I just typed in.</div>

 </body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </body>

 </html>

 </xsl:template>

 <xsl:template match="announcement" mode="xd:preserve">

 <h1>

 <xsl:value-of select="headline"></xsl:value-of>

 </h1>

 <p>

 <xsl:value-of select="body"></xsl:value-of>

 </p>

 </xsl:template>

</xsl:stylesheet>

One thing to note about the use of mode="xd:preserve" for a solution's default view is that InfoPath will not overwrite
your stylesheet (and hence won't add any of the boilerplate shown above), as long as you do both of the following:

Annotate all template rules in the stylesheet with mode="xd:preserve" (except for a root template rule that
initially applies templates) until InfoPath opens it without complaining

Do not make any changes to the default view from within design mode

You may be asking yourself, "then why should I bother opening the solution in design mode at all if I'm not going to
make any changes to the default view?" The answer is that there are plenty of other things about a solution that you
may want to configure or change from within design mode besides the default view, e.g., submission behavior,
secondary views, scripting, custom validation, custom error messages, secondary data sources, and solution packaging
and publication. In fact, I recommend avoiding option 5 in Table 10-3, unless you employ this precise strategy. Unless
you particularly want to learn how InfoPath design mode generates XSLT stylesheets and you have some patience for
experimentation, you should avoid making changes within design mode to XSLT views that you created outside of
design mode.

Among the use cases for employing both design mode and hand-editing is the need to develop multiple views for a
single solution. For example, you may already have an XSLT stylesheet that displays your document type in a particular
way, e.g., on a web site, but you still haven't developed a form for gathering instances of that document type. You can
use InfoPath design mode to rapidly develop the form as your default view, and you can then manually edit the form
definition file (manifest.xsf) to add your existing stylesheet as an alternate view for your users to see, like a preview of
how the document will look when published. Unlike a default view stylesheet, a secondary view stylesheet doesn't need
to be annotated with mode="xd:preserve" unless you specifically open that view from within design mode. If you never
switch to that view in design mode, you won't have to worry about the form designer choking on it, and it will survive in
your solution unaltered.

InfoPath's "preserve code block" feature is thus useful for both options 4 and 5 in Table 10-3. With option 4, you can
isolate only the part of the stylesheet that you need to customize outside of design mode. With option 5, the safest
approach, again, is to wrap your entire stylesheet (all but the root template rule) in a "preserve code block." Just to be
sure that it's clear what it means to "wrap the entire stylesheet in a preserve code block." Example 10-22 shows an
example of this technique.

Example 10-22. Wrapping an entire stylesheet in a single preserve code block

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xd="http://schemas.microsoft.com/office/infopath/2003">

 <xsl:template match="/">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:template match="/">

 <xsl:apply-templates select="/event" mode="xd:preserve"/>

 </xsl:template>

 <xsl:template match="/event" mode="xd:preserve">

 <html>

 <!-- ... -->

 <xsl:apply-templates select="location" mode="xd:preserve"/>

 <!-- (All xsl:apply-templates instructions use mode="xd:preserve")-->

 </html>

 </xsl:template>

 <xsl:template match="location" mode="xd:preserve">

 <!-- ... -->

 </xsl:template>

 <!-- ... -->

 <!-- (All template rules use mode="xd:preserve") -->

</xsl:stylesheet>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. The XML You Need for Office
A knowledge of XML is essential if you want to build applications around the Office XML capabilities rather than just
using other people's templates. If you're already acquainted with XML, you don't need to read this appendix. If you're
not, you should read on.

The general overview of XML given in this appendix should be sufficient to enable you to work with XML documents. For
a much more solid grounding in the many details of XML, you should consider these books:

Erik T. Ray, Learning XML (O'Reilly)

 Elliotte Rusty Harold and W. Scott Means, XML in a Nutshell (O'Reilly)

 Elizabeth Castro, XML for the World Wide Web: Visual QuickStart Guide (Peachpit Press)

You may also be interested in the "Annotated XML Specification," written by Tim Bray and published online at
http://xml.com/, which an provides illuminating explanation of the XML 1.0 specification. You may also look to "What is
XML?" by Norm Walsh, also published on XML.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.1 What Is XML?
XML, the Extensible Markup Language, is an Internet-friendly format for data and documents invented by the World
Wide Web Consortium (W3C). The "Markup" denotes a way of expressing the structure of a document within the
document itself. XML has its roots in a markup language called SGML (Standard Generalized Markup Language), which
is used in publishing. HTML was an application of SGML to web publishing. XML was created to do for machine-readable
documents on the Web what HTML did for human-readable documents—that is, provide a commonly agreed-upon
syntax so that processing the underlying format becomes common place and documents are made accessible to all
users.

Unlike HTML, though, XML comes with very little predefined. HTML developers are accustomed both to the notion of
using angle brackets (< >) for denoting elements, and also to the set of element names themselves (such as head,
body, etc.). XML shares only the former feature (i.e., the notion of using angle brackets for denoting elements). Unlike
HTML, XML has no predefined elements, but is merely a set of rules that lets you write other languages like HTML.

Because XML defines so little, it is easy for everyone to agree to use the XML syntax, and then to build applications on
top of it. It's like agreeing to use a particular alphabet and set of punctuation symbols, but not saying which language
to use. This offers immense flexibility, much like the flexibility you're used to having in creating your own Word
templates, Excel spreadsheets, or Access databases.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.2 Anatomy of an XML Document
The best way to explain how an XML document is composed is to present one. Example A-1 shows an XML document
you might use to describe two authors.

Example A-1. A very simple XML document

<?xml version="1.0" encoding="us-ascii"?>

<authors>

 <person id="lear">

 <name>Edward Lear</name>

 <nationality>British</nationality>

 </person>

 <person id="asimov">

 <name>Isaac Asimov</name>

 <nationality>American</nationality>

 </person>

 <person id="mysteryperson"/>

</authors>

The first line of the document is known as the XML declaration. This tells a processing application which version of XML
you are using—the version indicator is mandatory—and which character encoding you have used for the document. In
this example, the document is encoded in ASCII. (The significance of character encoding is covered later in this
appendix.)

If the XML declaration is omitted, a processor will make certain assumptions about your document. In particular, it will
expect it to be encoded in UTF-8, an encoding of the Unicode character set. However, it is best to use the XML
declaration wherever possible, both to avoid confusion over the character encoding and to indicate to processors which
version of XML you're using. (1.0 is most common, but 1.1, which makes relatively minor though potentially
incompatible changes, has recently appeared.) Encoding handling should be automatic with Office, but you may need to
watch for documents you import from other sources.

A.2.1 Elements and Attributes

The second line of Example A-1 begins an element, which has been named authors. The contents of that element include
everything between the right angle bracket (>) in <authors> and the left angle bracket (<) in </authors>. The actual
syntactic constructs <authors> and </authors> are often referred to as the element start tag and end tag, respectively.
Do not confuse tags with elements! Tags mark the boundaries of elements. Note that elements, like the authors element
here, may include other elements, as well as text. An XML document must contain exactly one root element, which
contains all other content within the document. The name of the root element defines the type of the XML document.

Elements that contain both text and other elements simultaneously are classified as mixed content. Word supports the
use of mixed content, while the other applications in the Office suite generally do not.

The sample "authors" document uses elements named person to describe the authors themselves. Each person element
has an attribute named id. Unlike elements, attributes can only contain textual content. Their values must be
surrounded by quotes. Either single quotes (') or double quotes (") may be used, as long as you use the same kind of
closing quote as the opening one.

Within XML documents, attributes are frequently used for metadata (i.e., "data about data"), describing properties of
the element's contents. This is the case in our example, where id contains a unique identifier for the person being
described.

As far as XML is concerned, it does not matter in what order attributes are presented in the element start tag. For
example, these two elements contain exactly the same information as far as an XML 1.0 conformant processing
application is concerned:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application is concerned:

<animal name="dog" legs="4"></animal>

<animal legs="4" name="dog"></animal>

On the other hand, the information presented to an application by an XML processor on reading the following two lines
will be different for each animal element because the ordering of elements is significant:

<animal><name>dog</name><legs>4</legs></animal>

<animal><legs>4</legs><name>dog</name></animal>

XML treats a set of attributes like a bunch of stuff in a bag—there is no implicit ordering—while elements are treated
like items on a list, where ordering matters.

New XML developers frequently ask when it is best to use attributes to represent information and when it is best to use
elements. As you can see from the "authors" example, if order is important to you, then elements are a good choice. In
general, there is no hard-and-fast best practice for choosing whether to use attributes or elements, though elements
can contain other elements and attributes, while attributes can contain only text.

The final author described in our document has no information available. All we know about this person is his or her ID,
mysteryperson. The document uses the XML shortcut syntax for an empty element. The following is a reasonable
alternative:

<person id="mysteryperson"></person>

A.2.2 Name Syntax

XML 1.0 has certain rules about element and attribute names. In particular:

Names are case-sensitive, e.g., <person/> is not the same as <Person/>.

Names beginning with xml (in any permutation of uppercase or lowercase) are reserved for use by XML 1.0 and
its companion specifications.

A name must start with a letter or an underscore, not a digit, and may continue with any letter, digit,
underscore, or period. (Actually, a name may also contain a colon, but the colon is used to delimit a namespace
prefix and is not available for arbitrary use as of the Second Edition of XML 1.0.)

A precise description of names can be found in Section 2.3 of the XML 1.0 specification, at http://www.w3.org/TR/REC-
xml#sec-common-syn.

A.2.3 XML Namespaces

XML 1.0 lets developers create their own elements and attributes, but leaves open the potential for overlapping names.
title in one context may mean something entirely different than title in a different context. The Namespaces in XML
specification (which can be found at http://www.w3.org/TR/REC-xml-names/) provides a mechanism developers can
use to identify particular vocabularies using Uniform Resource Identifiers (URIs).

URIs are a combination of the familiar Uniform Resource Locators (URLs) and Uniform Resource Names (URNs). From
the perspective of XML namespaces, URIs are convenient because they combine an easily used syntax with a notion of
ownership. While it's possible for me to create namespace URIs that begin with http://microsoft.com, general practice
holds that it would be better for me to create URIs that begin with http://simonstl.com, a domain I own, and leave
http://microsoft.com to Microsoft. In general, organizations and individuals who create XML vocabularies should choose a
namespace URI in a space they control. This makes it possible (though it isn't required) to put information there
documenting the vocabulary, or other resources for processing the vocabulary.

The rules for XML names don't permit developers to create elements with names like http://simonstl.com/ns/mine:Title, and
it's not clear that working with names like that would be much fun anyway. To get around these problems, the
Namespaces in XML specification defines a mechanism for associating URIs with element and attribute names through
prefixes. Instead of typing out the whole URI, developers can work with a much shorter prefix, or even set a default
URI that applies to names without prefixes.

To create a prefix, you use a namespace declaration, which looks like an attribute. For example, to create a prefix of
xhtml associated with the URI http://www.w3.org/1999/xhtml, you would use an xmlns:xhtml attribute as shown below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xhtml associated with the URI http://www.w3.org/1999/xhtml, you would use an xmlns:xhtml attribute as shown below:

<container xmlns:xhtml="http://www.w3.org/1999/xhtml" >

....

</container>

To apply a prefix, you put it in front of the element or attribute name, with a colon separating the prefix from the name.
To put an XHTML p element inside of that container, you could write:

<container xmlns:xhtml="http://www.w3.org/1999/xhtml" >

<xhtml:p>This is an XHTML paragraph!</xhtml:p>

</container>

When a program encountered the xhtml:p, it would know that p was the local name of the element, xhtml was the prefix,
and http://www.w3.org/1999/xhtml was the URI for that element. The namespace declaration applies to all elements inside
the element where it appears, as well as the element containing the declaration. For example, the xhtml prefix works for
all three of these paragraphs:

<container xmlns:xhtml="http://www.w3.org/1999/xhtml" >

<xhtml:p>This is XHTML paragraph 1!</xhtml:p>

<xhtml:p>This is XHTML paragraph 2!</xhtml:p>

<xhtml:p>This is XHTML paragraph 3!</xhtml:p>

</container>

In most XML processing, the prefix doesn't matter—the local name and the URI are what count, and the prefix is just a
mechanism for associating them. (This is especially important in XSLT processing and XML Schemas.) In some
documents, especially documents that use only structures from one namespace or where one vocabulary is dominant,
developers choose to use the default namespace rather than prefixes. When the default namespace is used (assigned
with an xmlns attribute), elements without a prefix are associated with a given URI. In XHTML, an XML derivative of
HTML, this is the most typical path, since HTML developers aren't used to putting prefixes on all of their element names.
A typical XHTML document might look like this:

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>My Document</title>

 </head>

 <body>

 <p>Could use some content here</p>

 </body>

</html>

In this case, the URI http://www.w3.org/1999/xhtml applies to every element in the document, including html, head, title,
body, and p. The default namespace has one quirk, though: it doesn't apply to attributes. Attributes can be given a
namespace by explicitly using a prefix in their name, but unprefixed attributes have no namespace URI. This often
doesn't matter, but it can be important when writing XSLT stylesheets and creating XML Schemas.

Typically, the namespaces used by a document are declared on the root element of the document, which lets them
apply to all the content inside that document. They can, of course, also be declared throughout the document, though
this makes it more difficult to read. Declarations can override each other as well, and the declaration closest to a given
use of a prefix in the hierarchy will be used. This lets developers mix and match XML vocabularies even when they use
the same prefix.

Namespaces are very simple on the surface but are a well-known field of combat in XML arcana. For more information
on namespaces, see Tim Bray's "XML Namespaces by Example," published at
http://www.xml.com/pub/a/1999/01/namespaces.html; XML In a Nutshell; or Learning XML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2.4 Well-Formedness

An XML document that conforms to the rules of XML syntax is known as well-formed. At its most basic level, well-
formedness means that elements should be properly matched, and all opened elements should be closed. A formal
definition of well-formedness can be found in Section 2.1 of the XML 1.0 specification, at http://www.w3.org/TR/REC-
xml#sec-well-formed. Table A-1 shows some XML documents that are not well-formed.

Table A-1. Examples of poorly formed XML documents
Document Reason why it's not well-formed

<foo>

 <bar>

 </foo>

</bar>

The elements are not properly nested because foo is closed while inside its child element bar.

<foo>

 <bar>

</foo>
The bar element was not closed before its parent, foo, was closed.

<foo baz>

</foo> The baz attribute has no value. While this is permissible in HTML (e.g., <table border>), it is forbidden in
XML.

<foo baz=23>

</foo> The baz attribute value, 23, has no surrounding quotes. Unlike HTML, all attribute values must be
quoted in XML.

A.2.5 Comments and Processing Instructions

As in HTML, it is possible to include comments within XML documents. XML comments are intended to be read only by
people. With HTML, developers have occasionally employed comments to add application-specific functionality. For
example, the server-side include functionality of most web servers uses instructions embedded in HTML comments. In
XML, comments should not be used for any purpose other than those for which they were intended, as they are usually
stripped from the document during parsing.

The start of a comment is indicated with <!--, and the end of the comment with -->. Any sequence of characters, aside
from the string --, may appear within a comment. Comments can appear at the start or end of a document as well as
inside elements. They cannot appear inside attributes or inside of a tag. A comment might look like:

<!--Hello, this is a comment -->

Comments tend to be used more in XML documents intended for human consumption than those intended for machine
consumption. If you want to pass information to an XML application without affecting the structure of the document,
you can use processing instructions, or PIs. Processing instructions use <? as a starting delimiter and ?> as a closing
delimiter, must contain a target conforming to the rules for XML names, and may contain additional data. A typical PI
might look like:

<?xml-style type="text/css" href="mystyle.css" ?>

In this case, xml-style is the target and type="text/css" href="mystyle.css" is the data. For more information on PIs, see
Section 2.6 of the XML 1.0 specification, at http://www.w3.org/TR/REC-xml#sec-pi.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2.6 Entity References

You may occasionally need to use the mechanism for escaping characters. Because some characters have special
significance in XML, there needs to be a way to represent them. For example, in some cases the < symbol might really
be intended to mean "less than" rather than to signal the start of an element name. Clearly, just inserting the character
without any escaping mechanism would result in a poorly formed document because a processing application would
assume you were starting another element. Another instance of this problem is needing to include both double quotes
and single quotes simultaneously in an attribute's value. Here's an example that illustrates both these difficulties:

<badDoc>

 <para>

 I'd really like to use the < character

 </para>

 <note title="On the proper 'use' of the " character"/>

</badDoc>

XML avoids this problem by the use of the predefined entity reference. The word "entity" in the context of XML simply
means a unit of content. The term "entity reference" means just that, a symbolic way of referring to a certain unit of
content. XML predefines entities for the following symbols: left angle bracket (<), right angle bracket (>), apostrophe
('), double quote ("), and ampersand (&).

An entity reference is introduced with an ampersand (&), which is followed by a name (using the word "name" in its
formal sense, as defined by the XML 1.0 specification), and terminated with a semicolon (;). Table A-2 shows how the
five predefined entities can be used within an XML document.

Table A-2. Predefined entity references in XML 1.0
Literal character Entity reference

< <

> >

' '

" "

& &

Here's our problematic document revised to use entity references:

<badDoc>

 <para>

 I'd really like to use the < character

 </para>

 <note title="On the proper 'use' of the "character"/>

</badDoc>

Being able to use the predefined entities is often all you need; in general, entities are provided as a convenience for
human-created XML. XML 1.0 allows you to define your own entities and use entity references as "shortcuts" in your
document. Section 4 of the XML 1.0 specification, available at http://www.w3.org/TR/REC-xml#sec-physical-struct,
describes the use of entities.

A.2.7 Character References

You may find character references in Office 2003 XML documents. Character references allow you to denote a character
by its numeric position in Unicode character set (this position is known as its code point). Table A-3 contains a few
examples that illustrate the syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

examples that illustrate the syntax.

Table A-3. Example character references
Actual character Character reference

1 0

A A

~ Ñ

® ®

Note that the code point can be expressed in decimal or, with the use of x as a prefix, in hexadecimal.

A.2.8 Character Encodings

The subject of character encodings is frequently a mysterious one for developers. Most code tends to be written for one
computing platform and, normally, to run within one organization. Although the Internet is changing things quickly,
most of us have never had cause to think too deeply about internationalization.

XML, designed to be an Internet-friendly syntax for information exchange, has internationalization at its very core. One
of the basic requirements for XML processors is that they support the Unicode standard character encoding. Unicode
attempts to include the requirements of all the world's languages within one character set. Consequently, it is very
large!

A.2.8.1 Unicode encoding schemes

Unicode 3.0 has more than 57,700 code points, each of which corresponds to a character. (You can obtain charts of all
these characters online by visiting http://www.unicode.org/charts/.) If one were to express a Unicode string by using
the position of each character in the character set as its encoding (in the same way as ASCII does), expressing the
whole range of characters would require four octets for each character. (An octet is a string of eight binary digits, or
bits. A byte is commonly, but not always, considered the same thing as an octet.) Clearly, if a document is written in
100 percent American English, it will be four times larger than required—all the characters in ASCII fitting into a 7-bit
representation. This places a strain both on storage space and on memory requirements for processing applications.

Fortunately, two encoding schemes for Unicode alleviate this problem: UTF-8 and UTF-16. As you might guess from
their names, applications can process documents in these encodings in 8- or 16-bit segments. When code points are
required in a document that cannot be represented by one chunk, a bit-pattern is used that indicates that the following
chunk is required to calculate the desired code point. In UTF-8 this is denoted by having the most significant bit of the
first octet set to 1.

This scheme means that UTF-8 is a highly efficient encoding for representing languages using Latin alphabets, such as
English. All of the ASCII character set is represented natively in UTF-8—an ASCII-only document and its equivalent in
UTF-8 are byte-for-byte identical. UTF-16 is more efficient for representing languages that use Unicode characters
represented by larger numeric values, notably Chinese, Japanese, and Korean.

This knowledge will also help you debug encoding errors. One frequent error arises because of the fact that ASCII is a
proper subset of UTF-8—programmers get used to this fact and produce UTF-8 documents, but use them as if they
were ASCII. Things start to go awry when the XML parser processes a document containing, for example, characters
such as Á (replace with accented A). Because this character cannot be represented using only one octet in UTF-8,
this produces a two-octet sequence in the output document; in a non-Unicode viewer or text editor, it looks like a
couple of characters of garbage.

A.2.8.2 Other character encodings

Unicode, in the context of computing history, is a relatively new invention. Native operating system support for Unicode
is by no means widespread. For instance, although Windows NT offers Unicode support, Windows 95 and 98 do not
have it.

XML 1.0 allows a document to be encoded in any character set registered with the Internet Assigned Numbers Authority
(IANA). European documents are commonly encoded in one of the ISO Latin character sets, such as ISO-8859-1.
Japanese documents commonly use Shift-JIS, and Chinese documents use GB2312 and Big 5.

A full list of registered character sets may be found at http://www.iana.org/assignments/character-sets.

XML processors are not required by the XML 1.0 specification to support any more than UTF-8 and UTF-16, but most
commonly support other encodings, such as US-ASCII and ISO-8859-1. Although many XML transactions are currently
conducted in ASCII (or the ASCII subset of UTF-8), there is nothing to stop XML documents from containing, say,
Korean text. You will, however, probably have to dig into the encoding support of your computing platform to find out if
it is possible for you to use alternate encodings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it is possible for you to use alternate encodings.

A.2.9 Validity

In addition to well-formedness, XML 1.0 offers another level of verification called validity. To explain why validity is
important, let's take a simple example. Imagine you invented a simple XML format for your friends' telephone numbers:

<phonebook>

 <person>

 <name>Albert Smith</name>

 <number>123-456-7890</number>

 </person>

 <person>

 <name>Bertrand Jones</name>

 <number>456-123-9876</number>

 </person>

</phonebook>

Based on your format, you also construct a program to display and search your phone numbers. This program turns out
to be so useful, you share it with your friends. However, your friends aren't so hot on detail as you are, and try to feed
your program this phone book file:

<phonebook>

 <person>

 <name>Melanie Green</name>

 <phone>123-456-7893</phone>

 </person>

</phonebook>

Note that, although this file is perfectly well-formed, it doesn't fit the format you prescribed for the phone book,
because there's a phone element where there should have been a number element. You will likely need to change your
program to cope with this situation. If your friends had used number as you did to denote the phone number, there
wouldn't have been a problem. However, as it is, this second file probably won't be usable by programs set up to work
with the first file; from the program's perspective, it isn't valid.

For validity to be a useful general concept, we need a machine-readable way of saying what a valid document is; that
is, which elements and attributes must be present and in what order. XML 1.0 achieves this by introducing document
type definitions (DTDs). Office doesn't use DTDs, preferring to use W3C XML Schemas, as described in Appendix C.

A.2.9.1 Document Type Definitions (DTDs)

The purpose of a DTD is to express which elements and attributes are allowed in a certain document type and to
constrain the order in which elements must appear within that document type. A DTD is generally composed of one file
or a group of connected files, containing declarations defining element types, attribute lists, and entities. DTDs are
explored in Appendix D.

A.2.9.2 Connecting DTDs to documents

Even if you don't work with DTDs, you should be aware of how DTDs are linked to XML documents. This is done with a
document type declaration, <!DOCTYPE ...>, inserted at the beginning of the XML document, after the XML declaration in
our fictitious example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

our fictitious example:

<?xml version="1.0" encoding="us-ascii"?>

<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">

<authors>

 <person id="lear">

 <name>Edward Lear</name>

 <nationality>British</nationality>

 </person>

 <person id="asimov">

 <name>Isaac Asimov</name>

 <nationality>American</nationality>

 </person>

 <person id="mysteryperson"/>

</authors>

This example assumes the DTD file has been placed on a web server at example.com. Note that the document type
declaration specifies the root element of the document, not the DTD itself. You could use the same DTD to define
person, name, or nationality as the root element of a valid document. Certain DTDs, such as the DocBook DTD for
technical documentation (see http://www.docbook.org), use this feature to good effect, allowing you to use the same
DTD while working with multiple document types.

A validating XML processor is obligated to check the input document against its DTD. If it does not validate, the
document is rejected. To return to the phone book example, if your application validated its input files against a phone
book DTD, you would have been spared the problems of debugging your program and correcting your friend's XML
because your application would have rejected the document as being invalid. Office 2003 doesn't perform validation
against DTDs; instead, it validates against XML Schemas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix B. The XSLT You Need for Office
XSLT plays a huge role in Office 2003. This book contains numerous examples of XSLT stylesheets for use in Word,
Excel, InfoPath, and Access. Since proficiency in XSLT is a prerequisite for understanding much that's in this book, your
best bet (if you don't already know XSLT) is to pick up one of the excellent books on XSLT that are already available.
Here are some good books to choose from for learning XSLT:

 Michael Fitzgerald, Learning XSLT (O'Reilly)

 Jeni Tennison, Beginning XSLT (Wrox)

 Michael Kay, XSLT Programmer's Reference (Wrox)

 Doug Tidwell, XSLT (O'Reilly)

 G. Ken Holman, Definitive XSLT and XPath (Prentice Hall)

 John E. Simpson, XPath and XPointer (O'Reilly)

 Sal Mangano, XSLT Cookbook, (O'Reilly)

If you are already comfortable with XSLT, then great—you might not need to read this appendix at all. For those of you
who are new to XSLT, this appendix provides a brief introduction and tutorial, illustrating just a few aspects of this
powerful language. Truthfully, when developing XML solutions for Office, the more XSLT you know, the better. While
this appendix may provide a good start, it only scratches the surface.

After a brief overview of what XSL-FO, XSLT, and XPath are, we'll look at three example stylesheets. The first two
illustrate the most common use case for XSLT: transforming XML documents into HTML. The last example converts
between one XML format and another XML format.

The examples in this appendix do not pertain specifically to Office. For Office-specific
examples of XSLT stylesheets, see the main content of the book (specifically Chapter 3,
Chapter 4, Chapter 5, Chapter 7, Chapter 8, and Chapter 10). The highest concentration of
XSLT examples is in Chapter 3.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.1 Sorting Out the Acronyms
When learning XSLT, there are three primary specifications to be aware of: XSL (sometimes referred to as XSL-FO),
XSLT, and XPath. Originally, these three languages were just parts of a single language, XSL, or "Extensible Stylesheet
Language". But before being released as W3C recommendations, they were re-factored into three separate
specifications. They essentially have a subset relationship, as depicted in Figure B-1. XPath is used by XSLT, which is in
turn used by XSL.

Figure B-1. The subset relationship between XSL, XSLT, and XPath

This appendix is concerned only with the inner two circles in Figure B-1, XSLT and XPath. We'll see how XSLT and XPath
relate to each other—and what they actually look like—in the tutorial later on. First, let's briefly look at the role each
language plays.

B.1.1 What Is XSL?

As we've seen, XSL stands for "Extensible Stylesheet Language." It is a language for expressing stylesheets for XML. It
consists of two primary parts:

An XML formatting vocabulary

An XML transformation language

This appendix is concerned only with XSLT, which is the transformation component of XSL. The other component—the
formatting vocabulary—is commonly called XSL Formatting Objects, or XSL-FO. It theoretically can function apart from
XSLT as a standalone formatting vocabulary, but it is usually used as a part of XSL (i.e., with XSLT). The most common
use case for XSL-FO is transforming XML documents into documents suitable for printing, particularly in PDF format.

The XSL 1.0 recommendation is located at http://www.w3.org/TR/xsl.

B.1.2 What Is XSLT?

XSLT stands for "Extensible Stylesheet Language Transformations." It is a language for transforming XML documents
into other XML documents or other formats, such as HTML and plain text. An XSLT stylesheet is a program that
declaratively defines the transformation from a source tree (input) to a result tree (output). Since XSLT stylesheets
themselves are represented in XML format, that means there are three essential XML documents, or "trees," involved in
any XSLT transformation. Figure B-2 shows a diagram depicting the relationships of these three trees.

Figure B-2. The three trees involved in every XSLT transformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure B-2. The three trees involved in every XSLT transformation

The input to the XSLT processor (depicted by the rectangle in Figure B-2) consists of the source XML document (the
source tree) and the XSLT program itself (the stylesheet tree). The output of the transformation is a new XML
document (the result tree).

The XSLT 1.0 recommendation is located at http://www.w3.org/TR/xslt.

The XSLT and XPath supported by Office 2003 are strictly limited to version 1.0. As of the
time of this writing, XSLT 2.0 and XPath 2.0 are still works in progress.

When Microsoft was first getting started with XML, it released a preliminary version of XSL
(before it was re-factored as XSLT) as a part of Internet Explorer 5. Microsoft has
deprecated that version of "XSL," and you should avoid it. Any time you see the
namespace URI http://www.w3.org/TR/WD-xsl, the developer was using this older version,
and you'll have difficulties integrating that code with newer projects. Always check XSLT
code and documentation to make sure it uses the correct XSLT namespace URI:
http://www.w3.org/1999/XSL/Transform. For more information, see the "Unofficial MSXML
XSLT FAQ" at http://www.netcrucible.com/xslt/msxml-faq.htm.

B.1.3 What Is XPath?

XPath is short for "XML Path Language." It is an expression language for addressing parts of an XML document. XPath is
an essential part of XSLT and is used to select "nodes" in the XML source tree for further processing.

The XPath "data model" is fundamental to XSLT. Mathematically speaking, it defines the entire domain and range of
XSLT "functions"—in other words, the input to and output from XSLT stylesheets. It defines what a "tree" is, the seven
kinds of nodes that can occur in a tree (root, element, attribute, comment, processing instruction, namespace, and text
nodes), and how they relate to XML.

Before we get into some XSLT examples, let's take a look at some example XPath expressions. Each of the following
XPath expressions is called a location path and returns an object called a node-set. Rather than precisely defining its
behavior, we'll provide a description of what each expression selects. In that way, you can begin to learn some of the
XPath language by example.

/child::article/child::heading

Selects the heading element children of the root article element.

/article/heading

Equivalent to /child::article/child::heading.

/article/para[position()=1]

Selects the first para element child of the root article element.

/article/para[1]

Equivalent to /article/para[position()=1].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Equivalent to /article/para[position()=1].

/article/para[position()=last()]

Selects the last para element child of the root article element.

/article/para[last()]

Equivalent to /article/para[position()=last()].

self::node()

Selects the context node.

.

Equivalent to self::node().

./order

Selects the order element children of the context node.

order

Equivalent to ./order.

order/attribute::price

Selects the price attribute of each order element child of the context node.

order/@price

Equivalent to order/attribute::price.

order[@price > 30]/shipTo

Selects the shipTo element children of each order element child of the context node whose price attribute's value
is greater than 30.

These examples only illustrate a few of XPath's operators and functions. Aside from location paths, XPath also supports
the operators that you'd expect to find in a programming language, such as arithmetic (+, -, *, div, and mod) and logic
(and, or). You can use XPath to do math and to manipulate strings, as well as to select nodes. For a more thorough
investigation (as well as an explanation of how exactly such expressions are evaluated), see one of the books cited at
the beginning of this appendix. We'll come across a few more XPath expressions in this appendix (in the context of
XSLT).

XPath expressions appear as the values of various attributes in XSLT. For example, the select attribute of a number of
XSLT instructions (including the xsl:value-of, xsl:for-each, and xsl:apply-templates elements) contains an XPath expression.

The XPath 1.0 recommendation is located at http://www.w3.org/TR/xpath.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.2 A Simple Template Approach
All three of the approaches in this appendix include a source document, stylesheet, and result document.

To execute the example stylesheets in this appendix, you will need an XSLT processor. See
the sidebar in Chapter 3 called "Command-Line Tools" for more information on obtaining
and using a command-line XSLT processor.

Example B-1 shows the source document for our first example transformation.

Example B-1. An XML source document containing people's names

<people>

 <person>

 <givenName>Joe</givenName>

 <familyName>Johnson</familyName>

 </person>

 <person>

 <givenName>Jane</givenName>

 <familyName>Johnson</familyName>

 </person>

 <person>

 <givenName>Jim</givenName>

 <familyName>Johannson</familyName>

 </person>

 <person>

 <givenName>Jody</givenName>

 <familyName>Johannson</familyName>

 </person>

</people>

The stylesheet in Example B-2 looks much like the result document that it creates. Specifically, the content of the
<xsl:template match="/"> element is essentially an HTML template of the result, along with some placeholders for
dynamic content. The dynamic parts of the stylesheet below are highlighted.

Example B-2. A very simple stylesheet for combining people's names with HTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example B-2. A very simple stylesheet for combining people's names with HTML

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/">

 <html>

 <head>

 <title>Name list</title>

 </head>

 <table>

 <tr>

 <th>Given Name</th>

 <th>Family Name</th>

 </tr>

 <xsl:for-each select="/people/person">

 <tr>

 <td>

 <xsl:value-of select="givenName"/>

 </td>

 <td>

 <xsl:value-of select="familyName"/>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </html>

 </xsl:template>

</xsl:stylesheet>

Let's look at each element in this stylesheet, drilling down into the hierarchy as we go.

First, the root element, xsl:stylesheet, contains one required attribute, the version attribute, which has a value of 1.0. The
root element also declares the XSLT namespace, mapped to the xsl prefix. It doesn't matter what prefix you use, of
course, but the xsl prefix is the most widely accepted convention:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 ...

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

The xsl:output instruction gives the XSLT processor hints on how to serialize the result tree. In this case, method="html"
instructs the processor to output the result tree using HTML serialization rules (not necessarily well-formed XML), and
indent="yes" instructs it to insert some indentation into the result (to facilitate readability):

 <xsl:output method="html" indent="yes"/>

In this stylesheet, the root element contains an xsl:template element. In XSLT, any xsl:template element that has a match
attribute is called a template rule. The value of the match attribute determines what parts of the source document will
trigger this template rule. This stylesheet's one and only template rule matches the root node of the source document,
as indicated by the value of the simple slash (/):

 <xsl:template match="/">

 ...

 </xsl:template>

Many stylesheets contain a template rule that matches the root node in this way. It is often called the "root template
rule" and is sometimes considered analogous to the main function in a C or Java program, because it is effectively where
processing begins. The analogy breaks down however because it is possible to write a stylesheet that doesn't explicitly
include a root template rule. But for now, it's okay to think of it as the starting point for all processing.

The "root node" is not the same thing as the "root element." In XPath/XSLT, every
document contains a root node, which is the top-level, "invisible" container of everything
in the document, including the root, or document, element.

Inside the root template rule, we see some regular HTML markup:

 <html>

 <head>

 <title>Name list</title>

 </head>

 <table>

 <tr>

 <th>Given Name</th>

 <th>Family Name</th>

 </tr>

 ...

 </table>

 </html>

These elements (as a whole, including their end tags) are called literal result elements, because they effectively create
literal html, head, title, etc. elements in the result of the transformation (the result tree). In fact, any element not in the
XSLT namespace that occurs inside (as a child or descendant of) the xsl:template element is interpreted as a literal result
element.

Next, we see an element in the XSLT namespace, xsl:for-each. This element is an example of an XSLT instruction. An
instruction is any element inside (as a child or descendant of) the xsl:template element that is in the XSLT namespace.

 <xsl:for-each select="/people/person">

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </xsl:for-each>

The xsl:for-each instruction iterates over certain nodes from the source document (Example B-1), repeating the content
inside the element once for each selected node. In this case, the XPath expression /people/person returns a node-set
consisting of the person element children of the people element in the source document. For each of those elements, a
new table row (tr element) is created in the result, using a tr literal result element:

 <tr>

 ...

 </tr>

Then, inside each table row, there are two placeholders for dynamic content. The xsl:value-of instruction inserts the
string-value of the selected node into the result document. In this case, the first table column (a td element) will
contain the value of the givenName element child of the current node in XSLT processing (the person element being
processed), and the second table column contains the value of the familyName element:

 <td>

 <xsl:value-of select="givenName"/>

 </td>

 <td>

 <xsl:value-of select="familyName"/>

 </td>

The HTML result of this transformation is shown in Example B-3.

Example B-3. The result of running the stylesheet in Example B-2 against the XML
document in Example B-1

<html>

 <head>

 <META http-equiv="Content-Type" content="text/html; charset=UTF-16">

 <title>Name list</title>

 </head>

 <table>

 <tr>

 <th>Given Name</th>

 <th>Family Name</th>

 </tr>

 <tr>

 <td>Joe</td>

 <td>Johnson</td>

 </tr>

 <tr>

 <td>Jane</td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <td>Johnson</td>

 </tr>

 <tr>

 <td>Jim</td>

 <td>Johannson</td>

 </tr>

 <tr>

 <td>Jody</td>

 <td>Johannson</td>

 </tr>

 </table>

</html>

The number and order of table rows in the result (besides the first row, which is the table heading) corresponds to the
number and order of person elements in the source document. And, as you can see, the table column values correspond
to the values of the givenName and familyName elements in the source document.

The META HTML element in Example B-3 is automatically added to the result of the
transformation, according to XSLT's serialization rules for HTML. The XSLT processor does
not always have control over (or responsibility for) serialization, but when it does, it must
output a META element that indicates the document's character encoding. See
http://www.w3.org/TR/xslt#section-HTML-Output-Method for the precise rules.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.3 A Rule-Based Stylesheet
All XSLT processing is rule-based, it's just that some stylesheets take advantage of this fact more than others. Our first
stylesheet (Example B-2) only used one template rule (where match="/"). Now we'll look at a stylesheet that uses
multiple template rules.

Example B-4 shows the source document for this example transformation. It is a simple article that contains a heading
and multiple paragraphs. Inside the paragraphs, there is some "mixed content," i.e., elements that contain both text
and elements (e.g., the emphasis element).

Example B-4. A simple XML document containing marked-up text

<article>

 <heading>This is a short article</heading>

 <para>This is the <emphasis>first</emphasis> paragraph.</para>

 <para>This is the second paragraph.</para>

</article>

Example B-5 shows a simple XSLT stylesheet that is designed to process documents that look like the XML document in
Example B-4.

Example B-5. An XSLT stylesheet with multiple template rules

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">

 <html>

 <head>

 <title>

 <xsl:value-of select="/article/heading"/>

 </title>

 </head>

 <body>

 <h1>

 <xsl:value-of select="/article/heading"/>

 </h1>

 <xsl:apply-templates select="/article/para"/>

 </body>

 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

 </xsl:template>

 <xsl:template match="para">

 <p>

 <xsl:apply-templates/>

 </p>

 </xsl:template>

 <xsl:template match="emphasis">

 <i>

 <xsl:apply-templates/>

 </i>

 </xsl:template>

 <xsl:template match="strong">

 <xsl:apply-templates/>

 </xsl:template>

</xsl:stylesheet>

This stylesheet contains an xsl:output element too:

 <xsl:output method="xml" indent="yes"/>

In this case the result document will be serialized in XML format, so that the result will be well-formed XML (all
elements will have end tags, etc.).

The root template rule is very similar to the stylesheet we saw in Example B-2, except that here the values of the title
and h1 elements are dynamic:

 <xsl:template match="/">

 <html>

 <head>

 <title>

 <xsl:value-of select="/article/heading"/>

 </title>

 </head>

 <body>

 <h1>

 <xsl:value-of select="/article/heading"/>

 </h1>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </h1>

The xsl:value-of instructions see to it that both the title and h1 elements in the result will have the same value as the
heading element in the source document (Example B-4).

This snippet demonstrates how you can re-use the same text in the source document in multiple places in the result.
The string This is a short article will appear both as the resulting HTML document's title and as its top-level heading.

In fact, you can use as little or as much of the source tree as you want when creating a
result tree. XSLT leaves it up to you. You could copy the source tree verbatim into the
result tree (called an "identity transformation"), or you could create an entirely unrelated
result tree, ignoring what's in the source tree. The most useful stylesheets are usually
those that do something in between these two extremes.

So far, there is not much difference between this example and the first stylesheet we looked at (Example B-2). The root
template rule contains a basic template of the result document, along with some placeholders for dynamic content
(xsl:value-of instructions). What distinguishes this stylesheet from the first one is the use of the next XSLT instruction
that we see, the xsl:apply-templates instruction:

 <xsl:apply-templates select="/article/para"/>

The purpose of this instruction is to tell the XSLT processor to find a matching template rule for each of the nodes
returned by the XPath expression in the instruction's select attribute. In this case, the XPath expression /article/para
returns a node-set consisting of two elements. Looking back at the source document (Example B-4), we see that the
article root element contains two para elements. For each of these element nodes, the XSLT processor tries to find a
matching template rule.

The xsl:apply-templates instruction is similar to the xsl:for-each instruction, in that both instructions iterate over a set of
nodes that is selected using the instruction's select attribute. The difference between them is what happens to each
node. The content of the xsl:for-each element statically dictates what content to insert into the result tree; the same
thing happens for each node in the node-set. On the other hand, the xsl:apply-templates instruction dynamically decides
what to do with each node in the node-set. It acts like a big, invisible if/else statement, determining which template rule
to apply based on which node is currently being processed. Unlike the xsl:for-each instruction, it has the potential of
doing something different for every node that it processes.

In this case, it first looks for a template rule for the first para element. After it has found a matching template rule and
has finished applying it, it then looks for a template rule for the second para element. If there were more than two para
elements in the source document, then it would continue to do this until it has finished finding and applying a template
rule for each of the nodes in the node-set.

Where does the XSLT processor find these template rules? Well, the first place it looks is inside your stylesheet. We've
already seen that a template rule is any xsl:template element that has a match attribute, which means that our stylesheet
contains four template rules. (Their order doesn't matter.) In this case, since we're processing para elements, the
second template rule in the stylesheet matches, as determined by the value of its match attribute:

 <xsl:template match="para">

The value of the match attribute is called a pattern. In this case the pattern para successfully matches the para elements
that are being processed via xsl:apply-templates.

Inside this template rule, there is a p literal result element. Effectively, there will be one p element in the result tree for
each para element in the source tree:

 <p>

 <xsl:apply-templates/>

 </p>

The xsl:apply-templates instruction inside the p element has no select attribute. When the select attribute is absent, the
instruction is equivalent to <xsl:apply-templates select="child::node()"/>. This means "Process all child nodes, regardless of
their type." In this case, the current node being processed is a para element. The para elements in our source document
contain both elements and text, so the node-set to process will consist of both elements and text nodes. Since our
stylesheet does not explicitly define a template rule for text nodes, then one of XSLT's built-in template rules is applied.
The built-in rule for text nodes is to copy the node to the result tree. Thus, the p elements in the result tree will
effectively contain the same text as their corresponding para elements in the source tree.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively contain the same text as their corresponding para elements in the source tree.

Our stylesheet contains two other template rules, one for emphasis elements and one for strong elements:

 <xsl:template match="emphasis">

 <i>

 <xsl:apply-templates/>

 </i>

 </xsl:template>

 <xsl:template match="strong">

 <xsl:apply-templates/>

 </xsl:template>

The effect of these rules is that emphasis elements in the source document get transformed into i elements in the result
document, and strong elements in the source document get transformed into b elements in the result document.

Finally, we see the result of applying the stylesheet (Example B-5) to our simple XML source document (Example B-4).
Example B-6 shows the XML serialization of the result tree of this transformation.

Example B-6. The resulting XML document

<?xml version="1.0" encoding="utf-8"?>

<html>

 <head>

 <title>This is a short article</title>

 </head>

 <body>

 <h1>This is a short article</h1>

 <p>This is the <i>first</i> paragraph.</p>

 <p>This is the second paragraph.</p>

 </body>

</html>

As you can see, the title and h1 elements have the same value (from the source document's heading element). Also, the
para elements have been converted to p elements, the emphasis element has been converted to an i element, and the
strong element has been converted to a b element.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.4 A More Advanced Example
Our final example triplet of source document, stylesheet, and result document involves converting an XML format into
another XML format, rather than HTML. Example B-7 shows a simple XML document containing order information.

Example B-7. An XML document containing orders

<orders>

 <order>

 <item>Widget</item>

 <price>50</price>

 <quantity>3</quantity>

 </order>

 <order>

 <item>Thingamajig</item>

 <price>25</price>

 <quantity>2</quantity>

 </order>

 <order>

 <item>Whatchamacallit</item>

 <price>35</price>

 <quantity>1</quantity>

 </order>

</orders>

Example B-8 shows an XSLT stylesheet for converting this document into a summary format.

Example B-8. An XSLT stylesheet for processing orders

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

 <orderSummary>

 <expensiveItems>

 <xsl:apply-templates select="/orders/order[price >= 30]"/>

 </expensiveItems>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </expensiveItems>

 <cheapItems>

 <xsl:apply-templates select="/orders/order[price < 30]"/>

 </cheapItems>

 </orderSummary>

 </xsl:template>

 <xsl:template match="order">

 <xsl:element name="{item}">

 <xsl:attribute name="totalPrice">

 <xsl:value-of select="price * quantity"/>

 </xsl:attribute>

 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

This stylesheet introduces some more features of XPath and XSLT. Let's step through the stylesheet just as we did with
the first two examples.

This time, the xsl:output method does not include a method attribute. Since it defaults to xml (as long as the result
document's root element name is not html), the result will be serialized as a well-formed XML document. The indent
attribute asks the processor, once again, to add line breaks and indentation to make the resulting document easy to
read:

 <xsl:output indent="yes"/>

Inside the root template rule, we see some literal result elements. The orderSummary element will end up as the root, or
document, element of the result document. And it will contain two child elements, expensiveItems and cheapItems:

 <xsl:template match="/">

 <orderSummary>

 <expensiveItems>

 ...

 </expensiveItems>

 <cheapItems>

 ...

 </cheapItems>

 </orderSummary>

 </xsl:template>

Inside the expensiveItems element, we see the xsl:apply-templates instruction:

 <xsl:apply-templates select="/orders/order[price >= 30]"/>

The XPath expression /orders/order[price >= 30] selects all order element children of the root order element where the price

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XPath expression /orders/order[price >= 30] selects all order element children of the root order element where the price
child element's value is greater than or equal to 30. This test occurs inside square brackets and is called a predicate.
(XPath predicates are similar to WHERE clauses in SQL.) Predicates are useful for filtering out all but the nodes you want
from a given node-set. In this case, we only want to process certain orders—where the price is greater than 30.

Inside the cheapItems element, we see a similar instruction:

 <xsl:apply-templates select="/orders/order[price < 30]"/>

The XPath expression /orders/order[price < 30] also contains a predicate. But in this case, the expression selects all the
order elements that the first xsl:apply-templates instruction filtered out, namely the order elements where the price value is
less than 30.

Certain markup characters in XML have special meaning and must be escaped when they
occur inside element or attribute values. The XPath less-than operator (<), for example,
must be escaped (as <) when it occurs inside an attribute value (as in XSLT).

As we learned in the last section, the xsl:apply-templates instruction tells the XSLT processor to find matching template
rules for each of the nodes in the node-set selected by the select attribute. Our stylesheet in Example B-8 includes only
one other template rule:

 <xsl:template match="order">

This template rule happens to match all of the nodes selected by each of the two xsl:apply-templates instructions. In other
words, all of the order elements being processed match the pattern order (in the match attribute).

Inside the template rule, we see a new XSLT instruction, xsl:element:

 <xsl:element name="{item}">

 ...

 </xsl:element>

The purpose of the xsl:element instruction is to create an element in the result document. In that respect, it is similar to
a literal result element. However, unlike literal result elements, xsl:element instructions allow you to make the element
name dynamic. In this case, the name of the element will be the value of the item child element of the current node
(the item child of the order element being processed). The curly braces ({ }) are called an attribute value template and
are replaced with the value returned by the XPath expression between them (item in this case). Without the curly
braces, the XSLT processor would just create an item element (using the string item as the name of the new element,
rather than evaluating item as an XPath expression).

Inside the xsl:element instruction, we see an xsl:attribute instruction:

 <xsl:attribute name="totalPrice">

 ...

 </xsl:attribute>

As you may have already guessed, the xsl:attribute element creates an attribute in the result. In this case, the name of
the attribute will be totalPrice. The value of the totalPrice attribute is determined by the content of the xsl:attribute
element. Looking inside the xsl:attribute element, we see an xsl:value-of instruction:

 <xsl:value-of select="price * quantity"/>

Unlike previous examples, the XPath expression shown here is an arithmetic expression, consisting of a location path
multiplied by a location path. Actually, what happens is this: the location paths (price and quantity) are first evaluated
and converted to numbers. Then those numbers are multiplied by each other. Thus, the value of the totalPrice attribute
in the result will be the product of the values of the price and quantity child elements of the order element currently being
processed.

Finally, Example B-9 shows the result of applying the XSLT stylesheet (Example B-8) against the source document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, Example B-9 shows the result of applying the XSLT stylesheet (Example B-8) against the source document
(Example B-7).

Example B-9. The result of applying the stylesheet in Example B-8 against the XML
document in Example B-7

<?xml version="1.0"?>

<orderSummary>

 <expensiveItems>

 <Widget totalPrice="150"/>

 <Whatchamacallit totalPrice="35"/>

 </expensiveItems>

 <cheapItems>

 <Thingamajig totalPrice="50"/>

 </cheapItems>

</orderSummary>

As you can see, there is an element to correspond to each of the original order elements from Example B-7. The name
of each element varies according to the value of the original item child element (Widget, Whatchamacallit, or Thingamajig).
They are divided up into "expensive" and "cheap" items depending on their original price values. For example, since the
"Thingamajig" item's price was only 25 (which is less than 30), it ended up inside the cheapItems element. Finally, the
totalPrice attribute in each case consists of the original price value multiplied times the original quantity value.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.5 Conclusion
XSLT can be a difficult language to learn, and, for that reason, it's often been derided as an overly complex language.
In truth, XSLT is a small language with few primitives, few operators, and few functions. While there's no shame in
consulting the reference manual, it is easily a candidate for a language that you can learn comprehensively. So take
heart! With the right guidance and a little patience, it can be done.

Probably XSLT's most difficult construct to learn is also its most powerful: template rules. It is quite possible to work
with XSLT while avoiding this construct (thereby missing out on much of XSLT's power), and this is often how people
learn XSLT. The problem with this avoidance is that it tends to catch up with you sooner or later. If you can just master
this one aspect of XSLT (how template rules work), then you will have overcome the most difficult hurdle. After that,
everything should fall into place, and you will have a powerful new tool in your XML processing arsenal.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix C. The XSD You Need for Office
The purpose of this appendix is to introduce you to XML Schema Definitions (XSD). Microsoft uses XSD, or subsets of
XSD, throughout the Office suite. While XSD is a subject worthy of a book or several of its own, and many people prefer
to work with it only through tools, there is a core set of XSD features that will let you describe and define XML
vocabularies as well as understand how Office interprets XML information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.1 What Is XSD?
XML Schema Description (XSD), sometimes referred to as W3C XML Schema (WXS), is an XML vocabulary that lets you
describe other XML vocabularies so that programs can test whether a given document meets rules laid down in the
schema. XSD is defined by a set of three W3C Recommendations:

XML Schema Part 0: Primer

A tutorial for XML Schema, explaining Parts 1 and 2 in simpler terms with more examples and integration.
Available at http://www.w3.org/TR/xmlschema-0/.

XML Schema Part 1: Structures

An XML vocabulary for describing the structures of XML vocabularies, based on a mixture of markup and object-
oriented design. Available at http://www.w3.org/TR/xmlschema-1/.

XML Schema Part 2: Datatypes

A set of extensible types for describing the contents of XML elements and attributes, including things like
integers, decimals, and dates. Available at http://www.w3.org/TR/xmlschema-2/.

The mechanisms for defining structures and datatypes allow schema designers to create type systems that may be
extended or restricted. This brief appendix will focus on the parts of XSD you need to define document structures, and
leaves advanced features like extension, restriction, substitution groups, and keys for more detailed exploration in other
books.

For more information on XSD generally, see Eric van der Vlist's XML Schema (O'Reilly) or
Priscilla Walmsley's Definitive XML Schema (Prentice-Hall). The Primer noted above may
also be a good place to start.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.2 Creating a Simple Schema
As a simple example to get you started building schemas, examine the structure of Example C-1. You may have seen
the document before (it was Example A-1 in Appendix A), but this time do an inventory of the parts it contains.

Example C-1. A simple XML document for definition in a schema

<?xml version="1.0" encoding="us-ascii"?>

<authors>

 <person id="lear">

 <name>Edward Lear</name>

 <nationality>British</nationality>

 </person>

 <person id="asimov">

 <name>Isaac Asimov</name>

 <nationality>American</nationality>

 </person>

 <person id="mysteryperson"/>

</authors>

This document contains an authors element, which itself contains multiple person elements. Each person element has an id
attribute and may contain a name and a nationality element. For now, we'll treat all of the textual content of the elements
and attributes as text. One way to define this document in a schema is with a schema whose structure mirrors the
document shown in Example C-2, called a "Russian doll" schema after the wooden matruschkas. The names of the
elements being defined are in bold to make it easier to read.

Example C-2. A "russian doll" schema that describes Example C-1.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="person" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence minOccurs="0" >

 <xs:element name="name" type="xs:string" />

 <xs:element name="nationality" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This schema starts by defining the authors element, which will be the root element for the document, and its contents.
Because the authors element contains more than simple text, it is defined as an xs:complexType. That type contains a
sequence of person elements. The parts of the declaration that pertain only to the authors element are shown here:

<xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="person" maxOccurs="unbounded">

 ...

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The definition of the person element itself contains an xs:complexType containing an xs:sequence, this time specifying that
name and nationality elements (each of which only contain a string) may appear in that sequence. The xs:complexType for
the person element also contains a definition for the id attribute.

<xs:element name="person" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence minOccurs="0" >

 <xs:element name="name" type="xs:string" />

 <xs:element name="nationality" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

Because the name and nationality elements and the id attribute just contain strings, they are "simple" relative to the
complex types used for the elements that contain them, so a declaration like:

<xs:element name="name" type="xs:string" />

is sufficient to say "the name element will appear here and contain a string."

There are a few other pieces to examine in Example C-2, notably the maxOccurs and minOccurs attributes on xs:element,
and the use attribute on xs:attribute.

You can write the same schema in a more modular way, shown in Example C-3. Again, the names of elements are
bolded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bolded.

Example C-3. A different style of schema that describes Example C-1

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Instead of nesting all the declarations into one xs:element, this version separates all the declarations into separate
pieces. Only one new piece is needed to do this, the ref attribute on xs:element and xs:attribute. Writing schemas this way
is frequently simpler, as it allows you to reuse the same elements in multiple places and because it separates
information about how often an element or attribute may appear (maxOccurs, minOccurs, and use, which go with the ref)
from the information about an element or attribute's content (the type attribute, xs:complexType child element, and so
on).

When the xs:element and xs:attribute declarations are moved out to be immediate children of the xs:schema element, they
become global elements and attributes, accessible for use in any declaration. Elements also become possible root
elements for the document, so Office applications may ask which element to use as the root if given schemas written in
this style. (It's generally easier to keep xs:attribute declarations inside of the elements that use them, or in attribute
groups, described later, rather than as globals.)

If you load either of these schemas into an Excel XML map (as described in Chapter 6) and load Example C-1 into the
map, you'll get the result shown in Figure C-1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

map, you'll get the result shown in Figure C-1.

Figure C-1. An XML map using the schema in Example C-2 and Example C-3, loaded
with the data from Example C-1

While the two schemas are different, the model they describe to Excel (or Word, or any other schema-processing
software) is exactly the same. For some record/field based vocabularies, the simple structures presented in Examples
Example C-2 and Example C-3 are more than enough to get work accomplished.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.3 Schema Parts
The simple schemas in Examples Example C-2 and Example C-3 use a lot of pieces of XSD, and you can use them as
models for future schemas, but there are a lot more options available, even in the most readily usable subset of XSD.

C.3.1 Namespaces

The only namespace declaration to appear in either example was the namespace declaration for XSD itself:

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

In this case, the schema was defining a vocabulary that was not in a namespace, so there was no need to define an
additional namespace. If, as is typical, your schemas define vocabularies that are in a namespace, you'll need to define
the namespace on the root xs:schema element. Example C-4 shows a slightly modified version of Example C-3, defining
the vocabulary as belonging to the http://simonstl.com/ns/authors/ namespace. Changes to the schema appear in bold.

Example C-4. Example C-3 rewritten to support a namespace

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://simonstl.com/ns/authors/"

 xmlns="http://simonstl.com/ns/authors/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified" >

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

All of the changes in this case are at the top. The targetNamespace attribute tells the XSD processor what namespace is
being defined here, and the xmlns attribute that follows declares the default namespace to use that same namespace
URI. (If you leave off the xmlns attribute, the connections between the ref attributes and their corresponding xs:element
and xs:attribute declarations will break.) The elementFormDefault and attributeFormDefault attributes declare whether local
elements and attributes will be namespace-qualified by default. To match typical XML 1.0 practice, elements are
qualified and attributes are not.

Namespace handling in XSD can get extremely complicated if you start using unqualified
elements, qualified attributes, or mixing all of them by using the form attribute on
individual declarations. The easiest approaches are definitely either to work without
namespaces at all or to use qualified elements and unqualified attributes.

It's also worth noting that you don't have to define attributes used in documents for namespace declarations. XSD
doesn't consider them attributes and doesn't validate them.

C.3.2 Named and Anonymous Type Definitions

All of the types defined in Examples Example C-2, Example C-3, and Example C-4 were anonymous. Only the
xs:elements and xs:attributes had names, not the xs:complexType elements. Some of the declarations referenced a named
type, xs:string (a predefined datatype), but these schemas didn't create any named types of their own. If you want to
create named types for the complex type content of Example C-4, you could further modularize it as shown in Example
C-5.

Example C-5. Example C-4 rewritten to break out complex types

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://simonstl.com/ns/authors/"

 xmlns="http://simonstl.com/ns/authors/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified" >

 <xs:element name="authors" type="authorsContent" />

 <xs:complexType name="authorsContent">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:complexType>

 <xs:element name="person" type="personContent" />

 <xs:complexType name="personContent">

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Instead of this definition of the authors element:

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

the schema now uses:

 <xs:element name="authors" type="authorsContent" />

 <xs:complexType name="authorsContent">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

The actual xs:element now looks more like its simpler cousins that simply referenced a datatype, while the xs:complexType
is a separate component. This approach means that the xs:complexType can be referenced by multiple elements that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is a separate component. This approach means that the xs:complexType can be referenced by multiple elements that
have the same content model, and it also means that advanced schema developers can derive additional types from the
authorsContent type to create variations. (If you don't have an explicit reason to create named types, it is frequently
easier to avoid them altogether.)

C.3.3 Datatypes

The examples have been using datatypes, a special kind of named type, since Example C-2. This xs:element refers to the
xs:string datatype:

<xs:element name="nationality" type="xs:string"/>

The xs:string datatype is probably the most commonly used type, and it may be okay during the early development of
your schemas to define all content as being of type xs:string and then go through later and define more specific types.
XSD includes over forty types that you can use without further work, described briefly below.

xs:anyURI

Contains any URL or URI as its value.

xs:base64binary

Contains Base 64 encoded binary content, as defined in RFC 2045.

xs:boolean

Contains a true/false value, expressed as true, false, 0, or 1.

xs:byte

Contains an integer value between -128 and 127.

xs:date

Contains a date in the ISO 8601 [-]CCYY-MM-DD[Z|(+|-)hh:mm] format. The optional negative at the start
indicates if the year is before 0 AD, CC is the century, YY the year, MM the month, and DD the day. The [Z|(+|-
)hh:mm] is an optional time zone, where Z indicates Universal Time (UTC). For example, August 5, 2004 as
experienced in London might be written 2004-08-05Z, while December 7, 1941 BC on the east coast of the United
States would be written -1941-12-07-05:00.

xs:dateTime

Much like xs:date above, except that it adds time information, making the complete format [-
]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm], where the T is a capital letter T used as a divider, and hh:mm:ss is hours,
minutes, and seconds. Hours are expressed in 24-hour time. For example, August 5, 2004 at 9:51 P.M. as
experienced in London might be written 2004-08-05T21:51:00Z, while December 7, 1941 BC at 11:37:42 A.M. on
the east coast of the United States would be written -1941-12-07T11:37:42-05:00.

xs:decimal

Contains a number with one decimal point and an arbitrary number of digits. A leading negative sign is
permitted, as are any number of insignificant leading or following zeros. There is no restriction on the number
of digits used, but scientific notation (12.04E+2, for instance) is prohibited. Legal decimals include 0, 4.624, -
4.6424, 0010.1111220, and 11221523432399322146838572919572399102.556.

xs:double

A 64-bit floating point number, expressed using a decimal format with optional scientific notation, as well as the
values 0 (positive zero), -0 (negative zero), INF (positive infinity), -INF (negative infinity), and NaN (not a
number). Doubles are expressed internally as powers of two rather than powers of ten, so some rounding
errors may appear in calculations made with doubles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

errors may appear in calculations made with doubles.

xs:duration

A length of time, expressed using the format PnYnMnDTnHnMnS. The leading P is mandatory and the T marks the
boundary between date and time measurement, but the other letters are required only if used. For example,
P1Y is a duration of one year, P2M is a duration of two months, P1DT2H is one day and two hours, and PT20M03S
is twenty minutes and three seconds. You should probably avoid combining years or months with days and
smaller units, as comparisons can become very complicated.

xs:ENTITIES

Maps to the ENTITIES type in DTDs, used for unparsed entities. This is included for completeness, but your odds
of seeing or using it are slim.

xs:ENTITY

Like xs:ENTITIES, maps to the ENTITY type in DTDs, used for unparsed entities. This is included for
completeness, but your odds of seeing or using it are slim.

xs:float

Exactly like xs:double, except only a 32-bit floating point space.

xs:gDay, xs:gMonth, xs:gMonthDay, xs:gYear, xs:gYearMonth

These types represent durations of calendar time with an optional time zone. The first three refer to repeating
times (every 15th of the month, every June, every June 15th, respectively), while xs:gYear and xs:gYearMonth
refer to specific years and months within a year (the year 2110, June 2110).

xs:hexBinary

Like xs:base64binary, this holds encoded binary content, except that data is encoded by representing every byte
in text as its hexadecimal value.

xs:ID

Maps to the DTD type ID, which is used for attribute values that must be unique within a document. Unlike its
use in DTDs, it can be applied to both attribute and element content. Its value must start with a letter or
underscore, and be composed of letters and numbers, underscores, periods, and hyphens.

xs:IDREF

Maps to the DTD IDREF, which is used for attribute values that must match an ID value elsewhere in the
document. Unlike its use in DTDs, it can be applied to both attribute and element content. Like ID, its value
must start with a letter, underscore, or colon, and be composed of letters and numbers, underscores, periods,
and hyphens.

xs:IDREFS

Maps to the DTD IDREFS, and is just like xs:IDREF, except that multiple identifiers pointing to IDs may appear,
separated by spaces.

xs:int

Represents 32-bit integers, in the range from -2147483648 to 2147483647. Any number of leading zeros is
permitted, but no decimal points, scientific notation, INF, or NaN. Legal values include 20, -9743, 0, and
2147483645.

xs:integer

Like decimal, this represents all positive and negative integers with any number of digits allowed. No decimal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like decimal, this represents all positive and negative integers with any number of digits allowed. No decimal
point may appear. -0 and +0 are permitted, but they are considered equal. Legal values include -200, 420, and
2147483649.

xs:language

A language code like those used by the xml:lang attribute, based on RFC 1766. Values might include en-US for
English as spoken in the United States, fr-CA for Canadian French, or fr for French.

xs:long

A 64-bit integer, in the range -9223372036854775808 to 9223372036854775807. No decimal points, scientific
notation, INF, or NaN are permitted.

xs:Name

An XML Schema version of the XML 1.0 Name production, which must start with a letter, underscore, or colon,
and be composed of letters, numbers, periods, underscores, hyphens, and colons.

xs:NCName

Like xs:Name, except that colons are prohibited.

xs:negativeInteger

Exactly like xs:integer, except that no positive integers or zero are allowed.

xs:NMTOKEN

An XML Schema version of the XML 1.0 NMTOKEN production, which allows values containing letters, numbers,
periods, colons, underscores, and hyphens.

xs:NMTOKENS

Just like xs:NMTOKEN, except that multiple tokens may appear separated by whitespace.

xs:nonNegativeInteger

Exactly like xs:integer, except that negative values are prohibited. Zero is allowed.

xs:nonPositiveInteger

Exactly like xs:integer, except that positive values are prohibited. Zero is allowed.

xs:normalizedString

A string of characters that will be reported as if all whitespace characters are spaces—no tabs, linefeeds, or
carriage returns will be reported to the program.

xs:NOTATION

An XML Schema version of the rarely-used XML 1.0 NOTATION type for attributes.

xs:positiveInteger

Exactly like xs:integer, except that negative values are prohibited. Zero is not allowed.

xs:QName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A namespace-qualified name. The prefix used in the value must be in scope, declared in this element or in an
ancestor element, and the application will be told of the namespace URI and the local portion of the name.

xs:short

A 16-bit integer, in the range -32768 to 32768. Decimal points are forbidden.

xs:string

Any legal XML text you like.

xs:time

Time information represented in a 24-hour format as hh:mm:ss[Z|(+|-)hh:mm], where hh:mm:ss is hours,
minutes, and seconds and the rest is an optional timezone. For example, 9:51 A.M. as experienced in London
might be written 09:51:00Z, while 11:37:42 P.M. on the east coast of the United States would be written
23:37:42-05:00.

xs:token

Just like xs:string, except that all whitespace is collapsed down to single spaces and leading and trailing
whitespace is removed.

xs:unsignedByte, xs:unsignedInt, xs:unsignedLong, xs:unsignedShort

Positive 8-bit, 32-bit, 64-bit, and 16-bit integers, respectively. Zero is permitted in all of these, but negative
numbers, decimal points, INF, and NaN are not.

XML Schema Part 2 provides a set of facilities for creating additional constraints on these datatypes using a facet-based
system, but those facilities definitely deserve a book of their own. For most applications, one of these basic types will be
acceptable.

C.3.4 Varied Document Structures

While some XML documents, particularly those spreadsheet or database contents, only need to define containers and
possibly a sequence, richer documents often contain a much wider variety of possibilities. Sections may be optional or
appear repeatedly, but may also be replaced with a variety of different choices. Choices may themselves include or be
included by sequences. XML Schema offers support for many different kinds of document structure.

Examples Example C-2 through Example C-5 all used the xs:sequence element and the minOccurs and maxOccurs
attributes shown below.

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name" />

 <xs:element ref="nationality" />

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

The xs:sequence element is called a compositor, imposing order on its child xs:element particles. There are two other
compositors available: xs:choice and xs:all. The xs:choice element permits one of a list of particles to appear, while xs:all
requires that all particles must appear but doesn't put constraints on the order in which they appear. In addition to
setting rules for their particles, compositors also act as a group, and you can specify minOccurs or maxOccurs for the
group as a whole. (The default value for both the minOccurs and maxOccurs is one.)

If you wanted to define a person element that included both name and nationality but weren't concerned about the order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you wanted to define a person element that included both name and nationality but weren't concerned about the order
in which they appeared, you could use:

 <xs:element name="person">

 <xs:complexType>

 <xs:all>

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:all>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

(Note that the xs:attribute isn't part of the group. Attributes are part of the type, but the compositors only apply to
element content.)

If, on the other hand, you wanted to define a person element that could contain a choice of a name or an alias, you might
use:

 <xs:element name="person">

 <xs:complexType>

 <xs:choice minOccurs="0" >

 <xs:element ref="name" />

 <xs:element ref="alias" />

 </xs:choice>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

The particles inside of an xs:sequence or xs:choice may be xs:element, xs:sequence, xs:choice, xs:any, or xs:group elements.
(xs:all may only contain xs:element.) For example, a choice might be between an element and sequence of choices:

<xs:element name="pachinko">

 <xs:complexType>

 <xs:choice>

 <xs:element name="simple" type="xs:string" />

 <xs:sequence>

 <xs:choice>

 <xs:element name="choice1" type="xs:string" />

 <xs:element name="choice2" type="xs:string"

 </xs:choice>

 <xs:choice>

 <xs:element name="choiceA" type="xs:string" />

 <xs:element name="choiceB" type="xs:string"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="choiceB" type="xs:string"

 </xs:choice>

 </xs:sequence>

 </xs:choice>

 </xs:complexType>

</xs:element>

In this case, the pachinko element may contain an element named simple, or it may contain the sequence. The sequence
requires either a choice1 or a choice2 element (but not both), followed by either a choiceA or a choiceB element (again, not
both.)

XML Schema prohibits certain combinations of compositors, requiring that schema structures always provide a
deterministic path to a particular combination of elements; the processor should never have to keep two possible
choices in mind while it works out which particle a particular element matches. Most simple schemas will never
encounter these problems, but more complex ones can fall afoul of them. For more detail, see Chapter 7 of Eric van der
Vlist's XML Schema.

C.3.5 When Anything Is Allowed

If you aren't concerned about what goes into a particular element or particle, you can use the xs:any element for its
content and xs:anyAttribute to specify its attributes. You can limit the contents to particular namespaces using the
namespace attribute and tell the schema validator to skip the contents using the processContents attribute. For example, if
you wanted to create an extension element that permitted any content and had any namespaces, you might declare it
like:

<xs:element name="extension">

 <xs:complexType>

 <xs:sequence minoccurs="0" maxOccurs="unbounded">

 <xs:any namespace="##any" processContents="skip" />

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="skip" />

 </xs:complexType>

</xs:element>

The namespace attribute can hold a namespace URI (or URIs, separated by whitespace), as well as one of four wildcards:

##local

Only elements (or attributes, for xs:anyAttribute) in no namespace at all may appear.

##targetNamespace

Only elements (or attributes, for xs:anyAttribute) in the schema's target namespace may appear.

##any

Elements (or attributes, for xs:anyAttribute) in any namespace at all may appear.

##other

Only elements (or attributes, for xs:anyAttribute) that are not in the schema's target namespace may appear.

The xs:any element must appear within an xs:sequence or xs:choice, while the xs:anyAttribute may appear in
xs:attributeGroup as well as xs:complexType and related elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:attributeGroup as well as xs:complexType and related elements.

C.3.6 Model Groups

If you have lots of declarations you'll be using frequently but don't need to be able to extend or restrict them, you can
use the xs:group element, first to define a group of declarations and then to reference them.

For example, the declaration for the person element in Example C-3 looked like:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

</xs:element>

If you planned to reuse this combination of name and nationality but not the id attribute, you could create a model group
holding the sequence and reference it inside the xs:complexType. The new version would look like:

<xs:element name="person">

 <xs:complexType>

 <xs:group ref="name-nationality" />

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

</xs:element>

<xs:group name="name-nationality">

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

</xs:group>

You can do the same thing to attributes if you have a group of attributes to be applied repeatedly. To create a set of
attributes referring to URLs and giving MIME types of the desired content, you might create an xs:attributeGroup like this
one:

<xs:attributeGroup name="retrievalInformation" >

 <xs:attribute name="href" type="xs:anyURI" />

 <xs:attribute name="mime-type" type="xs:string"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:attribute name="mime-type" type="xs:string"/>

</xs:attribute>

<xs:element name="link">

 <xs:complexType>

 <xs:attributeGroup ref="retrievalInformation" />

 </xs:complexType>

</xs:element>

The link element could now have attributes named href and mime-type.

The xs:group element may contain any compositor (xs:sequence, xs:choice, or xs:all) and its contents, while xs:attributeGroup
is limited to containing xs:attribute, xs:attributeGroup, or xs:anyAttribute. If you need to put both elements and attributes in
a group, use xs:complexType instead.

C.3.7 Empty Content, Mixed Content, and Default Values

XML Schema can support a few more types of content than have been shown so far, as well as supply content to
documents in some cases. The simplest case that hasn't been shown yet is the creation of an element (like br in HTML)
that must always be empty. The easiest way to do this is to use an xs:complexType element that doesn't reference any
elements, like this:

<xs:element name="br">

 <xs:complexType>

 </xs:complexType>

</xs:element>

If you want to add attributes, they can be placed in the xs:complexType element without changing the emptiness of the br
element.

Another common case is mixed content, where text and elements appear on the same level of a document. A classic
case is a paragraph that contains bold, italic, and underlined text. In simple HTML, this might look like:

<p>This is bold, this is <i>italic</i>, and this is

<u>underline</u>.</p>

To make this work, you need to create a definition of the p element that contains an xs:complexType element whose
mixed attribute is set to true:

<xs:element name="p">

 <xs:complexType mixed="true">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="b" type="xs:string" />

 <xs:element name="i" type="xs:string" />

 <xs:element name="u" type="xs:string" />

 </xs:choice>

 </xs:complexType>

</xs:element>

The choice will permit as many b, i, and u elements as necessary, while mixed="true" will permit text to be mingled with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The choice will permit as many b, i, and u elements as necessary, while mixed="true" will permit text to be mingled with
any of them.

If instead of these fancy features you just want to create a definition that provides a default value to an element or
attribute if one is not provided, you can use the default attribute on simple element or attribute declarations. To create
an element called name whose value defaults to Winky if the element is present but empty, you would write:

<xs:element name="name" default="Winky" />

To create an attribute named flavor whose value defaults to vanilla, you would write:

<xs:attribute name="flavor" default="vanilla" />

Unlike the element, the default value will only be applied if the attribute is absent. You can also fix a value to an
attribute or element. If you insisted that the flavor must always be vanilla, you could instead use:

<xs:attribute name="flavor" fixed="vanilla" />

The flavor attribute's value will default to vanilla if the attribute isn't present in the document, and an error will be
reported if a document contains a flavor attribute with any other value.

C.3.8 Annotations

The last feature of XML Schema worth noting here is its support for annotations. Every single element in XML Schema
permits an xs:annotation element as its first child (except xs:annotation itself, that is). The xs:annotation element may
contain any number of xs:documentation and xs:appinfo elements, and the content models for both of those are wide
open.

The xs:appinfo element is intended for machine-readable content, while the xs:documentation element is intended for
human-readable content. Both accept a source attribute that points to a URI, and xs:documentation also accepts an
xml:lang attribute that specifies the human language in which the documentation appears. At present, Office ignores
both of these, but xs:documentation in particular is an opportunity for you to provide additional information in your
schemas. For example, to document the flavor attribute's peculiar status, a careful schema writer might modify its
definition:

<xs:attribute name="flavor" fixed="vanilla">

 <xs:annotation>

 <xs:documentation xml:lang="en-US">

 While many people like multiple flavors of ice cream,

 the manager of this project insists that everyone must

 have vanilla, and accepts no questions on the matter.

 </xs:documentation>

 </xs:annotation>

</xs:attribute>

You can also use HTML, DocBook, or the XML vocabulary of your choice within xs:documentation, and then use other
programs or stylesheets to create more formal documentation using this information.

C.3.9 Other Features

XML Schema defines a wide variety of other features, including extension and restriction of both structural types and
datatypes, combining types, inclusion and export of external schemas, substitution groups, keys for establishing
uniqueness among parts of a document, a mechanism for suggesting which schema applies to a document, and
attributes that let parts of a document identify which types within the schema apply to them. Office doesn't support
many of these features, and many of them have complex interactions with data models. If you need more information
on these features, please consult a book dedicated to XML Schema.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.4 Working with XML Schema
While XML Schema is at the heart of many XML-based projects, it has a few usability issues. You've no doubt noticed
that it's verbose, a common problem for anything using XML. Its structures, even using the relatively simple subset of
features shown here, can rapidly become complicated, and hunting through these structures to figure out in which
choice or sequence a particular component is used is really not much fun. When you've created a schema yourself, it's
generally tolerable, but interpreting large schemas created by other people is a challenge, especially when you're
reading the structure through XML tags.

Most people who work with XML Schema seem to do so from behind the relative safety of tools, notably the commercial
XML Spy (http://www.xmlspy.com/). There are many schema editors, some free, some not, all with their own pluses
and minuses. Graphic diagrams can be a relief after pointy brackets. Some developers still like to work in text, but not
directly in XML Schema, and they may be able to use the tools described in Appendix D for much of their schema
creation work.

For some cases, it may be enough to infer schemas from existing documents. Excel 2003 has this capability built into,
but getting to those schemas is a bit difficult, as described in Chapter 7. Both the Trang program described in Appendix
D and Microsoft's XSDInference toolkit, at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnxmlnet/html/xsdinference.asp, can give you an instant schema if you need to work with the schema separately.

The enormous feature set provided by the XML Schema recommendations gives developers a huge project to work on,
and interoperability between schema tools remains tricky. The applications within Microsoft Office generally work
directly with their own preferred subsets of XML Schema, and those subsets seem generally reliable, but you should
definitely expect to test your schemas in Office and make sure they behave as you (and your users) expect.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix D. Using DTDs and RELAX NG Schemas
with Office
While Microsoft has chosen to use XSD as the schema language throughout its product line, there are at least two other
strong schema languages in regular use today. Both Document Type Definitions (DTDs) and RELAX NG (pronounced
"relaxing" but no longer an acronym) are much simpler than XSD, and both offer features that go beyond those in XSD,
though in different ways. Developers who need or prefer to integrate DTDs or RELAX NG with Microsoft Office can do so
by converting these schemas into XSD with Trang, a very simple but powerful translation tool.

If you need a more detailed explanation of DTDs, any introductory XML book should provide a lot of information. For a
more thorough explanation of RELAX NG, see Eric van der Vlist's RELAX NG (O'Reilly).

XML.com also has a number of excellent articles on RELAX NG and RELAX NG compact syntax that go beyond the
coverage in this appendix. To test RELAX NG schemas and perform conversions of either DTDs or RELAX NG schemas
into XSD, you'll want to download James Clark's Trang package from
http://www.thaiopensource.com/relaxng/trang.html. Trang requires that you have a Java runtime installed, but
includes all the Java classes it needs in two Java JAR packages.

If you're working with existing vocabularies that use DTDs, you'll definitely need to know
how to work with DTDs. Otherwise, if you're creating new vocabularies, you may want to
work with RELAX NG instead.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

D.1 What Are DTDs?
Document Type Definitions express the allowed elements and attributes in a certain document type and constrain the
order in which elements must appear within that document type. A DTD is often composed of a single file, which
contains declarations defining the element types and attribute lists. (In theory, a DTD may span more than one file;
however, the mechanism for including one file inside another—parameter entities—is outside the scope of this
appendix.)

D.1.1 Element Type Declarations

An element is the actual instance of the structure as found in an XML document, whereas the element type defines the
element, giving it a name and a structure. The form of an element type declaration is:

<!ELEMENT element-name contentspec>

The allowable content defined by contentspec is defined in terms of a simple grammar, which allows the expression of
sequence, alternatives, and iteration within elements. For a formal definition of the element type declaration, see
Section 3.2 of the XML 1.0 specification at http://w3.org/TR/REC-xml#NT-elementdecl. Table D-1 introduces the most
common constructs.

Table D-1. Element type content specifications
Content specification Meaning

<!ELEMENT e (#PCDATA)>
The e element may contain character data—that is, text (and possibly entity and
character references).

<!ELEMENT e EMPTY>
The e element has no content—that is, it can only appear as <e/> or <e></e>.

<!ELEMENT e ANY>
The e element may contain character data or any other element defined in the DTD.

<!ELEMENT e (a+)>
The e element must contain at least one a element and may contain multiple a elements.
(The plus means "one or more.")

<!ELEMENT e (a,b*,c+)> The e element must contain the following sequence: one a element, followed by zero or
more b elements, followed by one or more c elements. The asterisk means "zero or
more."

<!ELEMENT e (#PCDATA|b)*>
The e element may contain b elements or character data, and they can all be mixed
together.

<!ELEMENT e (a|b|c)* >
The e element may contain zero or more a, b, or c elements, in any order.

For a document to be valid, the DTD must provide an element type declaration for every element used in the document
and the contents of all of those elements must conform to the content models specified in the element type declaration.
Element type declarations leave off one important aspect of elements, however: attributes.

D.1.2 Attribute List Declarations

Inside a DTD, permissible attributes are specified on a per-element basis. An attribute list declaration takes this form:

<!ATTLIST element-name attribute-definitions >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the attribute definitions, you have to identify the attribute's name and type, whether the attribute is optional or
required, and, if necessary, the attribute's default value. Unlike elements, you can specify default values for attributes,
which are inserted by an application when it parses the XML document, even if they're not explicitly written in the
document. Attributes can store all kinds of content, but the main types used are CDATA (character data, including entity
and character references), ID (identifiers whose value must be unique within the document), and IDREF and IDREFS
(which point to ID values). Attribute definitions may also specify a list of acceptable values rather than a generic type.
Attribute types are only a subset of the XSD types described in Appendix C—all of them are textual. Table D-2 shows
some common attribute definitions.

Table D-2. Attribute definitions
Attribute definition Meaning

subject CDATA #REQUIRED
The subject attribute must always be present and it should contain only character
data. It has no default value.

rating CDATA #IMPLIED
The rating attribute is allowed, but not mandatory. It has no default value.

play (scissors|paper|stone) "stone"
The play attribute may take only the values scissors, paper, or stone. If it is not
specified, it is assumed to take the default value stone.

color CDATA #FIXED "purple"
The color attribute must take the value purple. If it is not specified on the element, the
processing application provides purple as a default value.

Here's a complete attribute declaration for a fictitious animals element, which must have a name, either two or four legs,
and, optionally, a note field:

<!ATTLIST animal

 name CDATA #REQUIRED

 legs (two|four) "four"

 notes CDATA #IMPLIED >

While attributes can be very useful for annotations, Microsoft Office tends to use element content for information that's
presented directly. You can certainly use attributes, but you may find it easier to stick with elements unless you have a
particular reason to choose attributes.

D.1.3 Putting it Together

To demonstrate a complete DTD, we'll explore a document and its DTD. The document is shown in Example D-1, while
the DTD is shown in Example D-2.

Example D-1. A valid XML document

<?xml version="1.0" encoding="us-ascii"?>

<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">

<authors>

 <person abbrev="edd">

 <name>Edd Dumbill</name>

 <nationality>British</nationality>

 </person>

 <person abbrev="simonstl">

 <name>Simon St.Laurent</name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <name>Simon St.Laurent</name>

 <nationality>American</nationality>

 </person>

 <person abbrev="vdv">

 <name>Eric van der Vlist</name>

 <nationality>French</nationality>

 </person>

</authors>

The DOCTYPE declaration at the top of Example D-1 assumes that the DTD file shown in Example D-2 has been placed
on a web server at example.com. Note that the document type declaration specifies the root element of the document,
not the DTD itself. (You could use the same DTD for documents that used person, name, or nationality as the root element
of a valid document.)

Example D-2. The DTD for Example D-1

<!ELEMENT authors (person)* >

<!ELEMENT person (name,nationality)>

<!ATTLIST person

 abbrev CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT nationality (#PCDATA)>

The DTD defines the structures you find in the document. There is an authors element type that may contain zero or
more person elements. In this document, we have three person elements. There is a person element type that must
contain a name element followed by a nationality element. Each of the person elements in the document has those parts in
that order. The person elements are required to have an attribute named abbrev, and all of them do. Finally, the name
element type and the nationality element type can only hold textual content. All of the name and nationality elements here
do that.

A validating XML 1.0 processor is required to check the input document against its DTD. If it does not validate, errors
are reported to the application, which typically rejects the document. Non-validating processors will accept the
document even if it doesn't conform to structures defined by the DTD, and just use the DTD for things like default
values for attributes. Microsoft Office and most Microsoft tools use non-validating XML 1.0 parsers. (Schema validation
is a separate process, defined long after XML 1.0 was finished.)

D.1.4 Other DTD Features

DTDs include a number of other features that aren't covered here. Parameter entities and conditional sections make it
possible for developers to create more flexible DTDs, turning features on and off or reusing them. Documents can
contain internal subsets in the DOCTYPE declaration, adding their own information to the document type declaration.
Entity declarations make it possible for developers to create named references to content, making it simpler to include
external files or characters not easily accessed from the keyboard. Notation declarations and unparsed entities make it
possible to create metadata and include non-XML content, though these are rarely used. DTD do not support
namespaces or XML Schema datatypes directly at all.

While Microsoft Office applications can process these features when opening a file (except for notations and unparsed
entities, which it ignores), all of the DOCTYPE information is removed when the document is saved back out. Because
XSD provides no support at all for entities, you can't preserve the entity information from an XML DTD in a schema and
use that with Office.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

D.2 What Is RELAX NG?
The W3C XML Schema process began with high ambitions to be a more powerful alternative to DTDs, but many people
found XSD to be more trouble than it was worth. XSD is difficult for many people to create, difficult to process, has
areas (notably block and final) that are fairly contentious, and not everyone wants to define their documents in terms of
object inheritance anyway. While XSD has done well in some fields of XML work, and Microsoft has implemented it
throughout its product line, there was a plain need for an alternative.

RELAX NG, which has developed largely from work done by XML pioneers Murata Makoto and James Clark, has
mathematical foundations rather than the ad hoc object structures used by XSD. Fortunately, you don't need to know
the math to use the schemas, but these foundations make it a lot simpler to both use and process RELAX NG. RELAX
NG comes in both an XML syntax and a compact syntax, but we'll focus on the compact syntax here because it's
generally quite approachable.

RELAX NG is being developed at the Organization for the Advancement of Structured Information Standards (OASIS), a
different specification development organization from the W3C, and standardized through the International Organization
for Standardization (ISO) as part of the Document Schema Definition Languages (DSDL) effort. For more on OASIS
development of RELAX NG, see http://www.oasis-open.org/committees/relax-ng/. For more on the DSDL work, see
http://dsdl.org.

D.2.1 A Basic RELAX NG Schema

For our first RELAX NG schema, we'll start with Example D-3, which is the same document shown in Example D-1
except without the DOCTYPE declaration.

Example D-3. A sample XML document

<?xml version="1.0" encoding="us-ascii"?>

<authors>

 <person abbrev="edd">

 <name>Edd Dumbill</name>

 <nationality>British</nationality>

 </person>

 <person abbrev="simonstl">

 <name>Simon St.Laurent</name>

 <nationality>American</nationality>

 </person>

 <person abbrev="vdv">

 <name>Eric van der Vlist</name>

 <nationality>French</nationality>

 </person>

</authors>

Described in RELAX NG Compact syntax, the schema for this document can resemble the schemas shown in Examples
Example D-4 and Example D-5. Example D-4 uses a nested syntax.

Example D-4. A nested RELAX NG schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example D-4. A nested RELAX NG schema

element authors {

 element person {

 attribute abbrev {text},

 element name {text},

 element nationality {text}

 }*

}

The curly braces work much like those in C structs, defining the contents of named components. This schema defines
an authors element, which contains zero or more person elements. (The zero or more comes from the asterisk after the
closing brace for person.) The person elements have mandatory abbrev attributes and name and nationality elements, all of
which store their contents as text. If you prefer a more declarative approach, RELAX NG also supports that option.
Example D-5 uses a more DTD-like declaration approach.

Example D-5. A declarative RELAX NG schema

start=authors

authors = element authors { person* }

person = element person { abbrev, name, nationality }

abbrev = attribute abbrev {text}

name = element name {text}

nationality = element nationality {text}

This approach reads differently, but describes the same structure. Instead of just starting with the authors element, it
explicitly lists possible root elements in the start declaration. Each declaration describes the contents of one element or
attribute. The difference between attribute and element declarations is much smaller in RELAX NG than in XSD or in
DTDs, and the abbrev attribute is attached to the person element just like the name and nationality elements. Elements
and attributes that contain text just list text as their content.

To validate documents against these schemas, you can use James Clark's Jing tool, which is included with Trang, the
tool we'll be using later in this appendix to convert RELAX NG types into XSD. Go to the directory where you've
unzipped Trang, and you can run the validator by typing the following:

java -jar jing.jar -c appD-4.rnc appD-3.xml

If there aren't any errors in the document, Jing does its work and doesn't report anything. Otherwise, it reports errors
like:

C:\trang>java -jar jing.jar -c appD-4.rnc appD-3broken.xml

C:\trang\appD-3broken.xml:5: error: attribute "country" not allowed at this point; ignored

C:\trang\appD-3broken.xml:9: error: unknown element "address"

This can be a useful diagnostic, but in work with Office you'll probably convert your RELAX NG to XSD.

D.2.2 Advanced Features: Namespaces and Datatypes

RELAX NG goes well beyond the capabilities of DTDs and into the features that XSD provides. RELAX NG provides
simple support for namespaces, so adding a namespace to the schema shown in Example D-5 requires adding only one
line, as shown in Example D-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

line, as shown in Example D-6.

Example D-6. A declarative RELAX NG schema with namespaces

default namespace = "http://example.com/authors/"

start=authors

authors = element authors { person* }

person = element person { abbrev, name, nationality }

abbrev = attribute abbrev {text}

name = element name {text}

nationality = element nationality {text}

Now all of the elements without prefixes—authors, person, name, and nationality—are in the http://example.com/authors/
namespace. Applying this to the non-namespaced Example D-3 produces an error:

C:\trang>java -jar jing.jar -c appD-6.rnc appD-3.xml

C:\trang\appD-3.xml:2: error: unknown element "authors"

Adding a default namespace declaration to the root element clears things up:

<authors xmlns="http://example.com/authors/">...

Jing no longer reports any errors. You can also define namespaces for prefixed elements and attributes, using slightly
different syntax:

namespace auth = "http://www.example.com/authors/"

start=auth:authors

auth:authors=element auth:authors {auth:person * }

...

These namespace declarations are most commonly made at the top of the schema, and they apply to all the
declarations that follow them.

RELAX NG doesn't provide its own set of datatypes, preferring to let developers choose their own set. For the most part
—and conveniently compatible with Office's expectations—RELAX NG developers use the datatypes defined by XML
Schema. This requires an extra declaration, and then you can use XSD types. For example, to define the text contents
of the name and nationality elements as xsd:string and the abbrev attribute's contents as xsd:token, we'll change the
RELAX NG schema to use datatypes, as in Example D-7.

Example D-7. A declarative RELAX NG schema using datatypes

default namespace = "http://example.com/authors/"

datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

start=authors

authors = element authors { person* }

person = element person { abbrev, name, nationality }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

person = element person { abbrev, name, nationality }

abbrev = attribute abbrev {xsd:token}

name = element name {xsd:string}

nationality = element nationality {xsd:string}

You can use any of the of the XML Schema datatypes and constrain their facets, if needed.

For a more thorough introduction to RELAX NG Compact syntax, see Michael Fitzgerald's
tutorial at http://www.xml.com/pub/a/2002/06/19/rng-compact.html. The specification for
RELAX NG compact syntax is available at http://www.oasis-open.org/committees/relax-
ng/compact-20020607.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

D.3 How Do I Convert DTDs and RELAX NG to XSD?
Whether you're working with legacy schemas or simply prefer to work in these simpler frameworks, you need to
convert these forms to XSD for work in Office. As noted earlier, Trang, available from
http://www.thaiopensource.com/relaxng/trang.html, offers an extremely easy path from DTDs or RELAX NG to XSD. At
its core, Trang is a simple command-line utility that takes XML sample documents, DTDs, RELAX NG, RELAX NG
Compact syntax, or XSD and converts them into DTDs, RELAX NG, RELAX NG Compact syntax, or XSD. For working
with Office, you'll mostly be converting DTDs and RELAX NG to XSD, though perhaps you'll want to convert XSD to
other forms to use with other systems.

RELAX NG is more expressive than XSD in a number of ways. If you really take advantage
of RELAX NG, the limitations of XSD will be fairly apparent, and Trang can't convert all of
RELAX NG's capabilities to XSD. If you stick with the subset shown in this appendix,
however, you should not encounter such losses.

The basic syntax for using Trang looks like:

java -jar trang.jar sourceFile destinationFile

By default, the kind of transformation Trang performs depends on the file extensions of the source and destination files,
shown in Table D-3.

Table D-3. File extensions used by Trang
File extension Meaning

.xsd W3C XML Schema (XSD) file (output only)

.dtd XML 1.0 Document Type Definition (DTD)

.rng RELAX NG file, XML syntax

.rnc RELAX NG file, compact syntax

.xml XML instance file (source only)

Converting the DTD shown in Example D-2 to XSD is as easy as typing:

java -jar trang.jar appD-2.dtd appD-8.xsd

at the command prompt. The resulting XSD file is shown in Example D-8.

Example D-8. The result of converting the DTD in Example D-2 to XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute name="abbrev" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

</xs:schema>

Next, we'll convert the RELAX NG schema shown in Example D-7 to the XSD shown in Example D-9:

java -jar trang.jar appD-7.rnc appD-9.xsd

The RELAX NG schema in Example D-7 included some features that weren't in the DTD, notably namespaces and
datatypes, reflected in the resulting XSD, which now includes a targetNamespace attribute and an xs:token for the abbrev
attribute. Trang also prefixes child element names with authors—not necessary, but it does make some aspects of the
schema clearer if there are multiple namespaces used.

Example D-9. The result of converting the RELAX NG in Example D-7 to XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://example.com/authors/"

xmlns:authors="http://example.com/authors/">

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="authors:person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="authors:name"/>

 <xs:element ref="authors:nationality"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element ref="authors:nationality"/>

 </xs:sequence>

 <xs:attributeGroup ref="authors:abbrev"/>

 </xs:complexType>

 </xs:element>

 <xs:attributeGroup name="abbrev">

 <xs:attribute name="abbrev" use="required" type="xs:token"/>

 </xs:attributeGroup>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

</xs:schema>

If you need to create an XSD from a sample document, you can also do that. Running Trang on our sample document
to create an XSD from Example D-3 produces the result shown in Example D-10.

Example D-10. The result of converting the XML document in Example D-3 to XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute name="abbrev" use="required" type="xs:NCName"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:NCName"/>

</xs:schema>

Example D-10 handles the attribute declaration for abbrev differently from the other transformations, and has less
information generally than the ones generated from the DTD and the RELAX NG schema. For quick and dirty work, this
kind of transformation may be very useful, though the results are only as good as the sample documents you provide.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kind of transformation may be very useful, though the results are only as good as the sample documents you provide.

For a more sophisticated approach to generating schemas from sample documents, see
http://examplotron.org. Examplotron lets you annotate the sample documents to provide
additional information used in generating schemas. Examplotron produces RELAX NG,
which Trang can then convert to XSD.

Once you've created the XSD files, you can use them in conjunction with Office just like any other XSD.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Office 2003 XML is a Malay palm civet (Viverra tangalunga). These mammals are native to
the Malay peninsula, including parts of Thailand, Singapore, Myanmar, and Malaysia. Like other palm civets, the Malay
is around 17-28 inches long with a tail length of 16-26 inches. It weighs from 3 to 10 pounds, and their its color ranges
from gray to brown. The markings on its face resemble those of a raccoon. The civet has four anal glands that it uses to
expel an extremely strong-smelling secretion that is used to discourage attackers. This musk was once used by perfume
makers in their products. However, animal rights groups objected to the cruel harvesting process and most
manufacturers now use synthetic alternatives to approximate the scent.

Civets are nocturnal and prefer wooded areas where they can sleep in trees during the day. At night, they hunt for
small vertebrates, insects, fruits, and seeds, which they wash down with palm juice. This juice is called "toddy" by the
natives, so civets are often referred to as "toddy cats." They are also extremely fond of coffee, and usually ingest the
ripest and reddest coffee beans available. They eat only the outer covering of the bean; the rest of it passes through
their digestive process unscathed. These excreted beans are then used to roast the world's most expensive and rarest
coffee, Kopi Luwak.

Philip Dangler was the production editor and proofreader, and Jane Ellin was the copyeditor for Office 2003 XML. Emily
Quill and Darren Kelly provided quality control. Angela Howard wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from Royal Natural History. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

" (double quotes)
"Data only" view, Word
"Save data only" option, Word
(pound sign)
##any wildcard
##local wildcard
##other wildcard
##targetNamespace wildcard
#x20 (space character)
#x9 (tab character)
#xA (line-feed character)
& (ampersand)
& entity reference
' entity reference
&ft; entity reference
< entity reference
" entity reference
< > (angle brackets)
<\\> (angle brackets) 2nd
'; (single quotes) 2nd
? (question mark)
{} (curly braces)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Access [See also databases]
 exporting XML from 2nd
 linked tables
 presentation and transformation
 queries
 single table
 generating data-driven Word tables from
 importing XML into 2nd 3rd 4th
 Web Services, accessing from 2nd
 XML features in 2nd
actions [See document actions]
Adobe FrameMaker [See FrameMaker]
AML (Annotation Markup Language), namespace for
aml namespace prefix
aml:annotation element 2nd 3rd
aml:content element
ampersand (&)
angle brackets (< >)
angle brackets (<\\>) 2nd
"Annotated XML Specification" (Bray)
Annotation Markup Language (AML), namespace for
annotations
 WordprocessingML 2nd
 XSD
anonymous types, in XSD
Antenna House, Inc., XSL-FO processor
Application.ExportXML method
Application.ImportXML method
"Apply transform" option, Word 2nd 3rd 4th 5th
Arbortext EpicEditor [See EpicEditor]
Asian ruby text
Asian Typography, compression options for
ATTLIST, attribute list declaration
attribute list declarations, DTD
attribute value template
attributes
 editing, with Smart Documents
 naming
 WordprocessingML, namespace-qualified
Attributes dialog, Word
auxiliary hints, WordprocessingML 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Base64-encoded data
 line endings and
 objects, attributes relating to
 in WordprocessingML
Beginning XSLT (Tennison)
block-level context
block-level elements 2nd
boilerplate text, in templates
bold property
bookmarks 2nd
Bornstein, Niels (.NET & XML)
Bray, Tim
 "Annotated XML Specification"
 "XML Namespaces by Example"
breaks 2nd
browser-based XML editors
built-in template rules 2nd
bundled XML editors
Burke, Sean M. (RTF Pocket Guide)
business forms [See forms]
buttons, InfoPath

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Castro, Elizabeth
 XML for the World Wide Web
 XML for the World Wide Web: Visual QuickStart Guide
Cell element 2nd
cell-level elements, custom
cells
 in spreadsheets 2nd
 in tables 2nd 3rd
Cerami, Ethan (Web Services Essentials)
character encodings
character references, in XML
character styles 2nd 3rd
 conflicts between
 linked, removing from Word documents
Clark, James
 Jing tool
 Trang package
comments
 extracting from Word documents
 in WordprocessingML 2nd
 in XML
compact syntax, RELAX NG
compatibility options
compositors, XSD 2nd
conditional formatting, XSLT stylesheet
contact information for this book
content, mixed
 in WordprocessingML
 in XML
 in XML as Excel source data
 XML editor support for
 in XSD
content, separating from presentation 2nd
ControlCaptionFromID member, ISmartDocument interface
ControlCount member, ISmartDocument interface
ControlID member, ISmartDocument interface
ControlNameFromID member, ISmartDocument interface
controls, Smart Document
 defining
 document actions for
 populating
 types and associated methods
ControlTypeFromID member, ISmartDocument interface
create-onload-stylesheet.xsl stylesheet
CRLF (carriage return linefeed pair), as line ending in WordprocessingML
curly braces ({})
Cygwin, XML processor

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data only view, Word
data view [See also onload XSLT stylesheet]
 editing restrictions and
 limitations of
 options for
data-oriented XML editor
databases [See also Access]
 creating XML documents from
 generating data-driven Word tables using
 generating documents and spreadsheets from
 Smart Documents accessing
 XML and
dataroot element 2nd
datatypes
 RELAX NG
 XSD
 XSD to Excel mappings
date picker control, InfoPath
DDF file
default values, XSD
Definitive XML Schema (Walmsley) 2nd
Definitive XSLT and XPath (Holman)
derived styles
diamond directive file
direct formatting
 font settings
 paragraph settings 2nd
 removing from Word documents
.dll files
 Smart Documents distributed as
 permissions for, with managed code
.doc files [See documents, Word]
Docbook, converting WordprocessingML to
DOCTYPE declaration 2nd
document actions 2nd 3rd 4th
Document Actions task pane 2nd
document protection, Word 2nd 3rd 4th 5th 6th
document type declaration
Document Type Definition [See DTD]
document-oriented XML editor
DocumentProperties element
documents, Word [See also Word; WordprocessingML]
 annotating 2nd 3rd
 as basis for onload XSLT stylesheet
 attaching schema to
 changing font sizes in
 cleaning up for publishing
 converting
 special-purpose translations
 to Docbook
 to HTML
 to OpenOffice.org
 to PDF
 copying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 direct formatting, removing
 embedded XML data in
 extracting information from
 comments
 metadata
 text content
 generating from databases 2nd
 linked character styles, removing
 metadata
 embedding as XML
 extracting
 removing
 modifying
 saving as WordprocessingML
documents, XML [See XML]
" (double quotes)
double quotes (") 2nd
Drake, Fred L. (Python & XML)
dt namespace prefix
.dtd files [See DTD]
DTD (Document Type Definition) 2nd
 converting to XSD 2nd
 creating Smart Document schemas from
 resources for
Dubinko, Micah (XForms Essentials)
dummy styles

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

editing components, InfoPath
editing permissions, ranges of 2nd
editing restrictions 2nd 3rd
Eisenberg, David (SVG Essentials)
ELEMENT type declaration
element type declarations, DTD
elements, XML 2nd [See also specific elements]3rd
embedded images
 generating with XSLT
 line endings and
Enterprise Edition, Office 2003
entity references
EpicEditor, Smart Documents and 2nd
escaping characters in XML
Excel [See also SpreadsheetML; spreadsheets]
 "Open as a read-only workbook" option
 "Open as an XML List" option
 creating XML Maps in
 disadvantages in previous versions of
 editing XML with 2nd
 editions of, supporting XML
 grid structure of
 HTML data, opening in
 loading and saving XML from VBA
 opening XML spreadsheets
 saving XML spreadsheets
 separating content from presentation
 Smart Documents for 2nd
 Web Services, accessing 2nd
 XML as source data for
 opening using XML Maps
 opening XML documents directly
 requirements
 XML features in 2nd 3rd
 XML Schema and 2nd
 XML Source task pane 2nd 3rd
 XSD datatypes mapped to
ExcelWorkbook element
expansion pack, for Smart Documents 2nd 3rd 4th
explicit binding, XSLT stylesheet
Extensible Markup Language [See XML]
Extensible Stylesheet Language Transformations (xee XSLT)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Ferrara, Alex (Programming .NET Web Services)
field instruction text
fields, in Word 2nd
file element
Fitzgerald, Michael (Learning XSLT) 2nd
fonts
 default
 properties for
 properties, conflicts between
 run properties for
 size 2nd 3rd
 TrueType, WordprocessingML not embedding
footers 2nd
form definition file, InfoPath 2nd 3rd
form template package, InfoPath
form template, InfoPath
formatting [See styles]
formatting restrictions 2nd 3rd
forms, InfoPath
formulas, in spreadsheets
FrameMaker, Smart Documents and 2nd
FrontPage, creating XSLT stylesheets with

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

generic server-side frameworks
Glenn, Walter
 Word 2000 in a Nutshell
 Word Pocket Guide 2nd 3rd
grammar checker 2nd 3rd
graphics [See embedded images SVG]
guidgen.exe utility

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Harold, Elliotte Rusty (XML in a Nutshell) 2nd
headers 2nd
help files, for Smart Documents
hierarchical document structures, representing in Wordprocessing ML
Holman, G. Ken (Definitive XSLT and XPath)
HTML
 binding to XML 2nd 3rd
 converting WordprocessingML to
 converting XML to, with XSLT
 lists, compared to WordprocessingML lists
 opening in Excel
html namespace prefix
HTML Task Pane, InfoPath
HTTP (HyperText Transfer Protocol)
hyperlinks, in Word 2nd
HyperText Transfer Protocol (HTTP)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IANA (Internet Assigned Numbers Authority)
identity transformation
"Ignore mixed content" option, Word 2nd 3rd 4th
ImageClick method, ISmartDocument interface
images [See embedded images]
indentation of paragraph
InfoPath 2nd 3rd
 alternatives to Design Mode
 binding XML to HTML 2nd 3rd
 buttons
 compared to XForms
 date picker control
 declarative configuration in
 deploying solution for
 design and run-time component bundled
 Design Mode
 desktop deployment of
 editing components
 example of
 filling out forms with
 form definition file 2nd 3rd
 form template
 form template package
 forms in
 HTML Task Pane
 initial XML template 2nd
 mapping approach used by
 menus
 mixed content support
 publishing form from Design Mode
 rich text editing support
 schema 2nd 3rd
 script file
 time field formatting
 toolbars
 XSLT stylesheet 2nd
inline elements 2nd [See also run-level elements; runs]
InsertXML method 2nd
Internet Assigned Numbers Authority (IANA)
Internet Explorer
 version 5, XSL in
 viewing WordprocessingML in
InvokeControl method, ISmartDocument interface
ISmartDocProperties interface
ISmartDocument interface
ISO Latin character sets
italic property

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Java & XML (McLaughlin)
Jing tool
Jones, Christopher (Python & XML)
justification of paragraphs
JXForms

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kay, Michael (XSLT Programmer';s Reference) 2nd
Kulchenko, Paul (Programming Web Services with SOAP)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Layout Task Pane, InfoPath Design Mode
Learning XML (Ray) 2nd
Learning XSLT (Fitzgerald) 2nd
LF (linefeed character), as line ending in WordprocessingML
libxml project, XML processors
libxslt project, XSLT processors
linefeed character
 as line ending in WordprocessingML
 handling of, in w:t element
linked styles
list styles 2nd
lists 2nd
 formatting
 HTML compared to WordprocessingML
 properties of
literal result elements
local settings [See direct formatting]
location path, in XPath expression

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

MacDonald, Matthew
 Office 2003 XML for Power Users
 Programming .NET Web Services
makecab.exe command
Mangano, Sal (XSLT Cookbook) 2nd
manifest element
manifest files
 for Smart Documents 2nd
 for XML template
 for Smart Documents 2nd
manual formatting [See direct formatting]
margins, page
McIntosh, Jason (Perl & XML)
McLaughlin, Brett (Java & XML)
Means, W. Scott (XML in a Nutshell) 2nd
menus, InfoPath
metadata
 as attributes in XML
 embedding as XML in Word
 extracting from Word documents
 removing from Word documents
Microsoft Access [See Access]
Microsoft Excel [See Excel]
Microsoft FrontPage [See FrontPage]
Microsoft InfoPath [See InfoPath]
Microsoft Office 2003 [See Office 2003]
Microsoft Outlook [See Outlook]
Microsoft PowerPoint [See PowerPoint]
Microsoft Visio [See Visio]
Microsoft Word [See Word]
Microsoft Word Visual Basic Reference
mixed content
 in WordprocessingML
 in XML
 in XML as Excel source data
 XML editor support for
 in XSD
model groups, XSD
mso-application PI
 for Excel
 for InfoPath
 generating 2nd
 removing to open document in Internet Explorer
mso-infoPathSolution PI 2nd
mso-solutionextension PI 2nd
msxsl.exe, XSLT processor

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name syntax, XML
named cells 2nd
named ranges 2nd
named types, in XSD
NamedCell element
Names element
namespaces
 attributes, namespace-qualified
 default, in WordprocessingML
 for XSD
 for XSLT
 list of, in WordprocessingML
 prefixes for 2nd
 RELAX NG
 resources for
 SpreadsheetML 2nd
 XML
 XML schema one-to-one correspondance with
nested markup
.NET & XML (Bornstein)
Newcomer, Eric (Understanding Web Services: SOAP, WSDL, and UDDI)
node-set, resulting from XPath expression

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

o namespace prefix
O';Reilly & Associates, Inc., contact information
o:CustomDocumentProperties element
o:DocumentProperties element 2nd 3rd 4th
o:processingInstructions element
Office 2003 2nd [See also specific Office applications]3rd
 Enterprise Edition
 XML';s role in 2nd
Office 2003 XML for Power Users (MacDonald)
OfficeDocumentSettings element
OnCheckboxChange method, ISmartDocument interface
OnListOrComboSelectChange method, ISmartDocument interface
onload XSLT stylesheet 2nd
 automatically applied, requirement for
 creating
 determining whether schema is attached
 editing attributes and
 method of selecting
 multiple, for one schema
 preserving PIs in document with
 utility for generating
onOffProperty type
OnPaneUpdateComplete method, ISmartDocument interface
OnRadioGroupSelectChange method, ISmartDocument interface
onsave XSLT stylesheet 2nd
 editing attributes and
 preserving PIs when saving documents
 save options for, choosing
 used for creating onload XSLT stylesheet
OnTextboxContentChange method, ISmartDocument interface
"Open as a read-only workbook" option, Excel
"Open as an XML List" option, Excel
OpenOffice.org, converting WordprocessingML to
operators, in XPath
Options dialog, Word
outline levels
Outlook, XML not supported with

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

page margins
Page Setup dialog
page size
Paoli, Jean (editor of XML 1.0 specification)
Paragraph dialog box
paragraph mark properties
paragraph styles 2nd 3rd 4th
paragraphs [See also w:p element]2nd 3rd
 indentation of
 justifying
 as list items
 properties for 2nd 3rd
 spacing for
 tab stops for
PDF, converting WordprocessingML to
performance, XSL transformations and
Perl & XML (Ray; McIntosh)
permissions, editing 2nd
PI (processing instruction) [See also specific processing instructions]2nd
 InfoPath
 preserving when saving document
 resources for
placeholder text
 assigning to custom elements
 in templates
 showing
POI Java library
PopulateActiveXProps member, ISmartDocument interface
PopulateCheckbox member, ISmartDocument interface
PopulateDocumentFragment member, ISmartDocument interface
PopulateHelpContent member, ISmartDocument interface
PopulateImage member, ISmartDocument interface
PopulateListOrComboContent member, ISmartDocument interface
PopulateOther member, ISmartDocument interface
PopulateRadioGroup member, ISmartDocument interface
PopulateTextboxContent member, ISmartDocument interface
pound sign (#)
PowerPoint, XML not supported with
predicate, XPath
prefixes, namespace 2nd
presentation, separating from content 2nd
processing instruction [See PI]
Programming .NET Web Services (Ferrara; MacDonald)
Programming Web Services with SOAP (Snell; Tidwell; Kulchenko)
properties
 conflicts between
 for documents 2nd
 for paragraph marks
 for paragraphs 2nd 3rd
 for tables 2nd
 of runs
 of sections
 setting
Properties dialog, Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protected styles 2nd
Python & XML (Jones; Drake)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

queries, exporting from Access to XML
question mark (?)
quotes, around attributes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Raman, T. V. (XForms: XML Powered Web Forms)
Range object 2nd
ranges, marking up
Ray, Erik
 Learning XML 2nd
 Perl & XML
RELAX NG
 converting to XSD 2nd
 resources for 2nd
RELAX NG (van der Vlist) 2nd
repeating elements
 creating
 editing
Research Pane, creating Web Services for
resources [See also web sites]
 about DTD
 about namespaces
 about processing instructions (PIs)
 about RELAX NG 2nd
 about RTF
 about Smart Documents
 about SOAP 2nd
 about SpreadsheetML
 about styles and templates
 about SVG
 about VBA and SOAP
 about Web Services 2nd
 about Word Object Model
 about WordprocessingML
 about XForms
 about XML 2nd 3rd
 about XSD 2nd
 about XSLT 2nd
REST Web Services 2nd
Reveal Formatting task pane, Word
revisions 2nd
rich text bindings, XSLT stylesheet
Rich Text Format [See RTF]
rich-client XML editors
.rnc files [See RELAX NG]
.rng files [See RELAX NG]
Roman, Steven (Writing Word Macros) 2nd
root element, XML
root template rule 2nd
Row element 2nd
row-level elements, custom, editing
rows
 in spreadsheets 2nd
 in tables
RTF (Rich Text Format)
RTF Pocket Guide (Burke)
ruby text
run-level context
run-level elements 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

runs [See also w:r element]2nd 3rd
 properties of
 styles for

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

"Save data only" option, Word 2nd 3rd
Save data only option, Word
"Save data only" option, Word
Saxon, XSLT processor
Scalable Vector Graphics [See SVG]
schema [See XML schema]
schema attachment
schema languages [See DTD RELAX NG XSD]
schema library 2nd
Schema Settings dialog
Schematron
script file, InfoPath
section breaks
section containers
section properties
sections 2nd 3rd 4th
security, Smart Documents and [See also document protection; editing permissions]2nd 3rd
Selection object 2nd
server-side frameworks, generic
SGML (Standard Generalized Markup Language) 2nd 3rd
"Show XML Tags" option, Word 2nd
Simpson, John E. (XPath and XPointer) 2nd
single quotes (';) 2nd
sl namespace prefix
Smart Document SDK 2nd
Smart Documents 2nd
 coding, planning for
 components of
 constant declarations for
 controls
 associating types and methods for
 defining
 populating
 creating
 cursor location and 2nd
 deploying
 document actions for 2nd 3rd
 document fragments in
 examples of
 for Excel 2nd
 expansion pack for 2nd 3rd
 help files for
 installation directory for
 ISmartDocument interface for
 managed code and
 manifest files for 2nd 3rd 4th
 Notes and Warnings from
 programming languages supported by 2nd
 requirements for using
 resources for
 schemas for 2nd
 security for 2nd
 separate streams in
 Solution ID for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 solutions 2nd
 styles for 2nd 3rd 4th
 templates for 2nd
 temporary files created by 2nd
 user interface for
 validation of elements for insertion
 Word Object Model for 2nd
 Word template files for
 XSL transformations for 2nd
SmartDocInitialize member, ISmartDocument interface
SmartDocInitialize method
SmartDocXMLTypeCaption member, ISmartDocument interface
SmartDocXMLTypeCount member, ISmartDocument interface
SmartDocXMLTypeName member, ISmartDocument interface
Snell, James (Programming Web Services with SOAP)
SOAP 2nd 3rd
solution element
Solution ID, Smart Documents
solution manifest [See form definition file, InfoPath]
solutions, Smart Document 2nd
space character
spacing for paragraphs
spelling checker 2nd 3rd
Spreadsheet::WriteExcel Perl module
SpreadsheetML [See also Excel; spreadsheets]
 alternative tools
 cells 2nd
 creating XML spreadsheets with
 data in, extracting
 default namespace
 editing XML Maps with
 example of 2nd
 formulas
 generating spreadsheets from databases
 limitations of
 metadata
 named cells 2nd
 named ranges 2nd 3rd
 namespaces 2nd
 opening in Excel
 protected status
 resources for
 root element (Workbook)
 rows
 saving to, in Excel
 styles
 tools for generating
 window settings
 worksheets 2nd 3rd
spreadsheets [See also Excel; SpreadsheetML]
 disadvantages of, before XML features
 generating from databases
 XML
 creating
 example of 2nd
 extracting data from
 opening
 saving
SQL queries [See queries]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ss namespace prefix
stand maps, example for
standalone XML editors
Standard Generalized Markup Lanugage [See SGML]
structural bindings, XSLT stylesheet
style definitions
styles
 associating paragraph with
 associating run with
 conflicts between
 default
 derived
 dummy styles
 examples of
 linked styles
 linked, removing from Word documents
 protected 2nd
 resources for
 for Smart Documents 2nd 3rd 4th
 spreadsheets
Styles element
stylesheet [See XSLT stylesheet]
sub-documents
sub-sections
SVG (Scalable Vector Graphics)
 resources for
 Visio supporting
SVG Essentials (Eisenberg)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tab character
tab stops 2nd
Table element
table styles 2nd
tables 2nd
 cells 2nd
 cells, merging
 columns, width of
 custom XML elements in, editing
 data-driven, generating
 exporting from Access to XML
 importing from XML into Access 2nd
 in spreadsheets
 linked, exporting from Access to XML
 properties for 2nd
 rows
 single, exporting from Access to XML
tabs
template rules 2nd
 built-in template rules 2nd
 root template rule 2nd
 tables
templates
 document properties for
 resources for
 for Smart Documents 2nd
 Word, in Smart Documents
 XML, for editing with Word 2nd
Tennison, Jeni
 Beginning XSLT
 XLT & XPath: On the Edge
text [See also w:t element]
 contained by runs
 extracting from Word documents
 in mixed content, ignoring during schema validation
 ruby text
 whitespace in
text bindings, XSLT stylesheet 2nd
text boxes, embedded in VML
Tidwell, Doug
 Programming Web Services with SOAP
 XSLT 2nd
time field formatting, InfoPath
Tkachenko, Oleg (generating images in Word using XSLT)
toolbars, InfoPath
Track Changes feature, deleted text in
Trang package 2nd
transformations [See XSLT stylesheet]
TrueType fonts, WordprocessingML not embedding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI service
underline property
Understanding Web Services: SOAP, WSDL, and UDDI (Newcomer)
Unicode character set, representing characters using
Unicode encoding schemes
Uniform Resource Identifier (URI)
unix2dos command
updateFrequency element
URI (Uniform Resource Identifier)
US-ASCII character encoding
UTF-16
UTF-8

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

v namespace prefix
validity of XML
van der Vlist, Eric
 RELAX NG 2nd
 XML Schema 2nd
VB.NET, coding Smart Documents with
VBA (Visual Basic for Applications) [See also Web Services]
 automating XML import and export from Access
 creating spreadsheets for editing XML documents
 represented as Base64-encoded text
VBA macros
 generating with XSLT
 line endings and
Vector Markup Language [See VML]
version element
Views Task Pane, InfoPath Design Mode
Visio, XML';s role in
VML (Vector Markup Language)
 namespace for
 text boxes embedded in

