
 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Oracle Application Server 10g Essentials

By Donald Bales, Rick Greenwald, Robert Stackowiak

Publisher: O'Reilly

Pub Date: August 2004

ISBN: 0-596-00621-7

Pages: 282

This new guide provides the perfect introduction to the Oracle Application Server for users of any level. Divided into
three concise sections, the book covers server basics, core components, and server functionality. Designed to be the
ideal first OracleAS book, Oracle Application Server 10g Essentials offers Oracle application developers and
administrators everything they need to know to use this powerful server effectively and efficiently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Oracle Application Server 10g Essentials

By Donald Bales, Rick Greenwald, Robert Stackowiak

Publisher: O'Reilly

Pub Date: August 2004

ISBN: 0-596-00621-7

Pages: 282

 Copyright

 Dedication

 Preface

 About This Book

 About the Oracle Application Server Software

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Chapter 1. Introducing Oracle Application Server

 Section 1.1. Evolution of the Application Server

 Section 1.2. The Oracle Application Server Family

 Section 1.3. Oracle Application Server Components

 Section 1.4. Managing Oracle Application Servers

 Section 1.5. What's Next?

 Chapter 2. Architecture

 Section 2.1. Oracle Application Server Core Components

 Section 2.2. Oracle Application Server Infrastructure

 Section 2.3. Installation Types

 Section 2.4. Scalability Architectures

 Section 2.5. High Availability

 Section 2.6. Oracle Application Server Applications

 Chapter 3. Systems Management

 Section 3.1. Application Server Control

 Section 3.2. Grid Control

 Section 3.3. EM2Go

 Section 3.4. Optional Oracle Enterprise Manager Application Server Packs

 Section 3.5. Backup, Recovery, and Security Management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.6. Working with Oracle Support

 Chapter 4. Security and Identity Management

 Section 4.1. Oracle Application Server Security Objectives

 Section 4.2. Oracle Application Server Security Framework

 Section 4.3. Secure Deployment

 Chapter 5. Oracle HTTP Server

 Section 5.1. Apache Architecture

 Section 5.2. Oracle-Supplied Modules

 Section 5.3. Third-Party Listener Support

 Chapter 6. Oracle Application Server Containers for J2EE

 Section 6.1. OC4J Components

 Section 6.2. OC4J Services

 Section 6.3. Application Deployment

 Section 6.4. Standalone J2EE Server

 Section 6.5. Clustering

 Chapter 7. Caching

 Section 7.1. OracleAS Web Cache

 Section 7.2. Java Object Cache

 Section 7.3. Web Object Cache

 Chapter 8. Java Development

 Section 8.1. Developing Web Applications

 Section 8.2. Development Tools

 Section 8.3. Oracle Application Server APIs and Tag Libraries

 Chapter 9. Oracle Development

 Section 9.1. PL/SQL

 Section 9.2. OracleAS Forms Services

 Section 9.3. OracleAS Reports Services

 Chapter 10. XML Development

 Section 10.1. XML, DTDs, and XML Schemas

 Section 10.2. XML Standards

 Section 10.3. XML Developer Kits

 Section 10.4. Oracle Application Server Components and XML

 Chapter 11. Web Services

 Section 11.1. Web Services Architecture

 Section 11.2. Web Services Standards

 Section 11.3. Service Provider

 Section 11.4. Service Description

 Section 11.5. Service Discovery

 Section 11.6. Service Requester

 Chapter 12. Business Intelligence Components

 Section 12.1. Reporting

 Section 12.2. Query and Analysis

 Section 12.3. Data Mining

 Section 12.4. Managing Business Intelligence Components

 Chapter 13. Oracle Application Server Portal

 Section 13.1. An OracleAS Portal Page

 Section 13.2. Portlets

 Section 13.3. Classification of Data

 Section 13.4. End-User Interaction

 Section 13.5. Deployment Architecture

 Section 13.6. OracleAS Portal Security

 Chapter 14. Oracle Application Server Wireless

 Section 14.1. OracleAS Wireless Foundation Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 14.1. OracleAS Wireless Foundation Services

 Section 14.2. OracleAS Wireless Development

 Section 14.3. OracleAS Wireless Deployment

 Section 14.4. OracleAS Wireless Administration

 Chapter 15. Integration Components

 Section 15.1. Oracle Application Server InterConnect

 Section 15.2. Oracle Application Server ProcessConnect

 Additional Resources

 Web Sites

 Books and Oracle Documentation

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Oracle Application Server 10g Essentials, the image of a praying mantis, and related trade dress are trademarks of
O'Reilly Media, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation,
Inc. in the United States and other countries. O'Reilly Media, Inc. is independent of Oracle Corporation. Java™ and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Dedication

For my family, LuAnn, Elinor, Josephine, and Robin, who have granted me a life more wonderful than I
could have imagined.

—Rick Greenwald

To Jodie, my love, in our 25th year of marriage, and to my boys Nick and Mike, who are passing
through their teenage years almost "like everyone else" their age.

—Robert Stackowiak

For my wife Diane and daughter Kristyn, who sacrifice their time and my presence so that I may write.

—Donald Bales

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
For more than 15 years, Oracle® Corporation has been one of the world's leading technology companies. Much of the
company's reputation is built on its enterprise database product—the leading database for online transaction processing
and enterprise applications for more than a decade. In recent years, however, Oracle has enhanced its product
offerings to encompass a complete technology stack, including the E-Business Suite (providing applications), the
Collaboration Suite (providing communication throughout an organization), and Oracle Application Server, which is the
focus of this book.

Oracle Application Server is a middle-tier application platform suite offering a variety of capabilities. Although Oracle
Application Server has grown in popularity and functionality in recent years, there has been a dearth of third-party
books about the product. Our goal is to remedy this situation.

In this book, we use the term Oracle Application Server to refer mainly to Oracle
Application Server 10g, the latest release of Oracle's product. Where necessary, we also
describe features in the previous product releases, particularly in Oracle9i Application
Server. Many features are identical across versions. Note, however, that because some
readers may be using older releases, when we describe a new feature that was first made
available in a particular release, we indicate that fact to help avoid confusion.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About This Book
Five years ago, two of us were the principal coauthors of Oracle Essentials, a new kind of book that attempted to
describe all the underlying principles that shape the Oracle database, one written concisely for an intelligent audience.
Oracle Essentials was not a large book—there were fewer than 350 pages in that first edition (we have since written
two more editions)—but it covered a lot of ground. It did not attempt to describe detailed syntax; instead, it focused on
broad architectural concepts and important features.

The more we thought about it, the more we realized that Oracle Application Server was, in some ways, even more in
need of this type of treatment. Oracle Application Server contains many different types of functionality, from its basic
web server features to its support of business intelligence. Many people who consider using the product are familiar
with only a portion of the entire range of capabilities or are overwhelmed by the choices provided. Few people have a
grasp of how larger issues, such as the interplay between components or the various architectural choices for deploying
Oracle Application Server.

Hence this book. The goals of Oracle Application Server 10g Essentials, summarized in the next section, are similar to
the goals we tried to achieve in our earlier book that many people have found very helpful. We hope we have met our
objectives for this book as well.

Goals of This Book

Our main goal is to give you a foundation for understanding and using Oracle Application Server effectively and
efficiently. Therefore, we wrote with these principles in mind:

Focus

We've tried to concentrate on the most important Oracle Application Server issues and components. Each
chapter aims to provide a comprehensive but concise discussion of how Oracle handles an area and the
repercussions of that treatment.

Brevity

One of the first decisions we made was to concentrate on principles rather than syntax and to keep the book
short and well-focused on underlying concepts. Including myriad syntax diagrams and examples would defeat
this purpose. Moreover, such material is readily available in the product documentation.

Acceleration

We've tried to make this an ideal first Oracle Application Server book for a wide spectrum of Oracle users—but
not the last! You will very likely have to refer to Oracle documentation or other, more specific books for more
details about using Oracle Application Server and its components. However, we hope this book will act as an
accelerator for you. With this book's solid foundation, you will be able to take detailed information from other
sources and put it to the best use.

Among us, the authors have more than 40 years of experience with Oracle. We've tried to apply that experience here
as best we can.

Audience for This Book

We wrote this book for people at all levels of Oracle expertise, as well as for those with varying degrees of familiarity
with the different areas of capabilities within Oracle Application Server. There are many types of readers:

Those concerned with using and managing web servers

Those who do Java© development and deployment

Those who use Oracle's own tools, such as Oracle Forms and Oracle Reports

Those who use and develop for Oracle Application Server Portal

Those who use and administer business intelligence, mobile, or integration software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Those who use and administer business intelligence, mobile, or integration software

And these are only a few of the "typical" Oracle Application Server users.

Chances are that some of the items in this brief list apply to you, and some don't. However, because Oracle Application
Server comes with all this functionality, we believe you can use the product more effectively if you have background
that helps you understand the varied capabilities of Oracle Application Server.

Our guiding principle has been to present this information compactly without making it overly tutorial. We figure that
the most important ratio in a book such as this is the amount of useful information you get balanced against the time it
takes you to get it. We sincerely hope this volume provides a terrific bang for the buck.

Structure of This Book

This book is divided into 15 chapters and 1 appendix, as follows.

Chapter 1, describes the range of Oracle Application Server capabilities and some of the options for purchase and
installation.

Chapter 2, describe the basic architecture of Oracle Application Server and optional deployment architectures used to
provide scalability and availability. This chapter provides the core technical information needed to effectively use the
product.

Chapter 3, provides a brief overview of the processes and tools used to manage the complete Oracle Application Server
environment.

Chapter 4, looks at how Oracle Application Server provides security and identity management services that can be used
for all the components that make up the Oracle Application Server environment.

Chapter 5, is the first chapter in a series of chapters examining specific components of Oracle Application Server. The
Oracle HTTP Server is the core of the Oracle Application Server environment.

Chapter 6, covers the OC4J container that runs Java applications. Oracle Application Server, in its most basic state, is
used as a Java deployment platform, and OC4J is the target of these deployments.

Chapter 7, looks at the three caches used in Oracle Application Server—the Oracle Application Server Web Cache, which
is used for all types of content, and the Java Object Cache and Web Object Cache, which are used with OC4J. Use of
these caches can significantly accelerate the performance of Oracle Application Server.

Chapter 8, covers Java development and deployment with Oracle Application Server.

Chapter 9, looks at three Oracle-specific development technologies—PL/SQL, Oracle Application Server Forms Service,
and Oracle Application Server Reports Services—and describes how they are used and deployed with Oracle Application
Server.

Chapter 10, describes the use of Oracle Application Server with XML.

Chapter 11, explores the use of the Web Services technology with Oracle Application Server and its component
development options.

Chapter 12, looks at the issues facing business intelligence users and the ways in which Oracle Application Server
Portal, Oracle Reports, and Discoverer address these issues. The chapter also touches on data mining and management
of the business intelligence components in Oracle Application Server.

Chapter 13, covers the OracleAS Portal product and its range of capabilities.

Chapter 14, describes the use of Oracle Application Server as a platform for mobile computing.

Chapter 15, describes the integration software that is included with some editions of Oracle Application Server.

The Appendix, lists a variety of additional resources—both online and offline—you can use to learn more about the
topics presented in this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Oracle Application Server Software
The way to get the most out of this book is to actually try out the Oracle Application Server software itself. Oracle
Corporation invites you to download the product for free from the Oracle Technology Network (OTN). You can find out
how to do that by going to:

http://www.oracle.com/appserver/books/

There you will find documentation, instructions for obtaining the software, and a wealth of information about all aspects
of the product.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Used for file and directory names, example URLs, emphasis, and new terms where they are defined.

Constant width

Used for code examples and literals.

Constant width italic

In code examples, indicates an element (e.g., a parameter) that you supply.

UPPERCASE

Generally indicates Oracle keywords.

lowercase

In code examples, generally indicates user-defined items such as variables.

This icon indicates a tip, suggestion, or general note. For example, we'll tell you if you
need to use a particular version of Oracle or if an operation requires certain privileges.

This icon indicates a warning or caution. For example, we'll tell you if Oracle doesn't
behave as you'd expect or if a particular operation negatively impacts performance.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata and any additional information. You can access this page at:

http://www.oreilly.com/catalog/appserver/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly Network, see the O'Reilly
web site at:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Each author has arrived at this collaboration through a different path, but we would all like to thank the many people
who made this book both possible and a joy to write.

First of all, we're all grateful to each other. Bob and Rick worked together on Oracle Essentials, but Don was new to the
mix. What was quite amazing about this process was how well we meshed. Although this particular birthing process
included occasional pain and frustration, we sincerely believe the result is far better because all three of us were
involved in the gestation. Many times, as one of us wrote a chapter, we would pause to consider a detailed point and
then simply pose a question and move on, confident that one of our coauthors would be sure to fill in the blank, egg us
on to rewrite, or deliver constructive criticism.

This book would not have been possible without the invaluable assistance of many, many people at Oracle Corporation.
This book was the brainchild of Thomas Kurian and Lisa Goldstein, and we would like to give a special thank you to Lisa
for her stewardship of this book, from inception to completion—the second most important birthing activity of her
recent life. Many thanks to Sheila Cepero as well for her help in getting this book from the drawing board to production.

Pete Farkas provided invaluable tips on Oracle Application Server and did a tremendous job of managing the intricate
review process at Oracle (as well as reviewing a number of chapters himself).

Many people helped out with that review process and although we have tried our best to mention everyone here, we
may simply be unaware of certain contributions. If we have missed anyone, please let us know so that we can thank
you in a subsequent printing of this book. Many thanks to our reviewers: Janga Aliminati, Christine Chan, Jim Clark, Rob
Clark, Brian Conneen, Lee Cooper, John Deeb, Lars Ewe, Pete Farkas, Mikael Fransson, Gordon Jackson, Ragu Kodali,
John Lang, Bruce Lowenthal, Debu Panda, Blaise Ribet, Ekkehard Rohwedder, Donald Smith, Deepak Thomas, Philipp
Weckerle, and Rin Zimmerman. These reviewers did a great job of checking our text, suggesting changes, and finding
errors. However, any remaining errors are exclusively our own responsibility.

And thanks as always to the terrific O'Reilly team—our editor, Debby Russell, our production editor, Mary Anne Weeks
Mayo, and everyone else who had a hand in this book.

From Rick

Many thanks to Christine Chan who provided a great deal of help in clarifying technical points. Many current and former
Oracle employees offered me assistance at various crucial points in the writing and editing process, including Ashesh
Parekh, Todd Vender, and Nick Kritikos. A special thanks to Raz Alivarius for his contribution to Chapter 13 and to
Judson Althoff for getting the ball rolling.

From Robert

Thanks to:

The pilots at American Airlines and United Airlines. By avoiding turbulence, I was able to complete much of my
portion of the book on dozens of flights while accumulating frequent flyer miles at the same time.

Doughnut-shop owners in northern Illinois. Without these pastries, the book may have never gotten off the
ground. Fortunately(?), we were powered by sugar when we created the outline.

My management for their continuing support. I'd especially like to thank Susan Cook and Mark Salser. In
addition, the guys in Oracle's Enterprise Technology Center, especially Jim Olsen and Geoff Grandstaff, were
helpful in providing Grid Control access to a pool of Oracle Application Servers. I'd also like to thank the Oracle
Technology Business Unit Application Server specialists and, in the area of business intelligence, Louis Nagode.

Oracle product managers and developers. They continue to produce excellent documentation that was used in
providing the basis for much of what was assembled in this book.

Oracle's customers. As always, Oracle's customers have a practical understanding of Oracle Application Server
and its components.

From Donald

I would like to thank Kathy Bishop from Corporate Communications at Red Hat for supplying me with a copy of Red Hat
Enterprise on which to run Oracle Application Server 10g.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introducing Oracle Application Server
Over the past decade or so, IT environments—particularly those supporting large amounts of data—have been moving
toward a different kind of overall architecture. In the past, most IT systems were deployed over two primary tiers: a
client, which ran the applications, and a server, which hosted the database and some other types of generalized logic
and services.

For a number of reasons—including scalability, availability, and security—a new tier has been introduced between the
client and the server. This middle tier hosts a variety of services that function as intermediaries between the client
machines (which act as user interfaces) and the data they use. These services include virtual machines that run
application logic, specialized server processes that deliver specific functionality (e.g., reporting or integrating
information into portals), and infrastructure services (e.g., handling web communications or caching information for
improved performance).

Oracle Application Server consists of a set of components that deliver all this functionality, and more. For example,
Oracle Application Server can:

Respond to HTTP requests

Run application code

Provide a security infrastructure

Supply some specific capabilities, such as business intelligence tools, mobile tools and applications, and a
messaging system

Offer improved performance and response time

Provide the high availability and scalability needed in an enterprise environment

This book is designed to give you a broad overview of the components that make up Oracle Application Server and how
they operate. The goal of the book is to provide you with a clear understanding of the concepts and capabilities of
Oracle Application Server, particularly those available in the latest release of the product, Oracle Application Server
10g. This latest release provides a wide range of functionality, and this book tries to explain what that functionality is,
rather than how to implement specific examples. This book isn't merely a description of components, however: it
attempts to give you a thorough grounding in the concepts and technology that make up Oracle Application Server 10g.
With this framework, you will be able to understand the full range of the product and more rapidly assimilate the details
of the product's implementation.

This first chapter sets the stage for the rest of the book. It provides an introduction to a range of topics, most of which
are described in greater detail later in the book. A few of the basics, however—for example, a brief history of the
evolution of "application servers" and Oracle's packaging—are described only in this chapter, so we encourage you to
read it carefully, even if you already have some familiarity with Oracle Application Server.

Before diving into the specific foundations of the product, we'll take a step back to provide some context. We'll discuss
why application servers were created and how they evolved, and then we'll move on to introduce the basic features and
configurations of Oracle Application Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Evolution of the Application Server
The concept of an application server has evolved over the past decade or so, combining several different strands of
functionality that we'll explore in this section.

1.1.1 Early Beginnings

Long before Java or application servers existed, there was already a need to service transactions between distributed
systems. The transaction monitor was originally created to provide a two-phase commit, assuring that transactions
were made real only when committed on two different platforms. Examples of early transaction monitors that gained
popularity include CICS (from IBM) and Tuxedo (originally developed by AT&T and later acquired by BEA). Tuxedo first
appeared in 1983 and evolved from simply guaranteeing reliable transactions to also providing a middle tier for
offloading the workload from transaction-processing databases. Use of the middle tier enabled the database to support
many more transaction-processing users at higher performance levels.

By the mid-1980s, the transaction monitor was sometimes referred to as a middleware solution and soon came to be
known as an application server. Heterogeneous computer and transaction-processing database support, via the
X/Open's XA interface, first appeared in 1989. Other functionality soon was added to the middle-tier solutions, including
fault tolerance, load balancing, and more security deployment models.

In 1991, Sun Microsystems began developing a new programming tool in anticipation of a coming convergence of
computers and digital consumer devices. With few takers for the technology in the early 1990s, Sun's focus turned
toward building and enabling applications for the newly popular Internet and to partnerships with companies such as
Netscape. Possibly the most important outcome of this research was the emergence of the Java programming language
in 1995.

By its nature, the Internet is enabled through a three-tier architecture consisting of the following components, which
are shown in Figure 1-1:

A thin client (browser) on the front end

An application server in the middle tier

A database/server on the back end

Figure 1-1. Typical three-tier configuration with Oracle Application Server

Thus, the Internet computing model created another market for middleware at the same time that Java gained
popularity for Internet programming. The natural evolution of application servers toward serving and supporting Java-
based applications began. Several providers of early transaction monitors merged their middleware offerings into new
application server packaging.

Another result of the growth of applications deployment over the Internet via a middle tier was widespread adoption of
standardized protocols that allowed these applications to communicate with each other. These protocols now include:

XML

eXtensible Markup Language

SOAP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SOAP

Simple Object Access Protocol[1] (for messages based on XML)

[1] Although this is the original expansion of the acronym, the current SOAP acronym isn't associated with
this name; see Chapter 11 for details.

WSDL

Web Services Description Language

UDDI

Universal Description, Discovery, and Integration

The last three protocols are used in the deployment of Web Services, which are getting increasing attention because
they provide a way to combine different functionality from separate application modules to other applications.

1.1.2 Oracle and Application Servers

Oracle Corporation was born in the late 1970s as a company named RSI. Early relational database technology was
provided to government agencies through custom consulting, and was then made commercially available as a product
in 1979. In 1983, RSI was renamed Oracle Corporation for consistency with the database product name. At this time,
the developers made a critical decision to create a portable version of Oracle (Version 3) that ran not only on DEC
VAX/VMS systems (the initial platform for the product), but also on Unix and other platforms.

Early Oracle database implementations were commonly deployed on minicomputers, and many customers began to
explore using distributed databases utilizing several of these relatively inexpensive platforms. At about the same time
that the first application servers appeared to manage these configurations for transactions, Oracle began building
distributed features in the database for handling distributed queries and two-phase transactional commits. Although
Oracle was building such capabilities in the database, popular transaction-processing monitor support was added
through interfaces such as XA to enable greater scalability and ensure the portability of such applications to the Oracle
database.

Oracle8i, the "Internet database," added native transaction coordination with the Microsoft Transaction Server (MTS) for
Windows platforms. To handle the growing number of connections needed, Oracle also added a Connection Manager
feature to the database packaging.

Oracle middleware didn't appear in an application server product as such until 1997-98. Oracle Application Server 4.0
was Oracle's first complete attempt to create a Java-based middle tier in response to the growing Internet deployment
model.

In 2000, Oracle redesigned its middle-tier product to enable the following:

Application services

Communications services

Connectivity services

Integration and commerce services

Management services

System services

Components provided in these services and with some specific solutions included industry-standard Web Services,
transaction and message handling, Portal technology (including portlets and content management), clustering support,
integration components, security and directory support, business intelligence solutions, and wireless support. This
redesigned product was known as Oracle9i Application Server or Oracle9iAS and is the basis of the application server
described in this book. The "i" was included in the product name, as it was in the Oracle8i and Oracle9i databases, to
indicate Oracle's focus on the Internet computing model.

The current version of Oracle's application server product is Oracle Application Server 10g, where "g" stands for "grid,"
indicating Oracle's view that grid computing will be an increasingly popular model for database deployment. Grid
computing leverages a large number of systems, also known as nodes, on an as-needed basis. Key components in grid
computing include the following:

Nodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nodes

 Network attached storage (NAS) or storage area network (SAN) disk devices

A database deployable across the nodes (Oracle Database 10g with Real Application Clusters)

A middle-tier infrastructure for access and load balancing (Oracle Application Server 10g)

Table 1-1 provides a timeline for some key Oracle technology introductions that led to and include the Oracle
Application Server family.

Table 1-1. History of Oracle technology introductions
Year Feature

1979 Oracle Release 2: the first commercially available relational database to use SQL.

1983 Single code base for Oracle across multiple platforms.

1984 Portable toolset.

1986 Client/server and distributed Oracle relational database.

1987 CASE and 4GL toolset.

1993 Oracle7 with cost-based optimizer.

1997 Oracle8 generally available; Oracle previews Oracle Application Server 4.0.

1998 Oracle Application Server 4.0 generally available; Java-based middle tier.

1999 Oracle8i generally available; Java Virtual Machine in the database.

2001 Oracle9i Application Server generally available; Oracle integration in middle tier includes Portal technology;
OracleAS Web Cache in Oracle9iAS announced.

2001 Oracle9i generally available.

2003 Oracle Database10g enables grid computing and simplifies and automates key management tasks; Oracle
Application Server 10g generally available.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 The Oracle Application Server Family
Oracle Application Server 10g is the name of the most recent major version of the Oracle Application Server family of
products. These products all share common source code. The family includes the following packages:

Oracle Application Server Java Edition

A version targeted for Java developers.

Oracle Application Server Standard Edition

A version targeted for deployment requiring less middle-tier functionality.

Oracle Application Server Enterprise Edition

A version targeted for more complex deployment. This version offers additional functionality, including business
intelligence and integration components and the OracleAS Personalization and OracleAS Wireless features.

At the time of this writing, these were the only packages available for Oracle Application
Server. If additional packages or bundles are offered, we'll provide updates on the web
page for this book (see the Preface).

Oracle focuses development around a single source-code model for all its products, including Oracle Application Server.
The Oracle Application Server releases are available today on Windows, RedHat and SuSE Linux, and on Unix platforms
such as HP Compaq Tru64, HP/UX, IBM AIX, and Sun Solaris. Because features are consistent across platforms for
implementations of Oracle Application Server, companies can migrate easily to various hardware vendors and operating
systems while leveraging their investments in Oracle technology. This development strategy also enables Oracle to
focus on implementing new features only once in its product set, instead of having to add functionality at different times
to different implementations.

Oracle Application Server 10g includes a web listener based on the popular Apache Web Server distribution. It also
includes support for Java 2 Enterprise Edition (J2EE) containers and a JavaServer Pages (JSP) translator, as well as
business logic and data access technologies. Business logic may be enabled through JavaBeans© and Enterprise
JavaBeans (EJBs). Data access technologies may include Java DataBase Connectivity (JDBC), SQLJ, EJBs, and J2EE
resource adapters. Finally, Oracle Application Server also provides the infrastructure needed for developing, deploying,
and managing Web Services.

Every Oracle Application Server edition also includes Oracle Enterprise Manager 10g Application Server Control, a tool
used for configuring and managing each server. Another tool, Oracle Enterprise Manager 10g Grid Control, is used to
manage multiple Oracle Application Servers and can provide a single point of access to each Application Server Control
installed with multiple servers. The Grid Control software is installed from a separate Grid Control CD.

The following sections briefly describe each Oracle Application Server edition. At this point, we won't attempt to explain
the features mentioned here. You will find more detailed information in Section 1.3.

1.2.1 Oracle Application Server Java Edition

Oracle Application Server Java Edition is a specific Oracle Application Server package created by Oracle for developers
of Java-based software who aren't interested in the deployment features available in other Oracle Application Server
editions. The Java Edition bundle includes the following:

Oracle HTTP Server

 Oracle Application Server Containers for J2EE (OC4J)

Oracle Business Components for Java (BC4J)

Oracle Application Server TopLink

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Application Server TopLink

Oracle JDeveloper named user licensing

This edition is the least expensive version of Oracle Application Server.

1.2.2 Oracle Application Server Standard Edition

In terms of functionality and pricing, Oracle Application Server Standard Edition is packaged to compete in the entry-
level category for application servers. The Standard Edition adds the following components to features previously noted
for the Java Edition:

Oracle Application Server Portal

Oracle Application Server Single Sign-On security

Oracle Application Server Content Management Software Development Kit (SDK)

A restricted-use Oracle Internet Directory is provided in the Standard Edition to enable OracleAS Single Sign-On.

1.2.3 Oracle Application Server Enterprise Edition

Oracle Application Server Enterprise Edition is aimed at larger-scale implementations that require additional features.
Enterprise Edition adds the following features to those available in the Java Edition and the Standard Edition:

OracleAS Forms Services and OracleAS Reports Services

OracleAS Discoverer

Oracle Internet Directory

Oracle Workflow

Oracle Application Server InterConnect and Oracle Application Server ProcessConnect

OracleAS Personalization

OracleAS Wireless

Before Oracle Application Server 10g, OracleAS Personalization and OracleAS Wireless, described next, were available
only as options.

OracleAS Personalization

This feature provides a means by which a web server can gather data on how a web-site visitor traverses the
site. This data is sent to an Oracle database where a taxonomy describing the business and business goals is
defined. Analysis of this data occurs periodically using data mining algorithms in the database, and
recommendations are created. These recommendations are populated in middle-tier "recommendation engines"
that can redirect web-site users to "personalized" web pages of material that are likely to interest them.

OracleAS Wireless

This feature provides an integrated set of capabilities enabling multichannel mobile access, including voice, to
applications. At the core of OracleAS Wireless is support of HTTP and XML. OracleAS Wireless enables the
building of portlets that can be displayed on wireless devices. It also provides mobile services such as personal
information management (PIM) and email, and location-based and two-way messaging services.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Oracle Application Server Components
Up to this point, we've introduced a lot of features available in different versions of Oracle Application Server without
providing much explanation of what they do. The following subsections group the main components of Oracle
Application Server into three basic categories—core components, application components, and additional components—
and describe briefly what these components do.

Remember that this chapter includes only summary descriptions of the components that
make up Oracle Application Server. Subsequent chapters will describe these components in
greater detail.

1.3.1 Core Components

The components that make up the core of Oracle Application Server are the Oracle HTTP Server, Oracle Application
Server Containers for J2EE, and OracleAS Web Cache.

1.3.1.1 Oracle HTTP Server

The Oracle HTTP Server, which is based on the Apache Web Server, provides the services needed to handle incoming
HTTP requests and can serve as a proxy server. Developers can program in languages such as Perl, C, C++, PL/SQL,
and Java, and can leverage libraries and frameworks such as BC4J, the XML Developer's Kit, Java Naming and Directory
Interface (JNDI), and JDBC. The Oracle HTTP Server supports Server Side Includes for adding content (such as header
or footer information) across all of a web site's pages. Servers can be clustered in high-availability configurations, and
Oracle HTTP Server also supports load balancing, which can couple high availability with scalability. Security support
includes OracleAS Single Sign-On and encryption with the Secure Sockets Layer (SSL).

Chapter 5 describes the Oracle HTTP Server in greater detail.

1.3.1.2 Oracle Application Server Containers for J2EE

Oracle Application Server Containers for J2EE (OC4J) is a set of J2EE-certified containers executed using any standard
Java Virtual Machine (JVM). OC4J provides a JSP translator, a servlet engine, and an EJB container. It also provides
other J2EE services to the containers, such as JNDI, JDBC, Java Message Service (JMS), Java Authentication and
Authorization Service (JAAS), and Java Transaction API (JTA). OC4J supports clustering, load balancing, and application
state replication for web and EJB applications, thus enabling highly available and scalable configurations. OC4J can use
Java Object Cache in the OC4J containers.

Chapter 6 describes OC4J in greater detail.

1.3.1.3 OracleAS Web Cache

OracleAS Web Cache is a memory cache that speeds the delivery of content to requesters. OracleAS Web Cache can
store both static and dynamic pages, as well as parts of pages that are marked with Edge Side Include (ESI) tags. This
cache also provides other types of functionality, such as balancing request loads between multiple instances of the
Oracle HTTP Server and monitoring the speed at which content is returned to users.

Chapter 7 describes OracleAS Web Cache, as well as the other Oracle Application Server caches (Java Object Cache and
Web Object Cache), in greater detail.

1.3.2 Application Components

The components of Oracle Application Server described in the following subsections provide capabilities that can create
and deploy applications.

1.3.2.1 Web Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3.2.1 Web Services

Web Services are extensively supported in Oracle Application Server. The product includes support for the following:

Java classes (either stateful or stateless) as remote procedure call (RPC) or document-style Web Services

Stateless EJBs as Web Services

 PL/SQL stored procedures as Web Services

JMS topics and queues as document-style Web Services

Clients can invoke these either dynamically or statically.

Other standards supported include publishing and query with UDDI and typed and untyped SOAP messages with SOAP
header access via an application programming interface (API). A dynamic WSDL tester allows you to create web-based
clients and simplify the testing of Web Services during development.

Chapter 11 describes Oracle Application Server Web Services in greater detail.

1.3.2.2 Oracle Application Server TopLink

OracleAS TopLink is an object-relational persistence tool used to store Java objects and EJBs in relational database
tables. The visual mapping interface allows developers to define how Java classes are mapped to database schema.
Thus, a Java developer using OracleAS TopLink doesn't need to write SQL calls. Using the visual mapping tool, the
developer can usually handle database schema changes without needing to recode the Java applications. The mapping
tool provides graphical views of relationships, queries, locking, caching, sequencing, and other areas of interest that
enable performance tuning.

Chapter 8 describes OracleAS TopLink in greater detail.

1.3.2.3 Oracle JDeveloper

Oracle JDeveloper is a part of Oracle Developer Suite, rather than of Oracle Application Server itself, but it can create
the Java applications that are deployed on an Oracle Application Server platform. Oracle JDeveloper was introduced by
Oracle in 1998 to enable the development of basic Java applications without the need to write large amounts of code. At
the core of Oracle JDeveloper is an advanced application development framework. Oracle JDeveloper provides
numerous wizards that create Java and J2EE objects and project types. Some wizards in Oracle JDeveloper include:

A Data Form wizard

A Beans wizard for creating Java Beans and BeanInfo classes

A Deployment wizard providing "one-click" deployment of J2EE applications to OC4J

Database development features include various Oracle drivers, a Connection Editor to hide the complexity of using the
JDBC API to establish connections, database components to bind visual controls, and a SQLJ precompiler for embedding
SQL in Java code (which you can then use with the Oracle database).

Oracle Application Server comes with a limited-use license for Oracle JDeveloper. The development tool is packaged in
the Oracle Developer Suite.

Chapter 8 describes Oracle JDeveloper in greater detail.

1.3.2.4 OracleAS Forms Services

Oracle Application Server Forms Services provide data handling, navigation, database access, and database validation
for Oracle Forms applications. These services allow Oracle Forms to run in an N-tier web environment.

Forms deployed to Oracle Application Server are developed using the Oracle Forms Developer, an interactive
development tool that is part of the Oracle Developer Suite. Oracle Developer allows you to define applications by
defining values for properties, rather than by writing procedural code. Oracle Developer supports a variety of clients,
including traditional client-server PCs and Java-based clients. The Forms Builder includes a built-in JVM for previewing
web applications.

Chapter 9 describes Oracle Application Server Forms Services in greater detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3.2.5 OracleAS Reports Services

Oracle Application Server Reports Services enable the rapid deployment and publishing of web-based reports. Reports
can also leverage the Oracle Application Server Single Sign-On capabilities and can be embedded as portlets in
OracleAS Portal.

Reports are created using the Oracle Reports Developer, a part of the Oracle Developer Suite. Data can be formatted in
tables, matrixes, group reports, graphs, and combinations. You can achieve high-quality presentation using Cascading
Style Sheets (CSS), an HTML extension. Using OracleAS Reports Services, XML-based reports can be exchanged via
HTTP, and paper-based layouts can be deployed over the Internet using PDF format.

Chapter 9 describes Oracle Application Server Reports Services in greater detail, and Chapter 12 describes Reports
deployed for business intelligence.

1.3.3 Additional Components

The components described in the following subsections provide extended functionality that is an important part of
Oracle Application Server. These components relate to specific areas of IT, such as business intelligence and
integration, or provide capabilities that can be used by developers, such as OracleAS Portal or the Oracle Internet
Directory.

1.3.3.1 OracleAS Portal

OracleAS Portal, packaged with Oracle Application Server, provides an HTML-based tool for developing web-enabled
application interfaces and content-driven web sites. Portal applications can be developed using wizards in a WYSIWYG
portal development environment. Using this environment, you can create and deploy static and dynamic portal content.
Users can be granted access to the environment to create their own customization. For example, you can grant an
OracleAS Portal user permission to choose which content areas and links appear in his portal pages.

Java or PL/SQL developers may wish to leverage the functionality of OracleAS Portal without having to use the Portal
Development environment. For such power developers, Oracle also provides a Java and PL/SQL Portal Development Kit
for custom portlet development or application integration.

Portals are deployed as an integrated service in Oracle Application Server and can use directory services, the OracleAS
Web Cache, J2EE services, and business intelligence services provided by OracleAS Reports Services and OracleAS
Discoverer.

The support of portlets enables a single web page to be divided into different areas that
can independently display information and interact with the user.

Chapter 13 describes OracleAS Portal in greater detail.

1.3.3.2 OracleAS Discoverer

OracleAS Discoverer is a business intelligence tool used for ad hoc queries and user-generated reports. OracleAS
Discoverer also provides an interface to relational online analytical processing (ROLAP) by leveraging analytic features
present in the Oracle database and as of 2004, also provides an interface to the Oracle OLAP Option. Included in Oracle
Application Server are:

Discoverer Plus

A Java-based browser client that can be used to generate ad hoc queries, reports, and graphs

Discoverer Viewer

An HTML-based browser client that can execute reports or graphs created in Discoverer Plus or the Desktop
version of Discoverer

Discoverer Portlet Provider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A package used for lists of workbooks and worksheets

OracleAS Discoverer can leverage the Oracle Application Server Single Sign-On capabilities and can also export
workbooks to Oracle Reports Developer for deployment in OracleAS Reports Services.

OracleAS Discoverer has an End User Layer (EUL) that is metadata-driven, enabling business definitions to hide and
map to underlying technical descriptions. The EUL is set up and maintained via Oracle Discoverer Administration Edition,
a part of the Oracle Developer Suite. Wizards guide the administrator through the process of building the EUL. In
addition to managing the EUL, administrators can put limits on resources available to analysts monitored by the
OracleAS Discoverer query governor.

Chapter 12 describes OracleAS Discoverer in greater detail.

1.3.3.3 Oracle Internet Directory

The Oracle Internet Directory provides users a means of connecting to an Oracle server without requiring a client-side
configuration file. The Oracle Internet Directory is a Lightweight Directory Access Protocol (LDAP) directory that
supports the Single Sign-On capability of Oracle Application Server.

Chapter 2 and Chapter 4 describe the Oracle Internet Directory in greater detail.

1.3.3.4 Oracle Workflow

Oracle Workflow provides a graphical workflow builder that facilitates the modeling of business processes. A rules-based
engine and business event system is stored in an Oracle database. Messages can be transmitted via Advanced Queuing
(AQ), Oracle Net, HTTP, or HTTP using SSL (HTTPS). Oracle Workflow provides key capabilities needed to deploy Oracle
Application Server InterConnect, described in the next section.

Chapter 15 describes Oracle Workflow in greater detail.

1.3.3.5 Oracle Application Server InterConnect

Oracle Application Server InterConnect provides a heterogeneous application integration platform through logic and
services. Deployed in a "hub-and-spoke" manner, Oracle Application Server leverages Oracle Workflow and Oracle AQ
to provide a message broker infrastructure. AQ enables asynchronous messages between Oracle databases with
adapters available to extend support to other message types and applications. Content-based publish-and-subscribe
solutions can be deployed using a rules engine to determine relevant subscribing applications. As new content is
published to a subscriber list, the rules on the list determine which subscribers should receive the content, thus
efficiently serving the needs of different subscriber communities.

OracleAS InterConnect includes a design-time Integrated Development Environment (IDE), adapters, a metadata
repository, a management infrastructure (used with Oracle Enterprise Manager), and SDKs (for writing custom
adapters, transformations, and IDE extensions). Adapters are available for HTTP, HTTPS, AQ, Oracle database, FTP,
MQSeries, CICS, SAP, PeopleSoft, Siebel, JDEdwards, and CICS.

Chapter 15 describes OracleAS InterConnect in greater detail.

1.3.3.6 Oracle Application Server ProcessConnect

Oracle Application Server ProcessConnect is new to Oracle Application Server 10g. Using wizards to create a hub-and-
spoke deployment model, it's designed to make business process integration feasible. OracleAS ProcessConnect
includes a modeling tool, a metadata repository, and adapters. These adapters are based on the JCA specification and
enable connections to technology (such as Web Services), packaged applications (e.g., JD Edwards, PeopleSoft, SAP,
and Siebel), and legacy systems.

Chapter 15 describes OracleAS ProcessConnect in greater detail.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Managing Oracle Application Servers
Oracle Application Server includes many features designed to ease the burden of management. One of the focuses of
Oracle Application Server 10g is to automate many of the management tasks needed for large-scale grid computing
deployment. Management capabilities provided in Oracle Application Server include the following:

Software provisioning (installation, configuration, cloning, patching, upgrades)

User provisioning (including security and identity management)

Application management and monitoring

Workload management (including dynamic resource allocation and failover notification)

Systems management and monitoring

Chapter 3 describes each management topic in greater detail.

1.4.1 Oracle Enterprise Manager

Oracle Enterprise Manager, a management tool and framework, is a part of every version of Oracle Application Server
and the Oracle database. This product has evolved from a Windows-based database management solution and a
browser-based tool built on Java to the current HTML-based version. The Oracle Application Server 10g Grid Control
web-based tool can manage multiple Oracle Application Servers and databases and provide access to each Application
Server Control tool (installed with each Oracle Application Server). Oracle Enterprise Manager 10g can manage other
Oracle software as well, including Oracle Collaboration Suite and E-Business Suite.

At the time of this writing, most of the functionality in previous non-HTML versions of
Oracle Enterprise Manager now appears in the HTML version.

Multiple database and infrastructure administrators can access the Oracle Enterprise Manager repository at the same
time to manage multiple Oracle products.

The HTML-based Oracle Enterprise Manager console was first released with Oracle9iAS; that version provided important
new application performance management and configuration management features. The HTML version supported in that
release supplemented the earlier Java-based Oracle Enterprise Manager. Oracle Enterprise Manager 10g, released with
Oracle Database 10g, includes both Java and HTML versions.

The HTML-based version of Oracle Enterprise Manager is used specifically to manage Oracle Application Server. Oracle
Enterprise Manager can be deployed in several ways:

As a central console, monitoring multiple databases and application servers' leveraging agents (e.g., Grid
Control)

As a database "product console" (easily installed with each individual database)

Through remote access (also known as studio mode)

In this book, we'll focus on the HTML-based console that manages Oracle Application Server. The HTML-based console
includes advanced management capabilities for rapid installation, deployment across grids of computers, application
service level monitoring and management, provisioning, upgrades, and automated patching. For example, application
deployment of OC4J is managed via the Oracle Enterprise Manager HTML version.

Chapter 3 describes Oracle Enterprise Manager in greater detail.

1.4.2 EM2Go

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EM2Go is a mobile version of Oracle Enterprise Manager that provides a subset of the functionality available in Oracle
Enterprise Manager 10g. EM2Go is accessed through a Pocket PC browser on a PDA device. EM2Go monitors the
availability and performance of the various application servers managed by Oracle Application Server.

Chapter 3 describes EM2Go in greater detail.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 What's Next?
Most readers of technical books skip around in the text, checking out the chapters that seem most likely to help them
solve their particular needs at a particular point in time. However, because Oracle Application Server is such a rich and
varied suite of software, we encourage you to read this book sequentially. We want to be sure that you familiarize
yourself with the varied capabilities available in the product and described in this book.

In the past, we've encountered a number of Oracle Application Server customers who set out to evaluate new
technologies, not realizing that the product they own already provided the very technology solution they were seeking.
Usually, such customers had simply focused on only one of Oracle Application Server's many capabilities; for example,
those familiar with Oracle Application Server's Java capabilities may be less aware of its business intelligence
capabilities.

With this introduction to Oracle Application Server capabilities and packaging behind us, we'll move on:

Chapter 2, Chapter 3, and Chapter 4 cover basic information on Oracle Application Server architecture, systems
management, and security and identity management.

Chapter 5, Chapter 6, and Chapter 7 provide detailed information on core Oracle Application Server
components: Oracle HTTP Server, OC4J, and OracleAS Web Cache.

The remaining chapters cover the building and deployment of functional solutions, including Java, XML, other
Oracle development tools, Web Services, business intelligence tools, OracleAS Portal, mobile (OracleAS
Wireless) solutions, and integration capabilities.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Architecture
If you understand the architecture of Oracle Application Server, you will have an excellent framework for understanding
how the product works. Learning how the various components of Oracle Application Server interact can help you avoid
many potential problems as you get the product up and running and provide a foundation that lets you quickly identify
the root cause of any problems you do encounter.

Your particular role may determine what you want to learn from this chapter:

Programmer

As a programmer, you may want to understand how Oracle Application Server handles each incoming request
so that you can properly troubleshoot problems.

Designer

As a designer, you will want to know what features are available so that you can provide the best user
interface.

Systems analyst or architect

As a systems analyst or architect, you may want to know what overall functions can be accomplished using the
product.

Manager

As a manager, you may need a high-level understanding of Oracle Application Server so that you can compare
it to similar middleware product offerings.

To best serve all these audiences, this chapter covers the big picture. We identify the major components of Oracle
Application Server and explain how they interact. We also examine the product's infrastructure and the management
and high-availability options available with it. Our goal here is to give you enough information on each individual
component (most of which were introduced very briefly in Chapter 1) so that you can understand how Oracle
Application Server works as a whole. You will see that some of Oracle Application Server's functionality is actually
implemented by J2EE, by PL/SQL, or by hybrid applications that are implemented using Oracle Application Server's core
components. Subsequent chapters provide more detailed discussions on each component introduced here.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Oracle Application Server Core Components
At its core, Oracle Application Server consists of three components:

Oracle HTTP Server

Oracle Application Server Containers for J2EE

OracleAS Web Cache

Each component, described briefly in the following subsections, plays a major role in Oracle Application Server
operations; they also provide some supporting functionality to their counterparts in various configurations.

2.1.1 Oracle HTTP Server

The Oracle HTTP Server is the web server for Oracle Application Server. It takes an incoming request in the form of a
URI. It then either sends the requested static content—for example, an HTML file—directly to the requestor, or reroutes
a request for dynamic content, effectively handing off the request, to an appropriate executable resource.

The Oracle HTTP Server can process a dynamic request using any of the following:

Common Gateway Interface (CGI) environment

For example, programs written in C, C++, Java, Perl, and other languages

FastCGI

An optimized CGI environment

mod_perl

A highly efficient Perl execution environment

mod_OC4J

A scalable J2EE environment

mod_plsql

A module that executes PL/SQL stored procedures in an Oracle database

Chapter 5 describes the Oracle HTTP Server in detail.

2.1.2 Oracle Application Server Containers for J2EE

OC4J is a set of J2EE containers and a JavaServer Pages translator that provides a J2EE-certified Java environment that
is scalable both horizontally and vertically. You can cluster OC4J instances across hosts; doing so eliminates both
hardware and software failure and provides almost unlimited capacity. You can run multiple JVMs in an OC4J instance to
leverage the capacity of hardware with multiple CPUs.

Chapter 6 describes OC4J in detail.

2.1.3 OracleAS Web Cache

OracleAS Web Cache is an optional component that can play several important roles:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Web Cache is an optional component that can play several important roles:

It can offload request processing from the Oracle HTTP Server and OC4J by efficiently caching both static and
dynamic content. OracleAS Web Cache is highly configurable and programmable, so what it caches can be
customized to fit any application's needs.

It can be used as a front end load balancer to the application server when Oracle Application Server is
clustered.

Because using OracleAS Web Cache so often makes sense in the Oracle Application Server
environment, the remainder of this chapter assumes its use.

Chapter 7 describes OracleAS Web Cache, as well as the other caches used by Oracle Application Server, in detail.

2.1.4 Core Component Interaction

Figure 2-1 shows the relationships among the three main components of Oracle Application Server.

As shown in the figure, the interactions among components work as follows:

1. OracleAS Web Cache receives an end-user request and determines whether the requested content is available
in its cache. If the content is available, it returns that content. Otherwise, it forwards the request to the Oracle
HTTP Server.

2. The Oracle HTTP Server immediately sends static content to the end user through OracleAS Web Cache. If the
request is for dynamic content, it forwards the request to the appropriate dynamic content provider.

3. If Java-generated content is requested, OC4J processes the request using a JSP or servlet, and then sends the
dynamically generated content to the Oracle HTTP Server. The Oracle HTTP Server then passes it on to
OracleAS Web Cache.

4. Finally, OracleAS Web Cache passes the content on to the end user.

Figure 2-1. Interactions among Oracle Application Server core components

As the figure illustrates, there are additional dynamic processing engines, such as FastCGI, mod_perl, and PL/SQL. The
architecture also includes a number of shadow processes, shown in gray, that support the use of Oracle Application
Server core components. These shadow processes include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Process Manager and Notification Server (OPMN)

Monitors the core components to ensure that they continue running

Distributed Configuration Management (DCM)

Marshals Oracle Application Server's configuration data between OPMN and the core components

Dynamic Monitoring Service (DMS)

Gathers performance statistics

See Section 2.2.3 for more detailed information on these processes.

The configuration data itself is kept in a repository, which is part of the Oracle Application Server infrastructure,
described in the next section.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Oracle Application Server Infrastructure
Shadow processes such as OPMN, DCM, and DMS, and configuration management tools such as Oracle Enterprise
Manager, depend on a repository of configuration data. This repository is part of what is known as the Oracle
Application Server Infrastructure. The OracleAS Infrastructure may consist of a simple file-based repository, or may be
as complex as a database repository with an LDAP server.

2.2.1 OracleAS Infrastructure Components

The OracleAS Infrastructure is divided into two parts:

OracleAS Metadata Repository

Holds Oracle Application Server configuration information and other component information in a collection of
schemas

Oracle Identity Management

Contains several subcomponents that work together to provide a seamless Single Sign-on facility

In addition, the Application Server Control tool and a group of shadow processes can be considered a part of the overall
OracleAS Infrastructure.

2.2.1.1 OracleAS Metadata Repository

The OracleAS Metadata Repository is either operating system file-based or an Oracle database. The Java Edition of
Oracle Application Server uses a file-based repository for DCM. The Portal/Wireless Edition and the BI/Forms Edition
always use an OracleAS Metadata Repository in an Oracle database.

If Oracle Application Server is clustered (a topic described later in this chapter) and a file-based repository is being
used, one of the clustered Oracle Application Server instances is designated as a central repository. This designation
isn't necessary if a database repository is being used.

The OracleAS Infrastructure installation normally clones a new Oracle database to use as a database repository. During
the installation process, it is possible to use an existing database instance for the OracleAS Metadata Repository,
instead of creating a new one. However, specifying an existing instance has an impact on the use of the OracleAS
Backup and Recovery Tool, described in Chapter 3.

2.2.1.2 Oracle Identity Management

Oracle Identity Management is a term used with Oracle Application Server 10g that encompasses all the components
used to support enterprise-style security in Oracle Application Server. All these components depend on the OracleAS
Metadata Repository:

Oracle Internet Directory

Provides an LDAP directory for security principals (login information)

Oracle Directory Provisioning Integration Service

Allows the LDAP directory to import and replicate data between homogeneous or heterogeneous types of LDAP
servers

Oracle Delegated Administration Services

Allows regional administrators and users to update directory information in the Oracle Internet Directory

OracleAS Single Sign-On

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Single Sign-On

Supports the Single Sign-on capability for all Oracle Application Server applications

OracleAS Certificate Authority

Provides an infrastructure for creating and maintaining SSL certificates

Chapter 4 describes Oracle Application Server security in greater detail.

2.2.2 Application Server Control

The web-based Oracle Enterprise Manager 10g tool used to monitor and control Oracle Application Server is known as
Application Server Control. Application Server Control is actually an Oracle Application Server application that is
installed with the OracleAS Infrastructure and with each individual application server home. The tool has a graphical
user interface and is used to manage individual instances of Oracle Application Server. Other portions of the overall
Oracle Enterprise Manager 10g product handle management of the database and a grid of computing resources.

Oracle Enterprise Manager stores component configuration data in the Metadata Repository. Doing so simplifies the
management for multiple Oracle Application Server instances when Oracle Application Server clusters are being used.

Chapter 3 describes Oracle Enterprise Manager 10g, Application Server Control, and Grid Control, as well as other
Oracle Application Server management tools, in more detail.

2.2.3 Shadow Processes

Oracle Application Server has many different components, and some deployment architectures may have more than
one instance of any one of these components. To keep the burden of monitoring, managing, and coordinating the
interaction between these components from being too overwhelming, Oracle Application Server includes three shadow
processes, shown earlier in Figure 2-1:

Oracle Process Manager and Notification Server

Distributed Configuration Management

Dynamic Monitoring Service

These shadow processes also use the OracleAS Metadata Repository. DCM updates component configuration files so
that they will match the values in the repository. OPMN uses the repository to identify what components should be
started and monitored. DMS stores runtime statistics in the repository.

2.2.3.1 Oracle Process Manager and Notification Server

The Oracle Process Management and Notification Server monitors the health of the individual components in an Oracle
Application Server architecture. OPMN monitors and manages all Oracle Application Server components, with the
exception of the following:

The repository database, if used

The listener for the database

The Application Server Console

If a particular component becomes unavailable, OPMN automatically restarts it. OPMN also informs any dependent
component that a component isn't available. For example, suppose that a request for a Java application comes into an
Oracle HTTP Server. It is passed to the mod_oc4j module, which passes the request to an OC4J process. If the OC4J
process goes down, OPMN lets the mod_oc4J process know that it should prevent any additional requests from being
routed to the failed process. In this way, OPMN simplifies management while making the entire set of Oracle Application
Server components highly available.

2.2.3.2 Distributed Configuration Management

For high availability and scalability, you can create clusters of Oracle Application Server components (Oracle HTTP
Server and OC4J) and OracleAS Web Cache. The Distributed Configuration Management service coordinates
configuration information across all members of a cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configuration information across all members of a cluster.

DCM automatically replicates base configuration information to a new member of a cluster. It also propagates changes
to any of this information to all members of a cluster. In addition to this base information, each cluster member also
has some individual configuration parameters of its own, such as port numbers for the instance.

You can also use DCM to make a backup of your configuration files that can be used to restore these crucial files in the
event of corruption.

DCM is invoked through the Application Server Control tool or via the dcmctl command-line tool.

2.2.3.3 Dynamic Monitoring Service

Oracle Application Server uses the Dynamic Monitoring Service to collect information about the performance of some of
its components. DMS uses sensors to measure various types of durations or simply the occurrence of different types of
events. DMS periodically collects the information from these sensors and compiles it into metrics. You can access these
metrics using a variety of different tools. The most commonly used is dmstool, a command-line tool for presenting DMS
metrics. The metrics may also be accessed in different portions of the Application Server Control tool.

DMS sensors are built into Oracle Application Server Containers for J2EE, so metrics are automatically provided for all
applications that run in an OC4J container. You can add sensors to any application you deploy on Oracle Application
Server through a DMS API, so the use of DMS is completely extensible. You can also turn off DMS to save the small
amount of overhead incurred.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 Installation Types
The complexity of the Oracle Application Server infrastructure depends on the type of product installation. There are
three Oracle Application Server installation types:

J2EE and Web Cache

Portal and Wireless

Business Intelligence and Forms

Each installation type builds on its predecessor's functionality; consequently, each requires a more complex
infrastructure.

2.3.1 J2EE and Web Cache

The J2EE and Web Cache installation provides a high-performing and very scalable J2EE application server. In the
Enterprise Edition version of the Oracle Application Server product, it consists of the following:

Oracle HTTP Server

Oracle Application Server Containers for J2EE

OracleAS Web Cache

Note, however, that OracleAS Web Cache isn't included in the Java and Standard Editions.

This installation requires a DCM repository in which Oracle Application Server configuration data can be stored. The
repository for this version can be either file-based or stored in an Oracle database.

2.3.1.1 Portal and Wireless

The Portal and Wireless installation contains all the components of the J2EE and OracleAS Web Cache installation. It
also contains:

OracleAS Portal, a complete, out-of-the-box, user-configurable portal solution

OracleAS Wireless, which allows you to use web-based applications on mobile devices

Although this edition doesn't contain the following components, it uses them at runtime, so the infrastructure has to
exist before you install this edition:

Identity Management

This infrastructure must exist in the form of Oracle Application Server Single Sign-On product support; this
product allows your users to use one set of login credentials for all applications running on the application
server.

Oracle Internet Directory

This infrastructure is added to the Identity Management infrastructure because Oracle Application Server Single
Sign-On requires an LDAP server.

Note that OracleAS Portal and OracleAS Wireless store their own application data in the infrastructure's OracleAS
Metadata Repository.

2.3.1.2 Business Intelligence and Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3.1.2 Business Intelligence and Forms

The Business Intelligence and Forms installation contains all the components available in the OracleAS Portal and
OracleAS Wireless installation, as well as the following additional components:

OracleAS Discoverer

OracleAS Forms Services

OracleAS Reports Services

OracleAS Personalization

This installation doesn't add any more complexity to the infrastructure because no additional infrastructure components
are required, but it does add more metadata. Like the Portal and Wireless edition, the Business Intelligence and Forms
edition uses a preexisting infrastructure. However, there is also a standalone installation for the Forms Server and
Reports Server that doesn't require an infrastructure.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Scalability Architectures
Oracle Application Server is highly scalable as a J2EE application server. As demand for a particular J2EE web
application grows, so too can the application server's capacity grow, both vertically and horizontally. The following
subsections describe the various types of scaling supported by the product.

2.4.1 Vertical Scaling with OC4J

Oracle Application Server can scale its capacity vertically by running more than one instance of OC4J on a given host, or
by running more than one Java Virtual Machine in a given instance of OC4J.

2.4.1.1 Multiple OC4J instances per host

An Oracle Application Server instance can be configured to run one or more instances of OC4J. In such a configuration,
each OC4J instance runs with its own JVM. However, running multiple instances of OC4J on the same host is more of a
configuration convenience than it is a means of scalability because multiple OC4J instances on a single machine share
the same configuration files.

It isn't uncommon for several applications to share an application server. By running multiple OC4J instances, each
heterogeneous application can run in its own OC4J instance. This reduces the risk that the deployment of an application
may affect other applications (or appear that it has). It also makes it possible to do resource consumption accounting
by application, which is a necessary evil in many business environments.

2.4.1.2 Multiple JVM processes per OC4J instance

Vertical scaling is better achieved by running more than one JVM process in an OC4J instance. Doing so leverages the
processing power of a host that has multiple CPUs.

When more than one JVM process is running, HTTP session objects and EJB states are replicated among the JVMs. In
addition to the server's offering increased capacity to process incoming requests in such a configuration, the server is
also better equipped to recover from JVM process failures. In case of such a failure, it can redirect a request to one of
the other JVMs running in the same OC4J instance.

Replicating HTTP session objects can become a resource-intensive task. To better manage this state replication, Oracle
Application Server provides a mechanism that provides a finer level of control. Each JVM is assigned to an island. An
island logically groups JVMs together for the purpose of HTTP session object replication. If two or more JVMs have the
same island name (even in clustered Oracle Application Server instances on different hosts), HTTP session objects are
replicated among them. This capability means that you can control which JVMs replicate state with each other.

For example, if you have an OC4J instance that has four JVM processes running, you can have two JVMs assigned to
default_island, and the other two assigned to island_two. With this configuration, HTTP session objects are replicated
between the two JVMs that are part of the same island. This reduces the overhead of replicating each HTTP session
object because each JVM has only one replication site, rather than three.

In contrast, no refined replication control exists for EJB state. EJB state replication doesn't use the island replication
facility. The state of any stateful EJB is replicated among all JVMs in an OC4J instance (or in clustered Oracle Application
Server instances).

2.4.2 Horizontal Scaling with Oracle Application Server

Horizontal scaling is accomplished using clusters. A cluster groups two or more Oracle Application Server instances so
that they appear as one application server. Clustered Oracle Application Server instances utilize only the Oracle HTTP
Server and OC4J components.

Figure 2-2 shows two Oracle Application Server instances in a cluster. In this figure, a load balancer receives a user
request. The load balancer forwards the request to an Oracle Application Server instance, where it is processed. Looking
at the figure, you can see that both instances of Oracle Application Server use the same metadata repository, as well as
any other resource, such as an application database.

Figure 2-2. Clustered Oracle Application Server instances

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-2. Clustered Oracle Application Server instances

2.4.2.1 Oracle Application Server farm

To be clustered, Oracle Application Server instances must be part of the same farm. A farm is a group of one or more
Oracle Application Server instances (clustered or not) that share the same OracleAS Infrastructure or that use the same
Oracle Application Server instance for their file-based OracleAS Metadata Repository.

Oracle Application Server instances automatically become part of a farm during installation. The farm assignment is
based on which OracleAS Infrastructure or Oracle Application Server instance (for a file-based repository) they use for
their OracleAS Metadata Repository. This assignment can be changed at a later date using Oracle Enterprise Manager.

2.4.2.2 Oracle Application Server cluster definition

An Oracle Application Server cluster definition is created within a farm using Oracle Enterprise Manager. After a cluster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Oracle Application Server cluster definition is created within a farm using Oracle Enterprise Manager. After a cluster
is defined, the first Oracle Application Server instance added to the cluster defines the cluster-wide configuration.
Thereafter, each server that is added to the cluster gets its configuration and any deployed applications from the
cluster-wide configuration. The only configuration properties that aren't part of the cluster-wide configuration are the
OC4J-specific properties: the number of JVM processes per OC4J instance and the ports an OC4J instance uses to
communicate with the Oracle HTTP Server.

2.4.2.3 Cluster management

Clustered Oracle Application Server instances appear as one application server not only to the end user but also to the
Oracle Application Server administrator. If changes are made to any Oracle Application Server instance in a cluster, the
DCM process automatically replicates the changes to all the other instances in the cluster. This process significantly
reduces the amount of work an administrator has to do to deploy applications in a clustered environment.

2.4.3 Load Balancing

As mentioned earlier, a load balancer is required when Oracle Application Server instances are being clustered together.
There are three traditional choices for load balancing:

Hardware

Operating system

OracleAS Web Cache

Of the three, Oracle recommends using a hardware-based load balancer. The following subsections describe these three
approaches, along with a brief discussion of load balancing with the Oracle HTTP Server.

2.4.3.1 Hardware load balancer

A hardware load balancer works by receiving a request from an end user and then forwarding the request to a clustered
Oracle Application Server instance. Hardware load balancers support various forwarding algorithms, including the
following:

Fastest Response

Forwards a request to the application server that responds the most quickly

Round Robin

Forwards a request to the next application server in a predetermined list of servers

Least Connections

Forwards a request to the application server with the fewest number of connections

Calculated Ratio

Forwards a request to the application server with the best calculated ratio based on predetermined statistics

Geographic Location

Forwards a request to the application server located closest to the requestor

Hardware load balancers are preferred because they are faster and have redundant components that eliminate
downtime caused by mechanical or electrical failure. Figure 2-3 shows a typical hardware load balancer configuration.
In this figure, an end user sends a request to a hardware load balancer. The hardware load balancer forwards the
request to a clustered instance of OracleAS Web Cache. OracleAS Web Cache returns cached content, if available. If
cached content isn't available, it forwards the request on to a clustered instance of Oracle Application Server.

Figure 2-3. A hardware load balancer example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. A hardware load balancer example

Examples of hardware load balancers include the following products:

F5 Networks' BIG-IP

See http://www.f5.com/f5products/bigip/

Nortel Network's Alteon

See http://www.nortelnetworks.com/products/01/alteon/

2.4.3.2 Operating system load balancer

Some operating systems provide a built-in load-balancing mechanism. In particular, Microsoft Windows Advanced
Server allows you to forward requests to different machines that share the same IP or MAC level address. In addition,
load-balancing software applications are available for almost all operating systems.

2.4.3.3 OracleAS Web Cache load balancer

OracleAS Web Cache can be used as a load balancer for clustered Oracle Application Server instances. When OracleAS
Web Cache acts as a load balancer, it uses a Weighted Available Capacity algorithm to determine the particular Oracle
Application Server instance to which it will forward the request. This algorithm uses a weight, assigned by an
administrator, to distribute the load unequally among instances. If the weighted available capacity is the same,
OracleAS Web Cache uses a Round Robin algorithm.

If an Oracle Application Server instance fails, OracleAS Web Cache redistributes requests to the remaining instances.
Meanwhile, OracleAS Web Cache intermittently polls the failed server until it is once again available to process requests.
At that time, the failed server is included in the load-balancing algorithm.

For more information about this capability of OracleAS Web Cache, see the detailed discussion in Chapter 7.

2.4.3.4 Oracle HTTP Server load balancer

While our discussion so far has focused on load-balancing requests to clustered Oracle Application Server instances,
another type of load balancing may also be taking place. Oracle HTTP Server's mod_oc4j load-balances requests among
multiple JVM processes in an OC4J instance or among OC4J instances in a cluster.

If an OC4J instance is configured to use two or more JVM processes or is part of a cluster, mod_oc4j routes a stateful
request to the JVM that last processed the stateful request. If the JVM that last processed a stateful request has failed,
the request is rerouted using a predetermined algorithm to another OC4J instance's JVM process that is part of the
same island as the failed JVM.

Three algorithms are available for rerouting a request to a failed OC4J instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Round Robin

As usual with a Round Robin algorithm, mod_oc4j uses the next OC4J instance (and the next JVM process in the
same island), remote and local to the Oracle Application Server instance, on a predetermined list.

Random

With the Random algorithm, an OC4J instance is picked randomly from the predetermined list.

Metric-Based

This algorithm uses OC4J performance metrics to determine where to route a request.

All these algorithms can be configured with local affinity, so a local OC4J process is used in favor of a remote process.
Similarly, the Round Robin and Random algorithms can employ a weighting factor to determine which OC4J process is
chosen.

Stateless requests are always processed using one of these predetermined algorithms. You can configure the desired
algorithm, along with all the other settings, using Oracle Enterprise Manager.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.5 High Availability
The availability of an application server can be measured by comparing the actual amount of time it is operational
against the total time it could possibly be available. Highly available systems may need to operate 100% of the time. To
accomplish that level of availability, you must address every possible single point of failure. In addition to hardware and
software failures, you must have a way to continue operations while both the hardware and software are being
upgraded or replaced.

Oracle Application Server solves these high-availability problems with clusters and with two different failover solutions
for the OracleAS Infrastructure.

2.5.1 Oracle Application Server Clusters

We introduced the concept of clusters earlier in this chapter. Although both a farm and a cluster are made up of
multiple instances of Oracle Application Server components, a cluster is a more integrated grouping than a farm.

In a cluster, the individual instances of a component are aware of each other, and they cooperate to provide service.
The OPMN server keeps the members of a cluster informed as to the status of other members in that cluster, so if one
member fails, the others pick up its load. The members of a cluster are designed to be interchangeable, providing a
higher level of availability than an individual instance or a group of instances in a farm.

You can create clusters of OracleAS Web Cache instances or Oracle Application Servers. As mentioned earlier, a cluster
requires some type of load balancer in front of the cluster to distribute the load. The redundant nature of an individual
instance within a cluster makes clustering a way to provide a high-availability solution.

Oracle Application Server can also run on hardware clusters. These clusters provide an underlying redundancy and
transparency for anything running on them, including Oracle Application Server.

2.5.2 Infrastructure Failover

Oracle Application Server clusters deliver high availability with their own software. However, these clusters don't
provide high availability for the OracleAS Infrastructure. Because all Oracle Application Server components need to
access the infrastructure and because the availability of an entire system is dependent on every part of the system, this
deficiency can imperil the availability of your application server.

To address this risk, you can implement Oracle Application Server 10g with either of two types of failover solutions:

Oracle Application Server Cold Failover Clusters

This approach uses hardware clustering to provide some measure of availability protection.

Oracle Application Server Active Failover Clusters

This approach provides a higher level of availability and combines it with increased scalability for your
infrastructure.

2.5.2.1 OracleAS Cold Failover Clusters

The OPMN server manages most Oracle Application Server components and services, and this server can automatically
restart any failed processes. This capability protects against the failure of individual components of Oracle Application
Server. However, larger problems, such as server failure, are beyond the scope of OPMN. Thus, Oracle Application
Server provides an availability solution, OracleAS Cold Failover Clusters, that guards against these larger-scale failures.

OracleAS Cold Failover Clusters are built on capabilities inherent in a hardware cluster. A hardware cluster facilitates the
sharing of resources between nodes, provides a health-monitoring heartbeat, and supports failover from one node to
another without impacting users. Hardware clusters provide a "virtual IP" address, which it can associate with either
node in the cluster. Users don't know which physical node is servicing requests for the virtual IP address.

If you are familiar with database availability concepts, you will recognize the term cold failover. With Oracle Application
Server, the term has the same meaning it does for a database: one identical set of resources stands by, waiting for a
failure in the primary system. If that system fails, the cluster starts to use the standby system. Figure 2-4 shows the
architecture of a typical OracleAS Cold Failover Clusters implementation before a failure has occurred.

Figure 2-4. OracleAS Cold Failover Clusters prefailure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-4. OracleAS Cold Failover Clusters prefailure

Because many Oracle Application Server components depend on the infrastructure for continuous operation, OracleAS
Cold Failover Clusters are designed to protect the components of the OracleAS Infrastructure. If an active node in an
OracleAS Cold Failover Cluster configuration fails, the IP address is switched to the failover node, and the infrastructure
processes are started on that node. Once these processes are available, middle-tier components can access the new
infrastructure, as shown in Figure 2-5. Because the storage for both infrastructure nodes is shared, there is no need to
recreate or migrate the information in the database.

Figure 2-5. OracleAS Cold Failover Clusters post-failure

You can have instances of other Oracle Application Server and OracleAS Web Cache coexisting on either node in the
OracleAS Cold Failover Cluster. However, no failover for these instances is supported. You can group the instances in
their own cluster, but the operation of these clusters is separate from the operation of the OracleAS Cold Failover
Cluster.

2.5.2.2 OracleAS Active Failover Clusters

Oracle Application Server 10g, in its initial release, provides limited (i.e., beta-style) support for another type of failover
solution: Active Failover Clusters. OracleAS Active Failover Clusters uses the same architecture as OracleAS Cold
Failover Clusters.

At the time of this writing, OracleAS Active Failover Clusters is still in limited release. By
the time you read this book, OracleAS Active Failover Clusters is likely to be available for a
number of platforms for Oracle Application Server. For up-to-date information on certified
platforms, please see
http://otn.oracle.com/products/ias/hi_av/10g_904_HA_Certification.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The big difference between OracleAS Active Failover Clusters and OracleAS Cold Failover Clusters is that with OracleAS
Active Failover Clusters, you don't have to have one node in the hardware cluster sitting around waiting for a failure.
Both infrastructure nodes can service infrastructure requests. Because both nodes in an OracleAS Active Failover
Cluster are servicing requests, OracleAS Active Failover Clusters can provide some scalability, in addition to the
availability offered by both types of failover clusters.

The architecture for an OracleAS Active Failover Cluster configuration is shown in Figure 2-6.

Figure 2-6. OracleAS Active Failover Clusters architecture

The major differences between this configuration and a OracleAS Cold Failover Cluster configuration are the following:

An OracleAS Active Failover Cluster configuration uses a hardware load balancer in front of the active
infrastructure nodes.

The infrastructure uses Real Application Clusters (RAC) for its database.

Both nodes have the same infrastructure components running at the same time, and the load is split between the
infrastructure nodes. If one node fails, the failover is much faster and more transparent than it is for OracleAS Cold
Failover Clusters.

OracleAS Active Failover Clusters use a RAC database to provide scalability and availability for the OracleAS Metadata
Repository. RAC is Oracle's clustered database solution. It runs on a hardware cluster and allows any application to run
against a clustered database without modification. For more information on RAC, please refer to the discussion in our
companion database book Oracle Essentials (O'Reilly).

In addition to using RAC for the OracleAS Metadata Repository, OracleAS Active Failover Clusters have duplicate
infrastructure processes, such as those used for identity management, running on each node in the cluster. All nodes in
an OracleAS Active Failover Cluster must have virtually identical configurations, down to the pathnames for Oracle
HOME directories.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.6 Oracle Application Server Applications
The following sections provide brief descriptions of the applications that are part of the architecture of Oracle
Application Server. Each application, or set of applications, is covered in it own chapter; the following sections focus on
how they fit into the overall architecture of Oracle Application Server.

2.6.1 OracleAS Portal

OracleAS Portal performs its basic construction of portal pages in the Portal Page Engine, which is a J2EE application.
OracleAS Portal also makes extensive use of the PL/SQL language in the construction of its pages. OracleAS Portal is
closely integrated with the OracleAS Single Sign-on capability provided by the Oracle Identity Management
infrastructure, so an OracleAS Portal installation requires an infrastructure.

Chapter 13 describes OracleAS Portal in detail.

2.6.2 OracleAS Wireless

Oracle AS Wireless is designed to enable wireless devices such as cell phones, messaging devices/pagers, and wireless
Internet-connected laptops to connect to an application that provides content. The Oracle Application Server
architecture includes a device/network gateway provider, an XML application framework, and an adapter that enables
communication to and from the application leveraging a multichannel server.

Chapter 14 describes OracleAS Wireless and its various mobile components in detail.

2.6.3 Business Intelligence

The primary business intelligence (BI) components available in Oracle Application Server are OracleAS Discoverer and
OracleAS Reports Services. Oracle Application Server also includes an OracleAS Personalization component that
leverages data mining features to present web-site pages based on previously analyzed tendencies of visitors.

OracleAS Discoverer tools enabled for Internet access include Discoverer Plus and Discoverer Viewer:

Discoverer Plus

This tool is a full-featured ad hoc query and analysis tool. It is initiated using a downloaded Java applet. After
the initial applet download, the applet resides in local cache.

Discoverer Viewer

This tool can view intelligence query results and charts generated by Discoverer Plus in a browser. It is servlet-
based and leverages Discoverer Services.

Both tools take advantage of the fact that Oracle Application Server contains a data cache, which enables rapid data
manipulation without the need to requery the back-end database. The database tier of the architecture contains
Discoverer workbooks, the End User Layer, and, of course, the data.