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

w namespace prefix 2nd
w:alwaysShowPlaceHolderText element 2nd
w:attachedTemplate element
w:b element
w:basedOn element 2nd
w:body element 2nd 3rd 4th
w:br element 2nd
w:cfChunk element
w:characterSpacingControl element
w:compat element
w:defaultFonts element
w:defaultTabStop element
w:delText element
w:docPr element 2nd
w:documentProtection element 2nd
w:doNotUnderlineInvalidXML element
w:embeddedObjPresent attribute
w:endnote element
w:fldSimple element 2nd
w:font element
w:fonts element 2nd
w:footnote element
w:ftr element
w:gridCol element
w:hdr element
w:hlink element 2nd
w:hmerge element
w:i element
w:ignoreMixedContent element 2nd 3rd
w:ilfo element 2nd
w:ilst element
w:ilvl element
w:ind element
w:instrText element
w:jc element
w:latentStyles element 2nd
w:link element
w:linkStyles element
w:list element
w:listDef element
w:listPr element 2nd
w:lists element 2nd
w:listStyleLink element
w:macrosPresent attribute
w:name element
w:ocxPresent attribute
w:outlineLvl element
w:p element 2nd 3rd 4th
w:permEnd element 2nd 3rd
w:permStart element 2nd 3rd
w:pgMar element
w:pgSz element
w:pPr element 2nd 3rd
w:proofErr element 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w:proofState element
w:pStyle element 2nd 3rd 4th
w:r element 2nd
w:removeWordSchemaOnSave element
w:rFonts element
w:rPr element 2nd 3rd
w:rStyle element 2nd 3rd 4th 5th
w:rt element
w:rubyBase element
w:saveInvalidXML element 2nd
w:saveThroughXSLT element
w:sectPr element 2nd 3rd
w:spacing element
w:style element 2nd
w:styles element 2nd 3rd 4th 5th 6th
w:subDoc element
w:sz element 2nd 3rd
w:t element 2nd 3rd 4th 5th 6th
w:tab element 2nd
w:tabs element
w:tbl element 2nd 3rd
w:tblGrid element 2nd
w:tblPr element 2nd 3rd
w:tblPrEx element
w:tblStyle element
w:tc element 2nd
w:tcPr element 2nd
w:tr element
w:trPr element 2nd 3rd
w:txbxContent element
w:u element
w:useXSLTWhenSaving element
w:val attribute
w:validateAgainstSchema element 2nd
w:versionOfBuiltInStylenames element
w:view element
w:vmerge element
w:wordDocument element 2nd 3rd
w:zoom element
w10 namespace prefix
W3C XML Schema [See XSD]
Walmsley, Priscilla (Definitive XML Schema) 2nd
Walsh, Norm ("What is XML?")
Web Services 2nd
 accessing from Access 2nd
 accessing from Excel 2nd
 accessing from InfoPath
 accessing from Word 2nd
 creating for Word Research Pane
 future of
 resources for 2nd
 REST-based services 2nd
 Smart Documents using
Web Services Description Language (WSDL)
Web Services Essentials (Cerami)
Web Services Toolkit 2nd
web sites [See also resources]
 built-in template rules
 DSDL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for this book
 JXForms
 O';Reilly & Associates, Inc.
 Office 2003 XML Reference Schemas
 RELAX NG
 Schematron
 Smart Document creation
 Smart Document SDK
 Tkachenko, Oleg, blog entries
 Trang package 2nd
 Web Services for Research Pane
 WordprocessingML documentation
 WordprocessingML to XSL-FO conversions
 XForms
 XML
 XML processors
 XML Toolbox
 XSLT processors
well-formedness
"What is XML?" (Walsh)
whitespace
 in text
 in XSLT processor output
 preserving in document but not stylesheet
Windows Registry, schema library in
Word [See also documents, Word; WordprocessingML]
 "Apply transform" option 2nd 3rd 4th 5th
 "Data only" view 2nd
 "Ignore mixed content" option 2nd 3rd 4th
 "Save data only" option 2nd 3rd 4th 5th 6th
 "Show XML Tags" option 2nd
 accessing Web Services from 2nd
 Attributes dialog
 creating Smart Document schemas from
 document protection 2nd 3rd 4th 5th
 editing restrictions
 editing XML documents with
 onload XSLT stylesheet
 repeating elements
 save options
 saving XML documents
 schema-driven editing
 formatting restrictions 2nd 3rd
 Research Pane, creating Web Services for
 separating content from presentation
 Smart Documents for [See Smart Documents]
 using as XML editor
 XML schema support
 XML Structure task pane
 XML template for
 deploying
 example of
 XML';s role in
Word 2000 in a Nutshell (Glenn)
Word Object Model
 resources for
 Smart Documents and 2nd
Word Pocket Guide (Glenn) 2nd 3rd
Word Ten, namespace for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wordml namespace
WordprocessingML [See also documents, Word; Word]2nd 3rd
 annotations 2nd
 associations for, resetting
 attributes, namespace-qualified
 auxiliary hints
 body of document
 default namespace and
 document properties 2nd
 documentation for
 editing permissions, ranges of 2nd
 examples of 2nd 3rd
 fonts embedded in
 fonts, default
 formatting properties, viewing
 generating documents from databases
 grammar checking 2nd
 hierarchical document structures in
 learning
 line endings, requirements for
 lists 2nd
 as lossless format
 merged into XML document
 mixed content in
 nested markup in
 outline levels
 paragraphs
 placeholder text in
 properties, setting
 ranges, marking up
 removing from document when saving [See "Save data only" option, Word]
 root element for 2nd 3rd
 runs
 saving from XML document
 section containers
 sections 2nd
 source, viewing
 spell checking 2nd
 style definitions
 styles 2nd
 stylesheets for, creating
 sub-sections
 tables
 viewing in Internet Explorer
 XML schemas, attaching to
 XSLT scripts processing
 converting to Docbook
 converting to HTML 2nd
 converting to OpenOffice.org
 creating Word documents
 extracting information from Word documents
 modifying Word documents
 XSLT stylesheet, converting to
Workbook element
Worksheet element
WorksheetOptions element 2nd
write method, ISmartDocProperties interface
Writing Word Macros (Roman) 2nd
WSDL (Web Services Description Language) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wx namespace prefix 2nd
wx:sect element 2nd
wx:sub-section element 2nd
wx:t element
wx:uiName element
WXS [See XSD]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

x namespace prefix
x2:Field
x2:MapInfo element
x2:Schema element
x2:XPath element
x2:XSDType element 2nd
Xalan, XSLT processor
xCollection editing component
XDR (XML Data Reduced), namespace for
xField editing component
XForms
 compared to InfoPath
 resources for
XForms Essentials (Dubinko)
XForms: XML Powered Web Forms (Raman)
xhtml:p element
.xls files [See Excel spreadsheets]
XML (Extensible Markup Language) 2nd 3rd [See also SpreadsheetML; WordprocessingML]4th
 Access storing information from
 applying to Word document
 associating with Office application
 attributes 2nd
 binding to HTML 2nd 3rd
 character encodings
 character references
 comments in
 converting to another XML format with XSLT
 converting to HTML with XSLT
 creating and editing with Excel
 creating from databases
 creating Smart Document schemas from
 editing by end-users
 editing in Excel
 editing with custom application
 editing with forms [See InfoPath]
 editing with generic server-side frameworks
 editing with rich-client XML editors
 editing with spreadsheets using VBA
 editing with Word 2nd
 onload XSLT stylesheet
 repeating elements
 save options
 schema-driven editing
 elements 2nd
 embedding in Word documents
 entity references
 escaping characters
 examples of
 Excel source data in
 opening using XML Maps
 opening XML documents directly
 requirements
 exporting from Access
 exporting linked tables in Access to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exporting queries in Access to
 exporting single tables in Access to
 forms for [See InfoPath]
 importing into Access 2nd 3rd
 linking DTDs to 2nd
 metadata in
 mixed content in 2nd
 name syntax
 namespaces
 opening with Excel
 placeholders for, in WordprocessingML
 processing instructions in
 resources for 2nd 3rd
 role in Office 2003 2nd
 root element
 saving as WordprocessingML
 schema validation for
 validity of
 version of, specifying in a document
 viewing custom elements
 well-formedness
 WordprocessingML merged into
 XML declaration for
XML Data Reduced [See XDR]
XML declaration 2nd
XML document options
XML editors [See also InfoPath]
 browser-based
 custom applications
 declarative configuration of
 generic server-side frameworks
 mapping approach of
 merging approach of
 procedural configuration of
 rich-client XML editors
 using Word as [See Word, using as XML editor]
.xml files [See documents, XML XML XML spreadsheets]
XML for the World Wide Web (Castro)
XML for the World Wide Web: Visual QuickStart Guide (Castro)
XML in a Nutshell (Harold; Means) 2nd
XML Maps
 adding to spreadsheet
 creating
 editing
 editing with SpreadsheetML
 examples of
 exporting 2nd
 exporting to, with VBA
 importing documents using 2nd 3rd
 importing to, with VBA
 validating data against
"XML Namespaces by Example" (Bray)
XML Options dialog
xml PI
XML processors
XML schema 2nd [See also XSD]
 attaching to Word document
 attaching to WordprocessingML document
 created by Access when exporting tables 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating with XSD
 example of
 Excel and
 for Excel source data
 InfoPath 2nd 3rd
 namespace for
 namespaces one-to-one correspondance with
 properties related to
 sample instance for
 schema library of
 schema-driven editing
 for Smart Documents 2nd
 tools for
 unavailable schemas
 use cases for
 validating document based on
 validation with
 allowing invalid XML to be saved
 enabling while editing
 ignoring mixed content during
 not displaying errors
 Word functionality for 2nd 3rd
XML Schema (van der Vlist) 2nd
XML Schema definition language [See XSD]
XML Schema Part 0: Primer
XML Schema Part 1: Structures
XML Schema Part 2: Datatypes
XML Source task pane
 creating XML Maps in
 viewing XML Map components
XML spreadsheets
 creating
 example of 2nd
 extracting data from
 opening
 saving
XML Spy
XML Structure task pane 2nd
 applying XML tags with
 assigning placeholder text
XML syntax, RELAX NG
XML template
 InfoPath 2nd
 Word
 deploying
 example of
XML Toolbox 2nd
xml:space attribute 2nd
xml:space element
XMLAfterInsert event
XMLBeforeDelete event
xmllint command
XMLNode object
XMLNodes collection
xmlns namespace
XMLParentNode property
XMLSelectionChange event
XMLValidationError event
xOptional editing component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPath (XML Path Language) 2nd
XPath and XPointer (Simpson) 2nd
XPath predicates
xReplace editing component
xs:all element
xs:annotation element
xs:any element
xs:anyAttribute element
xs:anyURI datatype
xs:appinfo element
xs:attribute element
xs:attributeGroup element
xs:base64binary datatype
xs:boolean datatype
xs:byte datatype
xs:choice element
xs:complexType element 2nd
xs:date datatype
xs:dateTime datatype
xs:decimal datatype
xs:documentation element
xs:double datatype
xs:duration datatype
xs:ENTITIES datatype
xs:ENTITY datatype
xs:float datatype
xs:gDay datatype
xs:gMonth datatype
xs:gMonthDay datatype
xs:group element
xs:gYear datatype
xs:hexBinary datatype
xs:ID datatype
xs:IDREF datatype
xs:IDREFS datatype
xs:int datatype
xs:integer datatype
xs:language datatype
xs:long datatype
xs:Name datatype
xs:NCName datatype
xs:negativeInteger datatype
xs:NMTOKEN datatype
xs:NMTOKENS datatype
xs:nonNegativeInteger datatype
xs:nonPositiveInteger datatype
xs:normalizedString datatype
xs:NOTATION datatype
xs:positiveInteger datatype
xs:QName datatype
xs:sequence element 2nd
xs:short datatype
xs:string datatype 2nd
xs:time datatype
xs:token datatype
xs:unsignedByte datatype
xs:unsignedInt datatype
xs:unsignedLong datatype
xs:unsignedShort datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:YearMonth datatype
.xsd files [See schemas]
XSD (XML Schema definition language) 2nd [See also XML schema]3rd 4th
 annotations
 compositors 2nd
 creating schemas with
 datatypes for
 datatypes in, mapped to Excel datatypes
 default values
 document structures in
 empty content in
 mixed content
 model groups
 namespaces
 resources for 2nd
 types in, named and anonymous
xsd:appinfo element
xsd:complexType element 2nd
xsd:element element 2nd
xsd:schema element
xsd:sequence element
xsd:simpleType element
XSDInference toolkit
.xsf files [See form definition file, InfoPath]
xsf:documentSchema element
xsf:editing element
xsf:file element
xsf:fileNew element
xsf:initialXmlDocument element
xsf:menuArea element
xsf:package element
xsf:toolbar element
xsf:unboundControls element
xsf:view element
xsf:xDocumentClass element 2nd
xsf:xmlToEdit element
.xsl files [See stylesheets]
XSL (Extensible Stylesheet Language) 2nd 3rd
XSL Formatting Objects (XSL-FO)
XSL transformations [See also XSLT stylesheet]
 for Smart Documents 2nd
XSL-FO (XSL Formatting Objects) 2nd 3rd
xsl:apply-templates element 2nd 3rd
xsl:attribute element 2nd 3rd
xsl:copy-of element
xsl:element element
xsl:for-each element 2nd
xsl:output element 2nd 3rd 4th
xsl:output method element
xsl:param element
xsl:processing-instruction element 2nd
xsl:stylesheet element 2nd 3rd
xsl:template element 2nd 3rd 4th 5th
 empty
xsl:template match element 2nd
xsl:value-of element 2nd 3rd
XSLT & XPath: On the Edge (Tennison)
XSLT (Extensible Stylesheet Language Transformations) 2nd
 example scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 converting WordprocessingML to Docbook
 converting WordprocessingML to HTML
 converting WordprocessingML to OpenOffice.org
 converting WordprocessingML to PDF
 creating Word documents
 extracting information from Word documents
 modifying Word documents
 requirements for
 examples of
 converting XML to HTML
 converting XML to XML
 extracting data from XML spreadsheets
 FrontPage creating stylesheets for
 generating SpreadsheetML from
 namespace for
 resources for 2nd
 serialization rules
 template rules
XSLT (Tidwell) 2nd
XSLT Cookbook (Mangano) 2nd
XSLT processors
XSLT Programmer';s Reference (Kay) 2nd
XSLT stylesheet [See also onload XSLT stylesheet; onsave XSLT stylesheet]2nd
 applying when saving
 converting from WordprocessingML
 exporting from Access to
 as identity transformation
 importing XML into Access with
 in schema library
 InfoPath 2nd
 switching pipeline of
 used with "Apply transform" option
 for WordprocessingML
XSLT transformations [See XSLT stylesheet]
xsltproc, XSLT processor
.xsn files [See form template package, InfoPath]
xTextList editing component

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zoom percentage

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Access [See also databases]
 exporting XML from 2nd
 linked tables
 presentation and transformation
 queries
 single table
 generating data-driven Word tables from
 importing XML into 2nd 3rd 4th
 Web Services, accessing from 2nd
 XML features in 2nd
actions [See document actions]
Adobe FrameMaker [See FrameMaker]
AML (Annotation Markup Language), namespace for
aml namespace prefix
aml:annotation element 2nd 3rd
aml:content element
ampersand (&)
angle brackets (< >)
angle brackets (<\\>) 2nd
"Annotated XML Specification" (Bray)
Annotation Markup Language (AML), namespace for
annotations
 WordprocessingML 2nd
 XSD
anonymous types, in XSD
Antenna House, Inc., XSL-FO processor
Application.ExportXML method
Application.ImportXML method
"Apply transform" option, Word 2nd 3rd 4th 5th
Arbortext EpicEditor [See EpicEditor]
Asian ruby text
Asian Typography, compression options for
ATTLIST, attribute list declaration
attribute list declarations, DTD
attribute value template
attributes
 editing, with Smart Documents
 naming
 WordprocessingML, namespace-qualified
Attributes dialog, Word
auxiliary hints, WordprocessingML 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Base64-encoded data
 line endings and
 objects, attributes relating to
 in WordprocessingML
Beginning XSLT (Tennison)
block-level context
block-level elements 2nd
boilerplate text, in templates
bold property
bookmarks 2nd
Bornstein, Niels (.NET & XML)
Bray, Tim
 "Annotated XML Specification"
 "XML Namespaces by Example"
breaks 2nd
browser-based XML editors
built-in template rules 2nd
bundled XML editors
Burke, Sean M. (RTF Pocket Guide)
business forms [See forms]
buttons, InfoPath

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Castro, Elizabeth
 XML for the World Wide Web
 XML for the World Wide Web: Visual QuickStart Guide
Cell element 2nd
cell-level elements, custom
cells
 in spreadsheets 2nd
 in tables 2nd 3rd
Cerami, Ethan (Web Services Essentials)
character encodings
character references, in XML
character styles 2nd 3rd
 conflicts between
 linked, removing from Word documents
Clark, James
 Jing tool
 Trang package
comments
 extracting from Word documents
 in WordprocessingML 2nd
 in XML
compact syntax, RELAX NG
compatibility options
compositors, XSD 2nd
conditional formatting, XSLT stylesheet
contact information for this book
content, mixed
 in WordprocessingML
 in XML
 in XML as Excel source data
 XML editor support for
 in XSD
content, separating from presentation 2nd
ControlCaptionFromID member, ISmartDocument interface
ControlCount member, ISmartDocument interface
ControlID member, ISmartDocument interface
ControlNameFromID member, ISmartDocument interface
controls, Smart Document
 defining
 document actions for
 populating
 types and associated methods
ControlTypeFromID member, ISmartDocument interface
create-onload-stylesheet.xsl stylesheet
CRLF (carriage return linefeed pair), as line ending in WordprocessingML
curly braces ({})
Cygwin, XML processor

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data only view, Word
data view [See also onload XSLT stylesheet]
 editing restrictions and
 limitations of
 options for
data-oriented XML editor
databases [See also Access]
 creating XML documents from
 generating data-driven Word tables using
 generating documents and spreadsheets from
 Smart Documents accessing
 XML and
dataroot element 2nd
datatypes
 RELAX NG
 XSD
 XSD to Excel mappings
date picker control, InfoPath
DDF file
default values, XSD
Definitive XML Schema (Walmsley) 2nd
Definitive XSLT and XPath (Holman)
derived styles
diamond directive file
direct formatting
 font settings
 paragraph settings 2nd
 removing from Word documents
.dll files
 Smart Documents distributed as
 permissions for, with managed code
.doc files [See documents, Word]
Docbook, converting WordprocessingML to
DOCTYPE declaration 2nd
document actions 2nd 3rd 4th
Document Actions task pane 2nd
document protection, Word 2nd 3rd 4th 5th 6th
document type declaration
Document Type Definition [See DTD]
document-oriented XML editor
DocumentProperties element
documents, Word [See also Word; WordprocessingML]
 annotating 2nd 3rd
 as basis for onload XSLT stylesheet
 attaching schema to
 changing font sizes in
 cleaning up for publishing
 converting
 special-purpose translations
 to Docbook
 to HTML
 to OpenOffice.org
 to PDF
 copying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 direct formatting, removing
 embedded XML data in
 extracting information from
 comments
 metadata
 text content
 generating from databases 2nd
 linked character styles, removing
 metadata
 embedding as XML
 extracting
 removing
 modifying
 saving as WordprocessingML
documents, XML [See XML]
" (double quotes)
double quotes (") 2nd
Drake, Fred L. (Python & XML)
dt namespace prefix
.dtd files [See DTD]
DTD (Document Type Definition) 2nd
 converting to XSD 2nd
 creating Smart Document schemas from
 resources for
Dubinko, Micah (XForms Essentials)
dummy styles

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

editing components, InfoPath
editing permissions, ranges of 2nd
editing restrictions 2nd 3rd
Eisenberg, David (SVG Essentials)
ELEMENT type declaration
element type declarations, DTD
elements, XML 2nd [See also specific elements]3rd
embedded images
 generating with XSLT
 line endings and
Enterprise Edition, Office 2003
entity references
EpicEditor, Smart Documents and 2nd
escaping characters in XML
Excel [See also SpreadsheetML; spreadsheets]
 "Open as a read-only workbook" option
 "Open as an XML List" option
 creating XML Maps in
 disadvantages in previous versions of
 editing XML with 2nd
 editions of, supporting XML
 grid structure of
 HTML data, opening in
 loading and saving XML from VBA
 opening XML spreadsheets
 saving XML spreadsheets
 separating content from presentation
 Smart Documents for 2nd
 Web Services, accessing 2nd
 XML as source data for
 opening using XML Maps
 opening XML documents directly
 requirements
 XML features in 2nd 3rd
 XML Schema and 2nd
 XML Source task pane 2nd 3rd
 XSD datatypes mapped to
ExcelWorkbook element
expansion pack, for Smart Documents 2nd 3rd 4th
explicit binding, XSLT stylesheet
Extensible Markup Language [See XML]
Extensible Stylesheet Language Transformations (xee XSLT)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Ferrara, Alex (Programming .NET Web Services)
field instruction text
fields, in Word 2nd
file element
Fitzgerald, Michael (Learning XSLT) 2nd
fonts
 default
 properties for
 properties, conflicts between
 run properties for
 size 2nd 3rd
 TrueType, WordprocessingML not embedding
footers 2nd
form definition file, InfoPath 2nd 3rd
form template package, InfoPath
form template, InfoPath
formatting [See styles]
formatting restrictions 2nd 3rd
forms, InfoPath
formulas, in spreadsheets
FrameMaker, Smart Documents and 2nd
FrontPage, creating XSLT stylesheets with

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

generic server-side frameworks
Glenn, Walter
 Word 2000 in a Nutshell
 Word Pocket Guide 2nd 3rd
grammar checker 2nd 3rd
graphics [See embedded images SVG]
guidgen.exe utility

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Harold, Elliotte Rusty (XML in a Nutshell) 2nd
headers 2nd
help files, for Smart Documents
hierarchical document structures, representing in Wordprocessing ML
Holman, G. Ken (Definitive XSLT and XPath)
HTML
 binding to XML 2nd 3rd
 converting WordprocessingML to
 converting XML to, with XSLT
 lists, compared to WordprocessingML lists
 opening in Excel
html namespace prefix
HTML Task Pane, InfoPath
HTTP (HyperText Transfer Protocol)
hyperlinks, in Word 2nd
HyperText Transfer Protocol (HTTP)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IANA (Internet Assigned Numbers Authority)
identity transformation
"Ignore mixed content" option, Word 2nd 3rd 4th
ImageClick method, ISmartDocument interface
images [See embedded images]
indentation of paragraph
InfoPath 2nd 3rd
 alternatives to Design Mode
 binding XML to HTML 2nd 3rd
 buttons
 compared to XForms
 date picker control
 declarative configuration in
 deploying solution for
 design and run-time component bundled
 Design Mode
 desktop deployment of
 editing components
 example of
 filling out forms with
 form definition file 2nd 3rd
 form template
 form template package
 forms in
 HTML Task Pane
 initial XML template 2nd
 mapping approach used by
 menus
 mixed content support
 publishing form from Design Mode
 rich text editing support
 schema 2nd 3rd
 script file
 time field formatting
 toolbars
 XSLT stylesheet 2nd
inline elements 2nd [See also run-level elements; runs]
InsertXML method 2nd
Internet Assigned Numbers Authority (IANA)
Internet Explorer
 version 5, XSL in
 viewing WordprocessingML in
InvokeControl method, ISmartDocument interface
ISmartDocProperties interface
ISmartDocument interface
ISO Latin character sets
italic property

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Java & XML (McLaughlin)
Jing tool
Jones, Christopher (Python & XML)
justification of paragraphs
JXForms

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kay, Michael (XSLT Programmer';s Reference) 2nd
Kulchenko, Paul (Programming Web Services with SOAP)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Layout Task Pane, InfoPath Design Mode
Learning XML (Ray) 2nd
Learning XSLT (Fitzgerald) 2nd
LF (linefeed character), as line ending in WordprocessingML
libxml project, XML processors
libxslt project, XSLT processors
linefeed character
 as line ending in WordprocessingML
 handling of, in w:t element
linked styles
list styles 2nd
lists 2nd
 formatting
 HTML compared to WordprocessingML
 properties of
literal result elements
local settings [See direct formatting]
location path, in XPath expression

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

MacDonald, Matthew
 Office 2003 XML for Power Users
 Programming .NET Web Services
makecab.exe command
Mangano, Sal (XSLT Cookbook) 2nd
manifest element
manifest files
 for Smart Documents 2nd
 for XML template
 for Smart Documents 2nd
manual formatting [See direct formatting]
margins, page
McIntosh, Jason (Perl & XML)
McLaughlin, Brett (Java & XML)
Means, W. Scott (XML in a Nutshell) 2nd
menus, InfoPath
metadata
 as attributes in XML
 embedding as XML in Word
 extracting from Word documents
 removing from Word documents
Microsoft Access [See Access]
Microsoft Excel [See Excel]
Microsoft FrontPage [See FrontPage]
Microsoft InfoPath [See InfoPath]
Microsoft Office 2003 [See Office 2003]
Microsoft Outlook [See Outlook]
Microsoft PowerPoint [See PowerPoint]
Microsoft Visio [See Visio]
Microsoft Word [See Word]
Microsoft Word Visual Basic Reference
mixed content
 in WordprocessingML
 in XML
 in XML as Excel source data
 XML editor support for
 in XSD
model groups, XSD
mso-application PI
 for Excel
 for InfoPath
 generating 2nd
 removing to open document in Internet Explorer
mso-infoPathSolution PI 2nd
mso-solutionextension PI 2nd
msxsl.exe, XSLT processor

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name syntax, XML
named cells 2nd
named ranges 2nd
named types, in XSD
NamedCell element
Names element
namespaces
 attributes, namespace-qualified
 default, in WordprocessingML
 for XSD
 for XSLT
 list of, in WordprocessingML
 prefixes for 2nd
 RELAX NG
 resources for
 SpreadsheetML 2nd
 XML
 XML schema one-to-one correspondance with
nested markup
.NET & XML (Bornstein)
Newcomer, Eric (Understanding Web Services: SOAP, WSDL, and UDDI)
node-set, resulting from XPath expression

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

o namespace prefix
O';Reilly & Associates, Inc., contact information
o:CustomDocumentProperties element
o:DocumentProperties element 2nd 3rd 4th
o:processingInstructions element
Office 2003 2nd [See also specific Office applications]3rd
 Enterprise Edition
 XML';s role in 2nd
Office 2003 XML for Power Users (MacDonald)
OfficeDocumentSettings element
OnCheckboxChange method, ISmartDocument interface
OnListOrComboSelectChange method, ISmartDocument interface
onload XSLT stylesheet 2nd
 automatically applied, requirement for
 creating
 determining whether schema is attached
 editing attributes and
 method of selecting
 multiple, for one schema
 preserving PIs in document with
 utility for generating
onOffProperty type
OnPaneUpdateComplete method, ISmartDocument interface
OnRadioGroupSelectChange method, ISmartDocument interface
onsave XSLT stylesheet 2nd
 editing attributes and
 preserving PIs when saving documents
 save options for, choosing
 used for creating onload XSLT stylesheet
OnTextboxContentChange method, ISmartDocument interface
"Open as a read-only workbook" option, Excel
"Open as an XML List" option, Excel
OpenOffice.org, converting WordprocessingML to
operators, in XPath
Options dialog, Word
outline levels
Outlook, XML not supported with

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

page margins
Page Setup dialog
page size
Paoli, Jean (editor of XML 1.0 specification)
Paragraph dialog box
paragraph mark properties
paragraph styles 2nd 3rd 4th
paragraphs [See also w:p element]2nd 3rd
 indentation of
 justifying
 as list items
 properties for 2nd 3rd
 spacing for
 tab stops for
PDF, converting WordprocessingML to
performance, XSL transformations and
Perl & XML (Ray; McIntosh)
permissions, editing 2nd
PI (processing instruction) [See also specific processing instructions]2nd
 InfoPath
 preserving when saving document
 resources for
placeholder text
 assigning to custom elements
 in templates
 showing
POI Java library
PopulateActiveXProps member, ISmartDocument interface
PopulateCheckbox member, ISmartDocument interface
PopulateDocumentFragment member, ISmartDocument interface
PopulateHelpContent member, ISmartDocument interface
PopulateImage member, ISmartDocument interface
PopulateListOrComboContent member, ISmartDocument interface
PopulateOther member, ISmartDocument interface
PopulateRadioGroup member, ISmartDocument interface
PopulateTextboxContent member, ISmartDocument interface
pound sign (#)
PowerPoint, XML not supported with
predicate, XPath
prefixes, namespace 2nd
presentation, separating from content 2nd
processing instruction [See PI]
Programming .NET Web Services (Ferrara; MacDonald)
Programming Web Services with SOAP (Snell; Tidwell; Kulchenko)
properties
 conflicts between
 for documents 2nd
 for paragraph marks
 for paragraphs 2nd 3rd
 for tables 2nd
 of runs
 of sections
 setting
Properties dialog, Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protected styles 2nd
Python & XML (Jones; Drake)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

queries, exporting from Access to XML
question mark (?)
quotes, around attributes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Raman, T. V. (XForms: XML Powered Web Forms)
Range object 2nd
ranges, marking up
Ray, Erik
 Learning XML 2nd
 Perl & XML
RELAX NG
 converting to XSD 2nd
 resources for 2nd
RELAX NG (van der Vlist) 2nd
repeating elements
 creating
 editing
Research Pane, creating Web Services for
resources [See also web sites]
 about DTD
 about namespaces
 about processing instructions (PIs)
 about RELAX NG 2nd
 about RTF
 about Smart Documents
 about SOAP 2nd
 about SpreadsheetML
 about styles and templates
 about SVG
 about VBA and SOAP
 about Web Services 2nd
 about Word Object Model
 about WordprocessingML
 about XForms
 about XML 2nd 3rd
 about XSD 2nd
 about XSLT 2nd
REST Web Services 2nd
Reveal Formatting task pane, Word
revisions 2nd
rich text bindings, XSLT stylesheet
Rich Text Format [See RTF]
rich-client XML editors
.rnc files [See RELAX NG]
.rng files [See RELAX NG]
Roman, Steven (Writing Word Macros) 2nd
root element, XML
root template rule 2nd
Row element 2nd
row-level elements, custom, editing
rows
 in spreadsheets 2nd
 in tables
RTF (Rich Text Format)
RTF Pocket Guide (Burke)
ruby text
run-level context
run-level elements 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

runs [See also w:r element]2nd 3rd
 properties of
 styles for

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

"Save data only" option, Word 2nd 3rd
Save data only option, Word
"Save data only" option, Word
Saxon, XSLT processor
Scalable Vector Graphics [See SVG]
schema [See XML schema]
schema attachment
schema languages [See DTD RELAX NG XSD]
schema library 2nd
Schema Settings dialog
Schematron
script file, InfoPath
section breaks
section containers
section properties
sections 2nd 3rd 4th
security, Smart Documents and [See also document protection; editing permissions]2nd 3rd
Selection object 2nd
server-side frameworks, generic
SGML (Standard Generalized Markup Language) 2nd 3rd
"Show XML Tags" option, Word 2nd
Simpson, John E. (XPath and XPointer) 2nd
single quotes (';) 2nd
sl namespace prefix
Smart Document SDK 2nd
Smart Documents 2nd
 coding, planning for
 components of
 constant declarations for
 controls
 associating types and methods for
 defining
 populating
 creating
 cursor location and 2nd
 deploying
 document actions for 2nd 3rd
 document fragments in
 examples of
 for Excel 2nd
 expansion pack for 2nd 3rd
 help files for
 installation directory for
 ISmartDocument interface for
 managed code and
 manifest files for 2nd 3rd 4th
 Notes and Warnings from
 programming languages supported by 2nd
 requirements for using
 resources for
 schemas for 2nd
 security for 2nd
 separate streams in
 Solution ID for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 solutions 2nd
 styles for 2nd 3rd 4th
 templates for 2nd
 temporary files created by 2nd
 user interface for
 validation of elements for insertion
 Word Object Model for 2nd
 Word template files for
 XSL transformations for 2nd
SmartDocInitialize member, ISmartDocument interface
SmartDocInitialize method
SmartDocXMLTypeCaption member, ISmartDocument interface
SmartDocXMLTypeCount member, ISmartDocument interface
SmartDocXMLTypeName member, ISmartDocument interface
Snell, James (Programming Web Services with SOAP)
SOAP 2nd 3rd
solution element
Solution ID, Smart Documents
solution manifest [See form definition file, InfoPath]
solutions, Smart Document 2nd
space character
spacing for paragraphs
spelling checker 2nd 3rd
Spreadsheet::WriteExcel Perl module
SpreadsheetML [See also Excel; spreadsheets]
 alternative tools
 cells 2nd
 creating XML spreadsheets with
 data in, extracting
 default namespace
 editing XML Maps with
 example of 2nd
 formulas
 generating spreadsheets from databases
 limitations of
 metadata
 named cells 2nd
 named ranges 2nd 3rd
 namespaces 2nd
 opening in Excel
 protected status
 resources for
 root element (Workbook)
 rows
 saving to, in Excel
 styles
 tools for generating
 window settings
 worksheets 2nd 3rd
spreadsheets [See also Excel; SpreadsheetML]
 disadvantages of, before XML features
 generating from databases
 XML
 creating
 example of 2nd
 extracting data from
 opening
 saving
SQL queries [See queries]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ss namespace prefix
stand maps, example for
standalone XML editors
Standard Generalized Markup Lanugage [See SGML]
structural bindings, XSLT stylesheet
style definitions
styles
 associating paragraph with
 associating run with
 conflicts between
 default
 derived
 dummy styles
 examples of
 linked styles
 linked, removing from Word documents
 protected 2nd
 resources for
 for Smart Documents 2nd 3rd 4th
 spreadsheets
Styles element
stylesheet [See XSLT stylesheet]
sub-documents
sub-sections
SVG (Scalable Vector Graphics)
 resources for
 Visio supporting
SVG Essentials (Eisenberg)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

" (double quotes)
"Data only" view, Word
"Save data only" option, Word
(pound sign)
##any wildcard
##local wildcard
##other wildcard
##targetNamespace wildcard
#x20 (space character)
#x9 (tab character)
#xA (line-feed character)
& (ampersand)
& entity reference
' entity reference
&ft; entity reference
< entity reference
" entity reference
< > (angle brackets)
<\\> (angle brackets) 2nd
'; (single quotes) 2nd
? (question mark)
{} (curly braces)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tab character
tab stops 2nd
Table element
table styles 2nd
tables 2nd
 cells 2nd
 cells, merging
 columns, width of
 custom XML elements in, editing
 data-driven, generating
 exporting from Access to XML
 importing from XML into Access 2nd
 in spreadsheets
 linked, exporting from Access to XML
 properties for 2nd
 rows
 single, exporting from Access to XML
tabs
template rules 2nd
 built-in template rules 2nd
 root template rule 2nd
 tables
templates
 document properties for
 resources for
 for Smart Documents 2nd
 Word, in Smart Documents
 XML, for editing with Word 2nd
Tennison, Jeni
 Beginning XSLT
 XLT & XPath: On the Edge
text [See also w:t element]
 contained by runs
 extracting from Word documents
 in mixed content, ignoring during schema validation
 ruby text
 whitespace in
text bindings, XSLT stylesheet 2nd
text boxes, embedded in VML
Tidwell, Doug
 Programming Web Services with SOAP
 XSLT 2nd
time field formatting, InfoPath
Tkachenko, Oleg (generating images in Word using XSLT)
toolbars, InfoPath
Track Changes feature, deleted text in
Trang package 2nd
transformations [See XSLT stylesheet]
TrueType fonts, WordprocessingML not embedding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI service
underline property
Understanding Web Services: SOAP, WSDL, and UDDI (Newcomer)
Unicode character set, representing characters using
Unicode encoding schemes
Uniform Resource Identifier (URI)
unix2dos command
updateFrequency element
URI (Uniform Resource Identifier)
US-ASCII character encoding
UTF-16
UTF-8

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

v namespace prefix
validity of XML
van der Vlist, Eric
 RELAX NG 2nd
 XML Schema 2nd
VB.NET, coding Smart Documents with
VBA (Visual Basic for Applications) [See also Web Services]
 automating XML import and export from Access
 creating spreadsheets for editing XML documents
 represented as Base64-encoded text
VBA macros
 generating with XSLT
 line endings and
Vector Markup Language [See VML]
version element
Views Task Pane, InfoPath Design Mode
Visio, XML';s role in
VML (Vector Markup Language)
 namespace for
 text boxes embedded in

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

w namespace prefix 2nd
w:alwaysShowPlaceHolderText element 2nd
w:attachedTemplate element
w:b element
w:basedOn element 2nd
w:body element 2nd 3rd 4th
w:br element 2nd
w:cfChunk element
w:characterSpacingControl element
w:compat element
w:defaultFonts element
w:defaultTabStop element
w:delText element
w:docPr element 2nd
w:documentProtection element 2nd
w:doNotUnderlineInvalidXML element
w:embeddedObjPresent attribute
w:endnote element
w:fldSimple element 2nd
w:font element
w:fonts element 2nd
w:footnote element
w:ftr element
w:gridCol element
w:hdr element
w:hlink element 2nd
w:hmerge element
w:i element
w:ignoreMixedContent element 2nd 3rd
w:ilfo element 2nd
w:ilst element
w:ilvl element
w:ind element
w:instrText element
w:jc element
w:latentStyles element 2nd
w:link element
w:linkStyles element
w:list element
w:listDef element
w:listPr element 2nd
w:lists element 2nd
w:listStyleLink element
w:macrosPresent attribute
w:name element
w:ocxPresent attribute
w:outlineLvl element
w:p element 2nd 3rd 4th
w:permEnd element 2nd 3rd
w:permStart element 2nd 3rd
w:pgMar element
w:pgSz element
w:pPr element 2nd 3rd
w:proofErr element 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w:proofState element
w:pStyle element 2nd 3rd 4th
w:r element 2nd
w:removeWordSchemaOnSave element
w:rFonts element
w:rPr element 2nd 3rd
w:rStyle element 2nd 3rd 4th 5th
w:rt element
w:rubyBase element
w:saveInvalidXML element 2nd
w:saveThroughXSLT element
w:sectPr element 2nd 3rd
w:spacing element
w:style element 2nd
w:styles element 2nd 3rd 4th 5th 6th
w:subDoc element
w:sz element 2nd 3rd
w:t element 2nd 3rd 4th 5th 6th
w:tab element 2nd
w:tabs element
w:tbl element 2nd 3rd
w:tblGrid element 2nd
w:tblPr element 2nd 3rd
w:tblPrEx element
w:tblStyle element
w:tc element 2nd
w:tcPr element 2nd
w:tr element
w:trPr element 2nd 3rd
w:txbxContent element
w:u element
w:useXSLTWhenSaving element
w:val attribute
w:validateAgainstSchema element 2nd
w:versionOfBuiltInStylenames element
w:view element
w:vmerge element
w:wordDocument element 2nd 3rd
w:zoom element
w10 namespace prefix
W3C XML Schema [See XSD]
Walmsley, Priscilla (Definitive XML Schema) 2nd
Walsh, Norm ("What is XML?")
Web Services 2nd
 accessing from Access 2nd
 accessing from Excel 2nd
 accessing from InfoPath
 accessing from Word 2nd
 creating for Word Research Pane
 future of
 resources for 2nd
 REST-based services 2nd
 Smart Documents using
Web Services Description Language (WSDL)
Web Services Essentials (Cerami)
Web Services Toolkit 2nd
web sites [See also resources]
 built-in template rules
 DSDL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for this book
 JXForms
 O';Reilly & Associates, Inc.
 Office 2003 XML Reference Schemas
 RELAX NG
 Schematron
 Smart Document creation
 Smart Document SDK
 Tkachenko, Oleg, blog entries
 Trang package 2nd
 Web Services for Research Pane
 WordprocessingML documentation
 WordprocessingML to XSL-FO conversions
 XForms
 XML
 XML processors
 XML Toolbox
 XSLT processors
well-formedness
"What is XML?" (Walsh)
whitespace
 in text
 in XSLT processor output
 preserving in document but not stylesheet
Windows Registry, schema library in
Word [See also documents, Word; WordprocessingML]
 "Apply transform" option 2nd 3rd 4th 5th
 "Data only" view 2nd
 "Ignore mixed content" option 2nd 3rd 4th
 "Save data only" option 2nd 3rd 4th 5th 6th
 "Show XML Tags" option 2nd
 accessing Web Services from 2nd
 Attributes dialog
 creating Smart Document schemas from
 document protection 2nd 3rd 4th 5th
 editing restrictions
 editing XML documents with
 onload XSLT stylesheet
 repeating elements
 save options
 saving XML documents
 schema-driven editing
 formatting restrictions 2nd 3rd
 Research Pane, creating Web Services for
 separating content from presentation
 Smart Documents for [See Smart Documents]
 using as XML editor
 XML schema support
 XML Structure task pane
 XML template for
 deploying
 example of
 XML';s role in
Word 2000 in a Nutshell (Glenn)
Word Object Model
 resources for
 Smart Documents and 2nd
Word Pocket Guide (Glenn) 2nd 3rd
Word Ten, namespace for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wordml namespace
WordprocessingML [See also documents, Word; Word]2nd 3rd
 annotations 2nd
 associations for, resetting
 attributes, namespace-qualified
 auxiliary hints
 body of document
 default namespace and
 document properties 2nd
 documentation for
 editing permissions, ranges of 2nd
 examples of 2nd 3rd
 fonts embedded in
 fonts, default
 formatting properties, viewing
 generating documents from databases
 grammar checking 2nd
 hierarchical document structures in
 learning
 line endings, requirements for
 lists 2nd
 as lossless format
 merged into XML document
 mixed content in
 nested markup in
 outline levels
 paragraphs
 placeholder text in
 properties, setting
 ranges, marking up
 removing from document when saving [See "Save data only" option, Word]
 root element for 2nd 3rd
 runs
 saving from XML document
 section containers
 sections 2nd
 source, viewing
 spell checking 2nd
 style definitions
 styles 2nd
 stylesheets for, creating
 sub-sections
 tables
 viewing in Internet Explorer
 XML schemas, attaching to
 XSLT scripts processing
 converting to Docbook
 converting to HTML 2nd
 converting to OpenOffice.org
 creating Word documents
 extracting information from Word documents
 modifying Word documents
 XSLT stylesheet, converting to
Workbook element
Worksheet element
WorksheetOptions element 2nd
write method, ISmartDocProperties interface
Writing Word Macros (Roman) 2nd
WSDL (Web Services Description Language) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wx namespace prefix 2nd
wx:sect element 2nd
wx:sub-section element 2nd
wx:t element
wx:uiName element
WXS [See XSD]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

x namespace prefix
x2:Field
x2:MapInfo element
x2:Schema element
x2:XPath element
x2:XSDType element 2nd
Xalan, XSLT processor
xCollection editing component
XDR (XML Data Reduced), namespace for
xField editing component
XForms
 compared to InfoPath
 resources for
XForms Essentials (Dubinko)
XForms: XML Powered Web Forms (Raman)
xhtml:p element
.xls files [See Excel spreadsheets]
XML (Extensible Markup Language) 2nd 3rd [See also SpreadsheetML; WordprocessingML]4th
 Access storing information from
 applying to Word document
 associating with Office application
 attributes 2nd
 binding to HTML 2nd 3rd
 character encodings
 character references
 comments in
 converting to another XML format with XSLT
 converting to HTML with XSLT
 creating and editing with Excel
 creating from databases
 creating Smart Document schemas from
 editing by end-users
 editing in Excel
 editing with custom application
 editing with forms [See InfoPath]
 editing with generic server-side frameworks
 editing with rich-client XML editors
 editing with spreadsheets using VBA
 editing with Word 2nd
 onload XSLT stylesheet
 repeating elements
 save options
 schema-driven editing
 elements 2nd
 embedding in Word documents
 entity references
 escaping characters
 examples of
 Excel source data in
 opening using XML Maps
 opening XML documents directly
 requirements
 exporting from Access
 exporting linked tables in Access to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exporting queries in Access to
 exporting single tables in Access to
 forms for [See InfoPath]
 importing into Access 2nd 3rd
 linking DTDs to 2nd
 metadata in
 mixed content in 2nd
 name syntax
 namespaces
 opening with Excel
 placeholders for, in WordprocessingML
 processing instructions in
 resources for 2nd 3rd
 role in Office 2003 2nd
 root element
 saving as WordprocessingML
 schema validation for
 validity of
 version of, specifying in a document
 viewing custom elements
 well-formedness
 WordprocessingML merged into
 XML declaration for
XML Data Reduced [See XDR]
XML declaration 2nd
XML document options
XML editors [See also InfoPath]
 browser-based
 custom applications
 declarative configuration of
 generic server-side frameworks
 mapping approach of
 merging approach of
 procedural configuration of
 rich-client XML editors
 using Word as [See Word, using as XML editor]
.xml files [See documents, XML XML XML spreadsheets]
XML for the World Wide Web (Castro)
XML for the World Wide Web: Visual QuickStart Guide (Castro)
XML in a Nutshell (Harold; Means) 2nd
XML Maps
 adding to spreadsheet
 creating
 editing
 editing with SpreadsheetML
 examples of
 exporting 2nd
 exporting to, with VBA
 importing documents using 2nd 3rd
 importing to, with VBA
 validating data against
"XML Namespaces by Example" (Bray)
XML Options dialog
xml PI
XML processors
XML schema 2nd [See also XSD]
 attaching to Word document
 attaching to WordprocessingML document
 created by Access when exporting tables 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating with XSD
 example of
 Excel and
 for Excel source data
 InfoPath 2nd 3rd
 namespace for
 namespaces one-to-one correspondance with
 properties related to
 sample instance for
 schema library of
 schema-driven editing
 for Smart Documents 2nd
 tools for
 unavailable schemas
 use cases for
 validating document based on
 validation with
 allowing invalid XML to be saved
 enabling while editing
 ignoring mixed content during
 not displaying errors
 Word functionality for 2nd 3rd
XML Schema (van der Vlist) 2nd
XML Schema definition language [See XSD]
XML Schema Part 0: Primer
XML Schema Part 1: Structures
XML Schema Part 2: Datatypes
XML Source task pane
 creating XML Maps in
 viewing XML Map components
XML spreadsheets
 creating
 example of 2nd
 extracting data from
 opening
 saving
XML Spy
XML Structure task pane 2nd
 applying XML tags with
 assigning placeholder text
XML syntax, RELAX NG
XML template
 InfoPath 2nd
 Word
 deploying
 example of
XML Toolbox 2nd
xml:space attribute 2nd
xml:space element
XMLAfterInsert event
XMLBeforeDelete event
xmllint command
XMLNode object
XMLNodes collection
xmlns namespace
XMLParentNode property
XMLSelectionChange event
XMLValidationError event
xOptional editing component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPath (XML Path Language) 2nd
XPath and XPointer (Simpson) 2nd
XPath predicates
xReplace editing component
xs:all element
xs:annotation element
xs:any element
xs:anyAttribute element
xs:anyURI datatype
xs:appinfo element
xs:attribute element
xs:attributeGroup element
xs:base64binary datatype
xs:boolean datatype
xs:byte datatype
xs:choice element
xs:complexType element 2nd
xs:date datatype
xs:dateTime datatype
xs:decimal datatype
xs:documentation element
xs:double datatype
xs:duration datatype
xs:ENTITIES datatype
xs:ENTITY datatype
xs:float datatype
xs:gDay datatype
xs:gMonth datatype
xs:gMonthDay datatype
xs:group element
xs:gYear datatype
xs:hexBinary datatype
xs:ID datatype
xs:IDREF datatype
xs:IDREFS datatype
xs:int datatype
xs:integer datatype
xs:language datatype
xs:long datatype
xs:Name datatype
xs:NCName datatype
xs:negativeInteger datatype
xs:NMTOKEN datatype
xs:NMTOKENS datatype
xs:nonNegativeInteger datatype
xs:nonPositiveInteger datatype
xs:normalizedString datatype
xs:NOTATION datatype
xs:positiveInteger datatype
xs:QName datatype
xs:sequence element 2nd
xs:short datatype
xs:string datatype 2nd
xs:time datatype
xs:token datatype
xs:unsignedByte datatype
xs:unsignedInt datatype
xs:unsignedLong datatype
xs:unsignedShort datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:YearMonth datatype
.xsd files [See schemas]
XSD (XML Schema definition language) 2nd [See also XML schema]3rd 4th
 annotations
 compositors 2nd
 creating schemas with
 datatypes for
 datatypes in, mapped to Excel datatypes
 default values
 document structures in
 empty content in
 mixed content
 model groups
 namespaces
 resources for 2nd
 types in, named and anonymous
xsd:appinfo element
xsd:complexType element 2nd
xsd:element element 2nd
xsd:schema element
xsd:sequence element
xsd:simpleType element
XSDInference toolkit
.xsf files [See form definition file, InfoPath]
xsf:documentSchema element
xsf:editing element
xsf:file element
xsf:fileNew element
xsf:initialXmlDocument element
xsf:menuArea element
xsf:package element
xsf:toolbar element
xsf:unboundControls element
xsf:view element
xsf:xDocumentClass element 2nd
xsf:xmlToEdit element
.xsl files [See stylesheets]
XSL (Extensible Stylesheet Language) 2nd 3rd
XSL Formatting Objects (XSL-FO)
XSL transformations [See also XSLT stylesheet]
 for Smart Documents 2nd
XSL-FO (XSL Formatting Objects) 2nd 3rd
xsl:apply-templates element 2nd 3rd
xsl:attribute element 2nd 3rd
xsl:copy-of element
xsl:element element
xsl:for-each element 2nd
xsl:output element 2nd 3rd 4th
xsl:output method element
xsl:param element
xsl:processing-instruction element 2nd
xsl:stylesheet element 2nd 3rd
xsl:template element 2nd 3rd 4th 5th
 empty
xsl:template match element 2nd
xsl:value-of element 2nd 3rd
XSLT & XPath: On the Edge (Tennison)
XSLT (Extensible Stylesheet Language Transformations) 2nd
 example scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 converting WordprocessingML to Docbook
 converting WordprocessingML to HTML
 converting WordprocessingML to OpenOffice.org
 converting WordprocessingML to PDF
 creating Word documents
 extracting information from Word documents
 modifying Word documents
 requirements for
 examples of
 converting XML to HTML
 converting XML to XML
 extracting data from XML spreadsheets
 FrontPage creating stylesheets for
 generating SpreadsheetML from
 namespace for
 resources for 2nd
 serialization rules
 template rules
XSLT (Tidwell) 2nd
XSLT Cookbook (Mangano) 2nd
XSLT processors
XSLT Programmer';s Reference (Kay) 2nd
XSLT stylesheet [See also onload XSLT stylesheet; onsave XSLT stylesheet]2nd
 applying when saving
 converting from WordprocessingML
 exporting from Access to
 as identity transformation
 importing XML into Access with
 in schema library
 InfoPath 2nd
 switching pipeline of
 used with "Apply transform" option
 for WordprocessingML
XSLT transformations [See XSLT stylesheet]
xsltproc, XSLT processor
.xsn files [See form template package, InfoPath]
xTextList editing component

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zoom percentage

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Office 2003 XML

By Evan Lenz, Mary McRae, Simon St. Laurent

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00538-5

Pages: 576

This book explores the relationship between XML and Office 2003, examining how the various products in the Office
suite both produce and consume XML. Beginning with an overview of the XML features included in the various Office
2003 components, Office 2003 XML provides quick and clear guidance to anyone who needs to import or export
information from Office documents into other systems.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.1 What Is XML?
XML, the Extensible Markup Language, is an Internet-friendly format for data and documents invented by the World
Wide Web Consortium (W3C). The "Markup" denotes a way of expressing the structure of a document within the
document itself. XML has its roots in a markup language called SGML (Standard Generalized Markup Language), which
is used in publishing. HTML was an application of SGML to web publishing. XML was created to do for machine-readable
documents on the Web what HTML did for human-readable documents—that is, provide a commonly agreed-upon
syntax so that processing the underlying format becomes common place and documents are made accessible to all
users.

Unlike HTML, though, XML comes with very little predefined. HTML developers are accustomed both to the notion of
using angle brackets (< >) for denoting elements, and also to the set of element names themselves (such as head,
body, etc.). XML shares only the former feature (i.e., the notion of using angle brackets for denoting elements). Unlike
HTML, XML has no predefined elements, but is merely a set of rules that lets you write other languages like HTML.

Because XML defines so little, it is easy for everyone to agree to use the XML syntax, and then to build applications on
top of it. It's like agreeing to use a particular alphabet and set of punctuation symbols, but not saying which language
to use. This offers immense flexibility, much like the flexibility you're used to having in creating your own Word
templates, Excel spreadsheets, or Access databases.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.2 Anatomy of an XML Document
The best way to explain how an XML document is composed is to present one. Example A-1 shows an XML document
you might use to describe two authors.

Example A-1. A very simple XML document

<?xml version="1.0" encoding="us-ascii"?>

<authors>

 <person id="lear">

 <name>Edward Lear</name>

 <nationality>British</nationality>

 </person>

 <person id="asimov">

 <name>Isaac Asimov</name>

 <nationality>American</nationality>

 </person>

 <person id="mysteryperson"/>

</authors>

The first line of the document is known as the XML declaration. This tells a processing application which version of XML
you are using—the version indicator is mandatory—and which character encoding you have used for the document. In
this example, the document is encoded in ASCII. (The significance of character encoding is covered later in this
appendix.)

If the XML declaration is omitted, a processor will make certain assumptions about your document. In particular, it will
expect it to be encoded in UTF-8, an encoding of the Unicode character set. However, it is best to use the XML
declaration wherever possible, both to avoid confusion over the character encoding and to indicate to processors which
version of XML you're using. (1.0 is most common, but 1.1, which makes relatively minor though potentially
incompatible changes, has recently appeared.) Encoding handling should be automatic with Office, but you may need to
watch for documents you import from other sources.

A.2.1 Elements and Attributes

The second line of Example A-1 begins an element, which has been named authors. The contents of that element include
everything between the right angle bracket (>) in <authors> and the left angle bracket (<) in </authors>. The actual
syntactic constructs <authors> and </authors> are often referred to as the element start tag and end tag, respectively.
Do not confuse tags with elements! Tags mark the boundaries of elements. Note that elements, like the authors element
here, may include other elements, as well as text. An XML document must contain exactly one root element, which
contains all other content within the document. The name of the root element defines the type of the XML document.

Elements that contain both text and other elements simultaneously are classified as mixed content. Word supports the
use of mixed content, while the other applications in the Office suite generally do not.

The sample "authors" document uses elements named person to describe the authors themselves. Each person element
has an attribute named id. Unlike elements, attributes can only contain textual content. Their values must be
surrounded by quotes. Either single quotes (') or double quotes (") may be used, as long as you use the same kind of
closing quote as the opening one.

Within XML documents, attributes are frequently used for metadata (i.e., "data about data"), describing properties of
the element's contents. This is the case in our example, where id contains a unique identifier for the person being
described.

As far as XML is concerned, it does not matter in what order attributes are presented in the element start tag. For
example, these two elements contain exactly the same information as far as an XML 1.0 conformant processing
application is concerned:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application is concerned:

<animal name="dog" legs="4"></animal>

<animal legs="4" name="dog"></animal>

On the other hand, the information presented to an application by an XML processor on reading the following two lines
will be different for each animal element because the ordering of elements is significant:

<animal><name>dog</name><legs>4</legs></animal>

<animal><legs>4</legs><name>dog</name></animal>

XML treats a set of attributes like a bunch of stuff in a bag—there is no implicit ordering—while elements are treated
like items on a list, where ordering matters.

New XML developers frequently ask when it is best to use attributes to represent information and when it is best to use
elements. As you can see from the "authors" example, if order is important to you, then elements are a good choice. In
general, there is no hard-and-fast best practice for choosing whether to use attributes or elements, though elements
can contain other elements and attributes, while attributes can contain only text.

The final author described in our document has no information available. All we know about this person is his or her ID,
mysteryperson. The document uses the XML shortcut syntax for an empty element. The following is a reasonable
alternative:

<person id="mysteryperson"></person>

A.2.2 Name Syntax

XML 1.0 has certain rules about element and attribute names. In particular:

Names are case-sensitive, e.g., <person/> is not the same as <Person/>.

Names beginning with xml (in any permutation of uppercase or lowercase) are reserved for use by XML 1.0 and
its companion specifications.

A name must start with a letter or an underscore, not a digit, and may continue with any letter, digit,
underscore, or period. (Actually, a name may also contain a colon, but the colon is used to delimit a namespace
prefix and is not available for arbitrary use as of the Second Edition of XML 1.0.)

A precise description of names can be found in Section 2.3 of the XML 1.0 specification, at http://www.w3.org/TR/REC-
xml#sec-common-syn.

A.2.3 XML Namespaces

XML 1.0 lets developers create their own elements and attributes, but leaves open the potential for overlapping names.
title in one context may mean something entirely different than title in a different context. The Namespaces in XML
specification (which can be found at http://www.w3.org/TR/REC-xml-names/) provides a mechanism developers can
use to identify particular vocabularies using Uniform Resource Identifiers (URIs).

URIs are a combination of the familiar Uniform Resource Locators (URLs) and Uniform Resource Names (URNs). From
the perspective of XML namespaces, URIs are convenient because they combine an easily used syntax with a notion of
ownership. While it's possible for me to create namespace URIs that begin with http://microsoft.com, general practice
holds that it would be better for me to create URIs that begin with http://simonstl.com, a domain I own, and leave
http://microsoft.com to Microsoft. In general, organizations and individuals who create XML vocabularies should choose a
namespace URI in a space they control. This makes it possible (though it isn't required) to put information there
documenting the vocabulary, or other resources for processing the vocabulary.

The rules for XML names don't permit developers to create elements with names like http://simonstl.com/ns/mine:Title, and
it's not clear that working with names like that would be much fun anyway. To get around these problems, the
Namespaces in XML specification defines a mechanism for associating URIs with element and attribute names through
prefixes. Instead of typing out the whole URI, developers can work with a much shorter prefix, or even set a default
URI that applies to names without prefixes.

To create a prefix, you use a namespace declaration, which looks like an attribute. For example, to create a prefix of
xhtml associated with the URI http://www.w3.org/1999/xhtml, you would use an xmlns:xhtml attribute as shown below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xhtml associated with the URI http://www.w3.org/1999/xhtml, you would use an xmlns:xhtml attribute as shown below:

<container xmlns:xhtml="http://www.w3.org/1999/xhtml" >

....

</container>

To apply a prefix, you put it in front of the element or attribute name, with a colon separating the prefix from the name.
To put an XHTML p element inside of that container, you could write:

<container xmlns:xhtml="http://www.w3.org/1999/xhtml" >

<xhtml:p>This is an XHTML paragraph!</xhtml:p>

</container>

When a program encountered the xhtml:p, it would know that p was the local name of the element, xhtml was the prefix,
and http://www.w3.org/1999/xhtml was the URI for that element. The namespace declaration applies to all elements inside
the element where it appears, as well as the element containing the declaration. For example, the xhtml prefix works for
all three of these paragraphs:

<container xmlns:xhtml="http://www.w3.org/1999/xhtml" >

<xhtml:p>This is XHTML paragraph 1!</xhtml:p>

<xhtml:p>This is XHTML paragraph 2!</xhtml:p>

<xhtml:p>This is XHTML paragraph 3!</xhtml:p>

</container>

In most XML processing, the prefix doesn't matter—the local name and the URI are what count, and the prefix is just a
mechanism for associating them. (This is especially important in XSLT processing and XML Schemas.) In some
documents, especially documents that use only structures from one namespace or where one vocabulary is dominant,
developers choose to use the default namespace rather than prefixes. When the default namespace is used (assigned
with an xmlns attribute), elements without a prefix are associated with a given URI. In XHTML, an XML derivative of
HTML, this is the most typical path, since HTML developers aren't used to putting prefixes on all of their element names.
A typical XHTML document might look like this:

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>My Document</title>

 </head>

 <body>

 <p>Could use some content here</p>

 </body>

</html>

In this case, the URI http://www.w3.org/1999/xhtml applies to every element in the document, including html, head, title,
body, and p. The default namespace has one quirk, though: it doesn't apply to attributes. Attributes can be given a
namespace by explicitly using a prefix in their name, but unprefixed attributes have no namespace URI. This often
doesn't matter, but it can be important when writing XSLT stylesheets and creating XML Schemas.

Typically, the namespaces used by a document are declared on the root element of the document, which lets them
apply to all the content inside that document. They can, of course, also be declared throughout the document, though
this makes it more difficult to read. Declarations can override each other as well, and the declaration closest to a given
use of a prefix in the hierarchy will be used. This lets developers mix and match XML vocabularies even when they use
the same prefix.

Namespaces are very simple on the surface but are a well-known field of combat in XML arcana. For more information
on namespaces, see Tim Bray's "XML Namespaces by Example," published at
http://www.xml.com/pub/a/1999/01/namespaces.html; XML In a Nutshell; or Learning XML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2.4 Well-Formedness

An XML document that conforms to the rules of XML syntax is known as well-formed. At its most basic level, well-
formedness means that elements should be properly matched, and all opened elements should be closed. A formal
definition of well-formedness can be found in Section 2.1 of the XML 1.0 specification, at http://www.w3.org/TR/REC-
xml#sec-well-formed. Table A-1 shows some XML documents that are not well-formed.

Table A-1. Examples of poorly formed XML documents
Document Reason why it's not well-formed

<foo>

 <bar>

 </foo>

</bar>

The elements are not properly nested because foo is closed while inside its child element bar.

<foo>

 <bar>

</foo>
The bar element was not closed before its parent, foo, was closed.

<foo baz>

</foo> The baz attribute has no value. While this is permissible in HTML (e.g., <table border>), it is forbidden in
XML.

<foo baz=23>

</foo> The baz attribute value, 23, has no surrounding quotes. Unlike HTML, all attribute values must be
quoted in XML.

A.2.5 Comments and Processing Instructions

As in HTML, it is possible to include comments within XML documents. XML comments are intended to be read only by
people. With HTML, developers have occasionally employed comments to add application-specific functionality. For
example, the server-side include functionality of most web servers uses instructions embedded in HTML comments. In
XML, comments should not be used for any purpose other than those for which they were intended, as they are usually
stripped from the document during parsing.

The start of a comment is indicated with <!--, and the end of the comment with -->. Any sequence of characters, aside
from the string --, may appear within a comment. Comments can appear at the start or end of a document as well as
inside elements. They cannot appear inside attributes or inside of a tag. A comment might look like:

<!--Hello, this is a comment -->

Comments tend to be used more in XML documents intended for human consumption than those intended for machine
consumption. If you want to pass information to an XML application without affecting the structure of the document,
you can use processing instructions, or PIs. Processing instructions use <? as a starting delimiter and ?> as a closing
delimiter, must contain a target conforming to the rules for XML names, and may contain additional data. A typical PI
might look like:

<?xml-style type="text/css" href="mystyle.css" ?>

In this case, xml-style is the target and type="text/css" href="mystyle.css" is the data. For more information on PIs, see
Section 2.6 of the XML 1.0 specification, at http://www.w3.org/TR/REC-xml#sec-pi.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2.6 Entity References

You may occasionally need to use the mechanism for escaping characters. Because some characters have special
significance in XML, there needs to be a way to represent them. For example, in some cases the < symbol might really
be intended to mean "less than" rather than to signal the start of an element name. Clearly, just inserting the character
without any escaping mechanism would result in a poorly formed document because a processing application would
assume you were starting another element. Another instance of this problem is needing to include both double quotes
and single quotes simultaneously in an attribute's value. Here's an example that illustrates both these difficulties:

<badDoc>

 <para>

 I'd really like to use the < character

 </para>

 <note title="On the proper 'use' of the " character"/>

</badDoc>

XML avoids this problem by the use of the predefined entity reference. The word "entity" in the context of XML simply
means a unit of content. The term "entity reference" means just that, a symbolic way of referring to a certain unit of
content. XML predefines entities for the following symbols: left angle bracket (<), right angle bracket (>), apostrophe
('), double quote ("), and ampersand (&).

An entity reference is introduced with an ampersand (&), which is followed by a name (using the word "name" in its
formal sense, as defined by the XML 1.0 specification), and terminated with a semicolon (;). Table A-2 shows how the
five predefined entities can be used within an XML document.

Table A-2. Predefined entity references in XML 1.0
Literal character Entity reference

< <

> >

' '

" "

& &

Here's our problematic document revised to use entity references:

<badDoc>

 <para>

 I'd really like to use the < character

 </para>

 <note title="On the proper 'use' of the "character"/>

</badDoc>

Being able to use the predefined entities is often all you need; in general, entities are provided as a convenience for
human-created XML. XML 1.0 allows you to define your own entities and use entity references as "shortcuts" in your
document. Section 4 of the XML 1.0 specification, available at http://www.w3.org/TR/REC-xml#sec-physical-struct,
describes the use of entities.

A.2.7 Character References

You may find character references in Office 2003 XML documents. Character references allow you to denote a character
by its numeric position in Unicode character set (this position is known as its code point). Table A-3 contains a few
examples that illustrate the syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

examples that illustrate the syntax.

Table A-3. Example character references
Actual character Character reference

1 0

A A

~ Ñ

® ®

Note that the code point can be expressed in decimal or, with the use of x as a prefix, in hexadecimal.

A.2.8 Character Encodings

The subject of character encodings is frequently a mysterious one for developers. Most code tends to be written for one
computing platform and, normally, to run within one organization. Although the Internet is changing things quickly,
most of us have never had cause to think too deeply about internationalization.

XML, designed to be an Internet-friendly syntax for information exchange, has internationalization at its very core. One
of the basic requirements for XML processors is that they support the Unicode standard character encoding. Unicode
attempts to include the requirements of all the world's languages within one character set. Consequently, it is very
large!

A.2.8.1 Unicode encoding schemes

Unicode 3.0 has more than 57,700 code points, each of which corresponds to a character. (You can obtain charts of all
these characters online by visiting http://www.unicode.org/charts/.) If one were to express a Unicode string by using
the position of each character in the character set as its encoding (in the same way as ASCII does), expressing the
whole range of characters would require four octets for each character. (An octet is a string of eight binary digits, or
bits. A byte is commonly, but not always, considered the same thing as an octet.) Clearly, if a document is written in
100 percent American English, it will be four times larger than required—all the characters in ASCII fitting into a 7-bit
representation. This places a strain both on storage space and on memory requirements for processing applications.

Fortunately, two encoding schemes for Unicode alleviate this problem: UTF-8 and UTF-16. As you might guess from
their names, applications can process documents in these encodings in 8- or 16-bit segments. When code points are
required in a document that cannot be represented by one chunk, a bit-pattern is used that indicates that the following
chunk is required to calculate the desired code point. In UTF-8 this is denoted by having the most significant bit of the
first octet set to 1.

This scheme means that UTF-8 is a highly efficient encoding for representing languages using Latin alphabets, such as
English. All of the ASCII character set is represented natively in UTF-8—an ASCII-only document and its equivalent in
UTF-8 are byte-for-byte identical. UTF-16 is more efficient for representing languages that use Unicode characters
represented by larger numeric values, notably Chinese, Japanese, and Korean.

This knowledge will also help you debug encoding errors. One frequent error arises because of the fact that ASCII is a
proper subset of UTF-8—programmers get used to this fact and produce UTF-8 documents, but use them as if they
were ASCII. Things start to go awry when the XML parser processes a document containing, for example, characters
such as Á (replace with accented A). Because this character cannot be represented using only one octet in UTF-8,
this produces a two-octet sequence in the output document; in a non-Unicode viewer or text editor, it looks like a
couple of characters of garbage.

A.2.8.2 Other character encodings

Unicode, in the context of computing history, is a relatively new invention. Native operating system support for Unicode
is by no means widespread. For instance, although Windows NT offers Unicode support, Windows 95 and 98 do not
have it.

XML 1.0 allows a document to be encoded in any character set registered with the Internet Assigned Numbers Authority
(IANA). European documents are commonly encoded in one of the ISO Latin character sets, such as ISO-8859-1.
Japanese documents commonly use Shift-JIS, and Chinese documents use GB2312 and Big 5.

A full list of registered character sets may be found at http://www.iana.org/assignments/character-sets.

XML processors are not required by the XML 1.0 specification to support any more than UTF-8 and UTF-16, but most
commonly support other encodings, such as US-ASCII and ISO-8859-1. Although many XML transactions are currently
conducted in ASCII (or the ASCII subset of UTF-8), there is nothing to stop XML documents from containing, say,
Korean text. You will, however, probably have to dig into the encoding support of your computing platform to find out if
it is possible for you to use alternate encodings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it is possible for you to use alternate encodings.

A.2.9 Validity

In addition to well-formedness, XML 1.0 offers another level of verification called validity. To explain why validity is
important, let's take a simple example. Imagine you invented a simple XML format for your friends' telephone numbers:

<phonebook>

 <person>

 <name>Albert Smith</name>

 <number>123-456-7890</number>

 </person>

 <person>

 <name>Bertrand Jones</name>

 <number>456-123-9876</number>

 </person>

</phonebook>

Based on your format, you also construct a program to display and search your phone numbers. This program turns out
to be so useful, you share it with your friends. However, your friends aren't so hot on detail as you are, and try to feed
your program this phone book file:

<phonebook>

 <person>

 <name>Melanie Green</name>

 <phone>123-456-7893</phone>

 </person>

</phonebook>

Note that, although this file is perfectly well-formed, it doesn't fit the format you prescribed for the phone book,
because there's a phone element where there should have been a number element. You will likely need to change your
program to cope with this situation. If your friends had used number as you did to denote the phone number, there
wouldn't have been a problem. However, as it is, this second file probably won't be usable by programs set up to work
with the first file; from the program's perspective, it isn't valid.

For validity to be a useful general concept, we need a machine-readable way of saying what a valid document is; that
is, which elements and attributes must be present and in what order. XML 1.0 achieves this by introducing document
type definitions (DTDs). Office doesn't use DTDs, preferring to use W3C XML Schemas, as described in Appendix C.

A.2.9.1 Document Type Definitions (DTDs)

The purpose of a DTD is to express which elements and attributes are allowed in a certain document type and to
constrain the order in which elements must appear within that document type. A DTD is generally composed of one file
or a group of connected files, containing declarations defining element types, attribute lists, and entities. DTDs are
explored in Appendix D.

A.2.9.2 Connecting DTDs to documents

Even if you don't work with DTDs, you should be aware of how DTDs are linked to XML documents. This is done with a
document type declaration, <!DOCTYPE ...>, inserted at the beginning of the XML document, after the XML declaration in
our fictitious example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

our fictitious example:

<?xml version="1.0" encoding="us-ascii"?>

<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">

<authors>

 <person id="lear">

 <name>Edward Lear</name>

 <nationality>British</nationality>

 </person>

 <person id="asimov">

 <name>Isaac Asimov</name>

 <nationality>American</nationality>

 </person>

 <person id="mysteryperson"/>

</authors>

This example assumes the DTD file has been placed on a web server at example.com. Note that the document type
declaration specifies the root element of the document, not the DTD itself. You could use the same DTD to define
person, name, or nationality as the root element of a valid document. Certain DTDs, such as the DocBook DTD for
technical documentation (see http://www.docbook.org), use this feature to good effect, allowing you to use the same
DTD while working with multiple document types.

A validating XML processor is obligated to check the input document against its DTD. If it does not validate, the
document is rejected. To return to the phone book example, if your application validated its input files against a phone
book DTD, you would have been spared the problems of debugging your program and correcting your friend's XML
because your application would have rejected the document as being invalid. Office 2003 doesn't perform validation
against DTDs; instead, it validates against XML Schemas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. The XML You Need for Office
A knowledge of XML is essential if you want to build applications around the Office XML capabilities rather than just
using other people's templates. If you're already acquainted with XML, you don't need to read this appendix. If you're
not, you should read on.

The general overview of XML given in this appendix should be sufficient to enable you to work with XML documents. For
a much more solid grounding in the many details of XML, you should consider these books:

Erik T. Ray, Learning XML (O'Reilly)

 Elliotte Rusty Harold and W. Scott Means, XML in a Nutshell (O'Reilly)

 Elizabeth Castro, XML for the World Wide Web: Visual QuickStart Guide (Peachpit Press)

You may also be interested in the "Annotated XML Specification," written by Tim Bray and published online at
http://xml.com/, which an provides illuminating explanation of the XML 1.0 specification. You may also look to "What is
XML?" by Norm Walsh, also published on XML.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.1 Sorting Out the Acronyms
When learning XSLT, there are three primary specifications to be aware of: XSL (sometimes referred to as XSL-FO),
XSLT, and XPath. Originally, these three languages were just parts of a single language, XSL, or "Extensible Stylesheet
Language". But before being released as W3C recommendations, they were re-factored into three separate
specifications. They essentially have a subset relationship, as depicted in Figure B-1. XPath is used by XSLT, which is in
turn used by XSL.

Figure B-1. The subset relationship between XSL, XSLT, and XPath

This appendix is concerned only with the inner two circles in Figure B-1, XSLT and XPath. We'll see how XSLT and XPath
relate to each other—and what they actually look like—in the tutorial later on. First, let's briefly look at the role each
language plays.

B.1.1 What Is XSL?

As we've seen, XSL stands for "Extensible Stylesheet Language." It is a language for expressing stylesheets for XML. It
consists of two primary parts:

An XML formatting vocabulary

An XML transformation language

This appendix is concerned only with XSLT, which is the transformation component of XSL. The other component—the
formatting vocabulary—is commonly called XSL Formatting Objects, or XSL-FO. It theoretically can function apart from
XSLT as a standalone formatting vocabulary, but it is usually used as a part of XSL (i.e., with XSLT). The most common
use case for XSL-FO is transforming XML documents into documents suitable for printing, particularly in PDF format.

The XSL 1.0 recommendation is located at http://www.w3.org/TR/xsl.

B.1.2 What Is XSLT?

XSLT stands for "Extensible Stylesheet Language Transformations." It is a language for transforming XML documents
into other XML documents or other formats, such as HTML and plain text. An XSLT stylesheet is a program that
declaratively defines the transformation from a source tree (input) to a result tree (output). Since XSLT stylesheets
themselves are represented in XML format, that means there are three essential XML documents, or "trees," involved in
any XSLT transformation. Figure B-2 shows a diagram depicting the relationships of these three trees.

Figure B-2. The three trees involved in every XSLT transformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure B-2. The three trees involved in every XSLT transformation

The input to the XSLT processor (depicted by the rectangle in Figure B-2) consists of the source XML document (the
source tree) and the XSLT program itself (the stylesheet tree). The output of the transformation is a new XML
document (the result tree).

The XSLT 1.0 recommendation is located at http://www.w3.org/TR/xslt.

The XSLT and XPath supported by Office 2003 are strictly limited to version 1.0. As of the
time of this writing, XSLT 2.0 and XPath 2.0 are still works in progress.

When Microsoft was first getting started with XML, it released a preliminary version of XSL
(before it was re-factored as XSLT) as a part of Internet Explorer 5. Microsoft has
deprecated that version of "XSL," and you should avoid it. Any time you see the
namespace URI http://www.w3.org/TR/WD-xsl, the developer was using this older version,
and you'll have difficulties integrating that code with newer projects. Always check XSLT
code and documentation to make sure it uses the correct XSLT namespace URI:
http://www.w3.org/1999/XSL/Transform. For more information, see the "Unofficial MSXML
XSLT FAQ" at http://www.netcrucible.com/xslt/msxml-faq.htm.

B.1.3 What Is XPath?

XPath is short for "XML Path Language." It is an expression language for addressing parts of an XML document. XPath is
an essential part of XSLT and is used to select "nodes" in the XML source tree for further processing.

The XPath "data model" is fundamental to XSLT. Mathematically speaking, it defines the entire domain and range of
XSLT "functions"—in other words, the input to and output from XSLT stylesheets. It defines what a "tree" is, the seven
kinds of nodes that can occur in a tree (root, element, attribute, comment, processing instruction, namespace, and text
nodes), and how they relate to XML.

Before we get into some XSLT examples, let's take a look at some example XPath expressions. Each of the following
XPath expressions is called a location path and returns an object called a node-set. Rather than precisely defining its
behavior, we'll provide a description of what each expression selects. In that way, you can begin to learn some of the
XPath language by example.

/child::article/child::heading

Selects the heading element children of the root article element.

/article/heading

Equivalent to /child::article/child::heading.

/article/para[position()=1]

Selects the first para element child of the root article element.

/article/para[1]

Equivalent to /article/para[position()=1].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Equivalent to /article/para[position()=1].

/article/para[position()=last()]

Selects the last para element child of the root article element.

/article/para[last()]

Equivalent to /article/para[position()=last()].

self::node()

Selects the context node.

.

Equivalent to self::node().

./order

Selects the order element children of the context node.

order

Equivalent to ./order.

order/attribute::price

Selects the price attribute of each order element child of the context node.

order/@price

Equivalent to order/attribute::price.

order[@price > 30]/shipTo

Selects the shipTo element children of each order element child of the context node whose price attribute's value
is greater than 30.

These examples only illustrate a few of XPath's operators and functions. Aside from location paths, XPath also supports
the operators that you'd expect to find in a programming language, such as arithmetic (+, -, *, div, and mod) and logic
(and, or). You can use XPath to do math and to manipulate strings, as well as to select nodes. For a more thorough
investigation (as well as an explanation of how exactly such expressions are evaluated), see one of the books cited at
the beginning of this appendix. We'll come across a few more XPath expressions in this appendix (in the context of
XSLT).

XPath expressions appear as the values of various attributes in XSLT. For example, the select attribute of a number of
XSLT instructions (including the xsl:value-of, xsl:for-each, and xsl:apply-templates elements) contains an XPath expression.

The XPath 1.0 recommendation is located at http://www.w3.org/TR/xpath.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.2 A Simple Template Approach
All three of the approaches in this appendix include a source document, stylesheet, and result document.

To execute the example stylesheets in this appendix, you will need an XSLT processor. See
the sidebar in Chapter 3 called "Command-Line Tools" for more information on obtaining
and using a command-line XSLT processor.

Example B-1 shows the source document for our first example transformation.

Example B-1. An XML source document containing people's names

<people>

 <person>

 <givenName>Joe</givenName>

 <familyName>Johnson</familyName>

 </person>

 <person>

 <givenName>Jane</givenName>

 <familyName>Johnson</familyName>

 </person>

 <person>

 <givenName>Jim</givenName>

 <familyName>Johannson</familyName>

 </person>

 <person>

 <givenName>Jody</givenName>

 <familyName>Johannson</familyName>

 </person>

</people>

The stylesheet in Example B-2 looks much like the result document that it creates. Specifically, the content of the
<xsl:template match="/"> element is essentially an HTML template of the result, along with some placeholders for
dynamic content. The dynamic parts of the stylesheet below are highlighted.

Example B-2. A very simple stylesheet for combining people's names with HTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example B-2. A very simple stylesheet for combining people's names with HTML

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/">

 <html>

 <head>

 <title>Name list</title>

 </head>

 <table>

 <tr>

 <th>Given Name</th>

 <th>Family Name</th>

 </tr>

 <xsl:for-each select="/people/person">

 <tr>

 <td>

 <xsl:value-of select="givenName"/>

 </td>

 <td>

 <xsl:value-of select="familyName"/>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </html>

 </xsl:template>

</xsl:stylesheet>

Let's look at each element in this stylesheet, drilling down into the hierarchy as we go.

First, the root element, xsl:stylesheet, contains one required attribute, the version attribute, which has a value of 1.0. The
root element also declares the XSLT namespace, mapped to the xsl prefix. It doesn't matter what prefix you use, of
course, but the xsl prefix is the most widely accepted convention:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 ...

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

The xsl:output instruction gives the XSLT processor hints on how to serialize the result tree. In this case, method="html"
instructs the processor to output the result tree using HTML serialization rules (not necessarily well-formed XML), and
indent="yes" instructs it to insert some indentation into the result (to facilitate readability):

 <xsl:output method="html" indent="yes"/>

In this stylesheet, the root element contains an xsl:template element. In XSLT, any xsl:template element that has a match
attribute is called a template rule. The value of the match attribute determines what parts of the source document will
trigger this template rule. This stylesheet's one and only template rule matches the root node of the source document,
as indicated by the value of the simple slash (/):

 <xsl:template match="/">

 ...

 </xsl:template>

Many stylesheets contain a template rule that matches the root node in this way. It is often called the "root template
rule" and is sometimes considered analogous to the main function in a C or Java program, because it is effectively where
processing begins. The analogy breaks down however because it is possible to write a stylesheet that doesn't explicitly
include a root template rule. But for now, it's okay to think of it as the starting point for all processing.

The "root node" is not the same thing as the "root element." In XPath/XSLT, every
document contains a root node, which is the top-level, "invisible" container of everything
in the document, including the root, or document, element.

Inside the root template rule, we see some regular HTML markup:

 <html>

 <head>

 <title>Name list</title>

 </head>

 <table>

 <tr>

 <th>Given Name</th>

 <th>Family Name</th>

 </tr>

 ...

 </table>

 </html>

These elements (as a whole, including their end tags) are called literal result elements, because they effectively create
literal html, head, title, etc. elements in the result of the transformation (the result tree). In fact, any element not in the
XSLT namespace that occurs inside (as a child or descendant of) the xsl:template element is interpreted as a literal result
element.

Next, we see an element in the XSLT namespace, xsl:for-each. This element is an example of an XSLT instruction. An
instruction is any element inside (as a child or descendant of) the xsl:template element that is in the XSLT namespace.

 <xsl:for-each select="/people/person">

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </xsl:for-each>

The xsl:for-each instruction iterates over certain nodes from the source document (Example B-1), repeating the content
inside the element once for each selected node. In this case, the XPath expression /people/person returns a node-set
consisting of the person element children of the people element in the source document. For each of those elements, a
new table row (tr element) is created in the result, using a tr literal result element:

 <tr>

 ...

 </tr>

Then, inside each table row, there are two placeholders for dynamic content. The xsl:value-of instruction inserts the
string-value of the selected node into the result document. In this case, the first table column (a td element) will
contain the value of the givenName element child of the current node in XSLT processing (the person element being
processed), and the second table column contains the value of the familyName element:

 <td>

 <xsl:value-of select="givenName"/>

 </td>

 <td>

 <xsl:value-of select="familyName"/>

 </td>

The HTML result of this transformation is shown in Example B-3.

Example B-3. The result of running the stylesheet in Example B-2 against the XML
document in Example B-1

<html>

 <head>

 <META http-equiv="Content-Type" content="text/html; charset=UTF-16">

 <title>Name list</title>

 </head>

 <table>

 <tr>

 <th>Given Name</th>

 <th>Family Name</th>

 </tr>

 <tr>

 <td>Joe</td>

 <td>Johnson</td>

 </tr>

 <tr>

 <td>Jane</td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <td>Johnson</td>

 </tr>

 <tr>

 <td>Jim</td>

 <td>Johannson</td>

 </tr>

 <tr>

 <td>Jody</td>

 <td>Johannson</td>

 </tr>

 </table>

</html>

The number and order of table rows in the result (besides the first row, which is the table heading) corresponds to the
number and order of person elements in the source document. And, as you can see, the table column values correspond
to the values of the givenName and familyName elements in the source document.

The META HTML element in Example B-3 is automatically added to the result of the
transformation, according to XSLT's serialization rules for HTML. The XSLT processor does
not always have control over (or responsibility for) serialization, but when it does, it must
output a META element that indicates the document's character encoding. See
http://www.w3.org/TR/xslt#section-HTML-Output-Method for the precise rules.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.3 A Rule-Based Stylesheet
All XSLT processing is rule-based, it's just that some stylesheets take advantage of this fact more than others. Our first
stylesheet (Example B-2) only used one template rule (where match="/"). Now we'll look at a stylesheet that uses
multiple template rules.

Example B-4 shows the source document for this example transformation. It is a simple article that contains a heading
and multiple paragraphs. Inside the paragraphs, there is some "mixed content," i.e., elements that contain both text
and elements (e.g., the emphasis element).

Example B-4. A simple XML document containing marked-up text

<article>

 <heading>This is a short article</heading>

 <para>This is the <emphasis>first</emphasis> paragraph.</para>

 <para>This is the second paragraph.</para>

</article>

Example B-5 shows a simple XSLT stylesheet that is designed to process documents that look like the XML document in
Example B-4.

Example B-5. An XSLT stylesheet with multiple template rules

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">

 <html>

 <head>

 <title>

 <xsl:value-of select="/article/heading"/>

 </title>

 </head>

 <body>

 <h1>

 <xsl:value-of select="/article/heading"/>

 </h1>

 <xsl:apply-templates select="/article/para"/>

 </body>

 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

 </xsl:template>

 <xsl:template match="para">

 <p>

 <xsl:apply-templates/>

 </p>

 </xsl:template>

 <xsl:template match="emphasis">

 <i>

 <xsl:apply-templates/>

 </i>

 </xsl:template>

 <xsl:template match="strong">

 <xsl:apply-templates/>

 </xsl:template>

</xsl:stylesheet>

This stylesheet contains an xsl:output element too:

 <xsl:output method="xml" indent="yes"/>

In this case the result document will be serialized in XML format, so that the result will be well-formed XML (all
elements will have end tags, etc.).

The root template rule is very similar to the stylesheet we saw in Example B-2, except that here the values of the title
and h1 elements are dynamic:

 <xsl:template match="/">

 <html>

 <head>

 <title>

 <xsl:value-of select="/article/heading"/>

 </title>

 </head>

 <body>

 <h1>

 <xsl:value-of select="/article/heading"/>

 </h1>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </h1>

The xsl:value-of instructions see to it that both the title and h1 elements in the result will have the same value as the
heading element in the source document (Example B-4).

This snippet demonstrates how you can re-use the same text in the source document in multiple places in the result.
The string This is a short article will appear both as the resulting HTML document's title and as its top-level heading.

In fact, you can use as little or as much of the source tree as you want when creating a
result tree. XSLT leaves it up to you. You could copy the source tree verbatim into the
result tree (called an "identity transformation"), or you could create an entirely unrelated
result tree, ignoring what's in the source tree. The most useful stylesheets are usually
those that do something in between these two extremes.

So far, there is not much difference between this example and the first stylesheet we looked at (Example B-2). The root
template rule contains a basic template of the result document, along with some placeholders for dynamic content
(xsl:value-of instructions). What distinguishes this stylesheet from the first one is the use of the next XSLT instruction
that we see, the xsl:apply-templates instruction:

 <xsl:apply-templates select="/article/para"/>

The purpose of this instruction is to tell the XSLT processor to find a matching template rule for each of the nodes
returned by the XPath expression in the instruction's select attribute. In this case, the XPath expression /article/para
returns a node-set consisting of two elements. Looking back at the source document (Example B-4), we see that the
article root element contains two para elements. For each of these element nodes, the XSLT processor tries to find a
matching template rule.

The xsl:apply-templates instruction is similar to the xsl:for-each instruction, in that both instructions iterate over a set of
nodes that is selected using the instruction's select attribute. The difference between them is what happens to each
node. The content of the xsl:for-each element statically dictates what content to insert into the result tree; the same
thing happens for each node in the node-set. On the other hand, the xsl:apply-templates instruction dynamically decides
what to do with each node in the node-set. It acts like a big, invisible if/else statement, determining which template rule
to apply based on which node is currently being processed. Unlike the xsl:for-each instruction, it has the potential of
doing something different for every node that it processes.

In this case, it first looks for a template rule for the first para element. After it has found a matching template rule and
has finished applying it, it then looks for a template rule for the second para element. If there were more than two para
elements in the source document, then it would continue to do this until it has finished finding and applying a template
rule for each of the nodes in the node-set.

Where does the XSLT processor find these template rules? Well, the first place it looks is inside your stylesheet. We've
already seen that a template rule is any xsl:template element that has a match attribute, which means that our stylesheet
contains four template rules. (Their order doesn't matter.) In this case, since we're processing para elements, the
second template rule in the stylesheet matches, as determined by the value of its match attribute:

 <xsl:template match="para">

The value of the match attribute is called a pattern. In this case the pattern para successfully matches the para elements
that are being processed via xsl:apply-templates.

Inside this template rule, there is a p literal result element. Effectively, there will be one p element in the result tree for
each para element in the source tree:

 <p>

 <xsl:apply-templates/>

 </p>

The xsl:apply-templates instruction inside the p element has no select attribute. When the select attribute is absent, the
instruction is equivalent to <xsl:apply-templates select="child::node()"/>. This means "Process all child nodes, regardless of
their type." In this case, the current node being processed is a para element. The para elements in our source document
contain both elements and text, so the node-set to process will consist of both elements and text nodes. Since our
stylesheet does not explicitly define a template rule for text nodes, then one of XSLT's built-in template rules is applied.
The built-in rule for text nodes is to copy the node to the result tree. Thus, the p elements in the result tree will
effectively contain the same text as their corresponding para elements in the source tree.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively contain the same text as their corresponding para elements in the source tree.

Our stylesheet contains two other template rules, one for emphasis elements and one for strong elements:

 <xsl:template match="emphasis">

 <i>

 <xsl:apply-templates/>

 </i>

 </xsl:template>

 <xsl:template match="strong">

 <xsl:apply-templates/>

 </xsl:template>

The effect of these rules is that emphasis elements in the source document get transformed into i elements in the result
document, and strong elements in the source document get transformed into b elements in the result document.

Finally, we see the result of applying the stylesheet (Example B-5) to our simple XML source document (Example B-4).
Example B-6 shows the XML serialization of the result tree of this transformation.

Example B-6. The resulting XML document

<?xml version="1.0" encoding="utf-8"?>

<html>

 <head>

 <title>This is a short article</title>

 </head>

 <body>

 <h1>This is a short article</h1>

 <p>This is the <i>first</i> paragraph.</p>

 <p>This is the second paragraph.</p>

 </body>

</html>

As you can see, the title and h1 elements have the same value (from the source document's heading element). Also, the
para elements have been converted to p elements, the emphasis element has been converted to an i element, and the
strong element has been converted to a b element.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.4 A More Advanced Example
Our final example triplet of source document, stylesheet, and result document involves converting an XML format into
another XML format, rather than HTML. Example B-7 shows a simple XML document containing order information.

Example B-7. An XML document containing orders

<orders>

 <order>

 <item>Widget</item>

 <price>50</price>

 <quantity>3</quantity>

 </order>

 <order>

 <item>Thingamajig</item>

 <price>25</price>

 <quantity>2</quantity>

 </order>

 <order>

 <item>Whatchamacallit</item>

 <price>35</price>

 <quantity>1</quantity>

 </order>

</orders>

Example B-8 shows an XSLT stylesheet for converting this document into a summary format.

Example B-8. An XSLT stylesheet for processing orders

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

 <orderSummary>

 <expensiveItems>

 <xsl:apply-templates select="/orders/order[price >= 30]"/>

 </expensiveItems>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </expensiveItems>

 <cheapItems>

 <xsl:apply-templates select="/orders/order[price < 30]"/>

 </cheapItems>

 </orderSummary>

 </xsl:template>

 <xsl:template match="order">

 <xsl:element name="{item}">

 <xsl:attribute name="totalPrice">

 <xsl:value-of select="price * quantity"/>

 </xsl:attribute>

 </xsl:element>

 </xsl:template>

</xsl:stylesheet>

This stylesheet introduces some more features of XPath and XSLT. Let's step through the stylesheet just as we did with
the first two examples.

This time, the xsl:output method does not include a method attribute. Since it defaults to xml (as long as the result
document's root element name is not html), the result will be serialized as a well-formed XML document. The indent
attribute asks the processor, once again, to add line breaks and indentation to make the resulting document easy to
read:

 <xsl:output indent="yes"/>

Inside the root template rule, we see some literal result elements. The orderSummary element will end up as the root, or
document, element of the result document. And it will contain two child elements, expensiveItems and cheapItems:

 <xsl:template match="/">

 <orderSummary>

 <expensiveItems>

 ...

 </expensiveItems>

 <cheapItems>

 ...

 </cheapItems>

 </orderSummary>

 </xsl:template>

Inside the expensiveItems element, we see the xsl:apply-templates instruction:

 <xsl:apply-templates select="/orders/order[price >= 30]"/>

The XPath expression /orders/order[price >= 30] selects all order element children of the root order element where the price

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XPath expression /orders/order[price >= 30] selects all order element children of the root order element where the price
child element's value is greater than or equal to 30. This test occurs inside square brackets and is called a predicate.
(XPath predicates are similar to WHERE clauses in SQL.) Predicates are useful for filtering out all but the nodes you want
from a given node-set. In this case, we only want to process certain orders—where the price is greater than 30.

Inside the cheapItems element, we see a similar instruction:

 <xsl:apply-templates select="/orders/order[price < 30]"/>

The XPath expression /orders/order[price < 30] also contains a predicate. But in this case, the expression selects all the
order elements that the first xsl:apply-templates instruction filtered out, namely the order elements where the price value is
less than 30.

Certain markup characters in XML have special meaning and must be escaped when they
occur inside element or attribute values. The XPath less-than operator (<), for example,
must be escaped (as <) when it occurs inside an attribute value (as in XSLT).

As we learned in the last section, the xsl:apply-templates instruction tells the XSLT processor to find matching template
rules for each of the nodes in the node-set selected by the select attribute. Our stylesheet in Example B-8 includes only
one other template rule:

 <xsl:template match="order">

This template rule happens to match all of the nodes selected by each of the two xsl:apply-templates instructions. In other
words, all of the order elements being processed match the pattern order (in the match attribute).

Inside the template rule, we see a new XSLT instruction, xsl:element:

 <xsl:element name="{item}">

 ...

 </xsl:element>

The purpose of the xsl:element instruction is to create an element in the result document. In that respect, it is similar to
a literal result element. However, unlike literal result elements, xsl:element instructions allow you to make the element
name dynamic. In this case, the name of the element will be the value of the item child element of the current node
(the item child of the order element being processed). The curly braces ({ }) are called an attribute value template and
are replaced with the value returned by the XPath expression between them (item in this case). Without the curly
braces, the XSLT processor would just create an item element (using the string item as the name of the new element,
rather than evaluating item as an XPath expression).

Inside the xsl:element instruction, we see an xsl:attribute instruction:

 <xsl:attribute name="totalPrice">

 ...

 </xsl:attribute>

As you may have already guessed, the xsl:attribute element creates an attribute in the result. In this case, the name of
the attribute will be totalPrice. The value of the totalPrice attribute is determined by the content of the xsl:attribute
element. Looking inside the xsl:attribute element, we see an xsl:value-of instruction:

 <xsl:value-of select="price * quantity"/>

Unlike previous examples, the XPath expression shown here is an arithmetic expression, consisting of a location path
multiplied by a location path. Actually, what happens is this: the location paths (price and quantity) are first evaluated
and converted to numbers. Then those numbers are multiplied by each other. Thus, the value of the totalPrice attribute
in the result will be the product of the values of the price and quantity child elements of the order element currently being
processed.

Finally, Example B-9 shows the result of applying the XSLT stylesheet (Example B-8) against the source document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, Example B-9 shows the result of applying the XSLT stylesheet (Example B-8) against the source document
(Example B-7).

Example B-9. The result of applying the stylesheet in Example B-8 against the XML
document in Example B-7

<?xml version="1.0"?>

<orderSummary>

 <expensiveItems>

 <Widget totalPrice="150"/>

 <Whatchamacallit totalPrice="35"/>

 </expensiveItems>

 <cheapItems>

 <Thingamajig totalPrice="50"/>

 </cheapItems>

</orderSummary>

As you can see, there is an element to correspond to each of the original order elements from Example B-7. The name
of each element varies according to the value of the original item child element (Widget, Whatchamacallit, or Thingamajig).
They are divided up into "expensive" and "cheap" items depending on their original price values. For example, since the
"Thingamajig" item's price was only 25 (which is less than 30), it ended up inside the cheapItems element. Finally, the
totalPrice attribute in each case consists of the original price value multiplied times the original quantity value.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

B.5 Conclusion
XSLT can be a difficult language to learn, and, for that reason, it's often been derided as an overly complex language.
In truth, XSLT is a small language with few primitives, few operators, and few functions. While there's no shame in
consulting the reference manual, it is easily a candidate for a language that you can learn comprehensively. So take
heart! With the right guidance and a little patience, it can be done.

Probably XSLT's most difficult construct to learn is also its most powerful: template rules. It is quite possible to work
with XSLT while avoiding this construct (thereby missing out on much of XSLT's power), and this is often how people
learn XSLT. The problem with this avoidance is that it tends to catch up with you sooner or later. If you can just master
this one aspect of XSLT (how template rules work), then you will have overcome the most difficult hurdle. After that,
everything should fall into place, and you will have a powerful new tool in your XML processing arsenal.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix B. The XSLT You Need for Office
XSLT plays a huge role in Office 2003. This book contains numerous examples of XSLT stylesheets for use in Word,
Excel, InfoPath, and Access. Since proficiency in XSLT is a prerequisite for understanding much that's in this book, your
best bet (if you don't already know XSLT) is to pick up one of the excellent books on XSLT that are already available.
Here are some good books to choose from for learning XSLT:

 Michael Fitzgerald, Learning XSLT (O'Reilly)

 Jeni Tennison, Beginning XSLT (Wrox)

 Michael Kay, XSLT Programmer's Reference (Wrox)

 Doug Tidwell, XSLT (O'Reilly)

 G. Ken Holman, Definitive XSLT and XPath (Prentice Hall)

 John E. Simpson, XPath and XPointer (O'Reilly)

 Sal Mangano, XSLT Cookbook, (O'Reilly)

If you are already comfortable with XSLT, then great—you might not need to read this appendix at all. For those of you
who are new to XSLT, this appendix provides a brief introduction and tutorial, illustrating just a few aspects of this
powerful language. Truthfully, when developing XML solutions for Office, the more XSLT you know, the better. While
this appendix may provide a good start, it only scratches the surface.

After a brief overview of what XSL-FO, XSLT, and XPath are, we'll look at three example stylesheets. The first two
illustrate the most common use case for XSLT: transforming XML documents into HTML. The last example converts
between one XML format and another XML format.

The examples in this appendix do not pertain specifically to Office. For Office-specific
examples of XSLT stylesheets, see the main content of the book (specifically Chapter 3,
Chapter 4, Chapter 5, Chapter 7, Chapter 8, and Chapter 10). The highest concentration of
XSLT examples is in Chapter 3.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.1 What Is XSD?
XML Schema Description (XSD), sometimes referred to as W3C XML Schema (WXS), is an XML vocabulary that lets you
describe other XML vocabularies so that programs can test whether a given document meets rules laid down in the
schema. XSD is defined by a set of three W3C Recommendations:

XML Schema Part 0: Primer

A tutorial for XML Schema, explaining Parts 1 and 2 in simpler terms with more examples and integration.
Available at http://www.w3.org/TR/xmlschema-0/.

XML Schema Part 1: Structures

An XML vocabulary for describing the structures of XML vocabularies, based on a mixture of markup and object-
oriented design. Available at http://www.w3.org/TR/xmlschema-1/.

XML Schema Part 2: Datatypes

A set of extensible types for describing the contents of XML elements and attributes, including things like
integers, decimals, and dates. Available at http://www.w3.org/TR/xmlschema-2/.

The mechanisms for defining structures and datatypes allow schema designers to create type systems that may be
extended or restricted. This brief appendix will focus on the parts of XSD you need to define document structures, and
leaves advanced features like extension, restriction, substitution groups, and keys for more detailed exploration in other
books.

For more information on XSD generally, see Eric van der Vlist's XML Schema (O'Reilly) or
Priscilla Walmsley's Definitive XML Schema (Prentice-Hall). The Primer noted above may
also be a good place to start.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.2 Creating a Simple Schema
As a simple example to get you started building schemas, examine the structure of Example C-1. You may have seen
the document before (it was Example A-1 in Appendix A), but this time do an inventory of the parts it contains.

Example C-1. A simple XML document for definition in a schema

<?xml version="1.0" encoding="us-ascii"?>

<authors>

 <person id="lear">

 <name>Edward Lear</name>

 <nationality>British</nationality>

 </person>

 <person id="asimov">

 <name>Isaac Asimov</name>

 <nationality>American</nationality>

 </person>

 <person id="mysteryperson"/>

</authors>

This document contains an authors element, which itself contains multiple person elements. Each person element has an id
attribute and may contain a name and a nationality element. For now, we'll treat all of the textual content of the elements
and attributes as text. One way to define this document in a schema is with a schema whose structure mirrors the
document shown in Example C-2, called a "Russian doll" schema after the wooden matruschkas. The names of the
elements being defined are in bold to make it easier to read.

Example C-2. A "russian doll" schema that describes Example C-1.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="person" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence minOccurs="0" >

 <xs:element name="name" type="xs:string" />

 <xs:element name="nationality" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This schema starts by defining the authors element, which will be the root element for the document, and its contents.
Because the authors element contains more than simple text, it is defined as an xs:complexType. That type contains a
sequence of person elements. The parts of the declaration that pertain only to the authors element are shown here:

<xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="person" maxOccurs="unbounded">

 ...

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The definition of the person element itself contains an xs:complexType containing an xs:sequence, this time specifying that
name and nationality elements (each of which only contain a string) may appear in that sequence. The xs:complexType for
the person element also contains a definition for the id attribute.

<xs:element name="person" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence minOccurs="0" >

 <xs:element name="name" type="xs:string" />

 <xs:element name="nationality" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

Because the name and nationality elements and the id attribute just contain strings, they are "simple" relative to the
complex types used for the elements that contain them, so a declaration like:

<xs:element name="name" type="xs:string" />

is sufficient to say "the name element will appear here and contain a string."

There are a few other pieces to examine in Example C-2, notably the maxOccurs and minOccurs attributes on xs:element,
and the use attribute on xs:attribute.

You can write the same schema in a more modular way, shown in Example C-3. Again, the names of elements are
bolded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bolded.

Example C-3. A different style of schema that describes Example C-1

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Instead of nesting all the declarations into one xs:element, this version separates all the declarations into separate
pieces. Only one new piece is needed to do this, the ref attribute on xs:element and xs:attribute. Writing schemas this way
is frequently simpler, as it allows you to reuse the same elements in multiple places and because it separates
information about how often an element or attribute may appear (maxOccurs, minOccurs, and use, which go with the ref)
from the information about an element or attribute's content (the type attribute, xs:complexType child element, and so
on).

When the xs:element and xs:attribute declarations are moved out to be immediate children of the xs:schema element, they
become global elements and attributes, accessible for use in any declaration. Elements also become possible root
elements for the document, so Office applications may ask which element to use as the root if given schemas written in
this style. (It's generally easier to keep xs:attribute declarations inside of the elements that use them, or in attribute
groups, described later, rather than as globals.)

If you load either of these schemas into an Excel XML map (as described in Chapter 6) and load Example C-1 into the
map, you'll get the result shown in Figure C-1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

map, you'll get the result shown in Figure C-1.

Figure C-1. An XML map using the schema in Example C-2 and Example C-3, loaded
with the data from Example C-1

While the two schemas are different, the model they describe to Excel (or Word, or any other schema-processing
software) is exactly the same. For some record/field based vocabularies, the simple structures presented in Examples
Example C-2 and Example C-3 are more than enough to get work accomplished.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.3 Schema Parts
The simple schemas in Examples Example C-2 and Example C-3 use a lot of pieces of XSD, and you can use them as
models for future schemas, but there are a lot more options available, even in the most readily usable subset of XSD.

C.3.1 Namespaces

The only namespace declaration to appear in either example was the namespace declaration for XSD itself:

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

In this case, the schema was defining a vocabulary that was not in a namespace, so there was no need to define an
additional namespace. If, as is typical, your schemas define vocabularies that are in a namespace, you'll need to define
the namespace on the root xs:schema element. Example C-4 shows a slightly modified version of Example C-3, defining
the vocabulary as belonging to the http://simonstl.com/ns/authors/ namespace. Changes to the schema appear in bold.

Example C-4. Example C-3 rewritten to support a namespace

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://simonstl.com/ns/authors/"

 xmlns="http://simonstl.com/ns/authors/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified" >

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

All of the changes in this case are at the top. The targetNamespace attribute tells the XSD processor what namespace is
being defined here, and the xmlns attribute that follows declares the default namespace to use that same namespace
URI. (If you leave off the xmlns attribute, the connections between the ref attributes and their corresponding xs:element
and xs:attribute declarations will break.) The elementFormDefault and attributeFormDefault attributes declare whether local
elements and attributes will be namespace-qualified by default. To match typical XML 1.0 practice, elements are
qualified and attributes are not.

Namespace handling in XSD can get extremely complicated if you start using unqualified
elements, qualified attributes, or mixing all of them by using the form attribute on
individual declarations. The easiest approaches are definitely either to work without
namespaces at all or to use qualified elements and unqualified attributes.

It's also worth noting that you don't have to define attributes used in documents for namespace declarations. XSD
doesn't consider them attributes and doesn't validate them.

C.3.2 Named and Anonymous Type Definitions

All of the types defined in Examples Example C-2, Example C-3, and Example C-4 were anonymous. Only the
xs:elements and xs:attributes had names, not the xs:complexType elements. Some of the declarations referenced a named
type, xs:string (a predefined datatype), but these schemas didn't create any named types of their own. If you want to
create named types for the complex type content of Example C-4, you could further modularize it as shown in Example
C-5.

Example C-5. Example C-4 rewritten to break out complex types

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://simonstl.com/ns/authors/"

 xmlns="http://simonstl.com/ns/authors/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified" >

 <xs:element name="authors" type="authorsContent" />

 <xs:complexType name="authorsContent">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:complexType>

 <xs:element name="person" type="personContent" />

 <xs:complexType name="personContent">

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Instead of this definition of the authors element:

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

the schema now uses:

 <xs:element name="authors" type="authorsContent" />

 <xs:complexType name="authorsContent">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

The actual xs:element now looks more like its simpler cousins that simply referenced a datatype, while the xs:complexType
is a separate component. This approach means that the xs:complexType can be referenced by multiple elements that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is a separate component. This approach means that the xs:complexType can be referenced by multiple elements that
have the same content model, and it also means that advanced schema developers can derive additional types from the
authorsContent type to create variations. (If you don't have an explicit reason to create named types, it is frequently
easier to avoid them altogether.)

C.3.3 Datatypes

The examples have been using datatypes, a special kind of named type, since Example C-2. This xs:element refers to the
xs:string datatype:

<xs:element name="nationality" type="xs:string"/>

The xs:string datatype is probably the most commonly used type, and it may be okay during the early development of
your schemas to define all content as being of type xs:string and then go through later and define more specific types.
XSD includes over forty types that you can use without further work, described briefly below.

xs:anyURI

Contains any URL or URI as its value.

xs:base64binary

Contains Base 64 encoded binary content, as defined in RFC 2045.

xs:boolean

Contains a true/false value, expressed as true, false, 0, or 1.

xs:byte

Contains an integer value between -128 and 127.

xs:date

Contains a date in the ISO 8601 [-]CCYY-MM-DD[Z|(+|-)hh:mm] format. The optional negative at the start
indicates if the year is before 0 AD, CC is the century, YY the year, MM the month, and DD the day. The [Z|(+|-
)hh:mm] is an optional time zone, where Z indicates Universal Time (UTC). For example, August 5, 2004 as
experienced in London might be written 2004-08-05Z, while December 7, 1941 BC on the east coast of the United
States would be written -1941-12-07-05:00.

xs:dateTime

Much like xs:date above, except that it adds time information, making the complete format [-
]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm], where the T is a capital letter T used as a divider, and hh:mm:ss is hours,
minutes, and seconds. Hours are expressed in 24-hour time. For example, August 5, 2004 at 9:51 P.M. as
experienced in London might be written 2004-08-05T21:51:00Z, while December 7, 1941 BC at 11:37:42 A.M. on
the east coast of the United States would be written -1941-12-07T11:37:42-05:00.

xs:decimal

Contains a number with one decimal point and an arbitrary number of digits. A leading negative sign is
permitted, as are any number of insignificant leading or following zeros. There is no restriction on the number
of digits used, but scientific notation (12.04E+2, for instance) is prohibited. Legal decimals include 0, 4.624, -
4.6424, 0010.1111220, and 11221523432399322146838572919572399102.556.

xs:double

A 64-bit floating point number, expressed using a decimal format with optional scientific notation, as well as the
values 0 (positive zero), -0 (negative zero), INF (positive infinity), -INF (negative infinity), and NaN (not a
number). Doubles are expressed internally as powers of two rather than powers of ten, so some rounding
errors may appear in calculations made with doubles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

errors may appear in calculations made with doubles.

xs:duration

A length of time, expressed using the format PnYnMnDTnHnMnS. The leading P is mandatory and the T marks the
boundary between date and time measurement, but the other letters are required only if used. For example,
P1Y is a duration of one year, P2M is a duration of two months, P1DT2H is one day and two hours, and PT20M03S
is twenty minutes and three seconds. You should probably avoid combining years or months with days and
smaller units, as comparisons can become very complicated.

xs:ENTITIES

Maps to the ENTITIES type in DTDs, used for unparsed entities. This is included for completeness, but your odds
of seeing or using it are slim.

xs:ENTITY

Like xs:ENTITIES, maps to the ENTITY type in DTDs, used for unparsed entities. This is included for
completeness, but your odds of seeing or using it are slim.

xs:float

Exactly like xs:double, except only a 32-bit floating point space.

xs:gDay, xs:gMonth, xs:gMonthDay, xs:gYear, xs:gYearMonth

These types represent durations of calendar time with an optional time zone. The first three refer to repeating
times (every 15th of the month, every June, every June 15th, respectively), while xs:gYear and xs:gYearMonth
refer to specific years and months within a year (the year 2110, June 2110).

xs:hexBinary

Like xs:base64binary, this holds encoded binary content, except that data is encoded by representing every byte
in text as its hexadecimal value.

xs:ID

Maps to the DTD type ID, which is used for attribute values that must be unique within a document. Unlike its
use in DTDs, it can be applied to both attribute and element content. Its value must start with a letter or
underscore, and be composed of letters and numbers, underscores, periods, and hyphens.

xs:IDREF

Maps to the DTD IDREF, which is used for attribute values that must match an ID value elsewhere in the
document. Unlike its use in DTDs, it can be applied to both attribute and element content. Like ID, its value
must start with a letter, underscore, or colon, and be composed of letters and numbers, underscores, periods,
and hyphens.

xs:IDREFS

Maps to the DTD IDREFS, and is just like xs:IDREF, except that multiple identifiers pointing to IDs may appear,
separated by spaces.

xs:int

Represents 32-bit integers, in the range from -2147483648 to 2147483647. Any number of leading zeros is
permitted, but no decimal points, scientific notation, INF, or NaN. Legal values include 20, -9743, 0, and
2147483645.

xs:integer

Like decimal, this represents all positive and negative integers with any number of digits allowed. No decimal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like decimal, this represents all positive and negative integers with any number of digits allowed. No decimal
point may appear. -0 and +0 are permitted, but they are considered equal. Legal values include -200, 420, and
2147483649.

xs:language

A language code like those used by the xml:lang attribute, based on RFC 1766. Values might include en-US for
English as spoken in the United States, fr-CA for Canadian French, or fr for French.

xs:long

A 64-bit integer, in the range -9223372036854775808 to 9223372036854775807. No decimal points, scientific
notation, INF, or NaN are permitted.

xs:Name

An XML Schema version of the XML 1.0 Name production, which must start with a letter, underscore, or colon,
and be composed of letters, numbers, periods, underscores, hyphens, and colons.

xs:NCName

Like xs:Name, except that colons are prohibited.

xs:negativeInteger

Exactly like xs:integer, except that no positive integers or zero are allowed.

xs:NMTOKEN

An XML Schema version of the XML 1.0 NMTOKEN production, which allows values containing letters, numbers,
periods, colons, underscores, and hyphens.

xs:NMTOKENS

Just like xs:NMTOKEN, except that multiple tokens may appear separated by whitespace.

xs:nonNegativeInteger

Exactly like xs:integer, except that negative values are prohibited. Zero is allowed.

xs:nonPositiveInteger

Exactly like xs:integer, except that positive values are prohibited. Zero is allowed.

xs:normalizedString

A string of characters that will be reported as if all whitespace characters are spaces—no tabs, linefeeds, or
carriage returns will be reported to the program.

xs:NOTATION

An XML Schema version of the rarely-used XML 1.0 NOTATION type for attributes.

xs:positiveInteger

Exactly like xs:integer, except that negative values are prohibited. Zero is not allowed.

xs:QName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A namespace-qualified name. The prefix used in the value must be in scope, declared in this element or in an
ancestor element, and the application will be told of the namespace URI and the local portion of the name.

xs:short

A 16-bit integer, in the range -32768 to 32768. Decimal points are forbidden.

xs:string

Any legal XML text you like.

xs:time

Time information represented in a 24-hour format as hh:mm:ss[Z|(+|-)hh:mm], where hh:mm:ss is hours,
minutes, and seconds and the rest is an optional timezone. For example, 9:51 A.M. as experienced in London
might be written 09:51:00Z, while 11:37:42 P.M. on the east coast of the United States would be written
23:37:42-05:00.

xs:token

Just like xs:string, except that all whitespace is collapsed down to single spaces and leading and trailing
whitespace is removed.

xs:unsignedByte, xs:unsignedInt, xs:unsignedLong, xs:unsignedShort

Positive 8-bit, 32-bit, 64-bit, and 16-bit integers, respectively. Zero is permitted in all of these, but negative
numbers, decimal points, INF, and NaN are not.

XML Schema Part 2 provides a set of facilities for creating additional constraints on these datatypes using a facet-based
system, but those facilities definitely deserve a book of their own. For most applications, one of these basic types will be
acceptable.

C.3.4 Varied Document Structures

While some XML documents, particularly those spreadsheet or database contents, only need to define containers and
possibly a sequence, richer documents often contain a much wider variety of possibilities. Sections may be optional or
appear repeatedly, but may also be replaced with a variety of different choices. Choices may themselves include or be
included by sequences. XML Schema offers support for many different kinds of document structure.

Examples Example C-2 through Example C-5 all used the xs:sequence element and the minOccurs and maxOccurs
attributes shown below.

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name" />

 <xs:element ref="nationality" />

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

The xs:sequence element is called a compositor, imposing order on its child xs:element particles. There are two other
compositors available: xs:choice and xs:all. The xs:choice element permits one of a list of particles to appear, while xs:all
requires that all particles must appear but doesn't put constraints on the order in which they appear. In addition to
setting rules for their particles, compositors also act as a group, and you can specify minOccurs or maxOccurs for the
group as a whole. (The default value for both the minOccurs and maxOccurs is one.)

If you wanted to define a person element that included both name and nationality but weren't concerned about the order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you wanted to define a person element that included both name and nationality but weren't concerned about the order
in which they appeared, you could use:

 <xs:element name="person">

 <xs:complexType>

 <xs:all>

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:all>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

(Note that the xs:attribute isn't part of the group. Attributes are part of the type, but the compositors only apply to
element content.)

If, on the other hand, you wanted to define a person element that could contain a choice of a name or an alias, you might
use:

 <xs:element name="person">

 <xs:complexType>

 <xs:choice minOccurs="0" >

 <xs:element ref="name" />

 <xs:element ref="alias" />

 </xs:choice>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

 </xs:element>

The particles inside of an xs:sequence or xs:choice may be xs:element, xs:sequence, xs:choice, xs:any, or xs:group elements.
(xs:all may only contain xs:element.) For example, a choice might be between an element and sequence of choices:

<xs:element name="pachinko">

 <xs:complexType>

 <xs:choice>

 <xs:element name="simple" type="xs:string" />

 <xs:sequence>

 <xs:choice>

 <xs:element name="choice1" type="xs:string" />

 <xs:element name="choice2" type="xs:string"

 </xs:choice>

 <xs:choice>

 <xs:element name="choiceA" type="xs:string" />

 <xs:element name="choiceB" type="xs:string"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="choiceB" type="xs:string"

 </xs:choice>

 </xs:sequence>

 </xs:choice>

 </xs:complexType>

</xs:element>

In this case, the pachinko element may contain an element named simple, or it may contain the sequence. The sequence
requires either a choice1 or a choice2 element (but not both), followed by either a choiceA or a choiceB element (again, not
both.)

XML Schema prohibits certain combinations of compositors, requiring that schema structures always provide a
deterministic path to a particular combination of elements; the processor should never have to keep two possible
choices in mind while it works out which particle a particular element matches. Most simple schemas will never
encounter these problems, but more complex ones can fall afoul of them. For more detail, see Chapter 7 of Eric van der
Vlist's XML Schema.

C.3.5 When Anything Is Allowed

If you aren't concerned about what goes into a particular element or particle, you can use the xs:any element for its
content and xs:anyAttribute to specify its attributes. You can limit the contents to particular namespaces using the
namespace attribute and tell the schema validator to skip the contents using the processContents attribute. For example, if
you wanted to create an extension element that permitted any content and had any namespaces, you might declare it
like:

<xs:element name="extension">

 <xs:complexType>

 <xs:sequence minoccurs="0" maxOccurs="unbounded">

 <xs:any namespace="##any" processContents="skip" />

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="skip" />

 </xs:complexType>

</xs:element>

The namespace attribute can hold a namespace URI (or URIs, separated by whitespace), as well as one of four wildcards:

##local

Only elements (or attributes, for xs:anyAttribute) in no namespace at all may appear.

##targetNamespace

Only elements (or attributes, for xs:anyAttribute) in the schema's target namespace may appear.

##any

Elements (or attributes, for xs:anyAttribute) in any namespace at all may appear.

##other

Only elements (or attributes, for xs:anyAttribute) that are not in the schema's target namespace may appear.

The xs:any element must appear within an xs:sequence or xs:choice, while the xs:anyAttribute may appear in
xs:attributeGroup as well as xs:complexType and related elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:attributeGroup as well as xs:complexType and related elements.

C.3.6 Model Groups

If you have lots of declarations you'll be using frequently but don't need to be able to extend or restrict them, you can
use the xs:group element, first to define a group of declarations and then to reference them.

For example, the declaration for the person element in Example C-3 looked like:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

</xs:element>

If you planned to reuse this combination of name and nationality but not the id attribute, you could create a model group
holding the sequence and reference it inside the xs:complexType. The new version would look like:

<xs:element name="person">

 <xs:complexType>

 <xs:group ref="name-nationality" />

 <xs:attribute ref="id" use="required"/>

 </xs:complexType>

</xs:element>

<xs:group name="name-nationality">

 <xs:sequence minOccurs="0">

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

</xs:group>

You can do the same thing to attributes if you have a group of attributes to be applied repeatedly. To create a set of
attributes referring to URLs and giving MIME types of the desired content, you might create an xs:attributeGroup like this
one:

<xs:attributeGroup name="retrievalInformation" >

 <xs:attribute name="href" type="xs:anyURI" />

 <xs:attribute name="mime-type" type="xs:string"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:attribute name="mime-type" type="xs:string"/>

</xs:attribute>

<xs:element name="link">

 <xs:complexType>

 <xs:attributeGroup ref="retrievalInformation" />

 </xs:complexType>

</xs:element>

The link element could now have attributes named href and mime-type.

The xs:group element may contain any compositor (xs:sequence, xs:choice, or xs:all) and its contents, while xs:attributeGroup
is limited to containing xs:attribute, xs:attributeGroup, or xs:anyAttribute. If you need to put both elements and attributes in
a group, use xs:complexType instead.

C.3.7 Empty Content, Mixed Content, and Default Values

XML Schema can support a few more types of content than have been shown so far, as well as supply content to
documents in some cases. The simplest case that hasn't been shown yet is the creation of an element (like br in HTML)
that must always be empty. The easiest way to do this is to use an xs:complexType element that doesn't reference any
elements, like this:

<xs:element name="br">

 <xs:complexType>

 </xs:complexType>

</xs:element>

If you want to add attributes, they can be placed in the xs:complexType element without changing the emptiness of the br
element.

Another common case is mixed content, where text and elements appear on the same level of a document. A classic
case is a paragraph that contains bold, italic, and underlined text. In simple HTML, this might look like:

<p>This is bold, this is <i>italic</i>, and this is

<u>underline</u>.</p>

To make this work, you need to create a definition of the p element that contains an xs:complexType element whose
mixed attribute is set to true:

<xs:element name="p">

 <xs:complexType mixed="true">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="b" type="xs:string" />

 <xs:element name="i" type="xs:string" />

 <xs:element name="u" type="xs:string" />

 </xs:choice>

 </xs:complexType>

</xs:element>

The choice will permit as many b, i, and u elements as necessary, while mixed="true" will permit text to be mingled with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The choice will permit as many b, i, and u elements as necessary, while mixed="true" will permit text to be mingled with
any of them.