The OracleAS Reports Services component lets you create high-quality printed and web-based reports. OracleAS
Reports Services uses Java servlets (known as Java servers) to receive requests and then direct the requests to a
runtime engine that provides the requested functionality. You can configure the number of runtime engines for
OracleAS Reports Servers initially started, the maximum number of engines that can be running at one time, and the
idle time before an engine is shut down. Multiple OracleAS Reports Servers can provide load balancing, although not
failover.

Chapter 9 describes OracleAS Reports Services in detail, and Chapter 12 describes OracleAS Discoverer and other
business intelligence components.

2.6.4 OracleAS Forms Services

OracleAS Forms Services can build applications that provide an interactive graphical interface for data entry with
support for data validation. As with OracleAS Reports Services, OracleAS Forms Services use Java servlets to receive
requests and direct them to a runtime engine. Each user has a matching runtime process, which is also a Java servlet.
As with OracleAS Reports Servers, you can have multiple OracleAS Forms Servers that can provide load balancing,
although not failover.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

although not failover.

Chapter 9 describes OracleAS Forms Services in detail.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Systems Management
Many Oracle Application Server users aren't aware of all the management activities that go on around them. But
comprehensive and effective systems management is vital to providing a reliable, available, and secure environment.
Without this management, even the most highly functional environment may not be optimally implemented or used. In
Oracle Application Server, the focus of systems management is Oracle Enterprise Manager 10g.

Oracle Enterprise Manager 10g is the latest version of Oracle Enterprise Manager, a management tool framework with a
graphical user interface that can manage a variety of Oracle products, including Oracle Database, Collaboration Suite,
E-Business Suite, and, of course, Oracle Application Server. Oracle distributed the first version of Oracle Enterprise
Manager with Oracle7 and added a browser-based Oracle Enterprise Manager console (built with Java) with Oracle8i
and an HTML console with Oracle9iAS.

Every time a new Oracle product or product version is introduced, the new features and capabilities also introduce new
management challenges. In the past, keeping up with this ever-increasing list of features required a fairly steep
learning curve for novices. Recently, however, Oracle has simplified management by providing self-managing and self-
tuning features in its products and by implementing more automated management facilities in Oracle Enterprise
Manager 10g.

Our focus in this chapter is the use of Oracle Enterprise Manager 10g in managing Oracle
Application Server. For more general information about Oracle Enterprise Manager 10g,
consult the Oracle documentation. See the Appendix for specific references for Oracle
Enterprise Manager 10g and other products described in this chapter.

Two basic tools are available through Oracle Enterprise Manager 10g that allow you to manage Oracle Application
Server: Oracle Enterprise Manager 10g Application Server Control, which comes as part of Oracle Application Server
10g, and Oracle Enterprise Manager 10g Grid Control, Oracle's management solution for your entire Oracle
environment, including Oracle Application Server. (Throughout this book we refer to these tools simply as Application
Server Control and Grid Control.)

Application Server Control

This GUI tool is the standard administrative console for Oracle Application Server. When you install Oracle
Application Server, an Application Server Control instance is installed for each individual application server you
manage. You can use the console to provide a variety of administrative tasks on that server. For example, you
can start and stop an application server, enable and disable Oracle Application Server components, modify
server configurations, create Oracle Application Server Containers for J2EE, deploy and monitor J2EE
applications, manage ports and clusters, and examine logs.

Grid Control

This GUI console provides additional management capabilities not available in Application Server Control. Grid
Control is typically installed on a single location to provide a central console that allows you to monitor and
access all the application servers in your environment. In addition to managing multiple application servers,
Grid Control also allows you to manage databases, applications, and hosts. Using Grid Control you can link to
and launch each Application Server Control. You can also perform historical monitoring, alerting, management
of jobs and policies, Application Service Level Management (ASLM) and monitoring, and configuration
management.

Both Oracle Application Server 10g and Oracle Database 10g are designed to be deployable on computer grids
in which many servers are used and need to be managed. Grid Control allows you to perform a variety of grid
management tasks such as resource pooling, provisioning of computer resources, dynamic workload
management, and dynamic control of changing grid components. While Grid Control is designed particularly to
simplify grid management, it also greatly simplifies the management of more traditional Oracle multitier
implementations.

This chapter briefly describes the use of Application Server Control and Grid Control. It also discusses other
management functions—backup, recovery, and security—that are the responsibility of the Oracle Application Server
administrator. It concludes with a discussion of working with Oracle Support to resolve system management problems
that may arise. You will need to understand each area if you are going to design and implement effective management
strategies for your own Oracle Application Server environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Application Server Control
The Application Server Control tool is the main administrative console for Oracle Application Server. An Application
Server Control instance is installed in each application server home and provides a web-based interface for
administering that application server. Figure 3-1 shows the Application Server Control home page.

Figure 3-1. Application Server Control home page

From the home page, you can:

Start, stop, enable, disable, and configure Oracle Application Server components and view their status

Create additional OC4J components

Deploy applications

View pie charts showing CPU and memory usage

Monitor hosts

Connect to links to manage J2EE applications, ports, and infrastructure

View log files, and manage the log repository

For example, you can examine the Log Repository (described later) through a Log Viewer by selecting the Logs link
appearing in the upper right on this page.

Application Server Control provides a wide spectrum of capabilities. The following sections look at a few typical
administrative functions available through this tool.

3.1.1 Application Server Control Management Stack

The Application Server Control management stack that enables the management functions you can perform with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Server Control management stack that enables the management functions you can perform with
Application Server Control consists of the following services, introduced in Chapter 2:

Distributed Configuration Management

DCM manages configurations tied to a specific OracleAS Metadata Repository and can propagate Oracle
Application Server configurations across an entire cluster.

Oracle Process Manager and Notification

OPMN provides process control (e.g., starting and stopping application servers) and process monitoring for
application servers.

Dynamic Monitoring Service

DMS collects performance data, including OC4J application and OracleAS Web Cache performance. The data is
collected by the Oracle Enterprise Manager 10g Management Agents for use in real-time performance
monitoring and for historical monitoring in Grid Control.

Application Server Control uses these facilities in a variety of ways. For example, you can use Application Server Control
to configure the two key Oracle Application Server business intelligence components, OracleAS Discoverer and OracleAS
Reports Services. You can also monitor OracleAS Reports Services performance, and can view and manage OracleAS
Reports Services job queues.

3.1.2 Managing Ports

You can use Application Server Control to reconfigure ports, used by Oracle Application Server components and
services, and allocated during installation. You can also view or change these ports. Links to the Oracle Application
Server documentation make it easy to prevent conflict with other ports on your system by determining ports that may
be affected by your changes.

3.1.3 Viewing and Managing Log Information

During normal operation, various Oracle Application Server components populate logs with information—for example,
startup and shutdown information, warnings, and errors. You can use Application Server Control to view this
information.

Oracle Application Server components that generate log files include:

Core components

BC4J, OC4J, Oracle HTTP Server, and OracleAS Web Cache

Management and installation components

Oracle Enterprise Manager 10g, DCM, OPMN, and the Universal Installer

Deployable tools and enabling technology components

OracleAS Portal, OracleAS Discoverer, OracleAS Forms Services, OracleAS Reports Services, and OracleAS
Wireless

Using the Logs link in Application Server Control, you can easily search for log files related to any of these components.
You can also browse these logs directly from the Application Server Control user interface to help you diagnose
problems.

You have the option of consolidating log information into a single repository, and doing so simplifies the diagnostic
process when you are analyzing multiple components. The Log Loader, started through Application Server Control,
initiates and populates the Log Repository. Warning and error messages that are gathered here are used when you
troubleshoot problems that can occur in specific Oracle Application Server components. You'll also find these useful
when reporting problems to Oracle Support (described in the last section of this chapter).

3.1.4 Administering J2EE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can perform a variety of J2EE administration functions by invoking the OC4J home page through Application Server
Control. These include:

Adding OC4J instances (via a wizard)

Configuring J2EE resources, J2EE application security, Java Messaging Services, and other J2EE services

Deploying and monitoring J2EE and Web Services applications (via a wizard-based interface)

3.1.5 Administering Clusters

You can also use Application Server Control to manage a group of application servers hosting a common set of OC4J
applications as a cluster. Setting up a cluster allows you to modify common configuration settings only once for all
cluster members. You can also deploy applications across the cluster in a single step. The architecture of clusters is
described in Chapter 2.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Grid Control
The web-based Grid Control tool is a key part of Oracle Enterprise Manager 10g. You can use this tool to manage and
monitor multiple application servers through a single interface. This interface provides a single view of all the
application servers along with links to each server's Application Server Control. Because other infrastructure
components are also monitored, Grid Control gives you a way to measure and assure levels of application service that
leverage multiple components.

While Application Server Control is used for administrative tasks on an individual application server or cluster, Grid
Control can manage multiple application servers remotely and/or through firewalls.

As mentioned earlier, you can also use Grid Control to manage databases, Oracle
Collaboration Suite, and Oracle E-Business Suite. However, the focus in this section is on
its use with Oracle Application Server.

3.2.1 Grid Control Infrastructure

The Grid Control infrastructure includes the following components used to manage Oracle Application Server:

Grid Control Console

The console, sometimes called the central console, allows you to view, monitor, and manage application servers
as well as other Oracle components.

Oracle Management Service

Oracle Management Service, a J2EE application deployed on Oracle Application Server, renders Oracle
Enterprise Manager's HTML user interface.

Management Repository

This central repository of enterprise-wide management data includes many types of data—for example,
hardware and software configuration data leveraged in life-cycle, cloning, and patch management. It also stores
historic performance and availability data used for trend analysis and reporting.

Oracle Management Agents

These agents monitor the application servers and communicate the results of this monitoring back to the Oracle
Management Service. They also are responsible for running jobs for the Application Server Control tool. You
deploy one Management Agent on each host. The agent will then monitor all components on that host, including
all installed Oracle software and non-Oracle components using Oracle Enterprise Manager 10g's extensibility.

The Grid Control architecture for managing multiple application server targets is shown in Figure 3-2. The protocol used
may be either HTTP or HTTPS.

Figure 3-2. Grid Control architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Management Agents are available for the wide variety of operating systems on which Oracle Application Server runs
and are responsible for automatic service discovery, performance monitoring, and job execution. Management Agents
can also send Simple Network Management Protocol (SNMP) traps to performance monitors in tools such as CA
Unicenter Network and Systems Management, the HP OpenView Operations console, and IBM Tivoli. Agents can also
perform any generic response action, such as writing to a log file or another console's API (which allows Oracle
Enterprise Manager to integrate well with other management tools and procedures).

3.2.2 Using Grid Control

This section takes a closer look at managing Oracle Application Server through Grid Control. Logging into the console
brings you to the console home page. That page shows the status of all components in your environment, as well as
rollups of jobs, events, critical patches, and deployments.

Figure 3-3 shows Grid Control's monitoring of an Oracle Application Server infrastructure. The pull-down Deployments
Summary selected in this figure lists all the Oracle Application Server instances installed. You can also choose to view
only the status of application servers by choosing only Application Servers under the View dropdown list on the upper
left.

Figure 3-3. Oracle Enterprise Manager 10g's Grid Control console home page

You can quickly search for all application servers by selecting Application Servers under Target Search. This results in a
list of all application server targets, including high-level statistics and status for each. Selecting a link to a particular
Oracle Application Server instance brings you to the Grid Control Application Server home page for that instance (see
Figure 3-4 for the top portion of how this page typically appears).

The Grid Control home page operates in a different way from the Application Server Control home page, which you can
access via the Administer link in the Related Links section.

Four links are shown, enabling you to quickly navigate the interface: Home (your initial location), J2EE Applications,
Web Applications, and Performance.

At the top of the console page, you will also find links to Setup (for setting up and managing additional administrators,
notification methods, etc.), Preferences (for example, notification schedules), Help, and Logout.

Figure 3-4. A portion of Grid Control's Application Server Control home page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-4. A portion of Grid Control's Application Server Control home page

Home page

This page is designed to give you a quick view of the status of an application server and is segmented into the
following areas: general characteristics (e.g., status, availability, URL, version, installation type, Oracle home,
and host links), an application URL response chart, a list of components (e.g., Oracle AS Web Cache, Oracle
HTTP Server), a list of current alerts (for parameters such as memory usage), a list of host alerts (for
parameters such as CPU utilization), and related links. The Host link takes you to the host home page where
you'll find performance and configuration information for the host, as well as a software inventory. Related links
allow you to access other areas, such as the patch list, metrics, manage metrics (with thresholds), alert history,
blackout history, monitoring configuration (if you have the OPERATOR TARGET privilege), and administration (a
login prompt for the Application Server Control tool will appear). Of course, many of these areas also include
additional drill-downs.

J2EE Applications page

This page is typically used to determine where J2EE application performance bottlenecks are. It displays a list of
J2EE applications, along with their total processing time, average servlet/JSP processing time, number of
servlets/JSPs processed, total servlet/JSP processing time, average EJB method execution time, number of EJB
methods executed, and total EJB method execution time. Because the screen shows resource usage, you can
drill down to find the source of bottlenecks.

Web Applications page

This page provides an overview of all monitored web applications and their status, as well as a summary of all
outstanding availability and transaction performance alerts. Drill-downs provide ASLM tools that enable you to
ensure high availability and optimal performance of web-based applications, as well as diagnose application
performance problems. The availability of web applications is defined by administrator-specified criteria that
determine whether your application is up. Application Service Level Management tools also let you monitor
application performance through a multidimensional approach: using synthetic transaction performance
monitoring, and measuring the actual application response times as experienced by your real end users. Once a
performance problem is detected, you can interactively trace transactions from the client through the middle
tier down to the SQL statement level, thus enabling you to quickly identify the components that may have
contributed to application bottlenecks. Historically, page performance is also traced through the J2EE activity
tiers, providing deep diagnostics that identify the processing time consumed at the JSP, servlet, EJB method,
and SQL statement levels.

Performance page

This page graphically shows charts of parameters such as CPU usage, memory usage, OracleAS Web Cache hit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This page graphically shows charts of parameters such as CPU usage, memory usage, OracleAS Web Cache hit
rate, HTTP response and load, HTTP server process usage, active HTTP connections, servlet response and load,
and number of active sessions. Refreshes can be manual or automatic at various intervals. Historical trending of
various time lengths can be viewed to trends of up to 31 days. Through various links you can identify top
servlets and top JSPs (servlets and JSPs can be ranked by requests processed, average processing time, or total
processing time).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 EM2Go
Although EM2Go isn't part of Oracle Application Server itself, Oracle Application Server administrators will find this
product very helpful in monitoring their targets while on the run. EM2Go is the mobile component of Oracle Enterprise
Manager 10g. It facilitates administrator access to a subset of the Oracle Enterprise Manager functionality through a
Pocket PC browser on a PDA device.

Because EM2Go leverages the architecture of Oracle Enterprise Manager 10g, no additional infrastructure is required to
start using the product. EM2Go includes the following:

 Oracle Management Service, a J2EE web application hosted by Oracle Application Server 10g

A Management Repository for its persistent data store

Distributed, lightweight Oracle Agents that monitor all services on the host and execute remote operations on
managed services

Communication between EM2Go and Oracle Management Service, and between Oracle Management Service and the
Agents, is performed via HTTP or HTTPS.

Oracle Enterprise Manager automatically gathers and evaluates diagnostic information from Oracle Application Server
systems distributed across the enterprise. As with all services managed by Oracle Enterprise Manager, an extensive
array of Oracle Application Server performance metrics are automatically monitored against predefined thresholds, and
alerts are generated when metrics exceed these thresholds. The EM2Go home page displays all the alerts, enabling the
administrator to drill down into the alert details to investigate what triggered the problem. Using EM2Go, the
administrator can monitor the availability of the application servers. The diagnostic reports for CPU usage and memory
usage are also available from your device, providing a graphical view of current or historical data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4 Optional Oracle Enterprise Manager Application Server Packs
Two add-on packs, available through Oracle Enterprise Manager 10g, provide you with additional Oracle Application
Server management capabilities. They supplement the standard functionality by allowing you access to specific,
functional areas within Grid Control.

These packs are particularly useful if you need to monitor multiple Oracle Application Server components. Monitoring
multiple components will help you understand such characteristics of your environment as web application availability,
end-user performance, transaction performance, on-demand cross-tier transaction performance, and historical cross-
tier application performance.

Oracle Enterprise Manager 10g Application Server Diagnostics Pack

This pack helps you to identify performance bottlenecks and provides tools for resolving problems. It enables
ASLM through end-to-end analysis of performance across multiple components. You can measure the
performance seen by end users, web server performance, and transaction processing times. By comparing
these different measurements, you can quickly diagnose where the source of a performance problem lies. You
can also trace transaction paths, identify bottlenecks such as the slowest URLs and problematic EJBs and SQL,
and understand performance through other components including servlets, JSPs, and JDBC.

Oracle Enterprise Manager 10g Application Server Configuration Management Pack

This pack allows you to track current Oracle Application Server hardware, operating systems, patches, and
policies, as well as other current software installations and patches. It also enables automated cloning and
patching.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5 Backup, Recovery, and Security Management
The management tasks discussed in previous sections represent only a portion of those that must be performed at a
typical site. Many other management tasks are ordinarily the responsibility of your organization's database
administrator (DBA). However, backup, recovery, and security management are often the responsibility of the Oracle
Application Server administrator, so the following sections will touch upon these tasks. For details, consult the Oracle
documentation.

3.5.1 Performing Backup and Recovery

Backing up your configuration and application data in such a way that it can be recovered in the event of a failure or
error is an essential maintenance task for any administrator. When you back up Oracle Application Server, make sure
that your backup procedures back up both Oracle Application Server itself and the contents of the Oracle Application
Server infrastructure (if used); that infrastructure is frequently housed in an Oracle database.

A complete backup of your Oracle Application Server environment includes the following:

Configuration files for the instance, the Oracle software files, and system files.

Contents of the OracleAS Metadata Repository (if used); remember that the repository is an integral part of the
infrastructure.

Additional files associated with the Oracle environment, such as log files, configuration files for the database,
and other scripts and information used by Oracle Application Server components.

Make sure that your backup plan includes backup steps for all this information.

3.5.1.1 Types of backup

As with the Oracle database, two basic types of backup are available for Oracle Application Server:

Complete, or cold, backup

With this type of backup, you back up all Oracle HOME directories in the middle tier, including the Oracle HOME
for the Oracle database used for the infrastructure, a complete cold backup of the OracleAS Metadata
Repository, and a complete backup of all Oracle system files.

Online, or incremental, backup

With this type of backup, you back up only the configuration files that have changed since the time of the last
backup and perform an online backup of the OracleAS Metadata Repository.

With Oracle Application Server, as with any software, make sure to perform periodic complete backups as well as more
frequent incremental backups. If you make a major change to your Oracle Application Server environment, take that
opportunity to perform a complete backup to avoid losing the effects of this change.

Oracle Application Server farms and clusters are managed using DCM. You can use DCM directly or invoke it via
Application Server Control. The DCM requires a repository, either in the database or as a set of files. If you use file-
based DCM, you also have to back up (and subsequently recover) the files used as part of your backup procedure.
These files are located on the repository host for the cluster or farm. If you use a database for the configuration
information, standard backup procedures will also back up this information.

DCM lets you create an archive of a particular configuration. You can use this archive as a
way to save known "good" configurations. This allows you to restore previous
configurations if you need to do so later.

3.5.1.2 OracleAS Backup and Recovery Tool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5.1.2 OracleAS Backup and Recovery Tool

The OracleAS Backup and Recovery Tool is a Perl script that backs up configuration files and the Metadata Repository.
This tool is included on the OracleAS Application Server Repository Creation Assistant (OracleAS RepCA) CD set that
comes with Oracle Application Server. The OracleAS Backup and Recovery Tool automates the process of backing up all
the individual entities needed for a complete Oracle Application Server backup, as described in the previous section.

The OracleAS Backup and Recovery Tool has its own set of configuration files that indicate which directories it uses to
hold the different portions of the backup. You need to install the tool for each infrastructure and middle-tier server in
your environment, and edit the configuration for each instance of the tool. You can add files, directories, or groups of
files and directories (using wildcards) to the configuration file.

3.5.1.3 Backup

You can use the OracleAS Backup and Recovery Tool to perform either complete or incremental backups of
configuration files, the OracleAS Metadata Repository, or both. You can specify the level of an incremental backup,
where each level backs up the files that have changed since the time of the last backup at the same level.

The OracleAS Backup and Recovery Tool doesn't back up or recover a OracleAS Metadata Repository that was added to
an existing database. You have to handle this database through standard Oracle backup and recovery procedures in
coordination with the BRT.

3.5.1.4 Recovery

You can use Oracle Application Server backups to recover your installation, whether or not you have experienced a
failure that has corrupted the Metadata Repository.

If the repository has been corrupted, you have to recover it to a point in time just before the corruption occurred. If
only configuration files have been lost, you can simply restore them using the OracleAS Backup and Recovery Tool. The
Oracle Application Server documentation contains complete instructions for using this tool, as well as information that
can help you determine which type of recovery operation you need to perform.

3.5.2 Implementing Secure Access and Management

If you are performing security management, you must have an appropriate username and password to access the
Application Server Control or Grid Control tools:

Application Server Control

Use the ias_admin username and supply your assigned password to gain access to Application Server Control.

Grid Control

Use your Oracle Enterprise Manager 10g username and password to gain access to Grid Control.

If you plan to use the Oracle Internet Directory, the default for any password that you
create must be at least five characters with at least one numeric character.

The OracleAS Metadata Repository and the Grid Control Management Repository are stored in Oracle databases. Oracle
database administrators or database security administrators typically uses a DBA username (e.g., SYS) and connect as
SYSDBA to start these database instances and perform other operations. Doing so provides the administrator with the
necessary privileges (the rights to execute certain SQL statements) that have been assigned to the DBA roles (named
groups of privileges).

Administrators who access Grid Control only for the purpose of monitoring individual application servers may not be
provided these extended privileges or given login access to the Application Server Control tool. The details, however,
depend on how your organization decides to maintain security and grant access.

Most users of Oracle Application Server simply need user authentication. For large implementations, you may want to
configure global authentication across these distributed systems for users and Grid Control administrators and their
roles. Global authentication allows you to maintain a single authentication list for multiple distributed servers and to
implement OracleAS Single Sign-On.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

implement OracleAS Single Sign-On.

You can use OracleAS Single Sign-On for authentication when logging into Grid Control.
You can also secure the communication between agents and Oracle Management Services
so that HTTPS is used.

Chapter 4 describes Oracle Application Server user security and identity management in more detail. But for now, be
aware that in typical three-tier implementations, Oracle Application Server runs some of the application logic, serves as
an interface between the clients and database servers, and provides the Oracle Identity Management infrastructure.
The Oracle Internet Directory provides directory services running as applications against an Oracle database. The
directory synchronization service, provisioning integrated service, and delegated administrative service are part of the
Oracle Internet Directory. Security in middle-tier applications is controlled by applications' privileges and by preserving
client identities through all three tiers. You can use the Application Server Control tool to configure and change
configurations of the Oracle Internet Directory and OracleAS Single Sign-On.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.6 Working with Oracle Support
No matter how much you know about Oracle Application Server, there are bound to be some issues that you can't
resolve without help from Oracle Corporation. Part of the job of the Oracle Application Server administrator (or the DBA
serving in that role) is to help resolve those issues. Oracle offers several levels of support:

Basic product support

Advanced support

Incident support

Each support option costs extra, but regardless of your support level, you can get the most from Oracle by
understanding how to best work with them.

Resolving problems with the assistance of Worldwide Customer Support Services can initially be frustrating to novices
who report problems. You may be required to provide a lot of detailed technical information as part of this process.
Oracle's mechanism for responding to a reported Oracle Application Server problem is called a Service Request (SR)—
formerly known as a Technical Assistance Request (TAR). Oracle responds to Service Requests based on the priority or
severity level at which problems are reported:

Priority level 2

If the problem is impacting your ability to complete a project or do business, you should report the problem as
priority level 2 to assure a timely response. If the problem is initially assigned a lower level, and the response
hasn't been adequate, you should escalate the problem-resolution priority.

Priority level 1

If business is halted because of the problem, you should report the problem as priority level 1. However, note
that if you report a problem at level 1, you must be available for a callback (even after hours). Otherwise,
Oracle will assume that the problem isn't as severe as initially reported, and they may lower the priority level
for resolution.

You can report problems via phone, via email, or at the MetaLink web site. MetaLink support, which is included with
basic product support, has become increasingly popular in recent years. With MetaLink you can quickly get answers to
problems similar to your own. You may save time this way or even avoid the need for a physical response. MetaLink
provides proactive notifications, customized home pages, technical libraries and forums, product life-cycle information,
a bug database, and the ability to log SRs (TARs).

When you contact Oracle Support, you need your Customer Support Identification (CSI) number. Oracle Sales
Consultants can also provide advice regarding how to report problems. In addition, Worldwide Customer Support
Services offers training regarding effective use of their services.

Oracle Support issues MetaLink Notes whenever software bugs or vulnerabilities are discovered, and issues appropriate
patches. Oracle Enterprise Manager 10g's Grid Control tool can automatically connect to MetaLink to provide you with
up-to-date patch availability information specific to your installation. You can automatically gather patch-level
information about your Oracle Application Servers using the enterprise configuration-management capabilities in Grid
Control (viewable by selecting the Deployments tab, shown in Figure 3-5). Here you'll also find a link to lists of critical
patch advisory alerts and the patches that should be applied in response to those alerts. You can then select the
patches, stage them, and install them through Oracle Enterprise Manager's job system.

Figure 3-5. Grid Control configuration and patch management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Security and Identity Management
In recent years, the increased accessibility of corporate data and business information via the Internet has been
accompanied by corresponding security threats. Every system is vulnerable to hackers. Some of these hackers are
criminals; some are pranksters. Either way, they can wreak havoc with corporate software and data.

Careful security planning and implementation is a key part of systems management. You need to control access to your
corporate applications and protect both applications and their underlying data from harm caused by both malicious
outsiders and careless insiders. Securing the Oracle Application Server environment is a multipronged effort, requiring
that you consider security in all parts of your overall Oracle component infrastructure: the Oracle Application Server,
the database, and any E-Business Suite applications deployed in your environment. In implementing a secure solution,
you also need to take non-Oracle components into account. For example, you should analyze the security of your web
browsers, assess underlying operating system vulnerabilities, determine whether your configuration requires a firewall,
and investigate the need for virtual private networks (VPNs).

This chapter focuses on how to implement Oracle Application Server as part of a secure infrastructure. We describe
components of the Oracle Application Server security framework that provide both the security and the identity
management needed for centralized user management and support for complex password management policies. We
conclude the chapter by briefly describing approaches and architectures for secure deployment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Oracle Application Server Security Objectives
Oracle Application Server is designed to provide both basic and advanced security services while adhering to security
standards. Oracle Application Server provides the following security services:

Authentication

Verifies the identity of users and systems requesting applications, resources, and data (see the sidebar,
"Identity Management").

Authorization

Provides system-level determination and granting of the proper level of privileges to users or systems, thus
possibly limiting their ability to use applications or resources or to manipulate data.

Access control

Grants access to applications, data, and other resources consistent with security policies based on the
authentication of the user, the authorization she has, and the type of access being requested.

Accountability and intrusion detection

Ensures that activities contrary to policies are detected and recorded.

Data protection

Protects data from access by unauthorized users via such mechanisms as encryption and integrity checks.

Identity Management
Identity management is a term used to describe the process of authenticating users and maintaining
their identity over time and across multiple applications. Section 4.2.1, describes the framework used for
the centralized management of user security in many Oracle Application Server deployments. Some
Oracle Application Server components, such as OracleAS Reports Services and OracleAS Forms Services,
may be deployed using their own user management and security services. OC4J applications may also be
deployed using non-Oracle identity management services, such as Microsoft Active Directory, SunOne
(formerly iPlanet), and Netegrity SiteMinder. These third-party management services can be used with
Oracle Identity Management.

In managing Oracle Application Server, your security goal should be to deploy the product in such a way that it can
pass an independent security assessment. In such a secure deployment, you also need to consider coding practices,
eliminate single points of failure in the security mechanism, set minimal privileges as a default, and enable intrusion
detection to limit damage from security breaches. Those are extensive security topics that go well beyond the scope of
this chapter. See the Appendix, however, for additional sources of security information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Oracle Application Server Security Framework
Oracle Application Server provides a security framework that incorporates the following key components:

OracleAS Single Sign-On

Enables use of a single password for authentication when establishing an initial connection and transparent
authentication in subsequent connections. See the discussion of OracleAS Single Sign-On in Section 4.2.1.

Oracle Internet Directory

Used for authorization and user provisioning (e.g., supplying relevant user information needed for
authentication by other services). See Section 4.2.2.

Oracle HTTP Server

Based on Apache and includes its own basic security mechanisms to restrict access to directories or URLs. See
Chapter 5.

Java Authentication and Authorization Service

Enables secure access and execution of J2EE applications. JAAS is described in Section 4.2.3.

Oracle Application Server Certificate Authority

Used in the authentication process to ensure that entities such as users, databases, and clients are who they
say they are. See Section 4.2.1.2.

The discussion of these components in this chapter only scratches the surface. Consult the Appendix for references to
more detailed security-related documentation.

You may also consider using other Oracle Application Server components as you develop secure applications, such as
OracleAS Web Cache, OC4J, and OracleAS Portal. For information about OracleAS Web Cache, OC4J, and OracleAS
Portal, see Chapter 7, Chapter 6, and Chapter 13, respectively.

Figure 4-1 shows a typical Oracle Application Server security deployment architecture.

Figure 4-1. Oracle Application Server security deployment architecture

The Oracle HTTP Server shown in this figure relies on authentication methods that can restrict access to files and
services such as basic user authentication (and OracleAS Single Sign-On), client-supplied X.509 certificates, and
authentication by IP or hostname addresses. (Oracle Identity Management's role in authentication is described in the
next section.) The Oracle HTTP Server enables intrusion detection by logging authentication attempts. It also extends
the more generic Apache HTTP server through Oracle-specific mods such as the one for OracleAS Single Sign-On.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SSL connections are desirable in highly secure environments in which encryption and data integrity are mandated. SSL
connections rely on digital certificate authentication using the Public Key Infrastructure (PKI). (See Section 4.2.1.2.)
Because OracleAS Web Cache provides a caching front end to the Oracle HTTP Server and proxies requests to Oracle
HTTP Server where necessary, OracleAS Web Cache is typically the termination point for SSL connections. However,
OracleAS Web Cache can pass the contents of the SSL certificates to the Oracle HTTP Server for further use.

Additional advanced security mechanisms can be implemented with the Oracle HTTP Server. The SSL cryptographic
protocol protects data between the Oracle HTTP Server and web clients. Session renegotiation is supported in such a
way that different directories can have different degrees of encryption. Because SSL processing can consume a
significant portion of CPU resources, Oracle Application Server 10g allows for the use of external dedicated SSL
appliances to speed up the encryption process. SSL connections from the Oracle HTTP Server to OC4J are also
supported.

The security of J2EE applications using Web Services is usually dependent on the coding of the applications themselves.
But such applications can also be integrated as part of a more secure implementation using HTTP authentication, Oracle
Wallets (described in a later section), or the UDDI registry. Introduced in Chapter 1, UDDI is essentially a "Yellow
Pages" directory in which business entities can register themselves and the services they provide.

4.2.1 Oracle Identity Management

Oracle Identity Management provides user authentication, management, and authorization for Oracle Application Server
services. Specific components of Oracle Application Server, such as OracleAS Portal, OracleAS Forms Services, OracleAS
Reports Services, and OracleAS Discoverer, are designed to leverage Oracle Identity Management as well.

Oracle Identity Management includes the following services:

Oracle Internet Directory

An LDAP-compliant directory service for centralized user management that provides LDAP APIs for C, Java, and
PL/SQL.

Oracle Directory Provisioning Integration Service

A set of bidirectional services and interfaces that can notify applications and non-Oracle LDAP directories of
changes to user information. These services enable synchronization of the Oracle Internet Directory with other
repositories, non-Oracle directories, and metadirectories.

Oracle Delegated Administration Service

A part of Oracle Internet Directory providing trusted administration of directory information by users and
application administrators.

OracleAS Single Sign-On

A service providing OracleAS Single Sign-On access to applications accessed through Oracle Application Server
and other web applications.

OracleAS Certificate Authority

A service used for generating and publishing X509v3 certificates used in authentication based on a PKI.

The Oracle Internet Directory enables users to be defined by identity, credentials, profiles, and preferences in a single
and central location. All other Oracle Identity Management services rely on the Oracle Internet Directory to provide this
information.

As noted earlier, Oracle Identity Management isn't required for all Oracle Application Server deployments. For example,
a simple OC4J application might use other identity management services such as Microsoft Active Directory. In other
situations, you might choose to use the Oracle Internet Directory preconfigured for directory synchronization with
Microsoft Active Directory or other LDAP-compliant directories.

The challenge of managing multiple user accounts in a large organization can be mitigated
by using the Oracle Internet Directory for identity management. You can use the Oracle
Internet Directory to consolidate separated user definitions to a single location and also
synchronize passwords with non-Oracle Internet directories. For example, you can
synchronize the orclpassword attribute in the Oracle Internet Directory with the userpassword
attribute in SunONE/iPlanet.

Oracle calls this directory-based user management Enterprise User Security. It allows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle calls this directory-based user management Enterprise User Security. It allows
passwords to be maintained for application users in a central location. The identity
management infrastructure can also manage database roles and security clearances (for
use with the Oracle database's Label Security feature).

4.2.1.1 Oracle Identity Management and OracleAS Single Sign-On

Oracle Identity Management supports a variety of complex password policies. These fall into two categories:

Value-based policies (including minimum lengths and the presence of a minimum number of special characters)

 State-based policies (e.g., expiration and maximum number of retries)

Many users face a proliferation of passwords as they gain access to more applications and systems. Because it is so
easy for users to forget passwords when they have so many to remember, users may end up writing them down in
public places, thus creating a security risk. Oracle Identity Management can help lift this burden on users by enabling
deployment of single sign-on, allowing a single user and password combination across these applications and systems.

Follow these steps to set up a basic single sign-on system:

1. Install the identity management infrastructure database, database server, and single sign-on servers using the
Oracle Universal Installer.

2. Configure the HTTP servers in the single sign-on middle tier.

3. Configure the HTTP hardware load balancer or OracleAS Web Cache.

4. Configure the identity management infrastructure database single sign-on server to accept authentication
requests from an externally published address of the OracleAS Single Sign-On server.

5. Reregister the mod_osso (OracleAS Single Sign-On extension) to the OracleAS Single Sign-On middle tier.

Federated identities are supported in OracleAS Single Sign-On; these allow user identities to be authenticated from one
or more trusted authentication sources. Multilevel authentication is also supported and can grant higher privileges with
higher degrees of authentication through the use of certificates, which are described in the next section.

4.2.1.2 Certificates

Certificates are used in the authentication process to ensure that entities such as users, databases, and clients are who
they say they are. An OracleAS Certificate Authority (OCA) can grant a certificate that is signed by the OCA private key
and then publish the certificate with the entity's name and a public key. The certificate also usually includes information
about rights, uses, and privileges assigned, a serial number, and an expiration date.

Where data is encrypted using an owner's private key, it can be decrypted only with a matching public key. Similarly,
data encrypted using a public key (usually data to be shared with another entity) can be decrypted only with that
entity's matching private key.

The OracleAS Certificate Authority is critical to creating the public keys. The management of public keys is often said to
occur through a PKI.

4.2.1.3 Oracle wallets

You can use Oracle wallets as part of the enabling infrastructure in highly secure Oracle Application Server
implementations. A wallet is a password-protected container that stores private keys, certificates, and trusted
certificates needed by SSL.

Security managers can use the Oracle Wallet Manager to manage passwords, provide Triple-DES encryption for storing
private keys associated with X.509 certificates, store wallets in a Microsoft Windows registry, store X.509 certificates
and private keys in the PKCS#12 format, and store multiple certificates for each wallet (SSL, S/MIME signature, S/MIME
encryption, code-signing, and certificate authority signing). Wallets can be uploaded and retrieved from LDAP-compliant
directories.

4.2.2 Oracle Internet Directory

The Oracle Internet Directory is an LDAP-compliant directory service used for Oracle Application Server user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Oracle Internet Directory is an LDAP-compliant directory service used for Oracle Application Server user
management. The Lightweight Directory Access Protocol is a standard for directories of users and resources. As an
LDAP-compliant directory service, the Oracle Internet Directory can interact with other LDAP-compliant directories,
mentioned earlier in the description of the Oracle Directory Provisioning and Integration Service.

You may want to configure a highly available Oracle Internet Directory by deploying the Oracle Internet Directory
repository across multiple database instances in a RAC configuration. In such a configuration, multiple Oracle database
servers appear as a single instance. When you do this, you may also want to use a hardware load balancer as a front
end to the multiple Oracle Internet Directory instances. Using RAC and a load balancer can also provide a high-
availability OracleAS Single Sign-On service, or you can configure highly available OracleAS Single Sign-On using
failover to a standby machine or through Oracle Internet Directory replication.

If you build a RAC configuration, you should consider coordinating the issuing of certificates. For example, keeping
private keys in only one location is desirable for security. You can do this by storing the SSL certificate on a hardware
accelerator appliance. The SSL session key negotiation and symmetric encryption workload from the Oracle HTTP
Server or OracleAS Web Cache would also be handled on the appliance, resulting in better performance.

4.2.3 Java Authentication and Authorization Service

The Java Authentication and Authorization Service can ensure secure access and execution of J2EE applications. The
JAAS provider includes a Java standard framework and programming interface supporting user authentication,
authorization, and implementation of JAAS policies (permissions).

Two providers store users, roles, and JAAS policies:

XML file user manager

Supports role-based access control and authentication from XML files

LDAP user manager

Provides role-based access control and authentication using LDAP and the Oracle Internet Directory

J2EE applications can be integrated in an OracleAS Single Sign-On deployment model.

A J2EE application can use JAAS to restrict access to specific users based on the specific authorization permissions they
have been granted. For example, consider usage in a retail firm. A contract administrator determines which product
suppliers are allowed to deliver to retail store locations. The contract administrator user is given permission to use the
application to add suppliers and products to the database. JAAS enables authentication of the contract administrator's
login identification and the authorization needed to update supplier and product information. A store manager might use
the same application to monitor shipments from these suppliers to determine when to expect the arrival of inventory.
However, if that manager isn't permitted to negotiate contracts, he would not be given authorization to add suppliers or
products to the database.

For more information on JAAS and its use with OC4J, see Section 6.2.8 in Chapter 6.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Secure Deployment
To ensure security throughout your IT environment, you have to decide how you are going to deploy the components of
the overall environment. This section covers some of the considerations you need to keep in mind when implementing a
secure deployment of Oracle Application Server 10g, including the use of DMZs, the delegation of security privileges,
and the use of Oracle Enterprise Manager 10g to manage security.

4.3.1 DMZ Deployment

Oracle Application Server 10g enables deployment using a DMZ topology. In the context of computer networking, a
DMZ is a server placed between two firewalls and thus separated from the Internet and intranet(s). Its placement
means that the server exists in a secure buffer zone.

The word DMZ comes from a military term referring to a "demilitarized zone." DMZ was a
term used during the Korean War to indicate a no-man's land where troops residing in
North Korea and South Korea were not allowed to enter. The DMZ was a zone of security
created to prevent attacks or incursions from either side.

In one typical deployment, you might want to use a DMZ to separate an OracleAS Portal repository database from the
database containing business data. The DMZ prevents a hacker from gaining access to the OracleAS Portal password in
Oracle Application Server and then using the OracleAS Portal's DBA privileges to wreak havoc on corporate data. In
another typical deployment, you might use the DMZ topology for intrusion containment.

Figure 4-2 shows a typical DMZ deployment in an Oracle Application Server environment.

Figure 4-2. Oracle Application Server typical DMZ deployment

For details about DMZ deployment strategies, see the Oracle Application Server 10g Security Guide, a part of the
standard Oracle Application Server documentation set. (That manual, and many others, are referenced in the
Appendix.) In that guide, Oracle provides the following recommendations:

Make sure that all OracleAS Web Cache, HTTP servers, OracleAS Single Sign-On HTTP servers, HTTP load
balancers, and HTTPS-to-HTTP appliances reside in the DMZ.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

balancers, and HTTPS-to-HTTP appliances reside in the DMZ.

If direct Oracle Internet Directory access is needed from the Internet, place the Oracle Internet Directory
servers in the DMZ.

Don't allow J2EE servers to be directly accessible to the intranet. (Instead, place business logic behind a J2EE
firewall.)

Place databases containing metadata and the Oracle Internet Directory database behind a firewall in an
infrastructure DMZ.

Deploy OracleAS Portal on a single HTTP server with OC4J within the web server tier's DMZ; you can also
deploy OracleAS Discoverer, OracleAS Reports Services, and OracleAS Forms Services behind an OC4J firewall.

4.3.2 Delegation of Privileges

An Oracle Internet Directory infrastructure may be shared by administrators of applications in different business areas
or with different responsibilities. A delegation model provided in Oracle Application Server enables the delegation of
appropriate levels of privileges within a shared infrastructure.

Delegation is structured as follows:

The Oracle Internet Directory super user orcladmin creates an identity management realm, identifies the realm
administrator, and delegates all privileges to the realm administrator.

The realm administrator delegates roles for managing Oracle components and grants privileges associated with
those roles.

The context administrators, in turn, delegate Oracle Application Server roles.

Oracle Application Server user roles include installation administration, application administration, identity
management infrastructure administration, and Oracle Application Server application users.

4.3.3 Security Management Through Oracle Enterprise Manager 10g

Oracle Enterprise Manager 10g provides a single interface for managing multiple Oracle Application Servers through the
Application Server Control tool installed for each application server being monitored. We discussed Oracle Enterprise
Manager 10g, Application Server Control, and other system management tools in more detail in Chapter 3.

You can use Application Server Control for a number of different security management activities. For example, through
Application Server Control you can configure application security resources, including JAAS provider services. You can
also configure and modify the Oracle Internet Directory and OracleAS Single Sign-On. You can use the Application
Server Control Infrastructure page to change infrastructure services if you change the Oracle HTTP Server OracleAS
Single Sign-On port number on an identity management installation, the Oracle Internet Directory port number (non-
SSL or SSL), the Oracle Internet Directory Mode (dual-mode or SSL), or the host on which Oracle Identity Management
or the OracleAS Metadata Repository resides. If you do this, you must perform a variety of manual command-line tasks
to prepare the new infrastructure services before using Application Server Control to make the change (those tasks are
described in the Oracle Application Server 10g Administrator's Guide).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Oracle HTTP Server
The Oracle HTTP Server acts as the web server or listener for Oracle Application Server. Based on the Open Source
Apache Web Server (Version 1.3 code base), the Oracle HTTP Server is the heart of Oracle Application Server, directing
requests to the appropriate source for the requests. Requests for both static and dynamic content are processed
through the Oracle HTTP Server. Static content is served from the local file system, while the Oracle HTTP Server
redirects dynamic content requests to the appropriate executable resource.

Oracle isn't the first organization to use Apache as the web server component of their application server. Several others
have also used Apache. So why is Apache such an attractive choice for a web server?

Apache has an extremely flexible architecture; most of its functionality is provided by a set of plugged-in
modules, or mods. You can add any desired functionality to Apache by creating an appropriate module. Oracle
has created several custom mods for Oracle Application Server, as we'll discuss later in this chapter.

Apache has a very flexible configuration system. Directives specified in a set of text-based configuration files
are used to load any desired module and have it process requests using a variety of methods—for example, by
location, file type, or other indicators.

Largely because of its large installed base (more than 64% of all Internet web sites at the time of this writing),
Apache has become a very stable and secure web server. Combine this with the ability to leverage a large
existing Apache administrator workforce, and it makes sense to use Apache's existing code base as a basis for
the Oracle HTTP Server.

This chapter delves into the workings of the Oracle HTTP Server. It starts with an overview of the Apache architecture.
Next, it covers the modules Oracle bundles with the Oracle HTTP Server that aren't part of a standard Apache
distribution. It touches on how security and management services hook into the Oracle HTTP Server, and it finishes up
with a look at integrating third-party listeners with the Oracle HTTP Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Apache Architecture
Before examining how Oracle has extended the Apache server for use in Oracle Application Server, you need to take
some time to learn about Apache's basic architecture. The Apache architecture (prefork model) consists of a parent
process that starts one or more child processes (Unix) or threads (Windows). The child processes each serve a single
request at a time. When a child process finishes serving a request, it once again becomes available to serve another
request.

A child process manages a request through its life cycle. The request life cycle can be broken down into phases. Each
request is taken through the life cycle phases until the request is completed, or until an error occurs. Figure 5-1 shows
the Apache request life cycle. Apache functionality is provided by modules that are plugged into an appropriate phase of
the request life cycle.

Figure 5-1. The Apache request life cycle

Modules are typically plugged in using an AddHandler or SetHandler directive within a URL mapping directive in the Apache
configuration file httpd.conf. A module has hooks in the form of callback methods that are implemented for the desired
phase of the life cycle. The URL directive activates the handler based on a particular characteristic of a request's URI.

At the end of each request, Apache logs the request URI to an access log file. A different access log can be created for
each URL mapping directive you specify in the configuration file. In addition, you can customize the format with
directives or replace the logging mechanism altogether with the appropriate directive. If an error occurs, the error is
logged to its own error log file.

Tools exist that allow an Apache server administrator to analyze these logs for bad URLs, traffic patterns, and so on.
Using these tools, an administrator can eliminate bad links, plan server capacity, or identify malicious activity—to name
only a few possibilities.

To learn more about Apache, check out the Apache documentation available online at http://httpd.apache.org. You may
also want to consult the book Apache: The Definitive Guide (O'Reilly)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Oracle-Supplied Modules
Oracle supplies some key, additional modules that turn Apache into the Oracle HTTP Server. Oracle has also made
minor improvements to the code base in the area of security and other defect fixes.

The Oracle HTTP Server installs most but not all of the standard Apache modules. Those removed from Apache are
either deprecated or have something to do with authentication. OracleAS Single Sign-On has replaced the removed
authentication modules' functionality.

What About Apache 2.0?
Those of you who are Apache administrators may be asking why Oracle is using the Apache Version 1.3
code base and not the Apache 2.0 code base. The reason is that at the time Oracle Application Server
was first in the works (back in 2001), Apache 2.0 didn't even exist. Oracle decided to use Apache Version
1.3 because, at that time, "it proved highly reliable, secure, and had great performance
characteristics."[1] Apache Version 2.0 was released for production in April of 2002. Although it offers
improved performance and important new features (e.g., support for IPv6), Oracle has stated that it is
still "less reliable and has more security vulnerabilities than Version 1.3." Oracle's current plans are to
use Apache 2.0 on Release 10.0.4 of Oracle Application Server, provided that Apache 2.0 is appropriately
secure and defect-free at that time.

[1] A quote from one of Oracle's Statement of Direction documents for Oracle Application Server.

5.2.1 Third-Party Modules

Oracle includes the following third-party modules that aren't part of the standard Apache distribution:

mod_fastcgi
mod_perl
mod_jserv

The following sections briefly describe these modules.

5.2.1.1 mod_fastcgi

mod_fastcgi provides an efficient CGI environment that allows C, C++, or any executable program to run in a performant
manner. In a FastCGI environment, each program runs in a cached child process. This improves performance over the
CGI environment because it avoids the need to recreate a new process for each request.

Java and Perl programs can be run via CGI, but OC4J (described in Chapter 6) and mod_perl (described in the next
section) provide a better-performing environment for these two programming languages.

5.2.1.2 mod_perl

mod_perl provides an efficient and highly integrated Perl environment. Like FastCGI, mod_perl operates more efficiently
by caching Perl processes. Unlike CGI, mod_perl provides complete access to Apache's request life cycle API. This
capability allows mod_perl programmers to write both web applications and Apache modules using Perl.

5.2.1.3 mod_jserv

mod_jserv exists solely for legacy Apache Jserv support. Release 9.0.1 of Oracle Application Server used an Oracle-
modified version of Apache Jserv as its servlet container. Jserv has long since been replaced by OC4J; mod_jserv will be
discontinued with Release 10.1.2.

5.2.2 Oracle Modules

Oracle also has a set of its own modules that add functionality to the Oracle HTTP Server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_certheaders

Provides OracleAS Web Cache and load-balancing hardware SSL termination at the Oracle HTTP Server

mod_oc4j and mod_plsql

Provide dynamic content generation

mod_oradav

Provides Web Distributed Authoring and Versioning (WebDAV) support

mod_ossl and mod_osso

Provide security services

mod_dms , mod_oprocmgr, and mod_onsint

Provide Oracle Application Server management integration

5.2.2.1 mod_certheaders

mod_certheaders enables OracleAS Web Cache and other load-balancing hardware SSL termination at the Oracle HTTP
Server. This allows the Oracle HTTP Server to pass SSL information to the other modules. The information is passed
using HTTP headers and is then accessible as CGI environment variables.

5.2.2.2 mod_oc4j

mod_oc4j routes requests to OC4J using the ajp13 protocol. It allows Oracle Application Server to execute J2EE
programs in OC4J in response to a request's URI.

The Oracle HTTP Server uses a separate configuration file for mod_oc4j, appropriately named mod_oc4j.conf, that is
included into the Oracle HTTP Server's main configuration file httpd.conf. URL mapping directives in mod_oc4j.conf
determine which URI requests are forwarded to OC4J. In addition, mapping of context directories (how the URL is
mapped into OC4J) and protocol settings are also entered into mod_oc4j.conf. As with all Oracle HTTP Server
configuration files, mod_oc4j.conf is modified using Oracle Enterprise Manager Application Server Control.

5.2.2.3 mod_plsql

mod_plsql routes requests to an Oracle database. It executes PL/SQL stored procedures in an Oracle database in
response to a request's URI. A stored procedure used in this way is analogous to a CGI program or Java servlet.

mod_plsql has three configuration files:

cache.conf

Configures mod_plsql's PL/SQL cache

dads.conf

Contains URL mapping directives with connection information in the form of database access descriptors (DADs)
that are automatically used by mod_plsql to log into an Oracle database

plsql.conf

Contains directives to load mod_plsql and to set its logging location

The cache.conf and dads.conf files are included in plsql.conf, which, in turn, is included in oracle_apache.conf.
oracle_apache.conf is included in the Oracle HTTP Server's main configuration file httpd.conf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.2.4 mod_oradav

mod_oradav enables distributed authoring and versioning using the WebDAV protocol. mod_oradav can read and write files
to either the server's local file system or an Oracle database.

mod_oradav has one configuration file, moddav.conf. Directives in this file load the module and map a URI to either a
local file system directory or an Oracle database.

5.2.2.5 mod_ossl

mod_ossl provides Oracle SSL support. This module replaces the OpenSSL module mod_ssl. Oracle's implementation of
SSL supports SSL Version 3.0, based on Certicom and RSA technology.

5.2.2.6 mod_osso

mod_osso enables OracleAS Single Sign-On support. With OracleAS Single Sign-On, a user can use the same
authentication credentials to log into all applications supported by the same OracleAS Single Sign-On server.

5.2.2.7 mod_dms

mod_dms provides a hook into Oracle's Dynamic Monitoring Service. DMS measures runtime performance statistics for
the Oracle HTTP Server and OC4J.

5.2.2.8 mod_oprocmgr

mod_oprocmgr provides legacy support for Oracle-modified Apache Jserv (servlet container) and provides a hook into
DMS. It will be discontinued with release 10.1.2.

5.2.2.9 mod_onsint

mod_onsint provides a hook into the Oracle Notification Server (ONS), which is a component of the Oracle Process
Manager and Notification Server. OPMN starts, stops, and ensures that the Oracle HTTP Server and OC4J are up and
running. OPMN provides fault tolerance by restarting an Apache process if it fails.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Third-Party Listener Support
Oracle Application Server can also use two other web servers (listeners) besides Apache:

Java System Web Server (formerly Sun ONE Web Server)

 Microsoft Internet Information Server (IIS)

Oracle Application Server provides a proxy plug-in that allows you to transparently forward requests from these two
servers to the Oracle HTTP Server. In this setup, the Oracle HTTP Server acts as a reverse HTTP proxy server; it
receives and forwards a request to the appropriate content engine, but then points a redirect to the third-party listener.
The Oracle HTTP Server as a proxy server mimics the host address and port of these listeners so that the proxy is
completely transparent to any applications using the third-party listener.

Oracle Application Server also provides a lightweight single sign-on plug-in for these two servers. The plug-in is a
partial implementation of the OracleAS Single Sign-On module. It allows these servers to seamlessly integrate with
OracleAS Single Sign-On on the application server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Oracle Application Server Containers for
J2EE
The Oracle Application Server Containers for J2EE product provides the Java environment for the Oracle Application
Server. OC4J is a 100% pure Java J2EE Server. As such, it can use—and applications can be developed with—any
standard Java Development Kit (JDK). This standardization allows you the option of using the JVM that best leverages
your hardware platform. OC4J has J2EE-certified Servlet and EJB containers, and a JSP translator. OC4J provides all the
standard J2EE services such as session, transaction, and persistence management.

Table 6-1 lists the various J2EE APIs supported by the OC4J releases at the time of this writing.

Table 6-1. OC4J J2EE API support

 Release

API 9.0.1 9.0.2 9.0.3 9.0.4

Java Development Kit (JDK) 1.1 1.3 1.3 1.4

Enterprise JavaBeans (EJB) 1.1 1.1+ 2.0 2.0

J2EE Connector Architecture 1.0 1.0 1.0

Java Authentication and Authorization Service (JAAS) 1.0 1.0 1.0

JavaMail API 1.1.2 1.1.2 1.1.2

Java API for XML Parsing (JAXP) 1.0 1.1 1.1

Java Database Connectivity (JDBC) 1.1 2.0 2.0+ 2.0+

Java Message Service (JMS) 1.0.1 1.0.1 1.0.2 1.0.2b

Java Naming and Directory Interface (JNDI) 1.2 1.2 1.2

JavaServer Pages (JSP) 1.0 1.1 1.2 1.2

Java Transaction API (JTA) 1.0.1 1.0.1 1.0.1

Java Servlet 2.0 2.3 2.3 2.3

This information may be out of date by the time you read this, but the list demonstrates Oracle's commitment to
support the most current versions of J2EE APIs in a timely manner. If you're interested in knowing what J2EE APIs are
currently supported, go to the Oracle Technology Network web site at http://otn.oracle.com and look up the information
under documentation, application server, OC4J User's Guide.

As discussed in Chapter 2, OC4J can be clustered across hosts to provide almost unlimited horizontal scaling to satisfy
any level of demand. However, OC4J can also be configured with several instances on a host to ease the management
of applications, or to run as a lightweight standalone server for application development purposes.

A great deal of what we describe in this chapter is standard J2EE functionality. Nevertheless, we cover this functionality
to ensure that readers of all levels will be able to understand the added value the J2EE portion of Oracle Application
Server provides. In addition, this chapter covers Oracle value-added services, touches on server management,
discusses how deployment is supported, examines standalone configuration, and finishes up with the impact that
clustering the OC4J has on maintaining state in J2EE applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 OC4J Components
OC4J consists of three components:

A servlet container

An EJB container

A JSP translator

The servlet and EJB containers have access to a standard set of services provided by the J2EE architecture that are
managed by the server.

The following sections describe these components and the relationships among them.

6.1.1 Servlet Container

A servlet is a server-side Java program that extends the functionality of the application server in which it resides. A
servlet container is the server-managed environment for executing a Java servlet.

J2EE defines both a generic servlet and an extension called an HTTP servlet. An HTTP servlet has all the generic servlet
capabilities plus functionality specific to dealing with the HTTP protocol. HTTP servlets are the most common type of
servlet used in a servlet container because HTTP is the most common application-level protocol used on the Internet
today. When someone requests dynamic content from a Java application server such as OC4J using HTTP, the request
is most likely serviced by an HTTP servlet.

A servlet container manages the life cycle of a servlet as follows:

1. It loads any necessary class files from the host file system.

2. After class files have been loaded, it initializes the servlet. At any subsequent time that a request requiring the
servlet is received, the already loaded and initialized servlet is executed.

3. When the application server shuts down, the servlet instance is destroyed, and the memory it used is garbage-
collected.

A servlet is very performant because the same loaded and initialized servlet, already in memory, is used for each
request.

A servlet container also provides a set of standard services to a servlet. A common example is access to data sources,
which provide servlets with access to databases. Services are discussed in more depth later in this chapter.

The Hypertext Markup Language (HTML) produced by servlets to provide content for a web browser is sent to the
browser by calling an HTTP servlet method that streams output back to the browser. This mechanism implies that a
programmer writes Java code to produce web content. Creating web content in this Java-centric fashion may be well
suited to programmers, but not web designers. To enable web designers to create dynamic content, an alternate
method of designing servlets was created that is HTML-, not Java-centric. This alternative is called JavaServer Pages,
described in the next section.

6.1.2 JavaServer Pages Translator

A JavaServer Pages translator parses a JSP file, typically composed of HTML and Java code snippets and/or tags, and
creates a corresponding servlet. This servlet is then executed in the servlet container like any other servlet. The
difference here is that the source code in a JSP file consists of HTML with embedded Java code instead of Java code with
embedded HTML.

JSP also offers a means of using other markup languages such as Wireless Markup Language (WML) for mobile devices
or, better yet, XML. If XML is used, an XML technology called the eXtensible Stylesheet Language for Transformations
(XSLT) translates the markup into a suitable format for the device on which it's used: HTML for a web browser or WML
for a wireless device. See Chapter 10 for a discussion of XML and Chapter 14 for information about OracleAS Wireless.

6.1.3 Enterprise JavaBeans Container

An EJB container is a server-managed environment for executing EJBs. An EJB is a Java program that can be executed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An EJB container is a server-managed environment for executing EJBs. An EJB is a Java program that can be executed
as a component in a distributed fashion. A client program, a servlet, or another EJB can remotely execute the methods
in an EJB. An EJB can also be executed locally if it exists in the same application server as the calling servlet or EJB. The
EJB container provides transaction, security, and persistence management, as well as access to other server services
such as Data Sources.

In the J2EE architecture, an EJB can isolate business logic, represent a persistent entity, or process asynchronous
information feeds. Appropriately, there are three types of EJBs: session, entity, and message-driven.

Session bean

A session bean, or EJB, is used for business logic. A session bean can be stateful, or stateless. A stateful EJB
remembers its internal values between invocations, while a stateless EJB doesn't. A stateful EJB is typically used
to model complex business processes that require several steps to complete, whereas a stateless EJB is used
for simple, one-method invocation processes and computations.

Entity bean

An entity bean, or EJB, is used to model a business entity. It typically retrieves its internal values from, and
saves its values to, a relational database. Behavior that is intrinsic to the entity is modeled using its own
methods. (For some, which methods belong in the entity bean and which belong in a session bean that uses the
entity bean can be a source of confusion.) An entity bean can use container- or bean-managed persistence.
With container-managed persistence (CMP), the EJB container is responsible for creating and executing SQL to
retrieve and save values from and to a database. With bean-managed persistence (BMP), it's the programmer's
responsibility to write the required persistence code using JDBC, Java Data Objects (JDO), or a value-added
object-relational mapping tool such as TopLink.

Message-driven bean (MDB)

A message-driven bean, or EJB, processes a stream of asynchronous messages from a queue. The
asynchronous nature of messaging systems allows a client to post messages to a queue without waiting for a
response. In turn, it allows a message consumer, such as an MDB, to process messages from a queue
independent of a conversation with a client program. MDBs process messages delivered via the Java Message
Service (JMS) API. JMS provides an implementation-independent API for accessing messaging systems. One of
the strengths of MDBs is that they can process messages concurrently, providing a scalable means of handling
asynchronous information.

Transactions can be container- or bean-managed:

Container-managed transactions

In such transactions, the EJB container coordinates commits or rollbacks in a distributed fashion.

Bean (or component)-managed transactions

In such transactions, the component is responsible for its own transaction coordination.

In a similar fashion, security and persistence (as mentioned earlier) can be managed by the container or by the
component. When the container is responsible for these services, the programmer declaratively specifies the
appropriate parameters in a file called a deployment descriptor .

Whether exposing its configuration using a deployment descriptor, or being self-managed, an EJB exists as an
independent software component that can conceivably be mixed and matched with other components to build an
application.

6.1.4 OC4J Component Relationships

Figure 6-1 demonstrates the relationship between these three components and the services to which they have access:

1. A request is sent to the application server's Oracle HTTP Server. The request is identified as a servlet or a JSP
by its URI and is appropriately forwarded to OC4J.

2. The servlet, possibly generated by translating a JSP, may access an EJB or other OC4J container services, such
as a data source, to produce dynamic content.

3. The servlet, in turn, streams any generated content back through the Oracle HTTP Server to the browser.

Figure 6-1. OC4J component relationships

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-1. OC4J component relationships

OC4J provides access to the J2EE architecture's APIs and to Oracle's own value-added APIs by what it refers to as OC4J
Services. These services are described in the next section.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 OC4J Services
This section takes a high-level look at each service provided by OC4J to servlets and EJBs. Some of these are standard
J2EE services while others are Oracle value-added services. The OC4J services consist of the following:

Java Naming and Directory Interface (JNDI)

J2EE Connector Architecture

Java DataBase Connectivity (JDBC)

Java Message Service (JMS)

Remote Method Invocation (RMI)

Server-side HTTPS

Java Transaction API (JTA)

Java Authentication and Authorization Service (JAAS)

Java Mail

Java API for XML Parsing (JAXP)

Java Object Cache

We'll discuss JNDI first because it is often used to access other resources in the list.

6.2.1 Java Naming and Directory Interface

The Java Naming and Directory Interface provides Java programs with standardized access to various naming and
directory implementations. Within OC4J, servlets and EJBs can access global resources, such as Data Sources, and
environment variables defined in each servlet or EJB deployment descriptor with the default JNDI context. The OC4J's
naming mechanism is implemented using an XML file.

If a servlet or EJB requires access to an external directory, such as LDAP implemented by the Oracle Internet Directory,
the URI to the external directory can be specified as a parameter in the servlet or EJB's deployment descriptor, looked
up via JNDI using the default context, and then used to create a new context that accesses the external directory once
again using JNDI.

JNDI can access various naming and directory services using service provider interfaces (SPIs) to abstract the API for
the naming or directory service. This capability allows JNDI to use any desired naming or directory service. The service
can be enabled by configuring its SPI.

6.2.2 J2EE Connector Architecture

The J2EE Connector Architecture provides a standardized interface for J2EE applications to access existing Enterprise
Information Systems (EIS), such as Peoplesoft, SAP, mainframes, and so on. A Java program can access any EIS for
which a J2EE Connector implementation exists. A J2EE Connector is implemented in the form of a driver called a
resource adapter. A resource adapter is a driver that connects to and communicates with an EIS.

A JDBC driver is an example of a resource adapter that allows a servlet or EJB to connect to a database. However, the
JDBC API existed long before the J2EE Connector Architecture, and JDBC drivers are very commonly used, so they have
their own configuration facilities.

There are two types of resource adapters:

Standalone resource adapter

This type of resource adapter is globally available—that is, it is available to all applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This type of resource adapter is globally available—that is, it is available to all applications.

Embedded resource adapter

This type of resource adapter exists within a deployed Enterprise Application aRchive (EAR) file, available to the
components within an application, but not to other applications running on the same instance of the OC4J.

Resource adapters must abide by a set of quality of service contracts, which means that they must provide connection
pooling, transaction management, and security management as follows:

Connection pooling

Provides a way to efficiently allocate resource adapter instances by caching them in a pool. This ability allows
the connections to be checked out of a pool when needed, and then checked back in when they are no longer
needed. Connection pooling reduces the instantaneous workload (the number of resources in use at the same
time at both ends of a connection) on the OC4J and the host EIS.

Transaction management

Provides a facility whereby the resource adapter implements the Java Transaction API so that an EIS that is
being accessed can participate in a global distributed transaction.

Security management

Provides a facility whereby the resource adapter supports authentication, authorization, and secure connections.

In addition, resource adapters must support both component- and container-managed security. Component-managed
security is simple enough; all connection information is supplied programmatically. However, with container-managed
security, information such as sign-on parameters is specified declaratively in the application's deployment descriptor.

6.2.3 Java DataBase Connectivity

The Java DataBase Connectivity API provides Java programs with standardized access to tabular data sources. Modeled
after Microsoft's Open DataBase Connectivity (ODBC) API, JDBC was originally designed to access relational databases.
JDBC has evolved, as has ODBC, to handle any tabular data, including comma- and tab-separated values in operating
system data files. In addition, with the publication of the new SQL standard, SQL 1999, and Oracle's complete
implementation of the new SQL standard, Oracle's JDBC drivers now support even object-relational data.

OC4J supports both Oracle and non-Oracle JDBC drivers. For the Oracle database, the Oracle Thin (type 4) and OCI
(type 2) drivers are supported. For non-Oracle databases, Data-Direct (type 4) drivers for IBM DB2 UDB, Microsoft SQL
Server, Informix, and Sybase are provided with OC4J. It is entirely possible to use any JDBC driver, because the OC4J
is a standard J2EE server implementation.

Type 2 drivers are part Java and part operating-system executable code. Type 4 drivers
are 100% pure Java.

Access to JDBC is configured globally through Application Server Control, which in turn makes an entry in the global
data-sources.xml file. Configuration can also be made locally in a servlet, EJB, or enterprise application's deployment
descriptor. In addition, an application can be packaged with its own data-sources.xml file.

A servlet or EJB uses JNDI to look up and retrieve a DataSource at runtime. A DataSource is a JDBC object that represents
a logical JDBC connection to a tabular data source. A servlet or EJB manipulates the data in the host database through
the methods of objects created by a DataSource.

OC4J has three types of data sources (not to be confused with driver types):

Emulated data sources

Emulate the XA API without providing a full XA implementation. (The XA API is discussed later in Section 6.2.4.)
An emulated data source acts as though it supports JTA, but it doesn't support two-phase commits. This allows
the emulated data source to perform better than its nonemulated counterpart, yet still support local
transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transactions.

Nonemulated data sources

Provide full XA and JTA global transaction support. A nonemulated data source is recommended only for
distributed transactions because the additional overhead of full support can unnecessarily impede the
performance of transactions when full support isn't needed.

Non-JTA data sources

Provide no global transaction support.

OC4J supports the caching of data sources to efficiently allocate database resources and to improve application
performance. Three caching schemes are available:

Dynamic scheme

This scheme grows the pool of cached data sources as needed, and later it removes unused data sources when
they are no longer used. The minimum pool size can be configured so that data sources are already cached
upon startup of the OC4J instance in which they reside.

Fixed wait scheme

This scheme uses a maximum parameter to limit the number of data sources in a pool. When the limit is
reached, and a servlet or EJB requests a connection, it must wait indefinitely until another process returns a
data source to the pool.

Fixed return null scheme

This scheme works in a way that's similar to the fixed wait scheme, but instead of waiting indefinitely, it
immediately returns a null data source (effectively no data source) to the servlet or EJB if a data source isn't
available in the pool.

6.2.4 Java Transaction API

The Java Transaction API provides a standardized set of interfaces for managing a distributed transaction. Java
programs, such as EJBs, are intrinsically distinct components that are assembled into applications at deployment time.
You can define transaction scope between various EJBs and their methods in either of two ways:

Bean-managed transactions (BMT)

Transaction scope is defined programmatically during development in each EJB's deployment descriptor.

Container-managed transactions (CMT)

Transaction scope is defined declaratively at deployment time in each EJB's deployment descriptor.

OC4J, like any other J2EE-compliant EJB container, supports both bean-managed and container-managed transactions.
In addition, the OC4J supports two-phase commits. In the context of OC4J, a two-phase commit is a transaction that
involves two or more Oracle databases. In other words, when two or more resources involved in a transaction are all
Oracle databases, OC4J's two-phase commit process guarantees that all involved databases will commit or roll back a
given transaction.

6.2.5 Java Message Service

The Java Message Service provides Java programs with standardized access to enterprise messaging systems.
Messaging systems provide a persistent message queue: one or more programs can place messages on a given queue,
while one or more programs can retrieve or consume messages from a given queue.

A queue is what gives messaging products the ability to support asynchronous messaging, and asynchronous
messaging is, in turn, what makes enterprise messaging systems (EMSs) uniquely useful. An EMS provides guaranteed
execution (delivery) of messages, without incurring the waits that an otherwise synchronous procedure call would incur.
A servlet or session EJB can act as a JMS client message producer, able to place messages on a queue, or a
synchronous message consumer, while a message-driven EJB can act as a JMS client message consumer, retrieving
messages from a queue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages from a queue.

JMS provides two messaging models:

Point-to-point model

One message producer queues messages to one and only one message consumer.

Publish-and-subscribe model

One message producer queues messages to one or more message consumers.

OC4J provides a Resource Provider interface that allows you to transparently add JMS implementations to the server.
JMS resource providers are looked up using JNDI through the local context similar to JDBC resources. Just like JDBC
resources, JMS resources can be configured as standalone (available to all applications in an OC4J instance) or
embedded (available only to the application in which it is configured).

Oracle JMS (OJMS) is a provider that can be used to access Oracle Advanced Queuing, the Oracle database's enterprise
messaging system. Several third-party resource provider interfaces are also supplied that allow access to other
systems, including SonicMQ, SwiftMQ, and WebSphereMQ.

As of the OC4J Release 9.0.4, OC4J has its own messaging system, OracleAS JMS, also known as OC4J JMS. OC4J JMS
provides an in-memory and/or disk-based persistent JMS implementation in OC4J. With this addition, OC4J has become
a complete enterprise messaging system in and of itself.

6.2.6 Remote Method Invocation

Remote Method Invocation is the protocol used by client-side applications, servlets, and EJBs to remotely communicate
with EJBs. The remote communication is in the form of remote method execution. While RMI is a standard used by all
J2EE-compliant EJB containers, OC4J provides value-added protocol extensions.

As part of the EJB 2.0 specification, EJBs can be configured to use the CORBA RMI/IIOP (RMI over IIOP) protocol to
facilitate communication between EJBs deployed on different application servers. Using this form of component-to-
component communication allows you to deploy components on any tier, provide dynamic load balancing, and enable
horizontal scaling. However, the RMI/IIOP protocol doesn't support all these features when used with OC4J.

The default protocol used by OC4J is RMI/ORMI (RMI over Oracle RMI). Oracle RMI is a proprietary RMI implementation
that is highly optimized for use with OC4J. ORMI supports application load balancing and failover between OC4J
instances. ORMI also supports RMI tunneling. RMI tunneling enables EJBs to communicate through a firewall using the
HTTP protocol, which is passed unscathed through most firewalls.

6.2.7 HTTPS for Client Connections

Oracle HTTPS for Client Connections (Oracle HTTPS) provides an SSL infrastructure inside OC4J to support SSL
communication between the Oracle HTTP Server and OC4J, a client-side application program and OC4J, or a servlet
residing in OC4J acting as a client program accessing another servlet or web site using SSL. Oracle HTTPS supports the
following common cipher suites:

Key exchanges of 512, 768, or 1024 bits using RSA or Diffie-Hillman

Null, 40-, or 128-bit encryption using RC4 or DES

Message authentication using MD5 or SHA1

Oracle HTTP Server SSL certificates are managed with Oracle Wallet Manager (OWM). OWM can generate public/private
key pairs and certificate requests. A signed certificate request and the associated trusted certificate are added to OWM's
wallet to create a complete wallet. That wallet, in turn, can be exported to use in a Java SSL-based client-side
application.

OC4J's SSL certificates are managed using the JDK's keytool. keytool can also generate public/private key pairs and
certificate requests. A signed certificate request and the associated trusted certificate are added to OC4J's keystore
using keytool. Like OWM, keytool can export a client-side certificate.

Once signed certificates have been created for both the Oracle HTTP Server and OC4J, they can be exchanged to
provide SSL communication between the two server components. In addition, configured OC4J can use its SSL
configuration to enable SSL communication between a client-side application and OC4J or a servlet inside OC4J and
another SSL server.

6.2.8 Java Authentication and Authorization Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Java Authentication and Authorization Service is the Java implementation of the standard Pluggable Authentication
Module (PAM) framework. JAAS acts as a user-based adjunct to the Java 2 security model. In the Java 2 security
model, access control is driven by a set of privileges, called a policy, that are granted to a code base. A code base is the
location from which a Java program is executed.

With JAAS, code-base policies are effectively overridden by policies granted to a particular user logged into an
application. As its name suggests, JAAS provides a standardized set of APIs that facilitate user login (authentication)
and control over what a user may or may not do while logged in (authorization).