If instead of these fancy features you just want to create a definition that provides a default value to an element or
attribute if one is not provided, you can use the default attribute on simple element or attribute declarations. To create
an element called name whose value defaults to Winky if the element is present but empty, you would write:

<xs:element name="name" default="Winky" />

To create an attribute named flavor whose value defaults to vanilla, you would write:

<xs:attribute name="flavor" default="vanilla" />

Unlike the element, the default value will only be applied if the attribute is absent. You can also fix a value to an
attribute or element. If you insisted that the flavor must always be vanilla, you could instead use:

<xs:attribute name="flavor" fixed="vanilla" />

The flavor attribute's value will default to vanilla if the attribute isn't present in the document, and an error will be
reported if a document contains a flavor attribute with any other value.

C.3.8 Annotations

The last feature of XML Schema worth noting here is its support for annotations. Every single element in XML Schema
permits an xs:annotation element as its first child (except xs:annotation itself, that is). The xs:annotation element may
contain any number of xs:documentation and xs:appinfo elements, and the content models for both of those are wide
open.

The xs:appinfo element is intended for machine-readable content, while the xs:documentation element is intended for
human-readable content. Both accept a source attribute that points to a URI, and xs:documentation also accepts an
xml:lang attribute that specifies the human language in which the documentation appears. At present, Office ignores
both of these, but xs:documentation in particular is an opportunity for you to provide additional information in your
schemas. For example, to document the flavor attribute's peculiar status, a careful schema writer might modify its
definition:

<xs:attribute name="flavor" fixed="vanilla">

 <xs:annotation>

 <xs:documentation xml:lang="en-US">

 While many people like multiple flavors of ice cream,

 the manager of this project insists that everyone must

 have vanilla, and accepts no questions on the matter.

 </xs:documentation>

 </xs:annotation>

</xs:attribute>

You can also use HTML, DocBook, or the XML vocabulary of your choice within xs:documentation, and then use other
programs or stylesheets to create more formal documentation using this information.

C.3.9 Other Features

XML Schema defines a wide variety of other features, including extension and restriction of both structural types and
datatypes, combining types, inclusion and export of external schemas, substitution groups, keys for establishing
uniqueness among parts of a document, a mechanism for suggesting which schema applies to a document, and
attributes that let parts of a document identify which types within the schema apply to them. Office doesn't support
many of these features, and many of them have complex interactions with data models. If you need more information
on these features, please consult a book dedicated to XML Schema.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

C.4 Working with XML Schema
While XML Schema is at the heart of many XML-based projects, it has a few usability issues. You've no doubt noticed
that it's verbose, a common problem for anything using XML. Its structures, even using the relatively simple subset of
features shown here, can rapidly become complicated, and hunting through these structures to figure out in which
choice or sequence a particular component is used is really not much fun. When you've created a schema yourself, it's
generally tolerable, but interpreting large schemas created by other people is a challenge, especially when you're
reading the structure through XML tags.

Most people who work with XML Schema seem to do so from behind the relative safety of tools, notably the commercial
XML Spy (http://www.xmlspy.com/). There are many schema editors, some free, some not, all with their own pluses
and minuses. Graphic diagrams can be a relief after pointy brackets. Some developers still like to work in text, but not
directly in XML Schema, and they may be able to use the tools described in Appendix D for much of their schema
creation work.

For some cases, it may be enough to infer schemas from existing documents. Excel 2003 has this capability built into,
but getting to those schemas is a bit difficult, as described in Chapter 7. Both the Trang program described in Appendix
D and Microsoft's XSDInference toolkit, at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnxmlnet/html/xsdinference.asp, can give you an instant schema if you need to work with the schema separately.

The enormous feature set provided by the XML Schema recommendations gives developers a huge project to work on,
and interoperability between schema tools remains tricky. The applications within Microsoft Office generally work
directly with their own preferred subsets of XML Schema, and those subsets seem generally reliable, but you should
definitely expect to test your schemas in Office and make sure they behave as you (and your users) expect.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix C. The XSD You Need for Office
The purpose of this appendix is to introduce you to XML Schema Definitions (XSD). Microsoft uses XSD, or subsets of
XSD, throughout the Office suite. While XSD is a subject worthy of a book or several of its own, and many people prefer
to work with it only through tools, there is a core set of XSD features that will let you describe and define XML
vocabularies as well as understand how Office interprets XML information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

D.1 What Are DTDs?
Document Type Definitions express the allowed elements and attributes in a certain document type and constrain the
order in which elements must appear within that document type. A DTD is often composed of a single file, which
contains declarations defining the element types and attribute lists. (In theory, a DTD may span more than one file;
however, the mechanism for including one file inside another—parameter entities—is outside the scope of this
appendix.)

D.1.1 Element Type Declarations

An element is the actual instance of the structure as found in an XML document, whereas the element type defines the
element, giving it a name and a structure. The form of an element type declaration is:

<!ELEMENT element-name contentspec>

The allowable content defined by contentspec is defined in terms of a simple grammar, which allows the expression of
sequence, alternatives, and iteration within elements. For a formal definition of the element type declaration, see
Section 3.2 of the XML 1.0 specification at http://w3.org/TR/REC-xml#NT-elementdecl. Table D-1 introduces the most
common constructs.

Table D-1. Element type content specifications
Content specification Meaning

<!ELEMENT e (#PCDATA)>
The e element may contain character data—that is, text (and possibly entity and
character references).

<!ELEMENT e EMPTY>
The e element has no content—that is, it can only appear as <e/> or <e></e>.

<!ELEMENT e ANY>
The e element may contain character data or any other element defined in the DTD.

<!ELEMENT e (a+)>
The e element must contain at least one a element and may contain multiple a elements.
(The plus means "one or more.")

<!ELEMENT e (a,b*,c+)> The e element must contain the following sequence: one a element, followed by zero or
more b elements, followed by one or more c elements. The asterisk means "zero or
more."

<!ELEMENT e (#PCDATA|b)*>
The e element may contain b elements or character data, and they can all be mixed
together.

<!ELEMENT e (a|b|c)* >
The e element may contain zero or more a, b, or c elements, in any order.

For a document to be valid, the DTD must provide an element type declaration for every element used in the document
and the contents of all of those elements must conform to the content models specified in the element type declaration.
Element type declarations leave off one important aspect of elements, however: attributes.

D.1.2 Attribute List Declarations

Inside a DTD, permissible attributes are specified on a per-element basis. An attribute list declaration takes this form:

<!ATTLIST element-name attribute-definitions >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the attribute definitions, you have to identify the attribute's name and type, whether the attribute is optional or
required, and, if necessary, the attribute's default value. Unlike elements, you can specify default values for attributes,
which are inserted by an application when it parses the XML document, even if they're not explicitly written in the
document. Attributes can store all kinds of content, but the main types used are CDATA (character data, including entity
and character references), ID (identifiers whose value must be unique within the document), and IDREF and IDREFS
(which point to ID values). Attribute definitions may also specify a list of acceptable values rather than a generic type.
Attribute types are only a subset of the XSD types described in Appendix C—all of them are textual. Table D-2 shows
some common attribute definitions.

Table D-2. Attribute definitions
Attribute definition Meaning

subject CDATA #REQUIRED
The subject attribute must always be present and it should contain only character
data. It has no default value.

rating CDATA #IMPLIED
The rating attribute is allowed, but not mandatory. It has no default value.

play (scissors|paper|stone) "stone"
The play attribute may take only the values scissors, paper, or stone. If it is not
specified, it is assumed to take the default value stone.

color CDATA #FIXED "purple"
The color attribute must take the value purple. If it is not specified on the element, the
processing application provides purple as a default value.

Here's a complete attribute declaration for a fictitious animals element, which must have a name, either two or four legs,
and, optionally, a note field:

<!ATTLIST animal

 name CDATA #REQUIRED

 legs (two|four) "four"

 notes CDATA #IMPLIED >

While attributes can be very useful for annotations, Microsoft Office tends to use element content for information that's
presented directly. You can certainly use attributes, but you may find it easier to stick with elements unless you have a
particular reason to choose attributes.

D.1.3 Putting it Together

To demonstrate a complete DTD, we'll explore a document and its DTD. The document is shown in Example D-1, while
the DTD is shown in Example D-2.

Example D-1. A valid XML document

<?xml version="1.0" encoding="us-ascii"?>

<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">

<authors>

 <person abbrev="edd">

 <name>Edd Dumbill</name>

 <nationality>British</nationality>

 </person>

 <person abbrev="simonstl">

 <name>Simon St.Laurent</name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <name>Simon St.Laurent</name>

 <nationality>American</nationality>

 </person>

 <person abbrev="vdv">

 <name>Eric van der Vlist</name>

 <nationality>French</nationality>

 </person>

</authors>

The DOCTYPE declaration at the top of Example D-1 assumes that the DTD file shown in Example D-2 has been placed
on a web server at example.com. Note that the document type declaration specifies the root element of the document,
not the DTD itself. (You could use the same DTD for documents that used person, name, or nationality as the root element
of a valid document.)

Example D-2. The DTD for Example D-1

<!ELEMENT authors (person)* >

<!ELEMENT person (name,nationality)>

<!ATTLIST person

 abbrev CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT nationality (#PCDATA)>

The DTD defines the structures you find in the document. There is an authors element type that may contain zero or
more person elements. In this document, we have three person elements. There is a person element type that must
contain a name element followed by a nationality element. Each of the person elements in the document has those parts in
that order. The person elements are required to have an attribute named abbrev, and all of them do. Finally, the name
element type and the nationality element type can only hold textual content. All of the name and nationality elements here
do that.

A validating XML 1.0 processor is required to check the input document against its DTD. If it does not validate, errors
are reported to the application, which typically rejects the document. Non-validating processors will accept the
document even if it doesn't conform to structures defined by the DTD, and just use the DTD for things like default
values for attributes. Microsoft Office and most Microsoft tools use non-validating XML 1.0 parsers. (Schema validation
is a separate process, defined long after XML 1.0 was finished.)

D.1.4 Other DTD Features

DTDs include a number of other features that aren't covered here. Parameter entities and conditional sections make it
possible for developers to create more flexible DTDs, turning features on and off or reusing them. Documents can
contain internal subsets in the DOCTYPE declaration, adding their own information to the document type declaration.
Entity declarations make it possible for developers to create named references to content, making it simpler to include
external files or characters not easily accessed from the keyboard. Notation declarations and unparsed entities make it
possible to create metadata and include non-XML content, though these are rarely used. DTD do not support
namespaces or XML Schema datatypes directly at all.

While Microsoft Office applications can process these features when opening a file (except for notations and unparsed
entities, which it ignores), all of the DOCTYPE information is removed when the document is saved back out. Because
XSD provides no support at all for entities, you can't preserve the entity information from an XML DTD in a schema and
use that with Office.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

D.2 What Is RELAX NG?
The W3C XML Schema process began with high ambitions to be a more powerful alternative to DTDs, but many people
found XSD to be more trouble than it was worth. XSD is difficult for many people to create, difficult to process, has
areas (notably block and final) that are fairly contentious, and not everyone wants to define their documents in terms of
object inheritance anyway. While XSD has done well in some fields of XML work, and Microsoft has implemented it
throughout its product line, there was a plain need for an alternative.

RELAX NG, which has developed largely from work done by XML pioneers Murata Makoto and James Clark, has
mathematical foundations rather than the ad hoc object structures used by XSD. Fortunately, you don't need to know
the math to use the schemas, but these foundations make it a lot simpler to both use and process RELAX NG. RELAX
NG comes in both an XML syntax and a compact syntax, but we'll focus on the compact syntax here because it's
generally quite approachable.

RELAX NG is being developed at the Organization for the Advancement of Structured Information Standards (OASIS), a
different specification development organization from the W3C, and standardized through the International Organization
for Standardization (ISO) as part of the Document Schema Definition Languages (DSDL) effort. For more on OASIS
development of RELAX NG, see http://www.oasis-open.org/committees/relax-ng/. For more on the DSDL work, see
http://dsdl.org.

D.2.1 A Basic RELAX NG Schema

For our first RELAX NG schema, we'll start with Example D-3, which is the same document shown in Example D-1
except without the DOCTYPE declaration.

Example D-3. A sample XML document

<?xml version="1.0" encoding="us-ascii"?>

<authors>

 <person abbrev="edd">

 <name>Edd Dumbill</name>

 <nationality>British</nationality>

 </person>

 <person abbrev="simonstl">

 <name>Simon St.Laurent</name>

 <nationality>American</nationality>

 </person>

 <person abbrev="vdv">

 <name>Eric van der Vlist</name>

 <nationality>French</nationality>

 </person>

</authors>

Described in RELAX NG Compact syntax, the schema for this document can resemble the schemas shown in Examples
Example D-4 and Example D-5. Example D-4 uses a nested syntax.

Example D-4. A nested RELAX NG schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example D-4. A nested RELAX NG schema

element authors {

 element person {

 attribute abbrev {text},

 element name {text},

 element nationality {text}

 }*

}

The curly braces work much like those in C structs, defining the contents of named components. This schema defines
an authors element, which contains zero or more person elements. (The zero or more comes from the asterisk after the
closing brace for person.) The person elements have mandatory abbrev attributes and name and nationality elements, all of
which store their contents as text. If you prefer a more declarative approach, RELAX NG also supports that option.
Example D-5 uses a more DTD-like declaration approach.

Example D-5. A declarative RELAX NG schema

start=authors

authors = element authors { person* }

person = element person { abbrev, name, nationality }

abbrev = attribute abbrev {text}

name = element name {text}

nationality = element nationality {text}

This approach reads differently, but describes the same structure. Instead of just starting with the authors element, it
explicitly lists possible root elements in the start declaration. Each declaration describes the contents of one element or
attribute. The difference between attribute and element declarations is much smaller in RELAX NG than in XSD or in
DTDs, and the abbrev attribute is attached to the person element just like the name and nationality elements. Elements
and attributes that contain text just list text as their content.

To validate documents against these schemas, you can use James Clark's Jing tool, which is included with Trang, the
tool we'll be using later in this appendix to convert RELAX NG types into XSD. Go to the directory where you've
unzipped Trang, and you can run the validator by typing the following:

java -jar jing.jar -c appD-4.rnc appD-3.xml

If there aren't any errors in the document, Jing does its work and doesn't report anything. Otherwise, it reports errors
like:

C:\trang>java -jar jing.jar -c appD-4.rnc appD-3broken.xml

C:\trang\appD-3broken.xml:5: error: attribute "country" not allowed at this point; ignored

C:\trang\appD-3broken.xml:9: error: unknown element "address"

This can be a useful diagnostic, but in work with Office you'll probably convert your RELAX NG to XSD.

D.2.2 Advanced Features: Namespaces and Datatypes

RELAX NG goes well beyond the capabilities of DTDs and into the features that XSD provides. RELAX NG provides
simple support for namespaces, so adding a namespace to the schema shown in Example D-5 requires adding only one
line, as shown in Example D-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

line, as shown in Example D-6.

Example D-6. A declarative RELAX NG schema with namespaces

default namespace = "http://example.com/authors/"

start=authors

authors = element authors { person* }

person = element person { abbrev, name, nationality }

abbrev = attribute abbrev {text}

name = element name {text}

nationality = element nationality {text}

Now all of the elements without prefixes—authors, person, name, and nationality—are in the http://example.com/authors/
namespace. Applying this to the non-namespaced Example D-3 produces an error:

C:\trang>java -jar jing.jar -c appD-6.rnc appD-3.xml

C:\trang\appD-3.xml:2: error: unknown element "authors"

Adding a default namespace declaration to the root element clears things up:

<authors xmlns="http://example.com/authors/">...

Jing no longer reports any errors. You can also define namespaces for prefixed elements and attributes, using slightly
different syntax:

namespace auth = "http://www.example.com/authors/"

start=auth:authors

auth:authors=element auth:authors {auth:person * }

...

These namespace declarations are most commonly made at the top of the schema, and they apply to all the
declarations that follow them.

RELAX NG doesn't provide its own set of datatypes, preferring to let developers choose their own set. For the most part
—and conveniently compatible with Office's expectations—RELAX NG developers use the datatypes defined by XML
Schema. This requires an extra declaration, and then you can use XSD types. For example, to define the text contents
of the name and nationality elements as xsd:string and the abbrev attribute's contents as xsd:token, we'll change the
RELAX NG schema to use datatypes, as in Example D-7.

Example D-7. A declarative RELAX NG schema using datatypes

default namespace = "http://example.com/authors/"

datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

start=authors

authors = element authors { person* }

person = element person { abbrev, name, nationality }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

person = element person { abbrev, name, nationality }

abbrev = attribute abbrev {xsd:token}

name = element name {xsd:string}

nationality = element nationality {xsd:string}

You can use any of the of the XML Schema datatypes and constrain their facets, if needed.

For a more thorough introduction to RELAX NG Compact syntax, see Michael Fitzgerald's
tutorial at http://www.xml.com/pub/a/2002/06/19/rng-compact.html. The specification for
RELAX NG compact syntax is available at http://www.oasis-open.org/committees/relax-
ng/compact-20020607.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

D.3 How Do I Convert DTDs and RELAX NG to XSD?
Whether you're working with legacy schemas or simply prefer to work in these simpler frameworks, you need to
convert these forms to XSD for work in Office. As noted earlier, Trang, available from
http://www.thaiopensource.com/relaxng/trang.html, offers an extremely easy path from DTDs or RELAX NG to XSD. At
its core, Trang is a simple command-line utility that takes XML sample documents, DTDs, RELAX NG, RELAX NG
Compact syntax, or XSD and converts them into DTDs, RELAX NG, RELAX NG Compact syntax, or XSD. For working
with Office, you'll mostly be converting DTDs and RELAX NG to XSD, though perhaps you'll want to convert XSD to
other forms to use with other systems.

RELAX NG is more expressive than XSD in a number of ways. If you really take advantage
of RELAX NG, the limitations of XSD will be fairly apparent, and Trang can't convert all of
RELAX NG's capabilities to XSD. If you stick with the subset shown in this appendix,
however, you should not encounter such losses.

The basic syntax for using Trang looks like:

java -jar trang.jar sourceFile destinationFile

By default, the kind of transformation Trang performs depends on the file extensions of the source and destination files,
shown in Table D-3.

Table D-3. File extensions used by Trang
File extension Meaning

.xsd W3C XML Schema (XSD) file (output only)

.dtd XML 1.0 Document Type Definition (DTD)

.rng RELAX NG file, XML syntax

.rnc RELAX NG file, compact syntax

.xml XML instance file (source only)

Converting the DTD shown in Example D-2 to XSD is as easy as typing:

java -jar trang.jar appD-2.dtd appD-8.xsd

at the command prompt. The resulting XSD file is shown in Example D-8.

Example D-8. The result of converting the DTD in Example D-2 to XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute name="abbrev" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

</xs:schema>

Next, we'll convert the RELAX NG schema shown in Example D-7 to the XSD shown in Example D-9:

java -jar trang.jar appD-7.rnc appD-9.xsd

The RELAX NG schema in Example D-7 included some features that weren't in the DTD, notably namespaces and
datatypes, reflected in the resulting XSD, which now includes a targetNamespace attribute and an xs:token for the abbrev
attribute. Trang also prefixes child element names with authors—not necessary, but it does make some aspects of the
schema clearer if there are multiple namespaces used.

Example D-9. The result of converting the RELAX NG in Example D-7 to XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://example.com/authors/"

xmlns:authors="http://example.com/authors/">

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="authors:person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="authors:name"/>

 <xs:element ref="authors:nationality"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element ref="authors:nationality"/>

 </xs:sequence>

 <xs:attributeGroup ref="authors:abbrev"/>

 </xs:complexType>

 </xs:element>

 <xs:attributeGroup name="abbrev">

 <xs:attribute name="abbrev" use="required" type="xs:token"/>

 </xs:attributeGroup>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

</xs:schema>

If you need to create an XSD from a sample document, you can also do that. Running Trang on our sample document
to create an XSD from Example D-3 produces the result shown in Example D-10.

Example D-10. The result of converting the XML document in Example D-3 to XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="authors">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="person"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="nationality"/>

 </xs:sequence>

 <xs:attribute name="abbrev" use="required" type="xs:NCName"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:NCName"/>

</xs:schema>

Example D-10 handles the attribute declaration for abbrev differently from the other transformations, and has less
information generally than the ones generated from the DTD and the RELAX NG schema. For quick and dirty work, this
kind of transformation may be very useful, though the results are only as good as the sample documents you provide.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kind of transformation may be very useful, though the results are only as good as the sample documents you provide.

For a more sophisticated approach to generating schemas from sample documents, see
http://examplotron.org. Examplotron lets you annotate the sample documents to provide
additional information used in generating schemas. Examplotron produces RELAX NG,
which Trang can then convert to XSD.

Once you've created the XSD files, you can use them in conjunction with Office just like any other XSD.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix D. Using DTDs and RELAX NG Schemas
with Office
While Microsoft has chosen to use XSD as the schema language throughout its product line, there are at least two other
strong schema languages in regular use today. Both Document Type Definitions (DTDs) and RELAX NG (pronounced
"relaxing" but no longer an acronym) are much simpler than XSD, and both offer features that go beyond those in XSD,
though in different ways. Developers who need or prefer to integrate DTDs or RELAX NG with Microsoft Office can do so
by converting these schemas into XSD with Trang, a very simple but powerful translation tool.

If you need a more detailed explanation of DTDs, any introductory XML book should provide a lot of information. For a
more thorough explanation of RELAX NG, see Eric van der Vlist's RELAX NG (O'Reilly).

XML.com also has a number of excellent articles on RELAX NG and RELAX NG compact syntax that go beyond the
coverage in this appendix. To test RELAX NG schemas and perform conversions of either DTDs or RELAX NG schemas
into XSD, you'll want to download James Clark's Trang package from
http://www.thaiopensource.com/relaxng/trang.html. Trang requires that you have a Java runtime installed, but
includes all the Java classes it needs in two Java JAR packages.

If you're working with existing vocabularies that use DTDs, you'll definitely need to know
how to work with DTDs. Otherwise, if you're creating new vocabularies, you may want to
work with RELAX NG instead.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Why XML?
Extensible Markup Language (XML) defines a text-based format containing labels and structures. XML looks a lot like
HTML, the primary language used by web browsers, but XML lets users and developers create their own formats rather
than limiting them to a single vocabulary. The XML 1.0 specification appeared in 1998, and a wide variety of
applications have added XML functionality or been built around XML since then, from databases to stock tickers to
editors to web browsers to inventory systems. While XML still requires readers and writers of documents to have some
shared understandings about the documents they create and interpret, it provides a basic format that is easily
processed in a wide variety of different environments—it's even frequently human-readable.

If you've never worked with XML and need to know the technical details of how to read
and create XML documents, you should read Appendix A of this book. This chapter
provides a high-level view of what XML makes possible and why it makes sense for Office,
not a detailed explanation of what XML is.

Microsoft has been involved with XML for a long time. A Microsoft employee, Jean Paoli (later a product manager for
Microsoft Office), was one of the editors of the XML 1.0 specification at the World Wide Web Consortium (W3C).
Microsoft has been involved with nearly every XML specification at the W3C since, and has participated in a wide variety
of XML-related projects at other organizations as well. Microsoft began work on XML tools before the specification was
complete, building the MSXML toolkit into Internet Explorer and then expanding into .NET and Web Services
development. More and more Microsoft software has XML at its core, and this latest version of Office joins a large group
of Microsoft applications using XML.

XML has been a crucial part of Microsoft's drive to put its programs in more and more environments. XML makes it
possible for Microsoft programs to communicate with programs from IBM, Sun, Oracle, and others, and greatly
simplifies the task of integrating new tools with custom code. Developers can build applications around XML, and don't
have to worry about the internal details of components with which they share XML. Equally important, developers using
XML don't have to worry about being locked into a format that's proprietary to a single vendor, because XML is open by
design. The rules for what is and what is not a legitimate XML document are very clear, and while it's possible to create
XML that is difficult to read, a combination of strict grammatical rules and widely-shared best practices encourages
developers to create formats that are easy to work worth. XML also includes features that support internationalization
and localization, making it much easier to consistently represent information across language boundaries as well as
program boundaries.

By adding XML to the Microsoft Office mix, Microsoft both makes it much easier to integrate Office with Microsoft
programs that already understand XML (like SQL Server, SharePoint Server, and the toolkits in Visual Studio) and for
developers to create their own combinations of Microsoft Office and other software. This allows Microsoft to connect to a
much wider variety of software without making users worry about whether they'll be able to use that information
elsewhere. XML also lets users go much further in building custom applications around Microsoft Office.

XML itself is only one piece of a larger XML puzzle. Extensible Stylesheet Language Transformations (XSLT) is an XML-
based language for transforming one XML document into another, using templates. XSLT is at the heart of much of the
Office XML work, a key ingredient for moving from the XML you have to the XML Office needs and vice-versa. Another
specification, W3C XML Schema, provides descriptions of document structures which the various Office applications can
use as a foundation for their processing. Microsoft refers to this as XML Schema Definition language, or just XSD, but
the W3C itself didn't provide an acronym. Some sources refer to it as WXS (for W3C XML Schema), others as XSD,
some as XSDL, and some just as XML Schema. Because Microsoft generally refers to it as XSD, this book will do the
same.

One aspect of XML development in particular deserves special mention, because Microsoft has integrated it into Office
alongside the more generic XML editing and analysis functions. Web Services, built on the SOAP, WSDL, and UDDI
specifications, provide a set of tools for communicating with other programs using XML. You can still read and write files
from your local computer, a file server, or a web server, but Web Services expose additional functionality of programs
located anywhere on the network.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 Different Faces of XML
Each of the Office applications that works with XML is targeted to a particular set of XML uses. While many people think
of XML as a general-purpose format that can store any kind of information, there are some serious divisions in the way
XML is used and in the practices surrounding that use. While some of these sound like the usual programming divides,
where Visual Basic, C#, Perl, and Java programmers all look at the same information slightly differently, some of them
are more like the divisions between people who primarily use Word to create documents and people who primarily use
Access to create and present databases.

The most commonly discussed division in the XML world is the divide between documents and data. XML's predecessor,
Standard Generalized Markup Language (SGML) was used primarily for document management. While having structures
in documents was a key feature for organizations with huge numbers of documents like various departments of
defense, the U.S. Internal Revenue Service, airplane manufacturers, and publishers, the structures were generally seen
as labels applied to documents, not as structures defining the contents of the documents. Documents have to be
accessible to humans as well as computers, and document structures need to be able to keep up with the many
intricate structures humans create to solve particular problems.

Developers who focus on data structures typically see XML as a tool for creating labeled containers for information.
While there may be some variations in that data and perhaps even some intricate data structures, the contents are
generally expected to conform to the structures, not the other way around. Programmers who want to exchange data
typically start by defining structures, and build code around those structures. Many program structures, especially
efficient program structures, are very brittle and don't take kindly to changes because of different contexts or people
adding extra layers of labels and structures.

While these two camps are often seen as separate and mutually suspicious, they can and do mix. Many documents
contain some strongly structured information, like tables or lists, and sometimes data needs an escape hatch for
possibilities that can't all be predicted in advance. Databases have long had fields that can support information in "rich"
formats, from simple text with bold and italic to complex multimedia. XML is not a cure-all that can make all of these
different views on information play nicely together, but it does offer enormous inherent flexibility for representing
different kinds and styles of information. (Sadly, no XML features appear in Macintosh versions of Office.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Different XML Faces of Office
Microsoft Office has always bundled a set of tools specialized for working with information of particular kinds. The new
XML functionality continues that tradition, with each application in the bundle using XML in ways that fit its particular
task. Microsoft has also added a new application, InfoPath, to the Enterprise Edition of Microsoft Office, filling a common
business need for flexible forms-based interfaces to structured information.

1.3.1 Word: Editing Documents

Word began as a program that let people express their thoughts on paper, and most users tend to think of it as a
conveniently editable typewriter. Although Word has added more features over time, like mail merge capabilities and
web page editing, it is still squarely focused on documents. While it's possible to use Word as a calculator or a
database, its primary strength has always been the creation of documents.

Microsoft has taken Word's traditional document-orientation and extended it into the world of document-oriented XML.
Word already deals with structured documents through features like styles, footnotes, forms, and comments, and is
quite capable of supporting complex layers of variable structure. When asked what they want in an XML document
editor, many people cite their experience using Word—and Microsoft has pretty much given that to them.

Word embraces XML on two levels. Without much effort, users can save any Word document as XML, using a
vocabulary that reflects Word's native understanding of the document. Styles, formatting, comments, revision marks,
metadata, and everything else that normally goes into a .doc file are preserved. Better still, all this information (except
for embedded objects, stored as Base64-encoded strings) is readily accessible, and developers can use any XML tools
or even a text editor to explore and process it. Word can open these files as if they were .doc files as well, making it
possible for other applications to create XML documents explicitly for consumption by Microsoft Word.

Word takes these features to the next level by allowing developers to create their own XML vocabularies and edit those
documents using Word, as shown in Figure 1-1. This takes more effort as well as an understanding of XML, XSLT, and
XSD, but that understanding is only necessary to create the templates, not to use them. Once the templates are
created, users can simply edit XML within the ordinary confines of Word. They can even tell Word to show them the
same information with a different set of presentation choices, making it easy to reuse information or edit documents in
a form convenient for editing, while presenting it more formally later.

Figure 1-1. Editing an XML document in Microsoft Word 2003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although Word is a newcomer to XML, Microsoft has driven XML foundations deep into the program. Simply exposing
Word information as XML is a sizable step, but Word has aimed higher with its approach to letting users edit the XML of
their choice in Word rather than the XML of Microsoft's choice. This should make it much easier to use Word as an
interface to a much wider variety of XML-based systems, from Web Services to content management and workflow.

1.3.2 Excel: Analyzing Information

The spreadsheet was a wild new concept when VisiCalc first appeared back in 1981, and spreadsheets are still a
fascinating hybrid of data storage and data processing. Excel has grown over the years from a basic calculating tool to a
powerful set of features for analyzing and presenting largely numerical data. While many Excel spreadsheets quietly
process data on their creators' computers, others have evolved into programs by themselves, providing an interface to
problem-solving tools that people beyond their creators can use.

Excel has had its own XML format since Excel XP. While this format doesn't include quite everything—Visual Basic for
Applications code isn't included, and charts aren't either—this format includes enough information that it's possible for
application to mine Excel spreadsheets and extract their information. A common complaint about spreadsheets
(especially among database purists) is that information goes in but doesn't come out. Microsoft's XML Spreadsheet
format is relatively easy to interpret and provides a foundation for exchanging information between Excel and other
applications.

Excel 2003 goes beyond having an XML format. While it's certainly possible for other applications to create XML
Spreadsheet files containing their information, it's generally more convenient to be able to open whatever XML files are
already available (even without a schema) and analyze them within Excel, as shown in Figure 1-2. This makes it
possible to create a spreadsheet that can analyze any given XML document—say, monthly sales data—and keep using
that same spreadsheet on new data when it appears.

Figure 1-2. Working with XML data mapped into Microsoft Excel 2003.

The mapping features included in Excel make it much easier to create reusable spreadsheets, and simplify the task of
creating Excel-based applications for analyzing data. They also make it much easier to separate the raw data from the
Excel spreadsheet, letting the spreadsheet stay up to date even when the data it first analyzed isn't. To some extent
this is like connecting Excel to a database, but it's a good deal more flexible. If your document structures are simple
enough, you can also use Excel as a simple XML editor.

1.3.3 Access: Sharing Data

Access remains a relational database for the desktop, providing convenient local storage of structured information as
well as an interface for information on both local and remote databases. Of all the products in the Office suite, Access is
the strictest in demanding that information conform to predefined rules, using those structures as a foundation for all
the other work it performs.

Like Excel, Access has had some XML support in earlier versions, supporting an XML vocabulary for importing and
exporting information. Access 2003 substantially upgrades that XML support, however. New features include support for
XML data that is stored across multiple tables, integrated XSLT transformations when importing or exporting
information, and greater standards-compliance for both XSLT and XSD. You can see Access' XML export functionality in
Figure 1-3. These features are also now more accessible from applications built using Access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. These features are also now more accessible from applications built using Access.

Figure 1-3. Exporting XML in Microsoft Access 2003

Because Access is built on a relational database foundation, it doesn't really make sense to drive XML into its core. It's
possible to recreate tables in XML, but that loses the random access and indexing features that make relational
databases so good at quickly processing structured information. Storing XML documents inside of relational databases is
also possible, but again, the costs are high. Communicating with the outside world using XML seems to provide the best
balance between connecting Access to other programs and letting Access do what it does best.

1.3.4 InfoPath: Editing Structured Information

InfoPath is a new addition to Microsoft Office, and only comes in the Enterprise Edition of Office, though it is also
available for purchase as a standalone product. Unlike the other Office applications, which are largely self-sufficient,
InfoPath is designed to connect users to other services and other users, and was built for the explicit purpose of
working with XML. InfoPath provides both an environment for creating forms-based interfaces to structured information
(stored in XML, naturally) and a framework for connecting that information to web, web service, and email applications.
InfoPath can serve as a frontend to Microsoft's SharePoint Server, but it can also connect to other applications that can
process XML.

InfoPath fills a gap between the document-oriented vision of Word and the data-oriented approaches of Excel and
Access. A lot of information is too loosely structured to fit easily in a spreadsheet grid or a database table, but not
nearly as open-ended as Word makes possible. At the same time, InfoPath provides a more capable set of tools than
traditional browser-based HTML forms have provided, and has tied that information more tightly to workflow processes.

InfoPath builds on the same core of XML specifications as the other members of the Office suite: XML, XSLT, and XSD.
InfoPath provides a set of tools for creating forms based on the possibilities defined in an XSD schema, letting you drag
and drop components and customize them to meet your form-creation needs. An example of form-creation is shown in
Figure 1-4. The same information can be presented in multiple views, making it possible, for example, for a customer to
fill out a form with the information they know, and have other steps in the process add more information. There's no
need for retyping or for mysterious "Office Use Only" sections on forms in this model.

Figure 1-4. Designing a form in Microsoft InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InfoPath also takes advantage of XML to add some features that reflect how people typically work. Forms that collect a
lot of information can take a while to fill out, and people frequently start and stop to rest, collect information, or switch
to other tasks completely. Because InfoPath stores its information as XML, it's easy to stop the process, save the
results, and come back to them later. This also makes it possible, for instance, to send a partially filled-out form to
someone else and ask for help. Even if that other person doesn't have InfoPath, they may be able to open the file or
apply an XSLT transformation to view the information inside of it.

1.3.5 Other Members of the Office Family

While the XML features in Word, Excel, Access, and InfoPath are especially interesting (and receive the bulk of coverage
in this book), most of the other members of Microsoft's Office family of products have an XML story of some sort.

Two members of the Microsoft Office family, PowerPoint and Outlook, are notable for not having an XML story.
PowerPoint's developers have continued work on its HTML features, but XML support has been left for later versions.
Some developers use their own XML and XSLT to create HTML presentations, but this isn't exactly common practice.
Outlook is in a similar position, with new features but none of them XML-related. Future editions of this book may get to
explore PowerPoint and Outlook XML, but for now there is no such thing.

Microsoft FrontPage, traditionally a GUI editor for web pages, is growing into a slightly more general tool for creating
XSLT stylesheets that can then be easily used to create templates. The XSLT tools in FrontPage remain oriented toward
web development and not to general XSLT work, but they may prove very useful for developers who want to create
XML documents in Word and present them differently on the Web without users having to lift a finger.

Microsoft Visio has had its own XML format since Visio 2002, but the latest release adds support for Scalable Vector
Graphics (SVG), a W3C standard for describing graphics in XML. Visio can import SVG documents and work with them
much like regular Visio documents, adding its own markup where it needs to go beyond the capabilities of SVG but
preserving the original SVG. Developers who need to exchange diagrams or put them on the Web for readers who don't
themselves have Visio should find these features very useful.

For an example of working with Visio's XML format, see Recipe 11.1 of Sal Mangano's XSLT
Cookbook (O'Reilly). For more on SVG generally, see J. David Eisenberg's SVG Essentials
(O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Opening Office to the World
While the .doc and .xls file formats have served as de facto standard file formats for years, and developers have
created a variety of tools for getting information into and out of these formats, writing code that could produce or
consume them has never been much fun. Technologies like mail merges and ODBC connections have made it possible
to connect the Office applications to other tools, but this is the first time that Microsoft has taken large steps to make
Office data accessible through means other than the Office products themselves, and simultaneously has made the
applications much more agnostic about where their information comes from.

By freeing users from their applications' traditional perspectives on information sources, Microsoft has created a whole
new range of possibilities for using its applications as interactive browsers. Users who have been frustrated by the
limited interaction capabilities of web browsers can now access their data, and edit it, in familiar applications supporting
many different styles of information manipulation. For the most part, the applications continue to prefer working with
local documents and can read documents from the Web, but they have taken a big step toward integration with Web-
and XML-based infrastructure.

While the details of each application make a big difference in how the integration works, details which will be covered in
later chapters, it's worth examining some potential use cases for the new technology before proceeding into those
details.

1.4.1 Generating Word and Excel Documents from Databases

While much of the information that is currently managed by Microsoft Office users is created in Office and manipulated
primarily through Office, there is plenty of other information out there. There are also a lot of reasons why
organizations may want to keep even their document-like information in more conveniently managed and reused
database management systems. While Office has long had pieces for connecting to these systems to extract
information, dumping a relational database table into a Word or Excel file has required non-trivial programming. The
new XML capabilities open up new possibilities for this kind of work.

The key to this project lies in Microsoft's creation of application-specific XML formats for Word and Excel. Word's
WordprocessingML and Excel's SpreadsheetML are formats that these applications can open and interact with just as if
they were .doc or .xls files. (Some restrictions apply, especially for Excel, but enough is available to make this
technique useful.)

Developers can create XML documents from databases much the same way that they have created HTML documents
from databases for the past decade. Technologies like ASP, PHP, CGI, and all of their siblings are still up to the task.
Alternatively, if a database can provide an XML representation of information in response to a query, the server could
use XSLT to transform that representation, as shown in Figure 1-5. To create documents for Word, the developer would
generate WordprocessingML, while creating documents for Excel would involve generating SpreadsheetML.

Figure 1-5. Using XSLT to generate WordprocessingML or SpreadsheetML from a
custom XML vocabulary

Users of Office 2003 can then open these documents directly, as if they were ordinary Word or Excel files. This works
even if the documents are stored on the Web, thanks to Word and Excel's long-time support for opening Web
documents. If they need to exchange the information with people using older versions of Office, they can just use Save
As . . . and the .doc or .xls format for backward-compatibility. Nothing is lost in the transition from XML to the
traditional binary formats.

1.4.2 Separating Content from Presentation in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most users treat Word as a tool for creating content that looks the way they want it to look. The gold standard for Word
results has generally been the document's appearance on a piece of paper, not the elegance of how that appearance
was achieved. While the focus on presentation works well for a lot of applications, it breaks down when developers are
trying to use Word's familiar interface to create information that needs to be reused in other ways.

This book, for instance, was written in Word and the .doc files converted to FrameMaker using custom tools—tools that
only focus on a subset of Word's capabilities, its styles. Users who take advantage of Word's other style features create
problems for this converter, and the usual result is that some of the author's intentions are lost in translation.

Word's support for custom XML schemas offers a huge first step toward resolving this problem. Developers can create
templates that emphasize structured content rather than presentation, while still using an interface that looks familiar.
These templates can even offer users a choice of how to present the content, letting them work on the structures using
a view that makes them comfortable. For small projects, this can be a quick and effective way to build forms. For
larger, more complicated projects, a more sophisticated set of programming skills is necessary to make this work.

1.4.3 Separating Content from Analysis in Excel

Spreadsheets are wonderful tools for analyzing information. Within the basic confines of the grid system, developers
can store both data and tools for processing that data. This paradigm has worked well for twenty years, but it also
comes with some costs. Incredible amounts of information are stored in spreadsheets, much of it only in those
spreadsheets. Users often use old spreadsheets as the foundations for new ones, often cutting and pasting data in from
other sources.

With Excel 2003, it's pretty easy to create a spreadsheet that includes a list area (or areas) designed to hold
information retrieved from XML documents, as shown in Figure 1-6. Once the list is defined, the spreadsheet can add
information to the area or replace the content with new data. The list can be extended easily to include formulas as
well, if desired, and the rest of the spreadsheet can reference the list.

Figure 1-6. Using lists representing XML maps to create reusable Excel
spreadsheets that can be applied to different XML data sets

Thanks to these lists, users can keep a standard spreadsheet that they use to analyze information that appears on a
regular basis. When new data arrives in XML format—say, a quarterly sales report—those users can just tell Excel to
import the new data, and their spreadsheets will reflect the new data. The spreadsheets become small applications
themselves, complete with their own XML-based data formats. It's hard to imagine an easier way to write programs
that analyze business data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that analyze business data.

1.4.4 Creating and Editing XML in Excel

Excel's forte is analysis, but it also provides an easily understood user interface for working with simple structured data.
If you need to work with data that fits easily on a grid, Excel offers a convenient tool for working with that data. You
can create a list, type data directly into it, and save it as XML without ever seeing a tag. The XML itself can have a
slightly more complex structure than the simple grid, though that structure isn't presented to the person working in
Excel at all. It's easy to use Excel as a quick interface for creating or editing simple XML documents.

1.4.5 Annotating Word Documents with Additional Information

While Microsoft has described Word's support for custom XML as a feature that makes Word into an XML editor of sorts,
the custom markup support has a side effect that gives Word new functionality, whether or not users ever save their
files as XML. For many documents, presentation style is a good analog for structure, but there are times when you need
to be able to annotate documents in a finer-grained or more complex way than Word's existing styles and comments
interfaces provide.

By associating an XML Schema with a Word document, developers can create templates that look like ordinary Word
documents but have a hidden layer of additional information, which only surfaces when the document is saved as XML
or viewed with XML tags visible. It's more typical for documents to have a single structure, made visible through the
traditional WYSIWYG interface, but if you need the document to have two sets of structure, this is definitely an option.

1.4.6 Exchanging Information Between Access and the World

Microsoft Access has traditionally been a desktop application, sharing information among a small group of people.
Access now supports XML import and export to and from its tables, meaning that it's rapidly becoming easier to use an
Access database as a local host for information that may well come from or go to other systems.

Instead of treating Access databases as islands (or Access as a mere interface to more sophisticated database systems)
this new openness makes it easier to treat Access databases as the outer nodes in a hub-spoke system, as shown in
Figure 1-7. By picking up information from XML documents and storing it in the database, Access can act as a
convenient local container that provides a lot of analytical and interface tools. Access might make an excellent
temporary store for users analyzing complex data on disconnected laptops, or as a point of contact for users in remote
offices who periodically send and receive updated information. Access can also function as an intermediary between
XML and more complex, possibly legacy database systems that don't necessarily support XML but do support import
and export to and from Access.

Figure 1-7. A hub-spoke system of Access databases connected with XML

1.4.7 Interacting with Web Services Using InfoPath

Web Services have remained stubbornly buried behind layers of code. Although it's always been possible to write user
interfaces for them, it required a lot of interface-building programming. Expanding Web Services (and XML)
communications to include people as well as computers hasn't been particularly easy. InfoPath takes direct aim at this
project, drastically simplifying the task of designing and deploying interfaces to these services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

project, drastically simplifying the task of designing and deploying interfaces to these services.

Microsoft has made a lot of complete functionality for managing projects using these tools available through the
combination of SharePoint Server and InfoPath, but InfoPath can provide a friendly frontend interface to whatever
services you'd like. If you need to collect information from users, give them a testing interface to explore a Web
Service, or present information to users that they can use or change, InfoPath offers easy access to a wide variety of
information types.

1.4.8 Interacting with Web Services Using Excel, Access, or Word

Excel can also be used as an interface to SOAP-based Web Services, not just XML. Doing so requires installing a toolkit
and writing some Visual Basic for Applications code, but once you've done that, your Excel spreadsheet can serve as an
interface to whatever Web Service you choose. Excel XP supported similar functionality, so this isn't an major change,
but it's an important ingredient of the overall Office story.

The same toolkit used to integrate Web Services with Excel can be used with Access and Word. An Access database
might use an external web service to support complex calculations or as a source of regularly changing data, while
Word users might find Web Services a convenient source of information for documents that need autocompletion of
regularly changing or even calculated boilerplate text.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Microsoft Office and XML
Most people who use Microsoft Office see the individual applications as tools for getting their work done, not as general-
purpose interfaces to information. Sure, people regularly exchange Word, Excel, and PowerPoint files over email, and
there are lots of times when you need to reuse files you created earlier, but for the most part information created in
Microsoft Office stays in Microsoft Office, coming or going from elsewhere largely by cut-and-paste or by often imperfect
file conversions.

With the latest Windows-based version of Office, Microsoft has taken a risky step, opening up Office quite drastically.
Developers, even those who aren't using Microsoft Office—or even Microsoft Windows—will be able to easily process the
information inside of Word and Excel files. Instead of just creating Word documents, users will be able to create data
files that can be shared with other processes and systems. Excel users will be able to analyze data from a much wider
variety of sources, and Access users will be able to exchange information with other databases and programs much
more easily than before. Users of the Enterprise Edition of Office will also have a new forms-based interface, InfoPath,
for working with other programs.

All of these things are possible because Microsoft has chosen to integrate XML deeply into the core of Microsoft Office.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 What Is InfoPath?
InfoPath encompasses both a development environment for building business forms and a run-time forms application
meant to be deployed on the end user's desktop. InfoPath "solutions," as they're called, are developed to enable end
users to create and edit particular kinds of XML documents without having to know anything about XML. A different
solution is developed for each kind of information that needs to be gathered, where "each kind of information"
corresponds to an XML document type, or schema. Figure 10-1 shows one of the sample forms that come bundled with
InfoPath. An average business user can fill out this form to create a valid instance of an XML schema—for meeting
agendas in this case. Notable features of this form include the use of InfoPath's built-in date picker control and the use
of repeating sections (one for each agenda item).

Figure 10-1. One of InfoPath's sample forms being filled out

InfoPath solutions are heavily standards-based. Apart from an XML-based manifest file, called a form definition file, you
can build a solution entirely using XSLT, XSD, and HTML. Form controls, text, and layout are described using HTML and
CSS, supplemented with InfoPath-specific annotations. XSLT is used to transform the XML document being edited into
the HTML-based form view. And information from an associated XSD schema serves to enforce validation on-the-fly, as
the user fills out the form. By accessing the InfoPath object model, you can use ECMAScript and the DOM to further
customize the behavior of the editor as necessary. Most importantly, when a user fills out a form, the data created by
InfoPath is pure XML, valid according to your schema. Unlike Word, there is no InfoPath equivalent to the .doc
proprietary format, or even to WordprocessingML, Word's proprietary XML vocabulary (see Chapter 2).

The InfoPath application supports two top-level tasks: filling out forms and designing forms. The task of filling out forms
is the responsibility of end users, but the task of designing forms is up to you, the developer.[1] InfoPath running in
design mode is an indispensable tool for building InfoPath solutions, but it ultimately is not the only way to develop
solutions. Since solutions themselves are thoroughly XML-based, you can develop them "by hand," by using InfoPath in
design mode, or by using your XML toolkit of choice. In many cases, a combination of these approaches is appropriate.

[1] When I refer to a "user" or "end user" in this chapter, I'm referring to someone who fills out forms in InfoPath,
not someone who designs them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not someone who designs them.

This chapter will walk through two complete InfoPath solutions, one quite minimal and the other more feature-rich, that
were developed "by hand," in order to expose the technical details of how a solution is put together. Only then will the
InfoPath form designer be introduced in all its WYSIWYG convenience and power. At that point, you'll have a greater
understanding of what InfoPath in design mode does under the hood, and you'll be able to use it to greater effect. If
you're like me, you want the freedom to escape the confines of the GUI when necessary—to treat the form designer as
just another tool in your arsenal, rather than the sole crutch on which your development depends. In the final section of
the chapter, called Section 10.5.5, we'll take a look at various approaches to developing solutions using a combination
of hand editing and InfoPath in design mode.

Section 10.2, compares InfoPath to similar XML editing products and approaches. If you would rather go straight to the
technical details, skip ahead to Section 10.3.

Please understand that since the InfoPath application is an extremely feature-rich product, we cannot hope to cover it
exhaustively in a single chapter. Instead, we'll try to cover the essentials of what goes into the creation of an InfoPath
solution. Along the way, we'll make key observations about the InfoPath processing model and include tips on using
InfoPath design mode in conjunction with manual modifications to the solution files themselves.

For further study, see the "Microsoft Office 2003 XML Reference Schemas" package,
available at http://www.microsoft.com/office/xml/. It includes a developer reference that
documents all of the elements and attributes in the InfoPath form definition file format.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 InfoPath in Context
While WYSIWYG (What You See Is What You Get) and forms-based XML editing together compose a relatively new field,
InfoPath is by no means the first kid on the block. Before delving into the details of InfoPath's particular approach, let's
take a step back and examine some of the common design problems that engineers of related products face, and how
they are often solved. Then we'll be able to understand InfoPath's design in a wider context.

10.2.1 The Problem

Say you have an application that requires data to be gathered, stored, and presented. You also need to repurpose that
data in different contexts, whether doing analysis on it or presenting it via different media. So you decide to use XML.
Next you design an XML schema for your documents. So far, so good. Now you face a more difficult problem. How do
you get your users to enter information in the format that you need? In other words, how do you get them to create
XML? Well, you could try to teach them XML. While the thought of everyone in the world speaking our favorite language
is a touching one, it's also unrealistic. Your job isn't quite done yet. You need to provide a user-friendly way for people
to create XML without having to know or care that it's XML they're creating.

10.2.2 Alternative Approaches

XML editing applications such as InfoPath represent just one way to solve this problem. Two other approaches to
gathering XML include building a custom application and using a generic server-side framework.

10.2.2.1 Building a custom application

Once you've decided on a particular XML schema, you could write a custom application designed to gather information
in that schema. Whether you build this as a desktop application written in VB (Visual Basic) or as a web application
using HTML forms, it will be hard-wired to your particular schema. The problem with this approach is that it tends to get
reinvented every time a new kind of information needs to be gathered. After going through this experience two or three
times, you'll long for a more generic framework that lets you just plug in an XML schema and make a few tweaks each
time you need to gather a new kind of information.

10.2.2.2 Generic server-side frameworks

Chances are, someone has implemented a generic form-to-data management solution for your favorite server-side web
application platform, whether J2EE, .NET, Perl, Python, or PHP. An example of an XML-oriented framework that is Java-
based is called JXForms. Based on Apache Cocoon, it supports the automated mapping between HTML forms and XML
documents according to the schema that you specify. It's also based on XForms, a W3C recommendation which we'll
talk about shortly in "InfoPath versus XForms." For more information on the JXForms framework, see
http://cocoon.apache.org/2.1/userdocs/flow/jxforms.html.

Server-side frameworks such as JXForms can save you a lot of development time building repetitive custom
applications, but they also have some severe limitations:

User interactivity is restricted to that provided by vanilla HTML forms, which does not allow for more
sophisticated features such as structural editing (e.g., repeating and optional elements) and rich-text editing.

The client-side implementation (using HTML forms) is tightly coupled to the server-side process that translates
the submitted values to XML, i.e., the client-server contract includes not only the XML schema but an additional
mapping between HTTP parameters and values in the generated document.

10.2.3 Rich-Client XML Editors

A number of products designed to address the limitations of HTML forms have been cropping up in various shapes and
sizes in the last few years. In comparing the various rich-client XML editors, I've found it helpful to see where they land
across different dichotomies. These aren't always true dichotomies, as some products clearly fall on both sides.
InfoPath, for example, could be characterized as both data-oriented and document-oriented (to a limited extent).
Rather than trying to navigate the shifting landscape of XML editors here, I'll limit my focus to InfoPath and how its
approaches compare to other products in general.

10.2.3.1 Browser-based versus desktop deployment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2.3.1 Browser-based versus desktop deployment

There is a growing number of browser-based XML editors on the market, built to run on a variety of different platforms.
Deployment formats include ActiveX controls (Windows only), Java applets, and Mozilla-only JavaScript modules.
Browser-based editors, in many ways, provide the best of both worlds when it comes to XML editing and web
functionality. As a browser plug-in, the editor is automatically installed or updated when a user loads a page in which
it's embedded. This makes it possible to deploy XML editing applications over the Web at large. And in a corporate
environment, it means that the IT department won't have to worry about yet another installation or upgrade on users'
machines.

InfoPath is not a browser-based application, and at the time of this writing Microsoft has not revealed any plans to
release it as such. As a member of the Office family, it must be installed on the desktop of each user who intends to use
it to fill out forms. There are, however, some significant advantages of this approach. Most notable is the ability for
users to save filled-out forms on their own machines, in addition to being able to submit them, for example, to a web
service. Before a user has finalized his work, he can save it to his machine for later editing, or email it to a co-worker
for further review just like any other Office document. Security restrictions make this impossible for the browser-based
editors. As a desktop application, InfoPath also provides sophisticated native functionality not available in any of the
browser-based editors, such as the ability to export to an Excel spreadsheet, or merge multiple filled-out forms into the
same view.

10.2.3.2 Document-oriented versus data-oriented

The distinction between document-oriented and data-oriented XML is a tenuous but useful one. Whether a given XML
editor can rightly be called document-oriented depends at least partially on its support for mixed content, i.e., elements
that can contain both elements and text content. Mixed content is used wherever words or phrases within a passage
need to be semantically marked up, or formatted, inline. Mixed content, in many ways, is where XML shines in
comparison to other data formats.

Unfortunately, while InfoPath provides very powerful structural editing constructs, it does not currently support the use
of mixed content. The one exception—and this may just suffice for many use cases—is InfoPath's support for "rich text"
editing. The vocabulary used for embedded rich text is XHTML, to varying levels of restriction ranging from plain (no
formatting) to rich (font formatting, paragraphs, lists, hyperlinks, etc.). Despite lack of general support for mixed
content, the embedded XHTML editor makes it conceivable to use InfoPath as a frontend to a web content management
system.

10.2.3.3 Bundled versus standalone development tool

Vendors of some XML editors provide a development tool that helps speed the development of XML editing solutions, in
whatever format they're represented. To varying extents, you will need to rely on the development tool at least to get
started developing editing applications. Unless the vocabularies and formats used to define a solution are fully
documented and/or standardized (i.e., they use XForms), you should count on spending some time with the
development tool.

InfoPath is no exception to this rule. It does not support XForms, and neither does it come, at least at the time of this
writing, with documentation for every aspect of solution development. Fortunately, in the case of InfoPath, that doesn't
mean you have to buy an extra license. On the question of whether the development tool comes "bundled" or
"standalone," InfoPath has a unique answer: not only is the form design tool bundled with the run-time form module,
but they are one and the same application. This peculiar packaging may make perfect sense from a marketing
perspective, but it's potentially confusing from a user's perspective. Fortunately again, InfoPath solutions can be
configured such that a form's design can be "protected," so that an end user filling out the form won't accidentally drop
into design mode, in which they find themselves editing the controls themselves rather than their values.

10.2.3.4 Declarative versus procedural configuration

Most editors allow a certain amount of their behavior to be configured declaratively. For example, an XML Schema is a
declarative specification of constraints on the values and structure of instance documents. It can be used to validate a
document as it's being edited. And XSLT can be used to describe how the document looks while it's being edited.
InfoPath employs both XSD and XSLT within editing solutions.

Most editors can also be configured through a procedural scripting interface, such as a JavaScript API (Application
Programming Interface). Ideally, scripting will be kept to a minimum—used only in cases where the declarative
configuration mechanisms do not suffice. For those kinds of customizations, InfoPath provides a complete object model
and lets you choose between JScript and VBScript for accessing it.

The release of the InfoPath SP1 Preview introduced .NET programmability support.
Microsoft has also released the InfoPath 2003 Toolkit for Visual Studio .NET. Searching for
"InfoPath" at http://www.microsoft.com/downloads/search.asp should yield both results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to using XSD and XSLT, InfoPath allows a remarkable amount of custom functionality to be configured
declaratively. The form definition file that's included with every solution allows you to create custom menus and
buttons, associating them with named actions from a set of built-in "editing components." You can also specify custom
error conditions for business rules that can't be or aren't described in your XSD schema. This too is done declaratively,
using XPath expressions, which by the way is much like the approach that Schematron
(http://xml.ascc.net/schematron/) takes to validating XML. Finally, InfoPath allows you to declaratively specify a remote
submission mechanism, such as:

Submitting XML to a web service

HTTP POST of text/xml content

For other submission mechanisms, such as HTTP POST with application/x-www-form-urlencoded content, you can specify
the submission behavior using custom scripting. We'll see an example of this in the second example solution in this
chapter.

10.2.3.5 "Mapping" versus "Merging"

All XML editing products oriented to end users have the same basic problem to solve. They must somehow translate
back and forth between the underlying XML being edited and the friendly editing view that the user sees. They
generally have both of the following:

An XML- or HTML-based editing view vocabulary

A way of translating between the editing view vocabulary and the XML document being edited.

In Word and InfoPath, we have examples of each of the two broad approaches to solving this problem. Word's approach
could be characterized as "merging," because its editing view consists of WordprocessingML with embedded custom
XML tags from the XML document being edited. It translates between the editing view and pure XML by way of two
XSLT stylesheets:

1. An onload stylesheet for merging the custom XML tags into a WordprocessingML editing view

2. An onsave stylesheet for extracting the custom XML tags from the merged WordprocessingML editing view

For more information, see "Word's Processing Model for Editing XML," in Chapter 4.

On the other hand, InfoPath's approach could be characterized as "mapping" rather than "merging." InfoPath's editing
view vocabulary consists of HTML and CSS, as rendered by the Internet Explorer engine. Unlike Word, the editing view
itself does not directly contain custom XML tags. Rather, HTML nodes in the editing view are mapped, or bound, to XML
nodes in the source document being edited. This is done by way of a single XSLT stylesheet, supplemented as
necessary with annotations in the InfoPath namespace. Separate onload and onsave stylesheets are not necessary. The
bindings established by the stylesheet specify a complete, round-trip mapping between the source document and the
editing view.

10.2.4 InfoPath versus XForms

A discussion of InfoPath in context would be incomplete without reference to XForms, a W3C recommendation for the
next generation of web forms. XForms is slated to replace traditional HTML forms altogether in XHTML 2.0. It is
completely XML-based, from the vocabulary through which a form's controls are declared to the format of the data as it
is submitted back to a web server. InfoPath and XForms have some major similarities:

They both provide a way for end users to create and edit XML documents using a user-friendly forms-based
interface.

They both use XSD schemas as a declarative validation mechanism.

They both are designed to serve as a frontend to web services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

They both are designed to serve as a frontend to web services.

Despite their similarities, XForms and InfoPath ultimately have different emphases. InfoPath represents a single
implementation that runs only on the Microsoft Windows PC platform. Accordingly, it is optimized for usability on that
platform. In contrast, XForms is a specification meant to have many different implementations, enabling the
interoperability of web forms on a wide range of different clients. Rather than optimizing for a single user interface,
XForms abstracts away from the particular device by separating form controls from how they are presented. While
InfoPath provides some minimal accessibility features such as tab indexes and access keys, XForms is designed from
the ground up for accessibility. Illustrative of this design goal is XForms' requirement that every form control have a
label.

Despite InfoPath's heavy emphasis on web services integration, it is ultimately not meant to serve as the next-
generation web client. Rather, it is designed to thrive in corporate intranet environments, replacing paper forms and
supporting enterprise data and content management applications. As a member of the Microsoft Office System, it
provides sophisticated offline functionality not addressed by web-based technologies such as XForms.

There has been some hubbub over the fact that InfoPath does not support XForms even though in many ways it seems
like just the type of application the XForms specification is meant to address. There is a wide range of perspectives one
can choose to take on this. Some may decry InfoPath as yet another Microsoft product that chooses to go its own way
rather than following the standards. While there may be some validity to this claim, it starts to appear untenable when
you consider the actual extent to which InfoPath solutions are based on existing W3C standards, such as XSLT, XSD,
and HTML.

Still others may side-step the debate altogether, choosing instead to go out and implement an XForms profile that
compiles to an InfoPath solution (hint hint), something not entirely inconceivable given the open format of InfoPath's
form templates.

Ultimately, it's hard not to get excited when products like InfoPath come on the scene, whether they support XForms or
not. In either case, the most important electronic asset, our data, remains open. Products like InfoPath and
implementations of XForms help to make vendor lock-in a thing of the past.

The XForms specification can be viewed at http://www.w3.org/TR/xforms. To learn more about XForms, consider these
books:

 Micah Dubinko, XForms Essentials (O'Reilly)

 T. V. Raman, XForms: XML Powered Web Forms (Addison Wesley)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 Components of an InfoPath Solution
A form, in InfoPath terms, is an XML document that is associated with a particular form template and that conforms to
the XML schema defined by that form template, though as we'll see in our first example solution, the use of a schema is
not required. Such files are created every time a user fills out a new form using an existing form template.[2] A form
template, or solution, consists of a set of XML, XSLT, XSD, and optional script files that work together to define
everything about how the form looks and behaves, how it binds to the underlying XML document's elements and
attributes, and how the data is validated. A form template occurs as one of the following:

[2] The word "form" crops up a lot when talking about InfoPath. Attempting to restrict usage to the precise sense
defined here would be awkward and misleading. Instead, context will clarify whether I'm referring to the XML
document being edited, the InfoPath solution as a whole, or the actual files that make up the solution.

A set of files, including an XML-based form definition file (an .xsf file) that declares all of the other files in the
set, relative to its own location

 A form template package (an .xsn file), which consists of all of the form template files, including the form
definition file, compressed into a single cabinet archive (just like a .cab file, only with the .xsn extension)

To fill out a new form, a user simply opens an existing form template (.xsn or .xsf file). The form template might reside
on the user's own computer, but more often it is retrieved from a central location such as a web server. This allows
multiple people to use the same form template. InfoPath then launches the form in its initial empty state. To make
changes to a form that has already been filled out, a user would open the existing XML file, make changes, and save
those changes, either locally on his or her own computer for later editing, or remotely via a submission mechanism
defined in the form template. Saved forms can even be emailed to other InfoPath users for subsequent editing.

When InfoPath opens an existing, filled-out form, it checks whether it has write access to
the document. When opening a file marked as read-only, InfoPath prompts the user with a
warning that starts with "This form cannot be filled out", and asks the user "Do you want
to open a read-only version of this form?" This is all well and good for XML files on the file
system, but for a web server that doesn't have WebDAV or Front Page Server Extensions
enabled, it is a bewildering and meaningless message, especially when the server
otherwise perfectly handles form submissions. Until this issue is addressed by a newer
version of InfoPath, the practical impact is that users either need to learn to ignore this
message, or you need to expose write access on the web server to filled-out forms, even if
you intend for users to normally submit, rather than save, completed forms.

One of the best ways to learn how InfoPath solutions work is to examine and experiment with the sample forms that
come bundled with the application. First select File Design a Form... Customize a Sample. Then choose one
of the many sample forms that can be customized. To view the individual form template files for that solution, or for
any other .xsn file in design mode, select File Extract Form Files... All of the files will be output into the directory
that you choose.

10.3.1 The InfoPath Processing Instructions

XML documents edited by InfoPath retain their association with the InfoPath application in general and with a specific
solution in particular through the use of special processing instructions (PI) inserted into the prolog of the instance
document. All XML files created by or edited using InfoPath automatically include these PIs. To manually associate an
XML document with the InfoPath application, use the now familiar mso-application PI:

<?mso-application progid="InfoPath.Document"?>

<doc>...</doc>

This will associate the file with the InfoPath application. Windows Explorer will render the file using the InfoPath icon
and will launch InfoPath when a user opens the file. But if you only include an mso-application PI, InfoPath will display an
error message when trying to open the file. To avoid this, you'll also need to associate the document with a particular
solution, by using the mso-infoPathSolution PI. Example 10-1 shows a complete XML document whose PIs associate it with
both the InfoPath application and a particular InfoPath solution.

Example 10-1. An InfoPath "form," myAnnouncement.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-1. An InfoPath "form," myAnnouncement.xml

<?mso-application progid="InfoPath.Document"?>

<?mso-infoPathSolution href="manifest.xsf" PIVersion="1.0.0.0"?>

<announcement>

 <headline>Building closes early</headline>

 <body>The building will be closing an hour early today, at 9pm.</body>

</announcement>

The href pseudo-attribute in Example 10-1 points to the location of a form definition file (*.xsf) or form template
package (*.xsn). The PIVersion pseudo-attribute is required. The current version of the PI is 1.0.0.0; future versions may
introduce new features or be interpreted differently.

There are also two optional pseudo-attributes not shown here. The solutionVersion pseudo-attribute can be used to
identify the version of the solution that was last used to edit the file. This is useful in the context of managing solution
upgrades. And the productVersion pseudo-attribute is used to identify the version of the InfoPath application that was
used to edit this file. Both of these pseudo-attributes are automatically included in the solution PI when InfoPath saves
a filled-out form.

Some of the example XML document instances in this chapter use a relative pathname to
refer to the form template in the mso-infoPathSolution PI. This makes it possible to
experiment with these files on your own computer just by putting them into the same
directory. However, when deploying the form, you should publish it to a central location
such as a web server where multiple users can access it. Subsequent instance documents
created by InfoPath (when a user saves or submits a filled-out form) will then refer to this
absolute URL or network path. See "Publishing a Form from Design Mode," later in this
chapter.

10.3.2 A Simple Form Definition File

The form definition file, or "solution manifest," is the starting point for defining an InfoPath solution by hand. Example
10-2 shows a simple form definition file that includes only the bare minimum of what's required to define a form
template. No optional features are utilized.

Example 10-2. A minimal form definition file, manifest.xsf

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

xmlns:xsf=

"http://schemas.microsoft.com/office/infopath/2003/solutionDefinition">

 <xsf:views>

 <xsf:view name="Announcement Form">

 <xsf:mainpane transform="announcement.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:package>

 <xsf:files>

 <xsf:file name="announcement.xsl"/>

 </xsf:files>

 </xsf:package>

</xsf:xDocumentClass>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsf:xDocumentClass>

From this minimal example, we see that the root element, xsf:xDocumentClass, has a required attribute,
solutionFormatVersion, and two required element children, xsf:views and xsf:package (whose relative order is insignificant).
The attribute indicates the version of the form definition file format we're using; in this case, it's 1.0.0.0. The xsf:views
element must contain at least one xsf:view element. Each view in turn must have one xsf:mainpane element that refers to
an XSLT stylesheet in its transform attribute. The stylesheet referred to here is what transforms the source XML
document into the form's HTML-based editing view. The xsf:package element contains a reference to each of the files
used in the solution. This example declares only one file, the required XSLT stylesheet.

Filenames referred to by xsf:file elements must all be pathnames that are relative to the location of the form definition
file itself. This will ensure that they are resolved correctly whether InfoPath opens the solution via the form definition
file (*.xsf) or via a form template package (*.xsn).

All internal references to subordinate files, such as included or imported stylesheet modules or schema files, must be
relative and must also be declared in the form definition file using corresponding xsf:file elements.

InfoPath keeps a local cache of a solution's files so that when an end user re-opens a
document associated with a particular solution, InfoPath will check the form template files
for updates only if the form definition file has been modified since InfoPath last opened it.
If you want changes to your solution's XSLT stylesheet to take effect, for example, then
you'll also need to re-save, or touch, the form definition file, even if you didn't make any
changes to it. This will cause InfoPath to check for updates on all of the solution's files the
next time it opens that solution. Understanding this ahead of time will keep you from
pulling your hair out when trying to tweak individual files in unpackaged form templates.

10.3.3 Defining a Form Using Only an XSLT Stylesheet

The minimal form definition file we saw in Example 10-2 declares only one additional file, the XSLT stylesheet. To a
limited extent, the stylesheet on its own is sufficient to define a round-trip mapping between a source document and an
editing view. Even a schema is not necessary. This is how it works: the XSLT stylesheet is interpreted in such a way
that implicit bindings are automatically created between HTML nodes in the editing view and XML nodes in the source
document. We will explore two types of implicit bindings in this chapter:

Text bindings

Structural bindings

Our current solution example will illustrate text bindings. Our second solution example, which we'll see later in "A More
Complete Example," will additionally illustrate structural bindings.

Text bindings are established in the following manner: any instances of the xsl:value-of instruction in the stylesheet will
automatically be rendered as editable text boxes in the resulting InfoPath form, provided that the following two
conditions hold:

1. In the stylesheet, the xsl:value-of element must occur as the only child element of a valid HTML element, such as
span.

2. When the stylesheet is applied, the XPath expression in the select attribute must evaluate to a node-set
containing exactly one element node or one attribute node.

If one of these conditions does not apply, then the value will still be displayed as instructed by the stylesheet, but the
field will not be editable. In the event that both conditions apply but you nevertheless don't want the field to be
editable, you can disable this behavior by annotating the XSLT instruction as follows:

 <xsl:value-of select="expression " xd:disableEditing="yes" />

The presence of xd:disableEditing="yes" will keep InfoPath from automatically establishing the text binding and making
the field editable. The xd prefix (recalling InfoPath's pre-release code name, "XDocs") in the above and subsequent
examples must map to the InfoPath namespace URI:

http://schemas.microsoft.com/office/infopath/2003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://schemas.microsoft.com/office/infopath/2003

Example 10-3 shows an XSLT stylesheet that transforms an XML document into a simple HTML view, displaying the
values of two elements in the source document and establishing implicit text bindings for them.

Example 10-3. An XSLT-defined editing view, announcement.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/announcement">

 <html>

 <head>

 <title>Announcement</title>

 </head>

 <body>

 <h1>

 <xsl:value-of select="headline"/>

 </h1>

 <p>

 <xsl:value-of select="body"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

We now have three files:

A form definition file, manifest.xsf, shown in Example 10-2

The declared stylesheet, announcement.xsl, shown in Example 10-3

An instance document, myAnnouncement.xml, shown in Example 10-1

Provided that these three files are in the same directory, double-clicking the myAnnouncement.xml file will cause
InfoPath to launch in editing mode and display the document using the editing view defined by announcement.xsl. The
resulting view is shown in Figure 10-2.

Figure 10-2. Opening a filled-out form, myAnnouncement.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Opening a filled-out form, myAnnouncement.xml

Note that the headline field is highlighted with a box around it. This is what an editable text box looks like when
instantiated as an HTML h1 element. The end user can make edits as necessary and then simply tab or click into the
body field to make changes there as well. The HTML h1 and p element nodes are said to be bound to the XML headline
and body nodes, respectively. Every time the user registers a change, that change is propagated to the underlying XML,
and the XSLT stylesheet is immediately reapplied. The change is registered when the user takes the focus off the field
that was changed (usually by tabbing to the next field).

The automatic bindings via the xsl:value-of instructions work in our example, because both of the two previously
mentioned conditions are satisfied as follows:

Each pertinent xsl:value-of instruction in the stylesheet occurs as the only element child of a valid HTML element
(h1 and p, respectively).

Each of the two XPath expressions evaluates to a node-set containing only one node (headline and body,
respectively).

InfoPath's use of text bindings to create editable fields allows virtually any HTML element that can contain text to
function as a text box. Thus, text boxes are created using text bindings, rather than using the HTML input element, as
might otherwise have been expected.

This mechanism is certainly a convenient way to get started, but editing requirements tend to be more complex than
what this feature supports. For all but the simplest document types, more will be needed.

10.3.3.1 Conditional formatting

Before moving on to further ways of binding HTML nodes in the view to XML nodes in the source, let's take a detour
down the strange and wonderful road of conditional formatting. Conditional formatting describes the ability to alter
some aspect of the editing view according to some condition in the XML source document. It's a commonly expected
feature of forms-based XML editors.

A consequence of InfoPath's processing model, in which the XSLT stylesheet is reapplied every time the user registers a
change, is that you can specify conditional formatting rules directly in XSLT. This is useful, for example, for rendering
derived number values in black type but changing them to red when they become negative. Usefulness aside, you can
get an idea of the potential this construct has by taking a look at Example 10-4. This stylesheet is the same as our
original announcements.xsl stylesheet, except for the addition of a conditional statement.

Example 10-4. Conditional formatting expressed in XSLT

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/announcement">

 <html>

 <head>

 <title>Announcement</title>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </head>

 <body>

 <xsl:choose>

 <xsl:when test="starts-with(headline,'SpEcIaL CoDe')">

 <div style="font-family: Arial;">

 <xsl:value-of select="headline"/>

 </div>

 <div style="font-family: Comic Sans MS;">

 <xsl:value-of select="headline"/>

 </div>

 <div style="font-family: Wingdings;">

 <xsl:value-of select="headline"/>

 </div>

 <p style="font-size: 50px;">

 CONGRATS! YOU UNLOCKED THE SPECIAL CODE!!

 </p>

 </xsl:when>

 <xsl:otherwise>

 <h1>

 <xsl:value-of select="headline"/>

 </h1>

 </xsl:otherwise>

 </xsl:choose>

 <p>

 <xsl:value-of select="body"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Our solution will continue to behave exactly as it did before, until some unsuspecting user enters a value in the headline
field that starts exactly with the string SpEcIaL CoDe. At the moment the user takes the focus off the field (by tabbing to
the next one), they'll get the surprise shown in Figure 10-3. The change is registered, the text content of the headline
element is updated, the XSLT is reapplied, and, with great satisfaction, our condition succeeds.

Figure 10-3. Fun with conditional formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-3. Fun with conditional formatting

Regardless of the presence of a conditional statement, this example also demonstrates another possibility: multiple
HTML nodes in the view being bound to the same XML node in the source. In this view we have a total of four text
boxes even though they are bound to a total of only two XML nodes. As you would expect, when the user registers a
change to one of the three "SpEcIaL CoDe" fields, the other fields are updated accordingly—or they disappear
altogether if the field's value no longer starts with our very special code.

Keep in mind that an HTML node in the view does not have to be bound to an XML node in the source for it to display its
value, or some derivative thereof. As it happens, each of the HTML nodes in our example creates an implicit binding to
the underlying XML node, resulting in the proliferation of text boxes. But if one of the xsl:value-of instructions had
xd:disableEditing="yes", or if one of the two necessary conditions on it did not apply, then the binding would not occur and
no text box would result. The value, however, would still display as instructed by the stylesheet. Another way to disable
the automatic text binding is to wrap the select expression in the XPath string() function. In that case, the same result is
displayed, but the binding is disabled, because the expression evaluates to a string rather than to a node-set.

One final thing to note about Figure 10-3 is the presence of the squiggly lines under each instance of "SpEcIaL CoDeS",
even the Wingdings rendition. This is the InfoPath spelling checker in action. The spelling checker and AutoComplete
features are turned on by default for HTML nodes that are implicitly bound to XML source nodes. To override this
behavior, you need to declare and parameterize the corresponding xField control in the form definition file. See Section
10.4.4.6 later in this chapter.

10.3.4 Explicitly Binding HTML Nodes to XML Nodes

We've now seen a mechanism by which HTML nodes in the view are implicitly bound to XML nodes in the source
document being edited. You can also explicitly specify bindings in the HTML view by annotating the XSLT stylesheet with
attributes in the InfoPath namespace. The most important of these attributes is xd:binding. (We'll see an example that
uses the xd:binding attribute later in this chapter, under "Date picker control.") By attaching this attribute to an HTML
element in the XSLT stylesheet, you are telling InfoPath to bind that element to a particular node in the XML source
tree. The value of the xd:binding attribute is an XPath expression that is evaluated in the current XSLT context. It selects
the element or attribute node to which this HTML element will be bound. This explicit binding takes precedence over any
implicit binding that would otherwise occur.

The other primary annotation that InfoPath uses is the xd:xctname attribute, which identifies the type of control that a
particular HTML element functions. While, under certain circumstances, the InfoPath editor will not work correctly if the
xd:xctname attribute is not present (e.g., the date picker control requires its presence), it is primarily needed only by
InfoPath design mode rather than editing mode. Except for the specific controls that require it, you can generally avoid
this attribute when creating solutions by hand. That means you don't need to know the xd:xctname attribute's possible
values, shown here:

PlainText
RichText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RichText
DropDown
ListBox
DTPicker
DTPicker_DTButton
CheckBox
OptionButton
Section
RepeatingSection
RepeatingTable
BulletedList
ListItem_Plain
NumberedList
PlainList
Button
InlineImage
ExpressionBox
inkpicture

Again, since you generally don't need to worry about the xd:xctname attribute, this list is not directly useful except to
illustrate what kinds of controls InfoPath supports. The items in this list correspond to available controls in InfoPath
design mode's Controls task pane (shown later in this chapter, in Figure 10-11).

10.3.5 Specifying an Initial XML Template

When a user opens an XML file that is already associated with an InfoPath solution via the InfoPath PIs, InfoPath
launches the file with the form view defined by that solution. However, when a user directly opens a form definition file
(*.xsf) or package (*.xsn) in order to fill out a new form, InfoPath needs an "empty" XML template, or skeleton, from
which to begin. This initial XML template is specified in the form definition file, using the xsf:initialXmlDocument element
child of the xsf:fileNew element. Example 10-5 shows our minimal form definition file with the additional specification of
an initial XML template. Note that, as is the case with all of a solution's files, the initial XML template must also be
declared in the list of files within the xsf:package element.

Example 10-5. Specifying the initial XML document

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition">

 <xsf:views>

 <xsf:view name="Announcement Form">

 <xsf:mainpane transform="announcement.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:package>

 <xsf:files>

 <xsf:file name="announcement.xsl"/>

 <xsf:file name="template.xml"/>

 </xsf:files>

 </xsf:package>

 <xsf:fileNew>

 <xsf:initialXmlDocument caption="Announcement" href="template.xml"/>

 </xsf:fileNew>

</xsf:xDocumentClass>

The initial XML template file normally consists mostly of empty elements and attributes but can also include default
values, such as an initial value of 0 for a decimal-valued field. Example 10-6 shows an example initial XML template.
Note that the mso-infoPathSolution PI must be included and must refer to the relative path of the form definition file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the mso-infoPathSolution PI must be included and must refer to the relative path of the form definition file.

Example 10-6. An example initial XML template, template.xml

<?mso-infoPathSolution href="manifest.xsf"

 PIVersion="1.0.0.0"?>

<?mso-application progid="InfoPath.Document"?>

<announcement>

 <headline></headline>

 <body></body>

</announcement>

10.3.6 Adding a Schema

While using a schema is not required, it buys you a lot in terms of automatic data validation. Fields that should be
dates, for example, will be flagged as invalid if anything other than a valid date is entered into it. Example 10-7 shows a
schema that we could add to our example solution.

Example 10-7. A simple XSD schema, announcement.xsd

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="unqualified">

 <xsd:element name="announcement">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="headline">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="body" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

This schema requires that the headline element's value not exceed 40 characters in length. To see what effect this will
have on our solution, we first need to add it to the solution. Example 10-8 shows the final version of our minimal form
definition file, with the schema declared using the xsf:documentSchema element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definition file, with the schema declared using the xsf:documentSchema element.

Example 10-8. Declaring a schema in the form definition file

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition">

 <xsf:views>

 <xsf:view name="Announcement Form">

 <xsf:mainpane transform="announcement.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:package>

 <xsf:files>

 <xsf:file name="announcement.xsl"/>

 <xsf:file name="template.xml"/>

 <xsf:file name="announcement.xsd"/>

 </xsf:files>

 </xsf:package>

 <xsf:fileNew>

 <xsf:initialXmlDocument caption="Announcement" href="template.xml"/>

 </xsf:fileNew>

 <xsf:documentSchemas>

 <xsf:documentSchema location="announcement.xsd"/>

 </xsf:documentSchemas>

</xsf:xDocumentClass>

Finally, Figure 10-4 shows the resulting behavior of the InfoPath editor when the user types in a headline that exceeds
40 characters. Namely, it displays a friendly message alerting the user to the problem.

Figure 10-4. Automatic schema validation in action

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 A More Complete Example
So far we've looked at only the bare minimum of what goes into making an InfoPath solution. Now we'll jump in from
the opposite extreme and show a complete, working example. In addition to illustrating more features of the form
definition file, this example will further demonstrate how InfoPath interprets certain XSLT constructs to establish implicit
bindings between HTML nodes in the form view and XML nodes in the source document. So far, we've seen how text
bindings are established, using the xsl:value-of instruction. This example will additionally demonstrate the use of
structural bindings, as we'll see in Section 10.4.3.

While the example in this section illustrates a great deal of functionality, there are still a
number of features not covered here. I recommend consulting the InfoPath online Help
system to fill in the gaps. In particular, consult the "InfoPath XSF Reference" for
comprehensive coverage of the form definition file format, including a reference for the
XSF schema. From the InfoPath Help task pane, select Table of Contents InfoPath
Developer's Reference InfoPath XSF Reference.

Figure 10-5 shows our example form from the user's perspective. It is a form for creating new "events," which might
ultimately be displayed in the context of an event calendar. The "Title" field is surrounded by a blue border. This is
InfoPath's built-in behavior for indicating the currently active field, which is independent of how the view stylesheet
instructs the field to be rendered. The field is also underlined in red, because the schema requires the field to be non-
empty (see Section 10.4.1 later in this section). Until the user fills out the field, the document will remain invalid.
Likewise, the date and time fields remain underlined until the user enters valid data.

Figure 10-5. A sample InfoPath form before being filled out

The "Form Tips" task pane is a custom HTML-based task pane specific to our solution. Apart from giving the user some
form entry tips, it actually serves some auxiliary roles in our solution, as we'll see in Section 10.4.5.

Figure 10-6 shows the same form after being mostly filled out. The user has added the optional "Location" section and
is currently selecting a date using InfoPath's built-in date picker control.

Figure 10-6. Our sample form while being filled out

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-6. Our sample form while being filled out

Figure 10-7 shows that the "Description" field may contain more than one paragraph. This is called a "repeating
section." The contextual editing menu, which appears either when the user clicks the blue down-arrow on the left or
right-clicks anywhere inside the section, displays buttons for inserting and removing paragraphs. Also, the text within
the paragraph can be formatted. The text formatting buttons, such as bold and italic, are enabled in InfoPath's
formatting toolbar. This type of field is called a "rich text" field.

Figure 10-7. Structural context menu buttons for repeating elements

Figure 10-8 shows the contextual editing menu for the section labeled "Single-day event with time." The option to
replace the element with another kind of scheduling for the event corresponds to a choice group in the XML schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replace the element with another kind of scheduling for the event corresponds to a choice group in the XML schema.

Figure 10-8. Structural editing context menu button for replacing an element in a
choice group

Figure 10-9 shows the section and corresponding structural editing context menu after replacing the element.

Figure 10-9. Structural editing context menu button after replacing element

Finally, whether the form is saved to the user's hard drive or submitted to a backend system, the resulting XML is
shown in Example 10-9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shown in Example 10-9.

Example 10-9. The instance XML created by filling out the event form

<?mso-application progid="InfoPath.Document"?>

<?mso-infoPathSolution PIVersion="1.0.0.0"

 href="http://myserver/events/solution.xsn" language="en-us"

 productVersion="11.0.5329" ?>

<event>

 <title>Pizza Party</title>

 <description>

 <p xmlns="http://www.w3.org/1999/xhtml">Here we describe our party in

italics or bold.</p>

 <p xmlns="http://www.w3.org/1999/xhtml">This is a second paragraph in which to

describe our party.</p>

 </description>

 <location>Top of the Space Needle</location>

 <when>

 <single-day date="2003-09-13" start-time="20:00:00" end-time="23:00:00"/>

 </when>

</event>

This XML document conforms to the schema included in our solution. Note that the rich text vocabulary used is indeed
XHTML, with em and strong elements for italic and bold, respectively.

10.4.1 The XSD Schema

Example 10-10 shows the top-level schema document for our solution's XSD schema.

Example 10-10. The XSD schema for events, schema.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <xs:import namespace="http://www.w3.org/1999/xhtml"

 schemaLocation="paragraphs.xsd"/>

 <xs:element name="event">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="title"/>

 <xs:element ref="description"/>

 <xs:element ref="location" minOccurs="0"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element ref="location" minOccurs="0"/>

 <xs:element ref="when"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="description">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="xhtml:p"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="location" type="xs:string"/>

 <xs:element name="when">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="single-day"/>

 <xs:element ref="multi-day"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="single-day">

 <xs:complexType>

 <xs:attribute name="date" use="required" type="xs:date"/>

 <xs:attribute name="start-time" use="required" type="xs:time"/>

 <xs:attribute name="end-time" type="xs:time"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:complexType>

 </xs:element>

 <xs:element name="multi-day">

 <xs:complexType>

 <xs:attribute name="start-date" use="required" type="xs:date"/>

 <xs:attribute name="end-date" use="required" type="xs:date"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Primary things to note about this schema include:

The title element must not be empty.

The description element must contain one or more xhtml:p elements.

The location element is optional.

The content of when consists of a choice between a single-day element or a multi-day element.

The date- and time-related fields must have xsd:date and xsd:time values, respectively.

Example 10-11 shows the imported schema document that declares the xhtml:p element. The (highlighted) content
model of this element is precisely what InfoPath considers rich text content, i.e., mixed content with any number of
elements in the XHTML namespace. If you want to use rich text editing in InfoPath, your schema must have a type
definition that looks like this.

Example 10-11. The schema for XHTML paragraphs, paragraphs.xsd

<xs:schema targetNamespace="http://www.w3.org/1999/xhtml"

 elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="p">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:any namespace="http://www.w3.org/1999/xhtml"

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xs:schema>

The constraints imposed by our schema are all enforced by InfoPath in editing mode. In particular, InfoPath notifies the
user if the underlying document becomes invalid, whether by drawing a red underline or box around the invalid field, or
showing a dialog box indicating that the user may not, for example, remove the one remaining xhtml:p element. As far
as InfoPath in editing mode is concerned, validation is where the role of schemas ends. The schema is not directly used
by the InfoPath XML editor to generate UI, but only to validate intermediate editing results. Another way of saying this
is that the schema solely has restrictive, rather than generative, semantics.

However, InfoPath in design mode is another matter. In fact, should we decide to create a solution in design mode
starting with this schema (which is exactly what we'll look at doing in "Creating a Simple Solution from an XSD
Schema"), it turns out that we need to make one internal change to our schema in order for the full range of
functionality in design mode to be available to us.

10.4.1.1 Making a concession for design mode

The schema as listed above works perfectly well for our hand-made solution in InfoPath editing mode. When starting
with this schema in design mode, however, InfoPath fails to recognize the xhtml:p element as a "field" having data type
"XHTML," ironically because of the fact that the complex type declaration (whether named or anonymous, as above)
occurs inside a schema document whose target namespace is the XHTML namespace. To get around that, we can
simply offload the type declaration to another imported schema document, using an arbitrary target namespace.
Example 10-12 shows the updated paragraphs.xsd schema document. We'll use this revision from now on instead, in
order to facilitate our design mode example later on.

Example 10-12. The revised schema document for XHTML paragraphs,
paragraphs.xsd

<xs:schema targetNamespace="http://www.w3.org/1999/xhtml"

 elementFormDefault="qualified"

 xmlns:rich="http://oreilly.com/dummy-namespace-for-rich-text-decl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://oreilly.com/dummy-namespace-for-rich-text-decl"

 schemaLocation="xhtmlType.xsd"/>

 <xs:element name="p" type="rich:xhtml"/>

</xs:schema>

Example 10-13 shows xhtmlType.xsd, which paragraphs.xsd imports.

Example 10-13. The XHTML type declaration schema document, xhtmlType.xsd

<xs:schema elementFormDefault="qualified"

 targetNamespace="http://oreilly.com/dummy-namespace-for-rich-text-decl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="xhtml" mixed="true">

 <xs:sequence>

 <xs:any namespace="http://www.w3.org/1999/xhtml"

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

This is not a concession you will normally have to make. (Of course, you'll never have to make it if you never use
design mode.) It is unique to situations in which you want to use and edit specific elements in the XHTML namespace
with greater control than what the black box of rich text editing gives you. We could have simply made the description
element a rich text field, but in that case we would not have been able to enforce the rule that it contain only a
sequence of xhtml:p elements.

10.4.2 The Initial XML Template

Example 10-14 shows the initial XML document template that InfoPath works from when a user tries to fill out a new
form. The optional location element is absent by default, and the default choice for the content of the when element is
single-day, without the optional end-time attribute. Also, the infoPathSolution PI refers to the relative path of the form
definition file.

Example 10-14. The initial XML document, template.xml

<?mso-application progid="InfoPath.Document"?>

<?mso-infoPathSolution href="manifest.xsf" PIVersion="1.0.0.0"?>

<event>

 <title></title>

 <description>

 <p xmlns="http://www.w3.org/1999/xhtml"></p>

 </description>

 <when>

 <single-day date="" start-time=""/>

 </when>

</event>

10.4.3 The XSLT Stylesheet

Example 10-15 shows the complete XSLT stylesheet that defines our solution's default editing view. The stylesheet
consists of pure XSLT sprinkled with some annotations in the xd namespace. The highlighted start and end tags in this
example identify all of the HTML nodes in the result tree that have bindings to XML nodes in the source tree, whether
implicitly or explicitly (using the xd:binding attribute).

Example 10-15. The default view stylesheet, default.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xd="http://schemas.microsoft.com/office/infopath/2003"

 xmlns:xdFmt=

 "http://schemas.microsoft.com/office/infopath/2003/xslt/formatting"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <xsl:template match="/event">

 <html>

 <head>

 <style type="text/css">

 body { font-family: Verdana; }

 .optionalPlaceHolder { padding-left: 20px;

 behavior: url(#default#xOptional);

 font-size: xx-small;

 font-weight: normal; }

 .field { border: 1pt solid #dcdcdc; font-size: x-small; }

 </style>

 </head>

 <body>

 <h1>Create New Event</h1>

 <table cellspacing="2" cellpadding="10">

 <colgroup span="1" width="100" valign="top"

 style="font-weight: bold;"/>

 <colgroup span="1" width="450" valign="top"/>

 <tr>

 <td>Title:</td>

 <td>

 <div class="field">

 <xsl:value-of select="title"/>

 </div>

 </td>

 </tr>

 <tr>

 <td>Description:</td>

 <td>

 <xsl:apply-templates select="description/xhtml:p"/>

 </td>

 </tr>

 <xsl:choose>

 <xsl:when test="location">

 <xsl:for-each select="location">

 <tr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <tr>

 <td>Location:</td>

 <td>

 <div class="field">

 <xsl:value-of select="."/>

 </div>

 </td>

 </tr>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td colspan="2" class="optionalPlaceholder"

 xd:xmlToEdit="locationElement" tabindex="0">

 <xsl:text>Click here to add optional Location</xsl:text>

 </td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 <tr>

 <td>When:</td>

 <td>

 <xsl:apply-templates select="when/*"/>

 </td>

 </tr>

 </table>

 <input type="button" value="Submit Event" xd:CtrlId="btnCreate"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="xhtml:p">

 <p class="field">

 <xsl:copy-of select="node()"/>

 </p>

 </xsl:template>

 <xsl:template match="single-day">

 <div>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <div>

 <div style="font-weight: bold;">Single-day event with time:</div>

 <table>

 <colgroup span="1" width="100" style="padding: 5px;"/>

 <tr>

 <td>Date: </td>

 <td>

 <xsl:call-template name="make-date-picker">

 <xsl:with-param name="date-node" select="@date"/>

 </xsl:call-template>

 </td>

 </tr>

 <tr>

 <td>

 <xsl:if test="@end-time">Start </xsl:if>

 <xsl:text>Time: </xsl:text>

 </td>

 <td>

 <xsl:call-template name="make-time-field">

 <xsl:with-param name="time-node" select="@start-time"/>

 </xsl:call-template>

 </td>

 </tr>

 <xsl:choose>

 <xsl:when test="@end-time">

 <xsl:for-each select="@end-time">

 <tr>

 <td>End time: </td>

 <td>

 <xsl:call-template name="make-time-field">

 <xsl:with-param name="time-node" select="."/>

 </xsl:call-template>

 </td>

 </tr>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td colspan="2" class="optionalPlaceholder"

 xd:xmlToEdit="end-time" tabindex="0">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:text>Click here to add optional End Time</xsl:text>

 </td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 </table>

 </div>

 </xsl:template>

 <xsl:template match="multi-day">

 <div>

 <div style="font-weight: bold;">Multi-day event:</div>

 <table>

 <colgroup span="1" width="100" style="padding: 5px;"/>

 <tr>

 <td>Start date: </td>

 <td>

 <xsl:call-template name="make-date-picker">

 <xsl:with-param name="date-node" select="@start-date"/>

 </xsl:call-template>

 </td>

 </tr>

 <tr>

 <td>End date: </td>

 <td>

 <xsl:call-template name="make-date-picker">

 <xsl:with-param name="date-node" select="@end-date"/>

 </xsl:call-template>

 </td>

 </tr>

 </table>

 </div>

 </xsl:template>

 <xsl:template name="make-date-picker">

 <xsl:param name="date-node"/>

 <span class="field"

 xd:binding="$date-node"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xd:binding="$date-node"

 xd:xctname="DTPicker_DTText"

 contentEditable="true"

 style="BEHAVIOR: url(#default#CalPopup)

 url(#default#urn::controls/Binder)

 url(#default#Formatting);

 width: 100;"

 xd:innerCtrl="_DTText"

 xd:boundProp="xd:num"

 xd:datafmt='"date","dateFormat:Short Date;"'>

 <xsl:attribute name="xd:num">

 <xsl:value-of select="$date-node"/>

 </xsl:attribute>

 <xsl:value-of select="xdFmt:formatString($date-node,

 'date',

 'dateFormat:Short Date;')"/>

 <button style="height:18px; width:20px;

 BEHAVIOR: url(#default#DTPicker);"

 tabindex="-1">

 </button>

 </xsl:template>

 <xsl:template name="make-time-field">

 <xsl:param name="time-node"/>

 <span class="field"

 xd:binding="$time-node"

 contentEditable="true"

 xd:xctname="PlainText"

 xd:datafmt='"time","noSeconds:1;"'

 xd:boundProp="xd:num"

 style="BEHAVIOR: url(#default#urn::controls/Binder)

 url(#default#Formatting);

 width: 100;">

 <xsl:attribute name="xd:num">

 <xsl:value-of select="$time-node"/>

 </xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="xdFmt:formatString($time-node,

 'time',

 'noSeconds:1;')"/>

 </xsl:template>

</xsl:stylesheet>

10.4.3.1 Text bindings

The title field shows an example of a text binding:

 <div class="field">

 <xsl:value-of select="title"/>

 </div>

This is the same kind of binding that we saw in our first stylesheet, in Example 10-3. Our current example has one
other implicit text binding, corresponding to the location field. As we've seen, text bindings cause the corresponding
HTML element to be rendered as an editable field in the InfoPath editing view. To make these fields look more like
actual text boxes, they are each associated with the CSS class, field, which is declared inside the HTML document head
and which adds a thin border to the element:

 .field { border: 1pt solid #dcdcdc; font-size: x-small; }

This serves no function other than to make the element look more like a form field to the user.

10.4.3.2 Rich text bindings

A rich text binding is essentially no different than a text binding, except that it maps an HTML element in the result tree
to an XHTML-valued XML element in the source tree, i.e., an element that can contain XHTML elements. This stylesheet
contains one rich text binding shown in the template rule for xhtml:p elements:

 <xsl:template match="xhtml:p">

 <p class="field">

 <xsl:copy-of select="node()"/>

 </p>

 </xsl:template>

Like the rules for the implicit creation of regular text bindings, the following two conditions must be met for a rich text
binding to be created when an xsl:copy-of instruction is present:

The xsl:copy-of instruction must be the only child element of a valid HTML element (p in this case).

The expression in the select attribute must evaluate to a node-set containing zero or more text nodes and
elements in the XHTML namespace that share the same parent element in the source document (xhtml:p in this
case).

This text binding causes the HTML p element in the editing view to be rendered as an editable field, just as with a
regular text binding. However, for it to function as a rich text field, there is one further requirement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regular text binding. However, for it to function as a rich text field, there is one further requirement:

The form definition file must explicitly declare this field, with rich text editing enabled.

Until this final condition is met, the field will behave like any other text binding, with the formatting toolbar disabled.
See Section 10.4.4.6, later in this chapter, to learn how to declare a rich text binding using the xsf:xmlToEdit element.

10.4.3.3 Structural bindings

Unless explicitly disabled, structural bindings are implicitly created whenever an XSLT template rule, named template,
or xsl:for-each instruction, if it has any literal result elements as immediate children, is invoked. The binding occurs
between the "current node," in XSLT terms, and each HTML element in the result tree that is created by a literal result
element that is the immediate child of the xsl:template or xsl:for-each element. For example, the template rule that
matches xhtml:p elements creates a structural binding between the p element in the result tree and the xhtml:p element
in the source tree:

 <xsl:template match="xhtml:p">

 <p class="field">

 <xsl:copy-of select="node()"/>

 </p>

 </xsl:template>

This structural binding occurs because xhtml:p is the current node, and the HTML p literal result element is the
immediate child of xsl:template. Thus, it turns out that the resulting HTML p element, unlike any other element created
by our stylesheet, has not one, but two bindings: a (rich) text binding and a structural binding. Both bindings map
between the same two nodes.

Our stylesheet creates a number of structural bindings, one for each literal result element that is an immediate child of
xsl:template or xsl:for-each. All of their corresponding start and end tags are highlighted in Example 10-15. Scanning down
the stylesheet, we see structural bindings for html, tr, p, div, tr, and div, each of which maps to the current node at that
point in stylesheet processing. On the other hand, the last two templates in the stylesheet, which happen to be named
templates (make-date-picker and make-time-field) as opposed to template rules, do not create structural bindings. This is
because their respective span element children explicitly prevent those bindings from being created by invoking
xd:disableEditing="yes".

All of this begs the question, "What is the point of a structural binding?" The answer is that, whereas text bindings
(whether rich or not) enable text editing, structural bindings enable structural editing. Examples of structural editing
actions were included in Figures 10-7, 10-8, and 10-9, under friendly names like "Insert Paragraph Below", and
"Replace with All-day or Multi-day Event." However, structural editing actions are not automatically available just
because there is a structural binding. The structural binding is merely a prerequisite for structural editing. To enable
structural editing, the form definition file must explicitly declare buttons, associate them with editing actions, and map
them to XML nodes in the source document. These mappings, if they are to have any effect on the form, rely on the
presence of corresponding structural bindings. To see how this is done, see "Editing components" later in this chapter.

10.4.3.4 Date picker control

The precise rules for how to create a date picker control are not documented by InfoPath. The best approach, at this
point, is to learn and follow by example. The make-date-picker template, shown again below, explicitly establishes a
binding with an XML source node through the use of the xd:binding attribute. It is evaluated in the current XSLT context;
in this case, the bound node is whatever value is passed to the template through the date-node parameter. This allows
us to reuse the template for each date picker control we need to create in our form.

 <xsl:template name="make-date-picker">

 <xsl:param name="date-node"/>

 <span class="field"

 xd:binding="$date-node"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xd:binding="$date-node"

 xd:xctname="DTPicker_DTText"

 contentEditable="true"

 style="BEHAVIOR: url(#default#CalPopup)

 url(#default#urn::controls/Binder)

 url(#default#Formatting);

 width: 100;"

 xd:innerCtrl="_DTText"

 xd:boundProp="xd:num"

 xd:datafmt='"date","dateFormat:Short Date;"'>

 <xsl:attribute name="xd:num">

 <xsl:value-of select="$date-node"/>

 </xsl:attribute>

 <xsl:value-of select="xdFmt:formatString($date-node,

 'date',

 'dateFormat:Short Date;')"/>

 <button style="height:18px; width:20px;

 BEHAVIOR: url(#default#DTPicker);"

 tabindex="-1">

 </button>

 </xsl:template>

The span element child of xsl:template (which prevents a structural binding via xd:disableEditing="yes") contains two child
elements: span and button. These must occur as adjacent sibling elements for the correct behavior to result. The span
element has a number of attributes in the xd namespace, most (if not all) of which must be present for the date picker
control to work correctly. The xd:num attribute (which initializes the date picker control, determining what calendar date
will be highlighted) is created using the xsl:attribute instruction only because that is how the InfoPath form designer
outputs the attribute. It will also work just fine if you use a literal result attribute and an attribute value template
instead (as in xd:num="{$date-node}").

The contentEditable attribute, which is an extension to HTML that's supported by Internet Explorer, is also required. The
CSS BEHAVIOR property is part of IE's behavioral extensions to CSS. The URL-based values are specific to InfoPath. The
xd:datafmt attribute defines a translation from what the user types in to the underlying value to be stored. Specifically, it
allows the user to enter a wide range of date formats, such as 9/22/03 or September 22, 2003, while storing the value
using the ISO 8601 format, i.e., 2003-09-23. Conversely, the xdFmt:formatString() extension function is used to translate
from the XML source value in the standard format to the localized format indicated by the second two arguments
passed to the function. When the user tabs out of the field, its value, regardless of how the user entered the data, will
be displayed in the localized format, e.g., 9/22/03. Finally, the button element creates the calendar icon button that,
when clicked, displays the calendar date picker shown back in Figure 10-6. When the user selects a date, that date
value populates the node to which the preceding span element is bound.

10.4.3.5 Time field formatting

To create a time-valued field, as well as a number of other types of InfoPath form controls, you should again take the
approach of learning and doing by example. This is where InfoPath's sample forms are indispensable. For many kinds of
controls, the sample forms represent the only documentation that's currently available, if you want to create such
controls by hand. The declaration of the time field in our example is similar to that of the date picker. A named
template, make-time-field, can be reused for each time field we want to create in the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4.4 The Form Definition File

Example 10-16 shows the entire form definition file for our example solution.

Example 10-16. The form definition file, manifest.xsf

<xsf:xDocumentClass solutionFormatVersion="1.0.0.0"

 xmlns:xsf=

 "http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"

 xmlns:xhtml="http://www.w3.org/1999/xhtml"

 publishUrl="http://myserver/events/solution.xsn">

 <xsf:package>

 <xsf:files>

 <xsf:file name="template.xml"/>

 <xsf:file name="schema.xsd"/>

 <xsf:file name="paragraphs.xsd"/>

 <xsf:file name="xhtmlType.xsd"/>

 <xsf:file name="script.js"/>

 <xsf:file name="helper.html"/>

 <xsf:file name="default.xsl"/>

 <xsf:file name="view2.xsl"/>

 </xsf:files>

 </xsf:package>

 <xsf:fileNew>

 <xsf:initialXmlDocument caption="Event" href="template.xml"/>

 </xsf:fileNew>

 <xsf:documentSchemas>

 <xsf:documentSchema location="schema.xsd"/>

 </xsf:documentSchemas>

 <xsf:scripts language="jscript">

 <xsf:script src="script.js"/>

 </xsf:scripts>

 <xsf:taskpane caption="Form Entry Tips" href="helper.html"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsf:views default="Event Form">

 <xsf:view name="Event Form">

 <xsf:mainpane transform="default.xsl"/>

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToPreview" caption="Preview This Event"/>

 </xsf:toolbar>

 <xsf:menuArea name="msoStructuralEditingContextMenu">

 <xsf:button action="xCollection::insertAfter"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Below"

 showIf="immediate"/>

 <xsf:button action="xCollection::insertBefore"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Above"

 showIf="immediate"/>

 <xsf:button action="xCollection::remove"

 xmlToEdit="pRepeating"

 caption="Remove Paragraph"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="single-to-multi"

 caption="Replace with All-day or Multi-day Event"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="multi-to-single"

 caption="Replace with Single-day Event with Time"

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="end-time"

 caption="Remove End Time"

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="locationElement"

 caption="Remove Location"

 showIf="immediate"/>

 </xsf:menuArea>

 <xsf:editing>

 <xsf:xmlToEdit name="pRepeating" item="xhtml:p" container="/event">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsf:xmlToEdit name="pRepeating" item="xhtml:p" container="/event">

 <xsf:editWith component="xCollection">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="description">

 <p xmlns="http://www.w3.org/1999/xhtml"/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="pRich" item="xhtml:p">

 <xsf:editWith component="xField" type="formatted"/>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="single-to-multi"

 item="single-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

 <multi-day start-date="" end-date=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="multi-to-single"

 item="multi-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

 <single-day date="" start-time=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="end-time"

 item="@end-time"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 item="@end-time"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when/single-day">

 <xsf:attributeData attribute="end-time" value=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="locationElement"

 item="location"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment followingSiblings="when">

 <location/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 </xsf:editing>

 <xsf:unboundControls>

 <xsf:button name="btnCreate"/>

 </xsf:unboundControls>

 </xsf:view>

 <xsf:view name="Preview Event">

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToForm" caption="Go Back To Form"/>

 </xsf:toolbar>

 <xsf:mainpane transform="view2.xsl"/>

 </xsf:view>

 </xsf:views>

 <xsf:customValidation>

 <xsf:errorCondition match="single-day/@end-time"

 expression="translate(.,':','') <= translate(../@start-time,':','')">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 expression="translate(.,':','') <= translate(../@start-time,':','')">

 <xsf:errorMessage type="modeless"

 shortMessage="End time must come after start time.">

 The event's end time must be later than the event's start time.

 </xsf:errorMessage>

 </xsf:errorCondition>

 <xsf:errorCondition match="multi-day/@end-date"

 expression="translate(.,'-','') <= translate(../@start-date,'-','')">

 <xsf:errorMessage type="modeless"

 shortMessage="End date must come after start date.">

 The event's end date must be later than the event's start date.

 </xsf:errorMessage>

 </xsf:errorCondition>

 </xsf:customValidation>

 <xsf:submit caption="Submit Event" showStatusDialog="no">

 <xsf:useScriptHandler/>

 </xsf:submit>

</xsf:xDocumentClass>

This form definition file illustrates a number of advanced features:

Support for multiple views—in this case, the default view (default.xsl), which was shown in Example 10-15, and
a secondary view (view2.xsl, not shown in this chapter)

The use of an HTML task pane (helper.html), shown later in Example 10-17

The declaration of a script file that uses JScript (script.js), shown later in Example 10-18

The declaration of custom buttons associated with structural editing actions

The use of custom validation rules over and above the XSD schema (using the xsf:customValidation element)

The declaration of a form submission mechanism whose behavior is defined by a custom script (using the
xsf:useScriptHandler element)

All of these features and their corresponding XSF declarations are well documented in InfoPath's online Help system or
secondary Microsoft documentation. For purposes of this tutorial, we'll take a closer look specifically at how structural
editing actions are enabled.

10.4.4.1 Creating toolbars, menus, and buttons

To enable any structural editing action or a custom action, a button must first be created. The form definition file allows
you to create custom toolbars that contain menus or buttons. Menus (described using the xsf:menu element), in turn,
can contain buttons or more menus. The form definition file in Example 10-16 includes one custom toolbar declaration
for each view. The declaration for the default view's custom toolbar is shown again below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for each view. The declaration for the default view's custom toolbar is shown again below:

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToPreview" caption="Preview This Event"/>

 </xsf:toolbar>

The button declared here is used to switch to the form's secondary view by invoking the OnClick handler for the named
button, i.e., SwitchToPreview. The secondary view likewise has its own toolbar and button for switching back to the
default view. See Example 10-18 for the script that contains the instructions that implement these actions.

In addition to custom toolbars, InfoPath contains nine built-in named menu areas:

msoFileMenu
msoEditMenu
msoInsertMenu
msoViewMenu
msoFormatMenu
msoToolsMenu
msoTableMenu
msoHelpMenu
msoStructuralEditingContextMenu

It should be obvious which menus in the UI each of these corresponds to. The last one, msoStructuralEditingContextMenu,
is the only menu area used by our example solution, as declared in Example 10-16. This menu contains each of the
buttons declared using the xsf:button declarations, shown again below:

 <xsf:menuArea name="msoStructuralEditingContextMenu">

 <xsf:button action="xCollection::insertAfter"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Below"

 showIf="immediate"/>

 <xsf:button action="xCollection::insertBefore"

 xmlToEdit="pRepeating"

 caption="Insert Paragraph Above"

 showIf="immediate"/>

 <xsf:button action="xCollection::remove"

 xmlToEdit="pRepeating"

 caption="Remove Paragraph"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="single-to-multi"

 caption="Replace with All-day or Multi-day Event"

 showIf="immediate"/>

 <xsf:button action="xReplace::replace"

 xmlToEdit="multi-to-single"

 caption="Replace with Single-day Event with Time"

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="end-time"

 caption="Remove End Time"

 showIf="immediate"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showIf="immediate"/>

 <xsf:button action="xOptional::remove"

 xmlToEdit="locationElement"

 caption="Remove Location"

 showIf="immediate"/>

 </xsf:menuArea>

The structural editing context menu is what the user sees when he or she right-clicks a section that has structural
editing actions enabled on it, or left-clicks the blue down-arrow icon that automatically appears at the top left corner of
a section when the mouse hovers over it. The showIf attribute on each button declaration causes the button to be
displayed in the menu only when the user's selection is in certain contexts. The showIf attribute has three possible
values:

immediate
enabled
always

The value immediate (which is used in all the instances above) is the most restrictive of the three. If showIf="immediate",
then the button will only be included in the menu when its associated editing action is immediately applicable to the
user's current HTML selection. What is precisely meant by "immediately applicable" depends on the particular editing
action. A value of enabled means that the button will be displayed only when it is enabled (not otherwise grayed out). A
button is enabled not only when the editing action is immediately applicable to the user's selection, but also when the
user's selection is some descendant of that immediately applicable context. Finally, a value of always means that the
button will be displayed in the context menu at all times, regardless of the user's current selection and regardless of
whether the button is enabled or disabled (grayed out).

Rather than associating itself by name with custom OnClick event handling script (as with the buttons for switching
between views), each of the xsf:button elements above declaratively associates itself with an action of a built-in editing
component (see Section 10.4.4.2), by way of the action attribute. The value of this attribute is the name of the editing
component, followed by a scope operator (::), followed by one of the actions available for that editing component. The
button must also associate itself with an actual node in the source document, that node's view in the HTML document,
and a configured instance of the editing component. This is all done in a single swoop by referring, in the xmlToEdit
attribute, to an xsf:xmlToEdit element declared under the xsf:editing element inside the view's configuration. Finally, the
caption attribute's value is what the user actually sees when using these buttons.

10.4.4.2 Editing components

An editing component is a collection of actions for editing certain kinds of XML nodes. Each component is configurable in
its own way. There are six kinds of editing components. Table 10-1 shows the name, purpose, and associated actions of
each.

Table 10-1. The six editing components and their associated actions
Name Purpose Actions

xCollection
For a repeating list, or table, of elements insert, insertBefore, insertAfter,

remove, removeAll

xOptional
For optional elements or attributes insert, remove

xReplace
For choice groups of alternative elements replace

xTextList
For plain, bulleted, or numbered lists (also corresponds to a
repeating sequence of elements) split, merge, remove

xField
For text bindings, i.e. text boxes and rich text boxes (none)

xImage
For embedded images (none)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before continuing, let me warn you that the next several paragraphs are rather dense. They are an attempt to
succinctly cover a complex topic, i.e., how editing control associations (declared using xsf:xmlToEdit elements) are
established. If you get tripped up on a single point, don't stop reading. Try to forge on through the examples in the
following sections. Things may become clear in retrospect. Most likely, they will only truly become clear after doing
some experimentation of your own. In any case, this should get you started on the right track.

Each xsf:xmlToEdit element within the xsf:editing element in a view's configuration represents an XML editing control. It
defines an association between nodes in the source document and a particular editing component, along with
parameterization of the editing component's behavior.

The item and container attributes on each xsf:xmlToEdit element together define where the control is in the HTML editing
view, by way of the structural and/or text bindings to XML source nodes that have already been established. The basic
syntax is like this:

<xsf:xmlToEdit name="someID" item="pattern" container="pattern"...>

The required name attribute of the xsf:xmlToEdit element is a unique identifier and is what xsf:button elements refer to in
their xmlToEdit attributes. The item attribute is always required, regardless of which editing component is being
associated. The container attribute is only required for certain editing components and optional for others. For example,
it is optional for xField, but it is required for xCollection, xOptional, and xReplace. (The editing component in question is
determined by the value of the component attribute of the xsf:editWith child element.)

Whereas the item and container attributes determine where the control is in the HTML editing view, the xsf:editWith child
element defines what the editing control is and does: which editing component it uses (through the component
attribute), and how that editing component is configured (through any additional attributes and child elements of the
xsf:editWith element). The basic syntax is like this:

 <xsf:editWith component="xSomeComponent"...>

 <!-- other child elements, depending on which component is being used -->

 </xsf:editWith>

The xsf:xmlToEdit element's container and item attributes' values must lie in the subset of XPath syntax that corresponds
to the syntax for XSLT patterns. In fact, they are interpreted in essentially the same way as XSLT patterns. The precise
definition of a pattern's behavior, as found in the XSLT recommendation, is that:

A node matches a pattern if the node is a member of the result of evaluating the pattern as an
expression with respect to some possible context; the possible contexts are those whose context node
is the node being matched or one of its ancestors. — http://www.w3.org/TR/xslt#patterns

A helpful way to think about how editing control associations occur is to consider the procedural task that InfoPath
performs while the user is editing. At any given point while a user is editing, InfoPath must determine whether or not to
activate an XML editing control based on the user's current HTML node selection. Its criteria for doing so depend on the
item and container attribute values of the various xsf:xmlToEdit declarations in the form definition file.

Here goes. Starting with the current HTML node selection, InfoPath traverses the ancestor nodes (in reverse document
order) until it finds an HTML node that is bound to an XML node that matches the item pattern of an xsf:xmlToEdit
element in the current view's configuration. If the container attribute is also present on a candidate xsf:xmlToEdit element,
then InfoPath continues to traverse the ancestors until it finds an HTML node that is bound to an XML node that satisfies
the container pattern. Provided that InfoPath finds an item node (and a container node, when specified) that is bound to
the current HTML selection or one of its ancestors, then the current selection will behave as declared within the
corresponding xsf:xmlToEdit element. Namely, the actions of the associated editing component will be available, and the
actions will behave as customized by the xsf:editWith element's additional attributes and elements.

Moreover, both the container and item HTML nodes are control-selectable, i.e., a dashed border appears around them
when the mouse hovers over them, and they can be selected by the user. An exception to this behavior is when the
container node binds to an element that is not normally selectable within the body of an HTML document. This is the
case with many of our example's declarations, in which the container XML node, the root event element, maps to the
editing view's root html element. Though the container HTML node (html) is not selectable in this case, its binding to a
node in the XML source document is still a necessary (and sufficient) condition for the editing control association to take
place. If it were not for the structural binding between event and html, most of our solution's editing controls would be
disabled.

An optional viewContext attribute on the xsf:xmlToEdit element can be added if there exists more than one HTML binding
to the same XML node. (We saw a facetious example of this back in Example 10-4.) In that event, the viewContext
attribute can be used to disambiguate two controls (i.e., xsf:xmlToEdit elements) that have the same context (item and
container attributes), by referring to the value of an HTML element's xd:CtrlId attribute value. Then an editing control with
a particular viewContext will apply only to an HTML selection that not only falls within the context specified by the item
and container attributes but also is, or is a descendant of, an HTML element whose xd:CtrlId attribute value equals the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and container attributes but also is, or is a descendant of, an HTML element whose xd:CtrlId attribute value equals the
value of the viewContext attribute.

That's how these things behave in the abstract. If you didn't comprehend it all, don't worry. Taking a look at some
concrete uses of the individual editing components in our example may help.

10.4.4.3 The xCollection editing component

The xCollection component is used to edit a repeating list of elements. In our example, the xhtml:p element is associated
with the xCollection editing component in order to enable actions such as xCollection::insertAbove and xCollection::insertBelow.
This declaration is shown again below:

 <xsf:xmlToEdit name="pRepeating" item="xhtml:p" container="/event">

 <xsf:editWith component="xCollection">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="description">

 <p xmlns="http://www.w3.org/1999/xhtml"/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

When a user clicks inside the HTML p element in the editing view, the above-declared XML editing control is activated,
because the p element falls within the context defined by the item and container attributes. Specifically:

p is bound to the xhtml:p element in the source document, which of course matches this declaration's item
pattern ("xhtml:p")

p has an ancestor HTML element that's bound to an XML node that satisfies the container pattern ("/event"),
namely the final ancestor element, the html root element of the editing view.

The xsf:editWith element, besides specifying which editing component to use (xCollection), in turn uses the
xsf:fragmentToInsert element and its child, xsf:chooseFragment, to specify what XML fragment to insert when a user invokes
the xCollection::insert, xCollection::insertAbove, or xCollection::insertBelow actions. When the user pushes the Insert Paragraph
Below button, for example, a new XML fragment will be inserted, namely an empty p element in the XHTML namespace.
Where the fragment will be inserted is determined by the parent attribute of the xsf:chooseFragment element. Its value is
an XPath expression that is evaluated in the context of the container node, i.e., using the container XML node as the
context node. If the parent attribute is absent, then the fragment is directly inserted as a child of the container node. In
other words, the parent attribute's value, when absent, defaults to ".". In our example, the parent attribute is present,
and the XPath expression description is evaluated using the root element, event, as the context node, yielding the source
document's description element. Therefore, the fragment to insert will be inserted as a child of the description element.

10.4.4.4 The xOptional editing component

The xOptional editing component corresponds to an optional element or attribute in the source document. Our example
contains an optional location element and an optional end-time attribute. The declarations for each are very similar, both
in the form definition file and in the XSLT stylesheet. In both cases, the stylesheet uses an xsl:choose statement to test
for the presence of the optional node. If present, the stylesheet processes the node using xsl:for-each, thereby
establishing a structural binding. But when the optional node is absent, it has no way of creating a binding to the node,
as there is no way to bind to an XML node that does not yet exist in the source document. The solution around this is to
create a placeholder link that refers to the XML fragment to insert via the xd:xmlToEdit attribute:

 <td colspan="2" class="optionalPlaceholder"

 xd:xmlToEdit="locationElement" tabindex="0">

 <xsl:text>Click here to add optional Location</xsl:text>

 </td>

The optionalPlaceholder CSS class is declared in the HTML document head. The linking behavior of the placeholder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The optionalPlaceholder CSS class is declared in the HTML document head. The linking behavior of the placeholder
element (a td in this case) is effected by using the CSS behavior, url(#default#xOptional), an InfoPath-specific property
included in our optionalPlaceholder class. The xd:xmlToEdit attribute refers to the locationElement editing control in the form
definition file:

 <xsf:xmlToEdit name="locationElement"

 item="location"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment followingSiblings="when">

 <location/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

The above blurb shows that the fragment to insert when a user invokes the xOptional::insert action is simply an empty
location element. The followingSiblings attribute on the xsf:chooseFragment element is necessary, because our schema
dictates that the location element, if present, must come before the when element. Otherwise, the default insertion
behavior would yield an invalid document. The default insertion behavior is to append the fragment as the last child of
the parent node (the event element in this case, because the parent attribute is absent). The followingSiblings attribute can
be used to override this default append behavior. Its value is an XPath expression evaluated in the context of the
parent node (the event element, in this case). The effective behavior is that the fragment will be inserted before all the
nodes in the node-set returned by the followingSiblings expression. In this case, that means the location element will be
inserted immediately before the when element.

The end-time control declaration shows how attributes are inserted, using the xsf:attributeData element:

 <xsf:xmlToEdit name="end-time"

 item="@end-time"

 container="event">

 <xsf:editWith component="xOptional">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when/single-day">

 <xsf:attributeData attribute="end-time" value=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

10.4.4.5 The xReplace Editing Component

The xReplace editing component is usually used in conjunction with a choice group in the schema between two or more
alternative XML elements. In our example, the XSLT stylesheet initially establishes a structural binding by applying
templates to the child of the when element, regardless of which element (single-day or multi-day) is present:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

templates to the child of the when element, regardless of which element (single-day or multi-day) is present:

 <tr>

 <td>When:</td>

 <td>

 <xsl:apply-templates select="when/*"/>

 </td>

 </tr>

The matching template rule is applied, thereby establishing a structural binding between the single-day or multi-day
element and the div element contained within the matching xsl:template element, which will be one of these:

 <xsl:template match="single-day">

 <div>

 ...

 </div>

 </xsl:template>

 <xsl:template match="multi-day">

 <div>

 ...

 </div>

 </xsl:template>

The form definition file in turn declares two separate editing controls, one for each possible element:

 <xsf:xmlToEdit name="single-to-multi"

 item="single-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

 <multi-day start-date="" end-date=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

 <xsf:xmlToEdit name="multi-to-single"

 item="multi-day"

 container="event">

 <xsf:editWith component="xReplace">

 <xsf:fragmentToInsert>

 <xsf:chooseFragment parent="when">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsf:chooseFragment parent="when">

 <single-day date="" start-time=""/>

 </xsf:chooseFragment>

 </xsf:fragmentToInsert>

 </xsf:editWith>

 </xsf:xmlToEdit>

As can be seen above, the xReplace component is configured in a similar way to the xOptional and xCollection components.
It too uses the xsf:chooseFragment element to determine exactly what to replace the element with. In this case, the
single-day element is replaced with a multi-day element that includes its two (required) empty attributes, and the multi-day
element is replaced with a single-day element whose optional end-time attribute is absent.

10.4.4.6 The xField editing component

xField is the editing component that lets you customize the behavior of leaf node editing, or what we have been calling
"text bindings". Our form definition file associates the xhtml:p element with the xField component so that it can
customize its behavior—specifically by declaring type="formatted" on the xsf:editWith element, effectively making the text
binding behave as a rich text binding:

 <xsf:xmlToEdit name="pRich" item="xhtml:p">

 <xsf:editWith component="xField" type="formatted"/>

 </xsf:xmlToEdit>

The other legal values for the type attribute (when the component is xField) are plain, plainMultiline, formattedMultiline, and
rich.

This example illustrates the fact that the same node in the source document can be
associated with multiple editing components, since the form definition file also associates
xhtml:p with the xCollection editing component. Another common use case for associating an
element with multiple editing components is when an optional node can be removed (using
xOptional::remove) or replaced (using xReplace::replace). In that case, two separate
xsf:xmlToEdit declarations are necessary, one for xOptional and one for xReplace.

The xField component also supports the use of the proofing and autoComplete attributes on xsf:editWith. The value of these
attributes (yes or no) determines whether the given field will enable the proofing features (such as spell checking), and
form field auto-completion, respectively.

10.4.4.7 The xTextList editing component

Although our example doesn't use the xTextList editing component, it turns out that it probably should. As useful as
xCollection is in other contexts, it doesn't make editing paragraphs as easy as you might expect from a Microsoft
product. In Word, for example, to create a new paragraph or split an existing paragraph in two, you simply hit Enter.
And to merge paragraphs, you just hit the Backspace or Delete keys, depending on where the current insertion point is.
Thankfully, in InfoPath, you can use the xTextList editing component to expose this split-and-merge behavior that the
user expects. This is much better than forcing the user to switch back and forth between the keyboard and mouse,
typing sentences and then clicking "Insert Paragraph Below," or copying and pasting from one paragraph into the other
because xCollection doesn't automatically split or merge paragraphs.

So let's see what would be involved in updating our solution to use xTextList for paragraphs, rather than xCollection. The
XSLT stylesheet and all files other than the form definition file can remain unchanged. All we need to do in manifest.xsf
is delete all of the xCollection-oriented buttons, as well as the editing controls named pRepeating and pRich. In their place,
we add the following simple declaration:

 <xsf:xmlToEdit name="pList" item="xhtml:p">

 <xsf:editWith component="xTextList" type="formatted"/>

 </xsf:xmlToEdit>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsf:xmlToEdit>

This single declaration does everything that we tried to achieve using the xCollection component, only better. No more
buttons are necessary, because the split, merge, and remove actions are by default made available through the Enter,
Backspace, and Delete keys. And a separate xField declaration is no longer necessary, because xTextList also supports
the type attribute (with values of plain or formatted).

10.4.5 The HTML Task Pane

Our form definition file in Example 10-16 declared a custom HTML task pane:

 <xsf:taskpane caption="Form Entry Tips" href="helper.html"/>

Example 10-17 shows the contents of helper.html, our custom task pane document.

Example 10-17. The HTML task pane, helper.html

<html>

 <head>

 <style type="text/css">

 body { font-family: Verdana; font-size: xx-small; }

 </style>

 </head>

 <body>

 <form name="finalForm" action="http://myserver/process-events/" method="post">

 <input type="hidden" name="xml"/>

 </form>

 <h3>Form Tips</h3>

 Hit CTRL-ENTER to open a new paragraph while typing the event

description

 Right-click any item to see available actions

 Use CTRL-Z and CTRL-Y to undo and redo your changes

 Navigate forward and backward through the form using the TAB and SHIFT-

TAB keys

 </body>

</html>

This task pane displays some common InfoPath editing shortcuts for the user, such as hitting Ctrl-Enter to trigger the
xCollection::insertAfter action, which in this case functions to create a new paragraph. However, there is also a hidden
HTML form embedded in the document. This demonstrates just one possibility of how XML created by InfoPath could be
submitted to a web application other than through the built-in declarative submission mechanisms. The form doesn't do
anything by itself, but a script can be written to access it and submit it, as we'll see in Section 10.4.6. InfoPath's built-in
HTTP submission mechanism only supports HTTP POST of text/xml content, but this form and the accompanying script
used to populate and submit it generates an HTTP POST request with content of type application/x-www-form-urlencoded,
with the value of the xml parameter being the XML document that was created. The advantage is that it can be
integrated with an existing web application designed to work with HTML forms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integrated with an existing web application designed to work with HTML forms.

Submission of XML as content of type application/x-www-form-urlencoded, while useful as an
example, is not generally advisable, because it only supports ASCII characters. For an
application that requires international characters or any other character outside the ASCII
range, you should use a different submission mechanism.

10.4.6 The Script File

Our form definition file in Example 10-16 declared a script file:

 <xsf:scripts language="jscript">

 <xsf:script src="script.js"/>

 </xsf:scripts>

Example 10-18 shows the contents of script.js, our custom script file.

Example 10-18. The script file, script.js

function SwitchToPreview::OnClick()

{

 XDocument.View.SwitchView("Preview Event");

}

function SwitchToForm::OnClick()

{

 XDocument.View.SwitchView("Event Form");

}

function XDocument::OnSubmitRequest(eventObj)

{

 var xdoc = eventObj.XDocument;

 try

 {

 var finalForm = xdoc.View.Window.TaskPanes(0).HTMLDocument.finalForm;

 finalForm.xml.value = xdoc.DOM.xml;

 doSubmitHTMLForm(xdoc);

 }

 catch (ex)

 {

 eventObj.ReturnStatus = false;

 throw ex;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw ex;

 }

 eventObj.ReturnStatus = true;

}

function btnCreate::OnClick(eventObj)

{

 eventObj.XDocument.Submit();

}

function doSubmitHTMLForm(xdoc)

{

 var taskpaneDoc = xdoc.View.Window.TaskPanes(0).HTMLDocument;

 var finalForm = taskpaneDoc.finalForm;

 var resultWindow = taskpaneDoc.open(

 "http://myserver/pleaseWait",

 "result","scrollbars=yes,menubar=yes," +

 "resizable=yes,location=yes,toolbar=yes,status=yes");

 finalForm.target = "result";

 finalForm.submit();

 resultWindow.focus();

}

The functions defined in this short script file perform two primary tasks:

Switching between views

Submitting the created XML to a web server

The view-switching behavior is achieved by implementing the OnClick event handler for each of the two buttons that
were declared in the form definition file, in Example 10-16. The "Preview Event" view (defined by the view2.xsl
stylesheet, not listed in this chapter) declared one of these buttons, named SwitchToForm:

 <xsf:view name="Preview Event">

 <xsf:toolbar caption="Views" name="switcher">

 <xsf:button name="SwitchToForm" caption="Go Back To Form"/>

 </xsf:toolbar>

 <xsf:mainpane transform="view2.xsl"/>

 </xsf:view>

To switch back to the default "Event Form" view (defined by default.xsl), the following single line of code is all that's
needed:

 XDocument.View.SwitchView("Event Form");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XDocument.View.SwitchView("Event Form");

When the user clicks the Go Back To Form button, the editing view switches back to the default form view that was
displayed when the form was first opened.

There is one other OnClick event handler implemented in this script file:

function btnCreate::OnClick(eventObj)

{

 eventObj.XDocument.Submit();

}

Unlike the view-switching buttons, this button (named btnCreate) was not declared in the form definition file but instead
was declared directly in default.xsl (Example 10-15), identified by the value of its xd:CtrlId attribute:

 <input type="button" value="Submit Event" xd:CtrlId="btnCreate"/>

To be successfully referenced, this button must also be declared within the xsf:unboundControls section of the form
definition file, within the xsf:view element:

 <xsf:unboundControls>

 <xsf:button name="btnCreate"/>

 </xsf:unboundControls>

Clicking on this button causes the solution's submission mechanism to be invoked. The form definition file specifies that
the submit action should, in turn, be handled by a custom script (as opposed to one of the other options, such as
xsf:useHttpHandler or xsf:webServiceAdapter):

 <xsf:submit caption="Submit Event" showStatusDialog="no">

 <xsf:useScriptHandler/>

 </xsf:submit>

The XDocument::OnSubmitRequest event is fired when the user attempts to submit the form. Finally, our corresponding
event handler populates the xml field in our HTML task pane's hidden form with the serialized XML document created by
the user, and submits it to a web server. At this point, we are using Internet Explorer's HTML document object model
API, accessible via the HTMLDocument property of the InfoPath TaskPane object:

 var taskpaneDoc = xdoc.View.Window.TaskPanes(0).HTMLDocument;

Though our HTML task pane did not show an example of it, it is also possible to do the converse, i.e., access the
InfoPath object model from script embedded in an HTML task pane document.

The complete InfoPath object model is well documented in InfoPath's online Help system,
under Table of Contents InfoPath Developer's Reference InfoPath Object Model
Reference.

10.4.7 The Cabinet Manifest

When it comes time to deploy your solution, you have several deployment options:

Individually publish all of the form template files, including manifest.xsf, to a shared location or web server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Individually publish all of the form template files, including manifest.xsf, to a shared location or web server

Use InfoPath design mode's "Publish Form..." feature to create and publish a .xsn file (see "Publishing a Form
from Design Mode" later in this chapter).

Use the makecab.exe utility to create a .xsn file at the command-line prompt

Example 10-19 shows a DDF ("diamond directive file") that can be fed to the makecab.exe utility (included with
Windows 2000 and XP) to package up all the form template files into a single CAB file, named event.xsn.

Example 10-19. A cabinet file manifest for solution deployment, cab-manifest.ddf

.Option Explicit

.Set CabinetNameTemplate=event.xsn

.Set Cabinet=on

.Set Compress=on

manifest.xsf

default.xsl

view2.xsl

template.xml

helper.html

schema.xsd

paragraphs.xsd

script.js

This file is not part of the InfoPath form template. Rather, it just provides a way to package the form template files into
a single .xsn file, without having to open the solution in design mode with all of the potential issues that can create.
(See "Developing Solutions that Play Nice with Design Mode," later in this chapter.) It can be executed using this
command:

makecab.exe /F cab-manifest.ddf

You should ensure that when you do publish your form template, regardless of the deployment method chosen, you
publish it to the same location as listed in the publishUrl attribute of the form definition file's root element,
xsf:xDocumentClass. Otherwise, InfoPath will refuse to open the form, complaining that it has moved from its original
location. For more information on this topic, see Section 10.5.4, later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 Using InfoPath Design Mode
By now you've probably noticed that this chapter is heavily biased toward the creation of solutions by hand. One of the
reasons for this is that you can only use the full power of XSLT when creating a solution if you do it by hand, rather
than through InfoPath design mode. Provided that you understand how InfoPath establishes implicit bindings from your
stylesheet, you should be able to avoid potential pitfalls by writing your stylesheet in such a way that only the bindings
you intend to create get created. You can do it, whether it means avoiding certain arrangements of XSLT instructions or
invoking xd:disableEditing="yes" in the right places.

The design mode of InfoPath is well documented in InfoPath's online Help system. The
focus of this chapter has been to expose the technical details of InfoPath solutions,
particularly where existing documentation is lacking, such as how InfoPath interprets view
stylesheets to establish node bindings. For that reason, this section provides only a cursory
overview of InfoPath design mode and happily refers you to the online Help system for a
more in-depth investigation.

That said, there are a number of reasons InfoPath in design mode may be useful to you:

As a tool for learning how valid solutions can be created

As a form design tool for developers or IT workers who aren't as XML-savvy

As an expedient way to create forms, given an existing XML schema, instance document, or web service

As an expedient way to configure other aspects of a solution besides the default view, e.g., secondary views,
submission behavior, web services integration, etc. (see "Developing Solutions that Play Nice with Design Mode"
later in this chapter).

As a solution packaging and deployment tool that supports automatic update notifications

As an IDE for InfoPath scripting, with the help of Microsoft Script Editor

InfoPath design mode provides a WYSIWYG environment for creating forms meant to be run by InfoPath in editing
mode. It has sophisticated support for the creation of HTML layout tables and lets you drag and drop different kinds of
form controls onto the form view canvas. You can begin creating a form in one of three ways:

1. From scratch.

2. From a "data source," which can be an XSD schema, an XML instance document, a WSDL-defined web service,
or a Microsoft Access or SQL Server database.

3. By customizing one of the sample forms that come bundled with InfoPath.

10.5.1 Creating a Simple Solution from an XSD Schema

If we had decided to create our event form example from within design mode, rather than by hand, we would only need
an example instance document, or better yet, a schema, to get started. Since we already have the schema (Example
10-10), let's take a quick look at what this would involve. Figure 10-10 shows a newly created form in design mode, not
unlike the one we created by hand.

Figure 10-10. Designing a form starting from an XSD schema "data source"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a new form starting with an XML schema, select File Design a Form...
New from Data Source. From within the Data Source Setup Wizard, choose "XML Schema
or XML data file," click Next, and finally click Browse to find the XML schema file.

InfoPath design mode utilizes as much information as possible from the schema to aid you in creating your form. In
fact, just by dragging and dropping from the Data Source task pane, shown on the right side of the window in Figure
10-10, we can create a functional form in just a few seconds.

The Data Source task pane provides an Explorer-like view of the underlying XML schema for the form you are
designing. Some icons signify groups, and others fields, in InfoPath's terminology. A field is an attribute or an element
that can contain only text, or rich text in the case of XHTML content. A group is an element that can contain element
children, i.e., other groups or fields. In XSD terms, fields (except for rich text fields) have simple content and groups
have complex content. When you drag an element or attribute onto the canvas, InfoPath automatically creates an
appropriate section (for a group) or form control (for a field). When more than one choice is equally appropriate, it
immediately prompts you to choose which control or section type you want.

In our example in Figure 10-10, the "Location" text box is selected. As a result, the corresponding location field to which
it is bound is automatically highlighted in the Data Source task pane. Note also that the optional section in which the
text box occurs is also bound to the location field. As you navigate through the form in design mode, you will see where
the binding for each control is in the data source tree.

When you want to have more control (no pun intended) over exactly what kinds of form controls or sections should
appear in your form, you can switch to the Controls task pane, shown in Figure 10-11.

Figure 10-11. The Controls task pane and the prompt to select a binding for the
"optional section" being dragged onto the canvas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you drag a control or section onto the canvas from the Controls task pane, you are immediately prompted to
choose what group or field in the data source to bind that control or section to. In the example shown in Figure 10-11,
the location field is chosen as the binding for the optional section being dragged onto the canvas. The resulting XSLT
view stylesheet created by InfoPath will include the "Click here to add" link for the location field when it is absent, and
will display the optional section itself when the location element is present. However, this is an example of a structural
binding, rather than a text binding, which means that, as such, the end user will not be able to edit the content of the
location field, but will only be able to add or remove it. To provide editing support, we additionally need to create a text
binding. We can do this either by dragging a Text Box control onto the canvas, inside the optional section, and then
selecting the location field when prompted for a binding, or we can start from the Data Source task pane instead and
simply drag the location field into the optional section we created for it. A corresponding Text Box control will
automatically be created. Either way, we end up with the location field having two bindings, a text binding and a
structural binding, just as was the case with the event form example we created by hand.

Another thing to note about Figure 10-10 is that the entire form appears exactly as InfoPath in design mode created it,
as a result merely of dragging-and-dropping fields, groups, sections, or controls onto the canvas. No additional edits
were made. Thus, it not only makes reasonable choices about what controls or section types to use, but it also
automatically tries to make the field names friendlier, so "location" becomes "Location," "start-time" becomes "Start
Time," etc.

We can relate some of these controls back to some terminology introduced earlier in the chapter under "The XSLT
Stylesheet," for the event form solution created by hand. Specifically, the Text Box and Rich Text Box controls result in
the creation of text bindings, and the various kinds of sections (optional, repeating, choice, etc.) result in the creation of
structural bindings and corresponding editing control declarations (xsf:xmlToEdit elements) in the form definition file.
Other kinds of bindings, such as those employed by the checkbox and radio button controls, can best be explored by
perusing the sample forms that come bundled with the InfoPath application.

10.5.2 Creating a Form from Scratch

When creating a new blank form rather than starting from a schema or instance document, InfoPath automatically
creates a schema for you as form controls are added to the design. To disable this default behavior, uncheck the
"Automatically create data source" checkbox in the Controls task pane. Table 10-2 shows the controls and the XSD
declarations they create in the schema for the fields to which they are bound. These mappings reveal not only how this
handy feature works, but, perhaps more importantly, it gives you some clues about how to design your own schemas
and forms. Specifically, it shows which controls make sense to bind to which data types.

Table 10-2. Controls for text and rich text bindings, and the automatically created
data source fields they bind to

Control(s) Data Source Type XSD Element Declaration

Text Box, List Box, Drop-Down List Box, Option
Button Element field (string) xsd:string-typed element

Rich Text Box Element field (XHTML) Complex-typed element with XHTML
content.

Date Picker Element field (date) xsd:date-typed element

Check Box Element field (boolean) xsd:boolean-typed element

Picture, Ink Picture Element field
(base64binary) xsd:base64binary-typed element

All of the controls that bind to automatically created element fields can also bind to attribute fields, with one exception.
The Rich Text Box control binds to an element field that can contain XHTML elements. Since attributes cannot contain
elements, Rich Text Box controls cannot bind to attribute fields. The Button, Hyperlink, and Expression Box controls can
never have bindings. The Expression Box control is essentially a way for you to create an xsl:value-of instruction from
within design mode. You specify the XPath expression whose value you want displayed. If necessary, editing will be
explicitly disabled in the resulting stylesheet, through use of the xd:disableEditing annotation, because Expression Box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explicitly disabled in the resulting stylesheet, through use of the xd:disableEditing annotation, because Expression Box
controls are meant primarily to display derived information, such as a sum of numbers. They are not used to establish
editing bindings.

10.5.3 The Layout and Views Task Panes

The Layout task pane provides a set of table-based layout templates to choose from and a set of table operations for
manipulating them. The Views task pane allows you to manage multiple views in your form template, each of which
corresponds to an instance of the xsf:view element in the form definition file.

10.5.4 Publishing a Form from Design Mode

Once you have finished designing your form, you have the option of publishing it through the InfoPath interface. Click
on "Publish Form..." in the Design Tasks task pane, and a wizard will guide you through the process. You have a choice
between three publication targets: shared folder, SharePoint form library, or web server. Publication to a web server
requires that WebDAV be enabled on the server. All of the form's files will be packaged into an .xsn file and saved at
the location that you specify.

Once you've selected your publishing target and location, you'll be prompted to provide a user-accessible location (URL
or network path) for your solution. This dialog is shown in Figure 10-12. The value of this field is used to populate the
publishUrl attribute of the xsf:xDocumentClass element, i.e., the root element of the form definition file. It identifies the
central location from which all users will initially retrieve the form and receive form updates. InfoPath uses the value of
the publishUrl attribute in two ways:

InfoPath assigns this value to the href pseudo-attribute of the mso-infoPathSolution PI when InfoPath saves a
filled-out form

InfoPath checks this value to verify that the form template has not moved from its original published location.

You will want to modify this field only if the user-accessible URL or path is different from the URL or path where you
originally put the file. Changing the value will be necessary, for example, if you need to publish the file to a web server
using a network drive but require your users to download the file via an HTTP URL.

Figure 10-12. Final step of the publishing wizard, where the publishUrl attribute is
set

10.5.5 Developing Solutions That Play Nice with Design Mode

There are a number of alternative approaches to developing InfoPath solutions. How much work should you do by
hand?[3] And how much work should you do in design mode? Table 10-3 lists possible alternative solution development
strategies.

[3] When I say "by hand," I really mean any way other than using InfoPath in design mode. One of the key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[3] When I say "by hand," I really mean any way other than using InfoPath in design mode. One of the key
advantages of the underlying XML syntax of solutions is not only that you can modify things manually, but you can
also use XML tools to generate, modify, or otherwise process solutions.

Table 10-3. Alternative solution development strategies

Development strategy Level of
risk

1. Never use design mode. Safe

2. Always use design mode. Safe

3. Build a solution in design mode, but customize and maintain it by hand, never going back to design
mode. Safe

4. Build a solution in design mode, customize a portion of it by hand, and maintain it both ways. Daring

5. Build a solution entirely by hand and later open it in design mode. Crazy?

Options 1, 2, and 3 are safe because they never burden InfoPath design mode with having to read in a form template
that it didn't itself create. Options 4 and 5 share the risk that InfoPath will have trouble opening your solution, because
your dirty little fingers have been touching it. And if InfoPath opens your solution without complaining, you run the risk
that parts of your solution will get overwritten. The primary problem is that, while the InfoPath XML editor will accept
virtually any XSLT stylesheet you throw at it, the InfoPath form designer is much more finicky.

From within design mode, changing a view that you have created by hand is always a risky
proposition. While this section describes a mechanism by which you can preserve manual
changes, a number of things could still go wrong. Always back up your form template files
before opening them in design mode.

For example, the form designer requires the xd:binding and xd:xctname attributes to be explicitly present on all controls in
the view stylesheet. Otherwise, it will not correctly identify all bindings or form controls, even though the editor has no
problem identifying them. There are a number of other limitations that design mode imposes. For example, it chokes on
common XSLT constructs such as xsl:call-template, but not without first displaying an error message specifying exactly
what is not supported. Again, this is a limitation of design mode, not the InfoPath XML editor. If you build or modify a
solution by hand, you can feel free to use any XSLT instruction you wish.

Does this effectively mean that, once you skirt design mode with a manual modification, there's no going back? Well, it
would, if it wasn't for another InfoPath feature called the preserve code block. This is a mechanism by which you can
mark portions of an XSLT view stylesheet as untouchable regions, for your eyes only. Note that you won't be able to
use the form designer to edit or customize the controls declared therein, and that's the whole point. This is done by
wrapping your manual customizations in a template rule annotated with mode="xd:preserve". The template rules in the
xd:preserve mode and the xsl:apply-templates instructions that invoke them will remain untouched. Note that all template
rules and named templates that you invoke from within a preserved code block will also need to be preserved, using
mode="xd:preserve". Otherwise, design mode will discard them, resulting in an invalid stylesheet, in the case of missing
named templates. For named templates, you will also have to add an arbitrary match attribute, so that it will still be
legal XSLT after you add a mode attribute. To ensure that your named-template-cum-template-rule doesn't match any
nodes, you can use a pattern that is guaranteed to match nothing, such as @*/*.

Example 10-20 shows our first example stylesheet (Example 10-3) with the entire view protected by the xd:preserve
mode.

Example 10-20. Using the xd:preserve mode to preserve manual stylesheet
changes

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/announcement">

 <html>

 <head>

 <title>Announcement</title>

 </head>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <body>

 <xsl:apply-templates select="." mode="xd:preserve"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="announcement" mode="xd:preserve">

 <h1>

 <xsl:value-of select="headline"/>

 </h1>

 <p>

 <xsl:value-of select="body"/>

 </p>

 </xsl:template>

</xsl:stylesheet>

Figure 10-13 shows the result of opening the corresponding form template in design mode. We only see a red box that
says "Preserve Code Block." This alerts us that custom stylesheet code is being skipped over. We can commence to
drag and drop other controls onto the form canvas, add text before or after the block, or create layout tables around
the block, moving it around as necessary.

Figure 10-13. Preserve code block

Example 10-21 shows the XSLT stylesheet as output by the form designer after making a small change (adding some
text to the bottom of the form). We see that it's much more verbose, including all of its CSS and namespace declaration
boilerplate. However, our template rule in the xd:preserve mode is indeed preserved unaltered, and our solution will
continue to work as expected in InfoPath's editing mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

continue to work as expected in InfoPath's editing mode.

Example 10-21. Stylesheet output by InfoPath design mode, with code blocks
preserved

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:msxsl="urn:schemas-

microsoft-com:xslt" xmlns:xd="http://schemas.microsoft.com/office/infopath/2003"

xmlns:x="urn:schemas-microsoft-com:office:excel"

xmlns:xdExtension="http://schemas.microsoft.com/office/infopath/2003/xslt/extension

"

xmlns:xdXDocument="http://schemas.microsoft.com/office/infopath/2003/xslt/xDocument

" xmlns:xdSolution="http://schemas.microsoft.com/office/infopath/2003/xslt/solution"

xmlns:xdFormatting="http://schemas.microsoft.com/office/infopath/2003/xslt/formatti

ng" xmlns:xdImage="http://schemas.microsoft.com/office/infopath/2003/xslt/xImage">

 <xsl:output method="html" indent="no"/>

 <xsl:template match="announcement">

 <html>

 <head>

 <style tableEditor="TableStyleRulesID">TABLE.xdLayout TD {

 BORDER-RIGHT: medium none; BORDER-TOP: medium none; BORDER-LEFT: medium none;

BORDER-BOTTOM: medium none

}

TABLE {

 BEHAVIOR: url (#default#urn::tables/NDTable)

}

TABLE.msoUcTable TD {

 BORDER-RIGHT: 1pt solid; BORDER-TOP: 1pt solid; BORDER-LEFT: 1pt solid; BORDER-

BOTTOM: 1pt solid

}

</style>

 <title>Announcement</title>

 <meta http-equiv="Content-Type" content="text/html"></meta>

 <style controlStyle="controlStyle">BODY{margin-

left:21px;color:windowtext;background-color:window;layout-grid:none;}

 .xdListItem {display:inline-block;width:100%;vertical-align:text-top;}

 .xdListBox,.xdComboBox{margin:1px;} .xdInlinePicture{margin:1px;

BEHAVIOR: url(#default#urn::xdPicture) } .xdLinkedPicture{margin:1px;

BEHAVIOR: url(#default#urn::xdPicture) url(#default#urn::controls/Binder) }

 .xdSection{border:1pt solid #FFFFFF;margin:6px 0px 6px 0px;padding:1px 1px 1px

5px;} .xdRepeatingSection{border:1pt solid #FFFFFF;margin:6px 0px 6px

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5px;} .xdRepeatingSection{border:1pt solid #FFFFFF;margin:6px 0px 6px

0px;padding:1px 1px 1px 5px;} .xdBehavior_Formatting {BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#Formatting);}

.xdBehavior_FormattingNoBUI{BEHAVIOR: url(#default#CalPopup)

url(#default#urn::controls/Binder) url(#default#Formatting);}

 .xdExpressionBox{margin: 1px;padding:1px;word-wrap: break-word;text-overflow:

ellipsis;overflow-

x:hidden;}.xdBehavior_GhostedText,.xdBehavior_GhostedTextNoBUI{BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#TextField)

url(#default#GhostedText);} .xdBehavior_GTFormatting{BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#Formatting)

url(#default#GhostedText);} .xdBehavior_GTFormattingNoBUI{BEHAVIOR:

url(#default#CalPopup) url(#default#urn::controls/Binder) url(#default#Formatting)

url(#default#GhostedText);} .xdBehavior_Boolean{BEHAVIOR:

url(#default#urn::controls/Binder) url(#default#BooleanHelper);}

 .xdBehavior_Select{BEHAVIOR: url(#default#urn::controls/Binder)

url(#default#SelectHelper);} .xdRepeatingTable{BORDER-TOP-STYLE: none; BORDER-

RIGHT-STYLE: none; BORDER-LEFT-STYLE: none; BORDER-BOTTOM-STYLE: none; BORDER-

COLLAPSE: collapse; WORD-WRAP: break-word;}.xdTextBox{display:inline-block;white-

space:nowrap;text-overflow:ellipsis;;padding:1px;margin:1px;border: 1pt solid

#dcdcdc;color:windowtext;background-color:window;overflow:hidden;text-align:left;}

 .xdRichTextBox{display:inline-block;;padding:1px;margin:1px;border: 1pt

solid #dcdcdc;color:windowtext;background-color:window;overflow-x:hidden;word-

wrap:break-word;text-overflow:ellipsis;text-align:left;font-weight:normal;font-

style:normal;text-decoration:none;vertical-align:baseline;}

 .xdDTPicker{;display:inline;margin:1px;margin-bottom: 2px;border: 1pt solid

#dcdcdc;color:windowtext;background-color:window;overflow:hidden;}

 .xdDTText{height:100%;width:100%;margin-

right:22px;overflow:hidden;padding:0px;white-space:nowrap;}

 .xdDTButton{margin-left:-21px;height:18px;width:20px;behavior:

url(#default#DTPicker);} .xdRepeatingTable TD {VERTICAL-ALIGN:

top;}</style>

 </head>

 <body>

 <div>

 <xsl:apply-templates select="." mode="xd:preserve"/>

 </div>

 <div> </div>

 <div>This is some text I just typed in.</div>

 </body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </body>

 </html>

 </xsl:template>

 <xsl:template match="announcement" mode="xd:preserve">

 <h1>

 <xsl:value-of select="headline"></xsl:value-of>

 </h1>

 <p>

 <xsl:value-of select="body"></xsl:value-of>

 </p>

 </xsl:template>

</xsl:stylesheet>

One thing to note about the use of mode="xd:preserve" for a solution's default view is that InfoPath will not overwrite
your stylesheet (and hence won't add any of the boilerplate shown above), as long as you do both of the following:

Annotate all template rules in the stylesheet with mode="xd:preserve" (except for a root template rule that
initially applies templates) until InfoPath opens it without complaining

Do not make any changes to the default view from within design mode

You may be asking yourself, "then why should I bother opening the solution in design mode at all if I'm not going to
make any changes to the default view?" The answer is that there are plenty of other things about a solution that you
may want to configure or change from within design mode besides the default view, e.g., submission behavior,
secondary views, scripting, custom validation, custom error messages, secondary data sources, and solution packaging
and publication. In fact, I recommend avoiding option 5 in Table 10-3, unless you employ this precise strategy. Unless
you particularly want to learn how InfoPath design mode generates XSLT stylesheets and you have some patience for
experimentation, you should avoid making changes within design mode to XSLT views that you created outside of
design mode.

Among the use cases for employing both design mode and hand-editing is the need to develop multiple views for a
single solution. For example, you may already have an XSLT stylesheet that displays your document type in a particular
way, e.g., on a web site, but you still haven't developed a form for gathering instances of that document type. You can
use InfoPath design mode to rapidly develop the form as your default view, and you can then manually edit the form
definition file (manifest.xsf) to add your existing stylesheet as an alternate view for your users to see, like a preview of
how the document will look when published. Unlike a default view stylesheet, a secondary view stylesheet doesn't need
to be annotated with mode="xd:preserve" unless you specifically open that view from within design mode. If you never
switch to that view in design mode, you won't have to worry about the form designer choking on it, and it will survive in
your solution unaltered.

InfoPath's "preserve code block" feature is thus useful for both options 4 and 5 in Table 10-3. With option 4, you can
isolate only the part of the stylesheet that you need to customize outside of design mode. With option 5, the safest
approach, again, is to wrap your entire stylesheet (all but the root template rule) in a "preserve code block." Just to be
sure that it's clear what it means to "wrap the entire stylesheet in a preserve code block." Example 10-22 shows an
example of this technique.

Example 10-22. Wrapping an entire stylesheet in a single preserve code block

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xd="http://schemas.microsoft.com/office/infopath/2003">

 <xsl:template match="/">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:template match="/">

 <xsl:apply-templates select="/event" mode="xd:preserve"/>

 </xsl:template>

 <xsl:template match="/event" mode="xd:preserve">

 <html>

 <!-- ... -->

 <xsl:apply-templates select="location" mode="xd:preserve"/>

 <!-- (All xsl:apply-templates instructions use mode="xd:preserve")-->

 </html>

 </xsl:template>

 <xsl:template match="location" mode="xd:preserve">

 <!-- ... -->

 </xsl:template>

 <!-- ... -->

 <!-- (All template rules use mode="xd:preserve") -->

</xsl:stylesheet>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. Developing InfoPath Solutions
InfoPath is a brand new product in the Microsoft Office System. Unlike Word, Excel, and Access, InfoPath was built from
the ground up to create and edit XML. It carries much of the same promise as the rest of Office's new XML functionality:
to bring XML to the masses. Or perhaps more precisely, it promises to get XML from the masses. By enabling everyday
Office users to fill out XML-based business forms for everything from status reports to press releases to invoices to
memos, InfoPath has the potential to open the floodgates to the creation of XML data in the enterprise.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Introduction to WordprocessingML
WordprocessingML is Microsoft's XML format for Word documents. It's what you get when you select Save As... and
choose "XML Document." WordprocessingML is a lossless format, which means that it contains all the information that
Word needs to re-open a document, just as if it had been saved in the traditional .doc format—all text, formatting,
styles, document metadata, images, macros, revision history, Smart Tags, etc. (The one exception is that
WordprocessingML does not embed TrueType fonts, which is only a disadvantage if the users opening the document do
not have the needed font installed on their system.) Indicative of Word's tremendous size and legacy, the
WordprocessingML schema file approaches 7,000 lines in length. Fortunately, a little bit of knowledge about
WordprocessingML can go a long way.

It was only recently that Microsoft began calling Word's XML format "WordprocessingML,"
whereas previously it was called, simply, "WordML" (as still reflected in the schema's
namespace URI). Why they decided to adopt this new name isn't entirely clear...though it
certainly is wordier.

To gain an advanced understanding of WordprocessingML, you'll need to first understand the fundamentals of Word
itself. While this chapter briefly touches on Word's global architecture and design, books such as the following can
provide a more solid foundation:

Word Pocket Guide, by Walter Glenn (O'Reilly)
Word 2000 in a Nutshell, by Walter Glenn (O'Reilly)

In this chapter, we'll examine several increasingly detailed examples of WordprocessingML. First, we'll take a look at the
definitive "Hello, World" example for WordprocessingML. Next, after learning some tips for working with
WordprocessingML, we'll take a tour through an example WordprocessingML document as output by Word. Then, we'll
systematically cover Word's primary formatting constructs: runs, paragraphs, tables, lists, sections, etc. Finally, we'll
take another look at one of Word's most important features: the style. Understanding how styles work—how they
interact with direct formatting and how they relate to document templates—is essential to an overall understanding of
WordprocessingML and Word in general.

2.1.1 A Simple Example

Example 2-1 shows a WordprocessingML document that one might create by hand in a plain text editor. This example
represents the simplest non-empty WordprocessingML document possible.

Example 2-1. A simple WordprocessingML document created by hand

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first thing to note about this example is the mso-application processing instruction (PI). This is a generic PI used by
various applications within the Microsoft Office System. Its purpose is to associate the given .xml file with a particular
application in the Office suite. In this case, the file is associated with Microsoft Word. This has a double effect: not only
is the Word application launched when a user double-clicks the file, but Windows Explorer renders the file using a
special Word XML icon. This behavior is enabled through an Explorer shell that is automatically installed with Office
2003. All XML documents saved by Word will include this PI. We'll see more uses of the mso-application PI in Chapter 7
and Chapter 10.

As mentioned above, Example 2-1 shows the simplest non-empty WordprocessingML document possible. The w:body
element is the only required child element of the w:wordDocument root element. It technically can be empty, but that
would make for a pretty boring first example. The w:p element stands for "paragraph," w:r stands for "run," and w:t
stands for "text." The namespace prefix w maps to the primary WordprocessingML namespace:
http://schemas.microsoft.com/office/word/2003/wordml.

Beware the default namespace! Word, in its longstanding attempt to be everything to
everybody, does something funny when you try to open a WordprocessingML document
that uses a default namespace, rather than the w (or some other) prefix, for elements in
the WordprocessingML namespace. It sees the naked (un-prefixed) body element and
thinks "This must be HTML!" The easiest way to avoid this problem is to always use an
XML declaration (e.g., <?xml version="1.0"?>) at the beginning of an XML document that will
be opened by Word. Word will consistently recognize the document as XML if the XML
declaration is present.

With few exceptions, all text in a given document is contained within a w:t element that's contained within a w:r element
that's contained within a w:p element. A final thing to note is that, except for the w:wordDocument element, none of the
elements in Example 2-1 (w:body, w:p, w:r, and w:t) can have attributes. As we'll see, properties are instead assigned
(to paragraphs and runs) using child elements. Figure 2-1 shows the result of opening our example document in Word.
We see "Hello, World!" in the default font and font size, in the default view. Word supplies these defaults, because they
are not explicitly specified in our WordprocessingML document.

Figure 2-1. Our hand-edited WordprocessingML file, opened in Word

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Tips for Learning WordprocessingML
Learning WordprocessingML—particularly how Word behaves when it encounters various markup constructs—is an
iterative process. You go back and forth between the text editor and the Word application, closing the document in
Word so you can make changes to it elsewhere, and then re-opening it to see what effects those changes have. You
make hypotheses and you test them. Anything you can do to speed up the iterations of this process will help. Below are
several pieces of advice to consider as you begin this educational journey.

Experiment

Since Microsoft has released fairly limited documentation of WordprocessingML so far, it is often best to learn
through experimentation. Create a document in Word that uses various formatting features you are interested
in. Save the document as XML. Then, investigate the WordprocessingML for the document, making note of how
various document structures are represented as XML. Internet Explorer can be a good tool for viewing
WordprocessingML documents. (See the sidebar "Using Internet Explorer to Inspect WordprocessingML
Documents.")

Don't try to learn everything

This tip offsets the first one. It is sometimes possible to get hung up on particular theoretical questions or
problems when experimenting with WordprocessingML. But if you want to remain productive, you should be
prepared to suspend understanding at various turns in your investigation. The beauty of WordprocessingML is
that you can accomplish quite a lot without understanding everything in the markup. For example, to create a
stylesheet that generates WordprocessingML documents, you would only need to prepare the document in Word
itself, save it as XML, and then copy and paste the bulk of it into your stylesheet, zeroing in on only the
elements that contain dynamic content.

Use the Reveal Formatting task pane

Word's Reveal Formatting task pane (press Shift-F1) provides a very helpful intermediate view of formatting
properties between the WordprocessingML itself and how the document actually looks. Moreover, if you check
the "Distinguish style source" checkbox (at the bottom of the task pane), it will identify the source of specific
formatting properties, distinguishing between those that are defined in a style and those that are applied as
direct formatting. This chapter includes some example screen shots that use the Reveal Formatting task pane.

Use the XML Toolbox

The XML Toolbox was quietly released by Microsoft as a plug-in for Word. It is Word's equivalent of View
Source, and it is a godsend. It lets you view the underlying WordprocessingML for a document or selection right
from within Word. You can also manually insert WordprocessingML, using the "Insert XML" dialog, shown in
Figure 2-2. Ultimately, it is not a substitute for saving as XML, as it leaves out some things (such as document
metadata and spelling errors). One caveat is that the XML Toolbox plug-in requires .NET Programmability
support. This means that the .NET Framework 1.1 must have been installed prior to the Office 2003 installation.
Get and read about this plug-in at http://msdn.microsoft.com/library/en-
us/dnofftalk/html/odc_office01012004.asp

Figure 2-2. The "Insert XML" dialog, available only with the XML Toolbox plug-in
for Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Internet Explorer to Inspect WordprocessingML Documents
Internet Explorer's default tree-view stylesheet for XML documents provides a handy, readable way to
investigate the structure of WordprocessingML documents. However, if you try opening a
WordprocessingML document in IE (e.g., by right-clicking the file and selecting Open With Internet
Explorer), IE turns around and launches Word, because it too is now trained to recognize and honor the
mso-application processing instruction. There are two techniques for getting around this.

The first technique is to simply remove the mso-application PI before opening the WordprocessingML
document in IE:

1. Save the Word document as XML and then close it.

2. Open the newly saved WordprocessingML document in Notepad.

3. Delete or comment out the mso-application PI and re-save.

IE will now display the document using its pretty XML tree view, and will continue to do so even if the
document is subsequently updated by Word to include the mso-application PI. Once you've initially opened
it in IE, you can refresh IE to see how changes to the document from within Word affect the underlying
WordprocessingML.

The second technique involves making a temporary global system change, obviating the need to
comment out the mso-application PI for each and every document you want to inspect.

1. Open the Registry Editor by selecting Start Run and typing regedit.

2. Find the sub-key named
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\11.0\Common\Filter\text/xml.

3. Right-click the Word.Document string value entry, and select Rename.

4. Change the name to something like Word.DocumentDISABLED.

This will make it easy to restore the setting later, by simply renaming it again and removing the
"DISABLED" part. With the WordprocessingML filter effectively disabled, IE will now open
WordprocessingML documents using its default XML tree-view stylesheet just like any other XML
document. Windows Explorer, however, will still continue to associate WordprocessingML documents with
Word, which is probably what you will always want.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 WordprocessingML's Style of Markup
If you have any XML or HTML markup background, then WordprocessingML's style of markup may surprise you.
WordprocessingML was not designed from a clean slate for the purpose of creating documents in XML markup. Instead,
it is an unveiling of the internal structures that have been present in Microsoft Word for years. Though certain features
have been added to make WordprocessingML usable outside the context of Word, by and large it represents a
serialization of Word's internal data structures: various kinds of objects associated with myriad property values. Indeed,
the object-oriented term "properties" permeates the WordprocessingML schema. If you want to make a run of text bold,
you set the bold property. If you want to indent a particular paragraph, you set its indentation property. And so on.

2.3.1 No Mixed Content

Mixed content describes the presence of text content and elements inside the same parent element. It is standard fare
in the world of markup, especially when using document-oriented markup. For example, in HTML, to make a sentence
bold and only partially italicized, you would use code such as the following:

This sentence has <i>mixed</i> formatting.

WordprocessingML, however, never uses mixed content. All of the text in a WordprocessingML document resides in w:t
elements, and w:t elements can only contain text (and no elements). The above sentence is represented much
differently in WordprocessingML. The hierarchy is flattened into a sequence of runs having different formatting
properties:

<w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

 <w:t>This sentence has </w:t>

</w:r>

<w:r>

 <w:rPr>

 <w:b/>

 <w:i/>

 </w:rPr>

 <w:t>mixed</w:t>

</w:r>

<w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

 <w:t> formatting.</w:t>

</w:r>

As you can see, all of the text occurs by itself (no mixed content), within w:t elements.

2.3.2 Properties Are Set Using Empty Sub-Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The above snippet illustrates another general principle in WordprocessingML's style of markup: properties are assigned
using empty sub-elements (e.g., w:b and w:i in the above example). For runs, the w:rPr element contains a set of empty
elements, each of which sets a particular property on the run. Similarly, for paragraphs (w:p elements), the w:pPr
element contains the paragraph formatting properties. For tables, table rows, and table cells, there are the w:tblPr,
w:trPr, and w:tcPr elements, respectively. In each case, the *Pr element must come first, so that the general structure of
paragraphs, runs, tables, table rows, and table cells looks like this:

Object

 Properties

 Content

The properties are defined first, and the content follows. If you have any experience with RTF (Rich Text Format), then
this pattern may look familiar. Before the advent of WordprocessingML, RTF was the most open format in which Word
was willing to save documents. A look at the same sentence after saving it as RTF is demonstrative:

{\b\insrsid3691043 This sentence has }

{\b\i\insrsid3691043 mixed}

{\b\insrsid3691043 formatting.}

The parallels should be fairly easy to draw, without understanding every detail. There are three runs (delineated by
curly braces). The first run has bold turned on by virtue of the \b command. The second run has both bold and italic
turned on by virtue of the \b and \i commands. And the third run goes back to using just bold and no italic. From this
perspective, WordprocessingML may look more like an XML format for RTF—an estimation that is not too far off the
mark.

To learn more about RTF, consider the RTF Pocket Guide (O'Reilly), by Sean M. Burke.

2.3.3 No Hierarchical Document Structures

Nested markup describes the use of element nesting to arbitrary depths. In addition to formatting text, nested markup
is useful for structuring documents. For example, a Docbook document may have sections and sub-sections nested to
an arbitrary depth, like this:

<article>

 <section>

 <title>Section 1</title>

 <para>This is the first section.</para>

 <section>

 <title>Section 1A</title>

 <para>This is a sub-section.</para>

 </section>

 </section>

</article>

The above document is represented much differently in WordprocessingML. The hierarchy is flattened into a sequence
of four paragraphs having different properties. Below is the w:body element, excerpted from such a document:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of four paragraphs having different properties. Below is the w:body element, excerpted from such a document:

<w:body>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Heading1"/>

 </w:pPr>

 <w:r>

 <w:t>Section 1</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is the first section.</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Heading2"/>

 </w:pPr>

 <w:r>

 <w:t>Section 1A</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is a sub-section.</w:t>

 </w:r>

 </w:p>

</w:body>

In Word, the paragraph is the basic block-oriented element, and paragraphs may not contain other paragraphs. Word
does, however, provide a workaround for hierarchical documents, through use of the wx:sub-section element. In fact, if
you were to open the above document and then save it from within Word, the result would include wx:sub-section
elements that reflect the hierarchy intended by the heading paragraphs. We'll look at how this works in detail later, in
Section 2.6.2.

2.3.4 All Attributes Are Namespace-Qualified

One more peculiarity worth noting about WordprocessingML markup is its use of namespace-qualified attributes. In
most XML vocabularies, attributes are not in a namespace. They are generally thought to "belong" to the element to
which they are attached. As long as the element is in a namespace, then no naming ambiguities should arise.
Namespace qualification, however, can be useful for "global attributes" that can be attached to different elements. Such
attributes do not belong to any particular element. The xml:space attribute is a good example of a global attribute. XSLT
also has some global attributes, such as the xsl:exclude-result-prefixes attribute, which can occur on any literal result
element (in any namespace). These are considered good use cases for qualifying attributes with a namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element (in any namespace). These are considered good use cases for qualifying attributes with a namespace.

WordprocessingML, however, does not follow this convention. While there are some "global attributes" in
WordprocessingML (such as the w:type attribute, which appears on the aml:annotation element, which we'll see),
WordprocessingML does not restrict its use of namespace qualification to those cases. Instead, it universally qualifies all
attributes across the board. For this reason, the key thing to remember when working with attributes in
WordprocessingML is that they always must have a namespace prefix (because there's no such thing as a default
namespace for attributes in XML).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 A Simple Example Revisited
Example 2-2 shows how our "Hello, World" example looks after opening it in Word, selecting Save As . . . , and saving
the file with a new name, HelloSaved.xml. For the sake of readability, we've added line breaks and indentation, neither
of which affects the meaning of the file. The highlighted lines in this example correspond to the lines that were present
in our original hand-edited WordprocessingML document in Example 2-1. Everything else is new.

Example 2-2. The same Word document, after Word saves it as XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:v="urn:schemas-microsoft-com:vml"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"

 xml:space="preserve">

 <o:DocumentProperties>

 <o:Title>Hello, World</o:Title>

 <o:Author>Evan Lenz</o:Author>

 <o:LastAuthor>Evan Lenz</o:LastAuthor>

 <o:Revision>4</o:Revision>

 <o:TotalTime>15</o:TotalTime>

 <o:Created>2003-12-06T22:45:00Z</o:Created>

 <o:LastSaved>2003-12-18T07:59:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>2</o:Words>

 <o:Characters>12</o:Characters>

 <o:Lines>1</o:Lines>

 <o:Paragraphs>1</o:Paragraphs>

 <o:CharactersWithSpaces>13</o:CharactersWithSpaces>

 <o:Version>11.5604</o:Version>

 </o:DocumentProperties>

 <w:fonts>

 <w:defaultFonts w:ascii="Times New Roman" w:fareast="Times New Roman"

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

 </w:fonts>

 <w:styles>

 <w:versionOfBuiltInStylenames w:val="4"/>

 <w:latentStyles w:defLockedState="off" w:latentStyleCount="156"/>

 <w:style w:type="paragraph" w:default="on" w:styleId="Normal">

 <w:name w:val="Normal"/>

 <w:rsid w:val="00B15979"/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 <w:sz w:val="24"/>

 <w:sz-cs w:val="24"/>

 <w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:default="on"

 w:styleId="DefaultParagraphFont">

 <w:name w:val="Default Paragraph Font"/>

 <w:semiHidden/>

 </w:style>

 <w:style w:type="table" w:default="on" w:styleId="TableNormal">

 <w:name w:val="Normal Table"/>

 <wx:uiName wx:val="Table Normal"/>

 <w:semiHidden/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 </w:rPr>

 <w:tblPr>

 <w:tblInd w:w="0" w:type="dxa"/>

 <w:tblCellMar>

 <w:top w:w="0" w:type="dxa"/>

 <w:left w:w="108" w:type="dxa"/>

 <w:bottom w:w="0" w:type="dxa"/>

 <w:right w:w="108" w:type="dxa"/>

 </w:tblCellMar>

 </w:tblPr>

 </w:style>

 <w:style w:type="list" w:default="on" w:styleId="NoList">

 <w:name w:val="No List"/>

 <w:semiHidden/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:semiHidden/>

 </w:style>

 </w:styles>

 <w:docPr>

 <w:view w:val="web"/>

 <w:zoom w:percent="100"/>

 <w:proofState w:spelling="clean" w:grammar="clean"/>

 <w:attachedTemplate w:val=""/>

 <w:defaultTabStop w:val="720"/>

 <w:characterSpacingControl w:val="DontCompress"/>

 <w:validateAgainstSchema/>

 <w:saveInvalidXML w:val="off"/>

 <w:ignoreMixedContent w:val="off"/>

 <w:alwaysShowPlaceholderText w:val="off"/>

 <w:compat/>

 </w:docPr>

 <w:body>

 <wx:sect>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800"

 w:header="720" w:footer="720" w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

 </wx:sect>

 </w:body>

</w:wordDocument>

The first thing that may come to mind when looking at this example is "Why does the XML contain so much more
information when all I did was save it?" Or perhaps you've begun to panic.

Don't. While all of this XML is certainly daunting at first glance, we'll see that for the most part its meaning is
straightforward. Take comfort in the fact that, while Word may create markup that's quite verbose, it can handle
markup that minimally conforms to its schema without complaining at all. This liberality in what Word accepts makes it
much easier to write applications that generate WordprocessingML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

much easier to write applications that generate WordprocessingML.

Let's take a tour through this document, examining each top-level element in turn. Getting an overall, top-down view of
what goes into a WordprocessingML document will help bring context to the more nitty-gritty, bottom-up examination
of the vocabulary that will follow later in this chapter.

2.4.1 The w:wordDocument Element

The root element of Example 2-2, w:wordDocument, has a large number of attributes:

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:v="urn:schemas-microsoft-com:vml"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 w:macrosPresent="no" w:embeddedObjPresent="no"

 w:ocxPresent="no" xml:space="preserve">

Actually, most of these are technically namespace declarations. They are present on every WordprocessingML document
that Word outputs, regardless of whether all the namespaces are actually used in the document. In WordprocessingML,
you can safely leave out all the namespace declarations except the ones you actually use, which will minimally include
the primary WordprocessingML namespace (normally mapped to the w prefix). Below is a list of the namespaces
declared in this document, along with a brief description of the purpose of each.

http://schemas.microsoft.com/office/word/2003/wordml

Mapped to the w prefix. All of the core WordprocessingML elements and attributes are in this namespace.

urn:schemas-microsoft-com:vml

Mapped to the v prefix. Elements in this namespace represent embedded Vector Markup Language (VML)
images.

urn:schemas-microsoft-com:office:word

Mapped to the w10 prefix. This namespace is used for legacy elements from Word Ten. It is used in HTML
output.

http://schemas.microsoft.com/schemaLibrary/2003/core

Mapped to the sl prefix. The sl:schema and sl:schemaLibrary elements are used with Word's custom XML schema
functionality, and are introduced in Chapter 4.

http://schemas.microsoft.com/aml/2001/core

Mapped to the aml prefix. The Annotation Markup Language (AML) elements are used to describe tracked
changes, comments, and bookmarks.

http://schemas.microsoft.com/office/word/2003/auxHint

Mapped to the wx prefix. Elements in this namespace provide "auxiliary hints" for processing WordprocessingML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapped to the wx prefix. Elements in this namespace provide "auxiliary hints" for processing WordprocessingML
documents outside of Word. They represent derivative information that is useful to us but that is of no internal
use to Word. See "Auxiliary Hints in WordprocessingML," later in this chapter.

urn:schemas-microsoft-com:office:office

Mapped to the o namespace. This is the namespace for "shared" document properties and custom document
properties. They are shared in that they also apply to other Office applications, such as Excel.

uuid:C2F41010-65B3-11d1-A29F-00AA00C14882

Mapped to the dt prefix. This is the XML Data Reduced (XDR) namespace, which, in WordprocessingML, qualifies
the dt (data type) attributes of a document's custom document property elements.

While some confusing legacy is evident in this list, the overall distinction between namespaces is helpful, particularly
between the wx and w namespaces, as we'll see.

The xml:space attribute is set to preserve, in order that whitespace characters (and even any instances of the empty w:tab
element) are interpreted correctly. As a matter of best practice, you should include xml:space="preserve" on the root
element of any WordprocessingML document you create.

The remaining three attributes of the w:wordDocument element are all optional and default to the value no.

w:macrosPresent="no" w:embeddedObjPresent="no" w:ocxPresent="no"

These are consistency checks for when certain kinds of base64-encoded binary objects are embedded in the document.
Specifically, w:macrosPresent must be set to yes when the w:docSuppData element is present (containing toolbar
customizations, VBA macros, etc.); w:embeddedObjPresent must be set to yes when the w:docOleData element is present
(containing OLE objects from other applications, such as Excel); and w:ocxPresent must be set to yes when a w:ocx
element is present somewhere in the body of the document (representing a control from Word's Control Toolbox).
Unless your document contains any such objects, you can safely leave out these attributes.

The child elements of w:wordDocument, as included in this example, represent only a portion of the root element's
complete content model. Below is a list of all possible child elements in the order they are supposed to occur, according
to the WordprocessingML schema. Word tends to be lenient about WordprocessingML documents that contain these
elements in a different order, which suggests it does not validate documents against the published schema when they
are loaded. However, to be on the safe side, you should ensure that these elements are in the correct order in
WordprocessingML documents that you create. As mentioned before, w:body is the only required child element of
w:wordDocument. Only the highlighted elements in this list are actually present in Example 2-2.

w:ignoreSubtree
w:ignoreElements
o:SmartTagType

o:DocumentProperties

o:CustomDocumentProperties
sl:schemaLibrary

w:fonts

w:frameset
w:lists

w:styles

w:divs
w:docOleData
w:docSuppData
w:shapeDefaults
w:bgPict

w:docPr

w:body

Apart from the highlighted elements, the w:lists element is the only one in the above list that will receive further
coverage in this chapter.

2.4.2 The o:DocumentProperties Element

The o:DocumentProperties element in Example 2-2, shown again below, is in the general Office namespace (mapped to
the o prefix), because it includes properties, such as metadata and statistics, that are common to both Word and Excel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the o prefix), because it includes properties, such as metadata and statistics, that are common to both Word and Excel:

 <o:DocumentProperties>

 <o:Title>Hello, World</o:Title>

 <o:Author>Evan Lenz</o:Author>

 <o:LastAuthor>Evan Lenz</o:LastAuthor>

 <o:Revision>4</o:Revision>

 <o:TotalTime>15</o:TotalTime>

 <o:Created>2003-12-06T22:45:00Z</o:Created>

 <o:LastSaved>2003-12-18T07:59:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>2</o:Words>

 <o:Characters>12</o:Characters>

 <o:Lines>1</o:Lines>

 <o:Paragraphs>1</o:Paragraphs>

 <o:CharactersWithSpaces>13</o:CharactersWithSpaces>

 <o:Version>11.5604</o:Version>

 </o:DocumentProperties>

These elements are also serialized as such when Word saves a document as HTML. They correspond primarily to the
properties you see when you open the document Properties dialog (by selecting File Properties). Figure 2-3 shows
the Statistics tab of the file Properties dialog.

Figure 2-3. The Statistics tab of the Properties dialog, corresponding to values
inside the o:DocumentProperties element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are 12 more valid child elements of o:DocumentProperties not shown here, making a total of 26. A number of these
can be added to a document from within Word, at user option. For example, there is an element corresponding to each
of the fields in the Summary tab of the file Properties dialog, shown in Figure 2-4.

Figure 2-4. Other document properties can be populated at user option

2.4.3 The w:fonts Element

The w:defaultFonts element inside the w:fonts element specifies the default font for a document.

 <w:fonts>

 <w:defaultFonts w:ascii="Times New Roman" w:fareast="Times New Roman"

 w:h-ansi="Times New Roman" w:cs="Times New Roman"/>

 </w:fonts>

A document's default font is applied to all of the document's paragraph styles that do not explicitly specify a font.
Normally, when you create a new blank document in Word, the default font setting as specified in the Normal.dot
document template is copied into the document. But our hand-coded WordprocessingML document (Example 2-1) isn't
"normal" in this sense. It was created outside of Word and contains no default font definition at all. Word gracefully
handles this scenario when it loads the document by automatically inserting a default font, as shown in Example 2-2.
Times New Roman is thus the "default default" font. In fact, Times New Roman is also the default font assigned to the
Normal.dot template when Word is first installed, or when it is forced to create a new Normal.dot template because
someone deleted the Normal.dot file.

The attributes on the w:defaultFonts element indicate which font should be used for each character encoding range
among ASCII, high ANSI, complex scripts, and East Asian characters. In Example 2-2, Times New Roman is the default
font for all of these ranges.

The w:fonts element may also contain zero or more w:font elements (zero in the case of Example 2-2) following the
w:defaultFonts element. The w:font elements are optional; you don't need to include a corresponding w:font element just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w:defaultFonts element. The w:font elements are optional; you don't need to include a corresponding w:font element just
to use a particular font. The only purpose of this element is to provide Word with descriptive information about a font
(using its seven possible child elements) that could be useful in the event that the font is not available on a user's
machine. In that case, Word can choose a reasonable alternative based on the information about the font provided in
the document.

2.4.4 The w:styles Element

The w:styles element includes definitions of all of a document's styles. Before looking at the WordprocessingML syntax
for defining styles, let's establish some basic terminology. A style is a group of formatting properties that can be applied
as a unit. There are four possible style types in Word:

paragraph
character
table
list

These style types apply respectively to paragraphs, runs, tables, and lists. Every paragraph, run, table, and list in a
Word document is necessarily associated with a style of the corresponding type. If a paragraph, run, table, or list in a
WordprocessingML document doesn't explicitly specify an associated style (as is the case in Example 2-2), then it takes
on the document's default style of the appropriate style type. Thus, styles are always involved, regardless of whether
you specifically make use of them.

Normally, when you create a new blank document in Word, all of the styles defined in the Normal.dot document
template are copied into the document. These include, at minimum, a default style definition for each style type.
However, our hand-coded WordprocessingML document does not include the w:styles element. Just as Word
automatically creates the w:fonts element when absent, Word automatically inserts four w:style elements, corresponding
respectively to the four style types (paragraph, character, table, and list):

Normal
Default Paragraph Font
Normal Table
No List

These four Word-defined styles are what we see inside the w:styles element in Example 2-2. Effectively, they are
implicitly present in any WordprocessingML document that does not explicitly define them. (However, to explicitly refer
to them from within the body of the document, they must also be explicitly present in the document's w:styles element.)
These "default default" styles are also the same four style definitions that are automatically copied into the Normal.dot
template when Word is first installed, or when it is forced to create a new Normal.dot template.

Now let's take a look at the content of the w:styles element, extracted from Example 2-2. Preceding the style definitions
themselves are two elements:

<w:versionOfBuiltInStylenames w:val="4"/>

<w:latentStyles w:defLockedState="off" w:latentStyleCount="156"/>

The w:versionOfBuiltInStylenames and w:latentStyles elements are used to refer to particular built-in styles when document
formatting protection is turned on. Since document protection is an important ingredient in building custom XML
solutions in Word, these elements will be covered in Chapter 4. For now, all you need to know is that there are no
formatting restrictions on this document. In fact, this document would be interpreted no differently if we were to
remove these two (optional) elements.

Next, there are four w:style elements, one for each of the "default default" styles listed above:

 <w:style w:type="paragraph" w:default="on" w:styleId="Normal">

 <w:name w:val="Normal"/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 <w:sz w:val="24"/>

 <w:sz-cs w:val="24"/>

 <w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:default="on"

 w:styleId="DefaultParagraphFont">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 w:styleId="DefaultParagraphFont">

 <w:name w:val="Default Paragraph Font"/>

 <w:semiHidden/>

 </w:style>

 <w:style w:type="table" w:default="on" w:styleId="TableNormal">

 <w:name w:val="Normal Table"/>

 <wx:uiName wx:val="Table Normal"/>

 <w:semiHidden/>

 <w:rPr>

 <wx:font wx:val="Times New Roman"/>

 </w:rPr>

 <w:tblPr>

 <w:tblInd w:w="0" w:type="dxa"/>

 <w:tblCellMar>

 <w:top w:w="0" w:type="dxa"/>

 <w:left w:w="108" w:type="dxa"/>

 <w:bottom w:w="0" w:type="dxa"/>

 <w:right w:w="108" w:type="dxa"/>

 </w:tblCellMar>

 </w:tblPr>

 </w:style>

 <w:style w:type="list" w:default="on" w:styleId="NoList">

 <w:name w:val="No List"/>

 <w:semiHidden/>

 </w:style>

For now, we'll only look at the lines that are highlighted. The w:type attribute of each w:style element indicates the style
type (paragraph, character, table, or list). The presence of w:default="on" denotes that this style is the default style for its
style type. This attribute's default value is off.

Each style has two different names, as indicated by the w:styleId attribute and the w:name element. The w:styleId
attribute is for intra-document references only; it must be unique within the file. Styles can be referred to either from
within the document's body (to associate a paragraph with a certain paragraph style, for example) or from within
another style definition (to derive the style from another style, for example). The w:styleId attribute is unused apart
from these internal associations. In fact, Word doesn't preserve its value when it opens the document. When a
document is subsequently saved as XML, Word auto-generates a value for the w:styleId attribute, usually deriving it
from the style's primary name.

The primary name of a style is denoted by the w:val attribute of the w:name element. The primary name of a style is
what the user sees in the Style drop-down menu in the Word UI. Also, for styles that came from a template, the
primary name uniquely identifies the style in the attached template and is the basis by which styles are updated when
the "Automatically update document styles" document option is turned on. This name, like the w:styleId attribute, must
be unique within the file. Otherwise, Word will try to fix things up, probably not in the way that you intended.

For certain built-in styles, the style name displayed in the Word UI differs from the primary name of the style. For
example, the "Normal Table" style appears as "Table Normal" in the UI. This (dubious) privilege is restricted to Word's
built-in style names; there is no way in WordprocessingML to define a custom style whose UI name differs from its
primary name. Word, however, does throw us a bone when it saves such styles as XML. The wx:uiName element clues us
in to the distinction:

<wx:uiName wx:val="Table Normal"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<wx:uiName wx:val="Table Normal"/>

This element is strictly informational. If you were to remove it or change the wx:val attribute's value, Word would
behave no differently when opening the file. Elements and attributes in the namespace designated by the wx prefix are
for our benefit only and are of no internal use to Word.

2.4.5 The w:docPr Element

Have you ever wondered whether a particular option in the Word UI represents a property of the document you are
editing as opposed to a property of the application's state? The answer to your question may lie inside the w:docPr
element, which, like one of its siblings mentioned earlier, stands for "document properties." However, unlike the
information inside the o:DocumentProperties element, these document properties are unique to Word and describe
particular aspects of a document's state, options, and default settings, rather than metadata or statistics that are
common to multiple Office applications.

The Tools Options . . . dialog in the Word UI, with its many tabs, is rather notorious for being unclear about what
exactly the user is modifying, whether global application options or document options. By investigating the contents of
the w:docPr element, you can begin to identify which of these options are document-specific and which of them aren't.

The *Pr naming convention that w:docPr follows is common in WordprocessingML. As we'll see, a number of other
elements follow this convention, such as w:pPr (paragraph properties), w:rPr (run properties), w:tblPr (table properties),
w:trPr (table row properties), w:tcPr (table cell properties), and w:listPr (list properties). In fact, the baseline content
model of these elements is also similar: a sequence of mostly empty elements, each standing for a particular property
and each having zero or more attributes to set the values of that property. The most commonly used attribute is w:val.
You may have noticed by now that WordprocessingML favors putting not only elements but also attributes in its
namespace, which means you should get used to typing those w prefixes. (The attributeFormDefault value is set to
qualified in each of the WordprocessingML schema documents.)

The w:docPr element has 84 optional child elements. They are declared in the WordprocessingML schema as an ordered
sequence (as opposed to a repeating choice group), which suggests that they must occur in the declared order. In
reality, Word does not enforce this order, though it does appear to follow it in the WordprocessingML documents it
creates.

Now, let's look at the w:docPr element as output by Word in Example 2-2:

 <w:docPr>

 <w:view w:val="web"/>

 <w:zoom w:percent="100"/>

 <w:proofState w:spelling="clean" w:grammar="clean"/>

 <w:attachedTemplate w:val=""/>

 <w:defaultTabStop w:val="720"/>

 <w:characterSpacingControl w:val="DontCompress"/>

 <w:validateAgainstSchema/>

 <w:saveInvalidXML w:val="off"/>

 <w:ignoreMixedContent w:val="off"/>

 <w:alwaysShowPlaceholderText w:val="off"/>

 <w:compat/>

 </w:docPr>

The 11 child elements shown here provide a fairly representative sampling of these options.

The w:view element determines what view to use when opening the document. The default view for a WordprocessingML
document that does not specify a view is web, which is also Word's default view for opening XML documents in general.
That explains why we see the value web in this example:

<w:view w:val="web"/>

This value is the result of Word re-saving a WordprocessingML document that we constructed by hand, without
specifying a view. The five possible values of view are print, outline, normal, web, and master-pages (similar to outline but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specifying a view. The five possible values of view are print, outline, normal, web, and master-pages (similar to outline but
applies only to documents that refer to sub-documents).

The w:zoom element denotes the zoom percentage that should be set when opening the document:

<w:zoom w:percent="100"/>

If you change the zoom percentage from within Word and re-save (provided that you also make a substantive change
to the document's content to ensure that the file is actually updated), Word will save the document, recording the zoom
level that you last used. Alternatively, you could directly edit the zoom property in the WordprocessingML, causing Word
to display the document at some other zoom percentage the next time someone opens the file.

The w:proofState element records the state of the grammar and spelling checkers (clean or dirty) at the time Word saved
the document:

<w:proofState w:spelling="clean" w:grammar="clean"/>

Since actual spelling and grammar errors are recorded in the body of the document, this state check reflects not
whether there are errors in the document, but whether Word had a chance to finish checking for errors before the user
saved the document. Thus, its primary purpose is as an optimization hint for Word when it opens the document. Its
absence, however, could conceivably be a useful warning for applications that otherwise rely on Word having completed
its proofing.

The w:attachedTemplate property is one of the two elements representing Templates and Add-Ins options (along with the
w:linkStyles element):

<w:attachedTemplate w:val=""/>

Its value in this example is empty, which means simply that the default Normal.dot template is attached. Should you
attach a different template (through the Tools Templates and Add-Ins . . . dialog) and re-save, then this value
would be populated with the specific file location of a template. Alternatively, you could manually edit the XML attribute
value so that the next time Word opens the document, the new template will already be attached by virtue of your
manual change. Note, however, that unless the w:linkStyles element is also present inside the w:docPr element (as
explained later), the fact that a template is merely attached has no immediate effect on the document. The
w:attachedTemplate element defines a loose association whose potential is only realized when the w:linkStyles element is
also present.

The w:validateAgainstSchema, w:saveInvalidXML, w:ignoreMixedContent, and w:alwaysShowPlaceHolderText properties (among
several others not included in this example) are specific to Word's custom XML schema functionality (only available in
Office 2003 Professional or standalone Word 2003), which is discussed in Chapter 4.

The w:defaultTabStop element sets the interval between default tab stops in the document:

<w:defaultTabStop w:val="720"/>

While the Word UI exposes this value in inches (when you select Format Tabs...), the underlying value is stored in
twips, or 20ths of a point, or 1,440ths of an inch. (Completing this equation, there are 72 points in an inch.) Since the
value of the w:val attribute is 720 twips, the default tab stops for paragraphs in this document occur every half inch.
Thus, when Word opens the document, it displays the short vertical lines beneath the ruler, spaced every half inch, as
shown in Figure 2-5.

Figure 2-5. Default tab stops every half inch, or 720 twips

Once again, Word supplies this value as an application default, because our original hand-edited document (Example 2-
1) did not specify a default tab stop interval. As we'll see, individual paragraphs can define their own custom tab stops
too. For those paragraphs, the default tab stops only take effect to the right of the last custom stop.

The w:characterSpacingControl element is one of several Asian Typography options.

<w:characterSpacingControl w:val="DontCompress"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are three possible self-describing values (DontCompress, CompressPunctuation, or
CompressPunctuationAndJapaneseKana) that can be used to sets the compression option for East Asian characters. The
default value that Word outputs, as evident in our example, is DontCompress. Of course, this doesn't have any real effect
on our document, since it does not contain Asian characters.

Finally, the w:compat element is among the few w:docPr children that may themselves contain child elements
(w:mailMerge, w:hdrShapeDefaults, w:footnotePr, w:endnotePr, and w:docVars being the only others). It has 51 possible child
elements, corresponding to the compatibility options for a document that are set in the Compatibility tab of the Tools

 Options... dialog, as shown in Figure 2-6.

Figure 2-6. Compatibility options, corresponding to the child elements of
w:compat

The w:compat element is empty in Example 2-2, because our document does not set any particular compatibility options.

Before moving on, it would be good to point out one more common WordprocessingML convention. Among w:docPr's 84
possible child elements, 49 are declared using the same type in the WordprocessingML schema: the onOffProperty. The
declaration for the onOffProperty type in the WordprocessingML schema is as follows:

<xsd:complexType name="onOffProperty">

 <xsd:attribute name="val" type="onOffType" default="on"/>

</xsd:complexType>

The onOffType type referred to here allows for two possible values: on or off. As you can see, the attribute declaration
for w:val specifies a default value of on. This means that for the elements inside the w:docPr element that are defined
with this type, the presence of w:val="on" is always implied (and thus redundant), unless overridden by the value off.
However, this has no bearing at all on Word's behavior when the property element itself is absent. Default behavior in
those cases varies depending on the property, and the WordprocessingML schema itself does not generally cast any
light on that question, although annotations therein do sometimes help. Experimentation is probably the best way to
determine Word's default behavior when particular property elements are absent.

2.4.6 The wx:sect Element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, we get to the content of our document, residing inside the w:body element. Our hand-coded original (Example 2-
1) directly contained a w:p (paragraph) element inside the body. After saving, we now see that the paragraph element
has been inserted into an intervening wx:sect element. As mentioned earlier, the namespace mapped to the wx prefix
signals a piece of information that may be useful to us in processing the XML as output by Word, but that is ignored by
Word when opening a WordprocessingML file. The wx elements and attributes are of no use to Word internally. In this
case, we could remove the wx:sect element's start and end tags, leaving only its contents for Word to read, and Word
would behave no differently the next time it opens the file.

That's all well and good, you might be thinking, but what is the wx:sect element for? As you might guess, it stands for
"section." As is true with many Word documents, our "Hello World!" example document contains only one section, so
it's not particularly useful in this case. To learn what sections are and how they are defined using w:sectPr elements, see
"Sections" later in this chapter. And to learn how the wx:sect element is a useful aid to external processing, see Section
2.6.1 later in this chapter.

2.4.7 The w:body Element

It may seem strange to talk about the w:body element after the wx:sect element, when until now we've been traversing
our original example in document order. As already noted, however, the wx:sect element is a completely optional
intervening element between w:body and its content. So, while in Example 2-2 it is the wx:sect element that contains a
w:p element, that content model really belongs to w:body. Using a DTD-like syntax, we can express w:body's entire
content model (much more simply than its XSD definition), like this:

(w:p|w:tbl|w:cfChunk|w:proofErr|w:permStart|w:permEnd)*, w:sectPr?

In other words, w:body may contain any number of w:p, w:tbl, w:cfChunk, w:proofErr, w:permStart, and w:permEnd elements,
in any order, followed by an optional w:sectPr element. The w:p element represents a paragraph, the w:tbl element
represents a table, and the w:cfChunk element represents a "context-free" chunk of inline default fonts, styles, list
definitions, paragraphs, and tables.[1] We'll describe the purpose of the w:proofErr, w:permEnd, and w:permStart elements
later, in Section 2.5.6.

[1] At least, that is how the WordprocessingML schema advertises it. A plethora of experiments yields few answers
as to how this element is actually supposed to be used or how it is supposed to behave. Word tends to fix things
up, merging such inline definitions with the document's global definitions. This is one area where more
documentation from Microsoft is certainly needed.

The w:sectPr element, included in Example 2-2, defines the section properties for the last (and first, in this case) section
of the document. See "Sections," later in the chapter, for more information on how w:sectPr elements are interpreted.

The first part of the w:body element's content model (that is, not including the optional w:sectPr element) is worth
repeating:

(w:p | w:tbl | w:cfChunk | w:proofErr | w:permStart | w:permEnd)*

That's because it also functions as the content model for six other elements in WordprocessingML, namely w:hdr, w:ftr,
w:footnote, w:endnote, w:tc, and w:txbxContent. (The only exception is that w:tc may also contain an optional preceding
w:tcPr element.) The first two of these elements stand for "header" and "footer," respectively; they occur in the
property definitions for a particular section, i.e., inside the w:sectPr element. Footnotes and endnotes may occur inside
any "run," or w:r, element. The w:tc element represents a table cell; thus, tables may contain tables. Finally, the
w:txbxContent element represents a text box that is embedded inside a VML (Vector Markup Language) image embedded
somewhere inside a document's content.

This content model is actually more open than implied above. The WordprocessingML schema also allows any element
from any other namespace to occur here. This enables annotations from the AML (Annotation Markup Language)
namespace, as well as tags from a custom XML schema to be embedded inside WordprocessingML. (See Chapter 4.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.5 Document Structure and Formatting
Now that you've been inundated with information about lots of document-level constructs, let's move into the actual
content of a Word document and how it is represented in WordprocessingML. All Word documents contain three levels
of hierarchy: one or more sections containing zero or more paragraphs containing zero or more characters. A run is a
grouping of contiguous characters that have the same properties. Tables can occur where paragraphs can, and list
items are just a special kind of paragraph. You cannot have nested structures in WordprocessingML—sections within
sections, or paragraphs within paragraphs. The one exception to this rule is that tables may contain tables.

2.5.1 Runs

A "run" is the basic leaf container for a document's content and is represented by the w:r element. As we've seen, the
w:r element may contain w:t elements, which contain text. Including the w:t element, there are 24 valid child elements
of the w:r element, representing things like text, images, deleted text, hyphens, breaks, tabs, footnotes, endnotes,
footnote and endnote references, page numbers, field text, etc. We'll look at just a few of these.

The w:r element may occur in five separate element contexts: w:p, w:fldSimple, w:hlink, w:rt, and w:rubyBase. The first
one, the paragraph, is the most common. The w:fldSimple element represents a Word field, the w:hlink element
represents a hyperlink in Word, and the w:rt ("ruby text") and w:rubyBase elements are used together for laying out
Asian ruby text.

The run is not an essential part of a Word document in the same way that paragraphs and sections are. Rather, it is
WordprocessingML's way of grouping multiple characters (or other objects) that have the same property settings. To
illustrate this point, consider the following WordprocessingML paragraph:

<w:p>

 <w:r><w:t>H</w:t></w:r>

 <w:r><w:t>e</w:t></w:r>

 <w:r><w:t>l</w:t></w:r>

 <w:r><w:t>l</w:t></w:r>

 <w:r><w:t>o</w:t></w:r>

 <w:r><w:t> </w:t></w:r>

 <w:r><w:t>w</w:t></w:r>

 <w:r><w:t>o</w:t></w:r>

 <w:r><w:t>r</w:t></w:r>

 <w:r><w:t>l</w:t></w:r>

 <w:r><w:t>d</w:t></w:r>

</w:p>

The above paragraph is exactly equivalent to the paragraph below:

<w:p>

 <w:r>

 <w:t>Hello world</w:t>

 </w:r>

</w:p>

When Word saves a document as XML, it merges consecutive runs that have the same property settings. It also merges
consecutive w:t elements into a single w:t element. In the above paragraph's case, all of the run properties are assigned
through the document's default paragraph and character styles, because no explicit, local property settings are applied
(through the w:rPr element).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(through the w:rPr element).

2.5.1.1 Text and whitespace handling

The w:t element, which stands for "text," has no attributes and may only contain text. Being one of the few string-
valued elements in Word, it is also one of the few contexts in which whitespace is significant. The handling of
whitespace within the w:t element can be summarized in three basic rules:

1. Each space character (#x20) is preserved as a space and shows up as a space in Word.

2. Each line-feed character (#xA) and character reference to a carriage-return (#xD) is converted into a space.

3. Each tab character (#x9) is replaced by a w:tab element (broken out into a separate run).

The one exception is that when xml:space="default" is present, tab characters are instead converted to spaces (and w:tab
elements ignored altogether).

2.5.1.2 Tabs and breaks

The run inside the following WordprocessingML paragraph contains text as well as a text-wrapping break and a tab,
represented by the w:br and w:tab elements.

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:r>

 <w:t>This is the first line.</w:t>

 <w:br/>

 <w:t>This is a tab:</w:t>

 <w:tab/>

 <w:t>And this is some more text.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

The first thing to note here is that the presence of xml:space="preserve" is necessary for the w:tab element to be
interpreted correctly. Otherwise, the tab is stripped out when the document is loaded (even though it technically
doesn't constitute whitespace as far as XML is concerned). Again, for this reason, xml:space="preserve" should be
included on the root element of any WordprocessingML document you create.

The w:br element, like its HTML counterpart, inserts a break within the text flow. It is short for <w:br w:type="text-
wrapping"/>. The w:type attribute may have two other values: column and page, representing column and page breaks.
Figure 2-7 shows the result of opening this document in Word, with formatting marks turned on.

Figure 2-7. A text-wrapping break and a tab inside a single paragraph

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-7. A text-wrapping break and a tab inside a single paragraph

The bent arrow at the end of the first line indicates that this is a text-wrapping break (represented in WordprocessingML
by the w:br element) rather than the end of the paragraph. (Word users can insert text-wrapping breaks by pressing
Shift-Enter). The right-pointing arrow on the second line denotes the presence of a tab. The w:tab element inserts a tab
into the text flow, according to the tab settings for the current paragraph. In this case, since the tab stops for this
paragraph are not specified either locally or in the Normal paragraph style, the tab stops default to the application
default: every half inch (as specified by the document's w:defaultTabStop element).

2.5.1.3 Run properties

Among all the valid child elements of w:r, the w:rPr element is special. It stands for "run properties." All of the other
children of w:r may occur in any order, but the w:rPr element, when present, must come first. Its child elements
collectively set properties on the run, controlling primarily how text inside the run is to be displayed. There are 42
possible child elements of the w:rPr element, all of which are empty elements. Their various attribute values specify
formatting properties such as font, font size, font color, bold, italic, underline, strikethrough, character spacing, text
effects, etc. They correspond to the properties you see in Word's Font dialog box, accessed by selecting Format
Font . . . , as shown in Figure 2-8.

Figure 2-8. Word's font settings which correspond to run properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When font settings are applied using a local w:rPr element, such settings are called "local settings," "manual
formatting," or "direct formatting," as distinct from font settings applied through a selection's associated paragraph and
character styles. Individual font properties applied through direct formatting always override the corresponding
properties defined in the associated paragraph or character styles.

Example 2-3 shows the use of some of these formatting elements, each of which is highlighted.

Example 2-3. Applying various font properties

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:r>

 <w:rPr>

 <w:i w:val="on"/> <!— turns italics on —>

 <w:b/> <!— turns bold on —>

 </w:rPr>

 <w:t>This run is bold and italic. </w:t>

 <w:br/>

 </w:r>

 <w:r>

 <w:rPr>

 <w:u w:val="single"/> <!— single underline —>

 <w:rFonts w:ascii="Arial"/>

 </w:rPr>

 <w:t>This is Arial and underlined.</w:t>

 <w:br/>

 </w:r>

 <w:r>

 <w:rPr>

 <w:sz w:val="56"/> <!— 28-point font size —>

 </w:rPr>

 <w:t>This is big.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</w:wordDocument>

This example contains a single paragraph that contains three runs, each of which contains text. The first two runs also
contain trailing text-wrapping breaks (w:br elements), effectively separating the text of each run onto its own line. Each
run has different run properties specified in the w:rPr element. These properties, since they are applied as direct
formatting, override the corresponding settings in the Normal style (the "default default" paragraph style, as we saw
earlier).

The first run introduces the w:b and w:i elements:

 <w:rPr>

 <w:i w:val="on"/> <!-- turns italics on -->

 <w:b/> <!-- turns bold on -->

 </w:rPr>

The w:b and w:i elements stand for "bold" and "italic," respectively. They are among 19 of w:rPr's 42 possible child
elements that, like many of w:docPr's children, are declared with the onOffProperty type in the WordprocessingML
schema. This means that the default value of the w:val attribute is on. Thus, w:val="on" on the w:i element above is
technically redundant. As might be guessed, by turning these properties on, all of the text within the run will be
formatted in bold weight and italic style.

The presence of the w:val attribute is necessary to turn off a particular property, overriding
its setting in the style. For example, if you want to turn off bold for a particular portion of
text that's associated as a whole with a style in which the bold property is turned on, then
you would include <w:b w:val="off"/> inside the w:rPr element.

The second run in Example 2-3 introduces the w:u and w:rFonts elements:

 <w:rPr>

 <w:u w:val="single"/> <!-- single underline -->

 <w:rFonts w:ascii="Arial"/>

 </w:rPr>

The w:u element is similar to w:b and w:i, in that it is empty and has a w:val attribute. The difference is that, instead of
having only the values on and off, you have a choice between 18 different values, including single (as in this example)
and none. These values correspond to the choices in the "Underline style" drop-down menu in Word's Font dialog.

This run also specifies the Arial font, overriding the default Times New Roman font of the Normal style. This is done
using the w:rFonts element, which has the same declared type in the WordprocessingML schema as the global
w:defaultFonts element we saw earlier. Specifically, it allows the same attributes for specifying the fonts of different
character sets: w:ascii, w:h-ansi, w:cs, and w:fareast. In this case, only the w:ascii attribute is supplied, which means that
the other character sets still assume the default font.

The third and final run in our single-paragraph document sets the font size using the w:sz element:

 <w:rPr>

 <w:sz w:val="56"/> <!-- 28-point font size -->

 </w:rPr>

The value of the w:val attribute in this case is measured in half-points, or 10 twips, or 144ths of an inch. Thus, while its
value is 56 in the XML, the actual font size (in full points) is 28.

Finally, we see the result of opening this document in Word in Figure 2-9.

Figure 2-9. Direct formatting using local w:rPr elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-9. Direct formatting using local w:rPr elements

Figure 2-9 also shows how direct formatting is represented in the Word UI. In this case, the cursor is inside the third
run, containing the text "This is big." There are two things worth noting about how this direct formatting is represented:

The style drop-down box, as shown at the top right of the window, says "Normal + 28 pt." This is how all direct
formatting is represented here (style name + individual property settings).

The Reveal Formatting task pane, because "Distinguish style source" is checked, distinguishes between the font
size as set in the Normal style (12 pt) and the overriding font size as applied through Direct Formatting (28 pt).

2.5.1.4 Associating a run with a character style

In addition to specifying direct formatting, a run can explicitly associate itself with one of its document's character
styles. This is done using the w:rStyle element. Below are three runs excerpted from a document in which the
"Hyperlink" character style is defined. All three runs are associated with the "Hyperlink" style, but the middle run also
applies some direct formatting (italics):

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink"/>

 </w:rPr>

 <w:t>This just </w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink"/>

 <w:i/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:i/>

 </w:rPr>

 <w:t>looks</w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Hyperlink"/>

 </w:rPr>

 <w:t> like a hyperlink.</w:t>

 </w:r>

Figure 2-10 shows the result of opening this document in Word, assuming it has defined the "Hyperlink" style in its
w:styles element (rendering the font blue and underlined).

Figure 2-10. A run of text associated with the "Hyperlink" style

Once again, the Reveal Formatting task pane shows the distinction between the properties applied through direct
formatting ("Italic") and the properties defined in a style ("Font color: Blue" and "Underline"). It also reveals the
character style for this run: "Hyperlink."

2.5.2 Paragraphs

Paragraphs are the basic block-oriented element in Word. All text content within a document is contained within
paragraphs, whether it's inside the main body of the document, a table cell, a header, a footer, a footnote, an endnote,
or a textbox embedded in an image. Normally, a new paragraph is created whenever a user hits the Enter key while
editing.

In WordprocessingML, a paragraph is represented by the w:p element. The area inside the w:p element could be called a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In WordprocessingML, a paragraph is represented by the w:p element. The area inside the w:p element could be called a
"run-level" context, because it is a context in which runs (w:r elements) may appear. Similarly, the area inside the
w:body element is a "block-level" context, because it is a context in which paragraphs and tables may appear. The
traditional distinction between a block and an inline element (or run) is that blocks are laid out on separate lines,
whereas inline elements (runs) are laid out continuously, without any hard line breaks.

The content model of the w:p element is simple enough that it's worth showing here (using a DTD-like notation):

w:pPr?,

(w:r|w:proofErr|w:permStart|w:permEnd|w:fldSimple|w:hlink|w:subDoc)*

This follows the same pattern as w:r's content model: an optional properties element followed by any of a number of
element choices in any order. (We didn't show w:r's entire content model because it has so many element choices.)

Three of the elements in w:p's content model, as we've seen, may also occur as children of w:body. The w:proofErr,
w:permStart, and w:permEnd elements are thus both block-level and run-level elements. They are explained later in
Section 2.5.6.

The w:fldSimple element represents a Word field, and the w:hlink element represents a hyperlink in Word. You may recall
that these elements are also run-level contexts, i.e., they themselves may contain runs. The w:subDoc element
represents a link to a sub-document of the current document.

As is the case with the w:body element, w:p's content model is actually more open than implied above. The
WordprocessingML schema also allows any element from any other namespace to occur here. This enables annotations
from the AML (Annotation Markup Language) namespace, as well as tags from a custom XML schema to be embedded
inside WordprocessingML. As we'll see in Chapter 4, Word renders custom XML tags differently depending on whether
they occur at the block level (inside w:body) or run level (inside w:p).

2.5.2.1 Paragraph properties

Among all the valid child elements of w:p, the w:pPr element is special. It stands for "paragraph properties." All of the
other children of w:p may occur in any order, but the w:pPr element, when present, must come first. Its child elements
collectively set properties on the paragraph, controlling how the paragraph will be displayed. There are 34 possible child
elements of the w:pPr element, many but not all of which are empty elements. Their various attribute values and child
elements specify paragraph properties such as alignment, indentation, spacing, tab stops, widow/orphan control,
paragraph borders, etc. Most of these properties correspond to the properties you see in Word's Paragraph dialog box,
accessed by selecting Format Paragraph..., as shown in Figure 2-11.

Figure 2-11. Word's Paragraph dialog, corresponding to properties inside the
w:pPr element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When paragraph settings are applied using a local w:pPr element, such settings are called "local settings," "manual
formatting," or "direct formatting," as distinct from settings applied through a paragraph's associated paragraph style.
Individual paragraph properties applied through direct formatting always override the corresponding properties defined
in the associated paragraph style. If this sounds familiar, it should. It's the same basic rule as for font settings. Local
w:rPr and w:pPr elements always override settings applied through (explicit or default) style association. Also, the
properties within the w:rPr and w:pPr elements are completely disjoint from each other, so there is no possibility of
conflict between these two elements.

Example 2-4 shows the use of some of these paragraph formatting elements, each of which is highlighted.

Example 2-4. Applying various paragraph properties

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:jc w:val="center" />

 </w:pPr>

 <w:r>

 <w:t>All work and no play makes Evan a dull boy.</w:t>

 </w:r>

 </w:p>

 <w:p />

 <w:p>

 <w:pPr>

 <w:spacing w:line="480" w:line-rule="auto" />

 <w:ind w:left="720" w:first-line="720" />

 </w:pPr>

 <w:r>

 <w:t>All work and no play makes Evan a dull boy. All work and no play makes Evan a

 dull boy. All work and no play makes Evan a dull boy. All work and no play

 makes Evan a dull boy.</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:ind w:left="2880" w:right="2880" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:ind w:left="2880" w:right="2880" />

 </w:pPr>

 <w:r>

 <w:t>All work and no play makes Evan a dull boy.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

The result of opening this document in Word is shown in Figure 2-12. Also, the Format Paragraph . . . dialog
shown earlier in Figure 2-11 reflects the paragraph settings of the third paragraph of this example (note that the
second paragraph is empty).

Figure 2-12. Applying paragraph properties as direct formatting

Example 2-4 contains four paragraphs. The second paragraph is empty and does not apply any direct formatting. The
other three each specify paragraph properties that override the corresponding settings in the Normal style (the "default
default" paragraph style).

The first paragraph is centered. The w:jc element represents the paragraph justification settings:

<w:jc w:val="center" />

Its w:val attribute value may be left, center, right, both, or one of several other options specific to East Asian text. The
first four values correspond to the "Left," "Centered," "Right,", and "Justified" options in the Alignment drop-down menu
in the Format Paragraph . . . dialog.

The second non-empty paragraph is double-spaced, indented on the left, and has a first-line indent. The double-spacing
effect is achieved through the w:spacing element:

<w:spacing w:line="480" w:line-rule="auto" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike the w:jc element, which has specific keywords corresponding to each of the UI options, the w:spacing element
specifies its values numerically—in twips. The w:line attribute's value of 480 (equivalent to 24 points), in conjunction
with the w:line-rule attribute's value of auto, represent the overall setting of "Double" in the Line Spacing drop-down
menu in the Format Paragraph . . . dialog, as shown earlier in Figure 2-11. When the w:line-rule attribute's value is
auto, then the w:line attribute's value is interpreted in a pre-defined way, regardless of the current paragraph's font size.
A value of 480 means "Double," 360 means "1.5 line," and 240 means "Single." The actual line spacing distance is
automatically adjusted according to the current font size, but the w:line attribute's value stays the same. The other
possible values of w:line-rule are exact and at-least. These correspond to the "Exactly" and "At least" options in the Line
Spacing drop-down menu and affect how the w:line value is interpreted. For example, a value of exact would fix the line
spacing distance to the specified value in the w:line attribute, regardless of the current font size. The w:spacing element
also has other attributes (not present in this example) that are used to determine the spacing before and after the
paragraph itself.

The indentation of the third paragraph (following the empty second paragraph) is specified using the w:ind element:

<w:ind w:left="720" w:first-line="720" />

The w:left attribute specifies the left indentation distance as 720 positive twips, or half an inch to the right of the page
margin. (Negative indent values move the text into the page margin.) The w:first-line attribute specifies a first-line
indent of another half inch. The effect of these settings on Word's ruler is shown in Figure 2-13.

Figure 2-13. A half-inch left indent and a half-inch first-line indent

The w:ind element may also have a w:hanging attribute which specifies a hanging indent. Its presence is mutually
exclusive with the w:first-line attribute, because the same paragraph cannot have both first-line and hanging indents. If
our example used a hanging indent rather than a first-line indent, then the WordprocessingML would look like this:

<w:ind w:left="720" w:hanging="720" />

And the ruler would look like Figure 2-14.

Figure 2-14. A half-inch left indent and a half-inch hanging indent

Interestingly enough, you can also supply negative values for the w:first-line and w:hanging attributes. Since a hanging
indent is essentially the opposite of a first-line indent, Word interprets a negative value as if you had supplied a positive
value of the other type of indent. In fact, when it subsequently saves the document as WordprocessingML, it replaces
one attribute with the other attribute (w:hanging with w:first-line or vice versa) and its negative value with its opposite
(positive) value. For example, if you open a document that has this:

<w:ind w:hanging="-720" />

then Word will normalize it to this instead:

<w:ind w:first-line="720" />

The two are equivalent.

The last paragraph in Example 2-4 has both right and left indents:

<w:ind w:left="2880" w:right="2880" />

The positive value (in twips) of 2880 in each of the w:left and w:right attributes means that the paragraph will be
indented two inches from the margin on each side.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indented two inches from the margin on each side.

The w:left, w:right, w:first-line, and w:hanging attributes all measure distance in twips. You can alternatively measure
distance in character spaces, by using the w:ind element's other four optional attributes instead: w:left-chars, w:right-
chars, w:first-line-chars, and w:hanging-chars.

2.5.2.2 Defining tab stops

Paragraphs can specify custom tab stops, overriding the document's default tab stop interval. This is done using the
w:tabs child element of a paragraph's w:pPr element. Example 2-5 shows a paragraph with custom tab stops as well as
some tabs inside the paragraph that make use of those stops.

Example 2-5. Defining custom tab stops

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:tabs>

 <w:tab w:val="left" w:pos="720" />

 <w:tab w:val="center" w:pos="3600" />

 <w:tab w:val="right" w:pos="6480" />

 </w:tabs>

 </w:pPr>

 <w:r>

 <w:tab/>

 <w:t>Left-aligned tab</w:t>

 <w:tab/>

 <w:t>Centered tab</w:t>

 <w:tab/>

 <w:t>Right-aligned tab</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Each w:tab element within the w:tabs element defines a different tab stop. Both the w:val and w:pos attributes are
required. The w:val attribute indicates the type of tab stop, controlling the alignment of text around it. Its value must be
one of left, center, right, decimal, bar, list, or clear. (The value clear enables tab stops defined in an associated paragraph
style to be explicitly cleared.) The w:pos attribute specifies the position of the tab stop on the ruler, as the number of
twips to the right of the left page margin. The w:tab element may also have an optional w:leader attribute, which sets the
style of the empty space in front of the tab. These properties correspond to the settings found in Word's Format
Tabs... dialog, shown in Figure 2-15, which here is populated with the same tab stops as defined in Example 2-5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-15. Tab stop definitions, corresponding to Example 2-5

Finally, the result of opening this file in Word is shown in Figure 2-16, with formatting marks turned on.

Figure 2-16. Three kinds of custom tab stops

The custom tab stops can be seen on the ruler, and the tabs themselves are signified by arrows in the document
content. The document's default tab stops (every half inch) are signified by small vertical lines below the ruler and do
not resume until after the last custom tab, beginning at the 5-inch mark.

2.5.2.3 Paragraph mark properties

You may be surprised to learn that the w:rPr element ("run properties") may also occur as a child of the w:pPr element.
Actually, it shows up quite often when editing documents in Word. For example, if you turn bold on, type a short
paragraph, and hit Enter, then the resulting paragraph in WordprocessingML will look like this:

 <w:p>

 <w:pPr>

 <w:rPr>

 <w:b/>

 </w:rPr>

 </w:pPr>

 <w:r>

 <w:rPr>

 <w:b/>

 </w:rPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:rPr>

 <w:t>This text is bold.</w:t>

 </w:r>

 </w:p>

This may look redundant, but it isn't. By now, you should be familiar with the purpose of the second w:rPr element
above. It sets the properties (in this case, bold) on the run in which it is contained. However, the first w:rPr element
(inside the w:pPr element) functions differently than you might expect. Rather than setting properties of the runs inside
the paragraph, it represents properties of the paragraph's paragraph mark. If we removed the first w:rPr element
altogether, it would have no actual effect on the formatting of our document. In fact, we wouldn't even see a difference
in the Word UI—unless paragraph marks are turned on. In that case, we might notice whether or not the paragraph
mark itself is displayed in bold weight.

The run properties, or font settings, of a paragraph mark, though they do not directly affect the paragraph's formatting,
do have an effect on Word's behavior when subsequently editing the document. For that reason, you can think of the
paragraph mark properties as containing information about your document's editing state rather than its actual
formatting. For example, one practical effect of setting bold on a paragraph mark is that if the user selects the
paragraph mark (by double-clicking it) and drags and drops it to create a new paragraph, bold will be turned on by
default for runs entered in the new paragraph.

In practice, Word synchronizes the font settings of the paragraph mark with the font settings of the last run in the
paragraph. For example, if you are typing a paragraph and you hit Enter when italics are turned on, then the paragraph
mark of the paragraph you just created will also have italics turned on, as will the paragraph mark of the following
paragraph, at least initially. If, on the other hand, you turn italics off right before you hit the Enter key, then the last
part of your paragraph will still be italicized, but the paragraph mark won't be, and neither will the following paragraph's
paragraph mark.

One final example may help elucidate the function of paragraph mark properties. Consider the WordprocessingML
document in Example 2-6. It is devoid of any text content, but it does have one empty paragraph whose paragraph
mark has italics turned on.

Example 2-6. An empty paragraph with italics turned on

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:rPr>

 <w:i/>

 </w:rPr>

 </w:pPr>

 </w:p>

 </w:body>

</w:wordDocument>

If we open this document in Word, we'll see nothing but a blank document with a flashing cursor—an italicized flashing
cursor. This, again, reflects the document's editing state, rather than its formatting. Any time you create a new
paragraph while editing, Word tries to remember the formatting properties you had in effect on the last paragraph—
even when you create an empty paragraph, save the document, close it, and open it again later, which is what Example
2-6 demonstrates.

It's good to clear up the potential confusion surrounding w:pPr's seemingly redundant w:rPr child. Now that you're

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's good to clear up the potential confusion surrounding w:pPr's seemingly redundant w:rPr child. Now that you're
cognizant of what instances of this element do not represent, you can safely exclude them from WordprocessingML
documents that you create. Their absence will have negligible impact on the user's editing experience. Don't worry—
Word will still work its magic.

2.5.2.4 Associating a paragraph with a paragraph style

In addition to specifying direct formatting, a paragraph can explicitly associate itself with one of its document's
paragraph styles. This is done using the w:pStyle element. Below is a paragraph excerpted from a document in which the
"Heading1" paragraph style is defined:

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Heading1" />

 </w:pPr>

 <w:r>

 <w:t>This is a heading</w:t>

 </w:r>

 </w:p>

This paragraph will be formatted according to the explicitly associated paragraph style, provided that the containing
document has a style definition that looks something like this:

 <w:style w:type="paragraph" w:styleId="Heading1">

 <w:name w:val="Heading 1"/>

 <!-- other style options -->

 <w:pPr>

 <!-- paragraph property settings -->

 </w:pPr>

 <w:rPr>

 <!-- font property settings -->

 </w:rPr>

 </w:style>

2.5.3 Tables

Tables may occur anywhere that paragraphs may occur (and vice versa), which most commonly is directly inside the
w:body element (or inside an intervening wx:sect element when the WordprocessingML is output by Word). The other
contexts in which paragraphs and tables may occur are the w:hdr, w:ftr, w:footnote, w:endnote, w:tc, w:txbxContent, and
w:cfChunk elements, which we already introduced briefly.

The basic structure of the w:tbl element looks like this:

<w:tbl>

 <w:tblPr>...</w:tblPr>

 <w:tblGrid>

 <w:gridCol w:val="..."/>

 <w:gridCol w:val="..."/>

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </w:tblGrid>

 <w:tr>

 <w:tc>...</w:tc>

 <w:tc>...</w:tc>

 ...

 </w:tr>

 <w:tr>...</w:tr>

 ...

</w:tbl>

The content model for the w:tbl element, using a DTD-like syntax, is:

aml:annotation*, w:tblPr, w:tblGrid,

(w:tr | w:proofErr | w:permStart | w:permEnd)+

In other words, the w:tbl element may contain zero or more aml:annotation elements, followed by a w:tblPr element and a
w:tblGrid element, followed by one or more w:tr, w:proofErr, w:permStart, or w:permEnd elements, in any order. The w:tblPr
element contains table-wide properties. The w:tblGrid element contains w:gridCol elements that define the widths of
columns in the table.

Table rows are represented by the w:tr element. The content model of the w:tr element, using the same notation, is:

w:tblPrEx?, w:trPr?, (w:tc | w:proofErr | w:permStart | w:permEnd)+

The w:tblPrEx element contains exceptions to the table-wide properties for this row only. The w:trPr element contains
table row properties for this row.

Table cells are represented by the w:tc element. The content model of the w:tc element, using the same notation, is:

w:tcPr?,(w:p | w:tbl | w:cfChunk | w:proofErr | w:permStart | w:permEnd)*

Thus, after optionally specifying the table cell properties (with the w:tcPr element), we are once again inside a block-
level context. At this point, paragraphs may contain the text for the table cell, or another table can be nested inside this
one.

We've repeatedly seen the trio of w:proofErr, w:permStart, and w:permEnd—now at row-level, cell-level, block-level, and
run-level contexts. See Section 2.5.6, later in this chapter, to find out what exactly these elements are for and how
they function.

Example 2-7 shows a simple table that references one of its document's table styles and additionally utilizes several
table formatting features.

Example 2-7. A sample table with a style and merged cells

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:styles>

 <w:style w:type="table" w:styleId="MyTableStyle">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:style w:type="table" w:styleId="MyTableStyle">

 <w:name w:val="My Table Style" />

 <w:tblPr>

 <w:tblBorders>

 <w:top w:val="single"/>

 <w:left w:val="single"/>

 <w:bottom w:val="single"/>

 <w:right w:val="single"/>

 <w:insideH w:val="single"/>

 <w:insideV w:val="single"/>

 </w:tblBorders>

 <w:tblCellMar>

 <w:left w:w="108" w:type="dxa" />

 <w:right w:w="108" w:type="dxa" />

 </w:tblCellMar>

 </w:tblPr>

 </w:style>

 </w:styles>

 <w:body>

 <w:tbl>

 <w:tblPr>

 <w:tblStyle w:val="MyTableStyle" />

 </w:tblPr>

 <w:tr>

 <w:tc>

 <w:p>

 <w:r>

 <w:t>First row, first column</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:vmerge w:val="restart" />

 </w:tcPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:tcPr>

 <w:p>

 <w:r>

 <w:t>First row, second column (merged with second row, second

 column)</w:t>

 </w:r>

 </w:p>

 </w:tc>

 </w:tr>

 <w:tr>

 <w:tc>

 <w:p>

 <w:r>

 <w:t>Second row, first column</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:vmerge />

 </w:tcPr>

 <w:p/>

 </w:tc>

 </w:tr>

 </w:tbl>

 </w:body>

</w:wordDocument>

The result of opening this WordprocessingML document in Word is shown in Figure 2-17.

Figure 2-17. A simple table, with automatically sized cells

There are a few things to note about this table:

The table is associated with "MyTableStyle," which is defined within the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The table is associated with "MyTableStyle," which is defined within the document.

The "MyTableStyle" style adds borders and cell-spacing to the table.

Word opens the document without complaint, even though it doesn't have a w:tblGrid element; Word
automatically sizes the cells to contain the content.

 The w:vmerge element is a table cell property that is used to vertically merge one table cell with another table
cell below it—similar to its horizontal equivalent, the w:hmerge element.

The w:tbl element as generated by Word tends to be much more verbose than this example, explicitly specifying
many individual property settings.

There is a lot that this example doesn't cover. To give you an idea just how much more there is to tables, the w:tblPr
element has 17 possible child elements (many of which contain their own children), the w:trPr element has 12 possible
child elements, and the w:tcPr element has 13 possible child elements. That's not to mention the w:tblPrEx (exceptions
for a specific row), w:tblStylePr (for table-style conditional override properties), and w:tblpPr (for specifying the position of
a table) elements. If you're writing WordprocessingML for tables, the main things you'll need to configure are the
properties of the table, rows, and cells. These work in the same way as the paragraph properties that we've looked at in
detail earlier, so we won't go into them here. A quick look at the properties dialogs for tables should give you an idea of
what's involved.

2.5.4 Lists

Lists are a rather strange beast in WordprocessingML. Though tables can get pretty hairy, they at least are generally
structured the way you would expect: tables containing rows containing cells. Lists, on the other hand, have no such
explicit structure in WordprocessingML. Instead, a list consists of a sequence of paragraphs that function as list items.
They do not have a common container, nor, unfortunately, does Word provide an auxiliary hint for list containers when
outputting WordprocessingML. The member paragraphs of a list are linked to one of its document's "list definitions."
These are responsible for maintaining the identity of a single list. When numbering restarts, for example, a new list
definition is automatically created. These list definitions, in turn, are linked to one of the document's "base list
definitions", which, if there is no subsequent list style link to traverse, define the actual formatting properties of the list.
If the phrase "spectacularly convoluted" comes to mind, just wait until you see an example of this.

2.5.4.1 What makes a paragraph a list item

A paragraph participates as a member of a list under one of these separate circumstances:

 It has a w:listPr element inside its w:pPr element, which refers to a specific list definition (via the w:ilfo element).

It is associated with a paragraph style that includes list formatting.

Let's take a look at how the first mechanism works. The following paragraph is a member of a list:

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is item one.</w:t>

 </w:r>

</w:p>

The w:ilfo element (whose name may stand for something like "item list format," though Microsoft has not documented
what it actually means) refers to one of the document's list definitions, identified by the number 1. The w:ilvl element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

what it actually means) refers to one of the document's list definitions, identified by the number 1. The w:ilvl element
specifies at what level of nesting this list item occurs. It is incremented each time a list is nested within another list.
Since there are nine possible levels of list indentation in Word (starting at 0), its value can be anywhere from 0 to 8. It
basically says, "Once you find the definition for how each level of this list is supposed to look, sign me up for the
formatting and indentation that are defined for level 0." Finding the list definition is the trick. But before we figure out
how that's done, let's take a look at how WordprocessingML lists compare with HTML lists.

2.5.4.2 Comparing HTML and WordprocessingML lists

Below is a simple nested list in HTML:

 <p>This is top-level item 1</p>

 This is second-level item 1

 This is second-level item 2

 This is top-level item 2

In WordprocessingML, a list like this is expressed much differently. Instead of using a hierarchical structure to express
the list hierarchy, we must represent the list as a flat sequence of four sibling paragraphs, assigning them to the same
list but to different levels within the list:

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is top-level item 1</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="1"/>

 <w:ilfo w:val="1"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is second-level item 1</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="1"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is second-level item 2</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is top-level item 2</w:t>

 </w:r>

</w:p>

For this list to display correctly, the document must contain at least one list definition (a w:list element with w:ilfo="1",
as we'll see) and a corresponding base list definition (w:listDef element), which contains the actual formatting
information for list items. Each paragraph's w:ilvl value represents how far it is nested in the list. The "top-level"
paragraphs are each at level 0, whereas the "second-level" paragraphs are each at level 1. Figure 2-18 shows how
Word renders this WordprocessingML list, using one of its built-in list styles.

Figure 2-18. A simple nested list in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5.4.3 Finding the list definitions

Now let's take a look at where the "list definitions" and "base list definitions" are actually defined. Unsurprisingly, they
are both to be found inside the top-level w:lists element, whose basic content model is a sequence of w:listDef elements
followed by a sequence of w:list elements:

<w:lists>

 <w:listDef ...>

 ...

 </w:listDef>

 <!-- more w:listDef elements -->

 <w:list ...>

 ...

 </w:list>

 <!-- more w:list elements -->

</w:lists>

The w:list elements represent what we're calling "list definitions," and the w:listDef elements represent what we're calling
"base list definitions."

Consider the first example list paragraph we saw earlier. This will be our starting point for finding the list definitions in
the same way that Word does. Here's the paragraph again:

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is item one.</w:t>

 </w:r>

</w:p>

Since our paragraph's w:ilfo element refers to the value 1, we need to find the list definition identified by the number 1.
In other words, we need to find a w:list element that looks something like this (whose w:ilfo attribute's value is 1):

<w:list w:ilfo="1">

 <w:ilst w:val="5"/>

</w:list>

Now that we've found the list definition, the next step is finding the "base list definition." We do that by looking at the
value provided by the w:ilst element. In this case, it is referring to a base list definition identified by the number 5.
Recalling that the base list definitions are represented by w:listDef elements and that they precede the w:list elements
inside the w:lists element, we continue to search further back in our WordprocessingML document. Eventually, we find

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inside the w:lists element, we continue to search further back in our WordprocessingML document. Eventually, we find
what we're looking for:

<w:listDef w:listDefId="5">

 ...

 <w:lvl w:ilvl="0">...</w:lvl>

 <w:lvl w:ilvl="1">...</w:lvl>

 <w:lvl w:ilvl="2">...</w:lvl>

 <w:lvl w:ilvl="3">...</w:lvl>

 <w:lvl w:ilvl="4">...</w:lvl>

 <w:lvl w:ilvl="5">...</w:lvl>

 <w:lvl w:ilvl="6">...</w:lvl>

 <w:lvl w:ilvl="7">...</w:lvl>

 <w:lvl w:ilvl="8">...</w:lvl>

</w:listDef>

The w:listDef element is identified by its w:listDefId attribute and contains one w:lvl element for each level of list nesting
for which it defines formatting. While you can create base list definitions that define fewer levels without a problem,
Word's built-in list styles define all nine levels of nesting. The content of the w:lvl element includes all kinds of
formatting information, such as indentation, tab stops, the number to start on, number format, and bullet images.

Once Word finds the base list definition, with all its formatting information, it then applies the appropriate level's
formatting to the paragraph, according to the value of the w:ilvl element that occurs in the paragraph's list properties.
Thus, Word applies the level 0 list item formatting to our example paragraph above.

2.5.4.4 List Styles

An even more complex variation of this approach occurs is when list styles are used. Unlike paragraph, table, and
character styles, which can be directly associated with paragraphs, tables, and runs (via the w:pStyle, w:tblStyle, and
w:rStyle elements, respectively), list styles are not directly associated with paragraphs in WordprocessingML—there is
not a corresponding element for direct list style references. For example, when an end user applies the built-in list style
"1 / a / i" to a paragraph, the paragraph is effectively associated with a list definition, but it is not directly associated
with the "1 / a / i" list style that was applied to it. The resulting WordprocessingML paragraph looks essentially no
different from the example paragraph we looked at earlier. Here it is again (with the only difference here being that the
w:ilfo element happens to refer to a list definition identified by the number 2):

<w:p>

 <w:pPr>

 <w:listPr>

 <w:ilvl w:val="0"/>

 <w:ilfo w:val="2"/>

 </w:listPr>

 </w:pPr>

 <w:r>

 <w:t>This is item one.</w:t>

 </w:r>

</w:p>

This is what the WordprocessingML looks like when an end user applies a list style to a paragraph. Rather than being
directly associated with the list style, the paragraph refers to a list definition using the w:ilfo element—no differently

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directly associated with the list style, the paragraph refers to a list definition using the w:ilfo element—no differently
than when a list style is not involved. However, the list style association is still retained; it's just that you can't tell that
from looking at the paragraph alone. The list style association only becomes evident when we start traversing the
graph, and that's where things get complicated. First, the paragraph associates itself with the document's list definition
(w:list element), identified by the value 2:

<w:list w:ilfo="2">

 <w:ilst w:val="1"/>

</w:list>

The list definition, in turn, refers (via the w:ilst element) to a base list definition (w:listDef element) identified by the
value 1. So far, so good. Now, here is where a few extra levels of indirection appear. Whereas before we were done at
this point (the base list definition contained all the formatting properties for each level of the list), now we're only
halfway there. This time, the referenced base list definition doesn't contain any formatting properties (inside w:lvl
elements) at all. Instead, it contains yet another reference—the w:listStyleLink element:

 <w:listDef w:listDefId="1">

 <w:lsid w:val="27DC6005"/>

 <w:plt w:val="Multilevel"/>

 <w:tmpl w:val="0409001D"/>

 <w:listStyleLink w:val="1ai"/>

 </w:listDef>

This w:listDef element refers, via its w:listStyleLink element, to a list style definition whose w:styleId attribute's value is 1ai.
This corresponds to the "1 / a / i" style that the end user applied. Here is the document's list style definition that it
refers to:

 <w:style w:type="list" w:styleId="1ai">

 <w:name w:val="Outline List 1"/>

 <wx:uiName wx:val="1 / a / i"/>

 <w:basedOn w:val="NoList"/>

 <w:rsid w:val="00283CEE"/>

 <w:pPr>

 <w:listPr>

 <w:ilfo w:val="1"/>

 </w:listPr>

 </w:pPr>

 </w:style>

As you can see, the list style definition, in turn, contains a reference to yet another list definition (identified by the
number 1). Dizzy yet?

 <w:list w:ilfo="1">

 <w:ilst w:val="0"/>

 </w:list>

This list definition refers to yet another base list definition, identified by the number 0. Finally, we are home free, as this
base list definition actually contains the list formatting properties Word needs in order to format each level of the list:

 <w:listDef w:listDefId="0">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:listDef w:listDefId="0">

 <w:lsid w:val="1B850634"/>

 <w:plt w:val="Multilevel"/>

 <w:tmpl w:val="0409001D"/>

 <w:styleLink w:val="1ai"/>

 <w:lvl w:ilvl="0">

 <w:start w:val="1"/>

 <w:lvlText w:val="%1)"/>

 <w:lvlJc w:val="left"/>

 <w:pPr>

 <w:tabs>

 <w:tab w:val="list" w:pos="360"/>

 </w:tabs>

 <w:ind w:left="360" w:hanging="360"/>

 </w:pPr>

 </w:lvl>

 <w:lvl w:ilvl="1">

 ...

 </w:lvl>

 <w:lvl w:ilvl="2">

 ...

 </w:lvl>

 <w:lvl w:ilvl="3">

 ...

 </w:lvl>

 <w:lvl w:ilvl="4">

 ...

 </w:lvl>

 ...

 <w:lvl w:ilvl="5">

 ...

 </w:lvl>

 <w:lvl w:ilvl="6">

 ...

 </w:lvl>

 <w:lvl w:ilvl="7">

 ...

 </w:lvl>

 <w:lvl w:ilvl="8">

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 </w:lvl>

 </w:listDef>

In summary, w:ilfo refers to w:list, which refers to w:listDef, which refers to w:style, which refers to another w:list, which
refers to another w:listDef. Home, sweet home. Oh yeah, and the last w:listDef refers back to the same w:style through an
element called w:styleLink (which you can see in the last code snippet above)—thereby throwing in a little circularity for
good measure.

2.5.5 Sections

A section in Word is an area or set of areas within a document, characterized by the same page settings, such as
margin width, header and footer size, orientation, border, and print settings. These settings are accessible within the
Word UI through the File Page Setup . . . dialog, shown in Figure 2-19. Figure 2-19 also shows the five different
kinds of section breaks you can insert into a document: "Continuous," "New column," "New page," "Even page," and
"Odd page."

Figure 2-19. The Page Setup dialog for section settings

As mentioned previously, the structure of a Word document consists of one or more sections containing zero or more
paragraphs containing zero or more characters. WordprocessingML, however, does not reflect that hierarchy exactly. In
fact, there is no section container element in WordprocessingML proper. (As we'll see later in Section 2.6.1, the wx:sect
element helps to fill this void by acting as a surrogate container, thereby aiding external processing.) Rather, sections
are represented indirectly through the presence of section breaks. A section break is signified in WordprocessingML by
the presence of a w:sectPr element inside the w:pPr element of the section's last paragraph. Example 2-8 shows the
WordprocessingML for a document that contains two section breaks, and therefore three sections. The w:sectPr elements
are highlighted.

Example 2-8. Multiple sections in a document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-8. Multiple sections in a document

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:docPr>

 <w:view w:val="normal"/>

 </w:docPr>

 <w:body>

 <w:p>

 <w:pPr>

 <w:sectPr/>

 </w:pPr>

 <w:r>

 <w:t>First section</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Second section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:sectPr/>

 </w:pPr>

 <w:r>

 <w:t>Second section, second paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Third section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Third section, second paragraph</w:t>

 </w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:r>

 </w:p>

 <w:sectPr/>

 </w:body>

</w:wordDocument>

The first two w:sectPr elements in this document represent section breaks, because they each occur inside a w:pPr
element. One thing to keep in mind about WordprocessingML's way of representing section breaks is that it can be
deceiving. Specifically, the w:sectPr elements do not lexically divide the text of the document according to its true
section boundaries. For example, though from a first glance it may look as if the paragraph that says "Second section,
second paragraph" belongs to the third and final section, that is not the case. It only looks that way because the
w:sectPr element comes before the text of the paragraph in which it resides. This potential confusion is all the more
reason to look forward to Section 2.6.1, later in this chapter.

The last w:sectPr element in Example 2-8 does not occur inside the w:pPr element. Rather, it is a child of w:body,
following the last paragraph in the document. This is where Word always expects to see the final w:sectPr element of the
document. It does not represent a section break; rather, its job is simply to apply properties to the final (and possibly
only) section of the document. If it isn't there when Word loads the document, Word will add it. The presence of w:sectPr
inside a w:pPr element always denotes a section break, but the presence of w:sectPr as the last child of the w:body
element does not. It's important to keep this distinction in mind when generating WordprocessingML documents that
have multiple sections.

Figure 2-20 shows what we see when Word opens the document in Example 2-8.