JAAS is a set of abstract classes that are implemented at runtime by a JAAS provider. OC4J supports JAAS with the
OC4J JAAS Provider (JAZN).[1] JAZN supports two provider types:

[1] Don't ask how they got JAZN out of OC4J JAAS Provider.

XML-based provider

This type of provider stores realm, user, and policy information in an XML file typically named jazn-data.xml
that is co-located with an OC4J instance.

LDAP-based provider

This type of provider uses LDAP to access an LDAP directory, such as the Oracle Internet Directory, where it too
stores realm, user, and policy information. The LDAP provider type is tightly integrated with OracleAS Single
Sign-On, which enables a user to use one user ID and password to log on to all applications.

A realm is a high-level identifier that organizes users, roles, and policies. Using an external realm, you can import users
from other systems: NT, LDAP, Unix password, DB, and so on.

Using JAAS requires program modifications; it isn't enabled transparently. First, an administrator must configure one or
more login modules, and a set of policies for an application. Next, a programmer must make minor code changes so
that affected class methods are called with a user's security policy instead of with the code base's policy.

OC4J has its own default login module, RealmLoginModule, but can be configured to use any JAAS-compliant login
module. JAZN can be configured programmatically or by using a components deployment descriptor. The JAZN user
manager handles authentication and authorization for OC4J. It can be configured through Application Server Control to
use JAZN-XML for the XML-based provider or JAZN-LDAP for the LDAP-based provider.

You can configure the XML-based provider's users, roles, and policy using the command line-based JAZN Admin tool.
You can configure the LDAP-based provider's users, roles, and policy using the Oracle Internet Directory's Delegated
Administrative Service (DAS).

Managing policy assignment by user can become quite cumbersome. To improve manageability, both provider types
support role-based access control (RBAC) by allowing you to create a principal (normally a user, but now a role name),
add a policy to that principal (a role), and then add other principals (users as members) to that role. Roles can also be
added to roles, effectively creating a role hierarchy.

6.2.9 Java Object Cache

Java Object Cache is an Oracle value-added service provided by OC4J that exists to improve the performance of Java-
based applications. Java Object Cache caches expensive-to-create or frequently accessed Java objects. Java Object
Cache is both a memory- and/or a disk-based cache. It is meant to complement OracleAS Web Cache where applicable.

With Java Object Cache, cached objects can be shared between servlets and EJBs. They can be invalidated—that is,
flagged as no longer cached—by the amount of time they have been present in the cache (time-to-live), by the amount
of time they have not been accessed (idle), or on demand.

Java Object Cache provides a flexible resource organization structure based on a top-level identifier called a region. A
region can be subdivided into more regions, appropriately called subregions. Each cached object belongs to one and
only one region or subregion. Groups can be created that combine regions for mass property manipulation or
invalidation of cached objects.

Java Object Cache also provides flexible management either programmatically or through its Java Object Cache
properties file. Java Object Cache can be configured as either a local cache or a distributed cache. A local cache is
available only to Java programs running in the same OC4J where the cache resides. When the Java Object Cache is
configured as a distributed cache, cached objects are available to all OC4J instances that are part of the same cluster.

Web Object Cache is an HTTP-centric object cache implementation that uses the Java Object Cache for its repository.
Web Object Cache is used solely with servlets (and JSPs that are actually servlets). It uses information from a servlet's
HTTPRequest object to automatically define regions in Java Object Cache.

See Chapter 7 for more information on Java Object Cache and Web Object Cache, as well as a complete description of
OracleAS Web Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Web Cache.

6.2.10 Other APIs

The previous sections briefly describe all of Oracle's officially designated OC4J services. However, keep in mind that all
Java APIs can be used in Oracle Application Server with the appropriate configuration. The servlet API exists as a way
to extend Oracle Application Server. Some of the other Oracle components available in Oracle Application Server are
themselves J2EE applications. Hence, using J2EE you have basically unlimited capability to create a server-side solution.

Note that we haven't touched on XML or Web Services in this chapter. These two topics are described separately in
Chapter 10 and Chapter 11, primarily because Oracle Application Server provides more than just Java support for these
areas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Application Deployment
Application deployment is the process of making a J2EE application available to end users on an application server.
OC4J can deploy a J2EE application in an EAR file or a WAR (Web Application aRchive) file. When deploying a WAR file,
OC4J automatically wraps a WAR file in an EAR file. OC4J provides a mapping mechanism so that differences in
deployment environments can be resolved during the deployment process. OC4J also supports application development
by accessing servlets and EJBs from an operating system directory without requiring OC4J-specific deployment
descriptors. The remainder of this section takes a closer look at how OC4J handles application deployment, starting with
standard J2EE deployment.

6.3.1 J2EE Deployment

J2EE applications are typically composed of JSPs, servlets, and EJBs. In a well-written J2EE application, each program
unit acts as a separate and distinct component. To facilitate the composition of components into a working application,
J2EE components have a descriptor file. A descriptor file exposes any configuration parameters, such as database
resources, so that they can be specified declaratively—that is, without changing a line of Java code.

EJBs are placed into a Java ARchive (JAR) file that contains the EJB, with any supporting custom classes, and a
deployment descriptor file named ejb-jar.xml. There is typically one JAR file for each session or message-driven EJB,
whereas a JAR file usually contains multiple entity EJBs because related entity EJBs must be co-located.

All servlets under a particular application context directory in a servlet container use the same deployment descriptor
file named web.xml; so do any JSP files that reside in the same application context directory because the JSP translator
automatically compiles them into servlets. The servlets, JSPs, any supporting custom class libraries, JSP tag libraries,
and the web.xml file are all placed into a WAR file; such a file facilitates deployment of a web application to another web
container.

To create an application that uses both EJBs and servlets, WAR files and any required EJB JAR files are placed into a
EAR file, along with an application deployment descriptor file appropriately named application.xml.

Applications are usually developed on one server, deployed on a second for quality assurance testing, and then
deployed on a third to put them into production. If the environments aren't exactly the same, how do you resolve the
differences? It is possible to make the appropriate changes to the individual J2EE descriptor files for the target
environment before archiving the files into a WAR or EAR file, but this is at best a deployment nightmare. Another
solution is for the host application server to provide a mapping mechanism during deployment. That is how OC4J solves
this deployment problem.

6.3.2 OC4J Deployment

In OC4J, each J2EE deployment descriptor has an OC4J-specific counterpart that can map a J2EE deployment resource
name to one that is available in the OC4J. Let's look at an example. Suppose that a data source defined on a
development server is named DefaultDS and that the appropriate entry in the web application's deployment descriptor
file, web.xml, references that name, yet on the production server, a dedicated data source named MyAppDS is defined
for the web application. You can map the J2EE deployment descriptor reference DefaultDS to the dedicated data source
name by specifying the mapping in the appropriate OC4J-specific deployment descriptor file orion-web.xml. Table 6-2
shows the relationships between the J2EE and OC4J specific deployment descriptor files.

Table 6-2. Deployment descriptor relationships
Type J2EE OC4J

EJB ejb-jar.xml orion-ejb-jar.xml

Web (servlet and JSP) web.xml orion-web.xml

Application application.xml orion-application.xml

Resource adapter ra.xml[2]
oc4j-ra.xml

oc4j-connectors.xml

[2] Supplied with the resource adapter

Using this mechanism, OC4J can deploy any J2EE-compliant application without having to modify its deployment
descriptors. Deployment mappings are specified during deployment using Application Server Control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.3 OC4J Development

You can use OC4J as a development environment to compile EJBs, servlets, and so on, in the server directory tree.
Doing so requires you to create a standard deployment directory structure and the appropriate J2EE deployment
descriptor files, and make a set of manual configuration changes through Application Server Control.

If you create a separate development instance for each development project, you can restart OC4J quickly, without
incurring the wrath of developers who may be working on other projects. When using OC4J as a development
environment, your application's response times will be slower because nonarchived classes are loaded as-needed,
whereas archived classes (that is, classes in JAR files) are cached in memory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Standalone J2EE Server
While OC4J is normally installed as part of Oracle Application Server, it can also be installed as a standalone J2EE
server. This is ideal for creating a lightweight development environment. One member of a development team can
install OC4J standalone on his personal computer to produce a fully functional workgroup development environment.
Other members of the team can work directly in a development directory, storing and compiling their Java code in
place.

When ready, the completed J2EE application can be packaged from the development directory and deployed on a
complete Oracle Application Server installation acting as a quality assurance server for testing, then later moved to a
production environment. Using OC4J in this fashion gives a development team a great deal of control over their
development environment, while not requiring a great deal of expense to duplicate a production J2EE environment.

Oracle provides an OC4J standalone download available on the Oracle Technology Network (OTN) web site for just this
purpose. You can download OC4J along with its OC4J Standalone User's Guide. As stated earlier, it can be run with any
JDK of the appropriate version. This also makes it possible to develop a J2EE application on any platform that supports
Java, not just on platforms that support Oracle Application Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Clustering
Clustering OC4J instances allows Oracle Application Server to solve both hardware and software reliability and
scalability problems. Oracle Application Server can group two or more OC4J instances into a cluster, whether or not
they reside on the same host. Clustered OC4J instances appear to the outside world as one application server, providing
high reliability and almost unlimited scalability.

Various load-balancing mechanisms are available to direct incoming requests between clustered OC4J instances. If one
clustered instance fails, another picks up where it left off, using the appropriate load-balancing mechanism. Clustering
OC4J instances across hosts solves both the hardware and software reliability problems. The bulk of what clustering is
and how it is employed in Oracle Application Server was covered in Chapter 2, but a few relevant J2EE issues are
discussed in this section.

OC4J provides stateful failover for clusters via HTTP session object and EJB state replication. This means that each
user's session, and each EJB's state, is replicated between OC4J instances.

The HTTP session objects in a web (servlet) container are selectively replicated across all OC4J instances that are part
of the same cluster and processes that are part of the same island. An OC4J island is a way to group one or more OC4J
JVM processes. Rather than having to replicate HTTP session objects among all OC4J processes (which can be very
resource-intensive), islands allow selective replication. This fine-grained control prevents replication within a cluster
from degrading OC4J's performance.

EJB state replication is handled differently. Because of the nature of EJBs—they are all independent components—EJB
state is replicated between all OC4J instances in a cluster. There is no fine-grained replication control mechanism.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Caching
For users, performance is the most visible aspect of any IT solution. Developers must make sure that the applications
they build provide users with the functionality they need. Unfortunately, if those applications can't achieve adequate
performance, the developers' efforts aren't judged as successful. Consequently, the search for ways to improve
performance never ends.

Oracle Application Server includes three different types of caches that play a role in improving the overall performance
of the product:

OracleAS Web Cache

An in-memory cache for web content of all kinds, including static pages, dynamic pages, and pages assembled
from both static and dynamic content.

Java Object Cache

A cache for frequently used or expensive-to-create objects used by a particular Java application.

Web Object Cache

A Java Object Cache implementation used for HTTP-centric Java objects.

All three caches improve performance in the same way—by making commonly used data available more rapidly. This
chapter describes the architecture and use of each cache.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 OracleAS Web Cache
OracleAS Web Cache is the primary caching mechanism provided with Oracle Application Server. An OracleAS Web
Cache instance sits in front of one or more Oracle HTTP Servers, as described in Chapter 2. The responses to all
requests directed to the Oracle HTTP Server through OracleAS Web Cache can be cached in OracleAS Web Cache, which
means that this cache can handle any web content transmitted with the standard HTTP protocol. Thus, OracleAS Web
Cache works with Oracle Application Server as well as with any other HTTP application server.

Web Cache can also act as a load balancer for multiple instances of Oracle Application Server, and it provides some
high-availability features as well. By caching selected request responses, OracleAS Web Cache reduces the load on the
application server. The load is reduced because cached content no longer needs to be regenerated. CPU cycles and
other resources are thus freed, thereby improving performance for those items that can't be cached.

OracleAS Web Cache was designed to work on low-cost machines. Because OracleAS Web Cache works as an in-
memory cache, its capabilities are more dependent on addressable, available memory than they are upon CPU speed or
number of CPUs. OracleAS Web Cache was designed to use two processors. Oracle's own My Oracle site, for example,
uses a pair of two-way Intel machines as its own OracleAS Web Cache cluster.

7.1.1 Basic Principles

OracleAS Web Cache is a server accelerator. OracleAS Web Cache instances act as a front end cache for pages, content
fragments, and other objects coming from one or more application servers. OracleAS Web Cache can also be used with
third-party web servers, such as BEA's WebLogic or IBM's WebSphere.

In the simplest case, a web server delivers static pages in response to a client request. In this case, the server retrieves
a page from disk. For many sources of web content, however, the case isn't nearly so simple. A page may be based on
dynamic content, changing either with time or because of the characteristics of the user who has made a request. A
page may even be assembled from several sources of content, which can individually be either static or dynamic.

A database uses a memory cache to hold frequently used data, allowing for faster retrieval. OracleAS Web Cache does
the same thing with web pages and, more importantly, portions of web pages. This second capability expands the scope
of potential performance improvement.

Many web pages are customized: a simple page contains common elements as well as portions specific to the user or
the situation. For instance, the home page for an application is largely the same for all users, but may contain special
greetings or messages for a particular user. OracleAS Web Cache can assemble the page from different fragments,
providing the performance improvement of a memory cache everywhere content is reused.

Several other components of Oracle Application Server may also use OracleAS Web Cache to improve performance:

OracleAS Portal

OracleAS Portal comes with a set of predefined caching and invalidation rules.

OracleAS Discoverer

OracleAS Discoverer content can be cached by OracleAS Web Cache.

Oracle AS Wireless

OracleAS Wireless content can also be cached by OracleAS Web Cache. Note, however, that OracleAS Web
Cache is used by the OracleAS Wireless server as a repository for content, rather than as a front end, which is
the role it plays for normal HTTP requests.

eBusiness Suite

Portions of Oracle's eBusiness Suite are also supported by OracleAS Web Cache.

OracleAS Web Cache also supports a variety of security configurations including HTTPS communications between a
browser and itself and between itself and origin servers, as well as redirection for an OracleAS Single Sign-On server.
OracleAS Web Cache can also communicate with client programs that use client-side SSL certificates. In this case,
OracleAS Web Cache forwards the certificate information in special HTTP request headers, which are then used by the
Oracle HTTP Server for authentication.

OracleAS Web Cache can provide scalability and high availability in several different ways.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Web Cache can provide scalability and high availability in several different ways.

OracleAS Web Cache provides rapid response by being able to cache both static and dynamic content, allowing
pages to be returned directly from OracleAS Web Cache without having to access the originating application
server. This rapid response allows the cache to provide support for more users.

If a request comes in that can be satisfied directly from OracleAS Web Cache, there is no need to go to the
application server for the content. In this scenario, OracleAS Web Cache provides availability even though the
application server may be unavailable.

If OracleAS Web Cache can't contact the required web server (known as the origin server in this context), the
instance returns a standard apology page. This page can be modified, but it can contain only static HTML. If you
want to include other elements, such as an image or a company logo, you can designate another HTTP server to
serve up these images and embed the images in your apology page.

OracleAS Web Cache can load-balance for multiple application servers, increasing the scalability of the overall
site.

OracleAS Web Cache instances can be clustered, with each cache instance providing failover for other cache
instances as well as scalability for the entire OracleAS Web Cache.

The following subsections describe how OracleAS Web Cache handles incoming requests and the various topologies that
can be used for OracleAS Web Cache and their implications. We also cover the basics of how OracleAS Web Cache
moves content out of the cache with invalidation; how OracleAS Web Cache handles static, dynamic, and partial pages;
administration of OracleAS Web Cache instances; and other features of the product.

7.1.2 How It Works

OracleAS Web Cache sits in front of a web server, as shown in Figure 7-1. The web server here is referred to as an
origin server. The web server could also be a proxy server used to access content outside the firewall.

Figure 7-1. OracleAS Web Cache fulfilling user requests

When a request comes into an OracleAS Web Cache instance, it determines whether the request is for a site that uses
the instance. That information is provided by the Host request-field header from the request, the host portion of the
URL, or the src attribute of the ESI include tag, which is explained later in this chapter.

ESI stands for Edge Side Includes, an open standard specification for defining web-page
components for dynamic page assembly. More information on ESI is available at
http://www.esi.org.

If the request is for a document from a site that uses the instance, OracleAS Web Cache checks to see if the document
is in the cache. If OracleAS Web Cache can satisfy the request, it returns the page to the user. If it can't satisfy the
request, it requests the object from the application server after appending a Surrogate-Control response-header field to
the document. The application server returns the object to OracleAS Web Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the document. The application server returns the object to OracleAS Web Cache.

If the object is specified as cacheable, by either a caching rule or an attribute in the returned Surrogate-Control
response-header, the object is cached for future use. For pages that are constructed of page fragments, using ESI (as
described later), OracleAS Web Cache follows the same procedure for each fragment.

Once the document is available, OracleAS Web Cache returns it to the user. If the newly retrieved object is marked as
being cacheable, the object is placed in OracleAS Web Cache's cache.

The flow of logic for OracleAS Web Cache requests is shown in Figure 7-2.

Figure 7-2. Logic flow of requests to OracleAS Web Cache

Objects remain in the cache until they are either removed (because of demand for cache resources) or marked invalid,
as described later. If the total size used by OracleAS Web Cache exceeds a configurable percentage of the overall
memory available for the instance, OracleAS Web Cache will initiate a garbage-collection routine that will select content
to be removed. You might want to set the maximum size for any single cached object to avoid using up too much cache
memory too quickly.

OracleAS Web Cache lets you set a maximum size for any cached object. Any object that exceeds the specified size isn't
cached, regardless of how it is marked or how caching rules apply to it.

7.1.3 Topologies for OracleAS Web Cache

Earlier, Figure 7-1 showed a simple configuration for an OracleAS Web Cache instance, with a single OracleAS Web
Cache instance supporting a group of sites. OracleAS Web Cache can be on the same machine with multiple instances of
an application server. In this configuration, OracleAS Web Cache uses interprocess communication (IPC) to assign
requests to application server instances.

If, instead, OracleAS Web Cache is on a different machine, it uses HTTP to communicate with the origin server. In this
configuration, a single OracleAS Web Cache instance can communicate with multiple origin servers. OracleAS Web
Cache uses a connection pool for each origin server for faster communication with the server.

OracleAS Web Cache can work in several other topologies to provide additional features and benefits. Although
OracleAS Web Cache is primarily used for caching content, you can also use it as a load balancer that supports
application server failover. Three common OracleAS Web Cache deployment topologies include:

Use of OracleAS Web Cache to support load balancing and failover for multiple origin servers

Use of multiple instances of OracleAS Web Cache for load balancing and failover for OracleAS Web Cache itself

Use of multiple instances of OracleAS Web Cache in a cluster

Another set of topologies, known as hierarchies, is used for specific needs, such as geographic distribution of caching.

7.1.3.1 OracleAS Web Cache and multiple origin servers

The ability to support multiple application servers is built into OracleAS Web Cache's architecture. This capability allows
OracleAS Web Cache to load-balance requests across multiple application servers and to provide automatic failover
when an application server instance fails.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when an application server instance fails.

Sometimes, a web site is supported by more than one application server. In this situation, a single OracleAS Web Cache
instance can manage requests for pages from as many as 100 application servers, and load-balance among them.

OracleAS Web Cache automatically sends requests to the origin server with the most available resources. The quantity
of available resources for a particular origin server is determined by the workload and capacity for the server. The
workload is based on the number of active connections to the origin server. An OracleAS Web Cache administrator
establishes the maximum number of connections for each origin server. The available resources are determined by
subtracting the workload from the capacity. If all origin servers have an equal capacity, OracleAS Web Cache uses a
Round-Robin method to assign new connections.

If a connection request or a configurable number of read/write requests to an origin server fails, OracleAS Web Cache
considers the server unavailable. For an unavailable server, existing requests for documents return errors, but
subsequent requests to the server are failed-over to another origin server. The capacity of the failed server is assigned
to the failover server. Once the failed server responds to a request to a designated URL on the server, the server is
considered available, and capacity for the server is reassigned to it.

The operations we've described so far make sense for stateless requests; one origin server is as good as any other. But
what about stateful requests that depend upon earlier interactions with the failed origin server? Stateful transactions
require server affinity to emulate persistent connections to a server, such as for use with a shopping cart.

You can configure OracleAS Web Cache to perform stateful load balancing using session binding. Session binding
requires that the origin server use cookies and session IDs to indicate server affinity for a particular request. This is
done automatically by Oracle Application Server. Server affinity ensures that a stateful request will consistently return
to the server that is maintaining its state.

If a request requires a connection to a particular origin server, but that server is already
handling maximum capacity, the session binding for that request is disabled, and an error
message is returned to the user.

7.1.3.2 Multiple instances of OracleAS Web Cache

Multiple instances of OracleAS Web Cache can be used together, either in a cluster or in a failover configuration. In both
configurations, you can use a hardware load balancer in front of OracleAS Web Cache instances, as shown in Figure 7-3.
In addition, in both configurations, the load balancer recognizes a single logical OracleAS Web Cache and balances
requests across the instances.

Figure 7-3. Multiple instances of OracleAS Web Cache

OracleAS Web Cache can be configured to automatically restart an instance if a failure has been detected. If you have
installed OracleAS Web Cache as part of a complete Oracle Application Server installation, the Oracle Process Manager
and Notification Server monitors the health of an OracleAS Web Cache instance and performs the restart when
necessary. If you have installed OracleAS Web Cache as a standalone product, a watchdog process restarts the
instance. This process can be disabled if desired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance. This process can be disabled if desired.

You can configure a hardware load balancer to send only HTTP or HTTPS requests to an instance of OracleAS Web
Cache. For example, you might designate an OracleAS Web Cache instance to receive only HTTPS requests if you are
going to use some type of SSL accelerator hardware only on that machine.

You can use an L7 switch to route requests to OracleAS Web Cache or an origin server via the Application Layer (Layer
7) of the OSI model. This configuration might make sense if there are certain types of content that you don't want to
cache—for example, protected or transactional content—so you would want to completely bypass the OracleAS Web
Cache servers.

7.1.3.3 Clustering

Multiple instances of OracleAS Web Cache can also be combined into a cache cluster . A cache cluster uses the same
basic hardware configuration used for unclustered, multiple instances of OracleAS Web Cache, but it offers some
additional functionality as well.

A cache cluster is a group of cache instances that look like a single cache. A cache cluster still requires the use of a
hardware or software load balancer, as described earlier. All the instances in the cluster use the same common
configuration information, such as site definitions and caching rules, and receive the same invalidation messages.

In a cluster configuration, OracleAS Web Cache instances can periodically ping each other to determine whether they
are still alive, or can wait for either a connection request failure or a designated number of read and write request
failures to demonstrate that an instance is no longer alive.

You can dynamically add OracleAS Web Cache instances to an established cache cluster, although you do have to
restart the cluster for the new member to be included. Each member of the cluster is assigned a relative capacity, and
document ownership is distributed among the instances based on their relative capacity.

Requests are handled as follows for a cache cluster:

If a request comes into a cache instance for a document it owns, it works just like a single cache instance.

If a request comes into a cache instance for a document that is owned by another instance, the cache instance
passes the request off to the owning instance.

If a cache instance doesn't respond to a request for a document in a specified length of time, the requesting
instance assumes that the other instance has failed. When this occurs, the documents owned by the failed
instance are redistributed to the remaining instances according to their designated capacity.

In the last case, the other instances of the OracleAS Web Cache cluster periodically ping a specified URL for the failed
server so that they will recognize when the instance rejoins the cluster. When an instance rejoins the cluster, document
ownership is again redistributed according to the new relative capacities of the available instances. Keep in mind that
while document ownership is redistributed, document content isn't. The new instance will retrieve a document that it
now owns once the document is requested.

Although each document is owned by a single cache instance, the content may be needed by other instances. Once the
content is requested and returned to another instance, the requesting server caches the content itself, so future
requests to that server won't require a redirection. In this way, the same popular content may be contained in multiple
cache instances.

The upshot of this design is that the most popular objects in an OracleAS Web Cache cluster are most resilient to the
failure of an individual OracleAS Web Cache instance because popular objects typically reside in more than one instance
and don't have to be refreshed if one instance fails.

Some operating systems—for example, some flavors of Windows 2000 and Windows 2003—include the ability to load-
balance requests across nodes in an operating system-defined cluster. In such a configuration, the operating system
also recognizes node failure and uses automatic IP takeover in the event of a failure.

A cache cluster offers a number of benefits not provided by unclustered, multiple instances of OracleAS Web Cache,
including:

Increased scalability

Multiple instances of OracleAS Web Cache can be combined for greater caching capability, but without
increasing the number of content requests to the origin server.

Improved maintenance

Maintenance is easier because all members of a cache cluster share the same configuration, and one member
typically receives a single invalidation message. In addition, you can add members to, or remove members
from, a cache cluster without having to worry how it will affect management overhead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.3.4 Hierarchies

You can use hierarchies of OracleAS Web Cache in two basic configurations:

Remote Cache Deployment

One configuration of OracleAS Web Cache implements enterprise content delivery networks with Remote Cache
Deployment. In this configuration, OracleAS Web Cache can provide better response time by caching frequently
used content closer to the eventual user of the data, such as in a remote location or LAN segment, as shown in
Figure 7-4.

Figure 7-4. Using OracleAS Web Cache as Remote Cache Deployment

Edge Side Includes

A second type of hierarchy uses instances of OracleAS Web Cache on ESI providers (described later) and an
instance of OracleAS Web Cache on a subscriber machine, which assembles the ESI fragments into a web page.
This type of hierarchy is especially appropriate for an OracleAS Portal deployment, in which complete pages are
assembled from different sources. OracleAS Portal is described in detail in Chapter 13.

When you configure a cache hierarchy, the origin servers for the upstream caches, such as the ESI subscriber machine,
are the downstream instances of OracleAS Web Cache. If you can't specify a site definition for an ESI provider machine,
and there is a firewall between the subscriber instance and the unknown ESI provider, you must configure a proxy
server because OracleAS Web Cache uses DNS to locate undefined ESI providers.

7.1.4 Types of Caching

Three different types of information can be cached in OracleAS Web Cache: static HTML pages, dynamic HTML pages,
and page fragments.

7.1.4.1 Static page caching

For static pages, the use of OracleAS Web Cache is straightforward. If a document is cacheable, it is placed in the cache
until it becomes invalid, either through receipt of an invalidation message or after a request for the document comes in
and the caching rules indicate that it has expired.

Static pages are swapped out of OracleAS Web Cache if the cache becomes full, and the garbage-collection process
selects the page as a candidate for removal, as described earlier.

7.1.4.2 Dynamic page caching

Dynamic pages are pages that can have different content for different situations or different users. These pages can be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic pages are pages that can have different content for different situations or different users. These pages can be
generated using a variety of scripting and programming languages and modules. Examples include JSPs, Active Server
Pages (ASPs), PL/SQL Server Pages (PSPs), Java servlets, and CGI calls.

Sometimes these dynamic pages are completely unique. In these cases, OracleAS Web Cache would have to potentially
cache each individual page. Frequently, though, pages are very similar, with only some different areas. In some
scenarios, described in the following subsections, OracleAS Web Cache can substitute dynamic values or to recognize
when a page can be reused for multiple users.

In other scenarios, developers can combine some static objects with dynamic objects by caching portions of an overall
page.

7.1.4.2.1 Multiple versions for a single URL

Some web sites create different versions of the same page for different sets of users. These sites either use a cookie
with an identifying value or encode the value in the URL.

If a cookie is used, the value for the cookie is passed back from the origin server in the Set-Cookie response header,
which is stored with the document. When a subsequent request comes in with a value in the corresponding Cookie
request header, OracleAS Web Cache returns the appropriate page. OracleAS Web Cache can also use values in
request-header fields to determine which version of a page to return.

If appropriate, you can configure OracleAS Web Cache to ignore embedded URL
parameters when determining which page to return. This approach avoids the requirement
to cache every version of a web page with distinct URL embedded information, such as a
session ID. You can also configure OracleAS Web Cache to ignore POST body parameters,
as discussed in the next section.

You can use multiversion caching to support different cached pages for different types or groups of browsers. This
technique allows you to build in flexible pages for different browsers while still taking advantage of OracleAS Web
Cache.

7.1.4.2.2 Personalization in a page

You can specify personalization information in a web page with special OracleAS Web Cache HTML tags. When OracleAS
Web Cache receives a request for the page, the specified information is retrieved from a cookie, from a URL embedded
parameter, or from POST body parameters.

When you specify the attribute that will be used for personalization, you can also specify whether to return the page for
requests that are missing the attribute, or what to use in place of the attribute for pages missing a value.

7.1.4.2.3 Session-encoded URLs

Some web pages use session-specific information in internal hyperlinks. You can also configure OracleAS Web Cache to
substitute session values in hyperlinks that use session-encoded URLs. As with personalization attributes, you can
specify how OracleAS Web Cache should handle a request with missing session information.

7.1.4.3 Partial page caching

As mentioned earlier, some pages combine static objects, such as a page template and logos, with dynamic objects.
These pages use ESI tags to indicate where the dynamic objects are located on the page and where to get their
content.

ESI tags were originally introduced by Oracle and Akamai, and are on the standards track
for the World Wide Web Consortium (W3C).

OracleAS Web Cache can work with both include fragments, which are always fetched, and inline fragments, which are
identified with a unique name and can be reused by multiple pages without refetching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

identified with a unique name and can be reused by multiple pages without refetching.

OracleAS Web Cache can cache page fragments independently, with each fragment having its own validation rules. This
method allows OracleAS Web Cache to cache individual fragments, which can be used in many different pages. Each
fragment has its own set of validation rules; these rules can use the same information and logic as a rule for an entire
page. This separation means that an individual fragment doesn't have to be re-fetched every time a page requiring the
fragment is requested.

For instance, you can have the template and logos for a page cached indefinitely, the news for the day cached for
several hours, and stock prices not cached at all. By separating all these fragments into separate ESI fragments,
OracleAS Web Cache can intelligently refresh the fragments as appropriate. ESI tags can use XML stylesheets to
transform content into HTML.

When you configure the origin servers that OracleAS Web Cache will access, you can specify that the site is an ESI
provider only, which prevents browsers from accessing the site directly. You don't have to configure all sites that are
ESI providers. However, failing to configure an ESI provider site disables OracleAS Web Cache's capacity heuristics
capability, as we discuss in the next section. If there is a firewall between an ESI provider and a OracleAS Web Cache
subscriber cache, as described in Section 7.1.3.4, you must configure a proxy server to contact the ESI provider.

For ESI use in JSPs, a set of Java ESI tags, known as JESI tags, can implement ESI fragments more productively. JESI
tags will automatically create the surrogate control headers that are used by ESI fragments to determine caching
characteristics. By using JESI tags with JSPs, you can use JSP expressions for more flexible implementation of caching
rules.

7.1.5 Cache Invalidation

Caching is, of course, nothing new in the world of computing. Databases have long used caches to improve
performance. In a database cache, the database uses the concept of least-recently-used (LRU) to swap out blocks of
data when the cache becomes full.

In Oracle Application Server, OracleAS Web Cache performs the same type of operation when it becomes full, but there
are also other options for removing content from an OracleAS Web Cache instance. Some content stored in OracleAS
Web Cache changes frequently, while some rarely changes at all. To handle this breadth of "freshness," OracleAS Web
Cache lets you specify when content becomes invalid, which marks it as ready to be discarded from the cache.

Validation is the process of verifying whether an object in OracleAS Web Cache is still valid. Invalidation is the process
used to flag an object as no longer being available. Invalidating an object doesn't necessarily remove it from the cache.
Once an object is put into OracleAS Web Cache, it remains valid until it is marked as invalid.

There are basically two types of invalidation:

Predictable

This type of invalidation can be indicated with an expiration time, either in elapsed time or at a specific time.

Unpredictable

This type of invalidation occurs in response to some other event. Unpredictable invalidation can be implemented
with a message, as described later.

There are two ways to indicate that an object is invalid:

Policies

These are evaluated each time a request is made for an object.

Messages

These are sent to OracleAS Web Cache, either manually or programmatically.

If an object in OracleAS Web Cache is marked as invalid, the next request for the object causes OracleAS Web Cache to
fetch a fresh version of the object from the origin server.

Just as you assign validation rules to objects and groups of objects, you can mark objects
as noncacheable, which means that they are never placed in OracleAS Web Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These techniques are used for the OracleAS Web Cache instance itself to invalidate content. OracleAS Web Cache can
use HTTP validators, included in the browser request, to ensure that delivery of cached documents is appropriate.
OracleAS Web Cache compares the If-Modified-Since value with the value in the Last-Modified response-header field of
the cached document, or compares the If-None-Match validator with the ETag response-header field of the cached
document.

OracleAS Web Cache has its own set of caching rules (described later), but it can also accept caching directives, either
in the Surrogate-Control response-header field in the object returned from the origin server, or in the HTTP Cache-
Control header. If there is a rule in more than one of these areas, the Surrogate-Control rule overrides OracleAS Web
Cache rules, which override the HTTP Cache-Control header. If a Surrogate-Control response-header rule is used,
additional properties in the OracleAS Web Cache rule, such as compression, can be merged with the rule.

If you are using a hierarchy of caches, the top cache instance in the hierarchy receives the invalidation message and
then propagates it to the other downstream caches. If you are using cache instances in a cluster, you can choose either
to have a cluster member act as an invalidation coordinator (which propagates invalidation messages) or to send
invalidation messages to all members of the cluster.

Invalid objects are removed from OracleAS Web Cache by a garbage-collection process. This process runs when the
OracleAS Web Cache instance runs out of space. The garbage-collection process uses a heuristic algorithm to determine
which objects to remove, which takes into consideration the popularity of an object (how long it has been since the
object was requested), whether an object is invalid, and other considerations. An object is marked as invalid, based on
rules and messages, but it isn't discarded from the cache until a garbage-collection process is initiated by the load on
the OracleAS Web Cache instance.

7.1.5.1 Cacheability/invalidation rules

You describe the objects that an OracleAS Web Cache instance should cache by specifying caching rules. A caching rule
contains four properties:

Selector

Specifies the pages to which a rule applies. The selector contains a URL expression, which could be based on a
URL prefix, a file extension type, or a regular expression (for more extensive logical selection). It can also be
based on a URL or POST body parameter, or on a POST body expression.

Caching policy

Indicates whether the selected URL should be cached. You can also indicate whether the URL has an expiration
policy or whether it should be compressed. An expiration policy uses a time-based indicator, which can work on
the amount of time an object is in the cache, on the amount of time since an object was last requested, or on
information in the HTTP Expires or Cache-Control response fields.

Cache key policy

Defines what information OracleAS Web Cache uses to create a unique ID for an object. This ID is used to
retrieve the object from the cache for subsequent requests. This information can include the site name, the URL
of the object, the POST body expressions, the cookie names and values, and the HTTP request header name
and values.

Priority

Defines the order of use of the caching rules. If some objects aren't cacheable, this property specifies their rules
first to avoid excess overhead.

OracleAS Web Cache comes with some default caching rules, such as one used with OracleAS Wireless. If you don't
specify any caching rules, content isn't cached. Even if content isn't cached, OracleAS Web Cache can still be used as a
load balancer to multiple origin servers.

7.1.5.2 Invalidation messages

To invalidate an object by a message, an OracleAS Web Cache instance must receive an HTTP POST message from one
of two accounts—the administrator account or the invalidator account. Both accounts are set up at installation time and
can be modified with Web Cache Manager. These messages must be received on the invalidation listening port, which is
also configured at runtime.

The message contains information presented in XML that identifies the page to be invalidated. There are two types of
XML descriptions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML descriptions:

Basic

Lists the identifying URL

Advanced

Uses pattern and range matching to identify a number of different pages

Invalidation messages can be sent in a variety of ways, including:

Via Telnet

From OracleAS Web Cache Manager

Via application logic

From database triggers using Oracle's UTL_TCP built-in package

With scripting languages

OracleAS Web Cache ships with an API for invalidation messages for Java and PL/SQL. An invalidation message sent by
OracleAS Web Cache Manager can include a removal time, which must be later than the invalidation time. This time is
used for performance assurance heuristics, discussed in the next section.

If you use ESIs, you can invalidate fragments, based on the retrieval of another inline fragment. For instance, if one
inline fragment is invalid, you may want to indicate that the other fragments associated with the document are also
invalid.

OracleAS Web Cache sends an HTTP response for all invalidation requests. This response contains a status code
indicating the outcome of the request. The application that sent the request can use this information in its own logic.