Figure 2-20. Three sections separated by Next Page section breaks

In the "Normal" view (which we see automatically, thanks to Example 2-8s use of the w:view element), all section
breaks are visible. The first mystery of the empty w:sectPr section break element is answered: by default it stands for a
"Next Page" break. We could have explicitly specified this in our document by using the w:type child element of w:sectPr,
like this:

<w:sectPr>

 <w:type w:val="next-page"/>

</w:sectPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</w:sectPr>

Besides next-page, the other possible values (corresponding to the drop-down menu options we saw in Figure 2-19) are
next-column, continuous, even-page, and odd-page.

Of course, the insertion of section breaks is not the only responsibility of the w:sectPr element, which stands for "section
properties." Its content model, after all, includes 21 possible element children, which collectively represent the settings
a user can edit through the File Page Setup... dialog. The properties specified inside the w:sectPr element apply to
the section before the break that it represents (i.e., the section containing the paragraph with which the w:sectPr
element is associated).

Normally, when you create a new blank document in Word, all of the page settings defined in the Normal.dot document
template are copied into the document. These include margins, paper dimensions, vertical alignment, orientation, etc.
But our hand-coded WordprocessingML document (Example 2-8) isn't "normal" in this sense. It was created outside of
Word and specifies no page settings at all (as the w:sectPr elements are empty). Word gracefully handles this scenario
when it loads the document by automatically inserting its application defaults for page settings. These default page
settings are the same settings that are automatically copied into the Normal.dot template when Word is first installed,
or when it is forced to create a new Normal.dot template.

We can see Word's application defaults for margins and paper size in the Reveal Formatting task pane in Figure 2-20.
The underlying XML representation for these values looks something like this:

<w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800"

 w:header="720" w:footer="720" w:gutter="0"/>

</w:sectPr>

All of the attribute values shown here are expressed in twips, or 1,440ths of an inch. The w:pgSz element sets the page
size to 8.5" x 11." The w:pgMar element sets the margin widths around the page: one inch on the top and bottom, and
1.25 inches on the right and left. It also sets header and footer areas, each with a height of half an inch.

If you need to override the default page settings for a particular section, you can simply specify your own values, using
any of the other child elements of w:sectPr as necessary.

2.5.6 Proofing, Protection, and Annotation Markings

The w:proofErr, w:permStart, w:permEnd, and aml:annotation elements have shown up in various places so far without any
real explanation. One thing they have in common is that they are all used to mark up ranges of text in a Word
document: w:proofErr for spelling and grammar errors, w:permStart and w:permEnd for an editable area within a protected
document, and aml:annotation for annotating comments, bookmarks, and revisions within a document.

A range is a span of text defined by a start character position and an end character position. The distinctive thing about
ranges is that they can cross paragraph and section boundaries. From within a VBA application, a commonly used range
is the range that corresponds to the user's current selection. Individual sentences and words are also examples of
ranges that you can access through the Word object model, but they are not actually stored as part of the information
in a Word document. Instead, such ranges are purely derivative and calculated on the fly, as the Word or VBA
application demands. However, there are certain kinds of ranges that are necessary to be stored as part of the Word
document itself. These include the various kinds of annotations you can make to a document without affecting its actual
formatting, and markings that are automatically created, such as proofing marks for grammar and spelling.

There is a problem with representing such ranges of text in XML, because XML only allows you to represent a single
tree. The problem of needing to represent multiple, overlapping hierarchies (which is what such annotations amount to)
is commonly addressed in XML by inserting markers into the flow for the start and end positions of the range in
question. This is exactly what Word does, too.

Figure 2-21 shows a paragraph in Word in which three ranges are overlapping, namely a document protection range, a
grammar error range, and a comment annotation range.

Figure 2-21. Overlapping grammar, protection, and comment markings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The outer brackets surrounding the entire sentence delineate the boundaries of an editing region with particular
permissions; the inner parentheses delineate the boundaries of the text about which a comment was made; and the
squiggly line under "This were" is a grammar error automatically recognized and flagged as such by Word. Example 2-9
shows the underlying WordprocessingML for this document excerpt, as output by Word. The start and end markers for
each range, all of which are empty elements, are highlighted.

Example 2-9. Overlapping protection, proofing, and comment ranges

 <w:p/>

 <w:permStart w:id="0" w:edGrp="everyone"/>

 <w:proofErr w:type="gramStart"/>

 <w:p>

 <w:r>

 <w:t>This </w:t>

 </w:r>

 <aml:annotation aml:id="0" w:type="Word.Comment.Start"/>

 <w:r>

 <w:t>were</w:t>

 </w:r>

 <w:proofErr w:type="gramEnd"/>

 <w:r>

 <w:t> a grammatically</w:t>

 </w:r>

 <aml:annotation aml:id="0" w:type="Word.Comment.End"/>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 <aml:annotation aml:id="0" aml:author="Evan Lenz"

 aml:createdate="2003-12-22T12:15:00Z"

 w:type="Word.Comment" w:initials="edl">

 <aml:content>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="CommentText"/>

 </w:pPr>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 <w:annotationRef/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:r>

 <w:r>

 <w:t>Isn't that bad grammar?</w:t>

 </w:r>

 </w:p>

 </aml:content>

 </aml:annotation>

 </w:r>

 <w:r>

 <w:t> suspect sentence.</w:t>

 </w:r>

 <w:permEnd w:id="0"/>

 </w:p>

 <w:p/>

This example illustrates the use of start and end markers to annotate ranges of text, regardless of whether they overlap
each other or other elements, such as paragraphs. This explains, at long last, why these elements crop up in so many
places in the WordprocessingML schema. They need to occur as block-level elements as well as run-level elements. The
w:permStart element occurs in this example in a block context, as a sibling of paragraphs, whereas the corresponding
w:permEnd element occurs in a run context, before the end of the paragraph. Likewise, the first of the w:proofErr
elements occurs as a block-level element, before the beginning of the paragraph, but the second w:proofErr element,
which ends the range at the word "were," occurs as a run-level element.

2.5.6.1 Document protection

Now let's look at how each type of annotation works. The w:permStart and w:permEnd elements work together to identify
a range of text that has a particular editing permission enabled. The w:id attribute of each element is used to associate
the markers with each other. In this case, we know that they go together, because the w:id attribute value is 0 for both
of them:

 <w:permStart w:id="0" w:edGrp="everyone"/>

...

 <w:permEnd w:id="0"/>

The value of the w:edGrp attribute denotes a group of people who can edit this region of text. In this case, the value is
everyone, which means that there are no restrictions for this particular range. This is useful as a way of overriding a
global document protection policy in which the rest of the document is off-limits for making changes. For more
information on Word's document protection features, see Chapter 4.

2.5.6.2 Proof errors

The w:proofErr elements in Example 2-9 are used to identify the start and end points of a grammar error. The type of
each marker is denoted by the w:type attribute:

 <w:proofErr w:type="gramStart"/>

...

 <w:proofErr w:type="gramEnd"/>

Since grammar, as well as spelling, errors cannot overlap each other, there is no need for an ID attribute to associate
start and end markers with each other. Word knows that a grammar error ends at the first gramEnd marker that it finds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

start and end markers with each other. Word knows that a grammar error ends at the first gramEnd marker that it finds
after the gramStart marker. Spelling errors are represented in the same way, using the values of spellStart and spellEnd for
the w:type attribute. Thus, the w:proofError's w:type attribute has four possible values:

gramStart
gramEnd
spellStart
spellEnd

2.5.6.3 Comments and other annotations

Example 2-9 also demonstrates how comments are represented in WordprocessingML. Every comment is represented
using three separate aml:annotation elements. The three are associated with each other by having the same aml:id
attribute value (0 in Example 2-9s case). The first two aml:annotation elements are used to denote the start and end of
the range that the comment is about:

 <aml:annotation aml:id="0" w:type="Word.Comment.Start"/>

 ...

 <aml:annotation aml:id="0" w:type="Word.Comment.End"/>

The w:type attribute values distinguish the start and end markers from each other: Word.Comment.Start and
Word.Comment.End. The third aml:annotation element occurs inside a run (w:r element) that immediately follows the
comment end marker:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 ...

 </w:r>

This run is associated with the CommentReference character style, a built-in style that is automatically inserted into the
document when you insert a comment. So far, this looks like a normal run that might appear in the flow of document
text. The content of the run, however, does not consist of normal document text. Instead, inside the run, we see the
third and last aml:annotation element for this comment:

 <aml:annotation aml:id="0" aml:author="Evan Lenz"

 aml:createdate="2003-12-22T12:15:00Z"

 w:type="Word.Comment" w:initials="edl">

 ...

 </aml:annotation>

The aml:id attribute's value is 0, which associates this annotation with the previous two. The w:type attribute is
Word.Comment, which indicates that this element contains the actual content of the comment. The other three attributes
contain metadata about the comment, including who made the comment, their initials, and the date and time they
made it.

Inside the aml:annotation element is the aml:content element, which is used to contain the text of the comment:

 <aml:content>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="CommentText"/>

 </w:pPr>

 <w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CommentReference"/>

 </w:rPr>

 <w:annotationRef/>

 </w:r>

 <w:r>

 <w:t>Isn't that bad grammar?</w:t>

 </w:r>

 </w:p>

 </aml:content>

The comment text is represented using a sequence of Word paragraphs. These paragraphs are "out-of-band" in the
sense that they do not occur in the normal flow of document text. After all, they ultimately occur inside a w:r element. A
paragraph inside a run isn't normally allowed; it wouldn't make any sense. Only because of the intervening
aml:annotation and aml:content elements is the w:p element allowed to occur as a descendant of a w:r element.

In addition to comments, the aml:annotation element is also used to represent bookmarks and revision markings
(recorded when "Track Changes" is turned on). In each case, the type of annotation is identified by the value of the
w:type attribute, which has these possible values:

Word.Insertion
Word.Deletion
Word.Formatting
Word.Bookmark.Start
Word.Bookmark.End
Word.Comment.Start
Word.Comment.End
Word.Insertion.Start
Word.Insertion.End
Word.Deletion.Start
Word.Deletion.End
Word.Comment
Word.Numbering

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.6 Auxiliary Hints in WordprocessingML
Until now, we've managed to stick to a pretty strict diet of elements and attributes from the WordprocessingML
namespace, which has had times more pleasant than others. Now it's time to introduce a set of elements and attributes
from another namespace that are designed purely for the purpose of making your life easier. That's right, you guessed
it: the wx prefix is your friend (so long as it's mapped to the right namespace:
http://schemas.microsoft.com/office/word/2003/auxHint).

There are quite a few contexts in which elements and attributes from the wx namespace appear in WordprocessingML
documents saved by Word. We'll be focusing on some of the most significant of these: sections, sub-sections, and list
text, as well as formatting hints. These hints save consumers of WordprocessingML documents much grief and
processing power that would otherwise be spent on things like traversing the links of a list definition, for example.

Again, elements and attributes in the wx namespace represent information that could be useful to us in handling
WordprocessingML but that is of no internal use to Word. One implication of this distinction is that, while you may write
applications that depend on their presence, it hardly ever makes sense to write applications that output elements or
attributes in the wx namespace when generating WordprocessingML—except perhaps when doing incremental
processing of an existing document such that you want to maintain the auxiliary information that originally came from
Word. Even then, you're not really generating it; you're just forwarding it on.

2.6.1 Section Containers

Earlier in the chapter, in "Sections," we introduced WordprocessingML's non-intuitive way of representing a document's
sections—how the presence of a w:sectPr element is implicitly interpreted to mean that the current paragraph is the last
one in a section. Without a common container in which paragraphs of the same section are grouped together, it's not
only counterintuitive but more difficult to process than it would otherwise be. Fortunately, the wx:sect element, which
was introduced way back in Example 2-2, is Microsoft's answer to this problem. Whenever Word saves a document as
XML, it doesn't just output the content of the w:body element. Instead, it groups the paragraphs and tables inside the
body into wx:sect elements, corresponding to sections in the Word document.

To recognize the helpfulness of this feature, all we need to do is have Word open and to re-save the WordprocessingML
document from Example 2-8. No longer is it so difficult to figure out where the section boundaries are:

 <w:body>

 <wx:sect>

 <w:p>

 <w:pPr>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 </w:sectPr>

 </w:pPr>

 <w:r>

 <w:t>First section</w:t>

 </w:r>

 </w:p>

 </wx:sect>

 <wx:sect>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <wx:sect>

 <w:p>

 <w:r>

 <w:t>Second section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 </w:sectPr>

 </w:pPr>

 <w:r>

 <w:t>Second section, second paragraph</w:t>

 </w:r>

 </w:p>

 </wx:sect>

 <wx:sect>

 <w:p>

 <w:r>

 <w:t>Third section, first paragraph</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Third section, second paragraph</w:t>

 </w:r>

 </w:p>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </wx:sect>

 </w:body>

Note that there are three wx:sect elements, one for each section, and that the paragraphs in each section are clearly
grouped together. As mentioned before, we could remove the start and end tags of each wx:sect element, and Word
would process the document no differently. Conversely, the meaning of the document as far as Word is concerned is
completely unaltered by the addition of the wx:sect element. It only considers the w:sectPr elements to determine where
the sections are. The same old rules apply: w:sectPr elements inside w:pPr elements represent section breaks, but the
last w:sectPr element (provided it follows the last paragraph inside the w:body element) does not represent a break, but
instead simply contains the properties of the last section.

An example using XPath can help demonstrate how the wx:sect element enables easier processing of WordprocessingML
documents outside of Word. If we were to write an XPath expression to select all of the paragraphs in, say, the third
section, this would be easy (assuming the appropriate namespace bindings):

/w:wordDocument/w:body/wx:sect[3]/w:p

However, without the aid of the wx:sect element, the task is still possible but not as straightforward and certainly not as
intuitive:

/w:wordDocument/w:body/w:p[count(preceding::w:sectPr)=2]

Clearly, the wx:sect element, though it may have looked cryptic at first sight, is a helpful aid to processing
WordprocessingML documents as output by Word.

2.6.2 Outline Levels and Sub-Sections

Word has a special paragraph property that we didn't mention earlier: the outline level. As might be guessed, the
outline level property has an effect on the display of a paragraph in Word's "Outline" view. Example paragraph styles
for which an outline level is defined include all of Word's built-in Heading styles. In fact, it's no accident that the Outline
view supports nine levels and that there are precisely nine Heading styles. Figure 2-22 shows how all of the Heading
styles are displayed in Outline view, along with some body text on each rung of the ladder. The body text has no outline
level specified, as is the case with most normal paragraphs. All of the Heading paragraphs, however, have the outline
level corresponding to their name. Heading 1 has Outline Level 1, Heading 2 has Outline Level 2, etc.

Figure 2-22. Word's built-in Heading styles, as displayed in Outline view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clearly, the document in Figure 2-22 follows a hierarchical structure (if rather deep). Many people author such
hierarchically organized documents in Word. Indeed, the Heading styles in conjunction with Outline view give them
incentives for doing so. Unfortunately none of that hierarchical structure made it into WordprocessingML, which remains
wedded to the flat-list-of-paragraphs paradigm. Sure, you can make a document look like it's hierarchically structured,
but underneath the covers it's just a sequence of paragraphs with various formatting properties applied. But all is not
lost. Once again, the wx namespace comes to the rescue, in what is arguably the most useful element of all the
auxiliary hints: the wx:sub-section element.

Whenever Word saves a WordprocessingML document that has an outline level specified on any of its paragraphs, then
at least a one-level depth tree of wx:sub-section elements will be present in the output. Specifically, any time Word
comes across a paragraph with an outline level, it establishes a new sub-section context equal in depth of sub-sections
to the outline level of the paragraph. For example, if the outline level is 3, then the paragraph will be contained within
three nested wx:sub-section elements. This stays in effect for following paragraphs either until it reaches another
paragraph with an outline level, or it comes to the end of the section (in which case all of the wx:sub-section elements
are closed). In the case of the document in Figure 2-22, it would output a structure similar to the following:

<wx:sub-section>

 Heading 1

 Body text

 Body text

 <wx:sub-section>

 Heading 2

 Body text

 Body text

 <wx:sub-section>

 Heading 3

 Body text

 Body text

 ...

 </wx:sub-section>

 </wx:sub-section>

</wx:sub-section>

You can achieve a similar effect with any custom paragraph style that you develop, simply by adding an outline level to
the style definition. While using styles is probably the best way to achieve this effect, the use of styles isn't required.
You can also apply the outline level property locally, as direct formatting on your paragraph. Example 2-10 finally
demonstrates the syntax for the outline level property, as specified inside a paragraph's w:pPr element. This document
contains a series of five paragraphs, two of which specify an outline level using the w:outlineLvl element, whose w:val
attribute value must be between 0 and 8 (exposed as 1 through 9 in the Word UI).

Example 2-10. Setting outline levels locally

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-10. Setting outline levels locally

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:body>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0"/>

 </w:pPr>

 <w:r><w:t>This is the top-level heading</w:t></w:r>

 </w:p>

 <w:p>

 <w:r><w:t>This is some text inside the top-level sub-

section.</w:t></w:r>

 </w:p>

 <w:p>

 <w:r><w:t>This is some more body text.</w:t></w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="1"/>

 </w:pPr>

 <w:r><w:t>This is a second-level heading</w:t></w:r>

 </w:p>

 <w:p>

 <w:r><w:t>This is some body text under the second-level

heading.</w:t></w:r>

 </w:p>

 </w:body>

</w:wordDocument>

First, let's see what this document looks like when opened in Word. Figure 2-23 shows both the Normal view and the
Outline view. The outline levels are completely invisible in the Normal view; the paragraphs look no different than any
other plain, boring paragraph. Outline view is another story.

Figure 2-23. Outline levels shown in Normal and Outline views

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-23. Outline levels shown in Normal and Outline views

Finally, we can see the wx:sub-section element in action by resaving the document as XML from within Word. Example 2-
11 shows the body content excerpted from the WordprocessingML document as saved by Word.

Example 2-11. A document body with outline levels, when saved as XML in Word

 <w:body>

 <wx:sect>

 <wx:sub-section>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="0"/>

 </w:pPr>

 <w:r>

 <w:t>This is the top-level heading</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is some text inside the top-level sub-section.</w:t>

 </w:r>

 </w:p>

 <w:p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:p>

 <w:r>

 <w:t>This is some more body text.</w:t>

 </w:r>

 </w:p>

 <wx:sub-section>

 <w:p>

 <w:pPr>

 <w:outlineLvl w:val="1"/>

 </w:pPr>

 <w:r>

 <w:t>This is a second-level heading</w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:r>

 <w:t>This is some body text under the second-level heading.</w:t>

 </w:r>

 </w:p>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440"

 w:left="1800" w:header="720" w:footer="720"

 w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

 </wx:sub-section>

 </wx:sub-section>

 </wx:sect>

 </w:body>

Example 2-11 demonstrates that Word interprets the outline levels to automatically structure the resulting
WordprocessingML into sub-sections, using wx:sub-section elements, which are highlighted. Again, outline levels are most
useful when they are associated with particular paragraph styles, rather than assigned directly to individual paragraphs
(which, in the Word UI, can only be done in Outline View). Provided that the user applies styles in the order that they
are intended, e.g., Heading 1 followed by Heading 2, etc., then the WordprocessingML that Word generates will be
structured into sub-sections that reflect the true hierarchical structure of the document, rather than merely a flat
sequence of paragraphs.

2.6.3 List Item Formatting Hints

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Anything Word wants to provide in the way of making lists easier to process is certainly welcome. As we saw earlier in
this chapter, lists in WordprocessingML are rather complicated to process. Generally, you can recognize the presence of
a list item by the presence of a w:listPr element inside a paragraph's w:pPr element. While that's a start, if you want to
find out anything about how the list item is formatted, including even whether it's a "numbered" or "bulleted" list, you
have to traverse a number of intra-document links. How many depends on whether and to what extent paragraph or list
styles are involved.

As a matter of fact, Word does rather consistently save us this trouble by outputting the wx:t element inside a
paragraph's w:listPr element. The wx:t element has three attributes: wx:val, wx:wTabBefore, and wx:wTabAfter. The wx:val
attribute specifies the actual text used for the number or bullet point of this particular list item. The wx:wTabBefore is
measured in twips and specifies the width of the tab preceding the line number. This usually corresponds to the
indentation of the list item from the page's left margin. The wx:wTabAfter, on the other hand, calculates the distance, in
twips, between the end of the text of the line number and the beginning of the editable area. It takes into consideration
the font size and length of the line number itself. For example, consider the second list item of the simple list in Figure
2-24.

Figure 2-24. A simple list item

The hint as it resultantly appears in this paragraph's w:listPr element (inside its w:pPr element) is as follows:

 <wx:t wx:val="a." wx:wTabBefore="1080" wx:wTabAfter="195" />

The wx:val attribute clearly relates that the line number text is "a." The wx:wTabBefore corresponds to the actual left
indent of this paragraph, namely .75 inches, or 1080 twips. And the wx:wTabAfter attribute represents the distance
between the "a." text and the contents of the list item—in other words, the gray, highlighted area following "a." in
Figure 2-24.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.7 More on Styles
Having come this far in the chapter, you should already know a few key aspects of how styles work in Word and
WordprocessingML:

A style is a grouping of property settings that can be applied as a unit.

There are four kinds of styles: paragraph, character, table, and list.

 Styles are defined using w:style elements inside a WordprocessingML document's w:styles element.

 Paragraphs, runs, and tables can be directly associated with a style of the appropriate kind through the
w:pStyle, w:rStyle, and w:tblStyle elements, respectively.

You should also know the basic syntax of the w:style element, and four aspects in particular:

The w:type attribute, indicating the type of style defined here (paragraph, character, table, or list)

The w:default attribute, indicating whether this style is the default style for its type

The w:styleId attribute for intra-document references to this style

The w:name element, indicating the style's primary name as exposed in the Word UI

In this section, we'll look at a few more aspects of how styles are defined, how default styles work (or don't), how to
derive styles, and how style conflicts are resolved.

2.7.1 A Document's Styles

All styles that are used within a document must also be defined in the document. This effectively means that you can't
leverage Word's built-in styles outside of Word; i.e., you can't simply refer to them by name. When a document uses a
built-in Word style, Word makes a copy of the built-in style, rather than merely a reference to it. From that point
forward, the style is part of the document and begins to exist independently of the built-in style from whence it came.
To see a definitive list of the styles that are contained in your document, through the Word UI, select Tools
Templates and Add-Ins... and then click the Organizer... button. The styles listed on the left should correspond one-to-
one with the w:style definitions in the WordprocessingML serialization of your document.

2.7.2 Default Styles

WordprocessingML's default style mechanism (using the w:default attribute) works well for paragraph and table styles. If
you have w:p and w:tbl elements in your document that do not explicitly associate themselves with a style (with w:pStyle
or w:tblStyle elements, respectively), then you can create sweeping formatting changes by simply changing the default
style to a different paragraph or table style inside the w:styles element. You do this by setting the w:default attribute to
on:

 <w:style w:type="paragraph" w:default="on" w:styleId="MyParagraphStyle">

 <w:name w:val="My Paragraph Style"/>

 ...

 </w:style>

On the other hand, the default style mechanism does not work for character styles and lists. If you try to specify a
custom default character style, for example, Word will ignore it and will simply set the "Default Paragraph Font"
character style as the default. For example, the w:default attribute shown here has no effect on Word's behavior:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character style as the default. For example, the w:default attribute shown here has no effect on Word's behavior:

 <w:style w:type="character" w:default="on" w:styleId="MyCharacterStyle">

 <w:name w:val="My Character Style"/>

 ...

 </w:style>

Effectively, this means that runs can only be associated with a character style explicitly—through the w:rStyle element,
like this:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="MyCharacterStyle"/>

 </w:rPr>

 <w:t>This text is associated with a custom character style.</w:t>

 </w:r>

Also, while you can freely customize the "Normal" paragraph style properties in your document, Word will discard any
changes you attempt to make to the "Default Paragraph Font." Thus, there is no defaulting mechanism for associating
runs with a particular character style (other than "Default Paragraph Font," which amounts to "no style"). In some
respects, this is disconcerting, as it doesn't seem to match up with what WordprocessingML's syntax implicitly
advertises. On the other hand, it reduces the possible combinations, thereby making the overall application of styles
somewhat easier to think about.

The w:default attribute is essentially "syntax sugar," making it easy to create WordprocessingML documents without
having to explicitly associate all of a document's paragraphs with a particular style (using a bunch of w:pStyle elements).
Since the w:default attribute is merely syntax sugar and not part of Word's internal data structures, Word does not
preserve your default style choices when it opens your document. Instead, Word always sets w:default="on" to the
"Normal" style definition when it outputs WordprocessingML, regardless of which paragraph style was the default in the
WordprocessingML document it originally opened. This doesn't affect your document's formatting; it just means that the
resulting WordprocessingML markup will be a little more verbose if most of your paragraphs don't use the "Normal"
style. In that case, your paragraph style will be explicitly referenced via w:pStyle elements, rather than implicitly via the
default style association:

 <w:p>

 <w:pPr>

 <w:pStyle w:val="MyParagraphStyle"/>

 </w:pPr>

 <w:r>

 <w:t>This paragraph is explicitly associated with a para style.</w:t>

 </w:r>

 </w:p>

2.7.3 Default Font Size for Paragraph Styles

There are two kinds of default font sizes in Word:

12 points, the font size of Word's built-in "Normal" style that gets automatically inserted into your document if
you don't explicitly define it using a w:style element

10 points, the font size of a paragraph style definition (w:style element) that does not explicitly specify a font
size using the w:sz element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

size using the w:sz element

We have already seen how the first default font size comes about. If you do not explicitly define the "Normal"
paragraph style in a document, then Word automatically inserts its built-in "Normal" style, whose font size is 12 points
(24 half-points). This scenario is exactly what we saw in Examples Example 2-1 and Example 2-2.

However, when you do define a paragraph style but do not explicitly specify the font size (using the w:sz element), then
the font size of your paragraph style defaults to 10 points (20 half-points). For this reason, if you do define the
"Normal" style in your document but without specifying a font size, then you will get a different result than if you didn't
define the style at all. Specifically, the font size of your document's text will be 10 points, rather than 12 points.
Example 2-12 shows a document that differs from Example 2-1 only in that it contains an empty definition for the
"Normal" paragraph style (as identified by the w:name element).

Example 2-12. Defining the "Normal" style without specifying a font size

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:styles>

 <w:style w:type="paragraph" w:default="on">

 <w:name w:val="Normal"/>

 </w:style>

 </w:styles>

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

When Word opens this document, the text "Hello, World!" is displayed in 10-point, rather than 12-point, Times New
Roman. This is because you defined the style in your document, but did not include a w:sz element (inside a w:rPr
element):

 <w:style w:type="paragraph" w:default="on">

 <w:name w:val="Normal"/>

 </w:style>

Word interprets such a paragraph style definition (regardless of whether it's the "Normal" style or some other
paragraph style) as having a font size of 10 points. The above definition is equivalent to this one, where the font size of
20 half-points is explicitly specified:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20 half-points is explicitly specified:

 <w:style w:type="paragraph" w:default="on">

 <w:name w:val="Normal"/>

 <w:rPr>

 <w:sz w:val="20"/>

 </w:rPr>

 </w:style>

The only case where a paragraph style's font size could be different than 10 points without explicitly specifying a font
size is when the style is derived from another paragraph style that has a different font size. As long as both the
w:basedOn and w:sz elements are absent, then you can be sure that the paragraph style's font size is 10 points. But if
there is a w:basedOn element and no w:sz element, then you would have to look at the base style to determine what the
font size is.

So, what is the default font size for a WordprocessingML document? The answer is: it depends on what you mean by
"default font size." If you're talking about the font size of Word's built-in "Normal" style, the answer is 12 points. If
you're talking about the default font size of paragraph style definitions, the answer is 10 points.

2.7.4 Derived Styles

In MS Word, editing styles is like drilling for oil in the Mariana Trench: by the time you finish the
descent through the menus, you're down so deep that you can get the bends trying to remember what
you started to do.

http://www.linuxjournal.com/article.php?sid=7120

One of the most powerful aspects of styles is the ability to base one style on another (in WordprocessingML, using the
w:basedOn element), overriding individual properties as necessary. We'll see a couple examples of derived styles later in
"A Pop Quiz," but the basic syntax looks like this:

 <w:style w:type="paragraph" w:styleId="MyDerivedStyle">

 <w:name w:val="My Derived Style"/>

 <w:basedOn w:val="MyBaseStyle"/>

 <!-- formatting information -->

 </w:style>

Using style derivation, you can base all of your paragraph styles, for example, on a base "Normal" style. Then, if you
want to make a global change to all of your styles, such as font size, you need only make the change in one place—in
the base style. This, of course, assumes that none of your derived styles override the base style's font size setting.
Unfortunately, the Word UI doesn't give any visual clues as to when a particular property of a derived style is merely
inherited from the base style or whether it is hard-wired to the style itself. This can make for some bewildering
behavior.

For example, say your document has a base style called "Normal," from which a number of different styles have been
derived, all of which merely inherit the font size property from "Normal." Whenever you update the font size of the
"Normal" style, all of the derived styles' font sizes will be updated accordingly. So far, so good. But suppose you now
want to derive another style, called "Code," that you know upfront should always be set to a font size of 9 points,
regardless of any changes to the base "Normal" style's font size. This is the tricky part. When you first create the
"Code" style and select a font size of 9 points, whether that size will end up being hard-wired to the "Code" style (which
is what you want) or whether the "Code" style will merely inherit the font size from "Normal" (not what you want)
completely depends on what the font size of "Normal" happens to be at the time you create the style. That's because
Word gives you no way of telling it to hard-wire the font size to this style. Instead, it makes an assumption based on
the current state of the base style. It assumes, in this case, that if the "Normal" font size is 9 points and you select 9
points when creating the "Code" style, you must want "Code" to always be the same size as "Normal." The only way to
get around this is to temporarily change the "Normal" style's font size to something other than 9 points, and then
create the new style, changing it back after you're done.

The introduction of WordprocessingML can largely alleviate this problem. By saving as XML, you get a readable
(assuming you've pretty-printed), as well as editable, dump of all of your document's style definitions, removing once
and for all any doubt about which of a style's properties are inherited and which are hard-wired to the style.

2.7.5 Resolving Conflicts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A given piece of text's formatting information can come from several different places, which raises the question of how
conflicts are handled. Even after resolving a document's derived-style inheritance tree, there are still plenty of potential
ambiguities, since you still have direct formatting, paragraph styles, and character styles to consider. Understanding
how these all interact is fundamental to an understanding of WordprocessingML. In this section, we'll look at how
potential conflicts are resolved—first for paragraph properties and then for font properties.

2.7.5.1 Paragraph property conflicts

A given paragraph can have paragraph properties applied to it in two ways:

Through the associated paragraph style

Through direct formatting

There is a simple rule for resolving conflicts between these two ways of applying paragraph properties: direct
formatting always wins. For example, you can be sure that the following paragraph will be centered, without ever
having to look at the MyParagraphStyle definition:

<w:p>

 <w:pPr>

 <w:pStyle w:val="MyParagraphStyle"/>

 <w:jc w:val="center"/>

 </w:pPr>

 <w:r>

 <w:t>This text is centered, regardless of what the associated paragraph

style says.</w:t>

 </w:r>

</w:p>

The w:jc element in the above snippet is an example of direct paragraph formatting. It is a paragraph property that is
applied locally to this specific paragraph, as opposed to being part of a style definition. Any time you see a property
setting applied within a local w:pPr element, you can be sure that it will take precedence over any conflicting settings in
the associated paragraph style.

2.7.5.2 Font property conflicts

While paragraph properties can only be applied in two ways, font properties can be applied to a given piece of text in
three different ways:

Through the associated paragraph style

Through the associated character style

Through direct formatting

For font properties, as with paragraph properties, direct formatting always wins. For example, you can be sure that the
run of text in the snippet below is italic and not bold without even looking at the MyParagraphStyle or MyCharacterStyle
definitions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definitions:

<w:p>

 <w:pPr>

 <w:pStyle w:val="MyParagraphStyle"/>

 </w:pPr>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="MyCharacterStyle"/>

 <w:i/>

 <w:b w:val="off"/>

 </w:rPr>

 <w:t>This text is italic and not bold, regardless of what the associated

paragraph and character styles say.</w:t>

 </w:r>

</w:p>

The w:i and w:b elements in the above snippet are examples of direct font formatting. They are font properties applied
locally to this specific run, as opposed to being part of a style definition. Any time you see a property setting applied
within a local w:rPr element, you can be sure that it will take precedence over any conflicting settings in the associated
paragraph or character styles.

While the rule that "direct formatting always wins" is sufficient to resolve all potential paragraph property conflicts, it
does not resolve all potential font property conflicts. Resolving font properties is a more complex problem, because—
unlike paragraph properties—font properties can be defined in both the character style and the paragraph style. What
happens when font property settings conflict between a run's associated paragraph and character styles?

To help answer this question, let's consider the different kinds of font properties that can be applied. Word's font
properties can be classified into two categories:

On/off properties

Everything else (multi-valued properties)

Examples of on/off properties are bold (w:b), italic (w:i), all caps (w:caps), and strikethrough (w:strike). Examples of the
other, multi-valued properties include underline (w:u), font (w:rFonts), font size (w:sz), and font color (w:color). For multi-
valued properties, the rule is simple: the character style takes precedence.

For the on/off properties, the rule isn't about which style has precedence; the paragraph and character styles are
considered equally. Instead, the rule is about how their settings are merged. Here's the rule: a given property is turned
on only when it is turned on in one style but not the other.

To help make this more explicit, Table 2-1 shows all four possible combinations for a particular on/off property and the
effective result of each.

Table 2-1. How on/off font properties are merged between a paragraph and
character style

Paragraph style Character style Result

Off Off Off

Off On On

On Off On

On On Off

Table 2-1 is essentially a truth table. The first two columns contain the inputs and the third column contains the XOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2-1 is essentially a truth table. The first two columns contain the inputs and the third column contains the XOR
("exclusive or") result. If you imagine representing a style's on/off property settings as a binary number (a series of 0s
and 1s), then to compute the final result, you would apply an XOR bitmask to the two binary numbers, i.e., to the
paragraph and character styles. That is in fact what Word does.

Let's bring this back down to earth with an example. At one time or another, you may have noticed Word's behavior
when you applied an italicized character style to text within an italicized paragraph. Rather than keeping the text italic,
this action had the opposite effect: the resulting text was not italicized. You may have thought that Word was just being
clever about interpreting your intentions. After all, if you wanted to emphasize a particular word in a paragraph that is
already emphasized as a whole, how else would Word do it? In reality, Word was just following the above rule. Since
the italic property was turned on in both the paragraph and the character styles, they effectively cancelled each other
out, and the result was not italicized. Example 2-13 illustrates exactly this scenario.

Example 2-13. Turning italics off using a character style

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:styles>

 <w:style w:type="paragraph" w:styleId="EmphasizedParagraph">

 <w:name w:val="Emphasized Paragraph"/>

 <w:rPr>

 <w:i/>

 <w:b/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:styleId="Emphasis">

 <w:name w:val="Emphasis"/>

 <w:rPr>

 <w:i/>

 <w:b w:val="off"/>

 </w:rPr>

 </w:style>

 </w:styles>

 <w:body>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="EmphasizedParagraph"/>

 </w:pPr>

 <w:r>

 <w:t>Most of this paragraph is italicized, but </w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Emphasis"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:rStyle w:val="Emphasis"/>

 </w:rPr>

 <w:t>this part is not.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Figure 2-25 shows what this document looks like when opened in Word. The last part of the paragraph is not italicized.
The "Reveal Formatting" task pane shows that the "Emphasis" style contributes the "Not Italic" effect. In any other
(non-italicized) paragraph, the "Emphasis" style would have exactly the opposite effect.

Figure 2-25. How Word renders Example 2-13

The other thing to note about this example is that the entire paragraph is rendered bold, even though the "Emphasis"
character style explicitly tries to turn bold off:

 <w:b w:val="off"/>

This behavior is consistent with the rule that if either (but not both) of the paragraph and character styles turns a
property on, then that property will effectively be turned on. The only times that explicitly turning a property off will
have an overriding effect are either when you are inheriting from another style (using the w:basedOn element) or when
you are applying direct formatting (using a local w:rPr element). In those cases, to turn a property off, you explicitly
turn it off. In contrast, if you want to use a character style to turn a property off, you have to do the counter-intuitive
thing: you turn the property on.

For most on/off font properties, explicitly turning them off in a character style has no
effect. However, there are a few exceptions to this rule, including the w:dstrike (double
strikethrough), w:noProof (ignore spelling/grammar errors for this run), and w:rtl (right-to-
left reading order) elements. Though each of these are on/off properties, they are
interpreted more like their multi-valued counterparts, i.e., they have an overriding effect.
The character style takes precedence over the paragraph style setting. For example, if a
run's paragraph style turns double strikethrough on, but its character style definition
includes <w:dstrike w:val="off"/>, then it will be rendered without the double strikethrough.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7.6 A Pop Quiz

Now it's time for a pop quiz. Considering what you now know about default styles, derived styles, direct formatting, and
how paragraph and character styles interact, try to figure out what formatting the runs in Example 2-14 have. There
are two runs of text, separated by a soft line break. For each run, ask yourself: Is it bold? Is it italic? Is it both?

Example 2-14. What formatting do I have?

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xml:space="preserve">

 <w:styles>

 <w:style w:styleId="BaseParagraphStyle" w:type="paragraph">

 <w:name w:val="Base Paragraph Style"/>

 <w:rPr>

 <w:b/>

 <w:i/>

 </w:rPr>

 </w:style>

 <w:style w:styleId="DerivedParagraphStyle" w:type="paragraph"

 w:default="on">

 <w:name w:val="Derived Paragraph Style"/>

 <w:basedOn w:val="BaseParagraphStyle"/>

 <w:rPr>

 <w:i w:val="off"/>

 </w:rPr>

 </w:style>

 <w:style w:styleId="BaseCharacterStyle" w:type="character">

 <w:name w:val="Base Character Style"/>

 <w:rPr>

 <w:i/>

 </w:rPr>

 </w:style>

 <w:style w:styleId="DerivedCharacterStyle" w:type="character">

 <w:name w:val="Derived Character Style"/>

 <w:basedOn w:val="BaseCharacterStyle"/>

 <w:rPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:rPr>

 <w:b/>

 </w:rPr>

 </w:style>

 </w:styles>

 <w:body>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 <w:i w:val="off"/>

 </w:rPr>

 <w:t>What formatting do I have?</w:t>

 </w:r>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 </w:rPr>

 <w:br/>

 <w:t>And what formatting do I have?</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Okay, let's figure it out. The first thing we can do is determine what styles are used in the document. The document's
one paragraph doesn't explicitly associate itself with a paragraph style; it has no w:pStyle element. Therefore, it adopts
whatever the document's default paragraph style is. Looking at the document's style definitions, we see that the
"Derived Paragraph Style" definition is the default one:

 <w:style w:styleId="DerivedParagraphStyle" w:type="paragraph"

 w:default="on">

 <w:name w:val="Derived Paragraph Style"/>

Inside the document's paragraph are two runs, both of which are associated with the "Derived Character Style"
definition, using the w:rStyle element:

 <w:rStyle w:val="DerivedCharacterStyle"/>

The next thing we need to do is resolve the style derivations to determine exactly what formatting properties are
applied by each derived style. The "Base Paragraph Style" turns bold and italic on:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applied by each derived style. The "Base Paragraph Style" turns bold and italic on:

 <w:b/>

 <w:i/>

But the "Derived Paragraph Style" turns italic off:

 <w:i w:val="off"/>

Therefore, our document's default paragraph style consists of one font property setting: bold.

The "Base Character Style" turns italic on, and the "Derived Character Style" turns bold on. Nothing is overridden.
Therefore, the character style associated with our document's two runs has two font property settings: bold and italic.

Next, we look to the body of the document itself. The first run explicitly turns italic off, so we know that the first run will
not be italicized, as direct formatting always has the final word:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 <w:i w:val="off"/>

 </w:rPr>

 <w:t>What formatting do I have?</w:t>

 </w:r>

The next question is whether this run is bold or not. Since, as we've seen, both the fully resolved paragraph style and
the fully resolved character style turn bold on, that means bold will effectively be turned off. This is in keeping with the
rule that a property is on only if one but not both styles turns it on. Thus, the first run is rendered in neither bold nor
italic type.

The second run is the same as the first, except that italic is not explicitly turned off via direct formatting. In fact, there
is no direct formatting:

 <w:r>

 <w:rPr>

 <w:rStyle w:val="DerivedCharacterStyle"/>

 </w:rPr>

 <w:br/>

 <w:t>And what formatting do I have?</w:t>

 </w:r>

We've already seen that the paragraph and character styles' bold settings cancel each other out, so the remaining
question is whether this run is italicized or not. Since the character style turns italic on but the paragraph style does
not, that means that italic will indeed be turned on, because it is turned on in one but not both of the paragraph and
character styles. Figure 2-26 shows the result of opening this document in Word (with paragraph marks turned on).

Figure 2-26. How Word renders Example 2-14

2.7.7 Dummy Styles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common advantage of using styles in Word is that they can help to enforce consistency of presentation throughout a
document. However, for an XML-oriented user, styles may at first seem to provide yet an additional advantage,
especially when they are defined in a template: a way to separate presentation from content in Word. In a limited way
they do, because within a document, the style definitions and the content are in distinct places, and changes to a
document's style are propagated to all instances of that style throughout the document. However, styles defined
externally in a template, rather than remaining separate from a document, are copied into the document when the
template is first attached. (This ensures that a document will display uniformly on different machines without requiring
all users to have access to the originally attached template.) When a template is attached, all of its styles are copied
into the document, and the template's role is essentially over. The document does retain a loose association with the
template (as represented by the w:attachedTemplate element), but for all practical purposes the template is no longer
needed—unless you elect to set the document's "Automatically update document styles" option to true, as shown in
Figure 2-27, in the "Templates and Add-ins" dialog box.

Figure 2-27. The "Automatically update document styles" checkbox

WordprocessingML represents this setting through the presence of an empty w:linkStyles element inside the w:docPr
element (short for <w:linkStyles w:val="on"/> because on is the default attribute value for w:val). When w:linkStyles is
present, the w:attachedTemplate reference gains new meaning. The next time Word opens the document, it immediately
copies all the style definitions within that template into the document once again, replacing any style definition that has
the same name as a style defined in the template. As long as this option is set, Word will continue to update the styles
in the document, whenever the document is opened.

There is a practical implication for the XML developer writing XSLT stylesheets to, say, generate Word document
reports. Provided that the user who opens the target Word document has access to its attached template, then styles in
the template can effectively be referenced without duplicating the entire style definition.

As long as the w:linkStyles option is set, you can rely on Word to supply all the style definitions for you as soon as it
opens the document. This greatly simplifies programs (such as XSLT stylesheets) that generate WordprocessingML
documents that use styles already defined in a template.

Remember that to use any style within a document, it always must be declared in the top-level w:styles element. You
can't just refer to a style from inside the w:body element, even if it's a built-in style. If you try to use a style without
declaring it, the style reference will be ignored and discarded. So you must declare the style, giving it an arbitrary
internal ID (using the w:styleId attribute) for reference from within the document body. (The w:styleId attribute's value
can be any string.) Then, to have Word replace a dummy style definition for you, you must additionally ensure all three
of the following:

The w:linkStyles element is present inside the w:docPr element

The value of the w:name element's w:val attribute is the same as the name of a style declared in the attached
template

The attached template is available to the user who initially opens the document

Example 2-15 shows a minimal WordprocessingML document created by hand that uses the Code,x style defined in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-15 shows a minimal WordprocessingML document created by hand that uses the Code,x style defined in the
O'Reilly Word template. Rather than defining the entire style in all its verboseness, along with the ripe potential for
error that would entail, this WordprocessingML document simply declares the style, using a dummy definition that
includes nothing other than the w:name element, which identifies it as the Code,x style. The only paragraph of the
document then is assigned that style using the w:pStyle element inside the w:pPr element. Thanks to the presence of the
w:linkStyles element, the complete style definition for Code,x is inserted automatically (along with all of the template's
other styles), as soon as Word opens the document.

Example 2-15. Replacing dummy style definitions via w:linkStyles

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:styles>

 <w:style w:styleId="Code">

 <w:name w:val="Code,x"/>

 </w:style>

 </w:styles>

 <w:docPr>

 <w:attachedTemplate w:val="C:\Documents and Settings\lenze.SEATTLEU\Application Data\

Microsoft\Templates\ora.dot"/>

 <w:linkStyles/>

 </w:docPr>

 <w:body>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Code"/>

 </w:pPr>

 <w:r>

 <w:t>This is a code example.</w:t>

 </w:r>

 </w:p>

 </w:body>

</w:wordDocument>

Word will always output complete style definitions in the WordprocessingML it creates. Accordingly, this technique
shouldn't be thought of as enabling the separation of presentation and content, but rather as a one-time macro of sorts
for getting Word to put all the styles in your document for you. Indeed, this describes the basic role that template
attachment plays in the first place.

2.7.8 Linked Styles

The w:link element, when present in a paragraph style definition, represents a link to a character style. Conversely,
when present in a character style definition, the w:link element represents a link to a paragraph style. Only paragraph

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when present in a character style definition, the w:link element represents a link to a paragraph style. Only paragraph
and character styles can be linked to each other. The key characteristic of a paragraph-character style link is that the
two styles are exposed in the primary Word UI as a single style, using the name of the paragraph style. Also, changes
to the character properties of one style are automatically propagated to the other. Word automatically creates a linked
character style when a user applies a paragraph style to only a portion of a paragraph, rather than to a paragraph as a
whole. The alternative would be to throw an error, chastising the user for trying to use a paragraph style on anything
but a complete paragraph. That being potentially bad business, Word instead gracefully falls back and automatically
creates a new character style by copying all of the paragraph style's character properties into the newly created style.
Thus a linked character style is born.

Figure 2-28 shows the creation of a linked character style named "Heading 1 Char." Word automatically creates the
style, because the user has tried to apply the "Heading 1" style to only a portion of a paragraph (the word "partial"). At
the top of the screen, the style is still listed simply as "Heading 1," though the Reveal Formatting task pane and the
Style dialog box both reveal the distinction between "Heading 1" and "Heading 1 Char."

Figure 2-28. An automatically created linked character style, "Heading 1 Char"

The style definitions in the resulting WordprocessingML are shown below, with the w:link elements highlighted:

 <w:style w:type="paragraph" w:styleId="Heading1">

 <w:name w:val="heading 1"/>

 <wx:uiName wx:val="Heading 1"/>

 <w:basedOn w:val="Normal"/>

 <w:next w:val="Normal"/>

 <w:link w:val="Heading1Char"/>

 <w:rsid w:val="00B33163"/>

 <w:pPr>

 <w:pStyle w:val="Heading1"/>

 <w:keepNext/>

 <w:spacing w:before="240" w:after="60"/>

 <w:outlineLvl w:val="0"/>

 </w:pPr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:rPr>

 <w:rFonts w:ascii="Arial" w:h-ansi="Arial" w:cs="Arial"/>

 <wx:font wx:val="Arial"/>

 <w:b/>

 <w:b-cs/>

 <w:kern w:val="32"/>

 <w:sz w:val="32"/>

 <w:sz-cs w:val="32"/>

 </w:rPr>

 </w:style>

 <w:style w:type="character" w:styleId="Heading1Char">

 <w:name w:val="Heading 1 Char"/>

 <w:basedOn w:val="DefaultParagraphFont"/>

 <w:link w:val="Heading1"/>

 <w:rsid w:val="00B33163"/>

 <w:rPr>

 <w:rFonts w:ascii="Arial" w:h-ansi="Arial" w:cs="Arial"/>

 <w:b/>

 <w:b-cs/>

 <w:kern w:val="32"/>

 <w:sz w:val="32"/>

 <w:sz-cs w:val="32"/>

 <w:lang w:val="EN-US" w:fareast="EN-US" w:bidi="AR-SA"/>

 </w:rPr>

 </w:style>

As you can see, all of the run properties from the "Heading 1" style are copied into the new "Heading 1 Char" style. The
w:link elements retain the association between the two styles by reference to the w:styleId attribute of the other style.
Word maintains the link between the styles and honors it by propagating any character property changes in one style to
the other. It's possible to create a "synthetic" WordprocessingML document outside of Word that links two styles that do
not share the same character properties. However, as soon as you try to change one of the styles within Word, all of
the character properties of each get merged together and are synchronized from that point forward.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. The WordprocessingML Vocabulary
Microsoft Office Word 2003 marks the introduction of XML as a native format for Word documents. Any Word document
can now be opened in Word and saved as XML, thereby freeing documents from the tyranny of Word's proprietary .doc
format. This new format, called WordprocessingML, opens up a multitude of possibilities for generating and processing
Word documents. (Read Chapter 3 first if you want some immediate gratification regarding use cases for
WordprocessingML.) This chapter includes a basic introduction to WordprocessingML, along with some general technical
observations and guidelines for learning more. It is meant to complement, rather than replace, a detailed investigation
of the WordprocessingML schema.

An authoritative and thorough source for learning is the Microsoft-supplied XSD schema for
WordprocessingML. The "Microsoft Office 2003 XML Reference Schemas" package has been
released under a royalty-free license and includes each of the WordprocessingML schema
documents, as well as accompanying documentation. It can be found by starting at
http://www.microsoft.com/office/xml/.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Endless Possibilities
We have to be careful when talking about use cases for generating and processing Word documents. By defining
categories too strictly, we might completely ignore possibilities that others have explored or have yet to explore. The
purpose of this chapter is to help open your mind as to what's possible now that the expanse of information found in all
the world's Word documents is suddenly capable of being unlocked and exposed as XML. The categories and examples
in this chapter are only the tip of the iceberg. Perhaps they will help trigger some of your own ideas and creativity.
When reading along, if you think of an example that we failed to cover, then we have succeeded in our goal!

That said, you can break down the scripts in this chapter into three basic categories:

Input is WordprocessingML

Output is WordprocessingML

Both input and output are WordprocessingML

We'll cover examples of each of these under the general activities of creating, extracting, modifying, and converting.
Creation produces WordprocessingML as output; extraction takes WordprocessingML as input; modification both takes
WordprocessingML as input and produces it as output; and conversion either takes WordprocessingML as input or
produces it as output.

Command-Line Tools
To execute the example stylesheets in this chapter, you'll need an XSLT processor. The Office 2003
Professional and standalone editions of Word 2003 come with an XSLT processor built-in (for onload and
onsave stylesheets, as introduced in Chapter 4), but the examples in this chapter assume you will be
invoking them outside of Word, for example, with a command-line processor. You can read about and
download one such utility, msxsl.exe, at this URL: http://msdn.microsoft.com/library/en-
us/dnxml/html/msxsl.asp.

The libxml project (hosted at http://www.xmlsoft.org) houses some quite useful command-line utilities
for XML processing. I personally use Cygwin (a Linux-like environment for Windows—see
http://www.cygwin.com) and the Cygwin distribution of the libxml tools. But there are also native
Windows binaries for each of the libxml tools, available at http://www.zlatkovic.com/libxml.en.html. One
particularly convenient tool in the libxml suite is the xmllint command. Its --format option, which inputs an
XML document and outputs a pretty-printed version of it (adding line breaks and indentation), is an
excellent tool for learning WordprocessingML and for helping to author stylesheets that create Word
documents. It was also instrumental in preparing many of the code examples of this book.

The libxslt project also contains its own XSLT processor, with a command-line tool called xsltproc. Other
freely-available XSLT processors you may want to try out include Saxon (http://saxon.sourceforge.net)
and Xalan (http://xml.apache.org/xalan-j/), both of which are Java-based processors.

WARNING: If you process or create WordprocessingML documents using XML tools that output line
endings using a linefeed character (LF) rather than a carriage return and linefeed pair (CRLF), and if your
documents contain Base64-encoded data such as VBA macros or embedded images, then you will need
to convert the line endings to CRLF before opening the document in Word. Otherwise, Word will not be
able to open the document correctly, even though it is well-formed XML. This is arguably a bug in Word's
XML processing behavior, but it can be explained by the fact that the Base64 specification requires that
individual lines end with a CRLF sequence in the canonical Base64 format. Fortunately, there are easy
workarounds. For example, in a Unix or Cygwin environment, you can run the unix2dos command on your
file, converting each instance of the LF character to a CRLF sequence.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Creating Word Documents
It's very easy to create Word documents from XSLT. We saw the definitive "Hello, World" example for
WordprocessingML in Chapter 2. Example 3-1 shows the "Hello, World" example for creating a Word document from
XSLT.

Example 3-1. Creating a Word document from XSLT

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:body>

 <w:p>

 <w:r>

 <w:t>Hello, World!</w:t>

 </w:r>

 </w:p>

 </w:body>

 </w:wordDocument>

 </xsl:template>

</xsl:stylesheet>

As you can see, there's little to it, beyond slapping xsl:stylesheet and xsl:template elements around the w:wordDocument
element. The only additional provisions you need to make are for generating the mso-application PI and the
xml:space="preserve" directive in the result. (Using the xsl:attribute element as opposed to a literal xml:space attribute
ensures that whitespace will be preserved in the result but not in the stylesheet.)

Obviously, Example 3-1 isn't terribly interesting in its own right. What is interesting is how you can extend it. With
XSLT's power and a basic knowledge of WordprocessingML at your disposal, you can create dynamic Word documents
quite easily. We'll take a look at one example of doing this: generating data-driven tables in Word.

3.2.1 Generating Data-Driven Tables

Oftentimes, Word documents need to contain tabular data. After all, that's what tables were made for. But it can be
quite a pain to manually update tabular data in Word, especially when it's large or frequently changing, such as when
generating reports from a database. When that data is exposed as XML—a feature increasingly supported among the
latest database products, then it becomes quite easy to generate data-driven Word tables using XSLT. Example 3-2
shows an XML document as output from Microsoft Office Access 2003. This example comes straight out of Chapter 8.
We've added some indentation for readability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We've added some indentation for readability.

Example 3-2. An example XML document generated from a database, books.xml

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd" generated="2003-03-26T13:49:17">

 <books>

 <ISBN>0596005385</ISBN>

 <Title>Office 2003 XML Essentials</Title>

 <Tagline>Integrating Office with the World</Tagline>

 <Short_x0020_Description>Microsoft has added enormous XML functionality to

Word, Excel, and Access, as well as a new application, Microsoft InfoPath.

This book gets readers started in using those features.

 </Short_x0020_Description>

 <Long_x0020_Description>Microsoft has added enormous XML functionality to

Word, Excel, and Access, as well as a new application, Microsoft InfoPath.

This book gets readers started in using those features.

 </Long_x0020_Description>

 <PriceUS>34.95</PriceUS>

 </books>

 <books>

 <ISBN>0596002920</ISBN>

 <Title>XML in a Nutshell, 2nd Edition</Title>

 <Tagline>A Desktop Quick Reference</Tagline>

 <Short_x0020_Description>This authoritative new edition of XML

in a Nutshell provides developers with a complete guide to the rapidly evolving XML space.

</Short_x0020_Description>

 <Long_x0020_Description>This authoritative new edition of XML in a Nutshell

provides developers with a complete guide to the rapidly evolving XML space.

Serious users of XML will find topics on just about everything they need,

including fundamental syntax rules, details of DTD and XML Schema creation,

XSLT transformations, and APIs used for processing XML documents. Simply put,

this is the only references of its kind among XML books.

 </Long_x0020_Description>

 <PriceUS>39.95</PriceUS>

 </books>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <books>

 <ISBN>0596002378</ISBN>

 <Title>SAX2</Title>

 <Tagline>Processing XML Efficiently with Java</Tagline>

 <Short_x0020_Description>This concise book gives you the information you

need to effectively use the Simple API for XML, the dominant API for efficient

XML processing with Java.</Short_x0020_Description>

 <Long_x0020_Description>This concise book gives you the information you

need to effectively use the Simple API for XML, the dominant API for efficient

XML processing with Java.</Long_x0020_Description>

 <PriceUS>29.95</PriceUS>

 </books>

</dataroot>

Let's say you want to only display the ISBN, title, tagline, and price of each book. You would start by creating an
example four-column table from within Word, formatted however you wish. Figure 3-1 shows one such table.

Figure 3-1. An example table created from within Word

The table headings in Figure 3-1 are formatted differently than the rest of the cells, using a character style called
"CellHeading." The rest of the table cells (containing the data) take on the document's "Normal" paragraph formatting.

Once the table template looks how you want it to look, you would save the document as XML. Then, from a text editor,
you would adapt the WordprocessingML into an XSLT stylesheet that generates dynamic tables, using documents like
books.xml (Example 3-2) as input. Example 3-3 shows just such a stylesheet (booktable.xsl). The key parts of the
stylesheet that make the resulting table dynamic are highlighted.

Example 3-3. Stylesheet for creating a dynamic books table in Word, booktable.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:output omit-xml-declaration="no" encoding="UTF-8"/>

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:styles>

 <xsl:copy-of select="$styles"/>

 </w:styles>

 <w:body>

 <w:tbl>

 <w:tblPr>

 <w:tblStyle w:val="TableGrid"/>

 </w:tblPr>

 <xsl:copy-of select="$heading-row"/>

 <xsl:apply-templates select="/dataroot/books"/>

 </w:tbl>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="books">

 <w:tr>

 <xsl:apply-templates select="ISBN"/>

 <xsl:apply-templates select="Title"/>

 <xsl:apply-templates select="Tagline"/>

 <xsl:apply-templates select="PriceUS"/>

 </w:tr>

 </xsl:template>

 <xsl:template match="books/*">

 <w:tc>

 <w:p>

 <w:r>

 <w:t>

 <xsl:value-of select="."/>

 </w:t>

 </w:r>

 </w:p>

 </w:tc>

 </xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsl:template>

 <xsl:variable name="heading-row">

 <w:tr>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="1216" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>ISBN</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="3032" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>Title</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="3770" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>Tagline</w:t>

 </w:r>

 </w:p>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="838" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:r>

 <w:rPr>

 <w:rStyle w:val="CellHeading"/>

 </w:rPr>

 <w:t>Price</w:t>

 </w:r>

 </w:p>

 </w:tc>

 </w:tr>

 </xsl:variable>

 <xsl:variable name="styles">

 <!-- list of w:style elements -->

 </xsl:variable>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

The root template rule in Example 3-3 looks similar to Example 3-1; it creates the mso-application PI, the w:wordDocument
root element, and the xml:space attribute:

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

Since our result document contains some custom styles, the stylesheet needs to output a w:styles element. To save
space and reduce clutter, we've encapsulated all of the w:style definitions into a global variable, $styles, and our
stylesheet copies that into the w:styles literal result element:

 <w:styles>

 <xsl:copy-of select="$styles"/>

 </w:styles>

Next, we create the w:body and w:tbl elements. The resulting table is associated with the TableGrid style, which is defined
in the result document's w:styles element:

 <w:body>

 <w:tbl>

 <w:tblPr>

 <w:tblStyle w:val="TableGrid"/>

 </w:tblPr>

Then, we create the first table row, which is the heading for our table. Just as we did with the w:style elements, we put
this row definition in another global variable, $heading-row, and copied it:

 <xsl:copy-of select="$heading-row"/>

The heading row dictates the width of each column, which means we don't have to define the column width for each of
the remaining rows. Word automatically gives them the same width as the heading row.

Finally, we begin processing each books element in the source document:

 <xsl:apply-templates select="/dataroot/books"/>

Elsewhere in the stylesheet, we define the template rules that create the rows and columns for our dynamic table. The
template rule for table rows matches up each books element in the source document with a table row in the result.
Then, inside the table row, we process the ISBN, Title, Tagline, and PriceUS elements, in that order:

 <xsl:template match="books">

 <w:tr>

 <xsl:apply-templates select="ISBN"/>

 <xsl:apply-templates select="Title"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates select="Title"/>

 <xsl:apply-templates select="Tagline"/>

 <xsl:apply-templates select="PriceUS"/>

 </w:tr>

 </xsl:template>

The template rule for table cells is quite simple. For each element inside the books element that is processed, it creates
a table cell containing a paragraph containing a run containing text. The text is simply the string value of the current
element in the source document:

 <xsl:template match="books/*">

 <w:tc>

 <w:p>

 <w:r>

 <w:t>

 <xsl:value-of select="."/>

 </w:t>

 </w:r>

 </w:p>

 </w:tc>

 </xsl:template>

Now, let's take a look at what the result looks like. Figure 3-2 shows the result of applying booktable.xsl (Example 3-3)
to books.xml (Example 3-2).

Figure 3-2. The result of applying booktable.xsl to books.xml

Creating dynamic Word documents is now so easy with Word 2003 that it just might be WordprocessingML's "killer
app." But before we jump to any conclusions, let's look at some of the other fun things we can do with
WordprocessingML.

While most constructs in WordprocessingML are straightforward to generate using XSLT,
there are certain things, such as VBA macros and embedded images, that cannot be
generated using vanilla XSLT. That's because they are encoded in WordprocessingML as
Base64 binary, and XSLT has no built-in facilities for processing or generating binary data.
However, by utilizing XSLT extension functions, you can get around the limitations of
standard XSLT. Oleg Tkachenko has demonstrated in a blog entry how an XSLT stylesheet
can generate images in a Word document, using XSLT extensions. For more information,
see http://www.tkachenko.com/blog/archives/000106.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 Extracting Information from Word Documents
XSLT can also be used to extract information from existing Word documents. This can be useful for tracking document
metadata, aggregating document fragments, listing tracked changes—the sky is the limit. In this section, we'll look at
three examples: dumping the text of a document, extracting metadata from a document, and listing a document's
comments.

3.3.1 Dumping a Document's Text Content

Sometimes, we are only interested in the textual content of a document and not its formatting. Because of the way that
WordprocessingML is structured, dumping all the text content of a document is a very straightforward task. In fact, the
empty XSLT stylesheet (shown in Example 3-4) gets us pretty close to what we want to do.

Example 3-4. The empty transformation, empty.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

All text content within a Word document is represented using text nodes in the WordprocessingML document. Since the
empty stylesheet does not specify any explicit template rules, only the built-in template rules (defined in the XSLT
recommendation) are applied. (See http://www.w3.org/TR/xslt#built-in-rule.) The built-in rule for elements is to keep
processing (apply templates to children), and the built-in rule for text nodes is to copy them. The resulting behavior of
the empty stylesheet is that all the text content of the source document is copied to the result tree without any element
markup.

While the empty stylesheet provides a useful and easy way to extract the text content of a Word document, the result
is not always easy to read. Figure 3-3 shows an example Word document (textToDump.xml) that has two paragraphs
containing formatted text.

Figure 3-3. A document with two paragraphs and various formatting,
textToDump.xml

If we apply the empty stylesheet (empty.xsl) to textToDump.xml, we will get a result that looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we apply the empty stylesheet (empty.xsl) to textToDump.xml, we will get a result that looks like this:

This is the first paragraph 172004-02-22T05:32:00Z2004-02-22T05:40:00Z129196 53

22211.5604This is the first paragraph. We have some bold formatting, as well as

some italic formatting. Of course, none of this formatting will be included in t

he text dump result.This is the second paragraph with various font sizes.

While it's true that all the text content of our document is included in this result, there are several problems. For one
thing, there is no visible separation between the text in the first and second paragraphs. Also, we see some other
gibberish at the beginning of the file; this text comes from the text inside the elements in the o:DocumentProperties
element in the source document (o:Title, o:LastSaved, etc.). To get a reasonable text dump, we clearly need a more
sophisticated stylesheet than the empty one.

We'll need to handle several other places where non-body text nodes can occur in WordprocessingML:

If the "Track Changes" feature was turned on when editing the document in Word, then deleted text is
represented as text inside w:delText elements.

Field instruction text is represented as text inside w:instrText elements.

 Embedded objects (VBA, bitmap images, etc.) are represented as Base64-encoded text.

Headers and footers show up as text nodes deep within the w:sectPr element.

Rather than having to enumerate all of the text that we don't want, it's easier to specify exactly what kind of text we
are interested in keeping around—namely, text inside w:t element descendants of the w:body element. The stylesheet in
Example 3-5 does just that. It shows a slightly more sophisticated way to extract the text content of Word documents,
taking into consideration the above-mentioned problems with the empty stylesheet.

Example 3-5. Extracting text content grouped by paragraph and excluding non-
body text, textDump.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:output method="text"/>

 <xsl:template match="text()"/>

 <xsl:template match="w:body//w:t/text()">

 <xsl:copy/>

 </xsl:template>

 <xsl:template match="w:p">

 <xsl:apply-templates/>

 <xsl:text>

</xsl:text>

 </xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

First of all, the stylesheet explicitly specifies that the output serialization should be text, which means that no XML
markup (e.g., character references) will appear in the result. Rather, it will just be straight text:

 <xsl:output method="text"/>

Unlike the empty stylesheet, the default template rule for text nodes in this stylesheet is to do nothing:

 <xsl:template match="text()"/>

The exception to this rule is that text nodes inside w:t element descendants of the w:body element should be copied:

 <xsl:template match="w:body//w:t/text()">

 <xsl:copy/>

 </xsl:template>

Finally, the stylesheet solves the problem of text from multiple paragraphs running together, by explicitly inserting two
line breaks after processing the text of each paragraph:

 <xsl:template match="w:p">

 <xsl:apply-templates/>

 <xsl:text>

</xsl:text>

 </xsl:template>

If we apply this improved stylesheet (textDump.xsl) to the Word document shown in Figure 3-3 (textToDump.xml),
we'll get a much more reasonable result:

This is the first paragraph. We have some bold formatting, as well as some itali

c formatting. Of course, none of this formatting will be included in the text du

mp result.

This is the second paragraph with various font sizes.

Now, we only see the actual text content of the document. Also, there is a clear separation between the two paragraphs
of the document (two line breaks).

For simple documents, the textDump.xsl stylesheet works just fine. However, there are many other formatting features
(tables, lists, etc.) that this stylesheet doesn't specifically support. There's a slippery slope between "extraction" and
"conversion," but since we're talking about extraction right now, we won't worry about turning this stylesheet into a
sophisticated Word-to-text converter. It still gets the job done—it dumps all the text content of the document to the
result regardless of what formatting features are used in the source document.

3.3.2 Extracting Metadata

In WordprocessingML, the o:DocumentProperties element stores various pieces of document metadata, such as author,
title, and company. An obvious extraction-oriented use case involves pulling that metadata out of the document for
isolated processing—or perhaps to load it into a database for continual synchronization with a repository of documents.
When extracting data, there are any number of target formats we could choose, such as prettily-formatted HTML, text,
or another Word document. For this example, we'll just stick with XML, and, since the o:DocumentProperties element
makes up a well-formed document all by itself, we'll just copy it straight on through. Sure, there are much more
exciting things we could do, but sometimes all we need is simple extraction. Example 3-6 shows a stylesheet
(extractMetadata.xsl) for extracting this information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-6. A stylesheet for extracting Word document metadata,
extractMetadata.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:o="urn:schemas-microsoft-com:office:office">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

 <xsl:copy-of select="/w:wordDocument/o:DocumentProperties"/>

 </xsl:template>

</xsl:stylesheet>

The xsl:output directive in this stylesheet instructs the XSLT processor (by way of indent="yes") to apply some nice
whitespace formatting to the result. What "nice" means is completely dependent on the XSLT processor you choose. In
the case of the xsltproc tool (see the earlier sidebar Command-Line Tools), we apply the command like this:

xsltproc extractMetadata.xsl Chapter4.xml

And we get the result shown in Example 3-7, which is certainly nice enough.

Example 3-7. The result of applying extractMetadata.xsl to an early draft of
Chapter 4

<?xml version="1.0"?>

<o:DocumentProperties xmlns:o="urn:schemas-microsoft-com:office:office">

 <o:Title>ORA Word Template</o:Title>

 <o:Author>Evan Lenz</o:Author>

 <o:LastAuthor>Evan Lenz</o:LastAuthor>

 <o:Revision>2</o:Revision>

 <o:TotalTime>1</o:TotalTime>

 <o:LastPrinted>2004-02-10T23:22:00Z</o:LastPrinted>

 <o:Created>2004-02-13T21:39:00Z</o:Created>

 <o:LastSaved>2004-02-13T21:39:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

 <o:Words>21024</o:Words>

 <o:Characters>119839</o:Characters>

 <o:Company>O'Reilly and Associates, Inc</o:Company>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <o:Company>O'Reilly and Associates, Inc</o:Company>

 <o:Lines>998</o:Lines>

 <o:Paragraphs>281</o:Paragraphs>

 <o:CharactersWithSpaces>140582</o:CharactersWithSpaces>

 <o:Version>11.5604</o:Version>

</o:DocumentProperties>

3.3.3 Listing Comments

This book was authored in Word. Our excellent tech reviewers naturally used Word's comment feature to communicate
their critique of each chapter. While Word's built-in mechanisms for viewing comments generally sufficed for our
purposes, it was sometimes handy to get an alternative summary view of the comments for a particular chapter. With
Word 2003, such customized views can be made commonplace. All we had to do was write a simple XSLT stylesheet,
save the source document as XML, and apply the stylesheet to the saved WordprocessingML document. Example 3-8
shows a simple XSLT stylesheet (listComments.xsl) for extracting comments from a Word document and displaying
them in summary form in a new Word document. The relevant code for retrieving the comments is highlighted.

Example 3-8. A stylesheet to list all the comments in a document,
listComments.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core">

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <w:body>

 <xsl:apply-templates select="//aml:annotation[@w:type='Word.Comment']"/>

 </w:body>

 </w:wordDocument>

 </xsl:template>

 <xsl:template match="aml:annotation">

 <w:p>

 <w:r>

 <w:t>From <xsl:value-of select="@aml:author"/>:</w:t>

 </w:r>

 </w:p>

 <xsl:copy-of select="aml:content/*"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:copy-of select="aml:content/*"/>

 <w:p/>

 </xsl:template>

</xsl:stylesheet>

This stylesheet, since it creates a new Word document as its result, starts off with the standard boilerplate for creating
WordprocessingML documents: the mso-application PI, the w:wordDocument root element, and the xml:space attribute:

 <xsl:template match="/">

 <xsl:processing-instruction name="mso-application">

 <xsl:text>progid="Word.Document"</xsl:text>

 </xsl:processing-instruction>

 <w:wordDocument>

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

Then, immediately inside the w:body element, it begins processing each and every aml:annotation element in the
document whose w:type attribute is equal to Word.Comment—in short, all of the document's comments:

 <xsl:apply-templates select="//aml:annotation[@w:type='Word.Comment']"/>

The template rule for aml:annotation elements then creates three or more paragraphs in the result for each matched
aml:annotation element. The first paragraph lists the author of this comment:

 <w:p>

 <w:r>

 <w:t>From <xsl:value-of select="@aml:author"/>:</w:t>

 </w:r>

 </w:p>

The number of middle paragraphs is determined by how many paragraphs are in the comment itself. The comment's
paragraphs occur inside the aml:content element. The stylesheet copies all such paragraphs straight through into the
result:

 <xsl:copy-of select="aml:content/*"/>

Finally, the stylesheet delineates each comment with an empty paragraph, making the summary view easier to read:

 <w:p/>

Figure 3-4 shows the result of applying this stylesheet (listComments.xsl) to an early draft of Chapter 10. As you can
see, each comment is identified first by the person who made the comment, and each is separated by a blank
paragraph.

Figure 3-4. The result of applying listComments.xsl to an early draft of this book's
Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4 Modifying Word Documents
There are plenty of use cases for processing Word documents in which both the input and output are Word documents.
Since XSLT is a particularly suitable tool for incrementally processing XML, it also works quite nicely for modifying Word
documents. An important tool for making incremental modifications to a document is the identity transformation.
Example 3-9 shows the canonical identity transformation, exactly as it appears in the XSLT recommendation itself
(http://www.w3.org/TR/xslt#copying).

Example 3-9. The identity transformation, identity.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

What is the identity transformation? Shown in Example 3-9, it's a stylesheet with one template rule that effectively
copies the source tree to the result tree unchanged. Here's how it works. The single template rule, with its pattern
@*|node(), matches all elements, attributes, comments, text, and processing instructions in the source tree. Each time
the template rule fires, a shallow copy of the node is created (using the xsl:copy element), and templates are applied to
all of the node's attributes and children. Thus, the entire source document is recursively copied, one node at a time.
(This powerful template rule and variations of it also appear in Chapter 4, in Example 4-9, saveDataOnly.xsl, and
Example 4-11, create-onload-stylesheet.xsl.)

By using the identity stylesheet as your departure point, you can incrementally alter its default copying behavior by
specifying exceptions to the rule, using custom template rules. Since this stylesheet serves as the baseline for each
example in this section, we'll use xsl:include to include it (as identity.xsl), rather than repeatedly list the identity
template rule inside each example.

3.4.1 Cleaning Up a Document for Publication

When Word saves documents, it includes a lot of information that you may not want to include in the final published
document that you share with others. Sensitive information might include previous authors, comments, deleted text,
revision marks, spelling and grammar error marks, and custom document properties. Example 3-10 shows a stylesheet
(cleanup.xsl) that removes all such information. Each template rule is accompanied by a descriptive comment, which is
highlighted in this listing. Rather than walking through the stylesheet step-by-step, we'll let it speak for itself.

Example 3-10. A stylesheet for cleaning up Word documents, cleanup.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core">

 <xsl:include href="identity.xsl"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:include href="identity.xsl"/>

 <!— Normalize document's view and zoom percentage (Normal at 100%) —>

 <xsl:template match="w:docPr">

 <xsl:copy>

 <w:view w:val="normal"/>

 <w:zoom w:percent="100"/>

 <xsl:apply-templates select="*[not(self::w:view or self::w:zoom)]"/>

 </xsl:copy>

 </xsl:template>

 <!— Remove all but the Author and Title document properties —>

 <xsl:template match="o:DocumentProperties">

 <xsl:copy>

 <xsl:copy-of select="o:Author|o:Title"/>

 </xsl:copy>

 </xsl:template>

 <!— Remove all custom document properties —>

 <xsl:template match="o:CustomDocumentProperties"/>

 <!— Remove all comments and comment references —>

 <xsl:template match="aml:annotation[starts-with(@w:type,'Word.Comment')]"/>

 <!— Remove all spelling and grammar errors —>

 <xsl:template match="w:proofErr"/>

 <!— Remove all deletions —>

 <xsl:template match="aml:annotation[@w:type='Word.Deletion']"/>

 <!— Remove all formatting changes —>

 <xsl:template match="aml:annotation[@w:type='Word.Formatting']"/>

 <!— Remove all insertion marks —>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!— Remove all insertion marks —>

 <xsl:template match="aml:annotation[@w:type='Word.Insertion']">

 <!-- Process content, but do not copy -->

 <xsl:apply-templates select="aml:content/*"/>

 </xsl:template>

</xsl:stylesheet>

As in all the rest of the examples in this section, we include the identity.xsl stylesheet, which establishes the default
copying behavior:

<xsl:include href="identity.xsl"/>

Everything after that is a custom template rule overriding the default behavior for a particular element. A common
pattern in this stylesheet is the use of empty xsl:template elements. These are used to remove elements from the result
document. Since an empty template rule does nothing when fired (overriding the default copying behavior), it
effectively strips out the matched node from the resulting document.

This stylesheet by no means provides the definitive cleanup for all the different kinds of documents you might want to
publish. More than likely, you'll want to customize it to meet your particular needs. For example, if you don't want to
strip out comments, then you would remove the template rule that strips out comments. Similarly, if you want to strip
out another kind of information not covered by this stylesheet, then you would add your own template rule for doing
that.

Let's take a look at cleanup.xsl in action. Figure 3-5 shows a document with lots of cruft—deleted text, tracked
insertions (underlined), a tracked formatting change, comments, and some spelling and grammar errors. It was saved
in "Web" view with a zoom percentage of 125%.

Figure 3-5. A document with comments, tracked changes, and proof errors,
dirty.xml

If we apply cleanup.xsl to the WordprocessingML representation of the document shown in Figure 3-5, then we'll get
the result shown in Figure 3-6.

Figure 3-6. clean.xml—the result of applying cleanup.xsl to dirty.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6. clean.xml—the result of applying cleanup.xsl to dirty.xml

Not only have all the comments, proof errors, and tracked changes been removed, but the document's view has also
been normalized to the "Normal" view with a zoom percentage of 100%.

If you publish your documents as WordprocessingML, then you have complete control over
what information is contained within them. However, only users that have Word 2003 will
be able to view your documents. When publishing .doc files instead, you'll have backward
compatibility on your side, but you won't have quite as much control over what metadata
is included. For example, whoever last saved the file will be listed under "Last saved by:"
(corresponding to the o:LastAuthor element in WordprocessingML).

3.4.2 Removing All Direct (Local) Formatting

A commonly promoted "best practice" in authoring Word documents is to use styles only and no direct formatting. While
there is a function in Word that allows you to remove direct formatting (by selecting text and pressing Ctrl-Space), it is
sometimes handy to apply such cleanup to an entire document ex post facto, using XSLT. Example 3-11 shows a
stylesheet that leaves the entire source document intact, except for the paragraph and run properties that have been
applied as direct formatting—those are removed.

Example 3-11. A stylesheet for removing direct run and paragraph formatting,
removeDirectFormatting.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:include href="identity.xsl"/>

 <!-- Remove all direct paragraph formatting -->

 <xsl:template match="w:p/w:pPr/*[not(self::w:pStyle)]"/>

 <!-- Remove all direct run formatting -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Remove all direct run formatting -->

 <xsl:template match="w:r/w:rPr/*[not(self::w:rStyle)]"/>

</xsl:stylesheet>

Once again, the default behavior for all nodes is to copy them through, because the stylesheet includes the identity.xsl
stylesheet.

There are two custom template rules in this stylesheet—one for direct paragraph formatting and one for direct run
formatting:

<xsl:template match="w:p/w:pPr/*[not(self::w:pStyle)]"/>

...

<xsl:template match="w:r/w:rPr/*[not(self::w:rStyle)]"/>

Both of these are empty, which means that matched nodes effectively get stripped from the result. All element children
of local w:pPr and w:rPr elements get stripped from the document—with one exception in each case. The w:pStyle and
w:rStyle elements are preserved. That's because these elements are used not to apply direct formatting but to associate
the paragraph or run with a particular style defined in the document. We need to preserve these associations;
otherwise, the stylesheet would strip out all of the document's formatting, not just direct formatting.

An alternative version of this stylesheet could be customized according to a particular Word template so that, rather
than just removing direct formatting, an appropriate style would be used instead. For example, when you come across
a run that has italics turned on as direct formatting (using the w:i element), you could convert that to a run that uses
the "Emphasis" character style instead (using the w:rStyle element). Such a conversion could go a long way in updating
legacy Word documents according to an organization's current authoring standards. Fortunately, with Word 2003's new
document protection features (introduced in Chapter 4), such restrictions can now be enforced at authoring time.

3.4.3 Removing Linked "Char" Styles

At the end of Chapter 2, in Section 2.7.8, we learned about the character styles that Word automatically creates when a
user tries to apply a paragraph style to only a portion of a paragraph. Word names the new character style by
appending the word "Char" to the end of the existing paragraph style's name. Unfortunately, Word does not provide a
way to delete a linked character style without deleting the paragraph style it is linked to. If a user tries to delete the
automatically created linked style, Word also deletes the corresponding paragraph style. However, by processing a
document's WordprocessingML representation outside of Word, we can overcome that restriction. Example 3-12 shows
a stylesheet that strips out linked character styles and references to them, while retaining the paragraph styles they are
linked to.

Example 3-12. A stylesheet for removing linked "Char" styles,
removeLinkedStyles.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:include href="identity.xsl"/>

 <!-- Remove all linked character styles -->

 <xsl:template match="w:style[@w:type='character' and w:link]"/>

 <!-- Remove the w:link element from linked paragraph styles -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Remove the w:link element from linked paragraph styles -->

 <xsl:template match="w:link"/>

 <!-- Remove w:rStyle elements that refer to linked character styles -->

 <xsl:template match="w:rStyle[@w:val = /w:wordDocument/w:styles/w:style

 [@w:type='character' and w:link]/@w:styleId]"/>

</xsl:stylesheet>

The first custom template rule (overriding the default copying behavior of identity.xsl) strips out all linked character
styles. A character style definition is easily identified as a w:style element that has a w:type attribute whose value is
character and that contains a w:link element:

<xsl:template match="w:style[@w:type='character' and w:link]"/>

In addition to stripping out all the linked character styles, we need to strip out otherwise dangling references to them.
These occur in two places. First, we strip out the remaining w:link elements (inside linked paragraph style definitions):

<xsl:template match="w:link"/>

Then, we strip out all of the document's w:rStyle elements that refer to linked character styles:

<xsl:template match="w:rStyle[@w:val = /w:wordDocument/w:styles/w:style

 [@w:type='character' and w:link]/@w:styleId]"/>

This pattern is a little more complex, but it is pretty straightforward when you break it down into its respective parts. If
we were to translate this pattern into English, it would read something like this:

"Match all w:rStyle elements whose w:val attribute is equal to the w:styleId attribute of any w:style element
that has both a w:link element and a w:type attribute equal to character."

The last part of this translation (beginning with the word "any") could be replaced with simply "any linked character
style," thereby reducing the translation to:

"Match all w:rStyle elements whose w:val attribute is equal to the w:styleId attribute of any linked
character style."

Since we know (from Chapter 2) that the w:styleId attribute is precisely what the w:rStyle element refers to in order to
associate a run with a particular character style, we can finally reduce the translation to our top-level intent: "Match all
references to linked character styles." When a matching w:rStyle element triggers the rule, nothing happens, thereby
excluding the linked character style reference from the result.

3.4.4 Adjusting Font Sizes

Word's style inheritance features can help reduce duplicate work when it comes to making global formatting changes to
your document. For example, if you want to double the size of all fonts in your document, you may only need to update
the "Normal" style, as long as all of your paragraph styles are based on the "Normal" style and do not explicitly override
the font size they inherit. However, when that's not the case or when your document also contains direct formatting,
such changes have to made in multiple places—a tedious and error-prone process.

Once again, WordprocessingML and XSLT come to the rescue. The stylesheet in Example 3-13 adjusts the font sizes
within a document (whether in style definitions or direct formatting) by multiplying them by a factor that you specify
(through xsl:param).

Example 3-13. A stylesheet for adjusting the font size of the "Normal" style,
adjustFontSize.xsl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adjustFontSize.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <xsl:include href="identity.xsl"/>

 <xsl:param name="factor" select="2"/>

 <!-- Adjust all w:sz elements (in style definitions or direct formatting) -->

 <xsl:template match="w:sz">

 <w:sz w:val="{floor(@w:val * $factor)}"/>

 </xsl:template>

 <!-- Account for Word's application default font size (10 points)

 in underived paragraph styles when the w:sz element isn't present -->

 <xsl:template match="w:style[@w:type='paragraph' and

 not(w:rPr/w:sz) and not(w:basedOn)]">

 <xsl:copy>

 <xsl:apply-templates select="@*|*[not(self::w:rPr)]"/>

 <w:rPr>

 <w:sz w:val="{floor(20 * $factor)}"/>

 <xsl:apply-templates select="w:rPr/*"/>

 </w:rPr>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

As with the other examples in this section, we include the identity.xsl stylesheet module, effecting the default copying
behavior of the stylesheet:

<xsl:include href="identity.xsl"/>

The xsl:param element supplies a default factor of 2, so that the default behavior of the stylesheet (when no external
parameters are supplied) is to double the font sizes:

<xsl:param name="factor" select="2"/>

The first template rule of the stylesheet matches all w:sz elements, whether they occur in a style definition or within a
local w:rPr element. The value of the resulting font size is the previous size multiplied by the specified factor. The floor()
function ensures that the result is an integer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function ensures that the result is an integer:

<xsl:template match="w:sz">

 <w:sz w:val="{floor(@w:val * $factor)}"/>

</xsl:template>

Our work would be done at this point, if it wasn't for one other scenario we need to handle: paragraph style definitions
that do not contain a w:sz element and that are not based on (do not derive from) another style. In that case, what is
the font size? The answer is: an application default, 10 points (as explained in Chapter 2). To handle that scenario, we
use a template rule that matches w:style elements that meet these conditions:

 <xsl:template match="w:style[@w:type='paragraph' and

 not(w:rPr/w:sz) and not(w:basedOn)]">

We make a shallow copy of the w:style element and then copy all of its attributes and element children, except for the
w:rPr element:

 <xsl:copy>

 <xsl:apply-templates select="@*|*[not(self::w:rPr)]"/>

Then, we create the w:sz element, nested inside a new w:rPr element. Its value is the application default (10 points)
expressed in hard-coded half-points (20), and multiplied by the specified factor, once again using the floor() function to
ensure that the result is an integer:

 <w:rPr>

 <w:sz w:val="{floor(20 * $factor)}"/>

Finally, we copy any remaining child elements of the w:rPr element, if present in the source document's style definition:

 <xsl:apply-templates select="w:rPr/*"/>

Now let's take a look at adjustFontSize.xsl in action. Figure 3-7 shows an early draft of this book's Chapter 2
(Chapter2.xml), using the normal font sizes dictated by the O'Reilly Word template.

Figure 3-7. A draft of Chapter 2 before font size adjustment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8 shows the result of applying adjustFontSize.xsl to Chapter2.xml, leaving the default factor of 2. As you can
see, the font sizes have doubled across the board.

Figure 3-8. The result of applying adjustFontSize.xsl to Chapter2.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5 Converting Between WordprocessingML and Other Formats
While it can be very easy to translate simple custom XML formats into WordprocessingML (as we saw with Example 3-
1), the reverse is not usually true—at least not when you're interested in preserving all aspects of a document's
formatting. The sheer size and complexity of WordprocessingML makes it a very daunting task to write a generic
stylesheet for converting WordprocessingML documents into some other format. For that reason, we won't include any
actual examples in this section. We can, however, point to some existing work that's being done in this area.

3.5.1 HTML

During the beta program for Office 2003, Microsoft released an XSLT stylesheet for converting WordprocessingML
documents to HTML. At just under 4,000 lines long, this stylesheet is an impressive and enlightening look at processing
Word documents in XML format. At the time of this writing, Microsoft has not yet released an updated version of the
stylesheet. Fortunately, the stylesheet will largely work as-is—provided that you update a few of the top-level
namespace declarations. You can find this stylesheet by searching for "wordml" at Microsoft's download center
(http://www.microsoft.com/downloads/search.aspx). It's quite possible that an updated version of the stylesheet will be
available by the time you read this.

3.5.2 PDF

Converting Word documents to PDF can, of course, be done using products like Adobe Distiller. However, another
possible way to perform this conversion is by way of XSL Formatting Objects (XSL-FO). Antenna House, Inc., maker of
a premier XSL-FO processor, has released a (for-pay) XSL stylesheet that does just that. For more information,
including some interesting discussion of the problem and solution, see
http://www.antennahouse.com/product/wordmltofo.htm.

3.5.3 OpenOffice.org

Since OpenOffice.org, the open source alternative to Microsoft Office, saves all of its files using XML format, it only
makes sense that there should be translations between WordprocessingML and the OpenOffice.org formats. Of course,
this is easier said than done. While nothing significant has been released so far, this is listed on the OpenOffice.org web
site as an open issue: "Develop support for Microsoft Office 2003 XML, i.e., WordprocessingML and SpreadsheetML."

3.5.4 Docbook

Just as Norm Walsh has created a suite of stylesheets for transforming Docbook to HTML and XSL-FO, it is only a
matter of time before someone releases a stylesheet for converting Docbook to WordprocessingML. Since Docbook
provides rich document structure and semantics, while WordprocessingML is only concerned with document formatting,
such a conversion would be a "down-translation." Accordingly, it should not, in principle, be difficult.

Converting from WordprocessingML to Docbook, on the other hand, is a much less straightforward task. Certainly the
wx:sub-section element (as described in Chapter 2) would be helpful for gleaning hierarchy from the Word document, but
overall such a translation would have to be very special-purpose—akin to converting PDF to a meaningful XML format.
Usually, such "up-translations" are special-purpose, one-time conversions that must use a variety of heuristics and
guesswork.

3.5.5 Special-Purpose Translations

While creating general-purpose, lossless translations of WordprocessingML into other formats is no doubt useful, there
are plenty of use cases for creating special-purpose translations specific to particular classes of documents. For
example, a set of documents created using the same template could be converted into a custom XML format. This could
be done by translating certain parts of the document into custom XML elements in the result, or even by translating
paragraph and character styles into custom XML elements. In fact, that's just what part of Chapter 4s primary example
does. In the content of press release documents, individual w:p elements are translated to para elements in the result,
and certain character styles within the paragraph are translated to custom XML elements in the result.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Using WordprocessingML
While learning WordprocessingML can be fun and interesting in its own right, what's really exciting is the prospect of
being able to process the information in Word documents in new and fresh ways. No longer are you confined to the
world of VBA and the Microsoft object model. In fact, you're not even restricted to using Windows. Once you save a
Word document as XML, you can process it using any tool or environment that supports XML. And creating Word
documents with such tools is a snap. This chapter explores some tools and potential applications for WordprocessingML,
with an emphasis on XSLT. Essentially, what we present here is a mini-cookbook of XSLT scripts for WordprocessingML.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Clarifying Use Cases
There are two broad use cases for Word's custom XML schema functionality, the first of which is the focus of this
chapter:

Using Word to edit custom XML documents that conform to your schema

Using custom tags to add richer meaning to Word documents

In many respects, the first use case—using Word as an XML editor—is the most exciting. As XML's role in software
engineering grows, one of the most difficult problems continues to be getting end users to create XML documents for all
our wonderful back-end systems to process. Word is so familiar and its usage so pervasive that XML editing solutions
based on it could take huge steps toward solving this problem. Unfortunately, the extent of Word's built-in custom XML
schema functionality leaves a lot to be desired, at least in comparison to other XML editing products on the market.
That doesn't mean you won't be able to create fully functional and powerful solutions based on Word, but it does mean
you will need to do more actual programming than you might have otherwise expected. Word's base XML schema
functionality supports simple business-template use cases (such as memos, purchase orders, and resumes), where the
choice of elements used is fixed, there are no optional elements, etc. To handle richer structures such as those found in
any document-oriented XML, at least in a user-friendly way, you will need to incorporate Smart Document
programming, as described in Chapter 5.

With the exception of support for mixed content, the InfoPath application provides much of
the built-in, schema-driven, and user-friendly structural editing support one might have
expected in Word. For more information, see Chapter 10.

The second use case—annotating Word documents with metadata—is essentially another flavor of the business-
template scenario. The distinction is that whereas in the first case Word is merely the editor of your underlying data
(and in principle could be replaced by any other editor), here you are interested in keeping Word documents around as
such, complete with their rich, Word-specific formatting. The XML tags might be used for better document retrieval, or
another process might glean the XML data out of the document and into a database, but either way your information is
firmly tied to the Word document in which it resides (whether stored as a .doc file or as WordprocessingML). Any
embedded XML data is supplementary and does not provide the whole story.

This chapter will present the basic components of Word's core XML schema functionality, including related document
options and how they are represented in WordprocessingML. We will see how schema attachment, onload and onsave
XSLT stylesheets, placeholder text, and document protection can work together to make a working XML editing solution
for Word, according to the first use case mentioned above (using Word as an XML editor).

While this chapter can be seen as a preparation for learning Smart Documents (in Chapter 5), it stands alone in its own
right. By the time you are done reading it, you will have traversed a complete XML editing solution in Word—what it is,
how it works, and how it was developed. We will push the limits of what can be done with XSLT and Word's base XML
functionality to see how far they can take us without venturing into Smart Document programming.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.10 Document Protection
Microsoft Office Word 2003 introduces some powerful new document protection features. While these features are not
specifically XML-related, they can help to make custom XML editing solutions in Word more robust. There are two kinds
of document protection options: editing restrictions and formatting restrictions. Our press release template relies
heavily on both kinds of restrictions.

4.10.1 Editing Restrictions

Editing restrictions let you protect a document in various ways—for example, by making it read-only or by allowing
comments only. You can also make exceptions to the overall document policy for particular regions of the document.
Our press release template protects the entire document as read-only but designates particular areas of the document
as unrestricted. These areas correspond exactly to the custom XML leaf elements embedded in the WordprocessingML
template. By restricting user changes to the text within XML leaf nodes, you can ensure that users won't inadvertently
alter the template's boilerplate text, or worse, delete a custom XML element.

The global policy is set using the w:documentProtection element inside the w:docPr element:

 <w:docPr>

 <!-- ... -->

 <w:documentProtection w:edit="read-only" w:formatting="on"

 w:enforcement="on"/>

 <!-- ... -->

 </w:docPr>

This element specifies that the document is read-only, that formatting restrictions are also turned on, and that all such
restrictions are currently being enforced. The w:documentProtection element also takes an optional w:unprotectPassword
attribute which contains a hex-encoded password key. In that case, users will not be able to remove the document
protection without entering the correct password. The onload stylesheet for our press release template, pr2word.xsl,
turns document protection on by generating a w:documentProtection element just like the one shown above.

Individual exceptions to a document's read-only policy are represented in the body of the WordprocessingML document
using the w:permStart and w:permEnd elements. Example 4-8 shows an excerpt of our press release template's onload
stylesheet, pr2word.xsl. Both the custom XML elements and the w:permStart and w:permEnd elements are highlighted.

Example 4-8. Document protection boundaries and custom XML elements

 <w:tbl>

 <w:tblPr>

 <w:tblW w:w="0" w:type="auto"/>

 <w:tblInd w:w="475" w:type="dxa"/>

 </w:tblPr>

 <w:tblGrid>

 <w:gridCol w:w="5303"/>

 <w:gridCol w:w="4590"/>

 </w:tblGrid>

 <w:tr>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="5303" w:type="dxa"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:tcPr>

 <ns1:contact>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Contact"/>

 </w:pPr>

 <w:r>

 <w:t>Contact: </w:t>

 </w:r>

 <ns1:firstName w:placeholder="[First]">

 <w:permStart w:id="7" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of

 select="/ns1:pressRelease/ns1:contact/ns1:firstName"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="7"/>

 </ns1:firstName>

 <w:r>

 <w:t>

 <xsl:text> </xsl:text>

 </w:t>

 </w:r>

 <ns1:lastName w:placeholder="[Last]">

 <w:permStart w:id="8" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of

 select="/ns1:pressRelease/ns1:contact/ns1:lastName"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="8"/>

 </ns1:lastName>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </ns1:lastName>

 <w:r>

 <w:t>

 <xsl:text> </xsl:text>

 </w:t>

 </w:r>

 </w:p>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Contact"/>

 </w:pPr>

 <w:r>

 <w:t>Phone: </w:t>

 </w:r>

 <ns1:phone w:placeholder="[xxx-xxx-xxxx]">

 <w:permStart w:id="9" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of

 select="/ns1:pressRelease/ns1:contact/ns1:phone"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="9"/>

 </ns1:phone>

 </w:p>

 </ns1:contact>

 </w:tc>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="4590" w:type="dxa"/>

 </w:tcPr>

 <w:p>

 <w:pPr>

 <w:pStyle w:val="Date"/>

 </w:pPr>

 <w:r>

 <w:t>FOR IMMEDIATE RELEASE</w:t>

 </w:r>

 </w:p>

 <w:p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:pPr>

 <w:pStyle w:val="Date"/>

 </w:pPr>

 <ns1:date w:placeholder="[YYYY-MM-DD]">

 <w:permStart w:id="10" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of select="/ns1:pressRelease/ns1:date"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="10"/>

 </ns1:date>

 </w:p>

 </w:tc>

 </w:tr>

 </w:tbl>

The w:edGrp attribute of each w:permStart element indicates that "everyone" is allowed to edit the given region. (The
value of "everyone" means that there are no restrictions. Other values may be groups defined on the local machine or
network.) The w:id attributes on the w:permStart and w:permEnd elements maintain the association between the start and
end elements of each range. The editable regions are carefully placed directly inside the custom XML elements, so that
users may edit the contents of the XML tags but may not move or delete the XML elements themselves.

The excerpt in Example 4-8 also illustrates how data is pulled from the source document into the merged XML and
WordprocessingML editing view—through the use of an xsl:value-of instruction inside each custom XML leaf element.

4.10.2 Formatting Restrictions

Formatting restrictions enable you to restrict formatting to a selection of zero or more styles. This also means that
users will not be able to apply direct formatting, such as italic or bold. Unlike editing restrictions, you cannot designate
different regions of the document to have different formatting restrictions. The restricted selection of styles is a global
setting for the entire document.

Formatting restrictions are enabled when the w:formatting and w:enforcement attributes of the w:documentProtection
element both have the value on (as shown above), and when the w:defLockedState attribute of the w:latentStyles element
(inside the top-level w:styles element) also has the value on:

 <w:latentStyles w:defLockedState="on" w:latentStyleCount="156"/>

Individual styles defined within the document are either locked or available, depending on the presence of the w:locked
element in the style's w:style definition. If w:locked is present (and not explicitly off), it means that the style is locked
and cannot be used. If not, then the style is among the limited selection of styles that the user can apply. Note that the
document may already contain paragraphs or runs that use locked styles. That is okay; users just won't be able to
create new runs or paragraphs that use those styles. (Note that the w:defLockedState attribute sets the "default locked
state" only for the built-in styles; it does not affect styles defined within the document, whose locked state is
determined solely based on the presence of the w:locked element.)

In our press release template, there are three styles available for the user to apply: a paragraph style called "Body
Text," a character style called "Lead-in Emphasis," and a character style called "No formatting." All of these are used for
the body text of the press release. The "Lead-in Emphasis" style is used normally only for the first phrase of the first
paragraph, as a traditional all-caps lead-in to the content of the press release. The "No formatting" style is based on the
built-in "Default Paragraph Font" style and does not include any additional formatting. Its purpose is to let the user
conveniently turn off the "Lead-in Emphasis" style after they are done typing the lead-in text.

You may be wondering, "Why use styles at all when the WordprocessingML markup is just going to get stripped out
when the document is saved?" The answer is that our press release template uses an onsave XSLT stylesheet to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when the document is saved?" The answer is that our press release template uses an onsave XSLT stylesheet to
convert a run having the "Lead-in Emphasis" style to an actual leadIn element in the saved XML document. Similarly,
the onload XSLT stylesheet converts a leadIn element in a newly opened press release XML document to a run having
the "Lead-in Emphasis" style. By defining these mappings, our imaginary IT department is able to support a limited
form of mixed content editing without having to invoke Smart Document programming.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.11 XML Save Options
When a user tries to save a document as XML, Word presents several options. The "Save As" dialog, shown again in
Figure 4-21, includes two checkboxes representing XML save options: the "Apply transform" checkbox and the "Save
data only" checkbox. These options correspond to the final two (optional) processes in our processing model diagram
(Figure 4-7).

Figure 4-21. XML save options in the "Save As" dialog

Rather than solely relying on the user to make the right choice, you can specify default save settings for a particular
document, obviating the need for user intervention. You can set these through the Word UI (in the Tools
Templates and Add-Ins . . . XML Schema XML Options dialog), or by declaring them in the underlying
WordprocessingML representation. In our primary XML editing scenario, the onload XSLT transformation that Word
applies when opening the document is what determines what the default XML save settings for a document will be.

In our press release template, the onload stylesheet turns "Save data only" off and "Apply custom transform" on. It
does this by generating declarations for these settings inside the w:docPr element. Below is the relevant excerpt from
the stylesheet:

 <w:docPr>

 <!-- ... -->

 <w:removeWordSchemaOnSave w:val="off"/>

 <w:useXSLTWhenSaving/>

 <w:saveThroughXSLT w:xslt="\\intra\pr\harvestPressRelease.xsl"/>

 </w:docPr>

The w:removeWordSchemaOnSave element corresponds to the "Save data only" option. Here, it is explicitly turned off. The
w:useXSLTWhenSaving element turns the "Apply custom transform" option on. Finally, the w:saveThroughXSLT element
specifies the file name of the particular XSLT stylesheet to apply when the w:useXSLTWhenSaving option is turned on.

4.11.1 The "Save Data Only" Document Option

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the "Save data only" option is turned on (via the w:removeWordSchemaOnSave element), Word strips all
WordprocessingML markup from the document when the user saves it, leaving only custom XML elements and
attributes. This is the same process that Word uses to prepare an embedded XML document for schema validation. In
both cases, the "Ignore mixed content" document option parameterizes the behavior of the process, optionally causing
it to subsequently strip out remaining mixed content text after it has stripped out the WordprocessingML markup.

Unlike Word's default onload rendering process for arbitrary XML documents (which the XML2WORD.XSL stylesheet
implements), its default onsave process ("Save data only") is not implemented in an XSLT stylesheet that you can view
—at least not one that's included in the files installed with Office. However, since it is important to understand exactly
what this process does, we've included in Example 4-9 an XSLT stylesheet that approximates its behavior. This
stylesheet is designed to produce the exact same result as the "Save data only" process, when selected as the
transform to apply when saving a document.[2]

[2] For this stylesheet to work as intended, the "Apply transform" checkbox must be checked, the saveDataOnly.xsl
file must be selected as the transform to apply, and the "Save data only" checkbox must be unchecked. The reason
it must be unchecked is that the saveDataOnly.xsl stylesheet is designed to be applied to the document instead of
the "Save data only" process, rather than in addition to it.

Example 4-9. An approximation of the "Save data only" process, saveDataOnly.xsl

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:v="urn:schemas-microsoft-com:office:vml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 xmlns:st="urn:schemas-microsoft-com:office:smarttags">

 <!-- UTF-8 encoding and standalone declaration -->

 <xsl:output encoding="UTF-8" standalone="no"/>

 <!-- *** -->

 <!-- Global Variables -->

 <!-- *** -->

 <!-- True if w:ignoreMixedContent is present and @w:val isn't "off" -->

 <xsl:variable name="ignoreMixedContent"

 select="/w:wordDocument/w:docPr/w:ignoreMixedContent

 [not(@w:val='off')]"/>

 <!-- Result of first pass (before optionally stripping mixed content text) -->

 <xsl:variable name="first-pass-result">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:variable name="first-pass-result">

 <xsl:apply-templates select="/*"/>

 </xsl:variable>

 <!-- *** -->

 <!-- Template rules in default mode -->

 <!-- *** -->

 <!-- Start here -->

 <xsl:template match="/">

 <!-- line break after XML declaration -->

 <xsl:text>
</xsl:text>

 <!-- Re-create any PIs preserved inside o:CustomDocumentProperties -->

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis" select="string(

 /w:wordDocument/o:CustomDocumentProperties/o:processingInstructions)"/>

 </xsl:call-template>

 <!-- Apply a second pass to strip mixed content text only if

 $ignoreMixedContent is true -->

 <xsl:choose>

 <xsl:when test="$ignoreMixedContent">

 <xsl:apply-templates select="msxsl:node-set($first-pass-result)/node()"

 mode="strip-mixed-content"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy-of select="$first-pass-result"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!— Replicate all elements by default

 (filtering out unnecessary namespace nodes) —>

 <xsl:template match="*">

 <xsl:element name="{local-name()}" namespace="{namespace-uri()}">

 <xsl:apply-templates select="@*|node()"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates select="@*|node()"/>

 </xsl:element>

 </xsl:template>

 <!— Copy attributes by default —>

 <xsl:template match="@*">

 <xsl:copy/>

 </xsl:template>

 <!— Preserve text inside w:t elements (other than headers, footers, etc.) —>

 <xsl:template match="w:t[not(ancestor::w:sectPr)]/text()">

 <xsl:copy/>

 </xsl:template>

 <!— Strip out all other text (field instructions, doc properties, etc.) —>

 <xsl:template match="text()"/>

 <!— Process children of, but do not copy, elements in Word's namespaces —>

 <xsl:template match="w:*|sl:*|aml:*|wx:*|w10:*|v:*|o:*|dt:*|st:*">

 <xsl:apply-templates/>

 </xsl:template>

 <!— Strip out all attributes in Word's namespaces —>

 <xsl:template match="@w:*|@sl:*|@aml:*|@wx:*|@w10:*|@v:*|@o:*|@dt:*|@st:*"/>

 <!-- *** -->

 <!-- Template rules in "strip-mixed-content" mode -->

 <!-- *** -->

 <!-- Copy elements, attributes, PIs, and text straight through -->

 <xsl:template match="@*|node()" mode="strip-mixed-content">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()" mode="strip-mixed-content"/>

 </xsl:copy>

 </xsl:template>

 <!-- But strip out mixed content text -->

 <xsl:template match="text()[preceding-sibling::* or following-sibling::*]"

 mode="strip-mixed-content"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- *** -->

 <!-- Named templates -->

 <!-- *** -->

 <!-- For re-creating PIs stored as text in o:CustomDocumentProperties;

 (See XML2WORD.XSL) -->

 <xsl:template name="create-pis">

 <xsl:param name="escaped-pis"/>

 <xsl:if test="$escaped-pis">

 <xsl:processing-instruction

 name="{substring-before(

 substring-after($escaped-pis,'<?'),

 ' ')}">

 <xsl:value-of select="substring-before(

 substring-after($escaped-pis,' '),

 '?>')"/>

 </xsl:processing-instruction>

 <xsl:text>
</xsl:text>

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis"

 select="substring-after($escaped-pis,'?>')"/>

 </xsl:call-template>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

The highlighted template rules in Example 4-9 define the essence of what the "Save data only" process does. They strip
out elements and attributes in any of the Word-specific namespaces but preserve all elements and attributes in other
namespaces. The rest of the stylesheet is concerned with implementing two other features of the "Save data only"
process: stripping mixed content and preserving processing instructions.

4.11.1.1 Stripping mixed content

Also like Word's built-in "Save data only" process, the stylesheet in Example 4-9 alters its behavior according to
whether the "Ignore mixed content" document option is turned on or off.

First, the stylesheet defines a global variable named $ignoreMixedContent that is true as long as the w:ignoreMixedContent
element is present and is not turned off.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element is present and is not turned off.

 <!-- True if w:ignoreMixedContent is present and @w:val isn't "off" -->

 <xsl:variable name="ignoreMixedContent"

 select="/w:wordDocument/w:docPr/w:ignoreMixedContent

 [not(@w:val='off')]"/>

Then, after stripping out the Word-specific markup, the stylesheet further processes the document if and only if
$ignoreMixedContent is true. This is implemented as a second pass (with the help of the msxsl:node-set() extension
function):

 <!-- Apply a second pass to strip mixed content text only if

 $ignoreMixedContent is true -->

 <xsl:choose>

 <xsl:when test="$ignoreMixedContent">

 <xsl:apply-templates select="msxsl:node-set($first-pass-result)/node()"

 mode="strip-mixed-content"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:copy-of select="$first-pass-result"/>

 </xsl:otherwise>

 </xsl:choose>

Finally, the template rules in the strip-mixed-content mode effect an identity transformation with one exception. The
operative template rule strips out all mixed content text in the document, i.e., all text nodes that have any element
siblings, by doing nothing:

 <xsl:template match="text()[preceding-sibling::* or following-sibling::*]"

 mode="strip-mixed-content"/>

Thus, the saveDataOnly.xsl stylesheet behaves like the "Save data only" process, stripping out mixed content text only
if the "Ignore mixed content" document option is turned on.

4.11.1.2 Preserving processing instructions

When opening an arbitrary XML document that has one or more processing instructions (PIs) outside the root element,
Word's default onload stylesheet (XML2WORD.XSL) preserves those PIs by escaping the PI markup as text and storing
the resulting string in a custom document property named o:processingInstructions (in the o:CustomDocumentProperties
element). Then, when the user saves the document, the "Save data only" process converts the escaped PI markup back
to literal processing instructions in the final XML document saved by Word.

The saveDataOnly.xsl stylesheet in Example 4-9 exhibits the same behavior. First, it calls a named template, passing it
the string value of the o:processingInstructions element:

 <!-- Re-create any PIs preserved inside o:CustomDocumentProperties -->

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis" select="string(

 /w:wordDocument/o:CustomDocumentProperties/o:processingInstructions)"/>

 </xsl:call-template>

Then, the template named create-pis does the actual work of converting the value of the $escaped-pis parameter to real

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then, the template named create-pis does the actual work of converting the value of the $escaped-pis parameter to real
processing instructions in the result document. It recursively parses the escaped PI markup until no processing
instructions are left:

 <!-- For re-creating PIs stored as text in o:CustomDocumentProperties;

 (See XML2WORD.XSL) -->

 <xsl:template name="create-pis">

 <xsl:param name="escaped-pis"/>

 <xsl:if test="$escaped-pis">

 <xsl:processing-instruction

 name="{substring-before(

 substring-after($escaped-pis,'<?'),

 ' ')}">

 <xsl:value-of select="substring-before(

 substring-after($escaped-pis,' '),

 '?>')"/>

 </xsl:processing-instruction>

 <xsl:text>
</xsl:text>

 <xsl:call-template name="create-pis">

 <xsl:with-param name="escaped-pis"

 select="substring-after($escaped-pis,'?>')"/>

 </xsl:call-template>

 </xsl:if>

 </xsl:template>

This PI re-creation process only works when the onload stylesheet preserves the PIs in exactly the way that the "Save
data only" process expects. If you want your own custom onload stylesheets to preserve PIs, take a look at the
XML2WORD.XSL file to see exactly how it's done. Basically, it converts a single PI to a string with these components:

'<?' <PITarget> <nbsp> <PIText> '?>'

Each subsequent escaped PI is concatenated to the end of the last one. And the final value is stored in the
o:processingInstructions element.

In our press release template, the onload stylesheet preserves PIs from the source document in the same way that the
XML2WORD.XSL stylesheet does. However, rather than using the "Save data only" process to re-create the PIs, the
press release template declares its own custom onsave stylesheet, which re-creates them in the same way that the
"Save data only" process would have. Of course, when you have control over both the onload and onsave stylesheets,
you can choose whatever mechanism you'd like for preserving PIs. The press release template could have used a
different approach, but the approach used by XML2WORD.XSL and the "Save data only" process works perfectly fine.
Rather than reinventing the wheel, the press release template takes the same approach.

One favorable consequence of preserving processing instructions from the source document is that the mso-application PI
is preserved in XML documents that Word edits, retaining the file's association with the Word application. This means
that users don't have to do anything special to open the file in Word; they just double-click it like any other Word
document. Conversely, the mso-application PI is only present in the saved document when it was already present in the
XML document that Word opened. Word does not automatically output the mso-application PI whenever it saves a custom
XML document. On the contrary, it is quite possible to open, edit, and save XML documents in Word without leaving any
evidence that Word was ever used to edit the file. The point is that you as the developer do have control over what
processing instructions appear in the result.

To force the presence of the mso-application (or any other) processing instruction in your
result document (regardless of whether it was present in the source document), you can
simply use the xsl:processing-instruction element in your onsave stylesheet. Or, if you are
using "Save data only" with no onsave stylesheet, you can use your onload stylesheet to
effectively hard-code the PI to the list of escaped PIs in the o:processingInstructions custom

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively hard-code the PI to the list of escaped PIs in the o:processingInstructions custom
document property. In this case, the "Save data only" process will regenerate the PI just
as if it was preserved from the source document.

4.11.2 The "Apply Custom Transform" Document Option

The "Apply Custom Transform" document option allows you to save an XML document through an onsave XSLT
stylesheet. As reflected in our original processing model diagram in Figure 4-7, what document the onsave stylesheet is
applied to depends on whether the "Save data only" option is turned on. If "Save data only" is turned off, then the
onsave stylesheet is applied directly to the WordprocessingML document. If "Save data only" is turned on, then the
onsave stylesheet is applied to the result of stripping the Word-specific markup from the merged XML and
WordprocessingML view.

Our press release template uses an onsave stylesheet called harvestPressRelease.xsl. Since the "Save data only" option
is turned off, this stylesheet is applied to the entire WordprocessingML document when the user saves it. The purpose
of harvestPressRelease.xsl is to behave just like the "Save data only" process, with some notable exceptions: it
converts w:p elements in the body of the press release to para elements in the result, and it converts a run with the
"Lead-in Emphasis" style to a leadIn element in the result.

The harvestPressRelease.xsl stylesheet behaves just like the "Save data only" process in the sense that it strips out all
Word-specific markup from the result, and, except for the para element, it leaves all custom tags intact. It turns out that
the saveDataOnly.xsl stylesheet introduced in the last section possesses more than academic interest. It not only can
be used to understand the precise behavior of the "Save data only" process, i.e., as a learning aid, but it can also be
used directly by custom onsave stylesheets that want to slightly alter its behavior. Our press release template's onsave
stylesheet does just that—it imports the saveDataOnly.xsl stylesheet, selectively modifying its behavior. Example 4-10
shows harvestPressRelease.xsl in its entirety.

Example 4-10. The onsave stylesheet for the harvestPressRelease.xsl template

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:pr="http://xmlportfolio.com/pressRelease"

 xmlns="http://xmlportfolio.com/pressRelease"

 exclude-result-prefixes="w pr">

 <xsl:import href="saveDataOnly.xsl"/>

 <!-- Skip by the single surrogate paragraph -->

 <xsl:template match="pr:para">

 <!-- Apply templates to all non-empty Word paragraphs -->

 <xsl:apply-templates select="w:p[normalize-space(.)]"/>

 </xsl:template>

 <!-- Convert w:p elements inside PR body to para elements -->

 <xsl:template match="pr:para/w:p">

 <para>

 <!-- This element contains mixed content; explicitly preserve space -->

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <xsl:apply-templates/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:apply-templates/>

 </para>

 </xsl:template>

 <!-- Convert "Lead-in Emphasis" runs to leadIn elements -->

 <xsl:template match="w:r[w:rPr/w:rStyle/@w:val =

 /w:wordDocument/w:styles/w:style

 [w:name/@w:val='Lead-in Emphasis']/@w:styleId]">

 <!-- Only process this run if the immediately preceding

 run does not have the same style -->

 <xsl:if test="not(preceding-sibling::w:r[1]

 [w:rPr/w:rStyle/@w:val = current()/w:rPr/w:rStyle/@w:val]

)">

 <leadIn>

 <xsl:call-template name="merge-adjacent-style-runs"/>

 </leadIn>

 </xsl:if>

 </xsl:template>

 <!-- Merge adjacent runs that have the same style -->

 <xsl:template name="merge-adjacent-style-runs" match="w:r" mode="merge-runs">

 <xsl:apply-templates/>

 <!-- Recursively apply to the immediately following run

 only if it has the same style -->

 <xsl:apply-templates

 select="following-sibling::w:r[1]

 [w:rPr/w:rStyle/@w:val = current()/w:rPr/w:rStyle/@w:val]"

 mode="merge-runs"/>

 </xsl:template>

 <!-- Override mixed-content-stripping for text inside pr:para elements -->

 <xsl:template match="pr:para/text()" mode="strip-mixed-content">

 <xsl:copy/>

 </xsl:template>

</xsl:stylesheet>

As you can see, this stylesheet imports the saveDataOnly.xsl stylesheet we looked at earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, this stylesheet imports the saveDataOnly.xsl stylesheet we looked at earlier:

 <xsl:import href="saveDataOnly.xsl"/>

Now, let's briefly walk through each template rule in the stylesheet. The first custom rule that will get triggered is also
the first one listed in the document. It matches the single pr:para element (where pr maps to the press release
namespace) that contains the body text of the press release. Rather than creating a shallow copy of the element, as
saveDataOnly.xsl would have done by default, it instructs processing to skip by the element altogether and to process
its non-empty paragraph (w:p) children instead:

 <!-- Skip by the single surrogate paragraph -->

 <xsl:template match="pr:para">

 <!-- Apply templates to all non-empty Word paragraphs -->

 <xsl:apply-templates select="w:p[normalize-space(.)]"/>

 </xsl:template>

The next template rule matches the paragraph (w:p) children of pr:para. Each w:p element is effectively replaced by a
para element (in the press release namespace). The xml:space="preserve" attribute is programmatically added to the
result so that Word (and other potential processes) won't strip out what it deems to be insignificant whitespace from
the document when it loads it again. Since the para element contains mixed content, all child text nodes, including
whitespace-only text nodes, should be considered significant:

 <!-- Convert w:p elements inside PR body to para elements -->

 <xsl:template match="pr:para/w:p">

 <para>

 <!-- This element contains mixed content; explicitly preserve space -->

 <xsl:attribute name="xml:space">preserve</xsl:attribute>

 <xsl:apply-templates/>

 </para>

 </xsl:template>

The next template rule gets triggered by runs that have the "Lead-in Emphasis" character style. The purpose of this
template rule is to convert such runs into leadIn elements. However, its job is complicated by the fact that Word has a
tendency to output adjacent runs that have the same style. Rather that creating a separate leadIn element for each of
these, this template rule, with help from the recursive template named merge-adjacent-style-runs, does just that; it
merges adjacent runs in the same style so that only one leadIn element is created per contiguous sequence:

 <!-- Convert "Lead-in Emphasis" runs to leadIn elements -->

 <xsl:template match="w:r[w:rPr/w:rStyle/@w:val =

 /w:wordDocument/w:styles/w:style

 [w:name/@w:val='Lead-in Emphasis']/@w:styleId]">

 <!-- Only process this run if the immediately preceding

 run does not have the same style -->

 <xsl:if test="not(preceding-sibling::w:r[1]

 [w:rPr/w:rStyle/@w:val = current()/w:rPr/w:rStyle/@w:val]

)">

 <leadIn>

 <xsl:call-template name="merge-adjacent-style-runs"/>

 </leadIn>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </leadIn>

 </xsl:if>

 </xsl:template>

Finally, harvestPressRelease.xsl must override one other aspect of saveDataOnly.xsl's behavior. Rather than strip out all
mixed content text (which saveDataOnly.xsl does when "Ignore mixed content" is turned on, as it is in the press release
template), it must preserve the mixed content text found inside the newly created pr:para elements. It does this by
overriding the default template rule for text nodes in the strip-mixed-content mode, explicitly copying text nodes that are
children of pr:para elements:

 <!-- Override mixed-content-stripping for text inside pr:para elements -->

 <xsl:template match="pr:para/text()" mode="strip-mixed-content">

 <xsl:copy/>

 </xsl:template>

Thus, the harvestPressRelease.xsl stylesheet behaves very similarly to Word's "Save data only" process. In fact, for
most of the elements in a press release document, it behaves identically, thanks to the saveDataOnly.xsl stylesheet
that it imports. However, by incrementally overriding the default behavior of saveDataOnly.xsl, it enables limited but
effective support for repeating paragraphs and mixed content.

4.11.3 When to Use These Options

Between the "Save data only" and "Apply custom transform" options, there are four possible combinations. When does
it make sense to choose one combination over another? Table 4-1 lists some possible use cases for each combination.