7.1.5.3 Performance assurance heuristics

Objects in OracleAS Web Cache can be marked as invalid, as explained earlier, but a large number of objects can
become invalid at any one time. For example, a bulk application of changes to material used in an online catalog may
invalidate all the pages in the catalog. How does OracleAS Web Cache avoid impacting performance when it saturates
the origin server with requests for new versions?

The answer is that OracleAS Web Cache uses something called performance assurance heuristics . These heuristics are
used to create a queue for refresh requests. If the capacity of the origin application server is exceeded, OracleAS Web
Cache uses this queue to keep the number of requests to a more reasonable level. Requests are prioritized in the queue
based on two factors:

Levels of invalidation defined for the object

Popularity of the object

The concept of levels of invalidation is based on the concept of removal time. You can specify a removal time for an
object, which indicates how long an invalid object can stay in the cache before it is removed. The greater the time since
an object has been invalidated, the staler it is. There may be multiple levels of staleness.

For example, a web page may contain the following:

A logo, which is static

A news feed, which should be updated on a regular basis

An account balance, which must always be up to date

If OracleAS Web Cache determines that refresh requests are overwhelming the origin server, it can assemble the page
with a stale version of the news feed item, but not the account balance. The only real consequence of this decision for
the user is that it provides slightly older news content, while providing better performance for all users.

If objects are equally stale, OracleAS Web Cache uses popularity ratings to remove the least-requested object. In this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If objects are equally stale, OracleAS Web Cache uses popularity ratings to remove the least-requested object. In this
way, OracleAS Web Cache can smooth out the performance it delivers, regardless of the number of objects that are
invalid at any one time. In addition, you can use this feature to help address issues associated with surges of traffic. By
designating some content as acceptable for stale delivery, you allow OracleAS Web Cache to automatically throttle back
its requests as demand grows.

7.1.6 Compression

OracleAS Web Cache uses the standard GZIP compression algorithm to reduce the size of pages returned to the
browser (assuming that the requesting browser supports this type of compression). On average, OracleAS Web Cache
compression can reduce the size of compressed documents by 75%. A compressed document may contain both cached
and noncached elements, or may be a complete page that has not been cached. OracleAS Web Cache itself stores
content in a compressed format to save caching space.

If the HTTP header for a request indicates that a browser can expand compressed content, OracleAS Web Cache
compresses the content before returning it, reducing bandwidth requirements and potentially improving response time.
Most browsers have supported the GZIP algorithm since 1997. However, OracleAS Web Cache caches both compressed
and uncompressed version of objects, and returns whichever is appropriate.

You indicate whether you want content to be compressed by supplying the appropriate information in the cacheability
rules you specify to select the content. Because these rules allow the use of regular expressions for evaluating
cacheability, you can use the same flexible expressions to determine whether content is to be compressed. If the origin
server has already compressed content, OracleAS Web Cache recognizes this in the response header and does no
further compression.

If you are using a hierarchy of caches, you should configure the OracleAS Web Cache closest to the origin server to
compress content, and configure the downstream OracleAS Web Cache instances so that they don't compress. This
approach delivers the compressed content early on in the flow of the response, and consequently, the transmission
benefits over the greatest distance.

7.1.7 Administration

There are three ways to start an OracleAS Web Cache instance:

Through the command line, using the OPMN Server

Through OracleAS Web Cache Manager

Through Application Server Control

Of the three, OracleAS Web Cache Manager (shown in Figure 7-5) is the tool most often used to manage OracleAS Web
Cache instances. This tool is the interface to the management process for OracleAS Web Cache, which in turn must be
running to use the Manager.

Figure 7-5. Sample OracleAS Web Cache Manager page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use OracleAS Web Cache Manager to start and stop OracleAS Web Cache instances, administer invalidation or
rollover log files, monitor performance and activity, and configure OracleAS Web Cache instances. You can also use the
OracleAS Web Cache Manager to associate specific caching rules with URLs or sets of URLs. In addition, you can create
and view caching rules with this tool, as well as edit some of the attributes of the rules, such as expiration policies,
compression, and the content of HTTP request headers.

Most changes specified through OracleAS Web Cache Manager aren't applied until an OracleAS Web Cache instance is
restarted. However, some of the changes do take effect as soon as the changes are saved. Such changes include
setting levels of detail for the event logs, changing the buffering for event logs and access logs, enabling and disabling
the inclusion of diagnostic information in the HTML response body, and setting routing to origin servers.

OracleAS Web Cache Manager tracks whether other members of a cache cluster have a different configuration and
allows you to bring those members' configuration into conformance. Once you have matched the configurations, you
can restart all instances of a cluster with a single button push. You can also choose to stagger the restart of the
instance to reduce the impact on operations.

7.1.7.1 Monitoring OracleAS Web Cache

OracleAS Web Cache Manager can display a list of the most popular documents, based on the number of requests and
the most recently received requests. This list can be limited to either cached documents or noncached documents. You
can also get a listing of all documents in the cache at the present time, but this list is saved to a file.

To highlight potential performance improvements, OracleAS Web Cache Manager can give you a list of the most popular
documents that return cache misses, which provides the information you need to adjust caching rules to reduce the
number of misses.

OracleAS Web Cache uses an event log to record events and errors. Events include cache hits, cache misses, and
invalidations. Events can be recorded with details of the request that triggered the events, such as the IP address of the
browser that made the request and details about the site and URL of the request.

Event log files are periodically rolled over, with the old log file stored. Rollover intervals can be configured to once a
week, once a day, hourly, or never. Starting with Oracle Application Server 10g, you can set the level of detail in the
OracleAS Web Cache log.

OracleAS Web Cache Manager displays information about the overall health and operations of an OracleAS Web Cache
instance. The information includes health and utilization statistics for the instance, error and invalidation statistics,
requests for each origin server supported by the instance, and information about fresh and stale documents that have
been served from the cache.

For troubleshooting purposes, OracleAS Web Cache includes diagnostic information in the HTTP Server response-header
fields by default. If you choose to do so, you can have this information added to the response body.

7.1.7.2 OracleAS Web Cache and performance monitoring

In addition to the event log mentioned in the previous section, OracleAS Web Cache also keeps an access log, which
tracks information about HTTP requests sent to it. OracleAS Web Cache can be configured to use its access log to
determine user response times for HTTP requests because the access log includes information about the elapsed time
from a request to its response.

The access log can be analyzed through OracleAS Web Cache Manager and can be output into either an HTML file or a
comma-separated file for import into a spreadsheet or database. The access log can also be used more fully by Oracle
Enterprise Manager 10g's Application Service Level Management feature, which ships with Grid Control, a web-based
tool described in Chapter 3. ASLM helps administrators to understand the actual performance their end users are
receiving by tracking the time it takes for a response to an end-user request to be returned to the user. The OracleAS
Web Cache access logs are used to track time—from the time a request comes into OracleAS Web Cache until the time
the response is returned to the user. ASLM can't be used without these access logs, so OracleAS Web Cache contributes
substantially to the overall management capabilities of Oracle Enterprise Manager 10g.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Java Object Cache
OracleAS Web Cache improves performance by caching all kinds of content accessed via HTTP. Two other types of
caches, Java Object Cache and Web Object Cache (described in the next section), are used specifically to support Java
and web objects.

Java Object Cache is a service provided by OC4J. OC4J is the Java servlet, JSP, and EJB environment provided by
Oracle Application Server, and was described in Chapter 6. Similar to OracleAS Web Cache, Java Object Cache allows
the selective caching of content. However, Java Object Cache caching is performed within OC4J before content is
generated by Java code. Java Object Cache also provides disk, pool, and stream-accessed caches in addition to a
memory cache.

Figure 7-6 illustrates Java Object Cache's use in OC4J. An HTTP request to a servlet or JSP in the web container, or an
RMI request to an EJB in the EJB container, can access a cached object in Java Object Cache. The object in the cache
can be loaded by a cache loader class that, in turn, can retrieve virtually any information it needs from any source.

Figure 7-6. Java Object Cache architecture

7.2.1 Basic Principles

Java Object Cache exists to cache frequently accessed or expensive objects created by Java code. An expensive object
is one that requires a significant amount of CPU resources or a great deal of time to generate. Any Java object type can
be stored in Java Object Cache.

A programmatically defined hierarchy of namespaces, called regions, organizes Java Object Cache. Typically, a region is
created for each application. Then one or more subregions are defined for each part of an application that uses the
cache. Regions or subregions can be combined to create a group. Groups allow multiple regions to be manipulated at
the same time.

Java Object Cache can cache objects in four ways:

You can place objects in memory.

You can place objects on disk. OracleAS Web Cache, in contrast, stores objects only in memory.

You can access objects through a pool mechanism.

You can access objects using streams.

Objects may be placed in the cache automatically by an implementation of the CacheLoader class, or programmatically
using the CacheAccess class. The following subsections expand on this very high-level view of Java Object Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using the CacheAccess class. The following subsections expand on this very high-level view of Java Object Cache.

7.2.2 How It Works

As mentioned earlier, Java Object Cache is organized by regions, subregions, and groups. Regions define a namespace
within the cache. If a region isn't specified, the default region is used.

The first step in using the cache is to define a top-level region, which is typically the name of an application. Once a
top-level region has been created, that region can be further subdivided into subregions. A subregion can also be
divided into additional subregions, creating a hierarchy of regions, as shown in Figure 7-7.

Figure 7-7. Java Object Cache organization example

One or more regions or subregions can be placed into a group. A group definition allows you to apply caching attributes
or to invalidate cached objects for the regions in a group. A region (or subregion) can be a member of only one group
at a time.

Figure 7-7 demonstrates a possible organization for Java Object Cache. In this case, the application is called MyApp. It
has several servlets, MyServlet1, MyServlet2, and MyServlet3. The cache is organized by creating a top-level region
MyApp. The region is subdivided into three subregions using the names of the servlets. This creates a set of
namespaces in which objects that need to be shared between servlets can be stored in region MyApp, while objects
specific to a particular servlet are stored in the servlets' own region. A Servlets group has been created that groups the
servlet subregions; this grouping allows all the servlet caches to be invalidated at once.

7.2.3 Types of Caching

Four types of cache mechanisms exist for Java Object Cache: memory, disk, stream access, and pool. You can select
the mechanism that best fits your needs and the resource constraints (e.g., available memory and disk space) of your
system. Methods exist that allow you to update any cached memory, disk, or stream access object.

Figure 7-8 shows the relationship between the four cache types, described in the following paragraphs.

Figure 7-8. Java Object Cache: cache types

Memory cache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory cache is stored in the JVM's heap. This is the fastest form of cache, but only if there is enough real
memory on the host server so that the operating system isn't required to use its virtual memory mechanism
that swaps its real memory to disk. If the cost of creating a memory cached object is significant, you can
configure the cache in such a way that it saves the object to disk if it is invalidated, then retrieves it from disk
when it is needed. Memory cached objects can be updated by obtaining a private copy of an object, updating it,
and then explicitly placing the object back into the cache.

Disk cache

Disk cache is stored in a designated local operating system directory. While not as fast as memory cache, disk
cache has some advantages. Any object that requires a significant amount of CPU processing time or that
requires a great deal of time to retrieve resources to create, can be cached to disk, eliminating the cost of
recreating the object. A LRU algorithm is used, which deletes disk objects when space is needed. Like a memory
object, a disk object can be updated by obtaining a private copy, updating it, and then explicitly placing it into
the cache.

Stream access and pool are special cache types that use the memory cache, the disk cache, or both:

Stream access cache

Stream access cache solves the problem of dealing with very large objects. This type of cache is accessed using
the Java classes OutputStream and InputStream. Class OutputStream places an object into this type of cache, while
InputStream accesses an object. Stream access cache objects are automatically loaded into disk cache. How a
stream access object is actually stored is transparent to the application using the cache. Java Object Cache
determines the best storage method—memory or disk. This determination is based on the size of an object and
the available resources in Java Object Cache. Streams can typically access very large objects one small chunk
at a time. Such objects would otherwise require a significant amount of memory to materialize all at once.

Pool cache

Pool cache solves the problem of managing a pool of identical resources. Pool cache is accessed through a
check-out/check-in system. A pool object contains a collection of like objects. An application-defined factory
object creates objects for the collection. The cache provides a minimum and maximum pool size mechanism
that allows you to create an initial minimum number of objects in a pool and to set a maximum number of
objects allowed in a given pool. A pool cache can also allocate shared resources such as a custom resource
adapter.

7.2.4 Cache Initialization

An object can be placed into one of the four cache types automatically using a CacheLoader object or explicitly using the
CacheAccess.put() method. Because placing objects in the cache is done programmatically, doing so can be coordinated
between processes.

When a cache region, subregion, or group is defined, it is given a set of default attributes. These default attributes, in
turn, become the defaults for an object placed in the cache at that location. The default attributes can be overridden
with object-specific attributes at the time an object is cached. Some attributes must be defined when an object is stored
in the cache, while others can be modified after an object is already in the cache.

An object can be loaded automatically by setting its LOADER attribute to an instance of a custom CacheLoader class at the
time the object is defined. You create a custom CacheLoader class by extending the CacheLoader class, overriding its load(
) method. Then, whenever the object is accessed, if it doesn't already exist in the cache, Java Object Cache uses the
custom CacheLoader to load the desired object into the cache.

An object can be explicitly loaded using the CacheAccess.put() method. This requires you to create the object, and then
pass it to the cache as a parameter of the put() method. There are drawbacks to explicit loading; in particular, you will
have to detect and reload the object explicitly if it is invalidated. An event-handling mechanism, the interface
CacheEventListener, exists to help with this cache management issue.

After an object is defined by including a LOADER attribute or is placed into a cache explicitly, it can be accessed using
the CacheAccess.get() method. However, two factors affect its visibility within an application:

The Java class loader (not the cache loader) used to load the classes placed into the cache

The value of the DISTRIBUTE attribute

Where a particular class loader exists in the class loader hierarchy determines the visibility of the objects it loads. For
an object to be visible in both the web and EJB containers, or even shared between servlets (and JSPs), a system class
loader (not a servlet class loader) must load it. This means that any classes used for objects that will be cached in Java
Object Cache and shared between servlets, etc., must be placed on a class path that is available to the application
server, not just to a web application in a web container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server, not just to a web application in a web container.

A cached object's DISTRIBUTE attribute determines whether the object is replicated across clustered instances of OC4J.
If OC4J is clustered, and if Java Object Cache is configured as a distributed cache, any object that has the DISTRIBUTE
attribute set will be replicated to each instance of OC4J and will therefore be accessible to all.

7.2.5 Cache Invalidation

Invalidation is the process used to flag an object as no longer being available. Invalidating an object doesn't necessarily
remove it from the cache. An invalidated object remains in the cache until the resources it has in use are required by
Java Object Cache to cache another object. If an object that is currently invalidated is requested, it will be reloaded if
its LOADER attribute is set, or it will throw a CacheException error.

Cached objects can be implicitly or explicitly invalidated:

Implicit invalidation

Implicit invalidation takes place automatically if you have set a time attribute. Two attributes control time
invalidation: time-to-live and idle time. You can set the time-to-live or idle time by calling the appropriate
method when an object is defined or after it has been placed into the cache. When the time-to-live expires, or
when the idle time is reached, the associated object is invalidated.

Explicit invalidation

An object can be explicitly invalidated by calling the CacheAccess.invalidate() method. An object can be removed
from the cache altogether by calling CacheAccess.destroy() instead of invalidate().

You can set invalidation rules for entire regions, subregions, or groups by setting the time-to-live or idle time attributes
for the desired organizational unit. You can also explicitly invalidate a region, a subregion, or a group.

7.2.6 Cache Management

Java Object Cache's global configuration is managed manually by setting properties in its configuration file, or
programmatically using the Cache class. Unlike OracleAS Web Cache, Java Object Cache isn't managed via Application
Server Control or DCM. Either the manual or the programmatic method allows you to specify the cache's memory size,
its disk size and location, the cache cleanup interval, and other attributes, as well as to configure the cache as a local or
distributed cache.

The contents of a local cache are available only to programs run on the OC4J instance where Java Object Cache resides.
When a cache is configured as a distributed cache, its contents are replicated to every other distributed Java Object
Cache in the same cluster. Using a distributed cache requires a great deal more resources, so it may make more sense
to use a local cache even in a clustered environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Web Object Cache
The third type of Oracle Application Server cache, Web Object Cache, is used specifically to support web objects. Web
Object Cache is an HTTP-centric Java object caching service for servlets and JSP, provided by the OC4J. We refer to
Web Object Cache as HTTP-centric because it typically uses information from the servlet request object,
HttpServletRequest, such as the URI, query string, and cookies, to automatically formulate a name to use for storing and
retrieving objects in a Java Object Cache.

Web Object Cache caching takes place within the OC4J web container before any content produced from a servlet or
JSP is sent. Web Object Cache is best used for expensive-to-create or frequently used Java-generated objects. It isn't a
substitute for OracleAS Web Cache, in which rendered content is cached and distributed outside of OC4J. Instead, use
OracleAS Web Object Cache only to cache sections of content that need to be merged within an OC4J servlet. Outside
OC4J, on the other hand, ESI can be used in OracleAS Web Cache.

A Web Object Cache Java API exists for use in servlets, and a Web Object Cache tag library exists for use in JSPs. A tag
library is a set of custom tags that effectively extends the tags available when creating a source file such as an HTML
file. These tags are preprocessed by a JSP translator, resulting in a servlet that is then compiled and executed.

Java objects are stored in Web Object Cache using block names. Cache policies determine block naming, as well as
expiration rules. These policies can be specified declaratively in a policy descriptor file or programmatically using the
API or tag library.

To use Web Object Cache effectively, you must split web pages into blocks so that appropriate parts of dynamically
generated page content can be cached to improve performance.

7.3.1 Basic Principles

Web Object Cache consists of two components:

Programming interfaces

These interfaces consist of the Web Object Cache servlet API and the Web Object Cache JSP tag library.

Java object repository

This repository has two possible implementations: Java Object Cache or File System Cache.

The API and the tag library (which uses the API) can be used to programmatically set block naming and expiration
policies. In addition, the API offers a set of general-purpose cache storage and retrieval methods. The tag library
further abstracts these into specific tags for storing and retrieving String, XML DOM, and serializable Java object types.
The tag library also offers an include mechanism that uses Web Object Cache cached content. Web Object Cache
provides a special interface class, CloneableCacheObj, which allows the API to completely clone copies of variables to
solve the problem of a shared item's being inappropriately modified by multiple users of the item.

The repository used by Web Object Cache can be of any appropriate implementation. As mentioned, two
implementations exist:

Java Object Cache

This cache, described earlier in this chapter, provides both a memory- and a disk-based caching mechanism.

File System Cache

This cache is strictly a disk-based caching mechanism.

7.3.2 Cache Organization

When items are cached, they are given either an implicit or an explicit block name:

Implicit block name

Implicit block naming, the default, is controlled by attributes of a CachePolicy object. Block naming attributes can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implicit block naming, the default, is controlled by attributes of a CachePolicy object. Block naming attributes can
be set programmatically using the API or tag library, or declaratively using a policy descriptor file that is
deployed with the web application.

Explicit block name

Explicit naming is performed programmatically using the API or tag library.

You can cache an object with different types of access. The access scope can be session or application:

Session scope

An object cached with session scope is available only within the current HTTP session.

Application scope

An object cached with application scope is available to all HTTP sessions in an instance. If Java Object Cache is
used as the repository, and it is configured for distributed mode, application scope objects are available to all
instances of OC4J that are part of the same cluster.

7.3.3 Caching Policies

The block naming policy is determined in various ways:

Using the attributes set in a CachePolicy object

Using the API or tag library

Using a policy descriptor file

Sometimes, the policy is determined using both the API or tag library and the policy descriptor file.

An implicit block naming policy allows you to use any combination of the HTTP request information (URI, query string,
and cookies) to formulate an appropriate block name. Even combinations that selectively specify some query string
parameters or cookies can be configured. This creates a powerful, adaptable mechanism that automatically determines
the block name for a cached object, in effect, relieving the programmer from having to create a custom naming
mechanism. If you wish, you can set a block name explicitly.

An important part of a cache policy is the expiration policy. The expiration policy is set using an ExpirationPolicy object,
which is an attribute of a cache policy. Like a block naming policy, an expiration policy is set either using the API or tag
library or with a policy descriptor file. You can use either of two time-related approaches:

You can set a time-to-live value. When the time-to-live expires, the cached object is invalidated.

You can set a fixed day-of-the-month, day-of-the-week, and/or time-of-day. Doing so allows you to invalidate a
cached object once a month, once a week, or once a day at a specified time.

7.3.4 Cache Invalidation

Invalidation is the process used to flag an object as no longer being available. Invalidating an object doesn't necessarily
remove it from the cache. When an object's expiration policy is met, the object is invalidated. An object can also be
invalidated explicitly using the API or tag library. Whether an invalidated object is removed from Web Object Cache
depends upon the repository. However, once invalidated (if requested from the cache), an object isn't returned from
the cache. Instead, it must be recreated and recached. Fortunately, because of the programming interfaces, this
happens transparently.

It is also possible to invalidate several objects at a time. The API and tag library provide methods for identifying and
invalidating objects using a partial block name or wildcard specification.

7.3.5 Repository Management

Currently, you can use one of the two repositories that exist for Web Object Cache: Java Object Cache or File System

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Currently, you can use one of the two repositories that exist for Web Object Cache: Java Object Cache or File System
Cache. The desired repository for a web application is specified in a cache repository descriptor file that is deployed with
a web application. If Java Object Cache is specified, additional Java Object Cache properties must be set in the OC4J
instance's global web application descriptor file and a Java Object Cache properties file whose location is specified in
that descriptor. If File System Cache is specified, a location for the disk cache must also be specified in the cache
repository descriptor.

Of the two implementations, Java Object Cache is faster because it is both a memory-based and a disk-based cache,
and it is more manageable because it allows you to set limits on the resources it uses. Java Object Cache can also be
configured to replicate its cached objects across clustered OC4J instances. File System Cache is slower because it is
only a disk cache, and it is less manageable because it allows you only to configure where to store serialized Java
objects. You have no configurable control over how much disk space it may use. In addition, File System Cache's
cached objects are available only to the local instance of OC4J.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Java Development
This chapter explores the myriad possibilities that exist when you use Oracle Application Server as a destination for
applications developed using the Java programming language and its application programming interfaces. This richness
of possibilities exists for three reasons:

Java programming language capabilities

The object-oriented nature of the Java programming language makes it infinitely extensible. Every class created
extends the capabilities of the language. The Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition APIs
are well-engineered classes that extend the language to make it possible to build Java Client and server-side
applications primarily through composition. Composition is the process of using existing components rather than
having to recreate functionality for every program. Typically, only classes that are part of the business problem
being addressed need to be created.

OC4J's complete J2EE implementation

The Oracle Application Server Containers for J2EE is a full-featured, highly scalable J2EE environment. Because
OC4J provides a complete J2EE implementation, it includes all the classes available in both J2SE and J2EE for
creating new applications. Functionality that doesn't exist can be added to OC4J easily because the J2EE
environment itself provides a framework to address this requirement.

Oracle Application Server extensions that are accessible via Java APIs

Beyond J2EE, Oracle Application Server provides a set of Java APIs that bring additional functionality to the
table. APIs exist to solve business problems using Oracle products such as OracleAS Business Components for
Java, OracleAS Messaging, OracleAS Personalization, OracleAS Single Sign-On, and transformation for OracleAS
Wireless devices. In addition, Oracle Application Server APIs allow developers to log application activity, report
performance statistics, and manage expensive-to-create, long-lived Java objects in a cache.

Combined, these factors make Oracle Application Server, with its certified J2EE environment and Oracle-supplied Java
APIs, an ideal platform for building and deploying web-based applications.

This chapter begins by taking a look at the various technologies commonly used in the development of web-based
applications. Next, it examines the development tools available that support Oracle Application Server. These tools
range from Oracle's own JDeveloper IDE through use of the Sun JDK. The chapter then touches on OracleAS TopLink
and BC4J (Oracle's Java data-binding solution) and finishes up with a discussion of Oracle's Java APIs and Tag Libraries.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Developing Web Applications
Trying to understand what technologies should be applied when developing a web-based application is a common
dilemma. Should you use HTML, Java, JavaScript, applets, servlets, EJBs, and/or XML? In some organizations there is
no dilemma because someone else, someplace else in your organization, has already made the choice for you. If you
are given the choice, however, what approach should you use?

Your first step is to understand how Java and related technologies can be used for web-based applications. This section
examines the use of Java and related technologies for web-based application development in three layers: the
presentation layer, the data and business rules layer, and the control layer, as depicted in Figure 8-1.

Figure 8-1. Web application architecture

8.1.1 Presentation Layer

The presentation layer represents the interface to the application that will be used by a human being. In a presentation
(or view) layer of a web-based application, it isn't uncommon to see a combination of HTML, JavaScript, Java applets,
and XML employed to provide a graphical user interface for an end user. The following are some examples:

HTML can create a data-entry form, a menu, and so on.

JavaScript can provide client-side (web-browser) based validation and enhanced functionality that is beyond the
capabilities of a simple HTML form.

A Java applet can be used in an HTML form to extend the capabilities of JavaScript or to replace HTML form tags
altogether, by providing a rich GUI using Java.

8.1.1.1 HTML

An HTML form, created using the <form> related tags in HTML, provides a simple user interface. It doesn't allow you to
do any fancy client-side validation or dynamic population of drop-down list boxes. It's like using a block-mode terminal
from the good old days, where everything in the form must be transmitted to the server to be validated. If a validation
error occurs, the server must rerender the entire HTML form and send it back to the end user's browser.

This type of validation can be both time-consuming and resource-intensive. It also creates a poor experience for the
user of the application. However, it is extremely lightweight, efficient, portable, and well supported.

8.1.1.2 JavaScript

By adding JavaScript routines to an HTML page you can perform client-side validation, dynamic loading of drop-down
list box values, custom error windows, and so on. Using JavaScript can improve the GUI capabilities of an HTML form so
that the end user's experience is closer to that of using a client-server application. Of course, this enhanced end-user
experience comes with a price, which is that JavaScript isn't equally supported on all browsers. That, in turn, means
that you will have compatibility issues. Regardless, the use of JavaScript as an extension to HTML forms is very popular.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that you will have compatibility issues. Regardless, the use of JavaScript as an extension to HTML forms is very popular.

8.1.1.3 Java applets

If JavaScript can't extend an HTML form's capabilities to match your requirements, you can extend JavaScript's
capabilities with a Java applet or use an applet to provide some additional GUI functionality on part of a web page. You
can also replace the combination of an HTML form and JavaScript altogether by using a Java applet as a rich-content
GUI.

Using a Java applet as a rich-content GUI allows you to provide a client-server application look-and-feel inside a
browser. That is how Oracle's Forms applications, for example, are used on the Web, by employing an applet run inside
your browser. The one drawback with applets used in this fashion is that they are large, and consequently take longer
than HTML pages to download and display in a browser.

8.1.1.4 JSP and Java servlets

JavaServer Pages are nothing but Java servlets alternatively created by coding HTML with scriptlets and other JSP
syntax, instead of by coding Java that outputs HTML, as is done in a servlet. Because JSP is nothing but a servlet, the
discussion in this section covers both technologies.

Java servlets can generate the HTML pages that are then presented in an end user's browser. Essentially, you use a
servlet to create HTML forms, possibly with embedded JavaScript routines and applet tags, to load an applet. Servlets
(or JSPs) allow you to retrieve values from a database, create a form, and send it to the browser. When the user
submits the form back to the server, it calls another servlet (or possibly the same one, depending on design) to process
the data values and update the database.

You can see from the discussion in the previous sections that HTML, JavaScript, and applets are probably used together,
with the HTML generated by a servlet. But what about the data and business rules? How do you retrieve and save an
application's data? Where are the business rules kept? That is where JDBC and EJBs are used:

JDBC allows your program to access a relational database.

EJBs allow you to create modular, reusable software components that encapsulate business logic and data
persistence.

The following sections describe these capabilities.

8.1.2 Data and Business Rules Layer

In the data and business rules layer of a web-based application, it isn't uncommon to see a combination of JDBC,
JavaBeans, Java Data Objects (JDO), EJBs, and XML manipulating data and executing business rules. Several
approaches can be used to manipulate data used in a web application:

JDBC used directly in a servlet

JDBC used in JavaBeans

OracleAS Toplink, OracleAS Business Components for Java, or another proprietary object-relational mapping
tool that implements its solution as JavaBeans or EJBs

JDO

EJB

Several of these persistence technologies may also be combined and then used in a servlet. As you go through the
options listed here, the complexity, programming required, and infrastructure required all increase.

8.1.2.1 JDBC used in servlets

You can use JDBC directly in your servlets. JDBC allows you to perform SQL Data Manipulation Language (DML), such
as inserts, updates, deletes, and selects, along with stored procedure calls and Data Definition Language (DDL).

If you do use JDBC directly in your servlets, make sure to use prepared statements to prevent SQL injection.

With SQL injection, values entered into fields of your HTML form are actually additional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With SQL injection, values entered into fields of your HTML form are actually additional
SQL syntax. This maliciously added SQL syntax allows the perpetrator to select all values
from a table or damage the validity of data in a table by erroneously inserting, updating,
or deleting rows. SQL injection is possible if you use a JDBC Statement which allows you to
perform dynamic SQL, but not if you use a PreparedStatement.

8.1.2.2 JDBC used in JavaBeans

If the size of your application requires multiple servlets to access the same information, you should consider
consolidating your JDBC code in a JavaBean that represents a table in the database. Alternatively, use one of the other
more complex solutions covered in the following sections.

If you create a JavaBean that represents a table in the database, you can add routines to select, insert, update, and
delete entries as well as accessors and mutators. Accessors and mutators are methods that allow you to get and set
column values. This level of abstraction is well suited for JSPs because you can then use JSP bean declarations instead
of large embedded scriptlets in your JSPs to retrieve and save data.

8.1.2.3 Object-relational mapping tools

Object-relational (OR) mapping tools also allow you to use simple JavaBeans for data abstraction. These tools provide a
framework that glues JavaBeans to a persistence layer such as a database. Oracle Application Server provides two OR
mapping tools: OracleAS TopLink and OracleAS Business Components for Java. Object-relational mapping tools add
value because they significantly reduce the amount of time it takes to create code for persisting data in a relational
database.

8.1.2.4 Java Data Objects

Java Data Objects is a more recent public specification and standard for object-relational mapping. It can also be used
in the same way as custom JavaBeans. JDO simplifies a lot of the coding required to make your own beans. However,
using JDO comes with a price: you have to license a JDO implementation, learn how to use yet another technology, and
do some special coding just for JDO.

8.1.2.5 Enterprise JavaBeans

If your application is one with high transaction volumes or a large user base, or one in which many servlets will need to
share the information and business processes, Enterprise Java Beans are your best bet. EJBs provide a business
process and data abstraction that treats each EJB as a distributed component that can be called by any program. EJBs
provide services that ease management of transactions and deployment of an application.

EJBs allow you to more easily separate data from the business rules that may manipulate the data. This, in turn, leads
to a more adaptable and longer-lived application. Once again, this comes at a price. As with JDO, you'll have to learn
how to use yet another technology and do some special coding just for EJBs.

8.1.3 Control Layer

The control layer acts as a traffic cop between the presentation layer and the data and business rules layer. One
important aspect of a web-based application is how to direct the response of an HTML form to another servlet (or other
entity) in the presentation layer. One common approach is to hardcode the URL of the servlet that will process a form in
the action attribute of the HTML <form> tag. This approach is referred to as model 1 programming. This works just fine,
but it makes your application's modules programmatically dependent on each other.

An improvement on this approach is model 2 programming with which the same controller servlet is specified in the
action attribute of every form. The controller servlet then forwards the HTML form's response on to the desired servlet.
The desired servlet's URL is stored in a configuration file, as shown in Figure 8-2.

Figure 8-2. A model 2 controller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-2. A model 2 controller

Struts is a configurable implementation of a model 2, Model-View-Controller (MVC) framework. You can find additional
information about Struts at http://jakarta.apache.org/struts/.

8.1.4 Other Considerations for Web-Based Applications

You might also consider making sure that the output of your servlets is XHTML instead of HTML. XHTML is an XML
implementation of HTML, one in which HTML documents are well-formed and valid XML documents. Using XML from the
start gives you an advantage if you need to provide a presentation layer of your application to another device, such as a
cell phone. In this case, your servlet's output can be forwarded to a filter servlet that transforms HTML (XHTML) to
Wireless Markup Language for the handheld device. This process is possible because your HTML is actually XML.
Chapter 10 describes XML in more detail.

After reading this overview of Java web-based application development, you may have realized that the most
formidable part of web-based application development is the number of technologies you must master to build a user-
friendly application. There are many good Java books out there that can help you. O'Reilly, for example, has books on
each of these topics. You can find very well-written books on servlets, EJBs, Struts, and JavaScript at
http://www.oreilly.com. Choosing a development tool that aids you in these technologies can also help tremendously.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Development Tools
Writing programs in Java can be accomplished with something as simple as your favorite text editor and the javac
compiler. However, developing business applications with Java (or any other language, for that matter) requires a host
of tools and technologies. To simplify management of the tools and technologies required for application development,
and at the same time improve the efficiency of the development staff, IDEs were created.

An IDE combines a modeling tool, text editor, compiler, make utility, deployment tool, and so on, into one application
that seamlessly integrates the use of each tool with the next during the development life cycle. As you will see shortly,
many IDE vendors provide support for Oracle Application Server, typically as a deployment destination.

8.2.1 Oracle JDeveloper

Oracle JDeveloper is Oracle's IDE for Java. Oracle JDeveloper, an excellent IDE in its own right, is tightly integrated with
Oracle Application Server. Because it is so tightly integrated, this section will spend a little time providing an overview
of this tool.

8.2.1.1 IDE

Oracle JDeveloper is a J2EE, XML, and PL/SQL development environment that supports the full development life cycle,
from modeling a business solution through its deployment. The IDE itself is extensible, so other development tools and
technologies can be added to the environment as needed.

Oracle JDeveloper provides tools for source code control, data and object modeling, coding, debugging, profiling, and
deployment. The editor does both syntactic and semantic verification of your code as it is entered. It also provides
context-sensitive help in the form of access to API documentation. Many complex or mundane programming tasks are
simplified with the use of wizards.

Figure 8-3 shows a typical Oracle JDeveloper screen setup. The smaller window sections are called dockable windows .
You select the dockable windows you desire from the view menu. Displayed in this figure are the Application Navigator,
Class Structure, Data Control Panel, Help, Editor, and Error Message windows.

Figure 8-3. An example of the Oracle JDeveloper IDE's GUI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle JDeveloper can build J2EE and/or XML applications or Web Services that can be deployed onto any J2EE server.
However, Oracle JDeveloper is also tightly integrated with Oracle Application Server through its Application
Development Frameworks that use OracleAS Business Components for Java and OracleAS TopLink.

8.2.1.2 Application Development Framework

Oracle JDeveloper's Application Development Framework (ADF) allows you to use several combinations of technologies
to build web applications. ADF leverages the Open Source, Model 2, MVC implementation, Struts. Using Struts as the
controller, ADF employs combinations of other technologies for the model and view, such as:

EJB as the model and JSP as the view

OracleAS Business Components for Java (BC4J) as the model and JSP as the view

OracleAS TopLink as the model and UIX as the view. UIX is a presentation layer developed using XML

8.2.1.3 OracleAS Business Components for Java

OracleAS Business Components for Java, or ADF Business Components as it is known in Oracle JDeveloper, is an
application framework that implements common design patterns. OracleAS Business Components for Java expands on
the standard J2EE by providing solutions for data access, network traffic minimization, object-relational mapping,
validation, and user-interface data binding.

OracleAS Business Components for Java applications are deployable on any application server. Oracle Enterprise
Manager's Application Server Control tool is an example of an application that uses OracleAS Business Components for
Java.

8.2.1.4 TopLink

OracleAS TopLink is an advanced object-relational mapping tool that some may say resides in the same solution space
as EJB QL and JDO. However, unlike these technologies, OracleAS TopLink makes mapping relational database
architecture to Java's object-oriented architecture easy by providing a superior mapping tool called the Mapping
Workbench.[1] With OracleAS TopLink, it's possible to persist any Java object in any relational database that is also
supported by a JDBC 2.0 driver.

[1] The OracleAS TopLink mapping editor is fully integrated into Oracle JDeveloper 10g (9.0.5).