Table 4-1. XML save settings and corresponding use cases
"Save data

only"
"Apply custom

transform" Example use cases

off off Saving the document as WordprocessingML

on off Saving custom markup only (most common configuration for Smart
Documents)

off on Converting Word paragraphs to custom elements; converting styled text to
custom elements

on on Converting elements back to attributes; re-ordering or otherwise re-
structuring the document

When you are using an onsave XSLT stylesheet and you need to decide whether or not to turn "Save data only" on, ask
yourself these questions: Is all the information I need to create my final, saved XML document present in the XML
elements and attributes that are embedded in the Word document being edited? Or do I need to query some aspect of
the WordprocessingML markup, because the embedded XML tags do not tell the whole story? The onsave stylesheet for
our press release template, since it converts Word paragraphs to custom paragraphs, for example, indeed does need to
have access to the WordprocessingML markup. Therefore, the press release template takes the third approach shown in
this table; it turns "Save data only" off and "Apply custom transform" on.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.12 Reviewing the XML-Specific Document Options
So far, we've introduced a number of different XML-related document options in various contexts. Now let's take a look
at them together, including some new ones. You can configure most of these through the XML Options dialog. Figure 4-
22 shows the XML Options dialog with the default XML settings. To open this dialog, select Tools Templates and
Add-Ins XML Schema XML Options.

Figure 4-22. The XML Options dialog

The options in Figure 4-22 correspond to these elements in WordprocessingML:

1. w:removeWordSchemaOnSave —When enabled, Word removes all Word-specific markup from the document when
saving.

2. w:useXSLTWhenSaving —When enabled, Word applies an XSLT stylesheet to the document when saving.

3. w:saveThroughXSLT —When the "Apply custom transform" option is on, this element's w:xslt attribute determines
what stylesheet will be applied.

4. w:validateAgainstSchema —When enabled, Word validates the document while the user is editing it. This option is
turned on by default unless explicitly turned off.

5. w:doNotUnderlineInvalidXML —When enabled, Word does not display validation errors in the document being
edited.

6. w:ignoreMixedContent —When checked, Word strips out mixed content text for the purpose of validation, as well
as for the purpose of saving (when the "Save data only" option is on).

7. w:saveInvalidXML —When checked, Word will not disallow the user from saving a document as XML even though
the embedded XML document is invalid according to its schema.

8. w:alwaysShowPlaceholderText —When checked, Word automatically displays the name of each empty leaf element
as placeholder text when "Show XML tags" is turned off, and when the element does not explicitly specify its
own placeholder text.

Except for the w:saveThroughXSLT element, all of these options are Boolean options. Each of their corresponding
elements is defined in the WordprocessingML schema to use the onOffProperty type, which means that it is an empty
element and that it has a w:val attribute whose value can be either on or off. When the element is present but the
attribute is absent, then it defaults to on.

The other two checkboxes listed under "XML view options" in Figure 4-22 are not document-specific options and so do
not have a WordprocessingML representation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.13 Steps to Creating the onload Stylesheet
As we mentioned earlier, the XML Structure task pane, though not terribly useful to end users, is an important tool for
developers of Word XML templates. By using it to apply XML elements to different parts of a regular Word document,
you can create a merged document that contains both WordprocessingML and custom XML elements from your schema.
After saving it as XML (WordprocessingML and all), you suddenly have an example of what your onload stylesheet
needs to generate as a result document. Adapting this document to an XSLT stylesheet is often as simple as slapping
xsl:stylesheet and xsl:template elements around the document and replacing text inside leaf-node custom elements with
xsl:value-of instructions.

With this end in view, let's take a look at the necessary steps to preparing the press release template within Word.

4.13.1 Start with a Word Document

First, create a regular Word document that contains all of the formatting and boilerplate text you want to include in
your template. Our imaginary IT department's press release template began its life as a regular Word document,
adapted from a template available on Office Online. After simplifying it a bit to meet their requirements, they were
ready to begin. Figure 4-23 shows the pristine Word document before it was introduced to XML.

Figure 4-23. PressReleaseWordMLTemplate.xml, a regular Word document with no
custom XML

4.13.2 Attach a Schema

Once you have your regular Word document ready, the next thing to do is to attach your schema to it. We saw the
schema document for press releases, pressRelease.xsd, way back in Example 4-1. Select Tools Templates and
Add-Ins, and click the XML Schema tab to open the dialog shown in Figure 4-24.

Figure 4-24. The XML Schema dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-24. The XML Schema dialog

This dialog should look familiar, as we introduced it earlier in "Attaching Schemas to a Document." Click the Add
Schema . . . button and browse to find the file named pressRelease.xsd. After you select the schema file, you'll get the
Schema Settings dialog, shown in Figure 4-25.

Figure 4-25. The Schema Settings dialog

Enter a friendly name for this schema, such as "Press Release." Uncheck the "Changes affect current user only"
checkbox if you want this entry in the schema library to be available to all users on your machine. (Since this schema
library entry is initially for development purposes only, on the developer's machine, it probably doesn't matter what you
choose.)

4.13.3 Apply XML Tags

After hitting the OK button, you will see that the newly created "Press Release" checkbox has been checked for you in
the XML Schema dialog. After clicking OK once more, the XML Structure task pane will appear, as shown in Figure 4-26.

Figure 4-26. The XML Structure task pane immediately after attaching a schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-26. The XML Structure task pane immediately after attaching a schema

Click "pressRelease" at the bottom of the task pane to apply your schema's pressRelease element to the entire
document. You will see the dialog shown in Figure 4-27.

Figure 4-27. "Apply to entire document?" dialog

Select "Apply to Entire Document." The result is shown in Figure 4-28.

Figure 4-28. The XML Structure task pane after applying the pressRelease root
element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, you are ready to begin applying individual elements to their corresponding selections of text in the press
release document. To do this, select the text to be contained within the element, and then click the corresponding
element name at the bottom of the XML Structure task pane. Since the XML Structure task pane, by default, displays
only the elements that are legal in the current context, it works best to apply elements in a top-down order, e.g.,
company before name and address. Once you have applied all the elements of the document, your document should look
something like that in Figure 4-29.

Figure 4-29. The document after applying all XML elements

In Figure 4-29, most of the elements have been applied to places where you would expect, e.g., firstName to "John,"
lastName to "Doe." The one exception is the para element, which has not been applied to each of the two paragraphs in
the body of the press release but rather to all of the text within the body. Without utilizing Smart Document technology,
Word does not provide an easy way for end users to create repeating elements (except with table rows, which aren't
used here). Since the para element nevertheless needs to be repeating, we use regular Word paragraphs (w:p elements
instead of literal para elements) and convert back and forth between real para elements through the onload and onsave
stylesheets. The only reason we include a literal para element in the template is to enable the document to be valid. The
schema requires at least one para element to be present. Rather than creating a temporary, special-purpose schema in
which para elements are optional, we make the document valid by letting a single, fixed para element contain the Word
paragraphs. The onload and onsave stylesheets translate back and forth between this intermediate representation (one
para element containing multiple w:p elements) and the true, desired representation (a sequence of one or more para
elements). We'll see both sides of this translation shortly.

4.13.4 Convert Block-Level Leaf Tags to Run-Level Tags

When you apply XML tags to a document through the XML Structure task pane, Word automatically decides at what
level of the WordprocessingML hierarchy to insert the tags, based on the current selection. In Figure 4-29, the street
element, for example, got inserted as a block-level tag (inside a table cell), while the city and state elements got
inserted as run-level tags. This was necessary because city and state were applied to text within the same paragraph.
Oftentimes, you do not want to just stick with what Word chooses. While you can't always turn a run-level tag into a
block-level tag, you can certainly turn a block-level leaf tag (i.e., that contains no more custom elements) into a run-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block-level tag, you can certainly turn a block-level leaf tag (i.e., that contains no more custom elements) into a run-
level tag. And, as it turns out, there is a very good reason for doing so.

Block-level tags allow users to insert multiple Word paragraphs (w:p elements) inside them. Unless you have an onsave
stylesheet that specifically handles this case, the text from the multiple paragraphs will get merged together when the
WordprocessingML is stripped from the document. This inevitably causes whitespace formatting problems, e.g., the
absence of a space between the last sentence of one paragraph and the first sentence of the next. As it happens, our
press release template's onsave stylesheet does expect there to be multiple Word paragraphs (w:p elements) inside the
para element (from which it will derive corresponding para elements in the final result). But it does not expect multiple
paragraphs anywhere else in the template. Thus, it behooves us to change other block-level leaf tags to run-level tags
instead. In fact, we can generalize the advice: whenever possible, use run-level tags for leaf elements when all you
want is a single line of text. In the press release template, there are four such candidates for change: the name, street,
date, and title elements.

The easiest way to change a block-level tag into a run-level tag from within the Word UI is to place the cursor just to
the right of the end tag and hit the spacebar. Since there can't be text outside the block-level tag yet on the same line,
Word automatically converts the block-level tag to a run-level tag. Then, you can just hit Backspace to remove the
space character if you want. The tag will continue to be a run-level tag.

Figure 4-30 shows a close-up of the name and street elements in their default block-level state, before any changes are
made.

Figure 4-30. The name and street elements as block-level tags

And Figure 4-31 shows the name and street elements after we have changed them to run-level tags using the
space/Backspace technique described above.

Figure 4-31. The name and street elements as run-level tags

Provided that we also convert the date and title elements, our new template—supplemented with editing restrictions—
will now be more robust. It will prevent users from hitting Enter to create new paragraphs inside fields that are
designed to contain only one line of text.

4.13.5 Assign Placeholder Text

Once all of the custom tags are in place, you can assign placeholder text to each custom leaf element by right-clicking
the element in the main pane or in the XML Structure task pane and selecting Attributes In the Attributes dialog,
enter the placeholder text for the element in the "Placeholder text" text box, as shown in Figure 4-32.

Figure 4-32. Entering placeholder text for the name element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.13.6 Set the XML-Related Document Options

One thing to note about our template so far is that the document is still flagged as invalid, even though all of the
elements in the document have been applied to valid values. The XML Structure task pane alerts us to the problem,
shown up close in Figure 4-33.

Figure 4-33. Invalid mixed content text

Right-clicking the address element in the tree shows that the problem is that text is contained directly inside the address
element, which the schema disallows. Each mixed content text node is represented in the XML Structure task pane as
an ellipsis (...). For the address element, the culprits are the comma (,) between the city and state elements, and the
words Phone and Fax. These text nodes are not part of our data; instead, they are part of our template's boilerplate text.
To ignore mixed content for purposes of validation, we will need to turn on the "Ignore mixed content" document
option.

To view and modify the current document's XML options, click the "XML Options . . . " link at the bottom of the XML
Structure task pane. (This dialog is also accessible through a button on the Tools Templates and Add-Ins . . .
XML Schema dialog.) Here is where we can check the "Ignore mixed content" checkbox so that the boilerplate text in
our template gets stripped out for validation purposes. If we check this checkbox and click OK, then the XML Structure
task pane no longer complains that our document is invalid, as shown in Figure 4-34.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

task pane no longer complains that our document is invalid, as shown in Figure 4-34.

Figure 4-34. The XML Structure task pane with "Ignore mixed content" turned on

Note that the ellipses are now gone. Since "Ignore mixed content" is turned on, all mixed content text nodes are
ignored for validation purposes and no longer appear in the XML Structure task pane's tree view of the document. For
that reason, the validation errors are gone now too.

For now, we'll leave the XML save options alone. It is true that our ultimate onload stylesheet will need to turn the
"Apply custom transform" option on, pointing to the onsave stylesheet for our press release template,
harvestPressRelease.xsl. However, we are not there yet. For development purposes, we still need to save the template
we are currently preparing in Word as WordprocessingML, so that we can adapt it into an onload stylesheet. If we try to
prematurely set our ultimately desired save options, we'll be faced with the Catch-22 of not being able to save the
underlying WordprocessingML, because we've asked Word to apply our onsave stylesheet to it. Instead, the ultimately
desired save options will have to be set manually inside the w:docPr element in the onload stylesheet once we've
created it.

4.13.7 Enable Editing Restrictions

Now that you have assigned all of the XML elements in your document, along with placeholder text, it's time to turn on
editing restrictions, so that users don't inadvertently delete boilerplate text or custom XML elements. To do this, open
the Protect Document task pane, click the box next to "Allow only this type of editing in the document," and leave the
default type of restriction in the drop-down box—"No changes (Read only)." Figure 4-35 shows the Protect Document
task pane.

Figure 4-35. The Protect Document task pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, if you start enforcing the protection, no one will be able to edit any part of the document. That's obviously
not what you want. To designate a particular area within your document to be editable, you need to select the area and
then click the Everyone checkbox under "Exceptions" to indicate that the designated area can be edited by anyone.
With the "Show XML tags" option turned on, you can proceed throughout your document, selecting the text inside each
leaf custom XML tag and then clicking "Everyone."

Better yet, you can skip this tedious process by using a feature of the XML Toolbox plug-in (which we introduced in
Chapter 2). If you select XML Toolbox Document Protection Set All Nodes to EVERYONE Permission, as
shown in Figure 4-36, all of the text inside leaf node XML elements will be selected and delineated as editable by
"everyone."

Figure 4-36. Automating document protection with the XML Toolbox plug-in

The result of applying editing permissions either manually or through the XML Toolbox plug-in is shown in Figure 4-37.

Figure 4-37. Exceptions to the read-only editing restriction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You're almost done setting the editing restrictions. We just have one more recommendation. For the remaining block-
level leaf element (para), it helps to avoid certain usability problems if you include para's end tag inside the editable
region. Don't worry, the user won't be able to delete the tag. This just ensures that they will be able to hit Enter and
create a new paragraph as expected and that all paragraphs they do create stay within the editing region. To do this,
highlight the para end tag and click the "Everyone" checkbox in the Protect Document task pane. The result should look
like the close-up of the paragraph tags shown in Figure 4-38.

Figure 4-38. Extending the editing region to include the end tag of the para
element

Note that the editing region includes the end tag but not the start tag. If you included the start tag too, then the user
would be allowed to delete the para element, which is definitely not what you want.

Before we start enforcing protection, we first need to configure our formatting restrictions.

4.13.8 Enable Formatting Restrictions

To enable formatting restrictions, check the box next to "Limit formatting to a selection of styles" in the Protect
Document task pane. Then click the "Settings . . . " link. You will see the dialog shown in Figure 4-39.

Figure 4-39. The Formatting Restrictions dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the press release template, there are only three styles we want to let users have access to. Start by clicking the
"None" button to uncheck all of the styles. Then, scroll down the list and check the boxes next to "Body Text," "Lead-in
Emphasis," and "No formatting." Finally, click OK. The dialog box in Figure 4-40 asks you whether you want to remove
existing styles in the document that aren't in your allowed list of styles.

Figure 4-40. Do you want to strip out restricted styles from this document?

At this point, it is important that you click the No button. Otherwise, the other styles in the document that control how
the template looks and feels will get stripped out. Thus, there is a distinction between styles that the user is allowed to
apply and styles that are already present in the document.

4.13.9 Start Enforcing Protection

After specifying the formatting and editing restrictions, you can put those restrictions into effect by clicking the "Yes,
Start Enforcing Protection" button in the Protect Document task pane. You will then be prompted with the dialog shown
in Figure 4-41.

Figure 4-41. Optional password for removing document protection

Here, you can enter an optional password that users need to enter to turn document protection off. If you don't want to
specify a password, just click OK.

4.13.10 Convert the Document to an XSLT Stylesheet

We are finally ready to adapt the document's underlying WordprocessingML into an onload XSLT stylesheet. As we
already mentioned, converting the document to a stylesheet is often as simple as inserting xsl:value-of instructions into
key places in the document. While this is usually a straightforward task, it can also be somewhat tedious, depending on
how many elements are in your template.

4.13.10.1 A utility for generating onload stylesheets

Unfortunately (and strangely), Word does not provide a mechanism for generating onload XSLT stylesheets for you. To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately (and strangely), Word does not provide a mechanism for generating onload XSLT stylesheets for you. To
address this deficiency, we've developed a fairly simple stylesheet that can be applied as an onsave stylesheet to the
template you prepared in Word using the XML Structure task pane. The stylesheet is called create-onload-
stylesheet.xsl, and, as the name suggests, it creates an example onload stylesheet. (Yes, that's using XSLT to create
XSLT.) Chances are, you will need to manually tweak the resulting stylesheet, but for templates like our press release
example, it gets you about 90% of the way there. It does this simply by replacing text inside leaf-node custom
elements with xsl:value-of instructions.

Even though the press release template makes use of some heavy XSLT, it is quite
possible to build XML templates for Word without doing any XSLT coding at all. If your
template doesn't require an onsave stylesheet or any custom logic, then the create-
onload-stylesheet.xsl utility could be all that you need to generate your onload stylesheet.

To use this utility, check the "Apply transform" checkbox in the "Save As" dialog once you've finished preparing your
template in Word. Then click the Transform... button to browse for the file named create-onload-stylesheet.xsl. Lastly,
click Save. Just like that, you have transformed your static template prepared in Word to a dynamic template that can
be used as an onload stylesheet.

Example 4-11 shows the create-onload-stylesheet.xsl in its entirety. We'll take a closer look at certain parts of the
stylesheet to explain what they do. This stylesheet substantially emulates what you as a developer would otherwise
have to do manually to get from the merged XML template prepared in Word to a functioning onload stylesheet.

Example 4-11. create-onload-stylesheet.xsl, a utility for creating onload
stylesheets

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:out="dummy"

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

 xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

 xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

 xmlns:w10="urn:schemas-microsoft-com:office:word"

 xmlns:v="urn:schemas-microsoft-com:office:vml"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 xmlns:st="urn:schemas-microsoft-com:office:smarttags"

 exclude-result-prefixes="v st">

 <xsl:output indent="yes" encoding="utf-8"/>

 <!-- Use the "out" prefix for XSLT instructions in the result stylesheet -->

 <xsl:namespace-alias stylesheet-prefix="out" result-prefix="xsl"/>

 <!-- Create stylesheet root element and root template rule -->

 <xsl:template match="/">

 <out:stylesheet version="1.0">

 <out:template match="/">

 <xsl:apply-templates/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </out:template>

 </out:stylesheet>

 </xsl:template>

 <!-- By default, copy all elements, attributes, and text straight through

 so they will function as literal result elements, etc. -->

 <xsl:template match="@* | * | text()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

 <!-- Selectively copy attributes and top-level children of w:wordDocument -->

 <xsl:template match="w:wordDocument">

 <xsl:copy>

 <!-- Create xml:space attribute only in the final result

 of the onload transformation -->

 <out:attribute name="xml:space">preserve</out:attribute>

 <!-- Copy the rest of w:wordDocument's attributes -->

 <xsl:apply-templates select="@*[not(name()='xml:space')]"/>

 <!-- Copy any top-level elements that come before o:DocumentProperties -->

 <xsl:apply-templates select="o:DocumentProperties/preceding-sibling::*"/>

 <!-- Preserve only the o:Title property; leave out all private info -->

 <o:DocumentProperties>

 <xsl:copy-of select="o:DocumentProperties/o:Title"/>

 </o:DocumentProperties>

 <!-- Preserve processing instructions inside o:CustomDocumentProperties

 (in the same way that XML2WORD.XSL does) -->

 <o:CustomDocumentProperties>

 <out:if test="processing-instruction()">

 <o:processingInstructions dt:dt="string">

 <out:for-each select="processing-instruction()">

 <out:text><?</out:text>

 <out:value-of select="name()"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <out:text> </out:text>

 <out:value-of select="."/>

 <out:text>?></out:text>

 </out:for-each>

 </o:processingInstructions>

 <!-- Copy any other custom document properties -->

 <xsl:apply-templates select="o:CustomDocumentProperties/*"/>

 </out:if>

 </o:CustomDocumentProperties>

 <!-- Process the rest of the top-level children of w:wordDocument -->

 <xsl:apply-templates select="o:DocumentProperties/following-sibling::*

 [not(self::o:CustomDocumentProperties)]"/>

 </xsl:copy>

 </xsl:template>

 <!-- Set some XML-specific document options -->

 <xsl:template match="w:docPr">

 <xsl:copy>

 <!-- Process all other document options -->

 <xsl:apply-templates select="*[not(self::w:removeWordSchemaOnSave or

 self::w:showXMLTags)]"/>

 <!-- Turn "Save data only" back on (as it was likely only off in the

 first place so that this stylesheet could be applied) -->

 <w:removeWordSchemaOnSave/>

 <!-- Force "Show XML tags" to "off", as opposed to application state -->

 <w:showXMLTags w:val="off"/>

 <!-- Insert some commented-out XML document options that you may want

 to manually turn on -->

 <xsl:comment><![CDATA[

 These are some XML save options you may want to set:

 <w:ignoreMixedContent/>

 <w:useXSLTWhenSaving/>

 <w:saveThroughXSLT w:xslt=""/>

 <w:saveInvalidXML/>

]]></xsl:comment>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

]]></xsl:comment>

 </xsl:copy>

 </xsl:template>

 <!-- Remove these settings, because they were probably only set

 to enable this transformation in the first place -->

 <xsl:template match="w:useXSLTWhenSaving | w:saveThroughXSLT |

 w:saveInvalidXML"/>

 <!— Insert xsl:value-of instructions into custom run-level leaf tags

 (identified by the presence of placeholder text) —>

 <xsl:template match="*[@w:placeholder][ancestor::w:p]">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:copy-of select="w:permStart"/>

 <w:r>

 <xsl:copy-of select="(w:r/w:rPr)[1]"/>

 <w:t>

 <out:value-of>

 <xsl:attribute name="select">

 <xsl:call-template name="xpath-expression"/>

 </xsl:attribute>

 </out:value-of>

 </w:t>

 </w:r>

 <xsl:copy-of select="w:permEnd"/>

 </xsl:copy>

 </xsl:template>

 <!-- Wrap whitespace-only text in w:t elements with xsl:text to ensure

 that it doesn't get stripped when Word loads the onload stylesheet -->

 <xsl:template match="w:t[not(normalize-space(.))]">

 <xsl:copy>

 <out:text>

 <xsl:value-of select="."/>

 </out:text>

 </xsl:copy>

 </xsl:template>

 <!-- Generate XPath expressions for the select attributes of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Generate XPath expressions for the select attributes of

 xsl:value-of instructions that we create -->

 <xsl:template name="xpath-expression">

 <xsl:variable name="ancestor-elements"

 select="ancestor-or-self::*[not(self::w:* or self::sl:* or self::aml:* or

 self::wx:* or self::w10:* or self::v:* or

 self::o:* or self::dt:* or self::st:*)]"/>

 <xsl:for-each select="$ancestor-elements">

 <xsl:text>/</xsl:text>

 <xsl:value-of select="name()"/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

The highlighted template rule in Example 4-11 is the most important template rule of this stylesheet. Let's step through
it to see precisely what it does. Whereas the default behavior of the stylesheet is to copy all elements, attributes, and
text straight through, this template rule makes an exception for custom run-level leaf tags. It matches them using this
pattern:

 <xsl:template match="*[@w:placeholder][ancestor::w:p]">

This pattern matches elements that have both a w:placeholder attribute and an ancestor w:p element. The presence of
the w:placeholder attribute indicates that this is a leaf node (i.e., a custom tag that contains text only), and the presence
of an ancestor w:p element indicates that this must be a run-level tag (as opposed to a block-level, row-level, or cell-
level tag). The pattern assumes that you have explicitly specified placeholder text for all of your leaf elements, which is
true for the press release template and also a good practice in general.

Instead of just copying the element through as-is, the template rule creates a shallow copy of the element along with
its attributes (including the w:placeholder attribute):

 <xsl:copy>

 <xsl:copy-of select="@*"/>

Then, it copies the w:permStart element if present:

 <xsl:copy-of select="w:permStart"/>

Next, instead of copying all the runs and text straight through, it creates a single w:r element, preserving any run
properties that you defined when preparing the template in Word:

 <w:r>

 <xsl:copy-of select="(w:r/w:rPr)[1]"/>

Then, it creates a single w:t element that, instead of text, contains an xsl:value-of instruction:[3]

[3] The out prefix is used (in conjunction with the top-level xsl:namespace-alias instruction) to disambiguate
between XSLT instructions that are a part of this stylesheet and XSLT instructions that are part of the result
stylesheet. The XSLT processor treats out:value-of as a literal result element that will effectively output an
xsl:value-of instruction in the final result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsl:value-of instruction in the final result.

 <w:t>

 <out:value-of>

To generate the value of the select attribute, a template named xpath-expression is invoked, generating an XPath
expression that represents the precise path to the current custom element:

 <xsl:attribute name="select">

 <xsl:call-template name="xpath-expression"/>

 </xsl:attribute>

Finally, the open elements are closed and the w:permEnd element is copied through, if present:

 </out:value-of>

 </w:t>

 </w:r>

 <xsl:copy-of select="w:permEnd"/>

 </xsl:copy>

 </xsl:template>

The reason this is the most important template rule is that it inserts xsl:value-of instructions into the resulting stylesheet,
thereby making your Word template dynamic. When Word opens a press release XML document, for example, the
xsl:value-of instructions in the onload stylesheet dynamically populate the fields in the press release template with values
from the source XML document.

Whether you manually insert xsl:value-of instructions into the XML template you prepare in Word or you use a utility like
create-onload-stylesheet.xsl, your ultimate onload stylesheet should contain excerpts that look like this:

<ns1:street w:placeholder="12345 Main Street">

 <w:permStart w:id="1" w:edGrp="everyone"/>

 <w:r>

 <w:t>

 <xsl:value-of select="/ns1:pressRelease/ns1:company/ns1:address/ns1:street"/>

 </w:t>

 </w:r>

 <w:permEnd w:id="1"/>

</ns1:street>

The above is excerpted from pr2word.xsl, the onload stylesheet for our press release template. Again, ns1 is an auto-
generated namespace prefix mapped to the namespace for press release documents.

4.13.10.2 Manually customizing the onload stylesheet

Although the XSLT stylesheet created by create-onload-stylesheet.xsl may perfectly suffice for some templates, the
press release template needs some further customizations. In particular, it needs to handle the body text of press
release documents. As such, a stylesheet created by create-onload-stylesheet.xsl will not dynamically populate any
block-level elements, since the utility only supports run-level leaf elements. You will need to make some modifications
to the resulting stylesheet, because the body text is contained (necessarily) within a block-level element.

After finding the relevant spot in the resulting stylesheet, remove the hard-coded w:p elements inside the ns1:para
element. You want the contents of ns1:para to be dynamically populated based on the presence of para elements in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element. You want the contents of ns1:para to be dynamically populated based on the presence of para elements in the
source document being opened, so begin processing those:

 <ns1:body>

 <ns1:para w:placeholder="[Click here to enter body text]">

 <w:permStart w:id="12" w:edGrp="everyone" w:displacedBySDT="prev"/>

 <!-- ************* MANUAL CUSTOMIZATIONS *************** -->

 <xsl:apply-templates select="/ns1:pressRelease/ns1:body/ns1:para"/>

 <!-- *** -->

 </ns1:para>

 <w:permEnd w:id="12" w:displacedBySDT="next"/>

 </ns1:body>

Next, define some template rules that convert para elements in the source document to w:p elements, and leadIn
elements to runs having the "Lead-in Emphasis" style. All of the needed custom template rules are shown below:

 <!-- ************* MANUAL CUSTOMIZATIONS *************** -->

 <xsl:template match="ns1:para">

 <w:p>

 <w:pPr>

 <w:pStyle w:val="BodyText"/>

 <xsl:if test="not(node())">

 <w:rPr>

 <w:rStyle w:val="Lead-inEmphasis"/>

 </w:rPr>

 </xsl:if>

 </w:pPr>

 <xsl:apply-templates/>

 </w:p>

 </xsl:template>

 <xsl:template match="ns1:leadIn">

 <w:r>

 <w:rPr>

 <w:rStyle w:val="Lead-inEmphasis"/>

 </w:rPr>

 <xsl:apply-templates/>

 </w:r>

 </xsl:template>

 <xsl:template match="ns1:para/text()">

 <w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <w:r>

 <w:t>

 <xsl:copy/>

 </w:t>

 </w:r>

 </xsl:template>

 <xsl:template match="ns1:leadIn/text()">

 <w:t>

 <xsl:copy/>

 </w:t>

 </xsl:template>

 <!-- *** -->

These are all very straightforward. There is just one twist. In the template rule for para elements, there is a test to see
if the current element is empty:

 <xsl:if test="not(node())">

 <w:rPr>

 <w:rStyle w:val="Lead-inEmphasis"/>

 </w:rPr>

 </xsl:if>

If you recall from Chapter 2, the w:rPr element, when inside the w:pPr element, signifies the run properties of the
paragraph mark. By assigning the "Lead-in Emphasis" style to the paragraph mark, you dictate the character style that
text will be in when the user begins typing. This is exactly the sort of behavior you want for lead-in text when a user is
first filling out the template. One way you'll know whether the user is filling out the template for the first time is if the
source document contains no data yet, i.e., if it contains a single empty para element—hence the test to see if the
current element is empty.

There is one more place where you need to make some manual modifications to the onload stylesheet. At this point,
you have finished defining the mappings between para elements in the source document and styled paragraphs in the
WordprocessingML document. However, you still haven't shown Word how to do the reverse—how to translate styled
paragraphs back to your custom XML. You do have the onsave stylesheet, harvestPressRelease.xsl, up and ready to go;
you just need to point Word to it. Edit the literal result elements inside w:docPr so that "Save data only" will be turned
off, "Apply custom transform" will be turned on, and the onsave stylesheet will be correctly referenced. Your changes
should look something like this:

 <!-- ************* MANUAL CUSTOMIZATIONS *************** -->

 <w:removeWordSchemaOnSave w:val="off"/>

 <w:useXSLTWhenSaving/>

 <w:saveThroughXSLT w:xslt="\\intra\pr\harvestPressRelease.xsl"/>

 <!-- *** -->

Finally, your final onload stylesheet, pr2word.xsl, is ready to deploy.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.14 Deploying the Template
There are a number of different ways to deploy XML editing solutions for Word. In this section, we'll look at one possible
way to deploy the press release template that works best in a corporate environment. Since deployment is an even
bigger topic in the context of Smart Documents, Chapter 5 will cover this topic in greater detail.

So far in this chapter, we have seen the contents (or partial contents, in the case of pr2word.xsl) of four of the press
release template's source files:

pressRelease.xsd (the press release schema)

pr2word.xsl (the onload stylesheet)

harvestPressRelease.xsl (the onsave stylesheet)

saveDataOnly.xsl (imported by the onsave stylesheet)

There are two more files we need to include (making a total of six): the initial XML template file, New Press
Release.xml, and a deployment manifest called manifest.xml. Together, these files help fulfill the generally twofold aim
of deployment:

Give users a way to create new XML documents (such as a template file to open)

Populate the schema library on each user's machine so that the solution will be invoked automatically when
opening existing XML documents

Now let's look at New Press Release.xml and manifest.xml in turn to see how they fulfill these goals.

4.14.1 The Initial XML Template File

The New Press Release.xml file, which we mentioned at the very beginning of the chapter, is what the IT department
delivers to the PR department. This could be deployed, for example, on a web site or on a local network share. Example
4-12 shows the contents of this file.

Example 4-12. The initial XML template, New Press Release.xml

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<?mso-solutionextension URI="http://xmlportfolio.com/pressRelease"

 manifestPath="\\intra\pr\manifest.xml"?>

<pressRelease xmlns="http://xmlportfolio.com/pressRelease">

 <company>

 <name/>

 <address>

 <street/>

 <city/>

 <state/>

 <zip/>

 <phone/>

 <fax/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fax/>

 </address>

 </company>

 <contact>

 <firstName/>

 <lastName/>

 <phone/>

 </contact>

 <date/>

 <title/>

 <body>

 <para/>

 </body>

</pressRelease>

This document consists of an empty "skeleton" instance of our schema. All of the expected elements are present, but
the leaf nodes are empty. They have not been filled out yet. When a user who already has the press release template
installed in their schema library opens this document, the pr2word.xsl stylesheet is applied to it, producing the press
release view we saw originally in Figure 4-1.

The key line that concerns us here is the mso-solutionextension PI:

<?mso-solutionextension URI="http://xmlportfolio.com/pressRelease"

 manifestPath="\\intra\pr\manifest.xml"?>

This processing instruction doesn't add any value for users who already have the press release template installed on
their machine. For users who don't, however, it instructs Word to retrieve the manifest file for this "solution." (The URI
pseudo-attribute contains the target namespace URI for the schema.) In this way, Word can automatically install the
necessary files into the machine's schema library without manual intervention. It automatically retrieves the manifest
file located at \\intra\pr\manifest.xml after confirming from the user that this is okay.

4.14.2 The Manifest File

The manifest file contains a reference to the schema and onload stylesheet files for the press release template. It could
also include other files, such as Smart Document code, secondary view stylesheets, etc. Example 4-13 shows the
manifest file for the press release template, manifest.xml.

Example 4-13. The manifest file for the press release template, manifest.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<manifest xmlns="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">

 <version>1.0</version>

 <uri>http://xmlportfolio.com/pressRelease</uri>

 <solution>

 <solutionID>sdfa097sdfa0</solutionID>

 <type>schema</type>

 <alias>Press Release</alias>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <alias>Press Release</alias>

 <file>

 <type>schema</type>

 <version>1.0</version>

 <filePath>\\intra\pr\pressRelease.xsd</filePath>

 </file>

 </solution>

 <solution>

 <solutionID>9a871342098vxcasdf</solutionID>

 <type>transform</type>

 <alias>Elegant</alias>

 <documentSpecific>false</documentSpecific>

 <context>http://schemas.microsoft.com/office/word/2003/wordml</context>

 <file>

 <type>primaryTransform</type>

 <version>1.0</version>

 <filePath>\\intra\pr\pr2word.xsl</filePath>

 </file>

 </solution>

</manifest>

When Word installs this "XML expansion pack," it retrieves each of the files referenced within the manifest. In this case,
it downloads the pressRelease.xsd and pr2word.xsl files and installs them into the schema library.

Ideally, the manifest would include all the files of our template, not just the schema and onload stylesheet files. This
would allow for a central point of deployment. However, as of this writing, we have not yet figured out a way to
reference onsave stylesheets installed in the schema library. Recall the relevant line from our onload stylesheet,
pr2word.xsl:

 <w:saveThroughXSLT w:xslt="\\intra\pr\harvestPressRelease.xsl"/>

The w:xslt attribute must point to the file location of an onsave stylesheet. According to the WordprocessingML schema,
the w:saveThroughXSLT element can also have a w:solutionID attribute, which sounds like precisely what we would use to
reference a stylesheet installed in the schema library. Unfortunately, Microsoft has not documented how to go about
making that reference, and everything we've tried so far has failed. For that reason, the manifest for the press release
template does not install the onsave stylesheet. Instead, the stylesheet must remain in a shared location to be
accessed directly each time it is used. In this case, that location is \\intra\pr\harvestPressRelease.xsl.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.15 Limitations of Word 2003's XML Support
As you've probably already figured out, there are some serious limitations to this first version of Word's custom XML
schema support. To conclude the chapter, we'll explicitly address some of these, if for no other reason than to assure
you that, no, you're not missing something.

4.15.1 Schemas and Namespaces

In Word 2003's world view, there is a one-to-one correspondence between schemas and namespace URIs. The schema
library can contain only one schema for a given namespace URI. In fact, Word uses "schema" as basically synonymous
with "namespace URI." Considering the fact that it is the namespace of a given XML document's root element that
determines what onload "XML data view" stylesheet to apply, this means that there are two important limitations to
keep in mind:

You cannot create two separate editing solutions (using different schemas) that have the same namespace URI

Any XML document you wish to edit in Word must have a namespace, which rules out, for example, Docbook.

This assumes that you need the onload stylesheet to be applied automatically without the user's intervention. If you are
willing to force users to manually browse for the XSLT stylesheet to apply, then it is possible to overcome both of these
limitations. Depending on your users, it may or may not be feasible to rely on their doing this. Also, if you want on-the-
fly schema validation to work, your stylesheet will need to transform the source XML document into an XML document
that is in a namespace that uniquely identifies an XML schema in the schema library. In that case, you would also need
to provide an onsave XSLT stylesheet to change or remove the namespace when the user saves the document.
However, these are burdens on the developer that can be overcome with a bit of cleverness. In the end, the real
question is whether it's feasible to require users to manually find the appropriate onload XSLT stylesheet each time they
open a particular type of XML document. If not, then you'll have to stick to using a unique namespace for each
document type's root element.

This problem is somewhat alleviated by the fact that Word, when it opens an arbitrary XML
document, also lists any XSLT stylesheets referenced through the xml-stylesheet PI, in its
list of "XML Data Views." For instance documents that don't use namespaces, this is the
only way to automatically associate the document with an XSLT stylesheet. If you're willing
to include an xml-stylesheet PI just for the sake of Word, then this may effectively solve this
bootstrapping problem without requiring too much user intervention.

4.15.2 Document Protection Doesn't Go Far Enough

Document protection is an independently introduced feature in Word 2003. It is not tightly integrated with the XML
editing features. It is up to the developer to maintain common boundaries between permission areas and custom XML
tags.

Formatting restrictions are all or nothing. You can't distinguish between the allowed styles for one field and the allowed
styles for another. There is no way to associate particular styles with particular elements except through the use of
Smart Documents.

Also, while formatting restrictions prevent the user from applying direct formatting and from using any forbidden styles,
it does not prevent the user from inserting tables, images, or other objects.

4.15.3 Document Protection Conflicts with Multiple Views

Editing restrictions unfortunately don't play nicely with XML data views. They are excessively sticky. In other words,
once the default onload stylesheet has been applied, Word fails to update the document protection settings for the
loaded document when it applies another view as elected by the user. In the press release template, for example, the
default view has editing restrictions turned on. If the user tries switching to the "Data only" or some other view, Word
chokes and is not able to make the transition correctly. Conversely, when the default view does not have editing
restrictions turned on, they won't be turned on when the user switches to a different view either, regardless of whether
the other view defines editing restrictions to be in force. Effectively, you have to choose between using document
protection and providing multiple editing views for the same document type. This is most likely buggy behavior
exploited by the press release template. Hopefully it will be addressed soon in a future update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exploited by the press release template. Hopefully it will be addressed soon in a future update.

4.15.4 Only One View at a Time

Once the user has begun editing a document after selecting a particular XML data view, they cannot subsequently
change the view. This limitation is more a logical consequence of Word's architecture for editing XML than it is a
particular deficiency of the product. The reason it is impossible to change the view is that the WordprocessingML
document that's a result of the onload stylesheet retains no knowledge of the source document from which it was
derived. Once the user makes a change to it, there is no way to automatically propagate those changes back to the
source document. It could have tried to apply the document's default save settings to reconstruct the document, but
this doesn't necessarily make sense for all of the use cases that the custom Word XML functionality is designed to
support.

Contrast this with InfoPath's "mapping" approach, which uses XSLT to define a single, round-trip mapping between the
source document and editing view, allowing users to switch views while in the middle of editing. See Chapter 10.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 A Working Example
Before we get into the how of creating XML editing solutions in Word, let's look at an example of what it is we're trying
to achieve. This example will reappear throughout the chapter.

Suppose a small Public Relations department wants to create press releases that look good as Word documents but that
also can integrate into other systems or that can be published in other formats. Consider also that the people who write
such press releases have experience with Word but have no understanding of XML.

By leveraging Word 2003's custom XML schema functionality (in the Office Professional or standalone versions), the IT
department can create an XML template[1] for Word that enables end users in the PR department to not only create
new press releases in XML but to edit existing ones too. Imagine that they have already defined an XML schema that
includes the basic information that a press release needs to represent. Example 4-1 shows just such a schema.

[1] The word "template" is heavily (and in many ways unavoidably) overloaded in this chapter. It can mean
anything from a .dot file to an XSLT instruction, from an XML view in Word to an empty XML "skeleton" document.
Most often, we use it to mean the general XML editing application, as in "the press release template." Of course,
context will be your best guide. Just don't get hung up on thinking it's a technical term; it's not.

Example 4-1. The press release schema, pressRelease.xsd

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://xmlportfolio.com/pressRelease"

 targetNamespace="http://xmlportfolio.com/pressRelease"

 elementFormDefault="qualified">

 <xsd:element name="pressRelease" type="prType"/>

 <xsd:complexType name="prType">

 <xsd:sequence>

 <xsd:element name="company" type="companyType"/>

 <xsd:element name="contact" type="contactType"/>

 <xsd:element name="date" type="xsd:date"/>

 <xsd:element name="title" type="xsd:string"/>

 <xsd:element name="body" type="bodyType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="companyType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="address" type="addressType"/>

 </xsd:sequence>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsd:complexType>

 <xsd:complexType name="addressType">

 <xsd:sequence>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"/>

 <xsd:element name="zip" type="xsd:integer"/>

 <xsd:element name="phone" type="phoneType"/>

 <xsd:element name="fax" type="phoneType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="contactType">

 <xsd:sequence>

 <xsd:element name="firstName" type="xsd:string"/>

 <xsd:element name="lastName" type="xsd:string"/>

 <xsd:element name="phone" type="phoneType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="bodyType">

 <xsd:sequence>

 <xsd:element name="para" type="paraType" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="paraType" mixed="true">

 <xsd:choice minOccurs="0">

 <xsd:element name="leadIn" type="xsd:string"/>

 </xsd:choice>

 </xsd:complexType>

 <xsd:simpleType name="phoneType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[0-9]{3}-[0-9]{3}-[0-9]{4}"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsd:pattern value="[0-9]{3}-[0-9]{3}-[0-9]{4}"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

The XML schema in Example 4-1 declares a title and a body that contains one or more paragraphs. It also contains
information about the company making the announcement and the contact person for this press release. Certain fields
require their text to conform to a particular format. Specifically, the zip code must be an integer value, the date must
conform to the ISO 8601 date format (xsd:date), and each phone number (three in all) must follow a specific format,
namely xxx-xxx-xxxx.

Now let's jump to the completed solution. The IT department delivers a single read-only file named New Press
Release.xml to the PR department. To create a new XML press release, PR department employees simply double-click
the file and begin filling out the template. To save their new press release, they select File Save, as usual. Editing
an existing press release is just as easy: double-click the existing press release file, make changes, and save changes.
All the while, users need not know that the actual format of the files they are creating and editing is XML, let alone that
it conforms to a special schema defined by the IT department.

This sounds simple enough, but what is the editing experience like for the user? How easily can they screw things up?
Well, the developers in our imaginary IT department are smart and have figured out a way to use a combination of
Word's new XML and document protection features in such a way that users won't be able to screw things up, at least
not without some deliberate effort. In fact, they created the solution with several assumptions in mind:

Users should not have to know anything about XML.

Users should not be able to inadvertently mess up the template in which they are editing.

Users should not be required to turn special options on or off.

The last assumption has a catch: while users may not be required to change any settings, they are required to leave
the default XML and save settings unchanged. As long as they simply edit documents and save them, all should go well.
Figure 4-1 shows what the user sees when first opening the New Press Release.xml file.

Figure 4-1. The initial editing view for creating new press release XML documents

The gray areas in the "press release" template in Figure 4-1 contain placeholder text, such as "Click here to enter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The gray areas in the "press release" template in Figure 4-1 contain placeholder text, such as "Click here to enter
company name." These are familiar constructs in Word templates and are thus familiar to experienced Word users.
What is not immediately evident is that these fields correspond to underlying XML elements, a fact which is successfully
hidden from the user's view.

The XML Document task pane shown in Figure 4-1 lists one or more "XML data views" that the user can choose from. In
this case, the options are "Elegant," "Data only," and "Browse" Here we only care about the default "Elegant"
view, so the user can simply ignore the task pane and begin editing. As soon as they begin editing, the "XML
Document" task pane permanently disappears, because it is not possible to choose a different view after changes have
been made to the document.

There are several additional things to note about the user's editing experience:

Invalid values in the document (such as a phone number in the wrong format) are flagged with a pink squiggly
underline. The user can see what the problem is by right-clicking it.

Word will not let the user save the document until all validation errors are resolved.

Word will not let the user edit any part of the document other than the fields they are supposed to edit. They
cannot, for example, inadvertently edit the "Press Release" heading or delete an entire field.

Word will not let the user apply any direct formatting to the text they enter, e.g., bold or italic.

Word will not let the user apply any styles to the text they enter, except for those that have been specifically
allowed.

Figure 4-2 shows the template after being filled out by a user.

Figure 4-2. The press release template after being filled out by a user

The editable regions shown in Figure 4-2 are bracketed and highlighted yellow; this is the default behavior for when
editing restrictions are in force. Also, the squiggly lines are gone, since each value now conforms to its required format.

You can also see in Figure 4-2 that all of the fields in the template are simple text fields—all, that is, except the body of
the press release. Here the user can enter multiple paragraphs and can apply some limited formatting. Specifically,
there is a character style called "Lead-in Emphasis," which is turned on by default when the user begins typing the body
text. This style is used to delineate the lead-in text for the press release. In Figure 4-2, the lead-in text happens to be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text. This style is used to delineate the lead-in text for the press release. In Figure 4-2, the lead-in text happens to be
"This is the lead-in." The only formatting effect that the style has is to make the text all-caps. After the user has
finished typing the lead-in text, they can turn the all-caps formatting off by selecting the other special character style
they have at their disposal: "No formatting." Figure 4-3 shows the entire style drop-down box that the user sees. Since
formatting restrictions are in force, the user only sees the styles they are allowed to apply.

Figure 4-3. The style drop-down box for the press release template

After the user is finished filling out the template and is satisfied with the result, they select File Save and get the
prompt shown in Figure 4-4.

Figure 4-4. Saving the press release XML document

Since the New Press Release.xml file is read-only, the user is prompted to select a new file name. Here is where the
user must not interfere with the document's default settings. In this case, "Apply transform" must remain checked, and
"Save data only" must remain unchecked. After entering a filename (MyPressRelease.xml in this case) and clicking
"Save," the user is given one final warning before the XML document is saved, shown in Figure 4-5.

Figure 4-5. Warning the user that WordprocessingML markup may be lost

The purpose of this warning is to alert the user that Word-specific formatting and document features are going to be
stripped out of the saved document. Users will have to get used to selecting "Continue," because this is precisely what
we want.

Finally, the MyPressRelease.xml file is saved with the filename and location that the user chose. The content of this file
is shown in Example 4-2 (with indentation added).

Example 4-2. The contents of the press release XML file saved by Word,
MyPressRelease.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyPressRelease.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?mso-application progid="Word.Document"?>

<pressRelease xmlns="http://xmlportfolio.com/pressRelease">

 <company>

 <name>ACME Corp.</name>

 <address>

 <street>555 Market St.</street>

 <city>Seattle</city>

 <state>WA</state>

 <zip>98101</zip>

 <phone>222-222-2222</phone>

 <fax>333-333-3333</fax>

 </address>

 </company>

 <contact>

 <firstName>John</firstName>

 <lastName>Doe</lastName>

 <phone>444-444-4444</phone>

 </contact>

 <date>2004-01-23</date>

 <title>This is the Headline</title>

 <body>

 <para xml:space="preserve"><leadIn>This is the lead-in,</leadIn> and this is

 not. The rest of the paragraph has no formatting either.</para>

 <para xml:space="preserve">This is the second paragraph. These are just regular

 Word paragraphs. They do not correspond to custom XML elements.</para>

 </body>

</pressRelease>

Note that all of the information that the user entered has been preserved in the final press release XML document. The
text in the text-only fields has been preserved verbatim, and the styled paragraphs of the press release body have been
converted to our press release schema's custom para and leadIn elements.

To make subsequent changes to this press release, the user would simply double-click the XML file. Word opens the file
and displays the view shown in Figure 4-6. This is very similar to the original template view, the only difference being
that all of the fields are already filled out.

Figure 4-6. Opening MyPressRelease.xml in Word again

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-6. Opening MyPressRelease.xml in Word again

When the user is done editing, they simply select File Save, and the XML file will be updated according to the
changes they made.

The rest of this chapter systematically covers the custom XML schema support in Word 2003 (standalone and Office
2003 Professional versions), while continually making reference back to this example. First, we'll detail the components
of Word's custom XML schema functionality and how they work. Then, with that knowledge in hand, we'll go step-by-
step through the creation of the press release template, in "Steps to Creating the onload Stylesheet." Then, in
"Deploying the Template," we'll look at how the application can be deployed in a corporate environment. Finally, we'll
conclude by addressing some important limitations of Word's custom XML support.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Word's Processing Model for Editing XML
When Word opens an arbitrary XML document (i.e., an XML document that is not WordprocessingML), that XML
document undergoes four primary processes from the time that it is opened to the time that it is saved, in this order:

1. When the document is first opened, an onload XSLT stylesheet (variously called an "XML data view" or
"solution" in the Word UI) is applied, transforming the raw XML into a WordprocessingML document, usually
intermixed, or merged, with custom XML tags from the original document.

2. A user edits the document, modifying the underlying merged representation.

3. Upon saving, all WordprocessingML elements and attributes are optionally stripped out, leaving only custom
XML markup. This option is called "Save data only."

4. Finally, an onsave XSLT stylesheet is optionally applied to the result of step 3. This option is called "Apply
transform."

This basic flow is illustrated in the data flow diagram in Figure 4-7.

Figure 4-7. Word's basic processing model for editing custom XML

Each arrow in Figure 4-7 represents an XML document in different states of transformation. Each process operates on
the result of the previous process. The last two processes, "Save data only" and "Apply custom transform," are both
optional. When an option is not elected, you can think of the process as being an identity transform, or a no-op. For
example, if "Save data only" is turned off, but "Apply transform" is turned on, then the latter effectively operates on the
result of process # 2, "User edits document."

In the next several sections of this chapter, we will detail each of these processes, including how the onload XSLT
stylesheet is selected, what the merged representation looks like, what editing functionality is available to the user, how
the "Save data only" option works and how to set it, and how an onsave XSLT transformation is selected. But first let's
take a look at the Schema Library, an important ingredient not explicitly evident in this diagram—important because it
is consulted both to determine what onload XSLT transformation to apply, and to enable on-the-fly schema validation
while editing the document.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 The Schema Library
The Schema Library is a collection of XML schemas and associated files located on the user's machine. Each machine
has its own schema library (with each schema library entry having the option of applying to all users or only to the
current user). Schema library entries are stored in the Windows Registry. Each schema library entry is identified by a
unique target namespace URI, refers to a schema document, and optionally refers to additional supporting files, such as
XSLT stylesheets.

The purpose of the schema library is to allow Word (and other applications, such as Excel) to locate schemas and XSLT
stylesheets for use in custom XML editing solutions. For example, when Word opens an arbitrary XML document, it
checks the schema library to see if there is an appropriate onload XSLT stylesheet to apply, based on the namespace of
the document's root element. Likewise, once the stylesheet has been applied, it associates the result document with
zero or more schemas in the schema library, depending on the namespace declarations present in the result of the
onload transformation. This association, called "schema attachment," enables on-the-fly schema validation.

Schema library entries can be manually created and modified through the Word UI. Figure 4-8 shows an example of a
schema library entry, as shown in the Schema Library dialog, which you can access by selecting Tools Templates
and Add-Ins . . . XML Schema Schema Library

Figure 4-8. A schema library entry as shown in the Word UI

The schema library entry shown in Figure 4-8 is what a user's machine must have in order for our press release
example to work correctly. There are several things to note about this entry:

The friendly name, or alias, for this entry is "Press Release," as shown in the "Select a schema" list.

The namespace URI is http://xmlportfolio.com/pressRelease, which corresponds to the namespace of press
release instance documents.

The schema document is stored as a file named pressRelease.xsd.

There is one "solution" (alias "Elegant") associated with this entry. This refers to an onload XSLT stylesheet,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is one "solution" (alias "Elegant") associated with this entry. This refers to an onload XSLT stylesheet,
which is stored as a file named pr2word.xsl. Elsewhere in the Word UI, this is called an "XML data view." Here it
is called a "solution."

Although schema library entries can be created manually on each user's machine using the dialog in Figure 4-8, there
are also automatic deployment mechanisms that approach the simplicity of the scenario described above (where the IT
department simply delivers a .xml template file to the PR department). These are discussed briefly later in Section 4.14.

Figure 4-9 shows the same schema library entry as represented in the Windows Registry Editor.

Figure 4-9. A schema library entry as shown in the Windows Registry Editor

Don't worry, you won't be needing to edit your registry directly. We included this just to help demystify how and where
the schema library information is stored. Should you want to investigate such entries yourself, the schema library for a
specific user is stored under HKEY_USERS\SID\SOFTWARE\Microsoft\Schema Library, and the schema library for all
users on a machine is stored under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Schema Library. As always, be
careful you don't make any accidental changes. The Registry Editor is not for the faint of heart.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5 How the onload XSLT Stylesheet Is Selected
When Word opens an XML file, it first checks to see if the file is a WordprocessingML document, by comparing the
namespace URI of the root element with the WordprocessingML namespace
(http://schemas.microsoft.com/office/word/2003/wordml). If they are not equal, then Word applies an XSLT
transformation to the document. Which stylesheet it applies depends on whether there is an entry in the machine's
schema library that corresponds to the namespace of the document's root element, and whether that entry has an
accompanying XSLT "solution." If Word does not find one, it applies its own default XSLT stylesheet. The flow chart in
Figure 4-10 details this logic.

Figure 4-10. How Word decides which XSLT stylesheet to apply, if any

We can relate this back to our press release example very easily. When an employee in our imaginary PR department
opens an XML document whose root element's namespace is http://xmlportfolio.com/pressRelease, then Word will apply the
default XSLT stylesheet associated with the "Press Release" solution. This is assuming that the user's machine has the
schema and accompanying stylesheets registered in its schema library (as was reflected in the example "Schema
Library" dialog in Figure 4-8). So the sequence (with respect to the flow chart in Figure 4-10) goes like this:

1. Word opens a press release XML document.

2. Is the root element's namespace the WordprocessingML namespace? No.

3. Is the root element's namespace in the schema library? Yes.

4. Does that schema library entry have an associated XSLT solution? Yes.

5. Word applies the "Elegant" stylesheet, pr2word.xsl, to our press release document.

6. Is the result document's root element in the WordprocessingML namespace? Yes, now it is.

7. Word displays the result.

In Figure 4-6, we saw an example of the result of this sequence—Word displaying the "Elegant" view of a newly opened
press release document.

On the other hand, if a user was to open a press release document without ever having installed the Press Release
schema in their machine's schema library, then the sequence would be different:

1. Word opens a press release XML document.

2. Is the root element's namespace the WordprocessingML namespace? No.

3. Is the root element's namespace in the schema library? No.

4. Word applies its own default XSLT stylesheet.

5. Word displays the result.

In this case, the user gets a very different view of the XML document, without any custom formatting specific to press
releases, and without any document protection features (editing and formatting restrictions) enabled. Figure 4-11
shows an example of Word's generic view for arbitrary XML documents. This view is called "Data only" in the Word UI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shows an example of Word's generic view for arbitrary XML documents. This view is called "Data only" in the Word UI
(not to be confused with the "Save data only" Save option).

Figure 4-11. The "Data only" view—what Word displays when opening an arbitrary
XML document

What we see in Figure 4-11 is the result of applying Word's default onload XSLT stylesheet to the press release XML
document from Example 4-2. You can find Word's default onload stylesheet on your hard disk at C:\Program
Files\Microsoft Office\OFFICE11\XML2WORD.XSL. This XML2WORD.XSL file contains the actual stylesheet that Word
executes to display the "Data only" view. It is a good example of how to write an onload XSLT stylesheet; it even
includes descriptive comments.

The loop that is present in the flow chart in Figure 4-10 reflects the fact that it is possible
to create a switching pipeline of XSLT transformations, where the next stylesheet in the
chain is determined based on the namespace of the previous result document's root
element. This is certainly not a normal (or probably even intended) scenario, but it does
raise some interesting possibilities. It gives you the ability to choose which view to apply
based on values in the source document (assuming the necessary schema library entries).
It probably always makes the most sense to just stick to conditional formatting within a
single stylesheet, but, hey, it was an interesting behavior to discover.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.1 Multiple Views for the Same Schema

It is possible in Word to create multiple views, i.e., multiple onload XSLT stylesheets, for the same schema. These are
represented as multiple associated "solutions" in the schema library, one of which must be the default. When a user
first opens an instance document, the non-default views are presented as alternative "XML data views" in the XML
Document task pane. Even when there is only one XSLT stylesheet associated with the schema—like the "Elegant" view
in our press release example—Word still shows the XML Document task pane, giving the user the option to view Word's
generic "Data only" view, or to browse to another XSLT file to apply. In any case, once the user makes any changes to
the document, the XML Document task pane will disappear and they will not be able to change the view again.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.6 Merged XML and WordprocessingML
We have seen how the onload stylesheet is selected. Now it's time to look at what the stylesheet actually produces. As
suggested by the processing model diagram in Figure 4-7, the typical result is a mixture of WordprocessingML and
custom XML elements from the source document. That is true for both of the examples we've looked at so far (Word's
built-in "Data only" stylesheet and our press release example's "Elegant" stylesheet).

In the last section, Figure 4-11 showed the result of applying Word's default "Data only" stylesheet (XML2WORD.XSL)
to a press release instance document, as displayed in the Word UI. The stylesheet generates paragraphs corresponding
to the original XML document's element hierarchy, indented to reflect the element nesting. The labeled start and end
tags (colored pink), such as pressRelease, company, and name, represent intervening elements not in the
WordprocessingML namespace. These custom tags are also included in the WordprocessingML representation; they do
not exist separately. They are merged together into one document.

Example 4-3 shows an excerpt of the result of this transformation. You can get to the full representation from within
Word either by re-saving the document as XML (un-checking the "Save data only" checkbox in the "Save As..." dialog
box first) or by viewing the WordprocessingML source using the handy XML Toolbox we introduced in Chapter 2. In this
excerpt, indentation has been added for readability, and custom tags from the original source XML document have been
highlighted.

Example 4-3. WordprocessingML with merged custom XML elements

 <w:body>

 <wx:sect>

 <ns2:pressRelease>

 <w:p/>

 <ns2:company>

 <w:p>

 <w:pPr>

 <w:ind w:left="360"/>

 </w:pPr>

 </w:p>

 <ns2:name>

 <w:p>

 <w:pPr>

 <w:ind w:left="720"/>

 </w:pPr>

 <w:r>

 <w:t>ACME Corp.</w:t>

 </w:r>

 </w:p>

 </ns2:name>

 <ns2:address>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ns2:address>

 <w:p>

 <w:pPr>

 <w:ind w:left="720"/>

 </w:pPr>

 </w:p>

 <ns2:street>

 <w:p>

 <w:pPr>

 <w:ind w:left="1080"/>

 </w:pPr>

 <w:r>

 <w:t>555 Market St.</w:t>

 </w:r>

 </w:p>

 </ns2:street>

 <ns2:city>

 <w:p>

 <w:pPr>

 <w:ind w:left="1080"/>

 </w:pPr>

 <w:r>

 <w:t>Seattle</w:t>

 </w:r>

 </w:p>

 </ns2:city>

 <!-- ... -->

 <w:p>

 <w:pPr>

 <w:ind w:left="720"/>

 </w:pPr>

 </w:p>

 </ns2:address>

 <w:p>

 <w:pPr>

 <w:ind w:left="360"/>

 </w:pPr>

 </w:p>

 </ns2:company>

 <!-- ... -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- ... -->

 <w:p/>

 </ns2:pressRelease>

 <w:sectPr>

 <w:pgSz w:w="12240" w:h="15840"/>

 <w:pgMar w:top="1440" w:right="1800" w:bottom="1440" w:left="1800" w:header="720"

 w:footer="720" w:gutter="0"/>

 <w:cols w:space="720"/>

 <w:docGrid w:line-pitch="360"/>

 </w:sectPr>

 </wx:sect>

 </w:body>

The indentation of each paragraph in this result is defined using the w:ind element. The value of the w:left attribute in
each case is computed (by XML2WORD.XSL) based on the paragraph's depth within the merged source document's
element hierarchy.

The ns2 namespace prefix on each of the custom XML element names is an auto-generated prefix mapped to the press
release namespace, http://xmlportfolio.com/pressRelease, which is declared on the w:wordDocument root element (not
shown in this excerpt). Each custom XML element is an intervening element in the hierarchy between w:p elements and
the w:body element (ignoring the intervening wx:sect element). Wherever a w:p element may occur, so may a custom
XML element. All of the custom XML elements in this example are block-level custom elements, meaning that they
occur as siblings and parents of w:p or w:tbl elements (just w:p elements in this example).

Custom XML elements must be present for on-the-fly schema validation to work correctly. Also, by keeping the XML
tags around, it is easy to preserve them when the document is saved, simply by stripping out all of the
WordprocessingML markup (through the process called "Save data only," which we'll take a closer look at).

Although the result document of an onload XSLT transformation must be a WordprocessingML document, strictly
speaking it is not required to have any custom XML tags. However, in both of the examples shown so far—Word's built-
in "Data only" stylesheet (XML2WORD.XSL), and our press release example's "Elegant" stylesheet (pr2word.xsl)—the
result does include custom XML tags. (The reason you can't see them in the "Elegant" view is that they are hidden by
turning off the "Show XML Tags" option; see the next section.)

The only time you might not want to use custom tags is when you are sure you can translate from the plain
WordprocessingML format back to your custom XML format when the user saves the document (using an onsave XSLT
stylesheet), and when you don't need schema validation. By using styles in conjunction with editing and/or formatting
restrictions, you may be able to pull this off. Your onload and onsave XSLT stylesheets would need to translate between
your custom XML elements and special editing regions or styles that you have set up for this purpose. In fact, part of
our press release example does just this, as we'll see later in the section called "The `Apply Custom Transform'
Document Option." But even in that case, we rely on the use of custom XML tags and on-the-fly validation for other
parts of the editing view.

4.6.1 The "Show XML Tags" Option

Another thing to note about the pink tags displayed in Word's "Data only" view is that they can be made invisible.
Although the XML Structure task pane (which we'll introduce later) includes a checkbox for turning "Show XML Tags" on
and off, there is also a quick keystroke command that will do the trick. Ctrl-Shift-X toggles this option on and off. For
example, if you hit Ctrl-Shift-X after opening the document we saw in Figure 4-11, then the tags will disappear, leaving
the view shown in Figure 4-12.

Figure 4-12. The "Data only" view with "Show XML tags" turned off

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-12. The "Data only" view with "Show XML tags" turned off

The only difference between Figure 4-11 and Figure 4-12 is that the "Show XML tags" option is turned off in Figure 4-
12; otherwise, all of the document formatting is identical.

Word's generic "Data only" view and our press-release-specific "Elegant" view both contain custom XML tags. The
primary visible difference between them is that "Show XML tags" is turned on in the "Data only" view but turned off in
the "Elegant" view. If a particular document does not dictate whether the option should be turned on or off, then Word
defaults to the last setting chosen within the Word application. For this reason, both stylesheets explicitly specify the
intended setting, using the w:showXMLTags literal result element inside the w:docPr element. Here is the relevant excerpt
from XML2WORD.XSL, Word's default "Data only" stylesheet:

 <!-- set Word document properties for raw XML - save as raw XML and

show XML tags in the document -->

 <w:docPr>

 <w:view w:val="web" />

 <w:removeWordSchemaOnSave w:val="on" />

 <w:showXMLTags w:val="on" />

 </w:docPr>

As you can see, the w:showXMLTags option has the explicit value of on. In contrast, the "Elegant" stylesheet for press
releases, pr2word.xsl, explicitly turns this document option off:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

releases, pr2word.xsl, explicitly turns this document option off:

 <w:docPr>

 <!-- ... -->

 <w:showXMLTags w:val="off"/>

 </w:docPr>

Just to prove that the custom XML elements really are present in the "Elegant" press release view, Figure 4-13 shows
what the view would look like if a user turned "Show XML tags" on, for example, by pressing Ctrl-Shift-X.

Figure 4-13. The "Elegant" press release view after turning "Show XML tags" on

4.6.2 Block-Level, Run-Level, Row-Level, and Cell-Level Tags

In the merged representation of custom XML and WordprocessingML that we saw in Example 4-3, there were only
block-level custom tags, i.e., custom XML elements that occurred as siblings and parents of w:p (or w:tbl) elements. As
it happens, custom XML elements may also occur at other places within the WordprocessingML document hierarchy.
They may occur as "inline," or run-level, elements (siblings and parents of w:r elements), row-level elements (siblings
and parents of w:tr elements), and cell-level elements (siblings and parents of w:tc elements). In each case, they
behave slightly differently. In this section, we'll examine block-level and run-level custom tags. See "Table Rows and
Repeating Elements" later for a discussion of row-level and cell-level custom tags.

Run-level custom tags are necessary to support multiple elements within the same paragraph. Whenever mixed content
is needed, run-level tags are necessary. Word renders run-level tags slightly differently than their block-level, row-
level, and cell-level counterparts. Instead of labeling both the start and end tags, Word labels only the start tag and
colors both the start and end tags solid pink. Figure 4-14 shows a close up of Word's block-level and run-level tags in
an excerpt from our original press release template (with "Show XML tags" turned on).

Figure 4-14. Block-level versus run-level tags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The contact element is a block-level tag. It contains two paragraphs and itself is contained within a table cell, which, like
the main document body, is a legal block-level context. The firstName, lastName, phone, and date elements are all run-
level tags.

Example 4-4 shows the WordprocessingML that corresponds to the visual excerpt in Figure 4-14. We've left out some
details for now (particularly having to do with styles and editing restrictions) so that it would be easy to follow the basic
structure. All of the custom tags within this excerpt are highlighted.

Example 4-4. Block-level and run-level custom tags in WordprocessingML

 <w:tbl>

 <!-- ... -->

 <w:tr>

 <w:tc>

 <w:tcPr><!-- ... --></w:tcPr>

 <ns0:contact>

 <w:p>

 <w:r>

 <w:t>Contact: </w:t>

 </w:r>

 <ns0:firstName w:placeholder="[First]">

 <w:r>

 <w:t/>

 </w:r>

 </ns0:firstName>

 <w:r>

 <w:t> </w:t>

 </w:r>

 <ns0:lastName w:placeholder="[Last]"/>

 <w:r>

 <w:t/>

 </w:r>

 </ns0:lastName>

 </w:p>

 <w:p>

 <w:r>

 <w:t>Phone: </w:t>

 </w:r>

 <ns0:phone w:placeholder="[xxx-xxx-xxxx]"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ns0:phone w:placeholder="[xxx-xxx-xxxx]"/>

 <w:r>

 <w:t/>

 </w:r>

 </ns0:phone>

 </w:p>

 </ns0:contact>

 </w:tc>

 <w:tc>

 <w:tcPr><!-- ... --></w:tcPr>

 <w:p>

 <w:r>

 <w:t>FOR IMMEDIATE RELEASE</w:t>

 </w:r>

 </w:p>

 <w:p>

 <ns0:date w:placeholder="[YYYY-MM-DD]"/>

 <w:r>

 <w:t/>

 </w:r>

 </ns0:date>

 </w:p>

 </w:tc>

 </w:tr>

 </w:tbl>

Once again, the namespace prefix (ns0) is an automatically generated prefix mapped to the namespace URI for our
press release schema. The ns0:contact element is a block-level element, in that it is a parent of w:p elements and could
have w:p (or w:tbl) element siblings. The ns0:firstName, ns0:lastName, ns0:phone, and ns0:date elements are all run-level
elements, in that they are contained in run-level contexts—as children of w:p elements and as siblings of w:r elements.
They themselves also contain w:r elements. Although all of these elements occur inside a table, none of them happen to
occur as row-level or cell-level elements.

4.6.3 Placeholder Text

Another thing that Example 4-4 shows is how placeholders for custom XML elements are represented in
WordprocessingML. The placeholder text is a property of the element instance itself, represented by the w:placeholder
attribute. Placeholder text is only visible on an element field when the "Show XML tags" option is turned off, when the
element is a leaf node (i.e., it contains no other custom XML tags), and when the element is currently empty of any text
content. Figure 4-15 shows what the placeholder text looks like for this excerpt, after turning "Show XML tags" back off.

Figure 4-15. Placeholder text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Placeholder text can be applied to any custom XML tag, whether block-level, run-level, row-level, or cell-level.

4.6.4 Table Rows and Repeating Elements

Without the help of Smart Documents, end users normally won't be able to create or delete custom XML elements (let
alone attributes) in a reliable and user-friendly way. Instead, they are limited to filling out static templates of fixed XML
elements. For the most part, this scenario is what our press release example illustrates. However, you can enable end
users to edit a repeating list of XML elements without invoking Smart Document technology by exploiting a special
property of row-level custom XML tags.

Here's how it works. Given a table row that has a row-level custom tag applied to it, the user can create new rows in
the table, complete with custom tags, simply by hitting the Tab key. This is easiest to explain by example. Consider the
WordprocessingML document in Example 4-5. It contains a table with one row and two cells, each of which are
contained within custom XML elements. Appropriately named, the myRow element is a row-level tag, and the myCell1
and myCell2 elements are cell-level tags.

Example 4-5. A table with row-level and cell-level custom tags

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">

 <w:body>

 <myRoot>

 <w:p/>

 <w:tbl>

 <myRow>

 <w:tr>

 <myCell1>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="4000" w:type="dxa"/>

 </w:tcPr>

 <w:p/>

 </w:tc>

 </myCell1>

 <myCell2>

 <w:tc>

 <w:tcPr>

 <w:tcW w:w="4000" w:type="dxa"/>

 </w:tcPr>

 <w:p/>

 </w:tc>

 </myCell2>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </myCell2>

 </w:tr>

 </myRow>

 </w:tbl>

 <w:p/>

 </myRoot>

 </w:body>

</w:wordDocument>

Figure 4-16 shows that the user can easily create new rows in this document just by hitting the Tab key at the end of
each row. Each new row is contained within a myRow element, and each row contains myCell1 and myCell2 elements. The
final product you deliver to end users, of course, will have "Show XML tags" turned off, and will probably include some
meaningful labels, etc.

Figure 4-16. Using table rows to create repeating elements

This behavior also holds true for cell-level custom tags regardless of whether they are contained in a custom row-level
tag. For example, if we removed the myRow tags from Example 4-5, the myCell1 and myCell2 elements would still repeat
when the user inserts a new row into the table. Even block-level custom tags inside table cells exhibit this behavior—
provided that the initial block-level custom tag contains the entire content of the table cell, i.e., it has no sibling w:p or
w:tbl elements. Run-level tags in table cells never behave this way; they are never automatically replicated on table row
insertion.

When a new row is created, the newly created XML element automatically adopts the same placeholder text that the
original had. However, custom XML attributes (which, as we'll see, are represented as literal attributes on custom XML
elements) are not replicated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elements) are not replicated.

You can leverage the unique behavior of custom tags and table rows to allow end users to create new instances of a
repeating element type declared in your schema. Unfortunately, apart from the visible schema violation flags, the
definitions in your schema have no effect on the behavior of the table. If a custom XML tag is wired to a table row or
cell in one of the ways described above, then Word will replicate that tag on row insertion, regardless of how the
element is declared in the schema.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.7 Attaching Schemas to a Document
A given WordprocessingML document can have one or more schemas "attached" to it. The purpose of schema
attachment is to enable two things:

On-the-fly schema validation as the user edits the document

Schema-driven editing functionality

Schema validation happens automatically as a user edits the document. If a particular element declared in an attached
schema is present in the document and does not conform to the type defined in the schema, then Word will flag this as
an error. We've seen examples of this in our press release example, for certain simple types such as xsd:date.

Schema-driven editing functionality is exposed through the XML Structure task pane (covered below) and the Document
Actions task pane (covered in Chapter 5).

The Word UI allows you to manually attach schemas to the currently open document. Figure 4-17 shows the
appropriate dialog, which you can access by selecting Tools Templates and Add-Ins XML Schema.

Figure 4-17. Manually attaching an XML schema to a document

The "Available XML schemas" list contains the aliases for all of the schemas in the schema library. In this example, the
Press Release checkbox is checked, which means that the press release schema is attached to the current document.
Multiple schemas can be attached to the same document, just as elements from multiple namespaces can be used in
the same XML document.

The Add Schema... button lets you browse for an XSD schema document file in order to add it to your machine's
schema library. By default, it also attaches the schema to the document—automatically checking the corresponding
checkbox that newly appears in the "Available XML schemas" list. The Schema Library button opens the Schema Library
dialog, which we looked at earlier.

4.7.1 Demystifying Schema Attachment

If all you ever do is manually attach schemas through the Word UI, the process of "schema attachment" may seem a
little mysterious. The first thing to do is to stop thinking of it as a process. Instead, think of it as a property of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

little mysterious. The first thing to do is to stop thinking of it as a process. Instead, think of it as a property of the
underlying WordprocessingML document. Secondly, it's important to understand that Word treats namespaces and
schemas as virtually synonymous. That a "schema is attached" to a document means nothing more than the fact that a
non-WordprocessingML namespace declaration is present somewhere inside the WordprocessingML document. A "non-
WordprocessingML namespace declaration" is a declaration for any namespace other than the namespaces reserved for
Word that were introduced in Chapter 2. So when Word says that a schema is attached to a document, it really means
that a namespace is attached.

The fact that a schema is attached to the document is independent of whether a corresponding schema library entry is
present on the current user's machine. It doesn't even matter if the document contains an element or attribute that
uses the namespace.

Example 4-6 shows a simple WordprocessingML document with a schema attached, i.e., with a namespace declaration
that is not among one of Word's reserved namespaces.

Example 4-6. A WordprocessingML document with a "schema attached"

<?xml version="1.0"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

 xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

 xmlns:foo="http://xmlportfolio.com/pressRelease">

 <w:body/>

</w:wordDocument>

If someone in our imaginary PR department opened this document in Word and selected Tools Templates and
Add-Ins . . . XML Schema, they would see something very similar to the dialog box we saw in Figure 4-8
(assuming they already have the Press Release schema in their schema library). Specifically, the Press Release
checkbox would be checked. As far as Word is concerned, the mere presence of the namespace declaration (anywhere
in the document) means that the schema is attached, regardless even of whether any elements or attributes in the
document use the namespace.

What happens if the user doesn't have a corresponding schema library entry? In that case, the schema is no less
attached, because we've defined "schema attachment" as the presence of a non-WordprocessingML namespace
declaration. However, in this case, the attached schema would be considered "unavailable." Figure 4-18 shows how the
Word UI handles this scenario.

Figure 4-18. An attached, but unavailable, schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, a checkbox is still checked, meaning that "a schema is attached." The only difference is that, since
there is no corresponding schema library entry, this schema is considered to be "Unavailable." And without a
corresponding XSD schema document, schema validation and schema-driven editing are not possible.

Thus, for schema validation to work correctly, two conditions must hold:

The schema must be attached (the namespace must be declared in the document)

The schema must be available (in the machine's schema library).

Now let's relate all of this back to our primary use case—using Word as an XML editor. If you recall the basic processing
model, the first thing that happens when Word opens an arbitrary XML document is that an XSLT stylesheet is applied
to it, converting it to WordprocessingML. Even though the schema library is consulted to see which XSLT stylesheet to
apply (based on the namespace of the document's root element), no schemas have been attached at this point.

Whether a schema is ultimately attached to the document that the user edits is completely determined by whether the
result of the onload XSLT transformation includes any non-WordprocessingML namespace declarations. Of course, if the
result document contains any custom XML elements in your schema's namespace, then the schema will de facto be
attached (because you can't have an element without declaring its namespace). And since schema validation is usually
only useful when custom XML elements are already present, schema attachment is usually an automatic thing you don't
have to think about; it just happens. Even so, understanding how it works is helpful for debugging and for explaining
where unwanted "unavailable" schemas come from—namely, wayward namespace declarations in the result of the
onload transformation. (The onload XSLT stylesheets will therefore often use the exclude-result-prefixes and extension-
element-prefixes attributes to prevent unwanted namespace declarations appearing in the WordprocessingML document.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.8 Schema-Driven Editing
Schema-driven XML editing describes the ability to give the user choices according to the document context they are in,
guiding the editing process according to constraints in the schema, and keeping them from creating invalid documents.
For example, in the context of an element whose type definition consists of an exclusive xsd:choice group, the user could
be prompted to choose among the valid element choices in that context but disallowed from selecting more than one of
the choices. This kind of guided editing perfectly describes the aim of Smart Documents, introduced in Chapter 5.

Unfortunately, Word does not provide any sort of robust, schema-driven editing functionality out of the box. (Once
again, check out InfoPath in Chapter 10, if that's what you need.) However, there is some limited schema-aware editing
functionality available in Word, specifically through the XML Structure task pane and the Attributes dialog. We'll
examine those now and discuss how they can still be useful.

4.8.1 The XML Structure Task Pane

The XML Structure task pane is available whenever a document has a schema attached to it. It provides a tree view of
the custom XML elements in the merged instance document. Figure 4-19 shows the XML Structure task pane for our
press release template.

Figure 4-19. The XML Structure task pane

The tree view shows the local name of each custom XML element in the document. The small yellow "X" icons represent
schema validation errors. Since this document is our empty press release template, a number of elements are not yet
valid, because they are empty. Specifically, the zip, phone, fax, phone, and date elements are all invalid. You can see the
specific validation error by right-clicking the element name. In this case, the user has right-clicked "date," yielding a
pop-up message showing the details of the problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pop-up message showing the details of the problem.

By clicking on different parts of the tree, you can jump to different parts of the document. Though the main pane isn't
shown here, you can determine that the cursor is currently inside the company element, because "company" is
highlighted in the XML Structure task pane.

Clicking the "Show XML tags in the document" checkbox is equivalent to pressing Ctrl-Shift-X; it toggles the option on
or off.

Finally, the list at the bottom of the task pane gives you some choices of elements to insert into the document at the
current cursor position or to "apply" to your current selection in the document. If you click one of these names, Word
will insert a new instance of that element into the document. If the "List only child elements of current element"
checkbox is checked (which it is, by default), the list will contain only the possible children of the current element,
according to the schema. If it is unchecked, you'll get a list of all element names declared in the schema. In this case,
since the checkbox is checked and the current context is the company element, only the name and address elements are
listed. The list does not change according to what elements are already present in the document or what order they're
in; it's not that smart. In other words, it won't keep you from making invalid insertions.

Thus, the XML Structure task pane tells you if something's wrong, but it doesn't keep you from doing something wrong
in the first place. In that respect, it scores a 100% on validation, and something far less than 100% on schema-driven
editing. So, if the XML Structure task pane is just a poor man's version of schema-driven XML editing, what good is it?
If it's not user-friendly and doesn't keep users from getting into trouble, why is it a part of the Word application at all?
Fortunately, there is a good answer to this question. The XML Structure task pane, rather than being primarily a tool for
end users, is an excellent tool for developers in building custom XML editing solutions for Word. In fact, the XML
Structure task pane was used heavily in the creation of our press release template. See Section 4.13 later in this
chapter.

4.8.2 Editing Attributes

You may have noticed that our press release schema (conveniently) does not declare any attributes. There is a reason
for this. Without using Smart Documents, Word provides only one way to directly edit custom XML attributes: the
Attributes dialog. You can open the Attributes dialog either by right-clicking an element in the XML Structure task pane
or by right-clicking the custom XML tag itself (assuming "Show XML tags" is turned on). Figure 4-20 shows the
Attributes dialog for the date element in our press release template.

Figure 4-20. The Attributes dialog

Since our schema does not declare any attributes for the date element (or any other element for that matter), the list of
"Available attributes" is empty. If there were legal attributes for the date element, then the user could select one from
the list, enter its value in the Value text box, and click the Add button. The attribute would then be added to the
"Assigned attributes" list, and would be added as a normal XML attribute to the start tag of the date element in the
underlying WordprocessingML representation.

The Attributes dialog performs one other function; it lets you specify what the placeholder text for a particular element
instance should be. In this case, the placeholder text for the date element is [YYYY-MM-DD]. While this feature may seem
out of place in the Attributes dialog, in a certain sense it is appropriately positioned, because the underlying
representation of placeholder text (as we saw in Example 4-4) is an attribute, namely the w:placeholder attribute. In any
case, this is not something the end user would normally edit. This adds support to the argument that it's unreasonable
to force users to edit attributes using the Attributes dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to force users to edit attributes using the Attributes dialog.

Like the XML Structure task pane, the Attributes dialog may not be terribly useful for end users, but it can be handy for
developers in creating custom XML editing solutions, at least insofar as it allows you to insert placeholder text via the
Word UI, as you are constructing your template. See Section 4.13 later in this chapter.

4.8.2.1 A workaround for editing attributes

As implied above, the use of Smart Documents could allow users to edit attributes without using the generic Attributes
dialog. However, there is also a way to enable users to edit attribute values without resorting to Smart Document
programming. It is true that the Attributes dialog is the only way to directly edit custom XML attributes in Word, but by
using both an onload stylesheet and an onsave stylesheet, you can enable users to indirectly edit attributes without
using the Attributes dialog. Here's how it works. First, the onload XSLT stylesheet translates the attributes to elements,
so that users can edit them as elements. Then, the onsave stylesheet translates them back to attributes when the user
saves the document. In this approach, the schema in the schema library does not necessarily reflect the actual
structure of the XML documents being edited, but rather an intermediate structure that exists only for the purpose of
editing within Word. Such restructuring is a typical use case for onsave XSLT transformations, which we'll discuss in
"The `Apply Custom Transform' Document Option" later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.9 Schema Validation
When a schema is attached to a document, Word performs on-the-fly schema validation of the document's embedded
custom XML, visibly flagging errors as the user edits. However, since the custom XML tags are intertwined with
WordprocessingML elements, Word first needs to strip out the Word-specific markup before it can validate the
document. This is actually the same process—the "Save data only" process—that optionally occurs in step 3 of our
processing model diagram (in Figure 4-7), when a user saves the document. What is not evident in that diagram is the
fact that the "Save data only" process is also invoked repeatedly while the user is editing the document (during step 2).
The difference here is that, rather than permanently stripping out the WordprocessingML markup, it does so temporarily
just for the purpose of validation.

4.9.1 The "Ignore Mixed Content" Document Option

When Word strips out the WordprocessingML markup in order to validate the embedded XML document, by default it
leaves all text content (inside w:t elements) intact. Our press release template, however, includes boilerplate text that is
not actually part of our data. If this text is included in the remaining XML document, then it will be invalid according to
the press release schema. Example 4-7 shows what a press release XML document would look like if all of the text
remained intact after stripping out the WordprocessingML markup.

Example 4-7. An invalid press release document, including template boilerplate
text

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?mso-application progid="Word.Document"?>

<pressRelease xmlns="http://xmlportfolio.com/pressRelease"><company><name>ACME

Corp.</name><address><street>555 Market St.</street><city>Seattle</city>,

<state>WA</state> <zip>98101</zip>Phone <phone>222-222-2222</phone>Fax <fax>333-

333-3333</fax></address></company>Press Release<contact>Contact:

<firstName>John</firstName> <lastName>Doe</lastName>Phone: <phone>444-444-

4444</phone></contact>FOR IMMEDIATE RELEASE<date>2004-01-23</date><title>This is

the Headline</title><body><para>This is the lead-in, and this is not. The rest of

the paragraph has no formatting either.This is the second paragraph. These are just

regular Word paragraphs. They do not correspond to custom XML

elements.</para></body>-End-</pressRelease>

The highlighted segments of Example 4-7, such as Phone and FOR IMMEDIATE RELEASE, are pieces of boilerplate text from
the press release template. They are not supposed to be part of the data. Thus, merely stripping out the
WordprocessingML markup is not sufficient. It is also necessary to strip out the boilerplate text. How is this done? Well,
the boilerplate text in this example happens to represent the only mixed content text in the document, and Word
happens to provide a document option called "Ignore mixed content." By turning this option on, you can effectively strip
out the boilerplate text in this and other similar examples, for the purpose of validation.

The "Ignore mixed content" document option can be viewed as a parameter to the "Save data only" process. It affects
both on-the-fly schema validation as well as the document saving process when the "Save data only" document option
is turned on. (The precise behavior of this process is approximated using an XSLT stylesheet listed later in this chapter,
under "The `Save Data Only' Document Option".)

In our press release template, the "Ignore mixed content" document option is turned on, but the "Save data only"
document option is turned off. This means that mixed content text is stripped out for the purpose of on-the-fly schema
validation, but it is not stripped out when the document is saved. (Instead, our press release template uses a custom
onsave XSLT stylesheet applied directly to the merged XML and WordprocessingML representation.)

The "Ignore mixed content" document option is represented in WordprocessingML using the w:ignoreMixedContent
element. Our press release application's "Elegant" stylesheet, pr2word.xsl, turns the option on by generating a
w:ignoreMixedContent element in the result document, just like this one:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w:ignoreMixedContent element in the result document, just like this one:

 <w:docPr>

 <!-- ... -->

 <w:ignoreMixedContent/>

 <!-- ... -->

 </w:docPr>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Creating XML Templates in Word
The standalone and Office 2003 Professional versions of Microsoft Office Word 2003 include additional XML functionality
not available in Office 2003 Standard. Specifically, they provide support for custom XML schemas. By providing your
own XSD schema, you can create solutions that enable end users to edit custom XML from within Word. While Word's
custom XML functionality does not provide as much power as a traditional XML editor, it does give you some helpful
building blocks for custom Word-based XML editing applications. Ultimately, if you want to build anything but the
simplest XML editing solutions, you will also need to utilize the Document Actions task pane through the use of Smart
Document technology, as introduced in Chapter 5.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 What's a Smart Document?
A Smart Document has built-in intelligence that assists the information worker in the process of creating and updating
documents and spreadsheets. Smart Documents can query a web service for the latest financial information about a
company and automatically insert the returned data into the document. They can access a corporate database and
retrieve client information necessary to complete a contract. They can connect to a document repository or portal site
and retrieve reusable fragments, such as standard legal notices and disclaimers, or product and service descriptions,
and add them to a new or existing document. They can validate that a user has supplied all of the necessary
information before saving and forwarding it on to the next step in the workflow. Providing quick and easy access to
accurate, up-to-date information and eliminating the need for re-keying or copying from one application to another,
Smart Documents can be of tremendous benefit to the end user, especially for editing XML documents.

Word 2003's core XML support provides no method for associating elements in context with Word styles. This is
standard functionality in the market-leading XML-for-documents applications and is typically accomplished through
some type of stylesheet (DSSSL, FOSI, CSS, or proprietary solutions). As we saw in Chapter 4, an onload XSLT
stylesheet can apply styles to an existing XML instance when it is first opened in Microsoft Word. However, once any
changes have been made to the document, the XML Document task pane (which is used to select an onload stylesheet)
is no longer available. Without a Smart Document solution, not only would the end user have to manually select each of
the appropriate elements to be inserted into the document (using the XML Structure task pane or selecting "Apply XML
Element" from the pop-up menu), they would also need to manually associate formatting information with each text
fragment created.

Unlike traditional XML authoring applications such as Arbortext's Epic Editor or Adobe's FrameMaker, Smart Documents
are capable of keeping the markup under the covers; users can peek if they wish, but there is no requirement for them
to learn all about XML schemas and the particular vocabulary and grammar associated with their documents.

Smart Document technology is new in Office 2003 and designed to work with Word and Excel. An extension of the
Smart Tags API introduced in Office XP, Smart Documents extend the programmability of these desktop tools to
support development of solutions. A solution is dedicated to a particular task, such as writing a technical manual, a
sales proposal, a quarterly SEC filing, or an expense report, and incorporates functionality designed to make the
information worker's job easier. Smart Documents require an XML framework, and can include all of the features and
functionality of the applications themselves through the use of the Word or Excel Object Models. Smart Documents can
also be extended through the use of Web Services, SharePoint Services, and other database connectivity methods to
dynamically populate and update content. Smart Documents can also incorporate workflow capabilities, such as
checking on save that all required components have been supplied and then forwarding the document to a manager for
approval. Microsoft provides support for Smart Document development in several languages: Visual Basic 6.0, Visual
C++ 6.0, Visual Basic .NET, and Visual C# .NET.

The Smart Document SDK (sdocsdk.msi) can be downloaded from the Microsoft web site.
Since the location is subject to change, the best way to locate the file is to go to:
http://www.microsoft.com and search for sdocsdk.msi. The SDK includes documentation,
help files, and several sample applications (including source code) developed in each of the
four supported languages.

While it has been possible for quite some time to automate certain functions within the Microsoft Office Suite, a Smart
Document raises the art to a new level. The Microsoft Office 2003 "System" provides a robust software development
environment for building custom applications within no-longer-ordinary desktop tools. Rather than macros residing in
individual template or document files, Smart Document code is distributed via a .dll that is associated with the
document or spreadsheet through a manifest file. The developer is given access to the Task Pane where numerous
actions are displayed for the end user along with help content. New protection functionality means that user access can
be controlled on a granular level. You can restrict the use of styles, allowing you, rather than the end user, to control
the formatting through the Smart Document application. Sections of the document can be protected, ensuring that
required content is not accidentally removed. The document appears to have some level of intelligence about what it is
and how it works.

5.1.1 Smart Document Solutions

A solution, also referred to as an "expansion pack," consists of several components. At a minimum, an expansion pack
contains the following:

A .dll

A schema

A manifest file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A manifest file

In addition, it most likely will also include one or more templates and help files, XSLT files, and potentially media files
(images, audio or video clips, etc.). Microsoft Word solutions might also include document fragments.

While Smart Document solutions can be built for either Word or Excel, this chapter focuses
on the intricacies of developing solutions for Microsoft Office Word 2003.

5.1.2 Smart Document Components

Each component of a Smart Document plays an integral part in the overall solution. Care must be taken to ensure that
each component is synchronized with the others; if an element name has been modified in the schema and is the
subject of a Smart Document control, it must also be updated in the programming code and any XSLT files. Since
pointers to fragments are to absolute paths, care must be taken to ensure that each file is included in the installation
and placed in the appropriate location. The Smart Document components are as follows:

Schemas

Schemas are the foundation of any structured markup implementation. A schema defines a vocabulary and
grammar for a specific purpose, such as the creation of semiconductor datasheets, legal contracts, or user
manuals. "Vocabulary" refers to the unique identifiers assigned to each of the components of the information
set (i.e., elements), and "grammar" refers to the rules of how the words can be put together to form larger
groups. Careful analysis of the information set is required to ensure that the schema to be used will provide the
necessary support.

Styles and templates

Templates are, for the most part, empty documents that contain all the necessary information about a
particular document type to allow new document instances to be created. In particular, this includes page
layouts, styles, header/footer information, and fonts. There are four style categories in Word: paragraph,
character, list, and table. Each named style is based on one of these four types and contains numerous settings
that define the placement and appearance of any content associated with that specific style. For a Smart
Document solution, there is another critical component: a shell XML instance with placeholder text. Boilerplate
content may also be included.

XSL transformations

XSL transformations play a vital role in a Word Smart Document solution. As described in Chapter 4,
transformations can be called when either opening or saving a document, manipulating the source or resulting
data as necessary. Transformations can also be incorporated into the solution itself to apply styles and other
formatting characteristics, or otherwise affect the result of an action.

.dll files

The functionality of a Smart Document solution operates through the ISmartDocument interface. The properties
and methods of ISmartDocument, in conjunction with the objects, properties, and methods of the Word or Excel
Object Model, are the workhorses of the solution.

Manifest file

The manifest file is an XML instance that defines each of the expansion pack components and their locations. It
also contains other valuable information about the solution that can be used to automatically trigger updates.

Miscellaneous files

There can be numerous files associated with a Smart Document solution, including image, sound and video
files, document fragments, help files, Access database files, other XML files, and just about anything else that
may be necessary (or useful) for your particular application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.10 Some Final Thoughts
While far from perfect, Smart Document technology gives the developer tremendous flexibility in creating intelligent
document applications that will readily handle time-consuming tasks such as locating information, retrieving it, and
inserting it into a document, as well as support for the creation of documents with built-in intelligence thanks to the
incorporation of XML markup. For the most part, applications developed as of this writing have proven to be fairly
stable, other than the areas specifically pointed out in this chapter.

While the resulting applications are working well, the development process tends to leave substantial amounts of
garbage that goes uncollected. Be sure to clean out all temp files regularly (at least daily) to avoid additional problems.
The frequent act of attaching/detaching manifest files/expansion packs may be necessary during development and
testing is likely to cause Word to crash. Be sure you don't have any other Word documents open while debugging; you
may end up losing some of your work.

As mentioned earlier, most sample applications provided in the Smart Document SDK or articles posted to the MSDN
web site revolve around "data islands" combined with generic content elements that hold all of the content that is not
associated with specific XML markup. For a number of applications, this approach is perfectly reasonable and should be
considered.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Creating a Smart Document Solution
The document shown in Figures Figure 5-1 and Figure 5-2 was created using a fairly simple Smart Document solution.
The remainder of the chapter will walk through each of the steps involved in building a similar application. While far
from robust, it touches on each of the major capabilities incorporated into the Smart Document API and will hopefully
set your imagination in motion.

Figure 5-1. Article created with Smart Document solution

Figure 5-2. Article with XML Tag View on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Smart Document solutions can be created using Visual Basic 6, Visual Basic .NET, C++ 6, or C# .NET. The examples in
this section are all written using VB .NET; however, the Microsoft Office 2003 Smart Document SDK includes examples
in all four languages.

A number of articles relating to the creation of Smart Documents can be found on the
MSDN web site at http://msdn.microsoft.com/office.

The following components (schemas, XML instance, templates, and styles) will be used as the basis for the examples in
this section. The schema is fairly simplistic and included for demonstration purposes only; the intended usage is for
magazine article submissions.

5.2.1 Schemas

As mentioned in Chapter 2, Microsoft Office 2003 supports only W3C XML schemas. If you're working with existing
SGML or XML document instances, it's likely that you'll have DTDs rather than schemas associated with these instances.
This section provides some insight about migrating or extending existing XML environments to Microsoft Word. While far
from an exact science, the following guidelines will help you avoid problem areas. Only through experimentation will
you be able to determine what works best for your particular applications.

5.2.1.1 Existing Word environments

Chances are good that if your users are already using Microsoft Word to author, revise, and maintain their documents,
you'll be able to create a schema and build a suitable XML-based Smart Document solution. Documents that incorporate
information from external sources can take advantage of database connectivity and web services to automatically
populate information and ensure that it is always current.

5.2.1.2 Existing XML (or SGML) environments

Numerous organizations already take advantage of structured markup for document authoring, editing, and delivery. If
you are planning to develop a smart document solution using an existing DTD or schema, give careful consideration to
the applicability of such schemas to the goals of the tasks to be designed in Word. If you are working with a schema
that is fairly complex, it might be more appropriate to create subsets and build a suite of solutions focused on specific
tasks.

Characteristics of a complex schema include, but are not limited to:

More than a handful of elements allowed at common insertion points

Numerous elements with similar meaning that can easily be confused

Elements rarely used

Deep structures (common to DTDs and schemas that are designed to produce multi-volume information sets)

If your organization has an existing repository of XML documents, an analysis of the markup actually used versus what
is allowed by the schema can be a valuable resource. Not only will this aid in the development of any Smart Document
solutions, it can also serve to simplify any other tools already in existence that must be supported.

Refer to Appendix D for information on converting already-existing DTDs to schemas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refer to Appendix D for information on converting already-existing DTDs to schemas.

5.2.1.3 Starting from scratch

If your organization doesn't already have DTDs or schemas in place, you will need to either create your own, or find
schemas in the public domain suited to the task at hand. It's important to keep the goals of the project in mind while
developing schemas; these goals will play an important role in determining the level of granularity to be supported and
the specificity of the markup itself, while ensuring that markup will be interchangeable with any other known processes.

5.2.1.3.1 Customer-specific DTDs or schemas

The process of performing an analysis on an information set for the purpose of creating schemas can be quick and easy,
drawn out and complex, or anywhere in between. It depends on several factors:

Depth of information set (very complex markup models to support external processes, such as reference works
or aircraft documentation versus newspaper articles or consumer-oriented user guides)

Breadth of information set (multiple information delivery types from a single source, such as user guides,
administrative manuals, reference manuals, training materials, and marketing materials versus single-purpose
documents such as sales proposals or white papers)

External information sets (compatibility with other data sets that will become inputs, integrated with, or accept
result data from the solution)

Any and all potential users should have some input into the analysis; it is common for different departments to use
different names for similar components, or to view data in very different ways from each other. These differences do
not need to be reconciled; instead, unique Smart Document solutions can be created that are targeted to the various
groups. One common information set with XML at its core; different frontend applications designed to meet the needs of
the individual information worker: that's the power of XML!

5.2.1.3.2 DTDs or schemas developed by committee

Organizations often use industry-standard or consortia-developed schemas. One mistake to avoid is choosing an
existing schema rather than developing your own because it seems like the easier thing to do. Before making this
decision, it is important that an analysis is performed of your organization's information set, and that the goals and
objectives of your overall project are documented. The results can then be evaluated against the existing schema to
determine whether or not the chosen schema is appropriate for your organization. Chances are that once you've done
the analysis work, you'll discover that creating the actual schema is a simple task, and your organization won't be
dependent an outside group for maintenance and revisions.

When using a particular schema in order to meet governmental or corporate requirements, it is usually possible to
create a simplified subset for your particular application. The subset will be valid within the overall schema, yet the
developers and end users will not need to deal with some of the inherent complexities of these behemoths. Another
alternative is to create a mapping from your internal schema to the one required. This will allow your end users to work
in an environment that is familiar to them, yet still enable your organization to meet the stated requirements by
transforming the resulting information set.

Microsoft Word has always been suited to a certain class of documents, and this hasn't really changed in Office 2003. If
you are currently using Word to produce your documents, then chances are that you'll be able to build an XML-enabled
smart document solution to accommodate it. If your documents currently require a more sophisticated composition
tool, such as Adobe's FrameMaker, or a full-time dedicated XML editor, such as Arbortext's EpicEditor, then Word, even
with Smart Documents, most likely will not be able to support your requirements unless you are creating a simplified
solution.

5.2.1.4 The SDArticle schema

The SDArticle schema is by no means comprehensive, but it is enough to show how Smart Documents work. As shown
in Example 5-1, it consists of an article root element, followed by a title and introductory paragraphs. From there the
article is divided into four levels of sections, which contain a mix of paragraphs, lists, warnings, notes, and code blocks.
Inline elements consist of emphasis, subscript, superscript, and code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-1. The SDArticle example schema (whitespace added for readability)

<xs:schema targetNamespace="http://www.office-xml.com/ns/sdarticle"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.office-xml.com/ns/sdarticle"
 elementFormDefault="qualified">

<xs:element name='Article'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='ArticleTitle'/>
 <xs:choice maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='Section1'/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name='ArticleTitle'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='BulletList'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Item' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name='Code'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='CodeExample'>
 <xs:complexType mixed='true'>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Emphasis'/>
 <xs:element ref='Superscript'/>
 <xs:element ref='Subscript'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='Definition'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Para' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Emphasis'>
 <xs:complexType mixed='true'>
 <xs:attribute name='CDATA' default='italic'>
 <xs:simpleType>
 <xs:restriction base='xs:string'>
 <xs:enumeration value='bold'/>
 <xs:enumeration value='italic'/>
 <xs:enumeration value='underscore'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='Heading1'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Heading2'>
 <xs:complexType mixed='true'>
 </xs:complexType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xs:complexType>
 </xs:element>

 <xs:element name='Heading3'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Heading4'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Item'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Para' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Note'>
 <xs:complexType>
 <xs:choice maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='NumberList'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Item' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Para'>
 <xs:complexType mixed='true'>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Code'/>
 <xs:element ref='Emphasis'/>
 <xs:element ref='Superscript'/>
 <xs:element ref='Subscript'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section1'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading1'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 <xs:element ref='Section2' minOccurs='0' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section2'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading2'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 <xs:element ref='Section3' minOccurs='0' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section3'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading3'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 <xs:element ref='Section4' minOccurs='0' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Section4'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Heading4'/>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='CodeExample'/>
 <xs:element ref='VariableList'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 <xs:element ref='Note'/>
 <xs:element ref='Warning'/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name='Subscript'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Superscript'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='Term'>
 <xs:complexType mixed='true'>
 </xs:complexType>
 </xs:element>

 <xs:element name='VariableEntry'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='Term'/>
 <xs:element ref='Definition'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='VariableList'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='VariableEntry' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='Warning'>
 <xs:complexType>
 <xs:choice maxOccurs='unbounded'>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:choice maxOccurs='unbounded'>
 <xs:element ref='Para'/>
 <xs:element ref='NumberList'/>
 <xs:element ref='BulletList'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

While having a schema is important, it is also a good idea to create a sample instance for development and testing that
incorporates each of the elements (and their possible attribute values) and the context in which they can occur. This
helps to ensure that you don't leave anything out, whether in your style setup, your actions pane, or your
transformations. Example 5-2 shows just such a sample instance.

Example 5-2. A sample document conforming to the SDArticle schema

<?xml version="1.0" encoding="UTF-8"?>
<Article xmlns="http://www.office-xml.com/ns/sdarticle">
 <ArticleTitle>Article Title</ArticleTitle>
 <Para>This is the introductory paragraph.</Para>
 <Section1>
 <Heading1>Heading 1</Heading1>
 <Para>This is a paragraph. ... This is a paragraph.
 <Emphasis CDATA="italic">This sentence is in italics.</Emphasis>
 This is a paragraph.<Superscript>1</Superscript>
 </Para>
 <CodeExample>Code Example Code Example Code Example
 Code Example Code Example Code Example
 Code Example Code Example Code Example</CodeExample>
 <VariableList>
 <VariableEntry>
 <Term>Term1</Term>
 <Definition>
 <Para>Definition of term1.</Para>
 </Definition>
 </VariableEntry>
 <VariableEntry>
 <Term>Term2</Term>
 <Definition>
 <Para>Definition of term2.</Para>
 </Definition>
 </VariableEntry>
 </VariableList>
 <NumberList>
 <Item>
 <Para>Numbered list item 1</Para>
 </Item>
 <Item>
 <Para>Numbered list item 2</Para>
 </Item>
 ...
 </NumberList>
 <BulletList>
 <Item>
 <Para>Bulleted list item 1</Para>
 </Item>
 <Item>
 <Para>Bulleted list item 2</Para>
 </Item>
 ...
 </BulletList>
 <Note>
 <Para>This is a note. ... This is a note.</Para>
 <NumberList>
 <Item>
 <Para>Numbered list inside a note - item 1.</Para>
 </Item>
 <Item>
 <Para>Numbered list inside a note - item 2.</Para>
 </Item>
 </NumberList>
 </Note>
 <Warning>
 <Para>This is a warning. ... This is a warning.</Para>
 <BulletList>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <BulletList>
 <Item>
 <Para>Bulleted list inside a warning - item 1</Para>
 </Item>
 <Item>
 <Para>Bulleted list inside a warning - item 2</Para>
 </Item>
 </BulletList>
 </Warning>
 <Section2>
 <Heading2>Heading 2</Heading2>
 <Para>This is a paragraph. <Emphasis CDATA="italic">This sentence
 is bold.</Emphasis> This is a paragraph.<Superscript>2</Superscript>
 </Para>
 ...
 <Section3>
 <Heading3>Heading 3</Heading3>
 <Para>This is a paragraph. <Emphasis CDATA="italic">This sentence
 Is underscored.</Emphasis> This is a paragraph.
 <Superscript>3</Superscript>
 </Para>
 ...
 <Section4>
 <Heading4>Heading 4</Heading4>
 <Para>This is a paragraph. <Code>This is inline code.</Code>
 This is a paragraph.<Superscript>4</Superscript>
 </Para>
 ...
 </Section4>
 </Section3>
 </Section2>
 </Section1>
</Article>

Figure 5-3 shows Example 5-2 loaded into Word 2003.

Figure 5-3. Sample instance in Word 2003

5.2.2 Templates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Templates are keepers of styles. It is not uncommon to have several templates, each using the same set of style
names, but with different formatting characteristics and page layouts defined in each. This allows the same XML
schema, transformations, and Smart Document code to be used to create multiple document types.

5.2.3 Styles

The most common way to associate formatting characteristics with XML elements is through the use of styles. A style is
merely shorthand for any number of individual traits, such as font, point size, leading, indent, pre-space, post-space,
widow/orphan rules, hyphenation rules, and the like. While it is possible to use individual codes (often referred to as
primitives) to affect the desired visual appearance, it is typically avoided.

When creating a Smart Document solution, a set of styles should be created that conforms to the desired look. You will
need to create a separate style for each level of heading, for various types of paragraphs, and for any other unique
components that are part of your document set. You should also create character styles to apply inline formatting
characteristics such as bold, bold italic, superscripts, and the like. Office 2003 allows styles to be protected; by creating
named styles for each type of formatting required you can prevent the end user from creating new styles, modifying
existing styles, and using the formatting icons on the toolbar, ensuring a consistent appearance for your documents.

For more information on creating styles and templates, refer to Walter Glenn's Word 2000
in a Nutshell and Word Pocket Guide (O'Reilly).

The sample application will need several styles. Each of these styles will be applied to the document based on the
particular element. Elements alone will not be sufficient to identify the appropriate style; instead, we'll need to evaluate
the element in the context of its surroundings—its parent, ancestors and siblings. The paragraph style names (and their
associated schema elements) are listed in Table 5-1.

Table 5-1. Paragraph styles
Paragraph style name Element-in-context

ArticleTitle ArticleTitle

SectionHead1 Heading1

SectionHead2 Heading2

SectionHead3 Heading3

SectionHead4 Heading4

ParagraphDefault Para

NumberListItem <NumberList><Item><Para>

BulletListItem <BulletList><Item><Para>

Note <Note><Para>

NoteNumberListItem <Note><NumberList><Item><Para>

NoteBulletListItem <Note><BulletList><Item><Para>

Warning <Warning><Para>

WarningNumberListItem <Warning><NumberList><Item><Para>

WarningBulletListItem <Warning><BulletList><Item><Para>

VariableListEntry <VariableEntry>

CodeBlock <CodeExample>

Character styles, listed in Table 5-2, are also necessary. Note that several styles are determined by an attribute value
rather than by an element's positioning within the overall structure of the document instance.

Table 5-2. Character styles
Character style name Element-in-context

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Italic <Emphasis type="italic">

Bold <Emphasis type="bold">

Underscore <Emphasis type="underscore">

Superscript <Superscript>

Subscript <Subscript>

InlineCode <Code>

As long as you keep the names of your styles consistent, you will be able to use the same
transformations and smart document solution code with multiple styles and templates.

Our sample XML instance in Word 2003, with styles associated as indicated above and with the Styles and Formatting
task pane displayed, is shown in Figure 5-4.

Figure 5-4. Sample XML instance in Word 2003

5.2.4 Shell Instance

Many Word templates contain placeholder text; that is, text that describes to the end user the type of content that is to
be inserted at a particular location within the document. When creating a template for a Smart Document solution, the
template should include a shell XML instance, containing at least the top-level element that will be used for the
particular document type as well as any required elements and structure guidelines. When tags are turned off (which is
anticipated to be the default mode for most Smart Document applications), the user will see, instead, placeholder text.
Not only does this serve as a form of help, it also ensures that the information worker knows exactly where content is
allowed within the XML document structure. Once the shell is in place, the Document Actions Task Pane will take over
the job of displaying the various options that are allowed at any particular point within the instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the job of displaying the various options that are allowed at any particular point within the instance.

5.2.5 Boilerplate

Another common feature of a template is boilerplate text. This may be default header/footer content, legal notices,
company descriptions, or any other information that is routinely included as part of the particular document type.
Storing the content directly in the template means it will be included automatically each time the template is used and
also provides a single location for updating.

A template, shown in Figure 5-5, has been created that contains the requisite page layout information along with the
styles listed in Tables Table 5-1 and Table 5-2. Since styles are linked to specific XML elements, the styles have been
protected, meaning that no additional styles can be added to the document, the styles cannot be changed, and only
those styles listed can be used. A minimal document instance is included as part of the template to get the end user
started.

Note the placeholder text (the shaded gray areas) as well as the grayed out areas on the toolbar. Since the styles have
been protected, the user does not have the option of selecting the bold, italic, justification, or other formatting icons.
Placeholder text is only displayed when tags are turned off, the anticipated mode for most end users.

Figure 5-5. Smart document authoring template with protected styles

5.2.6 XSL Transformations

XSLT plays a vital role in any Smart Document solution. As illustrated in Chapter 4, transformations are used to
integrate external schemas with WordprocessingML in order to create formatted Word documents. Transformations can
also be invoked when saving a document, including the built-in transform that extracts all Word-related markup, leaving
only the external schema-related markup in the result instance. A third use for transformations may not be quite as
obvious: transformations can be invoked as part of any action called from the Document Actions Task Pane. This allows
for styles to be applied as markup is inserted in the instance.

Only the InsertXML method, available on both Selection and Range objects, supports running transformations within
document actions. This can be very handy when inserting blocks of XML markup, associated styles, and placeholder
text. For instance:

Range.InsertXML("<VariableList></VariableList> ", "path\transform.xsl")

will insert the element VariableList and then call the named XSLT file. InsertXML must return a valid WordprocessingML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will insert the element VariableList and then call the named XSLT file. InsertXML must return a valid WordprocessingML
document; upon matching the root, all the necessary WordprocessingML markup is inserted down to the opening w:body
element. At that point, the appropriate template is selected (matching the element VariableList). Rather than executing
the numerous steps involved one by one, the transform, as shown in Example 5-3, performs all steps in a single pass.

Example 5-3. An XSLT transformation for applying style to markup inserted in an
instance

<xsl:template match="/">

 <w:body>
 <xsl:apply-templates select="*"/>
 </w:body>
 </w:wordDocument>
</xsl:template>

<xsl:template match="VariableList">
 <w:p/>
 <ns0:VariableList>
 <w:p>
 <w:pPr>
 <w:pStyle w:val="VariableListEntry"/>
 </w:pPr>
 <ns0:VariableEntry>
 <ns0:Term w:placeholder="Enter term here">
 <w:r>
 <w:rPr>
 <w:rStyle w:val="Term"/>
 </w:rPr>
 <w:r>
 <w:t/>
 </w:r>
 </w:r>
 </ns0:Term>
 <w:r>
 <w:tab/>
 </w:r>
 <ns0:Definition>
 <ns0:Para w:placeholder="Enter description or definition of term">
 <w:r>
 <w:t/>
 </w:r>
 </ns0:Para>
 </ns0:Definition>
 </ns0:VariableEntry>
 </w:p>
 </ns0:VariableList>
 <w:p/>
</xsl:template>

When creating action transformations, keep your WordprocessingML markup to a minimum; that is, only use what is
required to create a valid WordprocessingML document instance. Otherwise you may suffer from performance issues.

See Chapter 4 and Appendix B for more information on using XSLT with Word.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Coding the Smart Document
Now that you have the XML foundation laid, it's time to integrate the data with code for manipulating it.

5.3.1 Required Document Actions

For our Smart Document solution, several actions will be required:

Apply markup and style to inline components (superscript, subscript, bold, italic, underscore, and code).

Insert block-level components (paragraphs, code blocks, lists, notes, and warnings).

Insert additional entries into lists.

Insert boilerplate warnings.

Add a graphic.

Create a hyperlink to a specific location.

Each action will contain a caption, a description, and help information for the end user. Upon selection, the appropriate
markup will be inserted and styles applied. Pay careful attention to the Notes and Warnings; Microsoft Word, in this first
release of Smart Document functionality, doesn't always behave as expected.

In general, beware of the cursor location. The values returned by your code may not be
what you anticipated; this might be due to the current setting of the tag display.

Also, paragraph styles can only be applied to objects that look like a paragraph. If your
markup runs in with another style, it will either inherit the current style characteristics or
change the entire block to the new style.

5.3.2 Designing the Document Actions Task Pane

You have created, tested, tweaked, and refined your schemas. Your stylesheets are elegant, sophisticated, funky, or
whatever other look is suited to the task at hand. The XSL transformations take your existing XML instances and
magically convert them into documents any Word user would love. Unfortunately, the end users will never see most of
this work. Instead, they will use a very simple interface that masks the complexities buried deep inside the solution.
They will use it to add content, to manipulate the markup, and to serve as a guide throughout the document creation
and revision cycles.

Remember—it's all about end users. If your solution does not make users' jobs easier, increase their productivity, raise
the quality of the final products they produce, and provide other clearly visible benefits, end users will not use it. Or
they will not use it properly. The XML that comes out of the backend will be useless—or at least in need of some help.
The reason knowledge workers have been anxiously awaiting the time when they could work with their structured
content in Microsoft Word is because of Word's familiar interface. The goal of the UI designer is to ensure that the
Document Actions task pane meets their expectations.

Achieving this goal may not be easy. The Document Actions task pane is the end user's interface to the Smart
Document solution. It would be nice if the Microsoft Word developers had created a method by which you could
associate actions with a specific element, or even better yet, an element in context (such as title when its parent
element is table versus title when its parent element is chapter), but that isn't how it works. Actions are associated with
elements, but rather than limit the action to the confines of the element boundaries, the actions instead are inherited
by child and descendent elements as well. This means that if your structure contains five levels—<document><section>
<procedure><step><paragraph>—and the cursor is positioned somewhere within paragraph, any actions associated with
the document, section, procedure, step, and paragraph elements will be visible in the task pane.

The Document Actions task pane refreshes each time the location of the insertion point
within the document instance changes. Be sure to design the interface with this in mind,
eliminating lengthy re-draws whenever possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The task pane, shown in Figure 5-6, appears by default on the right-hand side of the application window. It
automatically displays any available document actions whenever a Smart Document solution is attached. As it takes up
only about 20% of the available real estate, it's important that the content associated with each of the actions is clear
and concise, taking maximum advantage of the limited space.

Figure 5-6. Authoring template and Document Actions task pane

For each Smart Document element defined, the task pane will display one or more controls associated with the element
(as long as the element is an ancestor of the current insertion point). There are only a few options available to help
format the display. In order to make the task pane as user-friendly as possible, each control group should begin with a
caption and possibly some very brief explanatory text indicating how the actual control(s) should be used, followed by
the controls themselves, and some help text that provides additional details about their usage.

Good user interface design principles call for consistent usage of display elements. While it
is possible to use all 15 control types within a single Smart Document solution, selecting
the best control for the task at hand and then using that same control for similar tasks will
shorten training time and help ensure proper usage.

5.3.3 The Word Object Model

If you've ever written Word macros or done Visual Basic for Applications (VBA) programming, you've probably
encountered the Word Object Model. An interactive map of the model can be found in Microsoft Office Word 2003 Help

 Microsoft Word Visual Basic Reference Microsoft Word Object Model. Unfortunately, all of the sample code
contained in the help files is written in VBA rather than VB.NET or any of the other languages used for creating Smart
Documents. All is not lost, however; there's a section in the Visual Studio Tools for Office help system that discusses
converting code from VBA to VB.NET.

The two most commonly used objects are Range and Selection. The Selection object represents the area currently

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The two most commonly used objects are Range and Selection. The Selection object represents the area currently
selected, or the current insertion point. The Range object can be either manually set or created from a Selection object.
In most of our code samples, we begin by determining the current cursor location and setting a Range object equivalent
to an XML element and its content (XML Node); that is, everything between a start and end element tag, including the
tags themselves. We then typically collapse the node so we can insert a new element, assign the appropriate style, and
then add placeholder text so the end user will know exactly where to enter the new content.

The Word object model is covered in depth in the Microsoft Word Visual Basic Reference included in the Microsoft Office
Word 2003 help files, and in Writing Word Macros by Steven Roman (O'Reilly). There are a number of additions to the
Word Object Model in Word 2003; a few are detailed below. They are the objects and methods most likely to be
referenced in a Smart Document application since they deal specifically with XML.

5.3.3.1 XML additions to the Word object model

The Word 2003 object model includes five new objects and collections as well as enhancements to the Application,
Document, Range, and Selection objects. These are documented in the Microsoft Office Word 2003 help files under
"What's New" as well as under their respective group headings. Some of the key pieces that you'll need for Smart
Documents development include:

InsertXML

The InsertXML method applies to both Range and Selection objects and is used to insert either
WordprocessingML or customer-specific schema elements and associated content. It can also be used in
conjunction with transformations, taking some minimal source data, running through a transform to apply
styles, and then inserting the results into the document instance.

Use caution when using the InsertXML method as it will replace any existing text in the
Range or Selection object.

XMLNode(s)

The XMLNodes collection represents each of the XML elements within a document. The XMLNode object is the
workhorse of a Smart Document and allows XML elements to be selected, added, deleted, or validated. It is also
used to add placeholder text. Numerous tests can be performed against an XMLNode, and it can be used to
access first child, last child, parent, previous sibling, and other objects.

XMLParentNode

The XMLParentNode property is used, as the name suggests, to return the parent node of the current XML node.
It is used in conjunction with ranges and selections:

Dim oParagraphNode As Word.XMLNode

oParagraphNode = Selection.XMLParentNode

In addition to being able to guide the information worker through the process of creating, revising, and updating
documents, most XML-related events can be captured and cause code to be executed:

XMLAfterInsert

Any time that new XML markup is inserted in the document, the XMLAfterInsert event will be accessible. If the
end user is inserting markup through the XML Structure task pane, this event could be used to add appropriate
style information or other WordprocessingML markup. It could also be used to populate required child elements,
mimicking some of the types of functions that could be programmed into the Document Actions task pane.

XMLBeforeDelete

While the Smart Document solution described in this chapter will handle the creation of an XML instance,
making modifications to that document could easily result in an instance that is no longer valid. This is
particularly true if the user tries to perform cut and paste operations. By trapping the XMLBeforeDelete event, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

particularly true if the user tries to perform cut and paste operations. By trapping the XMLBeforeDelete event, the
developer can ensure that the content to be deleted will not result in breaking the document structure by
preventing the deletion of any elements that would result in an invalid instance. Instead, additional actions
could be triggered that would guide the author through the editorial process.

XMLValidationError

Any time a validation error occurs within a document instance, the XMLValidationError event will be activated. It
returns the XML node that is invalid, and can be used to either remove the offending node or add the necessary
components to return the instance to a valid state.

XMLSelectionChange

Each time the parent node of the current cursor position changes, the XMLSelectionChange event is initiated. Both
the previous and new nodes can be evaluated, along with the reason:

Delete—the previous selection was deleted

Insert—text has been inserted

Move—the insertion point has been moved

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Coding in VB.NET
We're finally ready to begin writing the actual code, a task more tedious than difficult. The ISmartDocument interface is
cumbersome, requiring numerous steps to set up the task pane controls. A bit of planning before beginning to actually
write the code can be very beneficial. Here's what you're going to need to know:

the number of XML elements that will have actions associated with them

the actual name of each of those elements (including namespace)

The caption to be associated with each of those actions

The number of individual controls that will be used in each action

The name to be associated with each control

The caption to be associated with each control

The type (C_TYPE) to be associated with each control

The location of any external document fragments or images

The actual copy for document fragments that will be coded within the .dll

Help content for each control (either embedded within the .dll or external file references)

The individual choices for any list boxes, combo boxes, and radio groups

A description of each control's behavior

In order to write code that will integrate all of this, we'll review some of the basic features of the Word object model in
conjunction with Visual Basic. Each of these specific tasks is explained in more detail below.