OracleAS TopLink's graphical mapping tool, Mapping Workbench, presents relational databases with an object-oriented
view. This means that Java programmers with no SQL experience can map Java classes into a relational database
structure.

OracleAS TopLink is extremely flexible. It can map JavaBeans as well as EJBs to a relational database. It supports the
mapping of both container-managed persistence and bean-managed persistence EJBs. OracleAS TopLink even supports
mapping in a Java Client two-tier application.

8.2.2 Third-Party Support

Many of today's top IDEs provide support for Oracle Application Server. In addition, other products exist that extend the
capabilities of Oracle Application Server. The following is a short list of third-party IDEs that support Oracle Application
Server deployment:

Borland's JBuilder

Computer Associates' COOL:Joe

Macromedia's Dreamweaver MX and UltraDev

Rational's Rational Rose

Sun's Sun ONE Studio

TogetherSoft's Together ControlCenter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because a list such as this can change dramatically over time, it's best if you consult it online. You can find an up-to-
date list at http://otn.oracle.com/products/ias/9ias_partners.html.

As discussed earlier in Chapter 6, you can even code directly in a deployment directory on the server. In this
configuration, you can simply use your favorite text editor and the Sun JDK's javac compiler to build your application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Oracle Application Server APIs and Tag Libraries
In addition to Oracle Application Server's support for J2EE, it also provides access to components of Oracle Application
Server and application frameworks via a set of proprietary APIs and JSP tag libraries. The following is a list of these
APIs and tag libraries:

OracleAS Business Components API Reference

OracleAS Business Components Generic Domains API Reference

OracleAS Business Components InterMedia Domains API Reference

OracleAS Business Components Oracle Domains API Reference

Certificate Authority Java API Reference

Dynamic Monitoring Service API Reference

Edge Side Includes for Java (JESI)

HTTPClient API Reference

JAAS Provider API Reference

Support for JavaServer Pages API Reference

Java Object Cache API Reference

Oracle JSP Tag Libraries

Oracle Internet Directory API Reference

JDBC API Reference

SQLJ API Reference

Syndication Services API Reference

XML API Reference

OracleAS Personalization API Reference

OracleAS Single Sign-On API Reference

OracleAS TopLink API Reference

UltraSearch API Reference

Unified Messaging API Reference

OracleAS Web Cache Invalidation API Reference

OracleAS Web Clipping API Reference

Web Services SOAP API Reference

Web Services Proxy API Reference

Web Services UDDI Client API Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Web Services UDDI Client API Reference

OracleAS Wireless API Reference

OracleAS Wireless J2ME SDK API Reference

OracleAS Workflow API Reference

As you can see from this list, Oracle Application Server exposes all its capabilities to the Java application developer.
Oracle Application Server also provides an extensive library of XML and Web Services APIs, which are covered
separately in Chapter 10 and Chapter 11. In addition to these Java development tools, Oracle Application Server is
tightly integrated with the Oracle database, exposing all its capabilities as well. This integration makes the combination
of the Oracle database and Oracle Application Server an ideal environment for enterprise application development and
deployment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Oracle Development
Oracle Application Server provides both a development platform and a deployment platform. Many of the components in
Oracle Application Server are based on open standards, such as Java and the Apache Web Server, and those are
described in earlier chapters of this book.

But Oracle Application Server is an Oracle product, and many users consider acquiring the product because of their past
involvement with the Oracle database. Consequently, three areas of Oracle Application Server focus on Oracle-specific
technologies:

PL/SQL, the long-standing language used within the Oracle database

Deployment services for Oracle Forms applications

Deployment services for Oracle Reports applications

OracleAS Forms Services and Reports Services come as part of the Enterprise Edition of Oracle Application Server 10g.
You can install a version of Oracle Application Server specifically to support these services. This installation includes the
OracleAS Infrastructure (described in Chapter 2), which is used to implement security services for Oracle Forms and
Oracle Reports.

This chapter describes the use of PL/SQL, OracleAS Forms Services, and OracleAS Reports Services in Oracle
Application Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 PL/SQL
The Procedure Language extension to SQL (PL/SQL) is Oracle's proprietary programming language. It is used both
server-side and client-side:

On the server side

PL/SQL is used in the Oracle database to program stored procedures and triggers.

On the client side

PL/SQL is used in Oracle's declarative development tools, Oracle Forms and Oracle Reports, to program
behavior.

PL/SQL's strengths lie in its seamless integration with SQL and in its excellent server-side performance. Because
Oracle's tools, Oracle Forms and Oracle Reports, also use PL/SQL as their programming language, these tools can
leverage both seamless integration with the database and existing PL/SQL database programmer expertise for client-
side development.

9.1.1 Using PL/SQL

PL/SQL uses the same datatypes as SQL in the database; hence, no datatype conversions are necessary. PL/SQL
effectively adds procedural language constructs, such as IF-THEN-ELSE logic, FOR loops, and so on, to SQL. Because
PL/SQL stored procedures are executed in the database, this capability eliminates the data access delays caused by
moving data across a network. This makes PL/SQL the superior choice for data-intensive manipulations in the database.

Oracle Application Server provides a way to produce dynamic content via Oracle database stored procedures. The
execution of stored procedures for web applications is facilitated through the Oracle HTTP Server module mod_plsql; the
Oracle HTTP Server was described in detail in Chapter 5.

PL/SQL is a rich and powerful language that we only touch upon in this book. For much more detailed information, see
Oracle PL/SQL Programming (O'Reilly).

9.1.2 PL/SQL Web Applications

Oracle HTTP Server uses the mod_plsql module to route stored procedure requests to an Oracle database. mod_plsql
provides a CGI environment for stored procedures. A request URI routed to mod_plsql from the Oracle HTTP Server is
mapped to a corresponding stored procedure in the database as follows:

The name of the stored procedure—schema, package name, and procedure name (as required to eliminate
ambiguity)—is specified in the URI.

Any HTTP parameter values are mapped to stored procedure parameters with exactly the same names as the
HTTP parameters.

Extra path information, cookies, and CGI environment variables are also made available.

The logic of a stored procedure can use any of this information to formulate a response in the form of text that is then
streamed back to the requester through mod_plsql to the Oracle HTTP Server, and so on. Two software development kits
are available to aid the developer: the PL/SQL Web Toolkit and PL/SQL Server Pages. If you're familiar with Java, note
that these can be compared to Java servlets and JSPs, respectively.

PL/SQL Web Toolkit

This toolkit provides a set of Oracle stored procedure packages (e.g., HTP, HTF, OWA_UTIL) that allow a PL/SQL
programmer to call procedures or functions to produce HTML output. These packages also provide access to CGI
environment variables and cookies. Using the PL/SQL Web Toolkit, a programmer writes a stored procedure
that outputs HTML tags and data.

PL/SQL Server Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In contrast, PL/SQL Server Pages are HTML files with embedded PL/SQL scriptlets. The scriptlets (small pieces
of PL/SQL code) may call PL/SQL Web Toolkit procedures and functions. PSPs are compiled into stored
procedures when they are loaded into the database using the loadpsp utility.

The difference between using the PL/SQL Web Toolkit and using PL/SQL Server Pages is that PL/SQL Web Toolkit
procedures are PL/SQL programs with embedded HTML, while PL/SQL Server Pages are HTML files with embedded
PL/SQL. The PL/SQL Web Toolkit is typically a more appropriate choice for programmers, whereas PSPs are a better fit
for web designers. Ultimately, every PSP becomes a stored procedure.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 OracleAS Forms Services
For many years, OracleAS Forms Services has been one of the most popular 4GL development environments for Oracle
database applications. OracleAS Forms Services was designed originally to be closely integrated with the Oracle
database. As we mentioned, OracleAS Forms Services uses PL/SQL as the language for its extended logic. The same
Oracle sales team that provided the Oracle database was also able to helpfully supply this development tool. But, as the
technology environment evolved, OracleAS Forms Services was caught in a bind. Like many client-server tools,
OracleAS Forms Services split the runtime functionality of its applications between the client and the server.

The new environment of Internet computing required a slightly different deployment model. To address this new
requirement, the OracleAS Forms Services development team created a new deployment model in 1997 with Release
4.1. In this new model, a Java applet talks to a Java servlet on a server. That server, in turn, calls the OracleAS Forms
Services runtime. With this new deployment model, OracleAS Forms Services deployment was transformed from a two-
tier client-server architecture into a three-tier web-based architecture.

9.2.1 How It Works

The interaction between a web client and an Oracle Forms application through OracleAS Forms Services is shown in
simplified form in Figure 9-1.

Figure 9-1. Simplified OracleAS Forms Services architecture

Interaction proceeds as follows:

1. The initial contact is between a browser and the Oracle HTTP Server instance, with a URL that indicates an
Oracle Forms application. The Oracle HTTP Server instance forwards the URI request through mod_oc4j to the
Oracle Forms servlet, which is run in an OC4J instance.

2. The Oracle Forms servlet starts by creating some HTML, based on the application and the browser type. This
HTML is passed to the Oracle Forms Listener servlet.

3. The Oracle Forms Listener servlet passes the HTML back to the client. The servlet also creates an Oracle Forms
runtime process (written in C) for the application.

4. The HTML passed to the client starts the client-side applet and spawns a client request for a particular form.

5. Once the connection between the Oracle Forms Listener and the client is established, further interaction
between the client and the runtime process is done through the Oracle Forms Listener servlet. At this point, the
Oracle Forms servlet is no longer needed.

A single Oracle Forms Listener servlet can manage communications between multiple clients and their runtime
processes.

Developers can still use the familiar Oracle Forms development environment, but they now deploy Oracle Forms
applications as browser-based clients connecting over the Internet or an intranet to a middle tier of Oracle Application
Server. This new architecture also brings other features with it, as we explain in subsequent sections.

OracleAS Forms Services applications use a default HTML template to pass environment variables to the browser, but
you can also create your own templates by modifying the default template to include either hardcoded values for
parameters or dynamic parameters from the Oracle Forms configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameters or dynamic parameters from the Oracle Forms configuration file.

9.2.2 Running Oracle Forms Services Applications

Once you create an application in Oracle Forms Developer, it can be deployed through OracleAS Forms Services. You
have to create a configuration for the application either manually or through a portion of the Oracle Enterprise Manager
10g Application Server Control tool (described in Chapter 3). For more information on using Oracle Enterprise Manager
to manage OracleAS Forms Services, see Section 9.2.3.

When a user wants to run an OracleAS Forms Services application, the interaction proceeds as follows, from the user's
point of view:

1. The user sends a URL (containing the pathname) to the Oracle Forms servlet. This URL also contains the name
of the configuration file or the name of a section of the configuration file.

2. Based on the configuration file, the Oracle Forms servlet returns an HTML page, which is specific for the type of
browser being used by the client.

3. The HTML page loads a client-side applet, which runs in a JVM on the client.

The Java client-side applet is used to display OracleAS Forms Services forms and can
display multiple forms simultaneously.

The Oracle Forms applet on the client requires a specific version of a JVM to run properly. Because the native JVM on a
particular browser may not be appropriate, Oracle supplies a client-side plug-in called Oracle JInitiator. Oracle JInitiator
allows the use of an alternative JVM to run the client-side Oracle Forms applet as a plug-in to Netscape Navigator or
Microsoft Internet Explorer.

Some parts of a particular form are common across all users accessing that form, such as screen definitions and
application logic. Once these parts are loaded for a form, subsequent users of the same form can share these entities in
memory, with only their private application data requiring its own dedicated memory.

The architecture for OracleAS Forms Services is different from the standard client-server architecture, and that fact has
implications for the performance of applications. In the multitier OracleAS Forms Services environment, the limiting
performance factor is frequently the bandwidth from the client to the middle tier. For this reason, OracleAS Forms
Services applications optimize the communications between the client and the middle tier. For instance, OracleAS Forms
Services applications bundle events together after each navigation event. These event bundles interact between the
OracleAS Forms Server and the back-end database without having to communicate with the client applet.

Although each individual user has a OracleAS Forms Services runtime process, you can have multiple instances of
OracleAS Forms Services. Because the Oracle Forms servlets are standard OC4J applications, you can use any of the
normal load-balancing options for OC4J for these Oracle Forms Listeners.

You can create a pool of runtime engines for a particular application in the configuration file for the application. The
runtime engines in this pool service users for the application. You can configure a number of instances to be started
when an administrator starts the application from Application Server Control, as we discuss in the following section.

9.2.3 Managing OracleAS Forms Services

The Application Server Control tool lets you set parameters to control the operation of an OracleAS Forms Services
application. For example, you can control the look and feel of the client portion of the application or the specific title of a
particular HTML page returned to the client. The configuration file can also be used to provide different versions of the
same application in different languages.

For most parameters, you can override the value in the configuration file by including the parameter in the URL that
calls the OracleAS Forms Services application. You can also specify parameters that can't be overridden for a particular
application in this configuration file.

Oracle Enterprise Manager gives you an easy interface for managing the underlying configuration files used by OracleAS
Forms Services. You can still manually edit these files, but after making changes, you will have to stop all the DCM
processes, as well as Oracle Enterprise Manager, to have the changes recognized by Oracle Enterprise Manager. If you
don't do this, any subsequent changes made through Oracle Enterprise Manager will simply overwrite the manually
changed configuration files.

You can have multiple configurations in separate sections of the configuration file. You might want to do this if different
users have different versions of the OracleAS Forms Services application.

Many different parameters shape the appearance and behavior of your OracleAS Forms Services application. A
comprehensive list of these parameters is beyond the scope of this book. Please refer to the OracleAS Forms Services
documentation for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

documentation for more information.

The portion of Application Server Control that handles OracleAS Forms Services can be used to limit access to OracleAS
Forms Services. You can disallow any new user connections to these services on a particular server, or you can kill
specific user sessions.

9.2.4 Configuring Security

OracleAS Forms Services can be configured to use the OracleAS Single Sign-On capability of Oracle Application Server
without additional code. In Oracle Application Server, OracleAS Single Sign-On uses the identity management that is
based on the Oracle Internet Directory. Although Oracle Forms applications have traditionally used a database
username and password for security, the Oracle Forms Listener servlet can take this information and use the Oracle
Internet Directory to implement OracleAS Single Sign-On with an OracleAS Forms Services application. Because the
handling of OracleAS Single Sign-On is done by the OracleAS Forms servlets, not in the Oracle Forms Runtime Process,
existing Oracle Forms applications can take advantage of OracleAS Single Sign-On without any modification. In fact, the
form itself is unaware of whether OracleAS Single Sign-On was used, although the form can acquire this information if
your logic requires it.

You can create user accounts with connect information in the Oracle Internet Directory, which in turn creates Resource
Access Descriptors (RADs) once a user connects to OracleAS Forms Services. As of the Oracle Application Server 10g
release, you can configure OracleAS Forms Services to allow all users to create their own RADs on the fly if none exists;
previous releases returned an error in such cases. Also new in Oracle Application Server 10g is the fact that updating a
password in the database automatically updates the RAD information in the Oracle Internet Directory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 OracleAS Reports Services
Oracle Reports, like Oracle Forms, is a part of the Oracle Developer Suite and has been a part of the Oracle technology
stack for many years. We discuss the use of Oracle Reports in the context of business intelligence solutions in Chapter
12, but an in-depth discussion of the use and capabilities of Oracle Reports is beyond the scope of this chapter.

In brief, Oracle Reports enables a developer to combine data from many sources (including an Oracle database, XML
data, JDBC data feeds, and even customizable data sources) into a report that can be distributed either on paper or
within the web environment. Reports can be generated as HTML, XML, PDF files, RTF format, and many other formats
as well.

This section concentrates on Oracle Application Server Reports Services, the component of Oracle Application Server
that is responsible for providing a middle tier for deploying Oracle Reports. OracleAS Reports Services is responsible for
creating Oracle Reports engines to generate reports, for distributing reports across multiple servers, and for caching
reports for rapid reuse.

9.3.1 How It Works

OracleAS Reports Services can be used either inside or outside a web environment. The architecture of OracleAS
Reports Services within a web environment is shown in simplified form in Figure 9-2.

Figure 9-2. Simplified OracleAS Reports Services architecture

Requests come into the Oracle HTTP Server, and are then passed to an OracleAS Reports servlet through the mod_oc4j
module. The OracleAS Reports servlet is responsible for coordinating requests with the OracleAS Reports Server. The
server handles the processing, scheduling, and distribution of reports. It also maintains the state of all current report
requests.

The OracleAS Reports Server is monitored and controlled by the Oracle Process Management and Notification Server
(described in Chapter 2), although you can start and stop the OracleAS Reports Server in other ways—for example,
with a command-line prompt or from a URL.

The actual creation of reports is handled by Reports engines, which are written in C. There can be many Reports
engines for each OracleAS Reports Server. You can configure the maximum, minimum, and initial number of engines for
a OracleAS Reports Server, as well as the amount of time a Reports engine can be idle before it is automatically shut
down by OPMN.

Several additional components are included in the OracleAS Reports Services architecture but aren't displayed in the
simplified version shown in the figure:

OracleAS Reports Cache

Used by the OracleAS Reports Server for caching reports for subsequent use, based on rules established for the
report.

Custom Tag Handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Custom Tag Handler

A part of the Reports servlet, used to call Oracle Reports from JSPs with special tags. You can use these tags to
gain access to data models developed in reports.

OracleAS Single Sign-On

Because OracleAS Single Sign-On is a part of Oracle Application Server, you can use this security architecture
with OracleAS Reports Services. If you choose to use OracleAS Single Sign-On, the Oracle Reports servlet
interacts with the OracleAS Single Sign-On service to validate user credentials. If a user doesn't exist in the
Oracle Internet Directory, the Oracle Delegated Administration Services, which allow a user to maintain his login
credentials, prompts the user for connection information, which is stored in the Oracle Internet Directory. You
can also use OracleAS Reports Services with its own security authentication, although OracleAS Reports
Services is installed using OracleAS Single Sign-On by default.

Security can be implemented at three levels in OracleAS Reports Services—on the
application that calls a report, on the report and its destination resources, or on the
underlying data sources for the report.

Pluggable engines

These are custom engines that can hook into the OracleAS Reports Server to use its capabilities, such as
scheduling, distribution, and content. OracleAS Reports Services comes with a URL engine, which lets you
distribute content from any publicly available URL using these features of the OracleAS Reports Server.

Reports CGI

Used to call reports dynamically from a browser using CGI, and included for backward compatibility.

You can invoke OracleAS Reports Services from outside a web environment. You can use the command-line argument
rwclient to call the OracleAS Reports Server directly. You can also call the OracleAS Reports Server from the SRW built-in
PL/SQL package or can expose OracleAS Reports Services as a Web Service.

9.3.2 Handling Requests

A request that comes into an OracleAS Reports Server can include parameters that shape the report. If the request is
made from a browser, the parameters can be included in the calling URL, or that URL can use a key to identify a group
of parameters. The parameter groups and values are stored by key name in the cgicmd.dat file.

When a request comes in to an OracleAS Reports Server, the server first determines if the request can be satisfied
either by a currently running job or by a report in the OracleAS Report Cache, described in the next section. If a request
can't be satisfied by one of these two methods, the request is placed in one of two queues:

Current job queue

For immediate requests

Scheduled job queue

For scheduled requests

OracleAS Reports Services also has two more queues:

Completed jobs queue

For job history; you can configure a limit to the number of jobs kept in the completed jobs queue

Failed jobs queue

For failed jobs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For failed jobs

OracleAS Reports Server keeps requests that come from a browser in memory. In the event of a server crash, these
requests will have to be resubmitted. Requests that are slated for a print queue, a file, or OracleAS Portal will be
restarted in the event of an OracleAS Reports Server failure.

You can view the contents of either the current job queue or the scheduled job queue through the Application Server
Control tool in Oracle Enterprise Manager. Both of these queues are persistent; if an OracleAS Reports Server crashes,
only the currently running jobs are lost.

If a request requires authentication, OracleAS Reports Server calls the mod_osso module before placing the requests in
either queue.

You configure the maximum number of Reports engines for an OracleAS Reports Server. If a request is made, and the
maximum number of Reports engines aren't currently running, OracleAS Reports Server creates a new engine to run
the request at the top of the current job queue. If the maximum number of engines are already running, the top job in
the current job queue waits, and the first available engine takes the job.

Internal testing from Oracle has determined that the optimal number of Reports engines is
two times the number of CPUs on a server.

With Oracle Application Server 10g, several different Reports engines can exist with different environment conditions,
such as the ability to handle reports with different languages. When a report request arrives with a particular
configuration, OracleAS Reports Server directs it to an available Reports engine that is appropriate for the request.

Once a Reports engine has completed the creation of the report, the report is placed in the OracleAS Reports Cache,
and the OracleAS Reports Server is notified of its availability. The OracleAS Reports Server then distributes the report.

The steps described here are valid for running reports with a paper layout, whether they are standard reports or JSP
reports. If you want to display a report with a paper layout in a browser, the report can be sent as an Adobe Acrobat
(PDF) file format. If you want to run a report with a web layout, you can save the report definition as a JSP in Oracle
Forms Developer and then execute the report like a standard JSP.

9.3.3 OracleAS Reports Cache

A report is a static view of constantly changing data. There may be times when the same report can fulfill more than
one request—either by design or by the coincidences of usage patterns. Consequently, OracleAS Reports Services tries
to optimize the use of reports and diminish the resource requirements for serving reports to a user community.

As mentioned earlier, the destination for reports created by a Reports engine is the OracleAS Reports Cache. When a
report is put into that cache, the report is assigned a cache key. The cache key includes most of the parameters that
shape the report, with the exception of destination information, server information, and the TOLERANCE parameter
(described later in this section). You can configure an OracleAS Reports Server instance to ignore specified parameters
in creating the cache key.

When a request comes in, the OracleAS Reports Server looks in the OracleAS Reports Cache for a report with the same
cache key. A report in the cache with an identical cache key can sometimes be reused for another request.

The request itself can include the TOLERANCE parameter. This parameter has a value in minutes, hours, or day, or
alternately contains a specific time. If a report has a TOLERANCE parameter, the OracleAS Reports Server searches the
completed jobs queue for a report with an identical cache key that isn't older than allowed by the time value specified
by the TOLERANCE parameter or earlier than the time specified by that parameter.

The size of the OracleAS Reports Cache is configurable, either by the total size of the cache or by the number of
documents the cache is allowed to hold. As the cache is filled, the least-used reports are swapped out of the cache.

9.3.4 Distributing Reports

Once a report is created, it can be distributed to a variety of destinations—for example, to the browser issuing a
request, to one or more recipients via email, to a file or a printer, or to OracleAS Portal. You can also create your own
custom destinations using the Oracle Application Server Reports Services API. That API supports the distribution of
reports to other destinations, such as via FTP or a fax machine.

With Oracle Application Server 10g, the creation of reports is done by the Reports engine, independent of the eventual
destination of the report. The OracleAS Reports Server is responsible for distributing the report to its final destinations.

You can create complex types of distributions for reports. Each report has three distinct sections—a header, a trailer,
and a body. You can distribute each section separately, and you can also create individual reports based on groups
specified in the body of the report. You can send each report or report section to one or more destinations. You can also
create destinations based on one or more data values in a variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

create destinations based on one or more data values in a variable.

For example, if you have a report on employees by department, you can have a department summary section sent to
the appropriate head of the department, as well as individual employee reports, sent to each employee. The
department heads and employees can be indicated by data variables within the report. This scenario, sometimes
referred to as bursting reports, allows a single report pass to generate a wide spectrum of reports.

An XML file is used to describe these complex distributions. You specify the distribution XML file as part of the report
request. For more information on these complex distributions, please refer to the Oracle Application Server Reports
Services documentation.

9.3.5 XML and Reports Services

The distribution file mentioned in the previous section is an XML file. XML (described in greater detail in Chapter 10),
which can also be used as a format for reports or to modify reports with customization files.

Although you can build a report completely from scratch using XML, Oracle recommends following an alternate process
whereby you save a report as XML. You can apply one or more XML customization files to the saved report; these files
are used to modify characteristics in the report.

For example, you might want to format a particular field using its XML attributes in a customization file. Once you have
perfected the XML customization file, you can use it to apply the same formatting to other reports that contain the
same field, either by running each report or by applying the modifications as part of a batch process.

9.3.6 Clustering

You can cluster together any number of OracleAS Reports Servers. Each member of the cluster is aware of the other
members of the cluster, and all members of the cluster work together to handle incoming requests.

When a request comes in to one OracleAS Reports Server in a cluster, either from a client or off the scheduled job
queue, the request will go through the standard set of steps for determining how to handle the request, but will
supplement each step with an examination of other members of the cluster. For example, the first step when receiving
a request is to see if there is information in the OracleAS Reports Cache to handle the request. With a cluster, this step
is followed by a determination of whether there is information in the OracleAS Reports Caches of any other members of
the cluster to handle the request. The same process is followed when looking for currently running jobs, for an
appropriate Reports engine that is available, and for checking the number of Reports engines running against the
maximum number of engines configured for the OracleAS Reports Server.

Each member of a cluster maintains its own local OracleAS Reports Cache, so the failure of any member eliminates the
contents of its cache and prevents access by the other members of the cluster to this information. Such failure also
prevents access by the OracleAS Reports Server and its engines.

Clusters are formed by appending a cluster name onto the name of the OracleAS Reports Server. You can submit a
request to the cluster, rather than to a server in the cluster, by specifying the cluster name as the server.

9.3.7 Calling OracleAS Reports Services

You can access OracleAS Reports Services directly from a browser or from the command line. But you may want to
generate or schedule reports based on other interactions and interfaces. OracleAS Reports Services comes with an API
that can make a request to the services based on a database event, such as a changed value in the database. Two
other interfaces also are frequently used to access reports from OracleAS Reports Services—through OracleAS Portal
and as a web service. We describe both of these interfaces in subsequent sections.

9.3.7.1 Event-based reporting

In general, reports are the way that information in a database is disseminated to groups of users. Oracle Application
Server Reports Services brings many helpful capabilities to this task—for example, easily readable presentation,
multiple copies, and ease of access. Historically, however, there has been an inevitable problem with reports and the
data they represent. A report gives an accurate view of data—at the time the report was generated. This data can
change at any point in time after this generation. OracleAS Reports Services has a way to overcome this limitation and
make reports more timely.

The OracleAS Reports Services API is a PL/SQL package that can be called from any other PL/SQL procedure. The
package lets you submit a request to a OracleAS Reports Server and pass up to 255 parameter values with the request.
Submitting a job returns a job identification, which can check the status of the job or cancel the job.

9.3.7.2 OracleAS Portal

OracleAS Portal is another component of Oracle Application Server, discussed in detail in Chapter 13. You can call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Portal is another component of Oracle Application Server, discussed in detail in Chapter 13. You can call
reports from OracleAS Reports Services to be displayed within the OracleAS Portal framework, either within its own
portlet or as an item link on another page.

The interaction between OracleAS Portal and OracleAS Reports Services requires a few additional considerations. If you
are calling a report from the Portal environment:

You can limit access to the report through security restrictions on the calling OracleAS Portal page. Because
OracleAS Portal uses OracleAS Single Sign-on, a user identity flows to OracleAS Reports Services, which
imposes its own set of report and data access security restrictions.

You must register all OracleAS Reports Servers and reports in your OracleAS Portal environment

You can use availability calendars in OracleAS Portal to restrict the days and times that reports can be
requested from OracleAS Reports Services.

Although you can publish a report to OracleAS Portal, you can't use OracleAS Portal as a destination when you are using
an XML distribution file.

9.3.7.3 Web Services

Web Services are a way to access some kind of functionality or information over the Web, using XML to describe the
information requested.

If you want to run OracleAS Reports Services as a Web Service, you run the rwwebservices OC4J servlet. This application
provides endpoints for accessing an OracleAS Reports Server as a Web Service. Other applications can use this servlet
to get the version of the API used to access the OracleAS Reports Server, get information about the server or any
particular job, and submit and kill jobs for the OracleAS Reports Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. XML Development
EXtensible Markup Language (XML) is a metamarkup language for text documents that allows you to store information
in a self-describing format. With XML, you organize information by surrounding it with user-defined, human-readable
tags, similar to those used in HTML, but not limited to the tag names used by HTML. Instead, tag names are chosen
that best describe the information they organize. XML organizes information hierarchically. In addition, the character
set used to encode an XML document is specified within the document. Combined, these features make XML a universal
format for information exchange.

This chapter starts with a brief introduction to XML. Next, it introduces the various relevant XML standards that exist
and examines the support Oracle Application Server provides for these standards. We cover the support in various
programming languages such as C, C++, Java, and PL/SQL. Then we include an overview of the XML tools that Oracle
Application Server provides for XML development. The chapter finishes up with a glimpse at how some of the Oracle
Application Server components employ the use of XML.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 XML, DTDs, and XML Schemas
For an XML document to be used for information exchange, it must be parseable, and to be parseable, it must be well-
formed. A well-formed document, among other rules, must have an end tag for every start tag, and different start and
end tags may not be placed in such a matter as to cross each other's boundaries.

For instance, Example 10-1 is a well-formed XML document that contains information about a person named Jane Doe,
born on January 1, 1980.

Example 10-1. An example of a well-formed XML document

<?xml version="1.0"?>

<person>

 <name>

 <last_name>Doe</last_name>

 <first_name>Jane</first_name>

 </name>

 <birth_date>1980-01-01</birth_date>

 <gender>Female</gender>

</person>

If a document is to be shared with more than one computer program, or shared between organizations, it should also
be valid. A valid XML document is one that conforms to an agreed-upon format. An XML document is valid if it can be
validated against a Document Type Definition (DTD) or an XML Schema.

DTD is the first schema standard developed for formally describing an XML document's format. A DTD is narrative
document-centric, so while it provides a means to describe a document's structure, it doesn't include the ability to
specify datatypes.

To continue with the Jane Doe example, Example 10-2 shows a DTD that can validate the XML document in Example
10-1.

Example 10-2. An example of a Document Type Definition

<!ELEMENT person (name, birth_date, gender)>

<!ELEMENT name (last_name, first_name)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT birth_date (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

XML Schema, a more recent standard, is data document-centric. Not only does it define document structure, it also
supports user-defined datatypes and some object-oriented principles, such as inheritance. By validating an XML
document against its XML Schema, you can validate its structure as well as the datatypes of its content. This is ideal for
computer-to-computer data exchange.

Example 10-3 is an example of a possible XML Schema for the XML document in Example 10-1. If you compare this
XML Schema with the DTD in Example 10-2, you'll see the additional specification of the datatypes for each element.
Not only do XML Schemas add datatypes, but they also add complex constraints and namespace support, concepts that
we will address in the sections that follow.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-3. An example of an XML Schema

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="person">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="last_name"

 type="xsd:string" minOccurs="1"/>

 <xsd:element name="first_name"

 type="xsd:string" minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="birth_date"

 type="xsd:date"/>

 <xsd:element name="gender"

 type="xsd:string" minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

A DTD, an XML Schema, or both can be used to define an XML document's vocabulary. This vocabulary, which is a
formal specification, is called an XML application. This type of application is very different from our normal notion of an
application, such as a set of programs coded in a programming language such as Java or PL/SQL. This distinction also
brings to light the fact that XML itself isn't a programming language, a protocol, or a database management system.

Because of its capabilities and its promise as a universal data format, XML has suffered more than its fair share of hype.
While XML is ideal for storing information in a universal format, making it a perfect choice for information exchange, it
makes a poor database. Yes, it can be used as a database to store relatively small amounts of information in an
organized manner, but beyond that, information stored as XML is slow to retrieve and/or manipulate when compared to
information stored in an object-relational database such as Oracle.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 XML Standards
The World Wide Web Consortium, a group of individuals that participate in the establishment of web-related standards,
has created many XML-related standards, including XML 1.0, XML's first formal specification, and more recently, XML
Schema. Oracle Application Server provides support for these established XML standards both in the database via the
mod_plsql module and in the application server for web-based applications written in any of the following:

C or C++ that runs in mod_fastcgi

Java that runs in OC4J

Web Services

10.2.1 XML

XML Version 1.0 is XML's first formal specification (recommendation) from the W3C. It defines the syntax used to create
a well-formed XML document. In addition, it defines the structure of a DTD, a schema that, in turn, can validate one of
its XML document instances.

Oracle Application Server is XML 1.0-compliant, which means that the server's internal use of XML, along with the tools
and APIs it provides, all comply with the XML Version 1.0 recommendation from the W3C.

10.2.2 XML Namespaces

XML Namespaces exist to eliminate potentially ambiguous XML element (tag) names when XML applications are
combined to create a new XML application. An XML Namespace associates a URI with a namespace prefix. The prefix is
added to an element name in an XML document to maintain the element name's uniqueness within the document. This
qualification becomes necessary when element names from two different XML applications used in another XML
application use the same element name. Without the prefix, the elements with the same name collide; this creates
ambiguity that, in turn, causes confusion about the element's meaning. The associated namespace URI creates a
context for an otherwise ambiguous element.

The XML Namespace Version 1.0 recommendation isn't part of the XML 1.0 recommendation. It post-dates XML 1.0 and
isn't a dependent specification. XML Namespaces may be used if necessary, but they are by no means required for an
XML document to be compliant with the 1.0 recommendation.

Oracle Application Server supports the XML Namespace's 1.0 recommendation from the W3C.

10.2.3 XML Path Language

XML Path Language is a non-XML based language that identifies a particular part, or parts, of an XML document. XPath
treats an XML document and its content as a tree structure, in much the same way operating systems treat file
systems. By doing so, it allows you to write an expression that identifies a specific element, attribute, text, comment,
processing instruction, or namespace within an XML document. XPath expressions can also specify Boolean values,
numbers, or strings.

Oracle Application Server supports XPath Version 1.0.

10.2.4 Extensible Stylesheet Language Transformations

EXtensible Stylesheet Language for Transformations (XSLT) is an XML application that allows you to specify a set of
rules that transform an XML document into another document format. Although typically used for XML-to-XML
document transformation, XSLT can be used to create a text document of any kind.

An XSLT stylesheet is an XML document that contains rules for transformation. The rules in an XSL stylesheet use XPath
notation to identify the targets of rules. Using an XSL stylesheet, an XSLT processor transforms an input XML document
to another format using the rules specified in a stylesheet.

Oracle Application Server supports XSLT Version 1.0.

10.2.5 XML Schemas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An XML Schema is an XML document that describes the composition of a valid XML document in much greater detail
than is possible using a DTD. An XML Schema adds the concepts of datatypes (both simple and complex), datatype
inheritance, and element and attribute constraints to the structural capabilities of a DTD. However, XML Schemas
improve on DTDs at the expense of additional complexity.

Oracle Application Server provides support for parts 0-2 of the W3C's XML Schema recommendation from May 2, 2001.

10.2.6 XML Parsers

XML parsers can read an XML document from an operating system file or stream and present the XML document's
information as a tree structure in memory after the entire file is read, or in an event-based fashion as a document is
read. Each approach has its strengths and weaknesses:

Tree-structured approach, or document model

This approach makes it feasible to query any part of an XML document at any time. It also allows you to modify
an XML document, but it can require a great deal of memory.

Event-based model

This approach conserves memory consumption, but it can process a document only as it is read.

Because of the opposing constraints, two types of XML parsers exist: Document Object Model (DOM) parsers and
Simple API for XML (SAX) parsers.

10.2.6.1 Document Object Model

The Document Object Model (DOM) is a specification for reading and modifying (and saving) an XML document as a tree
structure. The elements that make up a particular XML document create a hierarchical structure that can be
represented as a tree with the first element of an XML document as the root. In many ways, this tree structure, shown
in Figure 10-1, is similar to the one presented by most modern operating systems' file systems.

Figure 10-1. A tree of DOM nodes for Example 10-1

At its core, DOM is a set of APIs that represent an XML document as a set of object nodes, as in Figure 10-1. A node
type exists for each kind of XML structural and content syntax. DOM's strength is that it allows random access to any
part of an XML document.

Oracle Application Server supports DOM Version 2.0. It provides DOM APIs for C, C++, Java, and PL/SQL.

10.2.6.2 Simple API for XML

The Simple API for XML (SAX) is a specification for reading an XML document that reports each XML artifact—for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Simple API for XML (SAX) is a specification for reading an XML document that reports each XML artifact—for
example, an element or an attribute—as an event as a document is read. The events are reported by calling the
callback functions of a programmatically registered document handler. SAX's strength is its low memory consumption.

Example 10-4 lists the callback events generated when parsing the XML document from Example 10-1. The events in
this list are named using their corresponding function names in the Java interface org.sax.xml.ContentHandler. Any values
passed to the callback functions are shown after the function names.