5.4.1 Creating a New Project

Creating a Smart Document project in Visual Studio is a straightforward task. If you are familiar with the Microsoft
Office development environment, you might anticipate being able to use Visual Studio Tools for Office to automate the
process. Unfortunately, this isn't the case. Visual Studio Tools for Office (VSTO) is basically a set of wizards that
facilitate the creation of managed code development projects for Word documents, templates, and Excel spreadsheets.
It automatically associates the appropriate Office Primary Interop Assemblies (PIAs) with the project and uses the
custom properties dataset to associate the .dll with the actual document. Instead, we'll manually create the project and
reference the necessary libraries. The steps below walk you through creating a new Visual Basic project.

1. Launch Visual Studio .NET.

2. Create a New Project.

3. Select Visual Basic Projects as the Project Type.

4. Select Class Library as the Template.

5. Specify a name and location for your project. Your screen should now look like Figure 5-7.

Figure 5-7. Visual Studio .NET 2003 New Project window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-7. Visual Studio .NET 2003 New Project window

6. Verify that the information you provided is accurate, and click OK to generate the project.

The next step is to include the libraries for Word, Smart Tags, and Internet Explorer Controls (the last of which is
needed to enable a hypertext link, one of our requisite actions).

1. Right-click on References in the Solution Explorer and select Add Reference.

2. Select the COM tab, and locate Microsoft Smart Tags 2.0 Type Library.

3. Double-click to add the reference.

4. Locate Microsoft Word 11.0 Object Library.

5. Double-click to add the reference.

6. Locate Microsoft Internet Controls.

7. Double-click to add the reference.

Your Solution Explorer pane should look like Figure 5-8.

Figure 5-8. Visual Studio .NET Solution Explorer references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last bit of setup will make coding a bit simpler. We need to associate the Word and Smart Tag Primary Interop
Assemblies (PIAs) with our code. Insert the following two Imports statements into the code window:

Imports Microsoft.Office.Interop.SmartTag

Imports Word = Microsoft.office.Interop.Word

And finally, declare the class for the Smart Document:

Public Class ArticleSmartDocument

End Class

5.4.2 Declaring Constants

To get started, you need to declare a few constants. The first is a constant that references the namespace of the
external schema:

'Namespace constant

Const cNAMESPACE As String = "http://www.office-xml.com/ns/sdarticle"

You also need a constant for each of the elements within the external schema that will have a set of controls associated
with it. Remember, which controls are visible is dependent upon the current cursor location. Any controls that are
associated with the current element, its parent, or an ancestor will be displayed in the Document Actions task pane. By
looking at the ancestry of each of the desired actions, we can determine where best to place the controls. Once again,
our requisite actions are as follows:

Apply markup and style to inline components (superscript, subscript, bold, italic, underscore, and code).

Insert block-level components (paragraphs, code blocks, lists, notes and warnings).

Insert additional entries into lists.

Insert boilerplate warnings.

Add a graphic.

Create a hyperlink to a specific location.

The first action involves mixed content. It will insert the selected element at the current cursor location; therefore the
action should be displayed only if such elements would be valid. Since the only two elements that allow these elements
as children are Para and CodeExample, an action will need to be created for each of those two elements.

The next action involves inserting block-level structures. These can be inserted at numerous points throughout the
document instance; therefore it makes the most sense to place these controls on the Article element where they will
always be visible.

Similar to inline elements, the Item element is only allowed in one specific context—as child of a list. Similarly,
VariableEntry is only allowed in a variable list. Separate controls should be created for each of the three list type
elements.

The boilerplate Warning is another block-level structure; it already contains the actual content of the warning itself.

The last two actions do not involve the creation of markup. We'll place those on the root element as well.

Table 5-3 lists the actions we'll incorporate in this document.

Table 5-3. Actions used in the sample document

Desired action Elements Parent
elements

Control
element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Insert superscript, subscript, bold, italic, underscore, and inline
code

Emphasis

Subscript

Superscript

Para Para

Insert paragraphs, code blocks, lists, notes, and warnings

Para

VariableList

NumberList

BulletList

Note

Warning

Section1

Section2

Section3

Section4

Note

Warning

Article

Insert additional list items

Item

VariableEntry

NumberList

BulletList

VariableList

NumberList

BulletList

VariableList

Insert boilerplate warnings
Warning

Section1

Section2

Section3

Section4

Article

Insert a logo graphic
Article

Insert a hyperlink reference
Article

To define the constants for the individual elements, the element identifier is preceded by a pound (#) symbol and
appended to the namespace:

'Element constants

Public Const cARTICLE As String = cNAMESPACE & "#Article"

Public Const cPARAGRAPH As String = cNAMESPACE & "#Para"

Public Const cCODE As String = cNAMESPACE & "#CodeExample"

Public Const cBULLET_LIST As String = cNAMESPACE & "#BulletList"

Public Const cNUMBER_LIST As String = cNAMESPACE & "#NumberList"

Public Const cVARIABLE_ENTRY As String = cNAMESPACE & "#VariableEntry"

Make sure that the element identifier is spelled correctly, including proper capitalization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last constant defines the number of elements in our schema that will have controls associated with them; this is
simply a tally of the constants defined earlier:

'Number of types (or element constants)

Const cTYPES As Integer = 6

5.4.2.1 The ISmartDocument interface

In order to access the ISmartDocument interface, it must first be implemented in the class:

Implements ISmartDocument

All members of the interface must be implemented, whether or not they will actually be used. Omission is considered a
syntax error. In Visual Studio .NET 2003, merely entering the above line will automatically add each member to the
code window. If you are using Visual Studio .NET 2002, you will need to manually add each member.

Visual Studio .NET 2003 adds each of the requisite interfaces in alphabetical order; Table 5-4 shows them in order of
completion.

Table 5-4. Members of the ISmartDocument interface
Member name Description

SmartDocInitialize Runs when an expansion pack is attached to a document or a Smart Document is
opened

SmartDocXmlTypeCount Specifies the number of elements that have actions assigned to them

SmartDocXmlTypeName Name of an element with associated controls

SmartDocXmlTypeCaption Caption for a group of controls

ControlCount Specifies the number of controls

ControlID Unique number for an individual control

ControlNameFromID Associates a name with an ID

ControlCaptionFromID Specifies the Smart Document control captions

ControlTypeFromID Specifies the type of control

PopulateActiveXProps Specifies the content of the control type with the values provided

PopulateCheckbox Specifies the content of the control type with the values provided

PopulateDocumentFragment Specifies the content of the control type with the values provided

PopulateHelpContent Specifies the content of the control type with the values provided

PopulateImage Specifies the content of the control type with the values provided

PopulateListOrComboContent Specifies the content of the control type with the values provided

PopulateOther Specifies the content of the control type with the values provided

PopulateRadioGroup Specifies the content of the control type with the values provided

PopulateTextboxContent Specifies the content of the control type with the values provided

ImageClick Specifies actions to be performed when clicked by the user

InvokeControl Specifies actions to be performed when clicked by the user

OnCheckboxChange Specifies actions to be performed when clicked by the user

OnListOrComboSelectChange Specifies actions to be performed when clicked by the user

OnRadioGroupSelectChange Specifies actions to be performed when clicked by the user

OnPaneUpdateComplete Specifies actions to be performed when the task pane has been updated and populated

OnTextboxContentChange Specifies actions to be performed when the user changes the value of a text box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.2 SmartDoc Initialization and Foundations

The first few members of the ISmartDocument that you'll need to deal with handle initialization and basic setup.

5.4.2.2.1 SmartDocInitialize

Any actions that need to be run when a Smart Document is opened or attached, such as initializing variables, should be
called here. In our sample application, we do not have any required actions on initialize other than to set a constant to
the installation path of the Smart Document components. This will allow future references to file components without
having to explicitly identify the absolute path:

Public Sub SmartDocInitialize(ByVal ApplicationName As String, _

ByVal Document As Object, ByVal SolutionPath As String, _

ByVal SolutionRegKeyRoot As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocInitialize

' set strPath to installation path

 strPath = SolutionPath & "\"

End Sub

Remember the long list of items to gather before you actually begin to code your Smart Document actions? Here's
where they get put to good use as part of the tedious process required to set up the Smart Document task pane and tell
the application when each control should be displayed.

5.4.2.2.2 SmartDocXMLTypeCount

This is the first property that must be defined. It specifies the number of elements defined in the schema that will have
controls associated with them. This value is passed to SmartDocXMLTypeName. Since we created a constant earlier, we
can simply return its value:

Public ReadOnly Property SmartDocXmlTypeCount() As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCount

 Get

 Return cTYPES

 End Get

End Property

5.4.2.2.3 SmartDocXMLTypeName

Once the number of control sets has been defined, each one must now be assigned a name, which will be used to
reference the control set in the other properties. The names themselves are arbitrary:

Public ReadOnly Property SmartDocXmlTypeName(ByVal XMLTypeID As Integer) As String_

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeName

 Get

 Select Case XMLTypeID

 Case 1 'element Article

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 1 'element Article

 Return cARTICLE

 Case 2 'element Para

 Return cPARAGRAPH

 Case 3 'element CodeExample

 Return cCODE_EXAMPLE

 Case 4 'element BulletList

 Return cBULLET_LIST

 Case 5 'element NumberList

 Return cNUMBER_LIST

 Case 6 'element VariableEntry

 Return cVARIABLE_ENTRY

 End Select

 End Get

End Property

5.4.2.2.4 SmartDocXMLTypeCaption

While the name assigned in SmartDocXMLTypeName will be used by the actual code, the caption is what will be displayed
in the Document Actions task pane—formatted as a bold heading over the individual controls:

Public ReadOnly Property SmartDocXmlTypeCaption(ByVal XMLTypeID As Integer, _

ByVal LocaleID As Integer) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.SmartDocXmlTypeCaption

 Get

 Select Case XMLTypeID

 Case 1 'element Article

 Return "Article"

 Case 2 'element Para

 Return "Character Formatting (Paragraph)"

 Case 3 'element CodeExample

 Return "Character Formatting (Code Block)"

 Case 4 'element BulletList

 Return "Bulleted List Items"

 Case 5 'element NumberList

 Return "Numbered List Items"

 Case 6 'element VariableEntry

 Return "Variable List Items"

 End Select

 End Get

End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Property

A caption must be created for each Case defined earlier. The caption should be something that will be meaningful to
your end users.

Without a caption, any associated controls will not appear in the task pane. This can be
used to your benefit; while the default behavior is to always display controls that are
active based on current cursor location, setting one or more captions to null will prevent
them from being displayed.

The next few members of the ISmartDocument interface are about managing GUI components, called controls.

5.4.2.2.5 ControlCount

The ControlCount property defines how many individual controls will be used in each of the defined cases. For each of the
list elements only one control is needed; the appropriate option will be chosen and the action will be taken immediately.
In the inline scenario (for both paragraphs and code blocks) we'll need three: a text box, a choice group, and a submit
button. We'll need four for the root element: one for the block templates, one for the hypertext link, one for the logo
insertion, and one for the insertion of boilerplate text.

There are two additional controls that can be added to each element set: a separator and help content. While not
absolutely necessary, displaying help in the Document Actions task pane will provide the end user with an easily
accessible reference:

Public ReadOnly Property ControlCount(ByVal XMLTypeName As String) As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlCount

 Get

 Select Case XMLTypeID

 Case cARTICLE

 Return 6

 Case cPARAGRAPH

 Return 5

 Case cCODE_EXAMPLE

 Return 5

 Case cBULLET_LIST

 Return 3

 Case cNUMBER_LIST

 Return 3

 Case cVARIABLE_ENTRY

 Return 3

 End Select

 End Get

End Property

5.4.2.2.6 ControlID

Unique IDs must be assigned to each control in the task pane. This is important because it is common to have more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unique IDs must be assigned to each control in the task pane. This is important because it is common to have more
than one set of controls active at any point in time. Assigning IDs is a two-step process. The first step is to associate a
range of IDs with each element. The ControlIndex will always start with 1. Here we just increment each additional control
set by 100:

Public ReadOnly Property ControlID(ByVal XMLTypeName As String, _

ByVal ControlIndex As Integer) As Integer _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlID

 Get

 Select Case XMLTypeName

 Case cARTICLE

 Return ControlIndex

 Case cPARAGRAPH

 Return ControlIndex + 100

 Case cCODE_EXAMPLE

 Return ControlIndex + 200

 Case cBULLET_LIST

 Return ControlIndex + 300

 Case cNUMBER_LIST

 Return ControlIndex + 400

 Case cVARIABLE_ENTRY

 Return ControlIndex + 500

 Case Else

 Return 0

 End Select

 End Get

End Property

5.4.2.2.7 ControlNameFromID

The next step is to associate each individual control with a unique ID, based on the values declared above. We don't
have to list each and every name/ID pair; this method will take care of it for us:

Public ReadOnly Property ControlNameFromID(ByVal ControlID As Integer) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlNameFromID

 Get

 Return cNAMESPACE & ControlID.ToString

 End Get

End Property

5.4.2.2.8 ControlCaptionFromID

Now that each control has a unique ID, individual captions can be defined:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that each control has a unique ID, individual captions can be defined:

Public ReadOnly Property ControlCaptionFromID(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object) As String _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlCaptionFromID

 Get

 Select Case ControlID

 'element Article

 Case 1

 Return "Insert Authoring Templates"

 Case 2

 Return "Insert Logo"

 Case 3

 Return "Access our Web Site"

 Case 4

 Return "Insert Warnings"

 Case 5

 Return "Separator"

 Case 6

 Return "Help"

 'element Para

 Case 101

 Return "Enter word or phrase"

 Case 102

 Return "Select formatting style"

 Case 103

 Return "INSERT"

 Case 104

 Return "Separator"

 Case 105

 Return "Help"

 'element CodeExample

 Case 201

 Return "Enter word or phrase"

 Case 202

 Return "Select formatting style"

 Case 203

 Return "INSERT"

 Case 204

 Return "Separator"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return "Separator"

 Case 205

 Return "Help"

 'element BulletList

 Case 301

 Return "INSERT"

 Case 302

 Return "Separator"

 Case 303

 Return "Help"

 'element NumberList

 Case 401

 Return "INSERT"

 Case 402

 Return "Separator"

 Case 403

 Return "Help"

 'element VariableEntry

 Case 501

 Return "INSERT"

 Case 502

 Return "Separator"

 Case 503

 Return "Help"

 End Select

 End Get

End Property

Captions on individual controls are most often displayed directly above the control, captions for text boxes are displayed
to the left, and captions for buttons are displayed on the actual button.

In the case of an ActiveX control, the return value would be set to the GUID (Global Unique Identifier) of the control.

If an element only has a single control associated with it, the control caption can be used
to provide additional information that will be helpful to the end user.

5.4.2.2.9 ControlTypeFromID

The last step in defining the controls is to identify the specific type of control to be associated with each unique ID.
There are 15 control types:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are 15 control types:

C_TYPE.C_TYPE_ACTIVEX

C_TYPE.C_TYPE_BUTTON

C_TYPE.C_TYPE_CHECKBOX

C_TYPE.C_TYPE_COMBO

C_TYPE.C_TYPE_DOCUMENTFRAGMENT

C_TYPE.C_TYPE_DOCUMENTFRAGMENTURL

C_TYPE.C_TYPE_HELP

C_TYPE.C_TYPE_HELPURL

C_TYPE.C_TYPE_IMAGE

C_TYPE.C_TYPE_LABEL

C_TYPE.C_TYPE_LINK

C_TYPE.C_TYPE_LISTBOX

C_TYPE.C_TYPE_RADIOGROUP

C_TYPE.C_TYPE_SEPARATOR

C_TYPE.C_TYPE_TEXTBOX

This gives the developer a number of choices for designing the look and feel of the Document Actions task pane. While
it is possible to use all 15 control types in a single Smart Document solution, it isn't recommended. In particular, check
boxes, combo boxes, list boxes, and radio groups can all be applied to similar use cases.Choose one of these four
choice types and use it consistently throughout the application.

The ability to add ActiveX controls extends the possibilities available to the developer. There are hundreds of ActiveX
controls available from Microsoft and third-party developers, or you can custom-build your own. Using ActiveX controls
in Smart Documents can be a bit tricky, as they often do not behave as expected. If you are new to the world of
Microsoft application development, you may want to stick with the other control types until you become more familiar
with some of the intricacies of ActiveX objects.

Public ReadOnly Property ControlTypeFromID(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer) _

As Microsoft.Office.Interop.SmartTag.C_TYPE _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ControlTypeFromID

 Get

 Select Case ControlID

 'element Article

 Case 1

 Return C_TYPE.C_TYPE_RADIOGROUP

 Case 2

 Return C_TYPE.C_TYPE_IMAGE

 Case 3

 Return C_TYPE.C_TYPE_LINK

 Case 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 4

 Return C_TYPE.C_TYPE_DOCUMENTFRAGMENTURL

 Case 5

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 6

 Return C_TYPE.C_TYPE_HELPURL

 'element Para

 Case 101

 Return C_TYPE.C_TYPE_TEXTBOX

 Case 102

 Return C_TYPE.C_TYPE_LISTBOX

 Case 103

 Return C_TYPE.C_TYPE_BUTTON

 Case 104

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 105

 Return C_TYPE.C_TYPE_HELPURL

 'element CodeExample

 Case 201

 Return C_TYPE.C_TYPE_TEXTBOX

 Case 202

 Return C_TYPE.C_TYPE_COMBO

 Case 203

 Return C_TYPE.C_TYPE_BUTTON

 Case 204

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 205

 Return C_TYPE.C_TYPE_HELPURL

 'element BulletList

 Case 301

 Return C_TYPE.C_TYPE_CHECKBOX

 Case 302

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 303

 Return C_TYPE.C_TYPE_HELP

 'element NumberList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'element NumberList

 Case 401

 Return C_TYPE.C_TYPE_CHECKBOX

 Case 402

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 403

 Return C_TYPE.C_TYPE_HELP

 'element VariableEntry

 Case 501

 Return C_TYPE.C_TYPE_CHECKBOX

 Case 502

 Return C_TYPE.C_TYPE_SEPARATOR

 Case 503

 Return C_TYPE.C_TYPE_HELP

 End Select

 End Get

End Property

5.4.2.3 Populating controls

Now that each of the individual controls has a unique identifier, a caption, and a type, the contents of the individual
controls can be populated. There are multiple methods involved, each one focused on a specific type (or types) of
control.

The ISmartDocProperties interface is a common set of key/value pairs that can be used to control the appearance of the
Document Actions task pane. They are accessed via the Populate methods.

The only method applicable to ISmartDocProperties is the write method, which is set through the use of key/value pairs:

Props.Write("Expanded", "False")

Table 5-5 lists the properties you can set with the write method and what they do.

Table 5-5. Writeable ISmartDocProperties keys
Property (key) Applies to Description

X All controls The left starting position in the task pane

Y All controls The starting distance from the top of the task pane or the previous
control

H All controls The height of the control

W All controls The width of the control

Align All controls Horizontal justification (left, right, center)

Layout All controls Direction of text flow in control (LTR, RTL)

SectionCaptionDirection All controls Direction of text flow in caption (LTR, RTL)

FontFace Text captions Typeface

FontSize Text captions Point size

FontStyle Text captions Special formatting (none, italic, underline, strikeout)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontWeight Text captions Weight (normal, bold)

NumberOfLines Text box, list box, combo
box Number of lines visible without scrolling

IsEditable Text box, list box, combo
box Whether or not the user can modify the contents (true, false)

ControlOnSameLine Text box, list box, combo
box Whether caption is displayed on same line as control (true, false)

PasswordCharacter Text box only Single character to be used to mask password entry

IsMultiline Text box only Whether text box allows multiple lines (true, false)

Border Images only Whether a border is displayed on image (true, false)

Expanded Fragments only Whether fragment should be displayed or collapsed (true, false)

ExpandHelp Help only Whether help should be displayed or collapsed (true, false)

ExpandToFill ActiveX only Whether ActiveX control should fill the task pane (true, false)

KeepAlive ActiveX only Whether control remains active when cursor position changes
(true, false)

5.4.2.3.1 PopulateActiveXProps

This method allows the developer to set the display parameters for each ActiveX control used in the solution. Custom
properties (that is, those other than defined for the ISmartdDocProperties interface, above) can be accessed by using the
appropriate key/value combinations as defined in the control:

Props.Write(Key:="Special", Value:="200")

5.4.2.3.2 PopulateCheckbox

A checkbox allows the end user to select an individual control. Three controls have been defined as
C_TYPE_CHECKBOX; the checked parameter indicates the initial state for the checkbox. The text that appears next to
the checkbox is set in the ControlCaptionFromID method. There are no additional formatting properties associated with the
checkboxes.

Public Sub PopulateCheckbox(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef Checked As Boolean) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateCheckbox

 Select Case ControlID

 Case 301

 Checked = False

 Case 401

 Checked = False

 Case 501

 Checked = False

 End Select

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.3.3 PopulateDocumentFragment

A document fragment can be expressed directly in the code, or it can be incorporated via a URL reference. In most
applications it is preferred to leave such fragments external to the code itself; this will allow for quick and easy
modifications to the fragments that would otherwise require the code itself to be modified, recompiled, and distributed.

External document fragments must contain valid WordML document instances; they can be created either by
transforming existing XML instances into the necessary merged fragments or created directly in Office 2003 and saved
as .xml.

In an effort to optimize space in the Document Actions task pane, fragments can be displayed or collapsed. By default,
fragments will be displayed. The example code below uses properties of the ISmartDocProperties interface to set the
display option to false.

As of this writing, the Smart Document SDK help file incorrectly identifies the key as
Expand rather than Expanded.

Public Sub PopulateDocumentFragment(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef DocumentFragment As String) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateDocumentFragment

 Select Case ControlID

 Case 4 'url

 DocumentFragment = strPath & "warning.xml"

 Props.Write("Expanded", "False")

 End Select

End Sub

5.4.2.3.4 PopulateHelpContent

Help provides online documentation for the knowledge worker. It can be collapsed in order to preserve real estate, but
should not be omitted. Formatting is done with XHTML and CSS. Help text can either be coded directly in your program
or can be maintained in separate files and referenced via a URL. When using the C_TYPE_HELPURL, the location must
be an absolute path.

Similar to document fragments, by default help content is expanded in the Document Actions Task Pane. It can be
collapsed by setting the property key ExpandHelp to False.

Not all XHTML and CSS elements are supported. Refer to the Smart Document SDK for
specifics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub PopulateHelpContent(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef Content As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateHelpContent

 Select Case ControlID

 Case 6 'url

 Content = strPath & "article.htm"

 Props.Write("ExpandHelp", "False")

 Case 105 'url

 Content = strPath & "para.htm"

 Props.Write("ExpandHelp", "False")

 Case 205 'url

 Content = strPath & "code.htm"

 Props.Write("ExpandHelp", "False")

 Case 303 'inline

 Content = "<html><body><p>Click in the box to add a new" & _

 "item to the list.</p></body></html>"

 Case 403 'inline

 Content = "<html><body><p>Click in the box to add a new" & _

 "item to the list.</p></body></html>"

 Case 503 'inline

 Content = "<html><body><p>Click in the box to add a new" & _

 "item to the list.</p></body></html>"

 End Select

End Sub

5.4.2.3.5 PopulateImage

Images can be displayed in the task pane and either incorporated into the document instance or used to activate a
control. Similar to help and document fragments, the path given must be an absolute path.

Public Sub PopulateImage(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef ImageSrc As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateImage

 Select Case ControlID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Select Case ControlID

 Case 2

 ImageSrc = strPath & "cover.jpg"

 End Select

End Sub

5.4.2.3.6 PopulateListOrComboContent

For each control defined as either a list box (displayed as a box showing each selection on an individual line) or combo
box (displayed as a drop-down list), the number of items must be declared along with the text to be associated with
each item. Setting the InitialSelected property to -1 ensures that no action will be selected by default.

Public Sub PopulateListOrComboContent(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef List As System.Array, ByRef Count As Integer, _

ByRef InitialSelected As Integer) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateListOrComboContent

 Select Case ControlID

 Case 102 'listbox

 Count = 5

 List(1) = "Bold"

 List(2) = "Italic"

 List(3) = "Underscore"

 List(4) = "Superscript"

 List(5) = "Subscript"

 InitialSelected = -1

 Case 202 'combo box

 Count = 5

 List(1) = "Bold"

 List(2) = "Italic"

 List(3) = "Underscore"

 List(4) = "Superscript"

 List(5) = "Subscript"

 InitialSelected = -1

 End Select

End Sub

5.4.2.3.7 PopulateOther

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.3.7 PopulateOther

While the separator and label controls don't really do anything, they provide visual clues to the end user. A liberal
sprinkling throughout is highly recommended. PopulateOther allows display options to be set for each of the control types
that do not have their own Populate method—buttons, labels, links, and separators.

Public Sub PopulateOther(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateOther

 Select Case ControlID

 Case 3 'link

 Case 5 'separator

 Case 104 'separator

 Case 204 'separator

 Case 302 'separator

 Case 402 'separator

 Case 502 'separator

 Case 103 'button

 Case 203 'button

 End Select

End Sub

5.4.2.3.8 PopulateRadioGroup

Another method for presenting a choice list to the end user is via a radio group. The user selects the specific option by
clicking on the appropriate radio button. Again, InitialSelected is set to -1 to ensure that the list will not have any option
set by default.

Public Sub PopulateRadioGroup(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal LocaleID As Integer, _

ByVal Text As String, ByVal Xml As String, ByVal Target As Object, _

ByVal Props As Microsoft.Office.Interop.SmartTag.ISmartDocProperties, _

ByRef List As System.Array, ByRef Count As Integer, _

ByRef InitialSelected As Integer) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.PopulateRadioGroup

 Select Case ControlID

 Case 1

 Count = 7

 List(1) = "Paragraph"

 List(2) = "Code Block"

 List(3) = "Numbered List"

 List(4) = "Bulleted List"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 List(4) = "Bulleted List"

 List(5) = "Variable List"

 List(6) = "Warning"

 List(7) = "Note"

 InitialSelected = -1

 End Select

End Sub

5.4.2.3.9 PopulateTextboxContent

Text boxes allow the end user to enter text that is then returned to the Smart Document application for further
processing. In the sample application, text boxes are used to input inline content that is to have special markup
associated with it, such as emphasis, superscript, or subscript. PopulateTextboxContent will automatically supply default
information in the text box, such as a formatting template for a telephone number or date.

5.4.2.4 Defining document actions

We have finally reached the point in the process where we begin to actually do something, or at least write the code
that will allow the end user to cause an event to fire through the Document Actions task pane. Here's where the Word
Object Model will be put to use. Once each of the controls has been defined and populated, the actions can be
programmed. While it would have been more intuitive to have each method align with its populate counterpart, the
developer is left to reconcile the differences. For practical purposes, some methods are often intentionally left blank.
Refer to Figure 5-4 for a glimpse at the Document Actions task pane.

5.4.2.4.1 Adding a graphic: the ImageClick method

The ImageClick method is used to define the action to be taken when the user selects an image displayed in the task
pane. The code below will insert the image into the document itself. Since there are no positioning parameters
specified, it will automatically be placed according to the AutoShapeDefaults parameters as defined in the template.

The single line of code that does all of the work uses the Word Object Model to add a picture to the shapes collection of
the active document.

Public Sub ImageClick(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal Target As Object, _

ByVal Text As String, ByVal Xml As String, ByVal LocaleID As Integer, _

ByVal XCoordinate As Integer, ByVal YCoordinate As Integer) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.ImageClick

 Dim strImage As String

 Select Case ControlID

 Case 2

 strImage = strPath & "cover.jpg"

 Target.Application.ActiveDocument.Shapes.AddPicture(strImage)

 End Select

End Sub

Figure 5-9 shows the result of clicking on the image in the Document Actions task pane. It has been positioned
according to the parameters defined for image placement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-9. Document Template after the image has been inserted

The next item on our list of actions is to apply markup and style to inline components (superscript, subscript, bold,
italic, underscore, and code). This requires three separate actions: capturing the contents of the text box, capturing the
specific type of formatting selected through either the list or combo box, and inserting the appropriate markup, text,
and style information when the user clicks on the Insert button.

5.4.2.4.2 OnTextboxContentChange

Whenever a user enters content into the textbox, this method will be activated. We need to capture any content
entered into textbox into a variable so we can insert it into the document later. There are two textboxes defined—one
used to insert inline elements in paragraphs, and a second used to insert inline elements in code blocks. First, two
variables must be defined:

Dim varCodeText As String

Dim varParaText As String

Now the contents of the text box can be stored for later use by using those variable names. Of course, you could just
insert it into the document instance at this point, or use the results to trigger some other action.

Public Sub OnTextboxContentChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Value As String) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.OnTextboxContentChange

 Select Case ControlID

 Case 101 'para inlines

 varParaText = Value

 Case 201 'code inlines

 varCodeText = Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 varCodeText = Value

 End Select

End Sub

5.4.2.4.3 OnListOrComboSelectChange

The next piece in our three-piece control is the results of the choice list presented to the end user. After entering text,
the user must choose one of the several possible inline types to be applied to the text. Selecting one of the options will
cause this event to fire. We'll need another variable:

 Dim varSelect As String

For each possible choice, we need to set the varSelect variable to a value that we can test on in our final step:

Public Sub OnListOrComboSelectChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Selected As Integer, ByVal Value As String) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.OnListOrComboSelectChange

 Select Case ControlID

 Case 102 'format options

 If Value = "Bold" Then

 varSelect = "bold"

 ElseIf Value = "Italic" Then

 varSelect = "italic"

 ElseIf Value = "Underscore" Then

 varSelect = "underscore"

 ElseIf Value = "Superscript" Then

 varSelect = "superscript"

 ElseIf Value = "Subscript" Then

 varSelect = "subscript"

 End If

 Case 202 'format options

 If Value = "Bold" Then

 varSelect = "bold"

 ElseIf Value = "Italic" Then

 varSelect = "italic"

 ElseIf Value = "Underscore" Then

 varSelect = "underscore"

 ElseIf Value = "Superscript" Then

 varSelect = "superscript"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 varSelect = "superscript"

 ElseIf Value = "Subscript" Then

 varSelect = "subscript"

 End If

 End Select

End Sub

5.4.2.4.4 InvokeControl

The InvokeControl method applies to buttons, hyperlinks, and document fragments. There are two buttons, one
hyperlink, and one fragment that must be defined.

The buttons used in combination with text boxes and choice lists are the third piece to the inlines puzzle. The only
action taken in the first two steps was to capture the values into variables. Again, we will need some new variables, this
time defined as XML nodes in the Word object model:

Dim oBoldNode As Word.XMLNode

Dim oItalicNode As Word.XMLNode

Dim oUnderscoreNode As Word.XMLNode

Dim oSubscriptNode As Word.XMLNode

Dim oSuperscriptNode As Word.XMLNode

First, we have to define the current cursor location as a selection. The next step is to test for the value of the variable
associated with the choice list. Once a match is found, the Add method is used to insert the appropriate element name.
The element node is then defined as a range (which includes both the start and end tags and any content), and the text
that was originally entered in the text box is inserted. The last step is to apply the appropriate character style to the
content.

For more information on the new XML objects incorporated into Word 2003, refer to
Section 5.3.3 in this chapter and the Microsoft Word Visual Basic Reference help files.

Note that bold, italic, and underscore all resolve to a single element, emphasis. Rather than having three distinct
elements, the role attribute is used instead. It has three possible values defined: bold, italic, and underscore. By
selecting the Attributes property of the XMLNode, attribute values can be populated without additional user
intervention.

 Case 103 'para

 Dim oWordRange As Word.Range = CType(Target, Word.Range)

 Dim localRange As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 localRange.Application.ActiveWindow.Selection

 If varSelect = "bold" Then

 oBoldNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oBoldNode.Range

 oBoldNode.Range.Text = varParaText

 oBoldNode.Attributes.Add("role", "")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oBoldNode.Attributes.Add("role", "")

 oBoldNode.SelectSingleNode("@role", "").NodeValue = "bold"

 oBoldNode.Range.Style = "Bold"

 ElseIf varSelect = "italic" Then

 oItalicNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oItalicNode.Range

 oItalicNode.Range.Text = varParaText

 oItalicNode.Attributes.Add("role", "")

 oItalicNode.SelectSingleNode("@role", "").NodeValue = "italic"

 oItalicNode.Range.Style = "Italic"

 ElseIf varSelect = "underscore" Then

 oUnderscoreNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oUnderscoreNode.Range

 oUnderscoreNode.Range.Text = varParaText

 oUnderscoreNode.Attributes.Add("role", "")

 oUnderscoreNode.SelectSingleNode("@role", "").NodeValue = "underscore"

 oUnderscoreNode.Range.Style = "Underscore"

 ElseIf varSelect = "superscript" Then

 oSuperscriptNode = selection.XMLNodes.Add("Superscript", cNAMESPACE)

 oWordRange = oSuperscriptNode.Range

 oSuperscriptNode.Range.Text = varParaText

 oSuperscriptNode.Range.Style = "Superscript"

 ElseIf varSelect = "subscript" Then

 oSubscriptNode = selection.XMLNodes.Add("Subscript", cNAMESPACE)

 oWordRange = oSubscriptNode.Range

 oSubscriptNode.Range.Text = varParaText

 oSubscriptNode.Range.Style = "Subscript"

 End If

 Case 203 'code

 Dim oWordRange As Word.Range = CType(Target, Word.Range)

 Dim localRange As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 localRange.Application.ActiveWindow.Selection

 If varSelect = "bold" Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If varSelect = "bold" Then

 oBoldNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oBoldNode.Range

 oBoldNode.Range.Text = varCodeText

 oBoldNode.Attributes.Add("role", "")

 oBoldNode.SelectSingleNode("@role", "").NodeValue = "bold"

 oBoldNode.Range.Style = "Bold"

 ElseIf varSelect = "italic" Then

 oItalicNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oItalicNode.Range

 oItalicNode.Range.Text = varCodeText

 oItalicNode.Attributes.Add("role", "")

 oItalicNode.SelectSingleNode("@role", "").NodeValue = "italic"

 oItalicNode.Range.Style = "Italic"

 ElseIf varSelect = "underscore" Then

 oUnderscoreNode = selection.XMLNodes.Add("Emphasis", cNAMESPACE)

 oWordRange = oUnderscoreNode.Range

 oUnderscoreNode.Range.Text = varCodeText

 oUnderscoreNode.Attributes.Add("role", "")

 oUnderscoreNode.SelectSingleNode("@role", "").NodeValue = "underscore"

 oUnderscoreNode.Range.Style = "Underscore"

 ElseIf varSelect = "superscript" Then

 oSuperscriptNode = selection.XMLNodes.Add("Superscript", cNAMESPACE)

 oWordRange = oSuperscriptNode.Range

 oSuperscriptNode.Range.Text = varCodeText

 oSuperscriptNode.Range.Style = "Superscript"

 ElseIf varSelect = "subscript" Then

 oSubscriptNode = selection.XMLNodes.Add("Subscript", cNAMESPACE)

 oWordRange = oSubscriptNode.Range

 oSubscriptNode.Range.Text = varCodeText

 oSubscriptNode.Range.Style = "Subscript"

 End If

The end result of all of this code is shown in Figure 5-10. Here the user has entered the word "new" in the textbox, and
selected the style "Italic" from the list displayed. Figure 5-11 shows the results of clicking the INSERT button. The text
has been inserted in the paragraph, the attribute value has been set, and the appropriate style has been applied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-10. Document Actions with content and formatting selected

Figure 5-11. Document template with new content added

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The actions associated with the hyperlink and document fragment are to be executed upon selection. Let's start with
the hyperlink. While it looks like a hyperlink in the task pane, it isn't really. At least not yet. We need some code that
will do the navigating when the "link" is clicked. The following code implements the Internet Explorer Navigate method to
open a browser window and load the O'Reilly home page:

Public Sub InvokeControl(ByVal ControlID As Integer, _

ByVal ApplicationName As String, ByVal Target As Object, _

ByVal Text As String, ByVal Xml As String, ByVal LocaleID As Integer) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.InvokeControl

 Dim objNav As SHDocVw.InternetExplorer

 Select Case ControlID

 Case 3

 objNav = New SHDocVw.InternetExplorer

 objNav.Navigate("http://www.oreilly.com")

 objNav.Visible = True

'more to follow here

 End Select

End Sub

The last piece of our InvokeControl routine is to insert a selected document fragment. Word will display the first page of
any document fragment in the task pane. An alternative approach is to specify one file to use in the task pane display,
and another for the actual fragment to be inserted. Note in Figure 5-12 that the style associated with the Warning is
indented; the task pane also displays this style, making it a bit difficult to read without having to adjust the horizontal
positioning of the task pane. An alternate view could be created that does not reference the indented style, making it
easier for the end user to read.

Figure 5-12. Document template with warning boilerplate inserted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4.2.4.5 OnCheckboxChange

Whenever a user clicks on a checkbox, it will activate the OnCheckboxChange method. Our sample application uses a
checkbox to indicate when the user would like to insert a new item into an existing list. Since there are three types of
lists (BulletList, NumberList, and VariableList) and we want to limit when the control is displayed on the task pane, they
have each been defined separately and will display only when the cursor is currently located within one of these three
elements.

For both BulletList and NumberList, we need to add an Item element along with a child Para element. Variable lists have a
VariableEntry child, which in turn contains a Term and Definition pair. The definition element requires at least one Para.

There is also paragraph-level formatting that must be applied to ensure that the new content is displayed properly.
BulletListItem, NumberListItem, and VariableListEntry are defined in the template for this purpose.

The following routine begins by setting the variable node to the element of the current cursor location. The
XMLParentNode is a bit deceiving; we're really looking for the name of the current element, but that's the way it works.
Once we have the XMLNode selected, we then test where we are, move up the tree if required, and finally arrive at the
BulletList element. The range is then collapsed back to a single cursor location and the Item element is added. Before
moving on, we insert a paragraph marker. This will move the new list entry onto a new line. We don't have to set the
style since it will automatically carry over the style from the previous paragraph. The range is again collapsed and the
Para element is inserted. The last step is to add placeholder text for the end user:

Public Sub OnCheckboxChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Checked As Boolean) _

Implements Microsoft.Office.Interop.SmartTag.ISmartDocument.OnCheckboxChange

 Select Case ControlID

 Case 301 'bullet list

 Dim range As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 range.Application.ActiveWindow.Selection

 Dim node As Word.XMLNode = selection.XMLParentNode

 If node.BaseName = "Para" Then

 node = node.ParentNode

 End If

 If node.BaseName = "Item" Then

 node = node.ParentNode

 End If

 If node.BaseName = "BulletList" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Item", cNAMESPACE)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 node = range.XMLNodes.Add("Item", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter list item here"

 End If

 End Select

 End Sub

The results will look like Figure 5-13.

Figure 5-13. Template with bulleted list inserted

The routine for numbered lists is basically the same and is not listed here (but is included in the sample code available
for download). The variable list entry, however, has an extra step or two. First, there are more elements in the tree to
test and ascend. Next, there are two child elements of VariableEntry: Term and Definition. Definition contains a required
child Para element. And both Term and Para should have placeholder text added:

 Select Case ControlID

 Case 501 'variable list

 Dim range As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = _

 range.Application.ActiveWindow.Selection

 Dim node As Word.XMLNode = selection.XMLParentNode

 Dim Nnode As Word.XMLNode = selection.XMLParentNode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim Nnode As Word.XMLNode = selection.XMLParentNode

 If node.BaseName = "Para" Then

 node = node.ParentNode

 End If

 If node.BaseName = "Definition" Then

 node = node.ParentNode

 End If

 If node.BaseName = "Term" Then

 node = node.ParentNode

 End If

 If node.BaseName = "VariableEntry" Then

 node = node.ParentNode

 End If

 If node.BaseName = "VariableList" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("VariableEntry", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 Nnode = range.XMLNodes.Add("Term", cNAMESPACE)

 Nnode.PlaceholderText = "Enter term here"

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Definition", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter definition here"

 End If

 End Select

End Sub

This code will produce results like those shown in Figure 5-14.

Figure 5-14. Template with an additional variable list entry inserted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-14. Template with an additional variable list entry inserted

5.4.2.4.6 OnRadioGroupSelectChange

Our authoring templates for block-level items are associated with radio buttons. Whenever a user clicks on a radio
button, it will become selected and the OnRadioGroupSelectChange method will be activated. As with the list or combo box,
the appropriate selection must be identified from the set of options presented to the end user.

The code necessary to accomplish the set of tasks defined in the radio group control is more complex than the previous
examples. In order to code for these tasks, a combination of methods will need to be employed, including the possible
use of XPath, testing for valid children, and an additional validation pass before committing the results back to the end
user. Alternatively, the conditions could be narrowed, resulting in an easier coding implementation. However, that
would most likely result in severely hampering the Document Actions task pane with numerous controls and excessive
refreshes.

The code below uses XPath to locate a particular element and then insert the markup as the last node of that element.
It also demonstrates how to apply styles. Note that the lists, and particularly the variable list, have numerous children
that also need to be inserted. Another approach would be to insert just the first node, and then apply a transform that
would supply the remaining children. This method would give you more control over the exact placement of formatting.

Public Sub OnRadioGroupSelectChange(ByVal ControlID As Integer, _

ByVal Target As Object, ByVal Selected As Integer, ByVal Value As String) _

Implements _

Microsoft.Office.Interop.SmartTag.ISmartDocument.OnRadioGroupSelectChange

 Dim range As Word.Range = CType(Target, Word.Range)

 Dim selection As Word.Selection = range.Application.ActiveWindow.Selection

 Dim node As Word.XMLNode = range.Document.SelectSingleNode("//ns:Section1", _

 "xmlns:ns='" & cNAMESPACE & "'")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Select Case ControlID

 Case 1 'authoring templates

 If Value = "Paragraph" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 range.InsertParagraphBefore()

 node.PlaceholderText = "Enter paragraph here"

 node.Range.Style = "ParagraphDefault"

 ElseIf Value = "Code Block" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("CodeExample", cNAMESPACE)

 range.InsertParagraphBefore()

 node.PlaceholderText = "Enter code sample here"

 node.Range.Style = "CodeBlock"

 ElseIf Value = "Numbered List" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("NumberList", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Item", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter list item here"

 node.Range.Style = "NumberListItem"

 ElseIf Value = "Bulleted List" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("BulletList", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Item", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter list item here"

 node.Range.Style = "BulletListItem"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ElseIf Value = "Variable List" Then

 Dim Nnode As Word.XMLNode = selection.XMLParentNode

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("VariableList", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("VariableEntry", cNAMESPACE)

 node.Range.Style = "VariableListEntry"

 range.SetRange(node.Range.End, node.Range.End)

 Nnode = range.XMLNodes.Add("Term", cNAMESPACE)

 Nnode.PlaceholderText = "Enter term here"

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Definition", cNAMESPACE)

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter definition here"

 ElseIf Value = "Warning" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Warning", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter warning here here"

 node.Range.Style = "Warning"

 ElseIf Value = "Note" Then

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Note", cNAMESPACE)

 range.InsertParagraphBefore()

 range.SetRange(node.Range.End, node.Range.End)

 node = range.XMLNodes.Add("Para", cNAMESPACE)

 node.PlaceholderText = "Enter note here"

 node.Range.Style = "Note"

 End If

 End Select

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The result of this code is shown in Figures Figure 5-15 and Figure 5-16

Figure 5-15. Document with authoring templates inserted

Figure 5-16. Document with authoring templates inserted (tags on)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This fairly simple example works well in our sample since we're beginning with a template and then creating a new
document. However, if we were editing an existing document, we would most likely want to place the block-level
elements at the next valid location in relation to the cursor position. This requires significantly more coding.

5.4.2.4.7 OnPaneUpdateComplete

Our sample did not need to use the OnPaneUpdateComplete method, which is triggered on two separate events: when a
document is first opened and the expansion pack loaded, and each time the cursor is placed within a different element.
Both of these events cause the task pane to be redrawn; once rendering is complete this method is activated.

If the code placed in the OnPaneUpdateComplete results in the task pane being reloaded, an
infinite loop will result.

5.4.2.5 Associating control types and methods

In summary, Table 5-6 lists each of the fifteen control types, the method used to populate their contents in the task
pane, and the method associated with selection of a specific control.

Table 5-6. Control types available in Smart Documents
Control type Populate method Activate method

ActiveX ActiveXProps
Button Other InvokeControl

Checkbox Checkbox OnCheckboxChange

Combo ListOrComboContent OnListOrComboSelectChange

DocumentFragment DocumentFragment InvokeControl

DocumentFragmentURL DocumentFragment InvokeControl

Help HelpContent

HelpURL HelpContent
Image Image ImageClick

Label Other
Link Other InvokeControl

Listbox ListOrComboContent OnListOrComboSelectChange

RadioGroup RadioGroup OnRadioGroupSelectChange

Separator Other
Text box TextboxContent OnTextboxContentChange

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5 Manifest Files
Once the code is complete, all of the components must be prepared and made ready for delivery. The manifest file is an
XML instance that identifies each of the components associated with the Smart Document expansion pack. It is the
equivalent of a packing list, identifying each of the components necessary to make the Smart Document solution run
and where they can be found. It is attached to a Word document or template through the Templates and Add-Ins menu
or through a processing instruction incorporated into the document instance itself:

<?mso-solutionextension URI="namespace" manifestPath="path">

If any components cannot be located, an error message will be returned to the end user. One of the novel uses of the
manifest file is to track versions. The most common Smart Document deployment scenario involves placing the files on
a server where each end user will access them. Once the update frequency value has been reached, the application will
check for a more recent version on the server (as indicated by the version number in the manifest file). While a schema
for the manifest file has been published and can be found in the Microsoft Office 2003 Smart Document SDK, it does not
appear that it is actually used for validation, as the samples provided in the SDK do not conform to it.

There are several key components to a manifest file, as follows:

manifest

The manifest element has two different content models, depending whether it is the root element or a child of
manifestCollection. When listed as part of a collection, it is nothing other than a pointer to the individual manifest
files, containing the URI and path for each. When used as the root element, it contains the version,
updateFrequency, uri, manifestURL, and solution elements.

version

The version element (major.minor) contains the release number for the expansion pack and is used to determine
whether or not a more recent expansion pack is available (see updateFrequency, below).

updateFrequency

The update frequency is expressed in minutes. Once this amount of time has elapsed, the user will be prompted
to check for an updated expansion pack. The version number of the expansion pack located on the server is
then compared with that on the user's system. If the version number on the server is higher, the new
expansion pack will be downloaded.

solution

Each solution element within a manifest file describes either one solution type (smart document, schema,
transform, or other) or one targetApplication type (Word or Excel). There can be multiple solution elements within
a single manifest. The solutionID element is required and contains the GUID associated with the .dll. An alias is
also required, and associates a user-friendly name with the solution. The file element is described below.

file

A file element should be included for each individual file that is associated with the solution. This includes help
files, document fragments, images, templates, and any other collections that are part of the overall Smart
Document solution.

For a managed solution, a unique Solution ID must be generated. A utility to generate unique identifiers, guidgen.exe,
shown in action in Figure 5-17, is included with Visual Studio .NET and can be found at C:\Program Files\Microsoft
Visual Studio .NET 2003\Common7\Tools\guidgen.exe. When the expansion pack is attached, the .dll is entered into the
registry with the specified key.

Figure 5-17. Create GUID user interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-17. Create GUID user interface

It should be noted that while the manifest file does have an associated schema, Microsoft
Office 2003 will not necessarily generate an error if the instance is not valid. This can be
tested by validating any of the manifest.xml files distributed with the Smart Document
SDK in Microsoft Office Word 2003.

Here is a sample manifest.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<manifest xmlns="http://schemas.microsoft.com/office/xmlexpansionpacks/2003">

 <version>1.0</version>

 <updateFrequency>20160</updateFrequency>

 <uri>http://www.office-xml.com/ns/sdarticle</uri>

 <solution>

 <solutionID>{1E15F399-9BFF-4ac9-A68A-737788C1B462}</solutionID>

 <type>smartDocument</type>

 <alias lcid="1033">Essentials Article Solution</alias>

 <documentSpecific>false</documentSpecific>

 <targetApplication>Word.Application.11</targetApplication>

 <file>

 <runFromServer/>

 <type>solutionActionHandler</type>

 <managed/>

 <version>1.0</version>

 <filePath>SDEssentials.dll</filePath>

 <CLSNAME>SDEssentials.ArticleSmartDocument</CLSNAME>

 </file>

 <file>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>help/article.htm</filePath>

 </file>

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>help/para.htm</filePath>

 </file>

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>help/code.htm</filePath>

 </file>

 <file>

 <runFromServer/>

 <type>other</type>

 <version>1.0</version>

 <filePath>images/cover.jpg</filePath>

 </file>

 </solution>

 <solution>

 <solutionID>schema</solutionID>

 <type>schema</type>

 <alias lcid="1033">SDArticle</alias>

 <file>

 <type>schema</type>

 <version>1.0</version>

 <filePath>SDArticle.xsd</filePath>

 </file>

 </solution>

</manifest>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.6 Other Files
A Smart Document solution is likely to contain numerous files—help files, templates, XSL transformations, document
fragments, and media clips, not to mention the actual .dll, manifest file, and schema. Each of these files should be listed
in the manifest; when the expansion pack is attached to the document or template, the application will check to ensure
that it can locate each referenced file.

It is important to note, however, that the references to these files in the .dll must be absolute pathnames or URLs. If
the Smart Document solution cannot locate a referenced file, it will just ignore it. Building in some error checking to test
that the files actually exist in the designated file locations is highly recommended.

One method for resolving the absolute pathname is to set a constant to the installation directory of the Smart
Document solution in the SmartDocInitialize method. By prepending this constant to the specific directory and filename,
the files can be located by the application and the developer does not have to worry about where they were actually
installed.

If a specific installation directory is not given in the manifest file, the solution is loaded in the schema folder under the
Application Data folder in the user's Documents and Settings folder (C:\Documents and Settings\<username>\Local
Settings\Application Data\Microsoft\Schemas).

Subdirectories appear to be flattened when copied to the installation directory; that is, if
you created subdirectories for components such as help files, images, and XML fragments,
those subdirectories will not be created when the solution is installed on the user's system;
instead the files will be aggregated into a single directory. Because of this behavior it is
strongly recommended that filenames are unique across the entire solution set.

When building and testing Smart Document solutions, it is a good idea to continually delete temporary files. Common
locations for these files are:

C:\Documents and Settings\username\Local Settings\Application Data\Microsoft\Schemas

C:\Documents and Settings\username\Local Settings\Application Data\Assembly

C:\Documents and Settings\username\Local Settings\Temp

5.6.1 Help files

Help files are created using a subset of XHTML. The most important thing to remember when creating help files is that
the task pane is only a small percentage of the overall screen size, and there are numerous components to be displayed
in this limited space. Keep help text clear and concise. In general, you will create one help file for each control included
in the Smart Document solution. Table 5-7 lists the supported elements.

Table 5-7. Supported elements in help file XHTML
Element Purpose

A Anchor for hypertext links

B Bold

BR Break

CENTER Centers text in task pane

FONT Font characteristics

H1-H6 Headings

I Italic

LI List item

OL Ordered (numbered) list

P Paragraph

SPAN Inline text block

U Underline

UL Unordered (bulleted) list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UL Unordered (bulleted) list

Here's a listing of the help file that's associated with the authoring templates control:

<p>Authoring Templates: There are several types of content blocks

that can be inserted in an article:</p>

 paragraph

 code block

 numbered list

 bulleted list

 term / definition list

 warning

 note

<p>It is possible to have more than one entry for any type; that is,

you may have three authors and two editors. Click on the radio button

next to the desired selection.</p>

<p>Logo: Select the appropriate logo from the images below.</p>

<p>Website: For additional help, click on the link below.</p>

<p>Required Warning: The Warning below, if needed, must be

incorporated into your document without modification. Click on the

content and it will automatically be inserted into your document.</p>

5.6.2 Document Fragments

The world of structured document authoring has been using fragments for quite some time, either managed as file
entities or as objects in a content management system. Smart Document technology opens this potential to Microsoft
Word 2003 users.

Let's say that you work in a law firm. More likely than not, you have a library of document fragments that can be used
to create contracts, wills and trusts, and other legal documents. Or maybe you have to search through existing
documents to find the right pieces you need, and then cut and paste. You can now access those components directly
through the task pane and can build in sufficient intelligence so that only relevant fragments are displayed. Or maybe
your sales and marketing group struggles with the process of creating proposals for your products and services. By
managing independent descriptions that are targeted to various types of customers (such as government, commercial,
or industry-specific) your salespeople will be able to quickly assemble proposals that contain the most up-to-date,
accurate information along with any boilerplate required by your legal department. Yet another common usage is in the
area of technical documentation. Warnings, cautions, and notes have legal implications and must typically go through
an approval process. Once approved, the text cannot be modified. By taking advantage of document fragments, the
content can be automatically inserted into the document making sure that no errors occurred during a copy and paste
operation, and the content can then be protected to prevent the end user from making any unauthorized changes.

By default, Word will display the first page of any document fragment in the task pane. For lengthy fragments this can
be cumbersome. Another option is to create two versions of the fragment—one that is displayed in the task pane and
the other containing the complete dataset. Document fragments must be valid WordprocessingML instances. The
easiest way to create such fragments is to use Microsoft Office Word 2003 with the Smart Document solution attached
as described in the next section. This enables you to take advantage of the templates and styles to apply your schema-
specific markup along with the necessary WordprocessingML markup and style information. When saving, save as XML.
Fragments can also be created by taking existing XML components and running them through an XSL transform. Here's
the listing for our Warning document fragment (with most of the heading information omitted). Note that it contains
both WordprocessingML (prefixed by w) and our own schema elements (prefixed by ns0):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

both WordprocessingML (prefixed by w) and our own schema elements (prefixed by ns0):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml" xmlns:v="urn:schemas-

microsoft-com:vml"

xmlns:w10="urn:schemas-microsoft-com:office:word" xmlns:sl="http://schemas.microsoft.

com/schemaLibrary/2003/core" xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint" xmlns:o="urn:

schemas-microsoft-com:office:office"

xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

xmlns:ns0="http://www.office-xml.com/ns/sdarticle"

w:macrosPresent="no" w:embeddedObjPresent="no"

w:ocxPresent="no" xml:space="preserve">

...

<w:body>

<ns0:Warning>

<ns0:Para>

<w:p><w:pPr><w:pStyle w:val="Warning"/></w:pPr><w:r>

<w:t>In order to run a Smart Document solution, the user will

need to have several components installed on their local system:

</w:t></w:r></w:p></ns0:Para></ns0:Warning>

<w:p/>

</w:body>

</w:wordDocument>

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.7 Attaching the Smart Document Expansion Pack
Before you can use your Smart Document solution with a Microsoft Word document, you must attach the expansion
pack. As a developer, you will first want to run the "Disable XML Expansion Pack Manifest Security" utility included in
the Smart Document SDK. This will prevent you from having to re-sign the manifest file each time it is updated. Note,
however, that if you disable the security check, you will be reminded each time you attach the expansion pack that
security has been disabled. You will then be asked whether or not you wish to re-enable security. Beware—the default
response is yes.

Each time you make modifications to your code that you want to test in the user's environment, you will need to rebuild
your code, then detach and reattach the manifest file to the Word document or template. This will force the updated
code to be loaded into the temporary directories.

Word 2003 has been known to crash after detaching and then reattaching an expansion
pack. Be prepared.

To attach an expansion pack:

1. Open the Word document or template you wish to use with the expansion pack.

2. Select Tools Templates and Add-Ins . . . from the menu bar.

3. Select the XML Expansion Packs tab.

4. Click on the Add button.

5. Navigate to the manifest file and select it. The expansion pack should now download.

If there are problems locating any of the components defined in the expansion pack, an
error message will be generated.

6. When the alias you have defined for the Smart Document solution displays in the window, select it. Then click
Attach and OK.

If there are problems with the expansion pack itself, a cryptic error message about your
expansion pack being identified as either missing or invalid will be displayed. Unfortunately
it's not a very useful error message, and can point to a dozen or more problems.

To delete an expansion pack:

1. Open the Word document or template you wish to use with the expansion pack.

2. Select Tools Templates and Add-Ins . . . from the menu bar.

3. Select the XML Expansion Packs tab.

4. Highlight the name of the Expansion Pack and select Delete.

5. You will be prompted about whether or not you want to remove the expansion pack from your system. Click
Yes.

Do not use the Remove button; this will remove the expansion pack from that particular
document, but will not delete the expansion pack from its install location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.8 Deploying Your Smart Document Solution
There are a few requirements that must be met before an expansion pack can be installed. Most of these are related to
security issues, particularly if your solution is intended to be distributed via the Internet. If you aren't the system
administrator, you may need to find the person who is and enlist their services. This is not intended to be a thorough
discussion of security and installation; the subject encompasses entire volumes. Refer to the Microsoft Smart Document
SDK and MSDN for more detailed information.

5.8.1 Internal Deployment

The easiest way to distribute solutions is to run the "Disable XML Expansion Pack Manifest Security" utility included in
the Smart Document SDK. This is easy, but not necessarily secure. It is intended to be used in a development
environment only.

The best way to deploy and update a Smart Document solution is from a shared network location, a web server, or
another location accessible by all users. If possible, attach the expansion pack to any templates or other documents
that are part of the solution. That will eliminate the end user from having to attach the expansion pack manually.

When opening a Smart Document with an attached XML expansion pack that is located on a web server, Office checks
to see if the server is located within an intranet zone or is listed as a trusted site. If either of those conditions is true,
the expansion pack is retrieved and the standard security check is performed. If, however, neither of those two
conditions is true, the expansion pack will not be retrieved.

5.8.2 External Deployment

The optimum approach for external distribution is to create an installer package that will place each of the files in the
appropriate location and add the necessary entries to the registry. If it's a managed code solution, client computers
must have the Microsoft .NET Framework 1.1 and .NET Programmability Support installed. The optimum installation
procedure is as follows:

1. Install Microsoft .NET Framework 1.1 (available for download from Microsoft Windows Update).

2. Install Microsoft Office Professional Edition 2003—complete. This will automatically install the .NET
Programmability Support option (the Primary Interop Assemblies or PIAs necessary to make managed code run
with Word).

If Office 2003 is already in place, the following procedure will update the environment:

1. Install .NET Framework 1.1.

2. Select "Add or Remove Programs" from the Control Panel.

3. Locate Microsoft Office Professional Edition 2003 (or appropriate) and click Change.

4. Select "Add or remove features" and click Next.

5. Select "Choose advanced customization of applications" and click Next.

6. On the Advanced Customization panel, expand Microsoft Office Word by clicking on the plus sign (+).

7. The first option listed should be ".NET Programmability Support." Click on the down arrow icon to the left of the
option name. If not already installed, select "Run from My Computer." and then click Update.

5.8.3 COM Versus Managed Code

In all cases, Office 2003 requires that Smart Document developers sign the XML expansion pack manifest file. Internal
certificates can be created with the "Digital Certificate for VBA Projects" included with the Microsoft Office Tools kit. For
managed code solutions, there are two additional requirements:

The Microsoft .NET Framework 1.1 must be installed on the client computer.

 The assembly .dll must have FULLTRUST permissions explicitly granted on the user's machine.

Refer to the Smart Document SDK and online resources for more information about
managing security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

managing security.

5.8.4 Template Files

If your Smart Document solution contains one or more template (.dot) files, they should be placed in the default
template directory as specified in the File Locations tab in the Options menu. This will allow the end user to create new
documents by selecting File New from the menu bar and then selecting the appropriate template. Attaching the
expansion pack to the template will ensure that it is automatically enabled.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.9 A Few Last Words on Smart Documents
Now that you've seen the parts involved, it's worth considering which aspects of Smart Documents need your focus.

5.9.1 Range and Selection Objects

The Word object model consists of hundreds of objects, yet no two are more powerful than range and selection. These
two objects are used to identify the parts of the document that are to be manipulated by the accompanying code. What
is confusing is that, for most cases, either object can be used. The main difference is that a range is not visible to the
end user; that is, you can identify a range and manipulate it, and the end user's cursor location will not move. selection,
on the other hand, does exactly what you'd expect—literally highlighting the selection on the end user's screen. More
often than not, range is preferred over selection for several reasons, not the least of which is performance.

Both the range and selection objects have dozens of properties and methods associated with them—everything from cut,
insert, and delete to XMLNodes. For a thorough explanation of range and selection, see Writing Word Macros by Steven
Roman (O'Reilly).

5.9.2 Inserting Markup

One of the powerful features of Word is its ability to quickly change the "view" of any document on the screen. You can
turn individual formatting markers on or off, change the overall look from outline to print layout, view field codes or
placeholder text. What may not have been apparent in the past but now becomes clearly evident is what, if any, impact
these changes have on the cursor position. When determining what elements are allowed in context, the context
referred to is the current cursor location. When programming Smart Documents, you must determine the current view;
otherwise your tests may yield undesired results.

5.9.3 Validation

The "Valid elements for insertion" list as displayed in the XML Structure task pane does not pay attention to sequence
or occurrence. If the cursor is currently positioned within an element that has children, all of those child elements will
be displayed. Word will, however, display an error once an invalid child has been inserted, via both squiggly lines in the
document pane and symbols in the XML Structure view. The developer can take advantage of the XMLValidationError
method to prevent the user from creating an invalid instance and to provide additional guidance. If the user does not
use the XML Structure task pane to insert markup, this problem is avoided.

5.9.4 Inserting Styles

Microsoft Word has four types of styles: character, paragraph, list, and table. When applying styles to content, the
surrounding WordprocessingML markup becomes very important. If applying a paragraph-level style to some text
(paragraph styles and list styles), that content must be both preceded and followed by a paragraph marker. If the text
is not preceded by a paragraph marker, then when the style is applied it will be applied to the entire block; that is, to all
content until either a preceding paragraph marker is located or to the top of the document itself. Similarly, if the text
following the content to be formatted is not separated by a paragraph marker, it too will take on the particular style
characteristics meant to be associated with the content.

5.9.5 Stories or Streams

Word objects such as headers, footers, footnotes, endnotes, comments, and text frames are maintained separately
from the main body of a document. They each have their own object model and are accessible programmatically, but if
they contain XML markup, your resulting instance when saving the document will most likely result in errors. The best
way to handle these separate streams is through direct use of the Word tools; capture them on save by making use of
a transform that will convert the WordprocessingML to your specific markup and place the contents in the right location
within the XML document instance.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Developing Smart Document Solutions
Microsoft Word's built-in capabilities for integrating XML shown in the previous chapter provide a foundation for creating
XML documents in Word. The results, however, feel more like an import/export option than a complete application. In
many cases, that functionality is perfectly acceptable, but Microsoft also provides a set of options for creating more
interactive environments for editing XML documents in Word through the Smart Documents framework.

Smart Documents let you create templates that help users create the information that goes in the document, taking a
huge step beyond the material covered in the previous chapter, which showed how to build spaces in the document
where users could work. The Smart Document approach lets you integrate all kinds of data sources, from multiple XML
documents to web services, and expands Word's XML frontiers substantially.

At the same time, however, Smart Documents come with a price: they require working with managed code, the
application object model, and an API that is far from elegant. It takes a fair amount of effort to move from an XML-
enabled Word document to Smart Documents, and you'll need to evaluate your projects carefully to determine if the
benefits are worth the effort.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Separating Data and Logic
When spreadsheets first appeared, they brilliantly blurred the distinction between programming and information.
Spreadsheet users could enter their data and work on it without having to do things like "programming." All the
information could reside in a single file, readily shared, and copy and paste functionality along with a few basic
functions ensured that spreadsheets were easy to learn. An unknown but clearly vast amount of business decision-
making has rested on spreadsheets, and an incredible amount of business data is stored in spreadsheets.

This power has come at some cost, however. While spreadsheets are accessible, their mixing of data and logic has
created a few problems. While copy and paste works well for simple spreadsheets, it becomes complicated quickly if, for
example, users try to combine logic from multiple spreadsheets. Suddenly development style matters. Spreadsheet
software, with its smart copy and paste features and support for multiple workbooks, has done a lot to simplify this
process, but the work involved in making these pieces communicate is still very real. Mergers and acquisitions, for
instance, often face a serious challenge in reconciling the spreadsheets used by decision-makers at the various
organizations.

Even on a smaller scale, the combination of data and logic that make spreadsheets so powerful can create some
substantial annoyances. I work, for example, with data I need to analyze on a weekly, monthly, quarterly, and annual
basis. I use the same basic logic for all of this analysis. The company I work for makes it available in Excel
spreadsheets, generated from a database. I end up with an enormous number of largely duplicate spreadsheets over
time, as only the data has changed. There's no simple way for me to aggregate the information from multiple
spreadsheets, and if I want to make a change to the logic, I have to make that change every time I download new
information. That thoroughly discourages me from making logic changes.

Another cost of spreadsheets is that they act as roach motels: data comes in but it never
goes back out to databases, except as spreadsheets. This problem will be addressed in the
next chapter.

Excel has addressed these issues to some degree with features like ODBC integration with databases. Instead of storing
all the information in spreadsheets directly, the user can specify an area of the spreadsheet to be populated with
information from a database query. In places where you trust your users with such access or can provide secure
facilities to provide the information, this can be genuinely useful stuff. Users can analyze information using the CPU
power on their desktops, customize how they see the data, and manipulate it without ever (hopefully) having to request
development of custom processes. They can load new data into their spreadsheets whenever they need to do so,
without fear of overwriting the logic they've so painstakingly created.

Unfortunately, that scenario only works for a limited number of cases where users have direct (or nearly direct) access
to information. There are many untrusted users, as well as users who travel or are otherwise disconnected. There are
lots of users who need access to historical information, and may need to process that information a few times before
actually letting it into the final spreadsheet. There are users with intermittent connections, who access their information
through things like web servers and file servers.

In these cases, using XML as a base format for data works very nicely. XML files are self-contained, and are easily sent
as attachments in email or loaded from a file or web server without any special infrastructure. Instead of users having
direct access to a database, they can be given access to copies of the parts of the database that interest them. If users
want to tinker with the data—for forecasting, for instance, or just to make themselves feel briefly better about their
results—they can tinker without having any impact on the original data source. Users who want to aggregate
information from multiple data sources can do so using either Excel's own tools or the wide variety of XML-processing
tools available.

Users can also treat Excel as a tool for creating and manipulating XML data, provided that the data structures fit neatly
into Excel's expectations of columns and rows. While Excel is in some ways a more limited XML editor than Word, it also
provides a much simpler interface, one that is easy for users to set up and use themselves.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Loading XML into an Excel Spreadsheet
There are several different ways to load XML data into Excel. Some are useful mostly for quick exploration and maybe
some editing, while others are more appropriate for creating spreadsheets that use XML as a data source that can be
easily replaced with new data whenever appropriate. All of these mechanisms share a common approach for showing
XML data in the spreadsheet, so it's worth taking a moment to examine how Excel handles XML structures before
moving into the mechanics of importing data.

When Excel opens an XML file, it imports data from it. If you make changes to the XML file while Excel is working with
the data it has imported from that file, changes to the XML will not be reflected in the Excel spreadsheet.

6.2.1 Tables and Trees

Excel, like all spreadsheets, is built on a grid. Information is organized into rows and columns, and this worksheet grid
(as well as relationships among multiple worksheet grids in a workbook) is used to create cross-references between
different sections of information. Within the grid, Excel is enormously flexible. Information doesn't have to follow neat
table structures—pricing data could, if desired, run diagonally down a spreadsheet. It's easier to work with ranges of
information if it stays in a single row or column, though, so most spreadsheets combine table areas that contain raw
data and then either tables of results or cells along the fringes of the tables.

XML has no built-in notion of a grid. While it's certainly possible to represent a spreadsheet's rows and columns of cells
within a worksheet as XML (and Chapter 7 will explore how Microsoft's chosen to do this), there's no guarantee that any
given XML document will neatly fit into the native structures of Excel. There are a few simple but critical conditions that
must apply to XML documents for them to be used easily as source data for Excel:

Tree structures that produce rows

Excel works best on XML documents when they conform to its structural expectations. The root element of the
XML document should act as the primary container for a table of information. Each of the child elements of the
root element should represent a row. Each of the child elements (or attributes) of the row elements should
represent a cell in the grid. Roughly, this looks like:

<table>

 <row>

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 <cell-name3>...value...</cell-name3>

 <cell-name4>...value...</cell-name4>

 </row>

 <row>

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 <cell-name3>...value...</cell-name3>

 <cell-name4>...value...</cell-name4>

 </row>

</table>

Excel also works well with cells expressed as attributes:

<table>

 <row cell-name1="value" cell-name2="value" cell-name3="value"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <row cell-name1="value" cell-name2="value" cell-name3="value"

 cell-name4="value" />

 <row cell-name1="value" cell-name2="value" cell-name3="value"

 cell-name4="value" />

</table>

Attributes and elements can also be mixed:

<table>

 <row cell-name3="value" cell-name4="value">

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 </row>

 <row cell-name3="value" cell-name4="value">

 <cell-name1>...value...</cell-name1>

 <cell-name2>...value...</cell-name2>

 </row>

</table>

Excel is pretty relaxed about the order in which these appear as well, as it uses the names of elements and
attributes rather than their order when creating a map.

It is possible to extract portions of XML documents that look like these structures,
even if the rest of the document looks different, but it does take a few extra steps.

Regular structure

When Excel works with an XML document, it represents the data as rows and columns. It's very difficult for
Excel to determine which rows and columns to create if the data of the document isn't consistent. It does make
a best effort, but there are limits. The occasional missing piece of information shouldn't cause drastic
difficulties, but extra information may not be imported, and consistency makes results much more predictable.

No mixed content

One of XML's best features for working with documents is the ability to mix elements and text together freely. A
classic simple use of mixed content is highlighting information in bold or italic:

<sentence>This is in bold and <i>this is in italic</i>.</sentence>

Unfortunately, these structures fit very badly with Excel's view of XML data as cells in a grid. If you need to
process XML data that includes mixed content, you should either use Word (which is designed to support it) or
pre-process your XML to strip out the extra markup.

Schema for type information (optional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While Excel doesn't require XML Schema files that describe the XML documents you use, schemas can be a very
convenient tool both for describing the information that you'll be including in a spreadsheet to Excel and for
sanity-checking the documents users work with in the Excel environment. If there isn't a schema, Excel makes
a pretty good best effort to analyze data and guess what schema would be appropriate.

Limited depth

Excel does well with lists of information, but can really only present two levels of lists, representing rows and
cells. If a document has many layers of lists, or uses elements containing elements with the same name
(recursive markup, commonly used in lists), Excel will not be able to import all of the data.

Effectively, Excel only works well with a small subset of the many possible XML document structures. The Excel subset,
however, is an extremely common subset in practice. Enormous amounts of data are available in XML formats that
work well with Excel.

6.2.2 Opening XML Documents Directly

The standard Excel dialog box for opening files shows XML files (or files ending in the extension .xml) right along with
Excel spreadsheets, as shown in Figure 6-1.

Figure 6-1. XML files appearing in the Excel Open dialog box

Only one of the choices presented here is a traditional Excel spreadsheet, twoPlusTwo.xls. The other files are XML files.
XML files that Excel knows belong to Microsoft Word (thanks to the mso-application processing instruction), the ch02-x
series, are marked with the Word icon, while ch0601.xml, an Excel SpreadsheetML file, has the Excel icon. XML files
using other vocabularies get a different icon. On my system, they get a Mozilla logo, but they may have a different logo
on your system, depending on what XML-processing software you have installed.

Whatever logo appears, however, you can attempt to open any XML file. If the XML contains anything other than Excel's
own SpreadsheetML, covered in Chapter 7, you'll see the dialog box shown in Figure 6-2.

Figure 6-2. Dialog box for choosing how to handle XML document importation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. Dialog box for choosing how to handle XML document importation

If the XML document you open contains any elements named html, you won't see the
dialog box shown in Figure 6-2. Instead, Excel will attempt to open it as an HTML
document. It even seems to do this if the elements that look like HTML are in another
namespace.

6.2.2.1 Opening documents as a list

We'll start with a simple XML document recording (imaginary) sales of books to explore how these different options
work, shown in Example 6-1.

Example 6-1. A simple XML document for analysis in Excel

<?xml version="1.0" encoding="UTF-8"?>

<sales>

<sale>

<date>10/5/2003</date>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<PriceUS>34.95</PriceUS>

<quantity>200</quantity>

<customer ID="1025">Zork's Books</customer>

</sale>

<sale>

<date>10/5/2003</date>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<PriceUS>39.95</PriceUS>

<quantity>90</quantity>

<customer ID="1025">Zork's Books</customer>

</sale>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<sale>

<date>10/5/2003</date>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<PriceUS>29.95</PriceUS>

<quantity>300</quantity>

<customer ID="1025">Zork's Books</customer>

</sale>

<sale>

<date>10/7/2003</date>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<PriceUS>34.95</PriceUS>

<quantity>10</quantity>

<customer ID="1029">Books of Glory</customer>

</sale>

<sale>

<date>10/7/2003</date>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<PriceUS>39.95</PriceUS>

<quantity>25</quantity>

<customer ID="1029">Books of Glory</customer>

</sale>

<sale>

<date>10/7/2003</date>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<PriceUS>29.95</PriceUS>

<quantity>5</quantity>

<customer ID="1029">Books of Glory</customer>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<customer ID="1029">Books of Glory</customer>

</sale>

<sale>

<date>10/18/2003</date>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<PriceUS>29.95</PriceUS>

<quantity>15</quantity>

<customer ID="2561">Title Wave</customer>

</sale>

<sale>

<date>10/21/2003</date>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<PriceUS>39.95</PriceUS>

<quantity>15</quantity>

<customer ID="9021">Books for You</customer>

</sale>

</sales>

If you open this document from Excel and choose "Open as an XML List," you'll see the dialog box shown in Figure 6-3.

Figure 6-3. Excel's warning that no schema is in use

If you just go ahead and click OK, Excel will look at the document, infer a schema for it, build a list based on that
schema, and import the contents of the XML document into that list. You'll be rewarded with the spreadsheet result
shown in Figure 6-4.

Figure 6-4. The XML document shown in Example 6-1 presented as an XML list in
Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel

Excel not only imports the data from the XML document, it uses the element and attribute names as list headers. The
drop down tabs to the right of the list headers let you organize the information as you'd like, as shown in Figure 6-5.

Figure 6-5. Choosing a sort or filter from a drop-down

If you choose "Sort Ascending," for instance, you'd see the list sorted by ISBN, as shown in Figure 6-6.

Figure 6-6. Sorting the data from the XML document by ISBN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel also offers some basic functionality for totaling and averaging the contents of these lists. Right-clicking on the list
—anywhere inside the blue box—brings up a menu. If you choose List Total Row, you'll see an extra row appear at
the bottom of the list, as shown in Figure 6-7.

Figure 6-7. A total row added to the spreadsheet

By default, Excel just does a sum of the right-most column. That's common practice for spreadsheets, though in this
case it works badly, since the IDs aren't exactly addable. Clicking on the cells in the total row brings up a drop-down
tab. Figure 6-8 shows the choices it offers.

Figure 6-8. Total row options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For quantity, it might be nice to know the total number of units ordered. We'll select Count for ISBN so we know how
many orders we have. Figure 6-9 shows the results.

Figure 6-9. Total row results

This is somewhat useful, but odds are good that we want to be able to perform more sophisticated calculations on the
information. Fortunately, we can access the information in the list from the rest of Excel. For starters, we might well
want a column that provides the total cost of an order—the quantity times the price. Because this is just Excel data,
that's easily done. We'll add a "Total" header in cell H1, and then a formula, =D2*E2, in cell H2. If we copy that formula
from H2 to cells H3-9, we get the results shown in Figure 6-10.

Figure 6-10. Total column results

Because we put this column right next to the XML data, Excel added this column to the list, and gave it the same sort
and total capabilities of the rest of the list. Formulas can reference this data from other workbooks or from non-
adjacent cells, though they won't be built into the list the same way.

While Excel provides no means of referring to data in this list by list name and column, you can safely reference the
range and have Excel automatically adjust if a user reloads the XML document or modifies the information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range and have Excel automatically adjust if a user reloads the XML document or modifies the information.

This only works on a list that already has data in it. If you base your formulas on an empty
list, the ranges won't expand properly. The last row of the list is an entry area, which Excel
doesn't count when it adjusts ranges.

To show how to reference data, we'll create some formulas on Sheet2 that reference the range containing the XML data
in Sheet1, as shown in Figure 6-11.

Figure 6-11. Calculations on the XML data

If we go back to Sheet1, and right-click on the XML list area, the XML sub-menu lets you Import... new data. When we
import the data in ch0602.xml, a slightly extended version of the same information, Excel presents the data as shown
in Figure 6-12.

Figure 6-12. Adding more XML data

It's the same data, with a few extra sales. If we now return to Sheet2, as shown in Figure 6-13, we can see that the
sales figures and the formulas have updated smoothly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-13. Automatically updated calculations on the XML data

Excel only does this updating when new data is imported, not when changes are made to the original file, so you should
set user expectations appropriately. This is a very simple example, admittedly, but you can build much more
sophisticated spreadsheet applications on these same principles.

Using sample documents to create a list this way is very convenient, but you should be
aware that if you re-use the list on another XML document that contains more structures
than appeared in the original document, those extra structures won't get imported.

6.2.2.2 Opening documents as a read-only workbook

If you're extracting data from XML documents, you may find it useful to open them as read-only workbooks. The
presentation of the information is very different, and there's no option for exporting the XML back out of the
spreadsheet, but more explicit information about where the information came from is provided in the header rows. If
we open ch0601.xml and select "Open as a read-only workbook," we see the result shown in Figure 6-14.

Figure 6-14. Sales data loaded as a read-only workbook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Information about where the data came from is provided in the XPath-like headers. The #agg information seems to be
aggregated information, though in this case there's only one item per column.

The name "read-only workbook" is slightly misleading. You can make changes to the data, and you can save this file
elsewhere. The "read-only" just means that you can't make changes to the original XML document using this approach;
if you save the file, it's saved as an Excel workbook. It isn't nearly as flexible as the list approach, but it also lets you
extract information from a wider variety of documents. Given its lack of flexibility and Microsoft's lack of documentation
for the resulting format, this feature is probably best used only when you want to dump content from a document into
Excel and don't mind doing a lot of organization yourself.

6.2.2.3 Using the XML source task pane

Opening an XML document using the XML Source task pane produces results that are much like the list created by
opening the document as an XML list, but it allows you to have more control over what appears in the list and what
doesn't. Many XML documents, for example, have header information followed by repeating sections. If opened directly
as a list, Excel will produce a lot of columns that repeat the header information, when it really only appeared once.
Using the XML Source task pane lets you choose what elements or attributes you want to appear in the Excel grid, and
is especially useful when you only want to see or work with a subset of the information used in a document.

To show off the source task pane, we'll open ch0601.xml and select "Use the XML Source task pane." If, like
ch0601.xml, the XML document doesn't contain a reference to an XML Schema, Excel displays the same warning that
was shown in Figure 6-3, and then generates a schema based on what it finds in the document, producing the XML task
pane contents shown in Figure 6-15.

Figure 6-15. Using the XML Source task pane to select XML document parts for
display in Excel

To put information on to the spreadsheet, click on items in the task pane and drag them over to the grid. If you drag
the date over to cell A3, you'll see the result shown in Figure 6-16.

Figure 6-16. Adding a component from the XML Source pane adds a column, but
not the data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While we originally started out as if we were loading a document into Excel, Excel instead loaded the structure of the
document rather than its contents. Using the XML Source task pane means building the structure you want in the
spreadsheet from the parts in the XML document and then importing the XML document's content. If you drag more of
them over and align them side by side, Excel will create a single large list, as shown in Figure 6-17 (If some parts of a
document don't repeat, you can place them in cells that are not adjacent to the main body of the list.).

Figure 6-17. A list, created from the task pane

Populating that list takes an extra step. If the List toolbar is visible (and you can find it at View Toolbars if it isn't
already visible), you can click on the Import XML Data button, as the task pane advises, find your XML document, and
import it. If the toolbar isn't visible, right-clicking on the list will bring up a menu with an XML entry. Select Import . . .
from that menu, choose your XML document, and Excel will import the data. Figure 6-18 shows what Excel produces if
you import ch0601.xml into this list.

Figure 6-18. A filled-in list, with the List toolbar turned on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-18. A filled-in list, with the List toolbar turned on

At this point, you can work with the list the same way you could when the list was loaded directly. One important
feature of building the list this way that you don't get when documents are loaded directly is that you can also place
non-repeating elements on the spreadsheet. Let's suppose the sales element also contained an element named store,
identifying which store had these sales. Figure 6-19 shows the store element placed above the rest of the list, displaying
the value of store once and only once.

Figure 6-19. A filled-in list, with a single element above the repeating portion of
the list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.3 Working with XML Maps

Opening XML documents directly is a great way to get started or to quickly analyze information, but in the long run
you'll probably want to build spreadsheets that take a more structured approach. The XML Source pane lets you define
XML Maps, describing the relationships between XML document structures and the lists that actually appear in your
spreadsheet. These maps are built on XML Schemas, though they may either be schemas you specify or, as the
previous examples showed, schemas that Excel derived by example from documents.

Most interactions with XML Maps take place through the task pane's XML Source view, or through schemas or
documents which you use as a foundation for the map. Once you've created a map, there isn't much you can do
through the Excel interface to change its basic structures, so getting your schema right in the first place is a critical step
in creating spreadsheets that work with XML.

6.2.3.1 Excel and XML Schema

The XML Schema Recommendation provides a much more comprehensive set of tools for describing information than
Excel actually needs. As noted earlier, Excel is good primarily for interacting with certain kinds of document structures,
so some document-oriented features of XML Schema (like types that use mixed content) don't work with Excel.
Similarly, Excel has had its own set of types for internal consumption for over a decade, and retrofitting Excel with the
complete XML Schema datatype system probably would not be wise. Microsoft uses a combination of existing types to
support the larger XML Schema system, as shown in Table 6-1.

More information on creating schemas with a variety of tools is covered in Appendix C and
Appendix D.

Table 6-1. Mappings between XSD datatypes and Excel datatypes

XSD Datatype Excel
Format Limitations

time h:mm:ss If time zones are used, stored as text.

dateTime

m/d/yyyy
h:mm (may
vary with
local versions
of Excel)

No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

date

m/d/yyyy
(may vary
with local
versions of
Excel)

No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

gYear Number,
integers only

No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

gDay, gMonth Number,
integers only If time zones are used, stored as text.

gYearMonth mmm-yy
No time zones. Excel doesn't understand years
below 1900 or above 9999. If either of those
violated, stored as text.

gMonthDay d-mmm
anyType, anyURI, base64Binary, duration,
ENTITIES, ENTITY, hexBinary, ID, IDREF, IDREFS,
language, Name, NCName, NMTOKEN, NMTOKENS,
normalizedString, NOTATION, QName, string, token

Text

boolean Boolean

decimal, float, double General

Insignificant zeros will be dropped, and only
negative signs will be displayed. All of these
forms, despite their XSD differences, are used
in calculations using 15 digits of precision.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

byte, int, integer, long, negativeInteger,
nonNegativeInteger, nonPositiveInteger,
positiveInteger, short, unsignedByte, unsignedInt,
unsignedLong, unsignedShort.

General

These differences mean that you should not expect Excel to keep close track of the validation specified by the schema.
Excel will behave as it has always behaved, with a set of rules for mapping between Excel and XSD. Formats that are
represented as text will be imported or exported as they appear, while formats that have a more complex type may be
formatted by Excel in the spreadsheet and according to XSD rules in the XML.

Excel also performs similar simplifications on content models. Excel is not designed as an über-XML-document
processor, and it doesn't need the structural type information provided by XML Schema. From Excel's perspective, it
needs to know what data goes together as a row and in what columns. Simpler structures are more manageable, and
far less likely to break. While there may be times you need to work with XML that arrived with a complex schema, it
may be easier in such cases to break the documents into smaller pieces and use simpler schemas if possible.

6.2.3.2 Creating an XML Map

Although some of the techniques described earlier in Section 6.2.2Section 6.2.2 create XML Maps, there are times when
you'll want to incorporate data from XML documents in an existing spreadsheet, and those techniques don't work as
well for that.

To create an XML Map in an existing spreadsheet, you need to bring up the task pane (View Task Pane, if it's not
already there) and select XML Source from the drop-down menu at the top of the task pane. Unless you've done XML
work with this spreadsheet before, you should have an empty task pane, like the one shown in Figure 6-20.

Figure 6-20. The XML Source task pane, before any sources are listed

To create an XML Map, click on the XML Maps... button. The XML Maps dialog box, shown in Figure 6-21, will appear,
empty.

Figure 6-21. A fresh XML Maps dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a map, click the Add . . . button. For an example, we'll use a document structure that both fits the Excel grid
approach and tests out how it handles a variety of the XML Schema datatypes listed Table 6-1, using a contract
management system as a guide.

For more information about creating the XML Schemas that are the foundations for these
maps, see Appendix C. You may want to explore the tools mentioned at the end of that
Appendix for inferring schemas from documents in particular.

These are some pretty simple contracts, which are just about payments on birthdays, enough information to get a
sense of how Excel treats different datatypes. The schema for the contract description is listed in Example 6-2.

Example 6-2. A simple schema for contracts

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://simonstl.com/ns/example/contract" xmlns:contract="http://simonstl.

com/ns/example/contract">

 <xs:element name="contracts">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="contract:contract"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="contract">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="contract:recipient"/>

 <xs:element ref="contract:signing_date"/>

 <xs:element ref="contract:signing_time"/>

 <xs:element ref="contract:birthyear"/>

 <xs:element ref="contract:birthday"/>

 <xs:element ref="contract:male"/>

 <xs:element ref="contract:payment_amount"/>

 <xs:element ref="contract:years_to_pay"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="recipient" type="xs:string"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="recipient" type="xs:string"/>

 <xs:element name="signing_date" type="xs:date"/>

 <xs:element name="signing_time" type="xs:time"/>

 <xs:element name="birthyear" type="xs:gYear"/>

 <xs:element name="birthday" type="xs:gMonthDay"/>

 <xs:element name="male" type="xs:boolean"/>

 <xs:element name="payment_amount" type="xs:decimal"/>

 <xs:element name="years_to_pay" type="xs:integer"/>

</xs:schema>

We'll use this schema to create an XML map by clicking the Add... button and selecting this schema from the browse
dialog that appears. When the Multiple Roots dialog box shown in Figure 6-22 appears, select "contracts" from the list
and click OK.

Figure 6-22. Choosing the root element for the map

You'll be rewarded with the result shown in Figure 6-23, a new XML Map that is named contract_map, after the root
element, which describes the namespace http://simonstl.com/ns/example/contract.

Figure 6-23. The XML Map, ready to go

You may notice that your choices for manipulating this map are very limited. You can
rename it or delete it, but you can make no changes. Chapter 7 will explore how you can,
if necessary, make changes to XML Maps through SpreadsheetML's XML representation of
them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click OK, you'll see XML components ready to be used in the XML Source task pane, as shown in Figure 6-24.

Figure 6-24. XML components, ready for use

The XML Source pane uses a number of icons to describe the structure of the XML document, much like those used to
represent files and folders in the Windows Explorer. These icons are shown in Table 6-2.

Table 6-2. XML Source pane icons
Icon Description

Used to represent a container element that may appear one or many times, most typically the root
element of the document. (Root elements aren't actually optional, but perhaps Excel does this to support
the possibility of an empty map.)

Used to represent a container element that may only appear once, often an element that contains
attributes.

Used to represent a container element that may appear repeatedly, most typically an element that
represents rows.

Used to represent a data element that must appear once and that contains data rather than other
elements.

Used to represent a data element that may appear once (or not all), which contains data rather than other
elements. (The same icon, very slightly darker, is used for attributes.)

Used to represent a data element that may appear multiple times. These often give Excel trouble as they
often break out of the simple grid structure.

Used to represent the value of an element, typically when the element also has an attribute or attributes.
This allows you to put an element's content into the grid separately from the values of any attributes it
may have.

If you drag the ns1:contract icon to cell A1, you'll get a list based on this map set up and ready for use, as shown in
Figure 6-25.

Figure 6-25. A list based on the XML Map, ready for use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-25. A list based on the XML Map, ready for use

I tend to clean these up and remove the "ns1" prefixes, as you'll see in later examples. You can also dismiss the XML
Source pane, and bring it back up only if you need its "Verify Map for Export . . . " option.

If you select a cell in Row 2, and select Format Cells, you can see how Excel has formatted the data automatically.
For example, if you do this to the signing date, you'll see the result in Figure 6-26.

Figure 6-26. Cell formatting applied by Excel to dates

While Excel has used the schema to determine cell formatting, it is not currently using the datatypes in the schema for
any kind of data validation. If you import an XML document (or type in data) that doesn't correspond to Excel's
expectations, it will format it as text. To make Excel use the schema for validation—which only happens on import and
export in any event—you need to right-click on the list, select the XML sub-menu, and then select XML Map Properties.
The dialog box shown in Figure 6-27 will appear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dialog box shown in Figure 6-27 will appear.

Figure 6-27. The XML Map Properties dialog box

The "Validate data against schema for import and export" is always turned off by default. While that may seem strange
in contexts where you want validation to check user data, it also avoids some odd problems. It's possible that users will
want to import documents that have problems so that they can repair them. It's also possible that users will be so
frustrated by a document that they want to send it to someone else to sort out, without being told they can't save the
file.

We'll use two test documents to explore how this works. The first one, shown in Example 6-3, is a deliberately invalid
XML document, with all kinds of data that doesn't match the datatypes used by the schema. The second, shown in
Example 6-4, is a document that is valid against the schema we've used.

Example 6-3. An invalid document for use in the map

<contracts xmlns="http://simonstl.com/ns/example/contract">

<!--This document is NOT VALID.-->

<contract>

<recipient>Jedidiah Smith</recipient>

<signing_date>June 27, 1992</signing_date>

<signing_time>4 PM</signing_time>

<birthyear>62</birthyear>

<birthday>23 November</birthday>

<male>yes</male>

<payment_amount>$27</payment_amount>

<years_to_pay>two</years_to_pay>

</contract>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<contract>

<recipient>Jane Zinger</recipient>

<signing_date>April 22, 2001</signing_date>

<signing_time>6:30 PM</signing_time>

<birthyear>75</birthyear>

<birthday>19 July</birthday>

<male>no</male>

<payment_amount>$42</payment_amount>

<years_to_pay>four</years_to_pay>

</contract>

</contracts>

Example 6-4. A valid document for use in the map

<contracts xmlns="http://simonstl.com/ns/example/contract">

<!--This document is VALID.-->

<contract>

<recipient>Josiah Smith</recipient>

<signing_date>1999-06-03</signing_date>

<signing_time>09:03:22</signing_time>

<birthyear>1962</birthyear>

<birthday>--06-21</birthday>

<male>true</male>

<payment_amount>0004002.00200</payment_amount>

<years_to_pay>26</years_to_pay>

</contract>

<contract>

<recipient>Jane Zang</recipient>

<signing_date>1999-04-03</signing_date>

<signing_time>11:04:28</signing_time>

<birthyear>1968</birthyear>

<birthday>--04-23</birthday>

<male>false</male>

<payment_amount>000401.0200</payment_amount>

<years_to_pay>2</years_to_pay>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<years_to_pay>2</years_to_pay>

</contract>

</contracts>

If a user attempts to import Example 6-3 into this map, they'll get the list of warnings shown in Figure 6-28.

Figure 6-28. "Some data was imported as text" errors on import

While this may dissuade some users, it doesn't sound like a big deal, and all those "Complete"s are pretty reassuring.
The map also looks all right in Excel, if you aren't cued in to the formatting. Figure 6-29 shows the import results.

Figure 6-29. Bad results that look like they might be okay in Excel

If you export this map, as shown in the next section, Excel goes right ahead with it. If you use the "Verify Map for
Export" link on the XML Source task pane, Excel notifies you that "contract_map is exportable." The results of the
export, shown in Example 6-5, make it clear that Excel has imported and exported the document, as it's added the ns1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

export, shown in Example 6-5, make it clear that Excel has imported and exported the document, as it's added the ns1
prefix everywhere.

Example 6-5. The exported version of the broken document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns1:contracts xmlns:ns1="http://simonstl.com/ns/example/contract">

 <ns1:contract>

 <ns1:recipient>Jedidiah Smith</ns1:recipient>

 <ns1:signing_date>June 27, 1992</ns1:signing_date>

 <ns1:signing_time>4 PM</ns1:signing_time>

 <ns1:birthyear>62</ns1:birthyear>

 <ns1:birthday>23 November</ns1:birthday>

 <ns1:male>yes</ns1:male>

 <ns1:payment_amount>$27</ns1:payment_amount>

 <ns1:years_to_pay>two</ns1:years_to_pay>

 </ns1:contract>

 <ns1:contract>

 <ns1:recipient>Jane Zinger</ns1:recipient>

 <ns1:signing_date>April 22, 2001</ns1:signing_date>

 <ns1:signing_time>6:30 PM</ns1:signing_time>

 <ns1:birthyear>75</ns1:birthyear>

 <ns1:birthday>19 July</ns1:birthday>

 <ns1:male>no</ns1:male>

 <ns1:payment_amount>$42</ns1:payment_amount>

 <ns1:years_to_pay>four</ns1:years_to_pay>

 </ns1:contract>

</ns1:contracts>

If, however, we turn on "Validate data against schema for import and export," we'll get an extra error message, shown
in Figure 6-30.

Figure 6-30. An error message produced by failed validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Close that window, however, and you have the same imported result shown in Figure 6-29. Excel is not very interested
in blocking bad data. If you select the schema validation error and click Details . . . you'll see the information presented
in Figure 6-31.

Figure 6-31. A report on schema validation failure

This is somewhat more meaningful, but:

It only reports on the first of many errors it encountered.

It presents the element name in a form that's not familiar to many users.

The line, column, and offset information is inaccurate and useless.

Hopefully, future versions of Excel will provide better support for validation on import that is more helpful to users and
more useful for developers. Similarly, exporting this document produces the same result already shown in Example 6-5,
but produces a warning message, shown in Figure 6-32.

Figure 6-32. The error message from exporting an invalid XML document

Hopefully users will see this and at least know there's a problem, and perhaps being able to export XML will make it
easier for them to pass it to someone else who can clean it up before schema-dependent processing takes place.

If, on the other, we import Example 6-4, the valid document, we get no error messages and a spreadsheet whose
formatting conforms to the expectations described in Table 6-1. Figure 6-33 shows this valid document after import into
our list area.

Figure 6-33. A valid XML document, imported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-33. A valid XML document, imported

This document also exports perfectly well. Given good examples, users should be able to produce good results. If users
get used to seeing error messages with no obvious ill effects, though, it may cause trouble down the road.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Editing XML Documents in Excel
While Excel's powerful analysis tools make it an ideal application for processing the data found in XML documents,
Excel's expectation that data must appear in a grid limits its capabilities as a general XML editor. If you need to create
XML files that do fit Excel's interface, however, Excel may prove an excellent way to have users create XML documents
without ever realizing that they're doing so. The first few steps are much like those used to load XML data into Excel
spreadsheets, but the user is encouraged to add data and save the results. In this case, Excel serves as an editor for a
relatively simple class of XML documents.

As an example, we'll use a document format that is designed to represent a portion of a forest, and used to generate a
stand map. Stand maps are circular maps that represent one-fifth of an acre of land, as shown in Figure 6-34.

Figure 6-34. A stand map generated from an XML document

Though you can't see the color in this book, you can get the general idea. Trees are measured from a center point in a
forest, using their distance and their compass degree. The species and diameter at breast height (dbh) are also
recorded, and there may be additional notes. The data behind the map is generally recorded as a table, often on paper.
(The first stand map I made was on a four-foot circle of paper, recorded using markers, templates, a compass, and a
ruler.) While stand maps only represent a small section of a forest, they can provide baseline information for comparing
the different contents of different forests or sections of forests. For example, the forest shown in Figure 6-34 is largely

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the different contents of different forests or sections of forests. For example, the forest shown in Figure 6-34 is largely
maple, with some hemlocks and some large tulip poplars just outside the ring. The forest shown in Figure 6-35 is
largely black locust, with other species mixed in.

Figure 6-35. A stand map of a different forest, also generated from an XML
document

Creating these maps is beyond the capabilities of Excel's charting functions (that's done using XSLT with some
trigonometry extensions to generate Scalable Vector Graphics, or SVG), but Excel is very useful in this instance as a
tool for collecting data. Laptops have become more and more common in the forest, as they're far more convenient
than four-foot circular tables for collecting data.

The XML data format behind these maps is pretty simple. A sample is shown in Example 6-6.

Example 6-6. A description of a forest in XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-6. A description of a forest in XML

<forest xmlns="http://simonstl.com/ns/forest/">

<tree>

 <species>STM</species>

 <dbh>6</dbh>

 <height>13</height>

 <angle>6.5</angle>

 <radius>39</radius>

</tree>

<tree>

 <species>SM</species>

 <dbh>37.5</dbh>

 <height>67</height>

 <angle>12</angle>

 <radius>38.5</radius>

</tree>

<tree>

 <species>H</species>

 <dbh>31</dbh>

 <height>63</height>

 <angle>16</angle>

 <radius>29</radius>

 <note>snag</note>

</tree>

<tree>

 <species>SM</species>

 <dbh>6</dbh>

 <height>30</height>

 <angle>42</angle>

 <radius>52</radius>

</tree>

...</forest>

The schema for this data is similarly simple, as shown in Example 6-7.

Example 6-7. The schema for forest map information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-7. The schema for forest map information

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://simonstl.com/ns/forest/" xmlns:forest="http://simonstl.com/ns/

forest/">

 <xs:element name="forest">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="forest:tree"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="tree">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="forest:species"/>

 <xs:element ref="forest:dbh"/>

 <xs:element ref="forest:height"/>

 <xs:element ref="forest:angle"/>

 <xs:element ref="forest:radius"/>

 <xs:element minOccurs="0" ref="forest:note"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="species" type="xs:NCName"/>

 <xs:element name="dbh" type="xs:decimal"/>

 <xs:element name="height" type="xs:decimal"/>

 <xs:element name="angle" type="xs:decimal"/>

 <xs:element name="radius" type="xs:decimal"/>

 <xs:element name="note" type="xs:string"/>

</xs:schema>

Most of the declarations that directly affect users' work are those at the bottom of the schema. The abbreviations for
species are non-colonized names (NCNames), while the measurements are decimals and the notes are strings. Using this
schema, we'll create a map and put a list into a spreadsheet that users can treat as a recording device for their
measurements in the field.

Using the XML Source task pane, add a map to the spreadsheet, using the schema as a base. You'll need to select a
root (forest), and then the task pane will be populated with choices for inclusion in the spreadsheet, as shown in Figure
6-36.

Figure 6-36. The XML Map for the forest XML document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-36. The XML Map for the forest XML document

One mildly irritating feature of this map is the ns1 prefix Excel has applied to the element names. Fortunately, this is
only an issue when you work with the map directly, as it can be edited out of the list headers with no harm to the data
structure. Figure 6-37 shows what our new spreadsheet—with edited headers—looks like.

Figure 6-37. A spreadsheet for creating forest map XML

Using this interface is pretty easy. Researchers just enter one row per tree, filling out the required species, dbh, height,
angle, and radius, and adding a note if there's a reason. Figure 6-38 shows what this data entry process looks like.

Figure 6-38. Entering new forest information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-38. Entering new forest information

One especially nice feature of this spreadsheet is that the XML Source task pane isn't visible. There's no need for the
people working with this interface to understand that they're doing anything at all unusual. The sorting and filtering
features of the list are conveniences, but they don't interfere with the data entry. Tabbing from field to field works
beautifully.

Also, there's an extra sheet here, the key sheet, which is itself an imported XML document. Because this mapping
format is designed to be used around the world, in places that have very different species of trees, the species codes
are stored in a separate document that is reference by the XSLT that generates the map. The developers of this
spreadsheet have included that information as well. Mostly this is a convenience, to help humans remember codes, but
it also opens the possibility that those same humans might use the spreadsheet to modify the codes and their resulting
maps. (If you don't want to permit them to save the codes back out as XML, just cut the information and paste it back
in outside of a list context.) Figure 6-39 shows the key tab.

Figure 6-39. Additional key information, also stored as XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Researchers working in the field can save their spreadsheets as Excel files, and it'll be simple enough to extract the XML
information when they return to a place where they're analyzing them. If they want to extract the information in the
field, say to generate a map, they can right-click on their data and choose Export . . . from the XML menu. The results
of doing that with the data shown in Figure 6-38 are shown in Example 6-8.

Example 6-8. XML created through Excel's XML interfaces

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns1:forest xmlns:ns1="http://simonstl.com/ns/forest/">

 <ns1:tree>

 <ns1:species>P</ns1:species>

 <ns1:dbh>14</ns1:dbh>

 <ns1:height>40</ns1:height>

 <ns1:angle>10</ns1:angle>

 <ns1:radius>35</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>SM</ns1:species>

 <ns1:dbh>4</ns1:dbh>

 <ns1:height>15</ns1:height>

 <ns1:angle>12</ns1:angle>

 <ns1:radius>40</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>SM</ns1:species>

 <ns1:dbh>20</ns1:dbh>

 <ns1:height>50</ns1:height>

 <ns1:angle>15</ns1:angle>

 <ns1:radius>15</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>BN</ns1:species>

 <ns1:dbh>17</ns1:dbh>

 <ns1:height>40</ns1:height>

 <ns1:angle>22</ns1:angle>

 <ns1:radius>27</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>WO</ns1:species>

 <ns1:dbh>19</ns1:dbh>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ns1:dbh>19</ns1:dbh>

 <ns1:height>40</ns1:height>

 <ns1:angle>32</ns1:angle>

 <ns1:radius>42</ns1:radius>

 </ns1:tree>

 <ns1:tree>

 <ns1:species>SM</ns1:species>

 <ns1:dbh>3</ns1:dbh>

 <ns1:height>10</ns1:height>

 <ns1:angle>37</ns1:angle>

 <ns1:radius>12</ns1:radius>

 <ns1:note>oddly angled</ns1:note>

 </ns1:tree>

</ns1:forest>

Excel has, unfortunately, applied the ns1 prefix to everything, but the information comes through clearly and can be
processed by all the tools built around the format shown originally in Example 6-6.

Your data doesn't have to be this flat for Excel to be capable of editing it. It could, for instance, look like the data in
Example 6-9.

Example 6-9. A description of a forest in XML with some gratuitous structure

<forest xmlns="http://simonstl.com/ns/forest/">

<tree>

 <details>

 <species>STM</species>

 <dbh>6</dbh>

 <height>13</height>

 </details>

 <location>

 <angle>6.5</angle>

 <radius>39</radius>

 </location>

</tree>

<tree>

 <details>

 <species>SM</species>

 <dbh>37.5</dbh>

 <height>67</height>

 </details>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </details>

 <location>

 <angle>12</angle>

 <radius>38.5</radius>

 </location>

</tree>

<tree>

 <details>

 <species>H</species>

 <dbh>31</dbh>

 <height>63</height>

 <note>snag</note>

 </details>

 <location>

 <angle>16</angle>

 <radius>29</radius>

 </location>

</tree>

<tree>

 <details>

 <species>SM</species>

 <dbh>6</dbh>

 <height>30</height>

 </details>

 <location>

 <angle>42</angle>

 <radius>52</radius>

 </location>

</tree>

...</forest>

You could edit it in a spreadsheet that looked just like Figure 6-38. Excel doesn't mind the extra container elements at
all, so long as they don't interfere with its expectations for repeating list content.

If a map only represents part of an XML document, and you export it back to XML, only the
parts of the XML document that were shown by the map will be exported. Don't try to use
Excel to edit tables in larger documents, for instance!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Loading and Saving XML Documents from VBA
While the GUI provides a convenient way to work with whatever XML you encounter, you may want to create
applications that work with XML on a regular basis, and don't want the user of the spreadsheet to have to interact with
XML directly. Using Visual Basic for Applications, you can create spreadsheets that load XML and save XML through
Excel's maps without the user even needing to know where their data is coming from. The spreadsheet shown in
Figures 6-40 and 6-41 will be used to demonstrate how this works.

Figure 6-40. XML maps and user interface

Figure 6-41. A backstage area storing information used by the VBA code

The worksheet shown in Figure 6-40 contains four buttons, a checkbox linked to cell D2, and two XML maps. The left-
hand map expects data like that shown in Example 6-10, while the right-hand map expects data like that shown in cell
B4 of Figure 6-41 or like that shown in Example 6-11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B4 of Figure 6-41 or like that shown in Example 6-11.

Example 6-10. Simple product information format

<products>

 <item>

 <sku>34542</sku>

 <price>29.42</price>

 </item>

 <item>

 <sku>34546</sku>

 <price>19.24</price>

 </item>

 <item>

 <sku>34548</sku>

 <price>99.42</price>

 </item>

</products>

Example 6-11. Simple sales information format

<sales>

 <item>

 <sku>34542</sku>

 <quantity>10</quantity>

 </item>

 <item>

 <sku>34546</sku>

 <quantity>4</quantity>

 </item>

 <item>

 <sku>34548</sku>

 <quantity>1</quantity>

 </item>

</sales>

Rather than expecting users of the spreadsheet to import or export this information themselves using the GUI, this
spreadsheet provides buttons that import and export XML information. The first Import button on the left contains the
code shown in Example 6-12.

Example 6-12. Importing from an XML file to an Excel XML map

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-12. Importing from an XML file to an Excel XML map

Private Sub ImportFile_Click()

 Dim myMap As XmlMap

 'reference map by name

 Set myMap = ActiveWorkbook.XmlMaps("products_Map")

 Dim source As String

 source = Worksheets(2).Range("B1").Text

 Dim append As Boolean

 append = Range("D2").Value

 myMap.AppendOnImport = append

 myMap.AdjustColumnWidth = False

 myMap.Import (source)

End Sub

First, this code retrieves the first XML map in the Excel spreadsheet from the workbook's XmlMaps collection. Next, it
gets the source file from which it is to import from cell B1 of the worksheet shown in Figure 6-41. It collects the value
of cell D2 on the main worksheet so it can tell Excel whether to append new data or replace the existing data in the
map with the new data, by setting the AppendOnImport property of the map. To avoid columns changing sizes, the script
explicitly sets AdjustColumnWidth to false. Finally, it calls the map object's Import method, giving it the source argument
collected at the beginning. (That source can be a URL, not just a file reference.)

If the products.xml file listed in Example 6-10 is at the location specified by cell B1 of the Source sheet, you'll see a
result like that of Figure 6-42.

Figure 6-42. Result of the first import from a file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you check the "Append on Import" checkbox, thereby changing cell D2's contents to true, and then click Import
again, it will add the same three values to the map again, as shown in Figure 6-43.

Figure 6-43. Result of the second import from a file, with append

Its companion Export button is simpler, containing the code shown in Example 6-13.

Example 6-13. Exporting from an XML file to an Excel XML map

Private Sub ExportFile_Click()

 Dim myMap As XmlMap

 'reference map by number (6-12 referenced by name)

 Set myMap = ActiveWorkbook.XmlMaps(1)

 Dim dest As String

 dest = Worksheets(2).Range("B2").Text

 myMap.Export (dest)

End Sub

Like the Import version, it collects the first map in the workbook, and a location from the Sources worksheet. Instead of
importing, though, it uses the Export method to drop the XML in the file specified. If the spreadsheet looks like Figure
6-43, clicking the right-hand Export button will produce the code shown in Example 6-14.

Example 6-14. Exporting from an Excel XML map to an XML file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-14. Exporting from an Excel XML map to an XML file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <item>

 <sku>34542</sku>

 <price>29.42</price>

 </item>

 <item>

 <sku>34546</sku>

 <price>19.24</price>

 </item>

 <item>

 <sku>34548</sku>

 <price>99.42</price>

 </item>

 <item>

 <sku>34542</sku>

 <price>29.42</price>

 </item>

 <item>

 <sku>34546</sku>

 <price>19.24</price>

 </item>

 <item>

 <sku>34548</sku>

 <price>99.42</price>

 </item>

</products>

The map and buttons on the right-hand side behave differently. Rather than importing from and exporting to files, they
import from and export to strings, using the ImportXML and ExportXML methods instead of Import and Export. You
might want to do this if your data came from someplace other than a file, or if you need to do something to the XML
before the import or export takes place. The string import method is shown in Example 6-15 and the string export
method is shown in Example 6-16.

Example 6-15. Importing from an XML string to an Excel XML map

Private Sub ImportString_Click()

 Dim myMap As XmlMap

 Set myMap = ActiveWorkbook.XmlMaps(2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim sourceData As String

 sourceData = Worksheets(2).Range("B4").Text

 Dim append As Boolean

 append = Range("D2").Value

 myMap.AppendOnImport = append

 myMap.AdjustColumnWidth = False

 myMap.ImportXml (sourceData)

End Sub

Example 6-16. Exporting from an Excel XML map to an XML string

Private Sub ExportString_Click()

 Dim myMap As XmlMap

 Set myMap = ActiveWorkbook.XmlMaps(2)

 Dim result As String

 myMap.ExportXml result

 Worksheets(2).Range("B5").Value = result

End Sub

If the Sources sheet looks like Figure 6-41, clicking on the right-hand Import button of the Data sheet will produce the
result shown in Figure 6-44.

Figure 6-44. Importing from a string on the Sources sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-44. Importing from a string on the Sources sheet

If you now click on the right-hand Export button and then go look at the Sources sheet, you'll see the result shown in
Figure 6-45.

Figure 6-45. The Sources sheet after an export

While these examples are fairly simple, they've demonstrated several ways to get information into and out of Excel. You
can extend these examples with more VBA to create applications that update their data automatically, issue queries
against web sites and present results, or pass XML information to custom processes for further work.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Working with XML Data in Excel
Spreadsheets
Microsoft Office Excel 2003 offers two rather different kinds of XML functionality. Excel (in the Professional and
Enterprise editions) allows users to build spreadsheets that load data from XML files, making it easy to analyze
information sent from various sources using the same spreadsheet. The data that a spreadsheet analyzes can be
separated from the logic used to analyze it very easily this way, making it simpler to create spreadsheets that work
more like ordinary applications. Excel 2003 (and XP) also offer the ability to save and open spreadsheets which are
themselves saved in Excel's own XML format; these features will be explored in Chapter 7.

The features described in this chapter are available only to users of the Professional or
Enterprise editions of Microsoft Office Excel. Sadly, the Standard edition does not include
these capabilities. If you have problems finding the XML features in your copy of Excel,
check to see which edition you're using. (The Small Business Edition appears to include the
Standard, not the Professional, version.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Saving and Opening XML Spreadsheets
Excel treats XML spreadsheet files pretty much like regular .xls binary files. Microsoft has captured nearly all of the
information stored in Excel workbooks in its XML format, with some major exceptions, including embedded Visual Basic
for Applications (VBA), charting information, OLE objects, and drawing objects. It works very well for basic data import
and export, but not as well for more sophisticated spreadsheets. While you can, for example, use VBA and charting on
information stored in the XML maps described in Chapter 6, that functionality will be lost if you save the spreadsheet
itself in SpreadsheetML and don't keep a .xls copy.

If you need access to Excel features that SpreadsheetML doesn't support, you might try
tools like Spreadsheet::WriteExcel, a Perl module, available through http://cpan.org, or
POI, a Java library available at http://jakarta.apache.org/poi/. These both operate on .xls
files, not SpreadsheetML, and have their own limitations, but they tend to be different
limitations than those of SpreadsheetML.

From the Excel user's perspective, opening a SpreadsheetML XML document is just like opening a spreadsheet—with
one minor complication. Excel shows all the XML documents in the current directory as choices to open, when they may
not in fact contain SpreadsheetML. Excel looks for the mso-application processing instruction at the start of an XML
document. If it finds one, it marks the file with a Word, Excel, or other Office logo, as shown in Figure 7-1.

Figure 7-1. The Open dialog box showing SpreadsheetML, WordML, other XML, and
regular Excel files

If a user happens to pick an XML file that Excel doesn't understand automatically (even, for instance, a WordML file),
they'll be confronted with the dialog box shown in Figure 7-2.

Figure 7-2. The dialog box for opening XML files that don't contain SpreadsheetML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-2. The dialog box for opening XML files that don't contain SpreadsheetML

This dialog box is very useful for the functionality described in Chapter 6, but users who open XML files containing
SpreadsheetML will never have to deal with it—everything looks just like it does when opening a traditional .xls file.

Saving Excel files as SpreadsheetML files is similarly simple. The Save As dialog box, shown in Figure 7-3, offers an
"XML Spreadsheet (*.xml)" option right under the usual "Microsoft Excel Workbook (*.xls)" choice.

Figure 7-3. Saving a spreadsheet to the SpreadsheetML XML spreadsheet format

If you're especially gung-ho about working with XML spreadsheets, you can set "XML Spreadsheet" to be your default
file format in the Transition tab of the dialog box opened by selecting Options . . . from the Tools menu, as shown in
Figure 7-4.

Figure 7-4. Setting the SpreadsheetML XML spreadsheet format to be the default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using any of these approaches, you'll be able to read and write XML Spreadsheets from within XML.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Reading XML Spreadsheets
The SpreadsheetML vocabulary is generally much smaller than the WordML vocabulary, and more approachable. While
it also comes with lots of metadata, the structured nature of spreadsheets is easily captured with relatively concise
XML. We'll start with a very simple test spreadsheet, adding two numbers, as shown in Figure 7-5.

Figure 7-5. A simple spreadsheet for an initial test

This spreadsheet adds 2 and 2, using the SUM function in cell A3 to add the values of cells A1 and A2. If we save the
spreadsheet shown in Figure 7-5 as an XML Spreadsheet, Excel generates the XML file shown in Example 7-1.

Example 7-1. A simple Excel spreadsheet saved as XML

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40">

 <DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

 <Author>Simon St.Laurent</Author>

 <LastAuthor>Simon St.Laurent</LastAuthor>

 <Created>2003-03-19T20:21:31Z</Created>

 <LastSaved>2003-03-19T20:23:08Z</LastSaved>

 <Company>simonstl.com</Company>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Company>simonstl.com</Company>

 <Version>11.4920</Version>

 </DocumentProperties>

 <OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">

 <DownloadComponents/>

 <LocationOfComponents HRef="file:///C:\MSOCache\All%20Users\20000409-6000-11D3

 8CFE-0150048383C9\"/>

 </OfficeDocumentSettings>

 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">

 <WindowHeight>8955</WindowHeight>

 <WindowWidth>11355</WindowWidth>

 <WindowTopX>360</WindowTopX>

 <WindowTopY>120</WindowTopY>

 <ProtectStructure>False</ProtectStructure>

 <ProtectWindows>False</ProtectWindows>

 </ExcelWorkbook>

 <Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

 <Interior/>

 <NumberFormat/>

 <Protection/>

 </Style>

 </Styles>

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3" x:FullColumns="1"

 x:FullRows="1">

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

The spreadsheet begins with an XML declaration and a processing instruction identifying this document as an Excel.sheet:

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?mso-application progid="Excel.Sheet"?>

After those formalities, the Workbook element appears. The Workbook element is the root element for all SpreadsheetML
files, and contains most of the namespace declarations that will be used in the rest of the document:

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40">

Unlike Word, which prefixed all of its element and attribute names with w, Excel uses no namespace prefix by default,
using xmlns="urn:schemas-microsoft-com:office:spreadsheet" to declare its default namespace, the namespace you'll
undoubtedly find most important if you need to get to the data contained in the spreadsheet grid.

Because unprefixed attributes don't have a namespace, Excel also uses the declaration xmlns:ss="urn:schemas-microsoft-
com:office:spreadsheet" to associate the ss (for spreadsheet) prefix with the same URI. The elements in the document will
be unprefixed, while their attributes will be prefixed with ss, but all of these components will have precisely the same
namespace URI, "urn:schemas-microsoft-com:office:spreadsheet".

As we'll see, the declaration for the o prefix doesn't actually get used in this document. The x prefix is used for a few
attributes later, and the html prefix is used if there is HTML in the spreadsheet somewhere.

The first child element, DocumentProperties, contains the metadata about the document. While all of these elements use
no namespace prefix, the DocumentProperties element redefines the default namespace with its own xmlns attribute.
Unprefixed elements in this space have the same namespace URI as the o prefix elsewhere.

<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

 <Author>Simon St.Laurent</Author>

 <LastAuthor>Simon St.Laurent</LastAuthor>

 <Created>2003-03-19T20:21:31Z</Created>

 <LastSaved>2003-03-19T20:23:08Z</LastSaved>

 <Company>simonstl.com</Company>

 <Version>11.4920</Version>

 </DocumentProperties>

Most of this information is pretty straightforward. Perhaps the most interesting aspect is that the markup is extremely
similar to its counterpart in Word, except for whitespace and the meaningless namespace prefix. Excel stores less
information than Word, as Example 7-2 demonstrates, but content managers can rely on these pieces to collect
metadata from both Word and Excel files without concern for the surrounding context.

Example 7-2. WordML document properties (whitespace added for readability)

<o:DocumentProperties>

 <o:Title>Hello World</o:Title>

 <o:Author>Simon St.Laurent</o:Author>

 <o:LastAuthor>Simon St.Laurent</o:LastAuthor>

 <o:Revision>2</o:Revision>

 <o:TotalTime>0</o:TotalTime>

 <o:Created>2003-03-14T00:21:00Z</o:Created>

 <o:LastSaved>2003-03-14T00:21:00Z</o:LastSaved>

 <o:Pages>1</o:Pages>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <o:Words>1</o:Words>

 <o:Characters>12</o:Characters>

 <o:Company>O'Reilly & Associates</o:Company>

 <o:Lines>1</o:Lines>

 <o:Paragraphs>1</o:Paragraphs>

 <o:CharactersWithSpaces>12</o:CharactersWithSpaces>

 <o:Version>11.4920</o:Version>

</o:DocumentProperties>

Getting back to the Excel markup, the next piece is pretty application-specific and probably not very useful to other
applications. Like the DocumentProperties element, it declares its own default namespace rather than using the o prefix
defined at the start of the document.

<OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">

 <DownloadComponents/>

 <LocationOfComponents HRef="file:///C:\MSOCache\All%20Users\20000409-6000-11D3

 8CFE-0150048383C9\"/>

 </OfficeDocumentSettings>

Next we have the ExcelWorkbook element, with information about the window settings and protected status of the
workbook:

<ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">

 <WindowHeight>8955</WindowHeight>

 <WindowWidth>11355</WindowWidth>

 <WindowTopX>360</WindowTopX>

 <WindowTopY>120</WindowTopY>

 <ProtectStructure>False</ProtectStructure>

 <ProtectWindows>False</ProtectWindows>

 </ExcelWorkbook>

Again, this element could have used the x prefix defined in the root element, but opts to redeclare the default
namespace. After this information about the presentation of the spreadsheet generally, we have information about the
styles used in the document, stored in the Styles element:

<Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Borders/>

 <Interior/>

 <NumberFormat/>

 <Protection/>

 </Style>

 </Styles>

Because this spreadsheet is very very simple, there are just a few defaults here. All of the cells in this stylesheet use
the Normal style, with no special formatting. Nevertheless, this empty set of elements gives you some idea of what you
can do here.

After these preparations, we reach the Worksheet elements. Each of these elements represents one complete worksheet
in Excel. Since Excel created three worksheets by default, there are three Worksheet elements here. Spreadsheets with
more or fewer worksheets will have as many Worksheet elements as appropriate. The first of the three Worksheet
elements is the one containing our data:

<Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3" x:FullColumns="1"

 x:FullRows="1">

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

The guts of the worksheet are stored in the Table element, while other information about the worksheet is stored in the
WorksheetOptions element. For the most part, if you're trying to extract the contents of spreadsheets or create new
spreadsheets from existing information, the Table element will be at the heart of your work. The Table element defines
the space it contains:

<Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3" x:FullColumns="1"

 x:FullRows="1">

The ss:ExpandedColumnCount indicates that this spreadsheet has one column, while ss:ExpandedRowCount indicates that
this spreadsheet has three rows. Knowing the number of rows and columns gives Excel a chance to prepare for the
incoming data. The x:FullColumns and x:FullRows attributes appear to do nothing.

In current versions of SpreadsheetML, multiple Table elements are permitted, but Excel
only uses the first of them. According to Microsoft's "Overview of SpreadsheetML," which
comes with the Microsoft Office XML Schemas mentioned at the start of this chapter, this
will let future versions of Excel "support multiple overlapping ranges by having multiple
Table elements."

The contents of the Table element represent the stylesheet as a set of Row elements which themselves contain Cell
elements:

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">2</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)"><Data ss:Type="Number">4</

Data></Cell>

 </Row>

The first two of these Row elements are identical, containing a Cell element whose Data element contains the value 2.
The ss:Type attribute identifies this information as a Number—a notable departure from the W3C XML Schema data
typing used elsewhere in the Office applications, but consistent with the mapping previously described in Table 6-1. The
third row contains a calculated result, the 4 inside of the Data element, as well as the type information and the formula
by which that result was calculated. The inclusion of calculated values may make some kinds of import from Excel much
easier, and you can always check for the presence of the ss:Formula attribute if you want to exclude calculated values
from your processing.

Looking more closely at the ss:Formula attribute, it's fairly clear that using these formulas in other contexts will require
reconstructing the table:

ss:Formula="=SUM(R[-2]C, R[-1]C)"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The formula reflects Excel's internal expectations for working with the information, most notably the expectation that
the entire table will be available for navigation using relative references between cells. The Row and Cell elements reflect
this same structure, so programs built around this XML have a good chance of interpreting these formulas, but decoding
them will take some custom logic (XSLT 1.0 won't easily build and navigate this grid) and an object model for storing all
the rows and cells at any given time. Depending on the type of information you need from the spreadsheet, this may
not matter. If you're importing it into another spreadsheet-like structure, you may have a lot of work to do. If you just
want the data, ignoring the formulas shouldn't be a problem.

The WorksheetOptions element contains other information about the worksheet's presentation and operation:

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

Again, the WorksheetOptions element redefines the default namespace, assigning the same value to no prefix that was
assigned to the x prefix at the start of the document. All of this information is considered specific to Excel, not to the
spreadsheet generally. While the data here can be useful if you're creating spreadsheet applications, it's not information
you'll use for the spreadsheet data itself.

The next two worksheets are empty, so they are represented by relatively minimal placeholders, followed by the closing
tag of Workbook:

<Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Workbook>

If all you're concerned with is extracting the data from the spreadsheet, you now have a solid set of basic parts: the
Workbook, Worksheet, Row, Cell, and Data elements. For getting information into and out of Excel, that core provides most
of the substance you'll need.

7.2.1 Working with More Complex Spreadsheets

While the 2+2=4 example does a nice job of showing the basic structure Excel uses to store spreadsheets in XML, the
odds are excellent that you'll need to work with more complicated spreadsheets and formulas. Excel also offers a few
structures—notably named cells and ranges—that can make it much easier to work with Excel data, reducing the
otherwise constant need to keep track of how an XML cell corresponds to a particular location on the spreadsheet grid.

We'll start with the spreadsheet shown in Figure 7-6, a list of items sold, with IDs, descriptions, prices, named ranges
for all of those, and a calculated total for each transaction.

Figure 7-6. A spreadsheet with more data and named ranges

The "Critters" named range includes the contents of the Critter column, and so on. When this spreadsheet is saved as
an XML document, the Worksheet element representing Sheet1 looks like Example 7-3.

Example 7-3. The Worksheet portion of the XML representation of Figure 7-6

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="9" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Row>

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data

ss:Type="Number">2857.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">3912</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Brontosaurus</Data><NamedCell ss

 Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">17.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">74</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number"

 1295</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9845</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Triceratops</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">12</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1092</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9625</Data><NamedCell ss:Name="ID"/

></Cell>

 <Cell><Data ss:Type="String">Vulcanodon</Data><NamedCell ss:Name=

"Critters"/>

 </Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">19</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">108</Data><NamedCell ss:Name=

"Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2052</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">5903</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Stegosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">18.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">63</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1165.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">1824</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Monoclonius</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">16.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">133</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2194.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Megalosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">23</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">128</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2944</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">8649</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Barosaurus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">17</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1547</Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>8</ActiveRow>

 <ActiveCol>4</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

It has the same pattern of Row elements containing Cell elements (the Column information is strictly for formatting), and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It has the same pattern of Row elements containing Cell elements (the Column information is strictly for formatting), and
the same surrounding metadata, but it also now contains additional information in many of its Cell elements:

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s21" ss:Formula="=RC[-2]*RC[-1]">

 <Data ss:Type="Number">2857.5</Data></Cell>

 </Row>

With the addition of the NamedCell element and its ss:Name attribute, we now have a way to select cells from the row by
name in addition to position. The XML spreadsheet also contains a summary of the named ranges in a Names element
that precedes the Worksheet elements:

 <Names>

 <NamedRange ss:Name="Critters" ss:RefersTo="=Sheet1!R2C2:R9C2"/>

 <NamedRange ss:Name="ID" ss:RefersTo="=Sheet1!R2C1:R9C1"/>

 <NamedRange ss:Name="Price" ss:RefersTo="=Sheet1!R2C3:R9C3"/>

 <NamedRange ss:Name="Quantity" ss:RefersTo="=Sheet1!R2C4:R9C4"/>

 </Names>

While the Names element is useful to Excel in loading a document, you may not find processing it (or even creating it)
with other applications, notably XSLT and XPath, to be much fun—once again, you need to have the grid available to
figure out (or assign) the references. Fortunately, Excel can recreate named ranges from just the NamedCell information,
so you don't need to worry about this extra step unless you want to.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Extracting Information from XML Spreadsheets
When the spreadsheet data arrives in a form like Example 7-3, it's easy to extract the data using tools like XSLT. All the
cells in the area used contain data, and it's just a simple table. If, for example, we wanted to extract the data in this
spreadsheet and produce a much lighter XML document containing just the data, the stylesheet might look like that
shown in Example 7-4.

Example 7-4. A simple stylesheet for extracting data from Excel tables

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 >

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="/">

 <xsl:apply-templates select="ss:Workbook"/>

</xsl:template>

<xsl:template match="ss:Workbook">

 <dinosaurs>

 <xsl:apply-templates select="ss:Worksheet[@ss:Name = 'Sheet1']"/>

 </dinosaurs>

</xsl:template>

<xsl:template match="ss:Worksheet">

 <xsl:apply-templates select="ss:Table" />

</xsl:template>

<xsl:template match="ss:Table">

 <xsl:apply-templates select="ss:Row[position() > 1]" />

</xsl:template>

<xsl:template match="ss:Row">

<sale>

 <IDnum><xsl:apply-templates select="ss:Cell[1]" /></IDnum>

 <critter><xsl:apply-templates select="ss:Cell[2]" /></critter>

 <price><xsl:apply-templates select="ss:Cell[3]" /></price>

 <quantity><xsl:apply-templates select="ss:Cell[4]" /></quantity>

 <total><xsl:apply-templates select="ss:Cell[5]" /></total>

</sale>

</xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

Note the namespace declarations in the root xsl:stylesheet element. If you forget any of these, your stylesheet won't
behave as expected, even though everything else looks right.

See Appendix B for more information if you're unfamiliar with XSLT and XSLT processing
tools.

Most of the work here is done by the last template, which just matches the rows in Sheet1. The prior templates guide
the stylesheet past all the Excel metadata, into Sheet1, and make sure that it skips the first Row element, which
contains the column titles. The last template puts the contents of the first Cell element into an element named IDnum,
the second Cell element into an element named critter, and so on. The results of running this stylesheet against the XML
document in Example 7-2 are shown in Example 7-5.

Example 7-5. Simple XML produced by using XSLT on SpreadsheetML

<dinosaurs xmlns="http://simonstl.com/ns/dinosaurs/" xmlns:ss="urn:schemas-microsoft-com:

office:spreadsheet">

<sale>

<IDnum>4627</IDnum>

<critter>Diplodocus</critter>

<price>22.5</price>

<quantity>127</quantity>

<total>2857.5</total>

</sale>

<sale>

<IDnum>3912</IDnum>

<critter>Brontosaurus</critter>

<price>17.5</price>

<quantity>74</quantity>

<total>1295</total>

</sale>

<sale>

<IDnum>9845</IDnum>

<critter>Triceratops</critter>

<price>12</price>

<quantity>91</quantity>

<total>1092</total>

</sale>

<sale>

<IDnum>9625</IDnum>

<critter>Vulcanodon</critter>

<price>19</price>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<price>19</price>

<quantity>108</quantity>

<total>2052</total>

</sale>

<sale>

<IDnum>5903</IDnum>

<critter>Stegosaurus</critter>

<price>18.5</price>

<quantity>63</quantity>

<total>1165.5</total>

</sale>

<sale>

<IDnum>1824</IDnum>

<critter>Monoclonius</critter>

<price>16.5</price>

<quantity>133</quantity>

<total>2194.5</total>

</sale>

<sale>

<IDnum>9728</IDnum>

<critter>Megalosaurus</critter>

<price>23</price>

<quantity>128</quantity>

<total>2944</total>

</sale>

<sale>

<IDnum>8649</IDnum>

<critter>Barosaurus</critter>

<price>17</price>

<quantity>91</quantity>

<total>1547</total>

</sale>

</dinosaurs>

This kind of extraction is easy, but it's fairly unusual that real-world spreadsheets will be this convenient. It's not
impossible, of course—I get a spreadsheet whose first sheet is structured like this once a week—but there are many
tougher cases. Lots of spreadsheets skip rows and cells, have areas that are used for different kinds of content, and
present additional challenges to developers who need to extract information from them. Fortunately, while every
spreadsheet is different, there are a few basic patterns that can help you reach into them. Figure 7-7 shows a
spreadsheet with much the same data as that in Figure 7-6, but with a few complicating factors.

Figure 7-7. A spreadsheet with gaps and individual data components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-7. A spreadsheet with gaps and individual data components

The first row contains a date identifying when the data is from, the second row is blank, rows three to eleven contain
the same data shown in Figure 7-6, and row twelve shows a total. Examining the Table element in the SpreadsheetML,
listed in Example 7-6, shows how Excel treats these skipped rows and columns.

Example 7-6. More complex XML produced from the spreadsheet in Figure 7-7

<Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="12" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime">2004-01-01T00:00:00.000

 </Data><NamedCell

 ss:Name="Date"/></Cell>

 </Row>

 <Row ss:Index="3">

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2857.5</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">3912</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Brontosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">74</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1295</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9845</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Triceratops</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">12</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1092</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9625</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Vulcanodon</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">19</Data><NamedCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:StyleID="s22"><Data ss:Type="Number">19</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">108</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2052</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">5903</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Stegosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">18.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">63</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1165.5</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">1824</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Monoclonius</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">16.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">133</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2194.5</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Megalosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">23</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">128</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2944</Data><NamedCell

 ss:Name="Total"/></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">8649</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Barosaurus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1547</Data><NamedCell

 ss:Name="Total"/></Cell>

 </Row>

 <Row>

 <Cell ss:Index="4"><Data ss:Type="String">Total:</Data></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=SUM(R[-8]C:R[-1]C)">

 <Data ss:Type="Number">15147.5</Data><NamedCell

 ss:Name="GrandTotal"/></Cell>

 </Row>

 </Table>

Excel doesn't report blank rows or cells. Instead, the first Row or Cell element after the blanks has an ss:Index attribute
identifying its position. This means that stylesheets and other processors can't just count their way through the grid—
they have to keep track of where the SpreadsheetML says things go.

Converting this spreadsheet to XML like that shown in Example 7-4 will be somewhat more difficult. There are two
approaches that can be applied to this. The first approach, the stylesheet in Example 7-7, modifies the stylesheet
shown in Example 7-4, and the changes are highlighted.

Example 7-7. A modified stylesheet for dealing with the new spreadsheet

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 >

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="/">

 <xsl:apply-templates select="ss:Workbook"/>

</xsl:template>

<xsl:template match="ss:Workbook">

 <dinosaurs>

 <xsl:apply-templates select="ss:Worksheet[@ss:Name = 'Sheet1']"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </dinosaurs>

</xsl:template>

<xsl:template match="ss:Worksheet">

 <date><xsl:value-of select="ss:Table/ss:Row/ss:Cell[@ss:StyleID = 's21']" /> </date>

 <xsl:apply-templates select="ss:Table" />

</xsl:template>

<xsl:template match="ss:Table">

 <xsl:apply-templates select="ss:Row[position() > 2]" />

<!--Note that because Excel skips the blank row, the third row is in position 2-->

</xsl:template>

<xsl:template match="ss:Row[ss:Cell[4]]">

<sale>

 <IDnum><xsl:apply-templates select="ss:Cell[1]" /></IDnum>

 <critter><xsl:apply-templates select="ss:Cell[2]" /></critter>

 <price><xsl:apply-templates select="ss:Cell[3]" /></price>

 <quantity><xsl:apply-templates select="ss:Cell[4]" /></quantity>

 <total><xsl:apply-templates select="ss:Cell[5]" /></total>

</sale>

</xsl:template>

<xsl:template match="ss:Row">

<total><xsl:apply-templates select="ss:Cell[2]" /></total>

</xsl:template>

</xsl:stylesheet>

Running this stylesheet against the SpreadsheetML produces XML much like that shown in Example 7-6, shown here in
Example 7-8.

Example 7-8. XML produced by using XSLT on more complex SpreadsheetML

<dinosaurs xmlns="http://simonstl.com/ns/dinosaurs/" xmlns:ss="urn:schemas-microsoft-com:

office:spreadsheet">

<date>2004-01-01T00:00:00.000</date>

<sale>

<IDnum>4627</IDnum>

<critter>Diplodocus</critter>

<price>22.5</price>

<quantity>127</quantity>

<total>2857.5</total>

</sale>

<sale>

<IDnum>3912</IDnum>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<IDnum>3912</IDnum>

<critter>Brontosaurus</critter>

<price>17.5</price>

<quantity>74</quantity>

<total>1295</total>

</sale>

<sale>

<IDnum>9845</IDnum>

<critter>Triceratops</critter>

<price>12</price>

<quantity>91</quantity>

<total>1092</total>

</sale>

<sale>

<IDnum>9625</IDnum>

<critter>Vulcanodon</critter>

<price>19</price>

<quantity>108</quantity>

<total>2052</total>

</sale>

<sale>

<IDnum>5903</IDnum>

<critter>Stegosaurus</critter>

<price>18.5</price>

<quantity>63</quantity>

<total>1165.5</total>

</sale>

<sale>

<IDnum>1824</IDnum>

<critter>Monoclonius</critter>

<price>16.5</price>

<quantity>133</quantity>

<total>2194.5</total>

</sale>

<sale>

<IDnum>9728</IDnum>

<critter>Megalosaurus</critter>

<price>23</price>

<quantity>128</quantity>

<total>2944</total>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<total>2944</total>

</sale>

<sale>

<IDnum>8649</IDnum>

<critter>Barosaurus</critter>

<price>17</price>

<quantity>91</quantity>

<total>1547</total>

</sale>

<total>15147.5</total>

</dinosaurs>

A smarter approach uses the NamedCell element's ss:Name attribute, producing a similar result without relying on
changeable details like row and cell positions. The stylesheet in Example 7-9 uses XSLT predicates to test for these
attributes, yielding a stylesheet whose functionality is easier to discern. Places where this stylesheet references named
ranges and cells are highlighted in bold.

Example 7-9. A SpreadsheetML transform that relies on named range information

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 >

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="ss:Workbook">

 <dinosaurs>

 <xsl:apply-templates select="ss:Worksheet[@ss:Name = 'Sheet1']"/>

 </dinosaurs>

</xsl:template>

<xsl:template match="ss:Worksheet">

 <date><xsl:value-of select="ss:Table/ss:Row/ss:Cell[ss:NamedCell/@ss:Name = 'Date']" /></date>

 <xsl:apply-templates select="ss:Table" />

<total><xsl:value-of select="ss:Table/ss:Row/ss:Cell[ss:NamedCell/@ss:Name = 'GrandTotal']" /></total>

</xsl:template>

<xsl:template match="ss:Table">

 <xsl:apply-templates select="ss:Row[position() > 2]" />

</xsl:template>

<!--Only create sale elements for Rows which start with an ID-->

<xsl:template match="ss:Row[ss:Cell[1]/ss:NamedCell/@ss:Name='ID']">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsl:template match="ss:Row[ss:Cell[1]/ss:NamedCell/@ss:Name='ID']">

<sale>

 <IDnum><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='ID']" /> </IDnum>

 <critter><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Critters']" /></critter>

 <price><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Price']" /> </price>

 <quantity><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Quantity']" /></quantity>

 <total><xsl:apply-templates select="ss:Cell[ss:NamedCell/@ss:Name='Total']" /> </total>

</sale>

</xsl:template>

<xsl:template match="ss:Row" />

</xsl:stylesheet>

This stylesheet will produce exactly the same output as the stylesheet in Example 7-7, which will look like the result in
Example 7-8.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Creating XML Spreadsheets
There are two basic routes to creating a SpreadsheetML document. The first route is perhaps best described as "start from
scratch," where you assemble a spreadsheet using the XML vocabulary. The other route uses Excel to build a template for
spreadsheets you create, accepting a certain amount of overhead for the convenience of using a familiar GUI (rather than a
collection of XML parts) to create a spreadsheet. In general, especially where styles are involved, I strongly recommend using
Excel to generate an initial SpreadsheetML file you can use as a model.

Whichever approach you choose, you don't need to provide as much information in your SpreadsheetML as Excel provides
when you save information out. Most of the metadata can be discarded, and Excel can also reconstruct named ranges if
necessary from the NamedCell elements inside of cells. Some data, like the ss:ExpandedColumnCount and ss:ExpandedRowCount
attributes on the Table element, may actually be better left out, as it takes extra effort to generate and may produce errors
when the spreadsheet is loaded if it's wrong. For the most part, you'll want to focus on creating the basic row and cell
structures, along with styles.

You can use whatever tool you like to generate SpreadsheetML. XSLT, Java, C#, PHP, Perl, Python, Visual Basic, and many
more will all work perfectly well. For complex spreadsheets with a lot of cross-references, I recommend working in whatever
environment you're most comfortable in, as getting large numbers of cross-references right is a challenge, especially if they
link among themselves. For simpler spreadsheets, though, XSLT's ready ability to take existing XML and add extra instructions
to it makes it a very convenient tool for generating SpreadsheetML.

To demonstrate, the stylesheet in Example 7-10 will take the XML shown earlier in Example 7-8 and convert it back into
SpreadsheetML. Critical pieces of logic are highlighted in bold.

Example 7-10. A stylesheet for generating SpreadsheetML

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:d="http://simonstl.com/ns/dinosaurs/"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:html="http://www.w3.org/TR/REC-html40"

 >

<xsl:output method="xml" omit-xml-declaration="no" indent="yes" encoding="US-

 ASCII"/>

<xsl:template match="d:dinosaurs">

<xsl:processing-instruction name="mso-application">progid= "Excel.Sheet"</xsl:processing-instruction>

<Workbook>

<!--Namespace declarations moved from Workbook to xsl:stylesheet-->

 <Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

 <Interior/>

 <NumberFormat/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Protection/>

 </Style>

 <Style ss:ID="s21">

 <NumberFormat ss:Format="mmm\-yy"/>

 </Style>

 <Style ss:ID="s22">

 <NumberFormat ss:Format=""$"#,##0.00"/>

 </Style>

 </Styles>

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="{count(d:sale)+4}" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime"><xsl:value-of

select="d:date"/></Data></Cell>

 </Row>

 <Row ss:Index="3">

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

<xsl:apply-templates select="d:sale" />

 <Row>

 <Cell ss:Index="4"><Data ss:Type="String">Total:</Data></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=SUM(R[-{count(d:sale)}]C:R[-1]C)"> <Data ss:Type="Number"></Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>12</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

</xsl:template>

<xsl:template match="d:sale">

 <Row>

 <Cell><Data ss:Type="Number"><xsl:value-of

 select="d:IDnum" /></Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String"><xsl:value-of select="d:critter" /></

Data><NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number"><xsl:value-of

 select="d:price" /></Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number"><xsl:value-of select="d:quantity" /></Data>

 <NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 <xsl:value-of select="d:total" /></Data></Cell>

 </Row>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </Row>

</xsl:template>

<xsl:template match="d:date" />

<xsl:template match="d:total" />

</xsl:stylesheet>

There are a few pieces of this worth special attention. First, note that the SpreadsheetML is wrapped in XSLT; the
SpreadsheetML becomes part of the stylesheet. There's one extra namespace declaration:

 xmlns:d="http://simonstl.com/ns/dinosaurs/"

XSLT requires that references to parts of XML documents that have namespace URIs also have namespace prefixes. As a
result, all references in the stylesheet to elements in the original document will look like d:sale instead of just sale.

There's also one piece of the SpreadsheetML we need to recreate explicitly, and not just by including it in the document: the
processing instruction noted earlier that tells Windows this is an Excel spreadsheet. For that, we have to use:

<xsl:processing-instruction name="mso-application">progid=

 "Excel.Sheet"</xsl:processing-instruction>

Because the named ranges will vary depending on the number of sale elements in the original, this stylesheet won't generate
the Names element and its contents. Excel will recreate the named ranges from the NamedCell elements in any case.

This stylesheet creates a Table element complete with (accurate) ss:ExpandedColumnCount and ss:ExpandedRowCount attributes.

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="{count(d:sale)+4}"

 x:FullColumns="1" x:FullRows="1">

If calculating the number of rows or columns in your spreadsheet is going to be difficult, it will be better to leave off this
information, as it produces an error if wrong but little benefit if right.

The first row of the spreadsheet contains the date:

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime"><xsl:value-of select="d:date"/></Data></Cell>

 </Row>

The xsl:value-of element pulls the information from the date element of the XML document and puts its value into the Data
element. As we'll see at the end of the spreadsheet, regular processing of the date element (and the total element, which is
handled similarly) will have to be suppressed.

The heart of this stylesheet is again the part that generates the Row and Cell elements, like:

<xsl:template match="d:sale">

 <Row>

 <Cell><Data ss:Type="Number"><xsl:value-of select="d:IDnum" /></Data><NamedCell ss:Name="ID"/></Cell>

The xsl:template element will collect every sale element in the original and produce a Row element which itself contains Cell
elements matching its contents. Each Row contains the contents of one sale element. To keep XSLT from applying its default
templates to the date and total elements, which would drop their values into the SpreadsheetML as (unexpected) text, the last
code snippet explicitly specifies no processing for them with empty xsl:template elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code snippet explicitly specifies no processing for them with empty xsl:template elements.

<xsl:template match="d:date" />

<xsl:template match="d:total" />

The SpreadsheetML created by this stylesheet from the XML data in Example 7-8 looks like Example 7-11.

Example 7-11. A SpreadsheetML document created with XSLT

<?xml version="1.0"?>

<?mso-application progid="Excel.Sheet"?>

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:o="urn:schemas-microsoft-com:office:office"

 xmlns:x="urn:schemas-microsoft-com:office:excel"

 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"

 xmlns:html="http://www.w3.org/TR/REC-html40"

 xmlns:d="http://simonstl.com/ns/dinosaurs/">

 <Styles>

 <Style ss:ID="Default" ss:Name="Normal">

 <Alignment ss:Vertical="Bottom"/>

 <Borders/>

 <Interior/>

 <NumberFormat/>

 <Protection/>

 </Style>

 <Style ss:ID="s21">

 <NumberFormat ss:Format="mmm\-yy"/>

 </Style>

 <Style ss:ID="s22">

 <NumberFormat ss:Format=""$"#,##0.00"/>

 </Style>

 </Styles>

 <Worksheet ss:Name="Sheet1">

 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="12" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="73.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="96.75"/>

 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="56.25"/>

 <Row>

 <Cell><Data ss:Type="String">Sales for:</Data></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime">2004-01-01T00:00:00.000</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:StyleID="s21"><Data ss:Type="DateTime">2004-01-01T00:00:00.000</Data></Cell>

 </Row>

 <Row ss:Index="3">

 <Cell><Data ss:Type="String">ID Number</Data></Cell>

 <Cell><Data ss:Type="String">Critter</Data></Cell>

 <Cell><Data ss:Type="String">Price</Data></Cell>

 <Cell><Data ss:Type="String">Quantity</Data></Cell>

 <Cell><Data ss:Type="String">Total</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">4627</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Diplodocus</Data><NamedCell ss:Name="Critters"/>

 </Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">22.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">127</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2857.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">3912</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Brontosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">74</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1295</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9845</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Triceratops</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">12</Data>

 <NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1092</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1092</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9625</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Vulcanodon</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">19</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">108</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2052</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">5903</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Stegosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">18.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">63</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1165.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">1824</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Monoclonius</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">16.5</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">133</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2194.5</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">9728</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Megalosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">23</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">128</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 2944</Data></Cell>

 </Row>

 <Row>

 <Cell><Data ss:Type="Number">8649</Data><NamedCell ss:Name="ID"/></Cell>

 <Cell><Data ss:Type="String">Barosaurus</Data>

 <NamedCell ss:Name="Critters"/></Cell>

 <Cell ss:StyleID="s22"><Data ss:Type="Number">17</Data><NamedCell

 ss:Name="Price"/></Cell>

 <Cell><Data ss:Type="Number">91</Data><NamedCell ss:Name="Quantity"/></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=RC[-2]*RC[-1]"><Data ss:Type="Number">

 1547</Data></Cell>

 </Row>

 <Row>

 <Cell ss:Index="4"><Data ss:Type="String">Total:</Data></Cell>

 <Cell ss:StyleID="s22" ss:Formula="=SUM(R[-8]C:R[-1]C)">

 <Data ss:Type="Number">15147.5</Data></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Print>

 <ValidPrinterInfo/>

 <HorizontalResolution>600</HorizontalResolution>

 <VerticalResolution>600</VerticalResolution>

 </Print>

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>12</ActiveRow>

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet2">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

 <Worksheet ss:Name="Sheet3">

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

</Workbook>

If you open the SpreadsheetML this stylesheet produces (which looks much like that in Example 7-2, minus some named
ranges, metadata, and formatting) in Excel, we get the result shown in Figure 7-8.

Figure 7-8. A spreadsheet generated as SpreadsheetML

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Editing XML Maps with SpreadsheetML
SpreadsheetML is primarily useful for getting information into and out of Excel from other programs. In general, it's
hard to imagine why you'd prefer to edit SpreadsheetML directly when Excel's graphical interface offers a much easier
way to see and edit your information. There is, however, one case where Excel doesn't provide a graphical interface,
and the SpreadsheetML provides a useful way to edit information that isn't otherwise accessible. Figure 7-9 shows a
spreadsheet from Chapter 6 that uses an XML Map.

Figure 7-9. A spreadsheet using an XML Map, previously shown in Figure 6-25

Example 7-12 shows a portion of the SpreadsheetML that is produced when you save the spreadsheet itself as
SpreadsheetML.

Example 7-12. Part of the SpreadsheetML for a spreadsheet containing an XML
Map

 <Worksheet ss:Name="Sheet1">

 <Names>

 <NamedRange ss:Name="_FilterDatabase" ss:RefersTo="=Sheet1!R1C1:R2C8"

 ss:Hidden="1"/>

 </Names>

 <Table ss:ExpandedColumnCount="8" ss:ExpandedRowCount="2" x:FullColumns="1"

 x:FullRows="1">

 <Column ss:AutoFitWidth="0" ss:Width="79.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="75"/>

 <Column ss:AutoFitWidth="0" ss:Width="78"/>

 <Column ss:AutoFitWidth="0" ss:Width="58.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="55.5"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Column ss:AutoFitWidth="0" ss:Width="55.5"/>

 <Column ss:AutoFitWidth="0" ss:Width="38.25"/>

 <Column ss:AutoFitWidth="0" ss:Width="99.75"/>

 <Column ss:AutoFitWidth="0" ss:Width="78.75"/>

 <Row>

 <Cell ss:StyleID="s21"><Data ss:Type="String">recipient</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">signing_date</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">signing_time</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">birthyear</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">birthday</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">male</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">payment_amount</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s21"><Data ss:Type="String">years_to_pay</Data><NamedCell

 ss:Name="_FilterDatabase"/></Cell>

 </Row>

 <Row>

 <Cell ss:StyleID="s22"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s23"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s24"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s25"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s26"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s27"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s27"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 <Cell ss:StyleID="s27"><NamedCell ss:Name="_FilterDatabase"/></Cell>

 </Row>

 </Table>

 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

 <Selected/>

 <Panes>

 <Pane>

 <Number>3</Number>

 <ActiveRow>1</ActiveRow>

 <ActiveCol>1</ActiveCol>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ActiveCol>1</ActiveCol>

 </Pane>

 </Panes>

 <ProtectObjects>False</ProtectObjects>

 <ProtectScenarios>False</ProtectScenarios>

 </WorksheetOptions>

 </Worksheet>

...

 <x2:MapInfo x2:HideInactiveListBorder="false"

 x2:SelectionNamespaces="xmlns:ns1='http://simonstl.com/ns/example/contract'">

 <x2:Schema x2:ID="Schema1" x2:Namespace="http://simonstl.com/ns/example/contract"><xs:

schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="http://simonstl.com/ns/example/contract" xmlns:contract="http://simonstl.

com/ns/example/contract">

 <xs:element name="contracts">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="contract:contract"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="contract">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="contract:recipient"/>

 <xs:element ref="contract:signing_date"/>

 <xs:element ref="contract:signing_time"/>

 <xs:element ref="contract:birthyear"/>

 <xs:element ref="contract:birthday"/>

 <xs:element ref="contract:male"/>

 <xs:element ref="contract:payment_amount"/>

 <xs:element ref="contract:years_to_pay"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="recipient" type="xs:string"/>

 <xs:element name="signing_date" type="xs:date"/>

 <xs:element name="signing_time" type="xs:time"/>

 <xs:element name="birthyear" type="xs:gYear"/>

 <xs:element name="birthday" type="xs:gMonthDay"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element name="birthday" type="xs:gMonthDay"/>

 <xs:element name="male" type="xs:boolean"/>

 <xs:element name="payment_amount" type="xs:decimal"/>

 <xs:element name="years_to_pay" type="xs:integer"/>

</xs:schema>

 </x2:Schema>

 <x2:Map x2:ID="contracts_Map" x2:SchemaID="Schema1" x2:RootElement="contracts">

 <x2:Entry x2:Type="table" x2:ID="2" x2:ShowTotals="false">

 <x2:Range>Sheet1!R2C1</x2:Range>

 <x2:HeaderRange>R1C1</x2:HeaderRange>

 <x:FilterOn>True</x:FilterOn>

 <x2:XPath>/ns1:contracts/ns1:contract</x2:XPath>

 <x2:Field x2:ID="recipient">

 <x2:Range>RC</x2:Range>

 <x2:XPath>ns1:recipient</x2:XPath>

 <x2:XSDType>string</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="signing_date">

 <x2:Range>RC[1]</x2:Range>

 <x2:XPath>ns1:signing_date</x2:XPath>

 <x2:XSDType>date</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="signing_time">

 <x2:Range>RC[2]</x2:Range>

 <x2:XPath>ns1:signing_time</x2:XPath>

 <x2:XSDType>time</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="birthyear">

 <x2:Range>RC[3]</x2:Range>

 <x2:XPath>ns1:birthyear</x2:XPath>

 <x2:XSDType>gYear</x2:XSDType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <x2:XSDType>gYear</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="birthday">

 <x2:Range>RC[4]</x2:Range>

 <x2:XPath>ns1:birthday</x2:XPath>

 <x2:XSDType>gMonthDay</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="male">

 <x2:Range>RC[5]</x2:Range>

 <x2:XPath>ns1:male</x2:XPath>

 <x2:XSDType>boolean</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="payment_amount">

 <x2:Range>RC[6]</x2:Range>

 <x2:XPath>ns1:payment_amount</x2:XPath>

 <x2:XSDType>decimal</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 <x2:Field x2:ID="years_to_pay">

 <x2:Range>RC[7]</x2:Range>

 <x2:XPath>ns1:years_to_pay</x2:XPath>

 <x2:XSDType>integer</x2:XSDType>

 <ss:Cell>

 </ss:Cell>

 <x2:Aggregate>None</x2:Aggregate>

 </x2:Field>

 </x2:Entry>

 </x2:Map>

 </x2:MapInfo>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Workbook>

There are several types of information relating to the XML map here. The Worksheet element's Table contains the rows
and cells that hold the actual data, with headers and style information, as well as a range named _FilterData. That really
just reflects choices that can be made (and unmade) through the GUI.

The information in the x2:MapInfo element, which comes after all the Worksheet elements, however, is information that is
created when you import an XML document or XSD schema. The only way to modify this information through Excel is to
delete it. If, however, you just want to tweak something in the schema—perhaps Excel guessed that a given field in an
XML document was a number rather than text or vice-versa—you can save the spreadsheet as SpreadsheetML, make
the changes to the x2:MapInfo element's contents, and re-open it in Excel.

Remember that SpreadsheetML doesn't represent everything in an Excel document. If the
spreadsheet whose map you want to alter already contains VBA, Charts, or other features
that SpreadsheetML doesn't capture, be certain to have them backed up and be prepared
for some cutting from the original spreadsheet and pasting into the new.

Editing the schema in the x2:Schema element works fine, so long as you produce a valid schema that conforms to Excel's
limited understanding of XSD. You'll need to manually ensure that the x2:Field elements still correspond to the contents
of that schema; if you change a type in the schema, be sure to change it in the x2:XSDType element of the
corresponding x2:Field element. You can also make changes to the x2:XPath element, if you need to change the location
in the document from which Excel retrieves the field's contents, typically if you add or remove a container element from
the XML document structure.

This kind of editing is definitely at your own risk, and likely best restricted to relatively small changes, but it does
provide a useful set of tools that aren't (yet) in Excel itself.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Using SpreadsheetML
While many users will find Excel's easy import of XML documents useful, developers who need to read or create Excel
spreadsheets may find a completely different set of capabilities more relevant. The functionality provided in
Spreadsheet ML, which was also available in Microsoft Excel XP, allows developers to save spreadsheets as XML
documents and to open those XML spreadsheets in Excel. If you need to create or process spreadsheets using XML,
then this chapter will give you the foundations you need.

Microsoft offers the Office 2003 XML Reference Schemas from
http://microsoft.com/downloads/. If you want a complete definition of every component in
SpreadsheetML, the schema and its documentation are much more detailed than this
chapter can be.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Access XML Expectations
Unlike most of the other Office applications, Access doesn't really have a custom vocabulary, though it adds a few
Office-specific pieces to things like the XML Schemas it generates. The vocabulary that Access speaks "natively" is
largely determined by the structures of your database, particularly the names of tables and the fields they contain. If
you've named your tables and your fields well, you may be pleasantly surprised to find that Access produces some very
readable XML. If not, you can't blame Microsoft, but fortunately they provide XSLT facilities for improving your results in
such cases.

While Microsoft doesn't provide an Access-specific vocabulary, Access definitely has expectations about the structures of
incoming and outgoing XML. The basic structures are very simple, though cases like multi-table export can require more
interpretation. The easiest way to learn about the expectations Access has for incoming data is to start with sample
information inside the database, and then export it. Close analysis of the exported material should tell you what Access
will want for an import.

Generally speaking, XML structures offer a range of structural possibilities that don't map easily to relational database
tables. XML doesn't typically worry about things like primary keys and foreign keys, nor are its structures defined as
relations between tables. Access does very well at working with a subset of XML structures that is (or can be made to
be) relational-database friendly, but there are some natural limitations, as well as fields of work where other pieces of
the Office suite are more appropriate tools.

For a wealth of information about XML and databases, including information about
mapping between XML and relational databases, see http://rpbourret.com/xml/index.htm.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Exporting XML from Access Using the GUI
Exporting XML from Access is much like exporting any other format from Access, though with a few extra pieces. There
are a number of possible variations in the export process, depending on whether you need to export a single table, a
linked group of tables, or a query.

8.2.1 Exporting a Single Table

For our initial example, we'll start with a database containing a table that defines a list of books. The design view for
that table is shown in Figure 8-1. It includes six fields of three different types.

Figure 8-1. A simple table for export

For the initial tests, there's just a little bit of information in this table. Exporting mature tables with thousands of
records can produce large XML files very quickly—definitely useful in real life but difficult for initial analysis. Figure 8-2
shows a partial view of the content in the test table.

Figure 8-2. Test data in the books table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exporting this table to XML involves a few steps, most of which will be familiar to developers who have exported
information from Access databases before. The process starts by selecting the books table in the database, then
selecting Export . . . from the File menu. The dialog box shown in Figure 8-3 will appear, and you'll need to select "XML
(*.xml)" from the "Save as type" drop-down box.

Figure 8-3. Selecting the destination for the export

When you perform the export, Access may actually create more files than just the XML file, but they'll all appear in the
same directory with the XML. Once you click the Export button, a small dialog box with basic options, shown in Figure
8-4, will appear.

Figure 8-4. Basic export options

For now, we'll accept the defaults and just hit OK. The result will be two files, books.xml and books.xsd. The books.xml
file will contain the information from the table, while books.xsd will contain an XML Schema description of that content,
annotated with a bit of information specific to Access and its Jet database engine.

The books.xml file, shown in Example 8-1, reflects the structure and content of the original table closely.

Example 8-1. A simple table export

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-1. A simple table export

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="books.xsd" generated="2003-03-

26T13:49:17">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel,

and Access, as well as a new application, Microsoft InfoPath. This book gets readers

started in using those features.</Short_x0020_Description>

<Long_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel, and

Access, as well as a new application, Microsoft InfoPath. This book gets readers started

in using those features.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space.</Short_x0020_

Description>

<Long_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space. Serious users of XML

will find topics on just about everything they need, including fundamental syntax rules,

details of DTD and XML Schema creation, XSLT transformations, and APIs used for processing

XML documents. Simply put, this is the only references of its kind among

XML books.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Short_x0020_Description>

<Long_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

</dataroot>

The root element of this document, dataroot, is the only piece of this document specific to Access:

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.

org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="books.xsd"

generated="2003-03-26T13:49:17">

It makes a namespace declaration for the od prefix, which is not actually used in this document, and it also includes a
pointer to the XML Schema describing this document's structure. Because the element names used here are not in any
namespace, the document uses the xsi:noNamespaceSchemaLocation attribute to identify the schema that should be used
for all of the elements in this document that have no namespace. It also includes one small bit of metadata in the
generated attribute, identifying the time and date when this XML document was created.

The dataroot element contains three child books elements, each indicating a row in the books table. Their contents map
fairly simply to the names and values of the table columns:

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space.</Short_x0020_

Description>

<Long_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space. Serious users of

XML will find topics on just about everything they need, including fundamental syntax

rules, details of DTD and XML Schema creation, XSLT transformations, and APIs used

for processing XML documents. Simply put, this is the only references of its kind

among XML books.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

The only significant variation here involves the column names which included spaces. Instead of Short Description, we
now have Short_x0020_Description, following a convention Microsoft has developed for representing spaces in XML
element names. (XML forbids spaces in element names, as they make it difficult to separate the element name from the
attributes, so Access uses _x0020_, the Unicode hex number for the space.)

The XML itself is pretty simple, and provides relatively little information about many of the things Access considers
important, like datatype, length, and all the details you can set in the Design view for tables. That information is kept in
the XML Schema, shown in Example 8-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-2. The schema Access created to describe its XML output

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-microsoft-

com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="books" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="books">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="ISBN " primary="yes" unique="yes"

clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ISBN" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Title" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Tagline" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:element name="Tagline" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Short_x0020_Description" minOccurs="0" od:jetType="memo" od:

sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Long_x0020_Description" minOccurs="0" od:jetType="memo" od:

sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="PriceUS" minOccurs="0" od:jetType="currency" od:sqlSType="money"

type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The xsd:schema element includes the namespace for XSD itself as well as a namespace declaration for the additional
Access-specific information that is used in the schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-

microsoft-com:officedata">

The next item is the declaration for the dataroot element. While Access always uses a dataroot element for its exports,
the contents of that dataroot element vary from export to export. In this particular case, the dataroot element may
contain zero or more books elements, as well as a dateTime attribute called generated:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contain zero or more books elements, as well as a dateTime attribute called generated:

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="books" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

The remainder of the schema is the declaration for the books element, which itself contains the declarations for all of its
child elements. (This style of schema is frequently referred to as "Russian doll," after the nesting wooden dolls, and
works well for simple structures like those created here.) The declaration begins with an annotation used by Access to
identify the primary key of the table:

<xsd:element name="books">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="ISBN " primary="yes" unique="yes"

clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

Schemas permit any kind of markup in the xsd:appinfo element, and Microsoft has used that freedom along with an index
element in its own od namespace to provide information Access can use to reconstruct the primary key.

The next element is an xsd:complexType, which contains an xsd:sequence containing the declarations for all of the child
elements that appear in a books element. All of the child elements are declared using xsd:element elements that contain
xsd:simpleType elements detailing the restrictions on the content of that particular component. For instance, the
declaration for the ISBN element looks like:

<xsd:element name="ISBN" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

Most of this is basic XML Schema, saying that this is an element named ISBN, which may or may not appear, and whose
contents are a string whose maximum length is eleven characters. The xsd:element itself contains two extra attributes,
both of them Microsoft-specific. The first, od:jetType, identifies the type of this field in Access, while the second,
od:sqlSType, identifies its type for Microsoft SQL Server.

Most of the other elements declared here follow a similar pattern with different xsd:maxLength values; those for the
memo-typed values are especially large. One notably different declaration is that for the PriceUS element, which is done
using attributes exclusively:

<xsd:element name="PriceUS" minOccurs="0" od:jetType="currency" od:sqlSType="money"

type="xsd:double"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type="xsd:double"/>

In this case, the type of xsd:double is enough to define the contents of the element—no further restrictions are needed,
so no xsd:simpleType, xsd:restriction, or facet-specific elements are needed. W3C XML Schema has no notion of a currency
type, so the data will be stored without a dollar sign. If you need to indicate explicitly that these are U.S. dollars, you
may want to add a separate column to the table indicating the units used by the currency.

8.2.2 Exporting Linked Tables

Exporting individual tables is useful, but there are times when you may want to export multiple tables and preserve the
relationships between them. Access allows you to export a set of tables, though it works most easily when only two
tables are involved.

For our first example, we'll add a table that contains information about (very fictional) promotions for the various
books. Figure 8-5 shows what this table looks like.

Figure 8-5. The promotions table

The promotions table links to the books table though its BookID field, as shown in Figure 8-6.

Figure 8-6. Relationships between the books and promotions tables

Exporting this pair of tables takes a few more steps, as Access lets you choose how the export works. The choice of
which table is the base table makes a big difference in the results of the export, so the examples below will export it
both ways. First, we'll start by exporting the books table again, but this time, we'll select More Options from the dialog
box shown in Figure 8-7.

Figure 8-7. Basic export options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-7. Basic export options

Clicking More Options brings up a larger dialog with many more choices, as shown in Figure 8-8.

Figure 8-8. The full version of the Export XML dialog box

In this case, all the information we need is on the first (Data) tab. Checking the "promotions" box and hitting the OK
button tells Access to export both the books table and the linked records of the promotions table, in this case, all of
them. Example 8-3 shows an abbreviated version of the export, with the new content from the promotions table in
bold.

Example 8-3. Exported linked tables

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ch0804.xsd" generated="2003-03-

31T16:37:01">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

<promotions>

<PromotionID>1</PromotionID>

<BookID>0596005385</BookID>

<Name>Palm civet bonus</Name>

<Venue>Anywhere interested</Venue>

<Description>A stuffed-animal palm civet, lovingly screen-printed to match the cover, with

every copy of the book.</Description>

<Cost>10000</Cost>

</promotions>

<promotions>

<PromotionID>3</PromotionID>

<BookID>0596005385</BookID>

<Name>Key chains</Name>

<Venue>Conferences</Venue>

<Description>keychains adorned with lovely palm civets and the title of the book.</Description>

<Cost>1000</Cost>

</promotions>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

<promotions>

<PromotionID>2</PromotionID>

<BookID>0596002378</BookID>

<Name>Free filters</Name>

<Venue>Online/Safari</Venue>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Venue>Online/Safari</Venue>

<Description>Bonus SAX filters, open source-licensed, for developers who visit the SAX2

book site.</Description>

<Cost>0</Cost>

</promotions>

</books>

</dataroot>

The general pattern here is much like the original export of the books table, except that zero or more promotions
elements—whose BookID holds the same value as the containing books element's ISBN element—now appear inside of
each books element. This works the same way that zero or more books elements appeared inside of the dataroot element.
All of the table columns are listed inside of each promotions element, making it easy to reconstruct the information in the
promotions table or to treat the information as a complete set of information about each book.

The schema has also changed only a little, as shown in Example 8-4.

Example 8-4. A schema for a set of related tables

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-microsoft-

com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="books" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="books">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="ISBN " primary="yes" unique="yes"

clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ISBN" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsd:element>

<xsd:element name="Title" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Tagline" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Short_x0020_Description" minOccurs="0" od:jetType="memo"

 od:sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Long_x0020_Description" minOccurs="0" od:jetType="memo"

 od:sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="PriceUS" minOccurs="0" od:jetType="currency"

 od:sqlSType="money" type="xsd:double"/>

<xsd:element ref="promotions" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="promotions">

<xsd:annotation>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="PromotionID " primary="yes"

 unique="yes" clustered="no"/>

<od:index index-name="BookID" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="bookspromotions" index-key="BookID " primary="no"

 unique="no" clustered="no"/>

<od:index index-name="PromotionID" index-key="PromotionID " primary="no"

 unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PromotionID" minOccurs="1" od:jetType="autonumber"

 od:sqlSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int"/>

<xsd:element name="BookID" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="11"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Name" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Venue" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Description" minOccurs="0" od:jetType="memo" od:sqlSType="ntext">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:maxLength value="536870910"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Cost" minOccurs="0" od:jetType="currency" od:sqlSType="money"

type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The declaration of the books element is the same as it was, except that it now includes an xsd:element that references
the promotions element:

<xsd:element ref="promotions" minOccurs="0" maxOccurs="unbounded"/>

Because there may be more than one promotions element related to each book, the maxOccurs attribute is set to
unbounded. The use of a ref attribute to connect to the definition of the promotions element is a change from the prior
approach, which made all of these definitions in place. (This is pretty much a style choice—the earlier "Russian doll"
approach would have worked as well.)

After the closing of the xsd:element element defining the books field, the declaration of the promotions element appears:

<xsd:element name="promotions">

The first feature of the promotions element is an annotation that includes information about the indexes for the
promotions table, including a "bookspromotions" index on BookID, which is the connection between the books table and
the promotions table.

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="PromotionID " primary="yes" unique="yes"

 clustered="no"/>

<od:index index-name="BookID" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="bookspromotions" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="PromotionID" index-key="PromotionID " primary="no" unique="no"

 clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

The contents of the promotions element are defined, just like those of the books element, in an xsd:complexType containing
a sequence of declarations:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a sequence of declarations:

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PromotionID" minOccurs="1" od:jetType="autonumber" od:

sqlSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int"/>

Apart from the indexing information, these are pretty ordinary XML schemas, and the structures they describe are
typical of XML data. There is very little to their structure that requires interpretation beyond "this books element
contains these promotions, so I'll bet those promotions go with that book." Access can't, however, make that work for
many-to-one relationships. If, for instance, you used promotions as the primary table for export instead of books, you'd
be exporting a many-to-one relationship rather than one-to-many. As Figure 8-9 shows, Access warns you of the
difference with an intermediary entry named [Lookup Data], indicating that it will effectively be creating a lookup table
to connect the information.

Figure 8-9. Exporting related tables with a many-to-one relationship

Example 8-5 shows the results of exporting the promotions table and the books table, but using the promotions table as
the primary table.

Example 8-5. The export of tables related as many-to-one

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="promotions.xsd" generated="2003-

04-01T20:32:49">

<promotions>

<PromotionID>1</PromotionID>

<BookID>0596005385</BookID>

<Name>Palm civet bonus</Name>

<Venue>Anywhere interested</Venue>

<Description>A stuffed-animal palm civet, lovingly screen-printed to match the cover, with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Description>A stuffed-animal palm civet, lovingly screen-printed to match the cover, with

every copy of the book.</Description>

<Cost>10000</Cost>

</promotions>

<promotions>

<PromotionID>2</PromotionID>

<BookID>0596002378</BookID>

<Name>Free filters</Name>

<Venue>Online/Safari</Venue>

<Description>Bonus SAX filters, open source-licensed, for developers who visit the SAX2

book site.</Description>

<Cost>0</Cost>

</promotions>

<promotions>

<PromotionID>3</PromotionID>

<BookID>0596005385</BookID>

<Name>Key chains</Name>

<Venue>Conferences</Venue>

<Description>keychains adorned with lovely palm civets and the title of the book.</

Description>

<Cost>1000</Cost>

</promotions>

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description...</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

</dataroot>

The connections between the tables are no longer represented in the XML structures themselves; you have to know
that BookID and ISBN are connected to make the connections yourself. Once again, that information appears in the
exported schema, as shown in the fragment in Example 8-6.

Example 8-6. The declarations for the promotions element and its index
annotations

<xsd:element name="promotions">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="PromotionID " primary="yes" unique="yes" clustered="no"/>

<od:index index-name="BookID" index-key="BookID " primary="no" unique="no"

 clustered="no"/>

<od:index index-name="bookspromotions" index-key="BookID " primary="no"

 unique="no" clustered="no"/>

<od:index index-name="PromotionID" index-key="PromotionID " primary="no"

 unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>...

The last table export pattern we'll explore involves a many-to-many relationship between authors and books. As shown
in Figure 8-10, this relationship is implemented with an intermediary table, which permits many authors to work on
many books.

Figure 8-10. Related tables with a many-to-many relationship, expressed as two
one-to-many relationships

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Access will let you traverse this relationship in an XML export, as shown in Figure 8-11.

Figure 8-11. Exporting related tables with a many-to-many relationship

This time the export will use both of the styles shown above, whether you start by exporting the authors table with the
books table, because the style of the export is determined by the nature of the join. One-to-many relationships are
represented using containment, while many-to-one relationships are represented as separate pieces. In this case, the
many-to-many relationship includes both of those choices.

Once again, the [Lookup Data] provides a warning that reassembling some of these relationships is going to require
extra lookup work on the part of the consuming application. (Access does this extra work automatically, as we'll see in
Section 8.3, later in this chapter.) The results of this export are structurally a combination of our earlier exports, as
shown in Example 8-7.

Example 8-7. A many-to-many export combining containment and lookup

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ch0806.xsd" generated="2003-04-

01T21:01:50">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

<authorBookLink>

<bookISBN>0596005385</bookISBN>

<authorID>1</authorID>

</authorBookLink>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

<authorBookLink>

<bookISBN>0596002920</bookISBN>

<authorID>3</authorID>

</authorBookLink>

<authorBookLink>

<bookISBN>0596002920</bookISBN>

<authorID>4</authorID>

</authorBookLink>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>...</Short_x0020_Description>

<Long_x0020_Description>...</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

<authorBookLink>

<bookISBN>0596002378</bookISBN>

<authorID>2</authorID>

</authorBookLink>

</books>

<authors>

<AuthorID>1</AuthorID>

<GivenName>Simon</GivenName>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<FamilyName>St.Laurent</FamilyName>

<FullName>Simon St.Laurent</FullName>

</authors>

<authors>

<AuthorID>2</AuthorID>

<GivenName>David</GivenName>

<FamilyName>Brownell</FamilyName>

<FullName>David Brownell</FullName>

</authors>

<authors>

<AuthorID>3</AuthorID>

<GivenName>Elliotte</GivenName>

<FamilyName>Harold</FamilyName>

<FullName>Elliotte Rusty Harold</FullName>

</authors>

<authors>

<AuthorID>4</AuthorID>

<GivenName>Scott</GivenName>

<FamilyName>Means</FamilyName>

<FullName>W. Scott Means</FullName>

</authors>

</dataroot>

Each of the books elements now contains one or more authorBookLink elements that hold an authorID element. The value
of that authorID element maps to an AuthorID element inside of an authors element. It takes a little traversing and
sorting to reach an author's name from a book, but the connections are all still intact.

8.2.3 Exporting a Query

All this traversing isn't much fun for developers used to working with XML's container approach. Fortunately, relational
databases have long offered another choice for interacting with their information: queries that provide specific views of
information. Queries don't by themselves provide nested views, but they certainly make it easier to present some kinds
of information, notably that with many-to-many relationships. The mechanics of exporting queries are much like those
of exporting single tables, and the results are similar.

Access supports SQL queries, obviously, as that's at the heart of its functionality. Access
does not, however, support other standards for querying, like XQuery.

To demonstrate, we'll export a SQL query named booksByAuthor, which uses the books, authorBookLink, and authors
tables to create a list of books sorted by author. The SQL for the query expresses the relationships that an XML
processor working with the linked table export would otherwise have to deal with:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

processor working with the linked table export would otherwise have to deal with:

SELECT authors.GivenName, authors.FamilyName, books.ISBN, books.Title

FROM books INNER JOIN (authors INNER JOIN authorBookLink ON authors.AuthorID =

 authorBookLink.authorID) ON books.ISBN = authorBookLink.bookISBN

ORDER BY authors.FamilyName;

The interface for exporting a query is exactly the same as that for a table, except that there is no option for exporting
linked information. When you export a query, all the information you want to export must be in that query. Exporting
the query produces the result shown in Example 8-8.

Example 8-8. An exported query

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="booksByAuthor.xsd"

generated="2003-04-02T14:47:59">

<booksByAuthor>

<GivenName>David</GivenName>

<FamilyName>Brownell</FamilyName>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

</booksByAuthor>

<booksByAuthor>

<GivenName>Elliotte</GivenName>

<FamilyName>Harold</FamilyName>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

</booksByAuthor>

<booksByAuthor>

<GivenName>Scott</GivenName>

<FamilyName>Means</FamilyName>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

</booksByAuthor>

<booksByAuthor>

<GivenName>Simon</GivenName>

<FamilyName>St.Laurent</FamilyName>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

</booksByAuthor>

</dataroot>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</dataroot>

Just as in a tabular representation of the query, information repeats, notably the ISBN and title of XML in a Nutshell,
which has two authors. The schema exported for queries follows the same pattern as exports of a single table.

8.2.4 Presentation and Transformation

While the XML export features described above are certainly useful, the export formats shown are really only the
beginning of what you can do. These formats represent the limits of what Access itself understands, but Access also
provides hooks for other approaches, including a presentation form for web browsers and much broader capabilities for
XSLT integration.

Access' support for XSLT transformations on export works only when you export data
using the GUI interface.

We'll transform the result of the query export shown above in Example 8-8 using an XSLT stylesheet. The stylesheet
itself, shown in Example 8-9, is extremely simple, merely creating paragraphs and adding labels. The most exciting
thing that happens is that the authors' GivenName and FamilyName end up on the same line, separated by a space.

Example 8-9. A simple stylesheet for producing HTML from the booksByAuthor
query

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

>

<xsl:output method="xml" omit-xml-declaration="yes"

 encoding="US-ASCII"/>

<xsl:template match="dataroot" >

<html>

 <head>

 <title>Exported Query</title>

 </head>

 <body>

 <xsl:for-each select="booksByAuthor">

 <p>

 <xsl:text>Author: </xsl:text>

 <xsl:value-of select="GivenName"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="FamilyName"/>

 </p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p>ISBN: <xsl:value-of select="ISBN"/></p>

 <p>Title: <xsl:value-of select="Title"/></p>

 <hr />

 </xsl:for-each>

 </body>

</html>

</xsl:template>

</xsl:stylesheet>

To apply this transformation to the data, follow the same process for exporting it normally, until you reach the Export
XML dialog box shown previously in Figure 8-11. Here, you click the Transforms . . . button, revealing the dialog box
shown in Figure 8-12.

Figure 8-12. The Transforms dialog box

Click the Add . . . button, and you can browse your filesystem to add an XSLT stylesheet to your options. Once you've
done that, you can select a transformation and click OK.

This time, when you perform the export, Access applies the XSLT stylesheet to the outgoing data, producing the result
shown in Example 8-10.

Example 8-10. Results of an XSLT-enhanced export

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-10. Results of an XSLT-enhanced export

<html>

<head><title>Exported Query</title></head>

<body>

<p>Author: David Brownell</p>

<p>ISBN: 0596002378</p>

<p>Title: SAX2</p>

<hr/>

<p>Author: Elliotte Harold</p>

<p>ISBN: 0596002920</p>

<p>Title: XML in a Nutshell, 2nd Edition</p>

<hr/>

<p>Author: Scott Means</p>

<p>ISBN: 0596002920</p>

<p>Title: XML in a Nutshell, 2nd Edition</p>

<hr/><p>Author: Simon St.Laurent</p>

<p>ISBN: 0596005385</p>

<p>Title: Office 2003 XML Essentials</p>

<hr/>

</body>

</html>

In a web browser, this looks like Figure 8-13.

Figure 8-13. Transformed query results in a web browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately, Access will produce a blank file if the stylesheet includes <xsl:output
method="html" />, so the HTML produced by this method will only work in more recent
browsers.

These foundations will let you bypass the Access reports and HTML generation capabilities if you want to create custom
reports, web views, or share information with systems that don't find the XML that Access generates directly amenable.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Importing XML into Access Using the GUI
Access provides fewer options for importing XML, but what it provides is simple and reasonably solid. Access lets you
import data that looks roughly like the data it exports, and only as tables or additions to tables. This can be a great way
to load new data into a database or add newly updated information, but it does make it difficult to transfer complex
interrelated structures between databases. A single document may contain XML that refers to multiple tables, of course,
and XSLT transformations on import can help as well.

To get started, we'll import the code shown in Example 8-11 into the Access database previously used for exporting.

Example 8-11. New data for import

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ch0802.xsd">

<books>

<ISBN>0596002637</ISBN>

<Title>Practical RDF</Title>

<Tagline>Solving Problems with the Resource Description Framework</Tagline>

<Short_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web.</Short_x0020_Description>

<Long_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web - anything from library catalogs and

worldwide directories to bioinformatics, Mozilla internal data structures, and knowledge

bases for artificial intelligence projects.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596003838</ISBN>

<Title>Content Syndication with RSS</Title>

<Tagline>Sharing Headlines and Information Using XML</Tagline>

<Short_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds.</Short_x0020_Description>

<Long_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds. Originally developed by Netscape in 1999, RSS (which can stand for

RDF Site Summary, Rich Site Summary, or Really Simple Syndication) is an XML-based format

that allows Web developers to create a data feed that supplies headlines, links, and

article summaries from a web site</Long_x0020_Description>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

article summaries from a web site</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

<books>

<ISBN>0596002912</ISBN>

<Title>XPath and XPointer</Title>

<Tagline>Locating Content in XML Documents</Tagline>

<Short_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else?</Short_x0020_Description>

<Long_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else? XPath and XPointer are two closely related tools that play a key

role in XML processing by allowing developers to find these needles and manipulate

embedded information.</Long_x0020_Description>

<PriceUS>24.95</PriceUS>

</books>

</dataroot>

To get started, select "Get External Data" from the File menu, and select "Import" The dialog box shown in Figure
8-14 will appear.

Figure 8-14. Initial import dialog box

You may have to select XML from the "Files of type" drop-down menu at the bottom, as the dialog initially defaults to
Access formats. Select the file ch0811.xml, and click Import. The Import XML dialog box shown in Figure 8-15 will
appear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-15. Import dialog box showing structure of XML documents

You can click on the plus sign to the left of "books" if you want to inspect the structure. If you just click OK right now,
Access will create a new table, books1 (or whatever number avoids a conflict), to import the XML into Access without
conflicting with the prior XML table. That may be perfectly fine, as it gives you a chance to compare the new data with
the old before merging the two. Access provides two more options, however: one that lets you just create a new table
based on the structure of the XML file, and another that lets you append the data in the XML file to an existing table. In
this case, we know the new books are different from the old books, so click on Options and select "Append Data to
Existing Table(s)," as shown in Figure 8-16.

Figure 8-16. Import dialog box showing more complex structure of XML
documents, as well as append options

If you click OK now, the extra books will be added to the existing books table, as shown in Figure 8-17.

Figure 8-17. The results of importing a document and appending its data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Access refuses to import XML data that causes a conflict with existing key relationships. For example, if you import that
same document again the same way, you'll be rewarded with the ImportErrors table shown in Figure 8-18.

Figure 8-18. The results of importing a document and appending its data when the
data is already there

Using the Transform . . . button shown in Figure 8-16, you can also perform conversions that make it easier to import
data that doesn't arrive in a form that meets Access' expectations. For example, suppose information about a new book
arrived in the form shown in Example 8-12.

Example 8-12. An attribute-based XML document for import

<update>

<books ISBN="0596003277" Title="Learning XSLT" Tagline="A Hands-On

Introduction to XSLT and XPath" Short_x0020_Description="A gentle

introduction to the complex intricacies of XSLT" Long_x0020

_Description="A gentle introduction to the complex intricacies of

XSLT and XPath, walking through the spec from simple work to

complex." PriceUS="34.95" />

</update>

In Example 8-12, all of the data is stored in attributes, and Access won't even look at attributes during an import. To
get this information into Access, you'll need to use a transformation, like the generic one shown in Example 8-13, which
converts all attributes into child elements.

Example 8-13. A stylesheet for transforming attributes into elements

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!--Derived from recipe 6.1 of Sal Mangano's XSLT Cookbook-->

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:template match="@*">

 <xsl:element name="{local-name(.)}" namespace="{namespace-uri(..)}">

 <xsl:value-of select="."/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="."/>

 </xsl:element>

</xsl:template>

<xsl:template match="node()">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

When applied to Example 8-12, the stylesheet in Example 8-13 will produce the result shown in Example 8-14, which
Access can import easily. (Note that Access doesn't care what the name of the root element is; update is simply a useful
description for human consumption.)

Example 8-14. An elementized version of Example 8-12

<?xml version="1.0" encoding="UTF-8"?>

<update>

<books>

<ISBN>0596003277</ISBN>

<Title>Learning XSLT</Title>

<Tagline>A Hands-On Introduction to XSLT and XPath</Tagline>

<Short_x0020_Description>A gentle introduction to the complex intricacies of XSLT</Short_

x0020_Description>

<Long_x0020_Description>A gentle introduction to the complex intricacies of XSLT and

XPath, walking through the spec from simple work to complex.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

</update>

If you tell Access to import ch0812.xml, the file shown in Example 8-12, you won't have much to choose from in the
Import XML dialog box, as shown in Figure 8-19.

Figure 8-19. Access' initial reaction to the document that stores data in attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click on Options and then on Transform . . . , you'll be able to add the stylesheet, much as you did for the export
transformation. Add the stylesheet to the list of transformations and select ch0813, as shown in Figure 8-20.

Figure 8-20. Selecting a stylesheet for transformation

When you click OK, Access applies the transformation to the document, modifying the display of components you see,
producing the result in Figure 8-21.

Figure 8-21. A transformed document ready for import

In this case, the table already exists, so be sure to select "Append Data to Existing Table(s)." When you click OK, the
data from Example 8-12 will be added to the table books, as shown in Figure 8-22.

Figure 8-22. The result of importing a transformed document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-22. The result of importing a transformed document

While transformations work well for some kinds of import problems, they suffer from one major limitation: they have to
be applied manually. The techniques for importing XML with Visual Basic for Applications, explored in the next section,
do not support the use of stylesheets for transformation on import.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Automating XML Import and Export
While the GUI is certainly the most flexible way to learn about Access' XML support, it can be tricky to explain if you're
using XML to distribute information to users or collect information from them. Rather than tell users to go through a
multi-step process, you can use the Visual Basic for Applications Application.ImportXML and Application.ExportXML methods
to create buttons or other interfaces that let users get information in and out more easily.

Of the two methods, Application.ImportXML is by far the simpler. It only takes two argument: a data source—most likely a
file reference or a URL—and an options constant. The choices for the options are acAppendData, acStructureAndData (the
default), and acStructureOnly. These correspond to the behaviors described in Section 8.3.

For an example of how this might work, the XML in Example 8-15 is available at
http://simonstl.com/ora/updateBook.xml.

Example 8-15. An online XML update file

<update>

<books>

<ISBN>0596003722</ISBN>

<Title>XSLT Cookbook</Title>

<Tagline>Solutions and Examples for XML and XSLT Developers</Tagline>

<Short_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations.</Short_x0020_Description>

<Long_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations, including structural changes, and conversion to XHTML, SVG, and

programming code.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

</update>

To import this, create a form with a button on it, and add this code to the button:

Private Sub Command0_Click()

 Application.ImportXML "http://simonstl.com/ora/updateBook.xml", _

 acAppendData

End Sub

When you click on the button, which might look like Figure 8-23, your database will retrieve the XML from
http://simonstl.com/ora/updateBook.xml and add its contents to the database.

Figure 8-23. A button for importing XML data from the Web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-23. A button for importing XML data from the Web

If your books table looked like Figure 8-22, it will now look like Figure 8-24.

Figure 8-24. The result of the automated importation of an XML document

As noted earlier, you can't apply a transformation when importing XML through Visual
Basic for Applications, so the imported XML file must meet Access' structural expectations
to start with. If you're providing XML specifically for the purpose of distributing it to Access
databases, this shouldn't be a problem, but it may require some code, a temporary
download, or some kind of proxy if your Access database has to import data that Access
can't interpret automatically.

The Application.ExportXML method provides somewhat more control and functionality than its ImportXML companion,
though it also lacks direct transformation capabilities. It takes eight arguments, listed here:

ObjectType

Most typically acExportTable, acExportQuery, or acExportReport, though you can also experiment with acExportForm,
acExportFunction, acReport, acServerView, or acStoredProcedure.

DataSource

A string containing the name of the Access object—typically the table or query—you want to export.

DataTarget

The path to the XML document you want to export. Leave this blank if you're just exporting a schema.

SchemaTarget

The path to the XML Schema document you want to export. If you're just exporting data and not a schema,
leave this blank.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

leave this blank.

PresentationTarget

The path to the XSLT that Access generates for creating an Internet Explorer interface to access data. Note that
this is not a place for specifying an XSLT transformation.

ImageTarget

A path to a directory that will be used for exporting images if you're exporting a report.

Encoding

The encoding to use for the exported text files. This may be either acUTF16 (for UTF-16), or acUTF8 (for UTF-8).
UTF-8 is the default.

OtherFlags

This field holds an integer that is the sum of several flags. Starting from a value of zero, add acEmbedSchema if
you to embed a schema inside of the XML file instead of in a separate file. Add acExcludePrimaryKeyAndIndexes if
you don't want the schema to contain index information. Add acLiveReportSource if this is to be connected to a
Microsoft SQL Server database. Add acPersistReportML if you want to look at the ReportML Access uses internally.
Add acRunFromServer if you want to create Active Server Pages (ASP) rather than HTML output for the
PresentationTarget.

You can also specify additional objects to export as extra arguments after these, perhaps if you wanted to export
multiple tables simultaneously. Most typically, you'll use just three arguments, as shown in this method:

Private Sub Command1_Click()

 Application.ExportXML acExportTable, "books", _

 "C:\xml\booksExport.xml"

End Sub

When this code is used for the button shown in Figure 8-25, if you've done all the imports along the way, the results at
C:\xml\booksExport.xml will look like Example 8-16.

Figure 8-25. A button for exporting XML to your hard drive

Example 8-16. The results of exporting all of the data in the books table using the
button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

button

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" generated="2004-02-06T15:42:40">

<books>

<ISBN>0596005385</ISBN>

<Title>Office 2003 XML Essentials</Title>

<Tagline>Integrating Office with the World</Tagline>

<Short_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel,

and Access, as well as a new application, Microsoft InfoPath. This book gets readers

started in using those features.</Short_x0020_Description>

<Long_x0020_Description>Microsoft has added enormous XML functionality to Word, Excel, and

Access, as well as a new application, Microsoft InfoPath. This book gets readers started

in using those features.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596002920</ISBN>

<Title>XML in a Nutshell, 2nd Edition</Title>

<Tagline>A Desktop Quick Reference</Tagline>

<Short_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space.</Short_x0020_

Description>

<Long_x0020_Description>This authoritative new edition of XML in a Nutshell provides

developers with a complete guide to the rapidly evolving XML space. Serious users of XML

will find topics on just about everything they need, including fundamental syntax rules,

details of DTD and XML Schema creation, XSLT transformations, and APIs used for processing

XML documents. Simply put, this is the only references of its kind

among XML books.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596002378</ISBN>

<Title>SAX2</Title>

<Tagline>Processing XML Efficiently with Java</Tagline>

<Short_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Short_x0020_Description>

<Long_x0020_Description>This concise book gives you the information you need to

effectively use the Simple API for XML, the dominant API for efficient XML processing with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effectively use the Simple API for XML, the dominant API for efficient XML processing with

Java.</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

<books>

<ISBN>0596002637</ISBN>

<Title>Practical RDF</Title>

<Tagline>Solving Problems with the Resource Description Framework</Tagline>

<Short_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web.</Short_x0020_Description>

<Long_x0020_Description>The Resource Description Framework (RDF) is a structure for

describing and interchanging metadata on the Web - anything from library catalogs and

worldwide directories to bioinformatics, Mozilla internal data structures, and knowledge

bases for artificial intelligence projects.</Long_x0020_Description>

<PriceUS>39.95</PriceUS>

</books>

<books>

<ISBN>0596003838</ISBN>

<Title>Content Syndication with RSS</Title>

<Tagline>Sharing Headlines and Information Using XML</Tagline>

<Short_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds.</Short_x0020_Description>

<Long_x0020_Description>RSS is sprouting all over the Web, connecting weblogs and

providing news feeds. Originally developed by Netscape in 1999, RSS (which can stand for

RDF Site Summary, Rich Site Summary, or Really Simple Syndication) is an XML-based format

that allows Web developers to create a data feed that supplies headlines, links, and

article summaries from a web site</Long_x0020_Description>

<PriceUS>29.95</PriceUS>

</books>

<books>

<ISBN>0596002912</ISBN>

<Title>XPath and XPointer</Title>

<Tagline>Locating Content in XML Documents</Tagline>

<Short_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else?</Short_x0020_Description>

<Long_x0020_Description>Referring to specific information inside an XML document can be

like looking for a needle in a haystack: how do you differentiate the information you need

from everything else? XPath and XPointer are two closely related tools that play a key

role in XML processing by allowing developers to find these needles and manipulate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

role in XML processing by allowing developers to find these needles and manipulate

embedded information.</Long_x0020_Description>

<PriceUS>24.95</PriceUS>

</books>

<books>

<ISBN>0596003277</ISBN>

<Title>Learning XSLT</Title>

<Tagline>A Hands-On Introduction to XSLT and XPath</Tagline>

<Short_x0020_Description>A gentle introduction to the complex intricacies of XSLT</Short_

x0020_Description>

<Long_x0020_Description>A gentle introduction to the complex intricacies of XSLT and

XPath, walking through the spec from simple work to complex.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

<books>

<ISBN>0596003722</ISBN>

<Title>XSLT Cookbook</Title>

<Tagline>Solutions and Examples for XML and XSLT Developers</Tagline>

<Short_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations.</Short_x0020_Description>

<Long_x0020_Description>A comprehensive collection of recipes for applying XSLT in a

variety of situations, including structural changes, and conversion to XHTML, SVG, and

programming code.</Long_x0020_Description>

<PriceUS>34.95</PriceUS>

</books>

</dataroot>

The facilities Access provides for getting XML into and out of databases, while not especially flexible, should be enough
for you to transfer data among databases easily.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Importing and Exporting XML with
Microsoft Access
Relational databases and XML aren't always the best of friends. XML documents store information in hierarchies, while
relational databases store information in linked tables. XML document structures are typically much more open than
relational databases, which focus on regularity for better performance. Because of these differences, it doesn't make
sense to rebuild Microsoft Access as an XML application. Instead, Access uses XML as a means of communicating with
the outside world, capable of representing the information it stores as XML and also able to accept new or changed
information through XML messages. Add in a little XSLT, and you have a whole new interface for connecting Access to
different applications.

The XML features in Access are available in every copy of Office 2003; there's no
Standard/Professional/Enterprise distinction for you to worry about.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 What Are Web Services?
In a general sense, web services are programs you can access over the Web. In their broadest definition, tools like
Google, Amazon, Mapquest, and other web-based applications are certainly web services. More typically, web services,
as opposed to the regular Web, are about program-to-program communication. Web sites can make information
available to other programs, and many are using XML to spare the other programs the difficulties of processing HTML.
Over the last three years, web services has developed into a specialty of its own, built on a protocol called SOAP.

SOAP—formerly the Simple Object Access Protocol, but now an acronym without an official expansion—uses an XML
vocabulary and a set of rules for sending XML over HTTP. (HTTP, the HyperText Transfer Protocol, is the protocol at the
heart of the Web, most commonly used to transfer HTML from servers to clients.) SOAP is most frequently used as a
framework for sending remote procedure calls (RPC) between programs, and that's how the examples in this chapter
will use it. The Microsoft Office Web Services Toolkit creates code that makes Word or Excel a client application, capable
of calling SOAP-based services on other computers.

There are two other layers to the web services supported by Office. Web Services Description Language (WSDL)
provides a machine-readable description of a web service, identifying things like the methods it supports and the
parameters and return values for those methods. Given a WSDL file, an application (or a programmer) can determine
how to interact with a web service. The Microsoft Office Web Services Toolkit uses WSDL files to create its code. If the
WSDL file is written correctly, the resulting code will be able to interact with the SOAP-based web service smoothly.

The WSDL file will tell the Toolkit what code to create, but there's still one problem: the Toolkit needs to know where to
find the WSDL file. UDDI (Universal Description, Discovery, and Integration) is designed to help with this problem by
providing a common framework for describing and organizing web services in public or private directories. UDDI servers
store information describing services and their providers, helping developers to find services they trust and can use.

There are other ways to provide and use web services. XML-RPC, described at
http://xmlrpc.com/, preceded SOAP and provides support for function calls over HTTP.
Microsoft Office doesn't provide direct support for XML-RPC.

You can also use HTTP calls to send XML between clients and servers without using SOAP, in what is often called
Representational State Transfer, or REST. For more on REST, see
http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage. It's probably easiest to think of REST much as you think of
the Web; it uses basic HTTP functionality to exchange information between programs and servers much the same way
that browsers use HTTP to exchange information between browsers and servers. You can use some REST-based
services in Office by combining HTTP calls with the built-in XML functionality described in earlier chapters, or through
VBA.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 The Microsoft Office Web Services Toolkit
Unlike the rest of the XML functionality in Word, Excel, and Access, if you want to use SOAP-based web services, you'll
need to download a separate package, the Microsoft Office Web Services Toolkit. (InfoPath has web services support
built into it.) As the URL for this package has changed a few times, it's easiest to go to
http://www.microsoft.com/downloads/search.aspx and search for "Office Web Services Toolkit." Separate versions are
available for Office XP and Office 2003. Once you've installed it, you'll be able to have Office generate VBA code for
accessing and using web services. Microsoft's support for SOAP comes with the toolkit, and has also become part of
Windows with Windows XP.

It is possible to create VBA code that accesses SOAP services without using the Toolkit, but
doing so requires much greater knowledge of both VBA and SOAP than this chapter
assumes. If you're feeling intrepid, see Chapter 8 of Matthew MacDonald's Office 2003
XML for Power Users (APress).

Unlike the other XML features described in this book, using the Microsoft Office Web Services Toolkit works the same
way across applications, except for InfoPath. Once you've learned how to interact with a web service in Excel, you can
use the same code to work with it in Word or Access. The only thing that needs to change is the integration between
your VBA code and the object model for the particular application and document you're working with. It's probably
easiest to start your development in Excel, as the Excel grid makes it easy to set up test environments where inputs
occupy particular cells and outputs are placed into particular cells by the VBA code.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Accessing a Simple Web Service from Excel
Once you've installed the toolkit, you can start connecting your spreadsheet to web services. To get to the Web Service
References Tool (its name inside of all of the applications), you'll need to go to Tools Macro Visual Basic
Editor. On the Tools menu of the Visual Basic Editor, you'll find Web Services References. Selecting that will bring up
the dialog box shown in Figure 9-1.

Figure 9-1. The Microsoft Office Web Services Toolkit in action

You can use the search features in the top left of this dialog to find services through Microsoft's UDDI service, or you
can choose instead to enter a URL for the WSDL file at the lower left. The toolkit defaults to UDDI, and UDDI hosted by
Microsoft at that, as you'll see if you click the More button. If you'd like to try looking for a service through UDDI, enter
a keyword or business name in the appropriate location, and then click the Search button at the bottom. If you enter
"currency" under keyword, click the More button, and click Search, you'll have a brief wait while the toolkit queries
Microsoft and then you'll see something like Figure 9-2.

Figure 9-2. Searching for services using the UDDI support of the Microsoft Office
Web Services Toolkit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Currencyws service offers two methods: GetLicRate and GetRate. (As the documentation for them is identical, it's
difficult to say what the difference is.) Clicking the Test button will let you visit a page where you can test the services,
if the provider of the service offers testing. If you were to check the box next to "Currencyws" and click Add, the toolkit
would generate code to let you access the service.

Instead, because UDDI hasn't really taken off, and most consumers of web services are using their own or other
people's private services, we'll experiment with the other option, the Web Service URL. This lets you work with any
service whose providers offer a WSDL file describing it, whether or not it's been registered with UDDI.

You can find a listing of public services at http://xmethods.net/, though you should definitely test to make sure that the
services still work before you integrate them with your documents. Many services also require license keys and
sometimes license payments, but for this example we'll use one that is available for free. It returns the IP address for a
given domain name. We'll start by telling Excel which service we'd like to use, in this case,
http://www.cosme.nu/services/dns.php?wsdl. Enter that value in the URL: box at the bottom left and click Search. A
search result for the DNS service will appear in the top right, as shown in Figure 9-3. Check the box to its left.

Figure 9-3. Telling the Web Services Toolkit to generate code for a specific web
service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clicking the Add button will make Excel generate VBA code for invoking the service, as shown in Figure 9-4.

Figure 9-4. VBA code for accessing the DNS service generated by the Web Services
Toolkit

Next, close the Visual Basic Editor and set up a very simple spreadsheet like the one shown in Figure 9-5.

Figure 9-5. A spreadsheet for adding web services

To demonstrate how to call a service, add a button for calling the service. Display the Control Toolbar by right-clicking
on a toolbar and choosing Control Toolbox from the pop-up menu. Click the button icon, and then click on the
spreadsheet wherever you'd like the button to go. Right-click the button, and choose Properties from the pop-up menu.
Under Name, enter GetData; under Caption, enter Get IP Address. (These names can be anything you like.) Close the
Properties dialog box, and your spreadsheet should look something like Figure 9-6.

Figure 9-6. Spreadsheet with button for calling web services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-1. Code for calling simple web service

Private Sub GetData_Click()

 Dim info As New clsws_dns

 Dim name As String

 Dim IP As String

 name = Range("B2").Text

 IP = info.wsm_dns(name)

 Set IPRange = Range("B3")

 IPRange.Value = IP

End Sub

This code is pretty simple. It references the object the toolkit created for the web service, clsws_dns, and creates
variables for the name and IP address. It collects the name from cell B2, calls the web service at wsm_dns with the
name as an argument, and then puts the value returned into cell B3. The method name, wsm_dns, is set by the Web
Services Toolkit and appears in the comments at the top of the generated code, as you can see if you look back to
Figure 9-4.

Once you've entered this code and closed the Visual Basic Editor, you can then leave design mode by making sure the
triangle and ruler icon at the left of the Control Toolbar isn't highlighted. The spreadsheet will now let you enter a
domain name in cell B2. Clicking on the "Get IP Address" button will invoke the web service, using the generated
wsm_dns method, and put the IP address corresponding to that domain name in cell B3. Figures 9-7 and 9-8 show this
spreadsheet in action with different domain names.

Figure 9-7. A retrieved IP address for oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-8. A retrieved IP address for simonstl.com

IP address resolution is one of the simpler services out there, but there are many cases where services this simple can
be very useful in a spreadsheet, including currency convertors, price retrieval, postal code processing, and much more.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Accessing More Complex Web Services
While one return value for a method or function is a fairly normal approach in programming languages, SOAP is capable
of returning values that are more complex. To demonstrate, the next example will test a service that returns
information about a given US Zip Code, including the city, state, area code, and time zone.

Information about the service, including an HTML testing form that lets you see what results the service will produce, is
available at http://webservicex.net/uszip.asmx?op=GetInfoByZIP. Its WSDL file is at
http://webservicex.net/uszip.asmx?WSDL. If you test it with the Zip Code 13053, it will report back:

<?xml version="1.0" encoding="utf-8" ?>

<NewDataSet>

 <Table>

 <CITY>Dryden</CITY>

 <STATE>NY</STATE>

 <ZIP>13053</ZIP>

 <AREA_CODE>607</AREA_CODE>

 <TIME_ZONE>E</TIME_ZONE>

 </Table>

</NewDataSet>

The test reports back without a SOAP envelope. As the Web Services Toolkit will handle all the processing of the SOAP
envelope and just hands your code the message inside, that won't be a problem for you. The Table here (and the <any
/> in the schema in the WSDL file where these would appear) will lead the Web Services Toolkit to generate code that
returns an IXMLDOMNodeList, as shown in Figure 9-9.

Figure 9-9. Generated code returning XML rather than a value

To work with this more complex data, the spreadsheet will have one source cell (for the Zip Code) and four result cells,
as well as a button that will execute the web service call, as shown in Figure 9-10.

Figure 9-10. Spreadsheet base for running the web service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-10. Spreadsheet base for running the web service

The code behind the "Get ZIP Info" button—which is named ZipCoder—is an extension of Example 9-1. It adds a few
variables, and uses some XPath to extract the values of the XML elements returned by the SOAP call, as shown in
Example 9-2.

Example 9-2. Calling a more complex web service

Private Sub ZipCoder_Click()

Dim zipResolver As clsws_USZip

Set zipResolver = New clsws_USZip

Dim zip As String

Dim city As String

Dim state As String

Dim areaCode As String

Dim timeZone As String

zip = Range("B1").Text

Dim returnedNodes As MSXML2.IXMLDOMNodeList

Set returnedNodes = zipResolver.wsm_GetInfoByZIP(zip)

city = returnedNodes.Item(0).selectSingleNode("//CITY").Text

state = returnedNodes.Item(0).selectSingleNode("//STATE").Text

areaCode = returnedNodes.Item(0).selectSingleNode("//AREA_CODE").Text

timeZone = returnedNodes.Item(0).selectSingleNode("//TIME_ZONE").Text

Set cityRange = Range("B3")

cityRange.Value = city

Set stateRange = Range("B4")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set stateRange = Range("B4")

stateRange.Value = state

Set areaCodeRange = Range("B5")

areaCodeRange.Value = areaCode

Set timeZoneRange = Range("B6")

timeZoneRange.Value = timeZone

End Sub

The main difference is in the way that information is returned from the web services call. Instead of the data coming
back as a string, it comes back as a list of XML nodes, more precisely an MSXML2.IXMLDOMNodeList. To extract the
individual values from the XML, the selectSingleNode method takes an XPath and returns the first node matching the
XPath, here returning the CITY element, the text of which is then put into the city variable:

Dim returnedNodes As MSXML2.IXMLDOMNodeList

Set returnedNodes = zipResolver.wsm_GetInfoByZIP(zip)

city = returnedNodes.Item(0).selectSingleNode("//CITY").Text

Once the information is extracted, it's put into cells. If you enter a Zip Code into cell B1 and then click "Get ZIP Info," it
puts the corresponding information into cells B3-B6, as shown in Figure 9-11.

Figure 9-11. Information about a Zip Code retrieved through a web service

You may encounter a problem with some services in which they return XML as a string, and the Toolkit returns that
string rather than a searchable node list. To demonstrate, we'll connect to a different service that returns complex
information, but reports it in the WSDL as a string. It's a stock quote application, which you can explore at
http://www.webservicex.net/stockquote.asmx. The test page looks like Figure 9-12; note that the placeholder shown in
the SOAP response's GetQuoteResult element near the bottom is a string.

Figure 9-12. Test page for a web service that returns XML content as text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-12. Test page for a web service that returns XML content as text

A sample return value for the service looks like:

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://www.webserviceX.NET/">

<StockQuotes><Stock><Symbol>GLW</Symbol><Last>12

.90</Last><Date>2/20/2004</Date><Time>4:01pm</

Time><Change>-0.11</Change><Open>13.01</

Open><High>13.01</High><Low>12.66</

Low><Volume>15572300</Volume><MktCap>17.325B</

MktCap><PreviousClose>13.01</PreviousClose><PercentageChange>-0

.85%</PercentageChange><AnnRange>4.54 - 13.89</

AnnRange><Earns>-0.18</Earns><P-E>N/A</

P-E><Name>CORNING INC</Name></

Stock></StockQuotes></string>

There's XML in there, but for some reason the service's creator chose to present it as text. It should look like:

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://www.webserviceX.NET/">

 <StockQuotes>

 <Stock>

 <Symbol>GLW</Symbol>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Symbol>GLW</Symbol>

 <Last>12.90</Last>

 <Date>2/20/2004</Date>

 <Time>4:01pm</Time>

 <Change>-0.11</Change>

 <Open>13.01</Open>

 <High>13.01</High>

 <Low>12.66</Low>

 <Volume>15572300</Volume>

 <MktCap>17.325B</MktCap>

 <PreviousClose>13.01</PreviousClose>

 <PercentageChange>-0.85%</PercentageChange>

 <AnnRange>4.54 - 13.89</AnnRange>

 <Earns>-0.18</Earns>

 <P-E>N/A</P-E>

 <Name>CORNING INC</Name>

 </Stock>

 </StockQuotes>

</string>

When the toolkit returns the string value, it will at least convert the < to < and > to >, making it easy to parse with
a different part of the MSXML toolkit. Once again, build a spreadsheet to hold the information, with a button to call the
service, as shown in Figure 9-13.

Figure 9-13. A spreadsheet for the stock quote service

Behind the button, the code shown in Example 9-3 will handle the conversion from text to XML and extract the contents
of the XML to fields in the Excel spreadsheet.

Example 9-3. Processing XML returned by a web service as text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-3. Processing XML returned by a web service as text

Private Sub GetQuote_Click()

Dim symbol As String

Dim stockObject As New clsws_StockQuote

Dim xmlDoc As MSXML2.DOMDocument

symbol = Range("B1").Text

Set xmlDoc = New MSXML2.DOMDocument

xmlDoc.LoadXml (stockObject.wsm_GetQuote(symbol))

Range("A6").Value = xmlDoc.selectSingleNode("//Last").Text

Range("B6").Value = xmlDoc.selectSingleNode("//Date").Text

Range("C6").Value = xmlDoc.selectSingleNode("//Time").Text

Range("D6").Value = xmlDoc.selectSingleNode("//Change").Text

Range("E6").Value = xmlDoc.selectSingleNode("//Open").Text

Range("F6").Value = xmlDoc.selectSingleNode("//High").Text

Range("G6").Value = xmlDoc.selectSingleNode("//Low").Text

Range("H6").Value = xmlDoc.selectSingleNode("//Volume").Text

End Sub

The highlighted portions show where MSXML2.DOMDocument, in particular its LoadXML method, is used in place of
MSXML2.IXMLDOMNodeList. This accepts the string from the Toolkit, and parses it into XML, which can then be processed
normally. The results look like Figure 9-14.

Figure 9-14. Results of checking a stock quote

If you ever have trouble with the values the toolkit hands you, take a close look at the generated code to see what type
of data it is passing back to your application. Depending on how the service was initially structured, you may have to do
some extra work.

There is no intrinsic limit on the amount of information a web service can return, and you may in fact want to present
more complex information than these examples have shown. If the service returns a lot of data, XPath combined with
the selectSingleNode and selectNodes methods will become a critical tool for picking out just the information you want.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the selectSingleNode and selectNodes methods will become a critical tool for picking out just the information you want.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Accessing REST Web Services with VBA
While the Microsoft Office Web Services Toolkit doesn't provide direct support for REST-based services, REST is simple
enough in practice that it doesn't really need a toolkit. All it requires is support for HTTP, which VBA offers through the
MSXML2.XMLHTTP object. Using this object, you can create HTTP requests and process the responses. Since a lot of the
SOAP web services described previously offer simple HTTP versions, it's easy to create a comparison, so this example
will use the GetInfoByZIP service shown earlier. If you visit http://webservicex.net/uszip.asmx?op=GetInfoByZIP, you'll
see the test form in Figure 9-15.

Figure 9-15. Test form that supports the web service

If you enter "13062" and click the Invoke button, you'll see something like Figure 9-16.

Figure 9-16. A test invocation of the web service using GET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What has happened here is that the form sent the zip code information as part of a GET query—note the query string in
the address bar—and received an XML document in return. For many web services, there's no need for anything more
complicated.

Integrating this simple version of the web service into Excel is easy. Start by creating a new spreadsheet that looks like
Figure 9-17, itself an echo of Figure 9-10.

Figure 9-17. Spreadsheet base for running the REST web service

There's no need to use the Microsoft Office Web Services Toolkit for this example; the VBA code for the button in
Example 9-4 alone is all you need.

Example 9-4. EREST-based code for retrieving Zip Code information

Private Sub ZipCoderREST_Click()

Dim zip As String

Dim query As String

zip = Range("B1").Text

'assemble query string

query = "http://webservicex.net/uszip.asmx/GetInfoByZIP?USZip=" + zip

'define XML and HTTP components

Dim zipResult As New MSXML2.DOMDocument

Dim zipService As New MSXML2.XMLHTTP

'create HTTP request to query URL - make sure to have

'that last "False" there for synchronous operation

zipService.Open "GET", query, False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'send HTTP request

zipService.send

'parse result

zipResult.LoadXml (zipService.responseText)

'extract result contents into appropriate cells

Range("B3").Value = zipResult.selectSingleNode("//CITY").Text

Range("B4").Value = zipResult.selectSingleNode("//STATE").Text

Range("B5").Value = zipResult.selectSingleNode("//AREA_CODE").Text

Range("B6").Value = zipResult.selectSingleNode("//TIME_ZONE").Text

End Sub

Instead of calling a generated object, this code constructs an HTTP request. If you enter "13062" into cell B1 and click
the Get ZIP Info (REST) button, you'll see the result shown in Figure 9-18.

Figure 9-18. Result of running the REST version of the Zip Code web service

The REST HTTP version is both simpler and more portable, and demands less code on the server side as well. Why
wouldn't you use REST rather than SOAP throughout your work? If you control both ends of the transaction, this is a
very appealing option, as it lets you use whatever web tools you like, not just tools specifically oriented toward SOAP
web services. However, there are many services that are available only through SOAP, and a growing number of
programmers who know how to work with SOAP. It's best to have both approaches in your toolbox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programmers who know how to work with SOAP. It's best to have both approaches in your toolbox.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Using Web Services in Access
While web services aren't likely to factor into the tables at the heart of an Access database, they can be very useful in
forms and reports. To demonstrate, the following example will use the Zip Code web service shown earlier as a way of
filling in an address form without the user having to type in the city or state.

To get started, create a database, and then fire up the Microsoft Office Web Services Toolkit. The steps for generating
code to work with a web service in Access are precisely the same as they were in Excel, so you can open the Visual
Basic Editor and follow the same steps to create a web service wrapper associated with the WSDL file
http://webservicex.net/uszip.asmx?WSDL. Once you have created that wrapper, make a table containing basic address
information, like the address table shown in Figure 9-19.

Figure 9-19. The address table that forms the base of the example

A basic form, created using the Form Wizard's "columnar" option, provides users (and the web service) with access to
the information in the table. The design of the form is shown in Figure 9-20.

Figure 9-20. The form that will host the web service, shown just before the After
Update event is triggered

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For my own convenience, I've set the Auto Tab property of the City, State, and AreaCode fields to "No," leaving them
accessible if I need to change them but keeping them out of the way because that information should fill automatically
once a Zip Code is entered into the ZIPCode field. (To set this property, right click on the field and select Properties.
You can find Auto Tab under either the Other tab or the All tab.) The crucial modification this form needs, however, is
adding the code shown in Example 9-5.

Example 9-5. AfterUpdate code for updating fields when a Zip Code is entered

Private Sub ZIPCode_AfterUpdate()

Dim zipResolver As clsws_USZip

Set zipResolver = New clsws_USZip

Dim returnedNodes As MSXML2.IXMLDOMNodeList

'Send the web service the text value of the ZIPCode field

Set returnedNodes = zipResolver.wsm_GetInfoByZIP(Me.ZIPCode.Text)

'Put the results in the City, State, and AreaCode fields

Me.City = returnedNodes.Item(0).selectSingleNode("//CITY").Text

Me.State = returnedNodes.Item(0).selectSingleNode("//STATE").Text

Me.AreaCode = returnedNodes.Item(0).selectSingleNode("//AREA_CODE").Text

End Sub

To add the code, right-click on the ZIPCode field and select Properties In the Event tab, click in the field to the
right of After Update, and then click on the ellipsis button to the right of that. Select Code Builder from the dialog box,
and enter the code shown in Example 9-5. Close the Visual Basic Editor, and switch the form from Design View to Form
View. As you enter values and reach the Zip Code value, the form should look like Figure 9-21.

Figure 9-21. The data just after the Zip Code's After Update event is triggered

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-21. The data just after the Zip Code's After Update event is triggered

Once you tab to the next field, the VBA code will call the web service and enter the values it retrieves into the City,
State, and Area Code fields, as shown in Figure 9-22.

Figure 9-22. A form letter with fields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Every time the user makes a change to the Zip Code and leaves the field, the City, State, and Area Code fields will
update accordingly. The user can still make changes to those fields after the update, and those changes will remain
provided that there are no further changes to the Zip Code.

You can also use the REST version of this service in Access by substituting the code shown in Example 9-6 for the code
in Example 9-5. If you use this, there's no need to use the Web Services Toolkit at all.

Example 9-6. REST version of Access web services call

Private Sub ZIPCode_AfterUpdate()

Dim query As String

'assemble query string

query = "http://webservicex.net/uszip.asmx/GetInfoByZIP?USZip=" + _

 Me.ZIPCode.Text

'define XML and HTTP components

Dim zipResult As New MSXML2.DOMDocument

Dim zipService As New MSXML2.XMLHTTP

'create HTTP request to query URL - make sure to have

'that last "False" there for synchronous operation

zipService.Open "GET", query, False

'send HTTP request

zipService.send

'parse result

zipResult.LoadXml (zipService.responseText)

Me.City = zipResult.selectSingleNode("//CITY").Text

Me.State = zipResult.selectSingleNode("//STATE").Text

Me.AreaCode = zipResult.selectSingleNode("//AREA_CODE").Text

End Sub

The REST code produces exactly the same behavior shown in Figures Figure 9-21 and Figure 9-22. The core logic of this
example is the same as it was in Example 9-4, just as Example 9-5 echoes Example 9-2. The only difference between
using web services in Excel and using them in Access is the objects provided by the application context. This book can't
begin to teach you everything about the object models in these applications, but once you learn those, the web services
integration is simple.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 Using Web Services in Word
Word uses the same facilities as Excel and Access, though it's a bit tougher to see how web services fit with Word.
Unlike spreadsheets or databases, word processors rarely have discrete fields for entering particular data, and users
don't typically expect calculations to happen (except perhaps for spell-checking) as they work on a document. Still, if
you're reading this section you may have a critical use case in mind, so it's worth exploring how to integrate web
services with Word.

One new feature of Word, the Research Pane, makes heavy use of web services.
Unfortunately, it does so by requiring people who want to provide information to the
Research Pane to create web services that meet the pane's expectations. Creating web
services is far beyond the scope of this book, but a tutorial on creating services for the
Research Pane with Visual Studio.NET is available at
http://www.devx.com/codemag/Article/18214?trk=DXRSS_XML.

To demonstrate, the example uses a form letter, combining some regular text with text form fields entered from Word's
Forms Toolbar. (The Insert Fields menu option only lets you enter fields with calculated values, so the Forms
Toolbar is definitely the way to go.) The form letter looks like Figure 9-23; hopefully your own form letter will be slightly
more normal.

Figure 9-23. Adding the USZip service to the Word document

Making this into a SOAP web service-consuming document requires using the Microsoft Office Web Services Toolkit. Just
as in Excel and Access, go to Tools Macros Visual Basic Editor (or Alt-F11). Once in the Visual Basic Editor,
go to Tools Web Services References As shown in Figure 9-24, enter the web service URL
http://webservicex.net/uszip.asmx?WSDL, and click Add.

Figure 9-24. Entering code for field activity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-24. Entering code for field activity

Unlike Access or Excel, you'll need to add the code in the Visual Basic Editor directly, in the Project for this document—
Project (Conspiracy) in this case—in "Microsoft Word Objects," "This Document," as shown in Figure 9-25.

The actual code is that in Example 9-7, which again resembles Examples 9-5 and 9-2.

Example 9-7. Code for putting information retrieved from a web service into Word
forms

Sub zipCodePlacer()

 Dim zip As String

 zip = ActiveDocument.Fields(5).Result.Text

 Dim zipResolver As clsws_USZip

 Set zipResolver = New clsws_USZip

 Dim returnedNodes As MSXML2.IXMLDOMNodeList

 'Send the web service the text value of the ZIPCode field

 Set returnedNodes = zipResolver.wsm_GetInfoByZIP(zip)

 ActiveDocument.Fields(3).Result.Text = _

 returnedNodes.Item(0).SelectSingleNode("//CITY").Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 returnedNodes.Item(0).SelectSingleNode("//CITY").Text

 ActiveDocument.Fields(3).Update

 ActiveDocument.Fields(4).Result.Text = _

 returnedNodes.Item(0).SelectSingleNode("//STATE").Text

 ActiveDocument.Fields(4).Update

End Sub

This time the integration is with Word's form fields, accessible by number through the ActiveDocument.Fields() collection.
The zip argument comes from field number 5 (Word counts fields from 1, not zero), and the results go into fields 3 and
4. This code still needs to be connected to the field for the Zip Code. To do that, right-click on the field and select
Properties. From the Run Macro on Exit drop-down box, select zipCodePlacer, as shown in Figure 9-25.

Figure 9-25. Connecting the field to the code

(If you want, you can also uncheck "Fill-in enabled" on the properties for the city and state fields to take them out of
the tab order for the document.) Once you've done this, there's one last step: protecting the document. Go to Tools

 Protect Document (or select Protect Document in the Task Pane). You'll see the Protect Document pane, as shown
in Figure 9-26.

Figure 9-26. The document protection pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Check the checkbox under "Editing restrictions," select "Filling in forms," and then click "Yes, Start Enforcing
Protection." Click OK in the confirmation dialog box (you don't need to enter a password), and the document will be
ready to use. Filling in the first few fields does nothing unusual; it's not until you enter the Zip Code field that anything
will happen. Figure 9-27 shows a document just before tabbing out of the Zip Code field, and Figure 9-28 shows the
document afterwards, when the web service call has filled in the city and state fields.

Figure 9-27. The document before the Zip Code web service is called

Figure 9-28. The document after the SOAP-based Zip Code web service is called,
with city and state information filled in

Figure 9-29. The document after the REST-based Zip Code web service is called,
with city and state information filled in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with city and state information filled in

This should spare the conspirator a small amount of typing, provided of course that their computer is on a network and
the web service is operating. You can also do the same thing with the REST version of the service. The only change is in
the code, shown in Example 9-8.

Figure 9-29 shows the result of entering a Zip Code in the document using the REST-based code. As usual, it's very
much like its SOAP-based alternative.

Example 9-8. REST version of code for updating Word forms with retrieved
information

Sub zipCodePlacer()

Dim zip As String

zip = ActiveDocument.Fields(5).Result.Text

Dim query As String

'assemble query string

query = "http://webservicex.net/uszip.asmx/GetInfoByZIP?USZip=" + _

 zip

'define XML and HTTP components

Dim zipResult As New MSXML2.DOMDocument

Dim zipService As New MSXML2.XMLHTTP

'create HTTP request to query URL - make sure to have

'that last "False" there for synchronous operation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'that last "False" there for synchronous operation

zipService.Open "GET", query, False

'send HTTP request

zipService.send

'parse result

zipResult.LoadXml (zipService.responseText)

ActiveDocument.Fields(3).Result.Text = _

 zipResult.SelectSingleNode("//CITY").Text

ActiveDocument.Fields(3).Update

ActiveDocument.Fields(4).Result.Text = _

 zipResult.SelectSingleNode("//STATE").Text

ActiveDocument.Fields(4).Update

End Sub

This just scratches the surface of what you can do with web services of various kinds in Office, but hopefully it's a start
on which you can build your own projects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Using Web Services in Excel, Access, and
Word
The web services facilities in Microsoft Office are largely separate from the XML features covered elsewhere in this
book, although Microsoft has often sold XML and web services as the same thing. Web services, after all, use XML as a
key part of their program-to-program communication. On the other hand, most of the ways that Microsoft Office
supports XML are very distinct from web services. The web services support in most parts of Office is completely
separate from the rest of the XML support, relying on Visual Basic for Applications (VBA) and the Microsoft Office Web
Services Toolkit, which generates code programmers can use to access Web Services.

It's worth noting that the web services field is in significant flux. SOAP has moved from
Version 1.1 to 1.2, a new version of WSDL is under development, and UDDI may
eventually be replaced with other technologies. For now, be certain to test the services
you use, and keep an eye out for new versions of the Office Web Services Toolkit.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Office 2003 XML is a Malay palm civet (Viverra tangalunga). These mammals are native to
the Malay peninsula, including parts of Thailand, Singapore, Myanmar, and Malaysia. Like other palm civets, the Malay
is around 17-28 inches long with a tail length of 16-26 inches. It weighs from 3 to 10 pounds, and their its color ranges
from gray to brown. The markings on its face resemble those of a raccoon. The civet has four anal glands that it uses to
expel an extremely strong-smelling secretion that is used to discourage attackers. This musk was once used by perfume
makers in their products. However, animal rights groups objected to the cruel harvesting process and most
manufacturers now use synthetic alternatives to approximate the scent.

Civets are nocturnal and prefer wooded areas where they can sleep in trees during the day. At night, they hunt for
small vertebrates, insects, fruits, and seeds, which they wash down with palm juice. This juice is called "toddy" by the
natives, so civets are often referred to as "toddy cats." They are also extremely fond of coffee, and usually ingest the
ripest and reddest coffee beans available. They eat only the outer covering of the bean; the rest of it passes through
their digestive process unscathed. These excreted beans are then used to roast the world's most expensive and rarest
coffee, Kopi Luwak.

Philip Dangler was the production editor and proofreader, and Jane Ellin was the copyeditor for Office 2003 XML. Emily
Quill and Darren Kelly provided quality control. Angela Howard wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from Royal Natural History. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Office 2003 XML, the image of a Malay palm civet, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Read This Book
This book is written for developers who want to be able to combine Office with other sources of information and
information processing. For example, you may be a systems integrator trying connect Office to other workflow
processing, you may be a power-user who wants to analyze XML data sets in Excel or Access, or you may be an
archivist who needs to extract crucial information from existing Office documents. There are many more possibilities out
there, of course.

This book is written for developers who already have an understanding of how to use the various programs in the
Microsoft Office suite. Some basic instruction in XML, XSLT, and schema-related technologies is provided in the
appendixes, but for the most part this book assumes that you come with an understanding of XML and related
technologies.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Not Read This Book
If all of your work is completely contained within the Office suite itself, you probably don't need this book unless you
have a particularly tricky problem integrating information among the programs. If, for instance, you just create Word
documents using templates, you may even be able to create XML documents using those templates without reading this
book. Similarly, developers who create self-contained spreadsheets and databases will most likely not need to learn
about these technologies.

If you have never used Microsoft Office or XML before, you may want to consider exploring those technologies in
greater depth before reading this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Organization of This Book
This book starts in Chapter 1 with an overview of the XML features included in the various Office 2003 components.
While most of the components have XML features, they all interact with XML quite differently, and comparing the stories
of each of the products makes sense before leaping into the component-specific details.

The rest of the book explores the individual applications in the Microsoft Office Suite, as all of them take different
approaches to working with XML. As learning Microsoft Word's internal XML format, WordprocessingML, is a crucial first
step for developing any XML applications around it, Chapter 2 examines how Word represents its documents in XML.
Chapter 3 explores the use of XSLT to convert WordML to other forms of XML, and then Chapter 4 returns to Word to
combine WordML, XSLT, XML Schema, and the Word user interface to create environments where users can create
custom XML documents. Chapter 5 takes a look at Smart Documents, a much more labor-intensive but very powerful
combination of Word's features with external code.

Excel offers a slightly different set of features for analyzing and processing XML and for saving spreadsheets as XML.
Chapter 6 explores how Excel lets users load and work with XML data in a variety of vocabularies, and Chapter 7 takes
a close look at creating and consuming SpreadsheetML.

The XML capabilities of Microsoft Access have been enhanced for Office 2003, and those features are described in
Chapter 8. Chapter 9 takes a look at a different set of XML features in Office, those specific to Web Services, and
examines how to use them in Excel, Access, and Word.

Chapter 10 takes a close look at InfoPath, an application Microsoft has added to the Enterprise version of the Office
suite specifically to let users interact with XML and Web Services through a forms-based interface.

The last section of the book is a collection of appendixes, introducing various XML technologies that may be useful in
working with Office. They aren't intended to substitute for a thorough understanding, but hopefully they will be enough
to get you started.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Supporting Books
Even if you feel you are ready for this book, you may want to explore some of the XML technologies in greater depth
than is possible here. The following lists offer some good places to start.

Appendix A provides a brief orientation to XML, but other books that go into far more depth are readily available. For a
solid grounding in XML, consider these books:

 Erik Ray, Learning XML (O'Reilly)

 Elliotte Rusty Harold & W. Scott Means, XML in a Nutshell (O'Reilly)

 Elizabeth Castro, XML for the World Wide Web: Visual QuickStart Guide (Peachpit Press)

Appendix B provides a brief orientation to XSLT, but many projects may require a more sophisticated understanding of
XSLT. For more information on XSLT, try these books:

 Michael Fitzgerald, Learning XSLT (O'Reilly)

 Doug Tidwell, XSLT (O'Reilly)

 Sal Mangano, XSLT Cookbook (O'Reilly)

 Michael Kay, XSLT Programmer's Reference (Wrox)

 Jeni Tennsion, XSLT & XPath: On the Edge (John Wiley & Sons)

 John E. Simpson, XPath and XPointer (O'Reilly)

Appendix C explores W3C XML Schema briefly, but this topic is definitely worthy of a much larger book. Some good
options include:

 Eric van der Vlist, XML Schema (O'Reilly)

 Priscilla Walmsley, Definitive XML Schema (Prentice-Hall)

Appendix D briefly describes how to use RELAX NG, a simpler alternative to W3C XML Schema, to create W3C XML
Schema files. For a more thorough explanation of RELAX NG, see:

 Eric van der Vlist, RELAX NG (O'Reilly)

You may also want to complement your XML knowledge with more information on the rapidly growing world of Web
Services. For a lot more detail, see:

 Ethan Cerami, Web Services Essentials (O'Reilly)

 James Snell, Doug Tidwell, and Pavel Kulchenko, Programming Web Services with SOAP (O'Reilly)

 Eric Newcomer, Understanding Web Services: SOAP, WSDL, and UDDI (Addison Wesley)

 Alex Ferrara and Matthew MacDonald, Programming .NET Web Services (O'Reilly)

O'Reilly also offers a collection of programming books on XML that may prove useful. They include:

 Niel M. Bornstein, .NET & XML (O'Reilly)

 Brett McLaughlin, Java & XML (O'Reilly)

 Erik T. Ray and Jason McIntosh, Perl & XML (O'Reilly)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Erik T. Ray and Jason McIntosh, Perl & XML (O'Reilly)

 Christopher Jones and Fred L. Drake, Jr., Python & XML (O'Reilly)

There are also many online resources for XML. Two particularly good places to start looking are XML.com and
xmlhack.com. XML.com is part of the O'Reilly Network, and covers the latest news in XML on a weekly basis. For
smaller stories and a less formal approach, try xmlhack.com. Both have a variety of links to other XML resources and
mailing lists.

There is an enormous number of books on Microsoft Office and its component applications. My best advice in this field is
to visit a bookstore and examine a few books to see which best fits your learning style and your interests. (The same is
true of the XML books, but the list above provides a starting point.) Also, if you'd like to know more about how Office's
competitor OpenOffice.org handles XML processing, see J. David Eisenberg's excellent OpenOffice.org XML Essentials at
http://books.evc-cit.info/.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

Pathnames, filenames, program names, and stylesheet names

Internet addresses, such as domain names and URLs

New items where they are defined

Constant Width is used for:

Command lines and options that should be typed verbatim

Names and keywords in programs, including method names, variable names, and class names

XML element tags

Constant-Width Bold is used for emphasis in program code lines.

Constant-Width Italic is used to indicate replaceable arguments within program code.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Office 2003 XML, by Evan Lenz, Mary McRae, and Simon St.Laurent. Copyright 2004 O'Reilly Media, Inc., 0-
596-00538-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made a few mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You can access
this page at:

http://www.orelly.com/catalog/officexml

For more information abut this book and others, see the O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments

From Evan Lenz

This project has been a wonderful challenge and personal learning experience. Thank you, Simon, for inviting me to
help write this book. You've been a joy to work with, both as my editor and as my co-author. Thanks also to Mary
McRae for joining us on short notice, bringing to light some important areas we were too scared to touch. I would also
like to thank technical reviewers Jeni Tennison and Jeff Maggard for their helpful insights. Jeni's comments in particular
were prompt, thorough, and (as always) spot-on.

There are a number of other people who, directly or indirectly, made it possible for me to help write this book. Special
thanks go to: James Cooper at Seattle University School of Law, for so generously allowing me time to work on this
book; writers like Michael Kay and Merold Westphal, who showed me that it's possible to be clear without compromising
rigor; my dad, Herbert A. Lenz, who always encouraged me to write; my grandfather, Herbert J. Lenz, who lived his life
as an example of what it means to give and love sacrificially; my beautiful wife, Lisa, and precious children, Samuel and
Morgan, for being patient and tolerant of Daddy's extra working hours; and, finally, to my Lord, who is leading me on a
journey—a journey on which this project has been an important step.

From Mary McRae

Learning the intricacies of a newly-developed application during beta testing is never easy, and would not have been
possible without the help of several individuals at Microsoft, including Jean Paoli, Joe Andreshak, Brian Jones, Martin
Sawicki, and Achint Srivastava. My co-workers, Dave Giusto, Rico McCahon, and Jeff Pouliot, were not only supportive,
but also instrumental in helping to resolve technical challenges. Special thanks go to co-authors Simon St.Laurent and
Evan Lenz for inviting me to be a part of this project, and most importantly to my family, Steve and Heather, for their
love and support, and for keeping the coffee flowing.

From Simon St.Laurent

I'd like to thank my wife, Tracey Cranston, for putting up with me over the course of writing this book. Without her
kindness, as usual, I'm sure I would have disappeared in a puff of flame and smoke sometime around the middle of the
last chapter. I'm delighted to have had Evan Lenz and Mary McRae as co-authors, and would like to thank Jeni
Tennison, Jeff Maggard, and Jeff Webb for their technical insights over the course of reviewing this book. Edd Dumbill
contributed a large portion of Appendix A and was kind enough to only gently chide me for pursuing and writing this
book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
For many users, the appearance of Office 2003 has meant a slightly updated version of a familiar tool, another episode
in the continuous development of a popular and widely-used piece of software. For some users, however, the
appearance of Office 2003 is a herald of tumultuous change. This version of Office liberates the information stored in
millions of documents created using Microsoft's Office software over the past 15 years and makes it readily available to
a wide variety of software. At the same time, Office 2003 has substantially improved its abilities for working with data
that comes from external sources, making it much easier to use Office for the examination and analysis of information
that came from other sources.

XML, the Extensible Markup Language, lies at the heart of this new openness. XML has taken much of the world by
storm since its publication in 1998 as a World Wide Web Consortium (W3C) Recommendation. XML provides a standard
text-based format for storing labeled structured content. An enormous variety of tools for processing, creating, and
storing XML has appeared over the last few years, and XML has become a lingua franca that lets different kinds of
computers and different kinds of software communicate with each other—all while preserving a substantial level of
human accessibility.

This book explores the intersection between Office 2003 and XML in depth, examining how the various products in the
Office suite can both produce and consume XML. While this book generally focuses on Office 2003 itself, some
supporting technologies will be important pieces of the integration puzzle. Extensible Stylesheet Language
Transformations (XSLT) and W3C XML Schema (which Microsoft abbreviates XSD, for XML Schema Descriptions) are
two critical pieces for teaching various parts of Office about the structures of XML documents, while SOAP (an acronym
that no longer means anything) and HTTP will be important supporting technologies for communications between Office
and other programs.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Office 2003 XML

By Evan Lenz, Mary McRae, Simon St. Laurent

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00538-5

Pages: 576

 Copyright

 Preface

 Who Should Read This Book

 Who Should Not Read This Book

 Organization of This Book

 Supporting Books

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Acknowledgments

 Chapter 1. Microsoft Office and XML

 Section 1.1. Why XML?

 Section 1.2. Different Faces of XML

 Section 1.3. Different XML Faces of Office

 Section 1.4. Opening Office to the World

 Chapter 2. The WordprocessingML Vocabulary

 Section 2.1. Introduction to WordprocessingML

 Section 2.2. Tips for Learning WordprocessingML

 Section 2.3. WordprocessingML's Style of Markup

 Section 2.4. A Simple Example Revisited

 Section 2.5. Document Structure and Formatting

 Section 2.6. Auxiliary Hints in WordprocessingML

 Section 2.7. More on Styles

 Chapter 3. Using WordprocessingML

 Section 3.1. Endless Possibilities

 Section 3.2. Creating Word Documents

 Section 3.3. Extracting Information from Word Documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.4. Modifying Word Documents

 Section 3.5. Converting Between WordprocessingML and Other Formats

 Chapter 4. Creating XML Templates in Word

 Section 4.1. Clarifying Use Cases

 Section 4.2. A Working Example

 Section 4.3. Word's Processing Model for Editing XML

 Section 4.4. The Schema Library

 Section 4.5. How the onload XSLT Stylesheet Is Selected

 Section 4.6. Merged XML and WordprocessingML

 Section 4.7. Attaching Schemas to a Document

 Section 4.8. Schema-Driven Editing

 Section 4.9. Schema Validation

 Section 4.10. Document Protection

 Section 4.11. XML Save Options

 Section 4.12. Reviewing the XML-Specific Document Options

 Section 4.13. Steps to Creating the onload Stylesheet

 Section 4.14. Deploying the Template

 Section 4.15. Limitations of Word 2003's XML Support

 Chapter 5. Developing Smart Document Solutions

 Section 5.1. What's a Smart Document?

 Section 5.2. Creating a Smart Document Solution

 Section 5.3. Coding the Smart Document

 Section 5.4. Coding in VB.NET

 Section 5.5. Manifest Files

 Section 5.6. Other Files

 Section 5.7. Attaching the Smart Document Expansion Pack

 Section 5.8. Deploying Your Smart Document Solution

 Section 5.9. A Few Last Words on Smart Documents

 Section 5.10. Some Final Thoughts

 Chapter 6. Working with XML Data in Excel Spreadsheets

 Section 6.1. Separating Data and Logic

 Section 6.2. Loading XML into an Excel Spreadsheet

 Section 6.3. Editing XML Documents in Excel

 Section 6.4. Loading and Saving XML Documents from VBA

 Chapter 7. Using SpreadsheetML

 Section 7.1. Saving and Opening XML Spreadsheets

 Section 7.2. Reading XML Spreadsheets

 Section 7.3. Extracting Information from XML Spreadsheets

 Section 7.4. Creating XML Spreadsheets

 Section 7.5. Editing XML Maps with SpreadsheetML

 Chapter 8. Importing and Exporting XML with Microsoft Access

 Section 8.1. Access XML Expectations

 Section 8.2. Exporting XML from Access Using the GUI

 Section 8.3. Importing XML into Access Using the GUI

 Section 8.4. Automating XML Import and Export

 Chapter 9. Using Web Services in Excel, Access, and Word

 Section 9.1. What Are Web Services?

 Section 9.2. The Microsoft Office Web Services Toolkit

 Section 9.3. Accessing a Simple Web Service from Excel

 Section 9.4. Accessing More Complex Web Services

 Section 9.5. Accessing REST Web Services with VBA

 Section 9.6. Using Web Services in Access

 Section 9.7. Using Web Services in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 9.7. Using Web Services in Word

 Chapter 10. Developing InfoPath Solutions

 Section 10.1. What Is InfoPath?

 Section 10.2. InfoPath in Context

 Section 10.3. Components of an InfoPath Solution

 Section 10.4. A More Complete Example

 Section 10.5. Using InfoPath Design Mode

 Appendix A. The XML You Need for Office

 Section A.1. What Is XML?

 Section A.2. Anatomy of an XML Document

 Appendix B. The XSLT You Need for Office

 Section B.1. Sorting Out the Acronyms

 Section B.2. A Simple Template Approach

 Section B.3. A Rule-Based Stylesheet

 Section B.4. A More Advanced Example

 Section B.5. Conclusion

 Appendix C. The XSD You Need for Office

 Section C.1. What Is XSD?

 Section C.2. Creating a Simple Schema

 Section C.3. Schema Parts

 Section C.4. Working with XML Schema

 Appendix D. Using DTDs and RELAX NG Schemas with Office

 Section D.1. What Are DTDs?

 Section D.2. What Is RELAX NG?

 Section D.3. How Do I Convert DTDs and RELAX NG to XSD?

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