Example 10-4. A list of SAX events for Example 10-1

setDocumentLocator

startDocument

startElement: localName=person, qualifiedName=person

ignorableWhitespace:

startElement: localName=name, qualifiedName=name

ignorableWhitespace:

startElement: localName=last_name, qualifiedName=last_name

characters: Doe

ignorableWhitespace:

startElement: localName=first_name, qualifiedName=first_name

characters: Jane

ignorableWhitespace:

ignorableWhitespace:

startElement: localName=birth_date, qualifiedName=birth_date

characters: 1980-01-01

ignorableWhitespace:

startElement: localName=gender, qualifiedName=gender

characters: Female

ignorableWhitespace:

endDocument

Oracle Application Server supports SAX Version 2.0. It provides SAX APIs for languages that support callback functions:
C, C++, and Java.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 XML Developer Kits
Oracle provides XML Developer Kits (XDKs) that can develop web applications that leverage XML in four programming
languages:

XDK for Java

XDK for C

XDK for C++

XDK for PL/SQL

These XDKs are used in the Oracle Application Server Containers for J2EE (OC4J) for Java-based web applications, while
mod_fastcgi is used for C and C++, and mod_plsql is used for PL/SQL.

Along with the XDK APIs and command-line utilities that execute these APIs, Oracle Application Server provides several
XML tools, including:

XML Class Generator

 XML SQL Utility for performing database queries that produce XML, and also insert XML into an Oracle database

 XSQL Pages that produce web content using XML similar to JSPs

A substantial amount of additional XML functionality is available when you use an Oracle database. However, because
that functionality is available only with an Oracle database, it isn't covered here.

Table 10-1 lists the various features supported by the four XDKs. Of the four, the XDK for Java is the most feature-rich.

Table 10-1. XML Developer Kits and features
Feature Java C C++ PL/SQL

XML 1.0

XML Namespaces 1.0
XML Path Language 1.0

XML Schemas Part 0-2
XML Parser: DOM 1.0

XML Parser: DOM 2.0 Core

XML Parser: DOM 2.0 Traversal

XML Parser: SAX 1.0

XML Parser: SAX 2.0 ~[1] ~[1]
XML Parser: nonvalidating mode

XML Parser: validation against DTD

XML Parser: validation against Schema
XSLT 1.0

XML Class Generator

XML Transviewer Beans

[1] Partial implementation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] Partial implementation

10.3.1 XML Parsers

The Oracle XML parsers are composed of two components:

XML Parser

Supports XML 1.0, including XML Namespaces, XPath, XSLT, DOM, and SAX with validation against a DTD

XML Schema Processor

Adds the ability to handle XML Schema documents to the XML Parser; it also enables the parser to validate an
XML document against an XML Schema

10.3.2 XML Class Generators

The two available XML class generators, for Java and C++, create source code in the form of class files, from a DTD.
The XML class generator for Java can also create class files from an XML Schema. Generated class files can then be
used programmatically to construct XML documents in your web applications.

Manually coding a class file (in Java or C++) that represents an XML document can be both tedious and fraught with
opportunities for creating errors. Using an XML class file generator removes the burden of coding such classes from a
programmer while, at the same time, eliminating possible coding errors.

10.3.3 XML Transviewer Beans

The XML Transviewer Beans are a set of JavaBeans that are part of the XDK for Java. These Beans are components for
viewing and transforming XML documents with Java. The XML Transviewer Beans are:

DOMBuilder Bean

A nonvisual JavaBean wrapped around the XML Parser for Java's DOMParser class that allows you to build one or
more DOM trees asynchronously and provides all the functionality of the DOMParser class with a JavaBean
interface

XSLTransformer Bean

A nonvisual JavaBean wrapped around the XML Parser for Java's XSLT engine that allows you to perform one or
more XSL transformations asynchronously and provides all the functionality of the XSLT engine with a JavaBean
interface

DBAccessBean

A nonvisual JavaBean that creates CLOB tables in a database and then use retrieves or stores XML documents
in one of its CLOB tables

These components may be used server-side in web-based application development.

10.3.4 XML SQL Utility

The XML SQL Utility (XSU), a proprietary Oracle tool that can be used in any application server, allows you to perform a
query against a database that is output as well-formed XML. XSU also supports extracting data from any well-formed
XML document, then using that data to perform a SQL DML statement such as an INSERT, UPDATE, or DELETE. In
addition, using XSU, you can create DTDs from a SQL query and perform XSL transformations.

XSU APIs exist for Java and PL/SQL. A command-line utility, OracleXML, also exists. XSU can be used in any middle-tier
web server that supports Java servlets because it is a set of Java classes.

10.3.4.1 SQL to XML

The XSU can create a well-formed XML document from a SQL SELECT statement. It outputs the XML document as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XSU can create a well-formed XML document from a SQL SELECT statement. It outputs the XML document as a
Java String as a DOM tree in the form of a Java class XMLDocument or as SAX events. When creating an XML document,
XSU outputs the columns of a SQL statement as XML elements that use the names or alias names of the columns in the
order in which they appear in the SQL statement. Column elements are then enclosed in a <ROW> element, so a
<ROW> element exists for each row from a query's result set. All <ROW> elements are, in turn, enclosed by a
<ROWSET> element for the SELECT statement. An XML processing instruction is placed at the beginning of the XML
document to identify the document as an XML document. This format of wrapping database result set rows with <ROW>
and <ROWSET> tags is called by Oracle a canonical format.

For example, by specifying the query:

select last_name, first_name

from person

order by last_name, first_name;

XSU would create a document in canonical format similar to the following:

<?xml version='1.0'?>

<ROWSET>

 <ROW num="1">

 <LAST_NAME>Bales</LAST_NAME>

 <FIRST_NAME>Don</FIRST_NAME>

 </ROW>

 <ROW num="2">

 <LAST_NAME>Greenwald</LAST_NAME>

 <FIRST_NAME>Rick</FIRST_NAME>

 </ROW>

 <ROW num="3">

 <LAST_NAME>Stackowiak</LAST_NAME>

 <FIRST_NAME>Bob</FIRST_NAME>

 </ROW>

</ROWSET>

If a query is executed against an object table, the result set may consist of a complex datatype structure—a nested
table or array. A complex datatype is represented by elements for each column in the user-defined datatype, which are,
in turn, enclosed by an element whose name is derived from the name of the user-defined datatype.

A nested table or array is represented by elements for each column in the collection, enclosed by an element whose
name is derived by the name of the collection with _ITEM appended to it, with all item elements then enclosed by an
element whose name is derived using the name of the collection.

Generated XML can be customized in any of three ways:

By manipulating the source SQL statement

By customizing default mappings

Possibly by postprocessing the created XML document using XSLT

Of the three techniques, the first is the most performant, while the last is the least performant.

Here are some example techniques for manipulating the source SQL statement:

Using alias names on columns to get the desired element names

Using the at sign (@) in a column alias to make the column an element attribute instead of an element value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the at sign (@) in a column alias to make the column an element attribute instead of an element value

Using subqueries or the SQL statements CAST/MULTISET to produce nested results

Using views or object-relational views with user-defined datatypes against relational tables to create new
column names, complex datatypes, or embedded collections

XSU mapping customizations allow you to:

Specify that NULL values should be indicated with a null attribute instead of omitting an element

Specify the format for dates

Specify the case used for element names

Specify that collection elements should contain a cardinality attribute

Change the name of the ROW element or omit it altogether

Change the name of the ROW element's attribute num or omit it altogether

Change the name of the ROWSET element or omit it altogether

You can also register an XSL stylesheet with XSU. The registered stylesheet is then used by XSU to automatically post-
transform the XML document generated with the SQL statement.

10.3.4.2 XML to SQL

The XSU can also be used to apply a SQL INSERT, UPDATE, or DELETE statement against a database based on an XML
document in the canonical format defined earlier. If an XML document isn't in the desired or canonical format, any of
three techniques can be applied to make it compatible:

By manipulating the SQL target

By customizing default mappings

Possibly by preprocessing the XML document using XSLT

In many ways, these are the inverse of the SQL to XML customizations.

You can manipulate the SQL target by creating a view or object-relational view against a table or set of tables to make
the format of the XML input document match the database. You can create INSTEAD-OF triggers to distribute required
SQL statements to the appropriate members of a multitable or multiobject view.

In this direction, XSU mapping customizations allow you to:

Use case-insensitive matching for mapping element names to SQL column names

Map an alternative element name to the canonical element ROW

Specify the format for dates

Just as with the SQL-to-XML generation, an XSL stylesheet can be registered with XSU that, in turn, is used by XSU to
automatically pretransform the input XML document.

10.3.4.3 Inserting

To insert data into a database using an XML document, XSU does the following:

1. Retrieves the target table's metadata from the database. XSU uses the metadata to create an appropriate SQL
INSERT statement.

2. If an XSL stylesheet is registered, transforms the XML document.

3. Extracts data by matching element names in the possibly transformed XML document to column names in the
SQL INSERT statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Executes the INSERT statement.

By default, XSU tries to map values for all columns in the target SQL object (table, view, object-relational view, etc.).
The Java and PL/SQL APIs allow you to specify the column names you want used in the INSERT statement.

10.3.4.4 Updating

To update a database using an XML document, you must first use the Java or PL/SQL API to set a list of (primary) key
columns. Then XSU follows a process that is similar to inserting data, this time creating an appropriate SQL UPDATE
statement. The columns to be updated can also be constrained by specifying the desired column names using the API.

10.3.4.5 Deleting

Deleting from a database using an XML document is similar to updating. Just as with an UPDATE statement, you must
first specify the (primary) key column names using the API. XSU then follows the same process it does for inserting and
updating.

10.3.4.6 Committing

XSU normally batches updates. If auto-commit is turned on in the JDBC driver supplying the database connection for
XSU, and if the batch execution is successful, a batch is committed. If auto-commit is turned off, you must manually
commit, or all SQL statement operations will have to wait to be committed when the JDBC connection is closed.

10.3.4.7 PL/SQL

The PL/SQL API for XSU is a wrapper around the Java API, so almost all the Java API functionality, as well as how it is
employed programmatically, is the same for both APIs. XSU can be accessed in Oracle Application Server
programmatically using the Java API in OC4J, using the PL/SQL API used by stored procedures executed through
mod_plsql, or using XSQL Pages, described in the next section.

10.3.5 XSQL Pages

XSQL Pages simplify access to the XSU in a web server. XSQL Pages is a framework built on top of XSU that processes
XSQL Pages document tags to create dynamic content in the form of XML. The process is similar to the way in which a
JSP translator processes JavaServer Pages.

XSQL Pages documents are valid XML documents with a vocabulary that allows you to select, insert, update, and delete
against a database using embedded SQL. XSQL tags also provide additional capabilities such as executing stored
procedures, including other XML documents, and XSQL Pages.

XSQL Pages documents, by default, end with a .xsql suffix. When these documents are requested from Oracle
Application Server, they are automatically processed by the XSQL servlet residing in the OC4J. The XSQL servlet
processes the XSQL tags, creating an XML document. If an XSLT processing instruction is found, XSQL uses it to
transform the XML document into another format. The resulting XML document is then sent to the requestor. An XSQL
Pages file can also be processed using the XSQL Command Line Utility or programmatically using the Java class
XSQLRequest.

10.3.5.1 Configuration

The XSQL Pages configuration is maintained in an XML document named XSQLConfig.xml. XSQLConfig.xml contains
information such as database connections, database tuning parameters, stylesheet cache parameters, and so on.

10.3.5.2 SQL to XML

An XML Pages document can use five action tags to produce an XML document:

<xsql:query>

This tag embeds a SQL SELECT statement. When the SELECT statement is executed, it produces canonical XML
content that incorporates the rows and columns of the SELECT statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsql:dml>

This tag executes any other kind of SQL statement: DML or DDL.

<xsql:ref-cursor-function>

This tag allows you to use a PL/SQL reference cursor returned from a stored procedure to produce XML just as
with the use of a SELECT statement described earlier.

<xsql:include-owa>

This tag allows you to call a stored procedure that, in turn, uses the Oracle PL/SQL Web Toolkit functions in
packages HTF and HTP to produce XML.

<xsql:include-xsql>

This tag allows you to include another XSQL Pages document in your current XSQL Page.

The first four action tags require a connection to a database. A database connection for these tags is specified with an
attribute called connection. The value of the connection attribute corresponds to an alias for a database connection
configured in XML document XSQLConfig.xml, as described earlier.

Parameters can be bound to embedded SQL statements or stored procedures with a bind-params attribute. Lexical
substitution parameters can also be employed. These start with an at sign (@).

Parameter values can come from any of the following:

An explicit XSQL Pages <xsql:include-param> declaration

An HTTP cookie

An HTTP session object

An HTTP request object

A default value attribute

If no parameter value is found, a NULL value is used for a bind variable, while an empty string is used for lexical
substitution parameters.

Default values can be specified for bind variables and lexical substitution parameters. A default value is specified
including an attribute with the same name as the bind variable or lexical substitution parameter in question. This
seemingly duplicate attribute's value specifies the desired default value. The database connection, bind-params, and
default value attributes can be placed within the tag that requires them, or within one of its enclosing parents' tags.

10.3.5.3 XML to SQL

XSQL Pages can take a valid XML document in the canonical format or any valid XML document, such as XHTML, and
transform it into the canonical format from an HTTP POST and use it to perform a SQL INSERT, UPDATE, or DELETE
statement against a database. The XSQL servlet can also transform HTTP POST parameters into a valid XML document,
transform the document into the canonical format using XSLT, and then use the canonically transformed XML document
to perform these SQL operations.

The SQL INSERT, UPDATE, and DELETE statements are accomplished using the <xsql:insert-request>, <xsql:update-
request>, and <xsql:delete-request> tags, respectively. In addition, a valid XML document sent as a request parameter in
an HTTP GET request can insert data into a database using the <xsql:insert-param> tag.

10.3.5.4 Custom XSQL action handlers

You can create a custom action handler for XSQL pages by creating a Java class file that implements the
oracle.xml.xsql.XSQLActionHandler interface. You then access the custom handler with the <xsql:action> tag, specifying the
fully qualified name of your XSQLActionHandler class in the attribute handler.

10.3.5.5 Integrating XSQL Pages with JSP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3.5.5 Integrating XSQL Pages with JSP

A JSP calls on the services of XSQL Pages using a <jsp:include> or <jsp:forward> tag. In these tags, a programmer calls
upon the XSQL Pages' XSQL servlet. In turn, the XSQL servlet either retrieves the requested data or applies the
requested DML statement against the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 Oracle Application Server Components and XML
Several of the Oracle Application Server components use XML in various ways. Their use of XML ranges from simply
using XML documents (to save configuration data) to creating XML documents as output. The most notable use of XML
by Oracle Application Server components is found in OracleAS Portal and OracleAS Report Services. These two Oracle
Application Server components can use XML as a data source, and produce XML documents for output. This capability
makes it possible to use the XML SQL Utility or XSQL Pages to produce input for OracleAS Portal and OracleAS Reports
Services or use output from OracleAS Portal and OracleAS Reports Services to update a database with XML SQL Utility
or XSQL Pages, or both.

The OracleAS Wireless component, covered separately in Chapter 14, uses XSLT transformation bidirectionally to enable
alternative presentation layers for web-based applications to wireless devices such as handheld computers and cell
phones. Web Services, the topic of Chapter 11, employ XML to provide a computer-centric, rather than human-centric,
view of the Web. Web Services enable heterogeneous computer systems to exchange data over an intranet or the
Internet.

OracleAS Portal's Portal Developer Kit Integration Services (PDKIS) allows you to extract data from an external source
identified by a URL. If the URL points to a well-formed HTML document, the HTML document can be parsed and used for
content in a portlet. PDKIS can also transform an HTML document into an XHTML document. (As mentioned earlier,
XHTML is an XML version of HTML.) The XHTML document can then be further transformed using an XSL stylesheet to
create content for a portlet.

OracleAS Reports Services can use an XML document as a data source for a report. It can also output reports as XML
documents and perform XSL transformations on report output.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11. Web Services
Web Services are functions or procedures that are accessible to other computer programs over a network, using a
standard transport protocol and encoding. Typically, the transport protocol used is HTTP, the encoding is XML-RPC or
SOAP, and the messages communicated between programs are exchanged as XML documents.

Web Services are all about interoperability. By encapsulating programming language-specific function or procedure call
syntax into a standardized XML document syntax, Web Services allow any program deployed on any operating system
to utilize a candidate function or procedure exposed as a Web Service.

Exposing program functions or procedures to be called remotely isn't a new idea. Database stored procedures and EJBs
are two longstanding examples of remote procedure calls. What's new with Web Services is the level of interoperability
built into them.

To call a database stored procedure, you must use a proprietary or standardized API such as JDBC. However, such APIs
allow your program to call only functions or procedures that exist in a target database. These APIs also require a
proprietary network protocol. Corporate firewalls typically don't allow proprietary protocols to pass through them, so
their use can limit the level of interoperability.

To call an EJB, you can either use the EJB API or CORBA, but this solution allows only an Enterprise Java program, or a
program written with a programming language that uses a CORBA API, to use the target EJB. Once again, a network
protocol, RMI, is used that may not be supported by a corporate firewall.

In contrast, Web Services allow any programming language on any operating system in which a Web Services client
implementation exists to call a target Web Service. In addition, the use of HTTP as a transport protocol, which is
generally supported by all firewalls, allows easy access to Web Services.

Of course, this highly interoperable, lowest-common-denominator approach comes with a price: slower performance.
Web Services as remote procedure calls are significantly slower than database stored procedures or EJBs. This is
understandable because extra steps are involved:

Encoding a remote procedure call into the XML document on the client-side

Parsing the XML document to call the desired function on the server-side

Encoding the result into an XML document on the server-side

Parsing the XML document to retrieve the desired result on the client-side

Regardless, Web Services are an ideal solution when it comes to integrating heterogeneous computer applications.

This chapter begins by taking a brief look at the architecture used by Web Services. Next, it covers the commonly used
protocols and standards used for Web Services, highlighting Oracle Application Server's support for each. It finishes up
by examining Oracle Application Server's implementation of Web Services, including programming and management
tools.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.1 Web Services Architecture
A well-documented architecture is central to interoperability. From a simplistic viewpoint, the Web Services architecture
consists of a client that sends a request in the form of an XML document—a message—over a network to a server that
hosts a Web Service. The hosted Web Service processes the request and returns the result as an XML document to the
client, as shown in Figure 11-1.

Figure 11-1. A Web Service client and service interaction

In many ways, especially when HTTP is used as the transport, this process is similar to a person using a web browser to
look at a dynamically generated HTML page, except that it is a computer requesting the result, not a human being. A
Web Service client can be a database stored procedure, a servlet or EJB in an application server, a Java client
application, or another Web Service, to name just a few possibilities.

From this simplistic explanation you may have noted that a Web Service requires:

A method call in the form of a function or procedure to act as the service

A standardized encoding to ensure that both the client and the service understand the format of the data

A standardized protocol for transporting the serialized data

But how do you know that a particular Web Service even exists? And if you do know that it exists, what are its
specifications? These requirements are addressed using a layered architecture, as shown in Figure 11-2 and described
in the sections that follow.

Figure 11-2. Web Services architecture stack

11.1.1 Service

For Web Services, the actual service provided can be written in any programming language that has a Web Services
implementation, or that can create valid XML documents and stream them to and from a network. Nowadays, that's just
about every commonly used programming language. For example, you can use a simple Java class with a function, as
in Example 11-1.

Example 11-1. A sample service method written in Java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-1. A sample service method written in Java

public class Stateless {

 public Stateless() {}

 public String sayHello(String param) {

 return "Hello " + param + "!";

 }

}

The method sayHello() returns a String in which the passed parameter is prefixed with the word Hello, and then
returned.

11.1.2 Encoding

For both the Web Service requester and provider to understand a conversation, they need to use an agreed-upon
vocabulary and syntax. This is where the XML becomes useful. Two popular encoding standards exist: XML-RPC and
SOAP. Example 11-2 shows a SOAP-encoded request to execute the sayHello() service method from Example 11-1.

Example 11-2. A sample sayHello() SOAP request

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:

xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/

XMLSchema">

<SOAP-ENV:Body>

<ns1:sayHello xmlns:ns1="urn:test-Stateless" SOAP-ENV:encodingStyle="http://schemas.

xmlsoap.org/soap/encoding/">

<param0 xsi:type="xsd:string">Don</param0>

</ns1:sayHello>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 11-3 shows the response to the SOAP request in Example 11-2. It may seem that a lot of XML is required just
to call a function, but this well-thought-out encoding scheme ensures that a Web Service can exchange any type of
data.

Example 11-3. A sample sayHello() SOAP response

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:

xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/

XMLSchema">

<SOAP-ENV:Body>

<ns1:sayHelloResponse xmlns:ns1="urn:test-Stateless" SOAP-ENV:encodingStyle="http://

schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:string">Hello Don!</return>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<return xsi:type="xsd:string">Hello Don!</return>

</ns1:sayHelloResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

11.1.3 Transport

A transport protocol is used to send a request across a network to the server and back again to the client program.
HyperText Transport Protocol is commonly used as the transport protocol for Web Services. However, it isn't a
requirement. Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and, more recently, Blocks Extensible
Exchange Protocol (BEEP) may also be used. Which protocol is used is simply a matter of the Web Service
implementation's capabilities.

11.1.4 Service Description

A service description is a document on how to access a Web Service. With XML-RPC, this usually consists of a well-
written specification in the form of a word processing document. For SOAP, the Web Services Description Language
(WSDL), an XML application (vocabulary) can describe SOAP-encoded Web Services in a standardized computer-
readable way. Both document types are typically available on the same server as the hosted Web Service. They identify
the names of the available services, the encoding used, the transport protocol, and the location of the service. Example
11-4 is a WSDL document for the service in Example 11-1.

Example 11-4. A sample WSDL document

<?xml version="1.0" encoding="UTF-8" ?>

<definitions name="Stateless" targetNamespace="http://test/Stateless.wsdl" xmlns="http://

schemas.xmlsoap.org/wsdl/" xmlns:tns="http://test/Stateless.wsdl" xmlns:xsd="http://www.

w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<documentation>WSDL for Service: Stateless, generated by Oracle WSDL toolkit (version: 1.

1)</documentation>

<types>

<schema targetNamespace="http://test/Stateless.xsd" xmlns:tns="http://test/Stateless.xsd"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xsd="http://www.w3.org/2001/XMLSchema" />

</types>

<message name="sayHelloInput">

<part name="param0" type="xsd:string" />

</message>

<message name="sayHelloOutput">

<part name="output" type="xsd:string" />

</message>

<portType name="StatelessPortType">

<operation name="sayHello">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<operation name="sayHello">

<input message="tns:sayHelloInput" />

<output message="tns:sayHelloOutput" />

</operation>

</portType>

<binding name="StatelessBinding" type="tns:StatelessPortType">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />

<operation name="sayHello">

<soap:operation soapAction="urn:test-Stateless/sayHello" />

<input>

<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:test-Stateless" />

</input>

<output>

<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:test-Stateless" />

</output>

</operation>

</binding>

<service name="Stateless">

<port name="StatelessPort" binding="tns:StatelessBinding">

<soap:address location="http://www.myserver.com:7779/test/Stateless" />

</port>

</service>

</definitions>

11.1.5 Service Discovery

The top layer of the Web Services architecture is about discovering what Web Services are available. This functionality
is currently accomplished with Universal Description, Discovery, and Integration (UDDI). UDDI is a specification for a
network directory of available Web Services.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.2 Web Services Standards
The work of establishing basic standards for Web Services isn't complete. Specifications exist for discovery, description,
transport, and encoding. Some of these specifications have been submitted to the W3C to become standards
(recommendations).

11.2.1 Extensible Markup Language

Both encoding schemes, XML-RPC and SOAP, are XML 1.0 applications. XML-RPC is a fairly simple XML application, so it
uses only basic XML syntax. SOAP is a more complex application that makes extensive use of namespaces and XML
Schemas.

11.2.2 XML-RPC

XML-RPC is a Web Service specification that uses a small XML vocabulary to encode its request and result messages
and HTTP as the transport protocol. XML-RPC is a lightweight Web Service implementation that has limited datatype
support. Regardless, it is effective and has implementations for most programming languages and operating systems.

Oracle Application Server doesn't provide direct support for XML-RPC; however, that doesn't mean you can't use it with
Oracle Application Server. Because XML-RPC has implementations in C, C++, Perl, and Java, you can deploy any of
these implementations on Oracle Application Server.

You can find the specifications and a list of implementations for XML-RPC at http://www.xmlrpc.com.

11.2.3 SOAP

SOAP 1.1, originally called Simple Object Access Protocol when IBM and Microsoft, among others, submitted it to the
W3C in April of 2000, is now an acronym without a name. SOAP 1.2 was released as an official recommendation in June
of 2003. The working group decided that the name did not correctly describe the standard, so they dropped the name
but kept the acronym.

Oracle Application Server currently supports SOAP 1.1 with two implementations:

OracleAS SOAP

An enhanced version of the Apache organization's SOAP

OC4J Web Services

Oracle's own highly performant implementation, which supports JavaBeans, EJBs, database stored procedures,
and the JMS.

Of course, as with XML-RPC, you can also deploy on Oracle Application Server any third-party SOAP implementation, or
agent as the W3C calls it, that is written in C, C++, Perl, or Java.

You can find specifications for SOAP at http://www.w3.org/2002/ws/.

11.2.4 Web Services Description Language

Web Services Description Language, an XML application, describes a Web Service specification in a computer-readable
format. A WSDL document describes:

The service methods available

The datatypes used for requests and results for each service method

The transport protocol to be used

The location of a Web Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The location of a Web Service

The WSDL 1.1 specification submitted by IBM, Microsoft, and Oracle, among many others, to the W3C in March 2001,
has been in working draft status for a Version 2.0 since November 2003.

At the time this book is being written, Oracle Application Server tools currently support WSDL 1.1. Oracle Application
Server Web Services deployments expose a service's WSDL document at the service's endpoint.

You can find the specification for WSDL at http://www.w3.org/2002/ws/.

11.2.5 Universal Description, Discovery, and Integration

Universal Description, Discovery, and Integration is a specification for a network-accessible directory of available Web
Services. UDDI contains information about several entities in its XML Schema:

businessEntity

Contains information about organizations

businessService

Contains information about the Web Services these organizations provide

bindingTemplate

Contains information about the location of a Web Service

tModel

Contains information about where to find the Web Service's technical specifications

This information is usually found in the form of a WSDL document. The additional entity, publisherAssertion, defines
relations between two business entities. The relationship between these entities is outlined in Figure 11-3. As of this
writing, the UDDI specification has not been submitted to the W3C.

Figure 11-3. A UDDI data model

Oracle Application Server tools support UDDI 2.0. In addition, Oracle Application Server provides a UDDI directory that
can be used to publish Web Services on your corporate intranet or be synchronized with UDDI directories on the
Internet. The Oracle Application Server UDDI agent is managed through Application Server Control.

You can find the specification for UDDI at http://www.uddi.org/specification.html.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.3 Service Provider
As mentioned earlier, Oracle provides two implementations for Web Services on Oracle Application Server: OracleAS
SOAP and OC4J Web Services. Oracle's official stand on OracleAS SOAP, an enhanced version of the Apache
organization's Java-based SOAP implementation, is that it is in maintenance mode. In other words, Oracle will continue
to maintain OracleAS SOAP for the time being, but you are strongly encouraged to use OC4J Web Services instead. For
that reason, we cover only OC4J Web Services and its tools in the remainder of this chapter.

11.3.1 OC4J Web Services Agents

Web Services are implemented in OC4J by seven servlets for the following seven types of service objects:

A stateless Java class

Using an RPC-style XML message

A stateless Java class

Using a document-style XML message

A stateful Java class

Using an RPC-style XML message

A stateful Java class

Using a document-style XML message

A stateless session EJB

Using an RPC-style XML message

A stateless PL/SQL stored procedure

Using an RPC-style message

Java Message Service (JMS)

Using a document-style XML message

As demonstrated in Figure 11-4, an OC4J Web Services servlet is responsible for parsing an incoming request in the
form of an XML message, calling the appropriate service, encoding the result into an XML document, and then sending
the XML document back to the requester through the Oracle HTTP Server.

Figure 11-4. OC4J Web Service architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By creating seven different servlets for these seven different service types, Oracle has simplified the process of creating
a Web Service so that it consists only of programming the service method, configuring the service via an XML file, and
then generating a deployment Enterprise Application Archive file. The resultant EAR file is then deployed on Oracle
Application Server using Application Server Control. In addition, a different servlet for each service type makes the
servlet's code base smaller and more efficient, which leads to better performance.

11.3.1.1 RPC-style versus document-style

Two styles of Web Services calls are supported:

Remote procedure calls

As mentioned earlier, an RPC is a parameterized encoding in which the parameters for a service are encoded
with elements in the XML message sent to and received from the service.

Document (literal)

The document or literal style doesn't encode parameters. Instead, it sends an entire encapsulated XML
document as the message payload.

11.3.1.2 Stateless Java class services

Stateless Java class services, whether they are RPC- or document-style, are provided by a Java class that has one or
more public methods. Each public method is exposed as a service. An RPC-style service can use one of the many
default datatypes specified in the SOAP schema. In contrast, the document-style service must receive, return, or
receive and return an XML document passed as an instance of Java class org.w3c.dom.Element. OC4J maintains a cache of
instances of each stateless service for reuse to increase performance.

11.3.1.3 Stateful Java class services

Stateful Java class services, whether they are RPC- or document-style, are provided by a Java class that has one or
more public methods and maintains one or more instance variables. Instances of stateful services aren't cached by
OC4J. Instead, they are stored in the HTTP session object for each user's session.

11.3.1.4 Stateless session EJB services

Any stateless session EJB can be used as an RPC-style service. The public methods exposed by the EJB's remote
interface are accessible as services. As with stateless Java classes, instances of stateless session EJBs are cached by
OC4J for reuse.

11.3.1.5 Java Message Service services

Oracle Application Server Java Message Service and Oracle Advanced Queuing, as well as any desired third-party
messaging systems, are supported by OC4J Web Services. JMS Web Services expose JMS sends and receives as
services, for both queues and topics. A JMS Web Services client can act as producer or consumer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3.1.6 Stateless PL/SQL services

Any Oracle PL/SQL stored procedure that is part of a PL/SQL package can be used as an RPC-style service. Both PL/SQL
procedures and functions declared in a package's specification are exposed as services. These services are executed
through a dedicated servlet that uses a JDBC data source to access the host database.

11.3.2 Web Services Assembler

Oracle Application Server provides a command-line tool written in Java called WebServicesAssembler.jar that packages
services into a Web Services EAR file for deployment on Oracle Application Server. Using the Web Services Assembler,
Web Service development becomes a matter of doing the following:

Creating a JavaBean, EJB, or stored procedure to provide service methods

Editing the Web Services Assembler configuration file, adding directives required for the type and style of
service

Executing the Web Services Assembler to create a deployment EAR file

Deploying the EAR file using Application Server Control

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.4 Service Description
In addition to configuring your Web Service, you can also edit the Web Services Assembler configuration file to specify
whether a WSDL file is automatically generated as part of the packing process or if the Web Services Assembler is to
include a WDSL file you already created during the creation of the EAR file. You can also direct it to create Web Service
proxy JAR files.

A Web Service proxy is a class generated by the Web Services Assembler that is a complete client-side SOAP
implementation for the specified Web Service. With the proxy, you can create a working client by simply instantiating a
copy of the proxy and then calling a proxy method with the same name and the same parameters as the target service.

Both the generated WSDL and the proxy JAR files are available at a Web Service's endpoint. Figure 11-5 is an example
of a Web Service's endpoint for the service method in Example 11-1. The WSDL file is available at the Service
Description link. You can test an RPC-style Web Service by following its service method link. In this case, the link is
sayHello. In addition, two proxy JAR files are made available, one containing the Java source for the proxy and the
second containing the compiled class files.

Figure 11-5. OC4J Web Service endpoint

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.5 Service Discovery
Oracle Application Server provides a UDDI directory you can use to publish your Web Services on your corporate
intranet. Appropriately, the UDDI directory is maintained using its own set of Web Services. Additions, updates,
deletions, and queries all take place using SOAP over HTTP.

Oracle provides a Java API for the UDDI SOAP-based Web Services as a convenience for Java programmers. However,
any programming language that can access a Web Service using SOAP can interact with the directory.

11.5.1 Publishing a Web Service

Web Services can be published to the UDDI directory with a user-written program that uses the Java API and the UDDI
publish web service, or during the last step of the EAR file deployment in Application Server Control. If an EAR file
contains references to one of the Web Services servlets, Application Server Control displays an additional set of screens
where you can publish Web Services during the deployment of an EAR file.

11.5.2 Looking Up a Web Service

Consumers can look up available Web Services using a user-written program that uses the Java API and the UDDI
inquiry Web Service. The inquiry Web Service allows you to programmatically perform a query against the UDDI
directory as one of the following:

A White Pages search

Using an organization's name, contact's name, address, etc.

A Yellow Pages search

Using standardized classifications such as NAICS, ISO-3166, and UNSPSC

A Green Pages search

Using technical information about a service

Oracle Application Server also provides a Java Client library that allows you to easily build your own directory search
engine.

11.5.3 Updating a Web Service

A published Web Services entry in the UDDI directory can be updated with a user-written program that uses the Java
API or with the UDDI Registry in Application Server Control. Using the UDDI Registry, you search for an existing service
in the directory by one of the categorization taxonomies deployed with the registry. Once you find an entry, you can
update any of its fields. You can also add a service to additional organizational categories.

Figure 11-6 is an example of the UDDI Registry update screen available through Application Server Control. This figure
shows the update screen for a published service from Example 11-1.

Figure 11-6. Oracle UDDI Registry page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5.4 Directory Management

The UDDI Registry itself is managed with the uddiadmin.jar Java command-line tool; it allows you to manage properties
for the directory. Here are some examples:

Add and delete directory users

Specify quotas

Modify properties about the registry's own directory entry

Import entities

Configure and enable replication

In addition, the UDDI Registry supports deployment on Microsoft SQL Server, IBM DB2, and noninfrastructure-related
Oracle databases.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.6 Service Requester
Oracle Application Server makes creating a Web Services requester, or client program, extremely easy. As mentioned
earlier, OC4J Web Services provide a Web Services home page for each deployed Web Service as shown in Figure 11-5.
On this home page are links to a WSDL file, and Web Services proxy files generated by the Web Services Assembler
program. The Web Services Assembler tool can even generate a Web Service proxy for Web Services not published on
Oracle Application Server. In addition to supporting service calls, a proxy generated by the Web Services Assembler
also supports SOAP headers.

Oracle Application Server defines two types of clients that can execute a Web Service: a static client and a dynamic
client. These clients are described in the next sections.

11.6.1 Static Client

A static client , in Oracle's terminology, is one that is created with all the information necessary to execute a Web
Service. To access an OC4J Web Service as a static client, all you need is to create a Java program that makes a copy
of the proxy object for the service and then use the proxy to call a method by the same name and with the same
parameters as the service.

11.6.2 Dynamic Client

A dynamic client is one that looks up an available Web Service and executes it at runtime. In this case, the client
doesn't know the location of the Web Service or may not even know the name of the Web Service until the time that it
looks up available Web Services in a UDDI directory. Once it locates a service (either because it's the first service found
or because it uses some other type of determination to choose one of multiple services), the dynamic client looks up its
specification via a link to a WSDL file and then uses the specifications in the WSDL file to invoke the desired Web
Service.

Oracle Application Server provides two Java packages, oracle.j2ee.ws.client and oracle.j2ee.ws.client.wsdl, that work in
concert to dynamically invoke a Web Service given the location of a WSDL file. If you combine these with the use of the
UDDI API, you can indeed dynamically identify and execute a Web Service at runtime.

11.6.3 Web Services Security

Oracle Application Server supports authentication and authorization for Web Services using the same mechanisms as
for other Oracle Application Server applications. Authentication is enabled using JAAS as implemented in OC4J. Web
Services can ensure data privacy and integrity by using SSL.

Chapter 4 describes overall Oracle Application Server security.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 12. Business Intelligence Components
The use of business intelligence systems has been steadily gaining in popularity as companies use increasingly larger
amounts of data to make strategic and tactical decisions. Business intelligence systems allow business analysts to
answer fundamental business questions, such as:

How many of a company's products have been sold in specific geographic areas over particular periods of time?

Who are the company's most reliable suppliers?

Have particular product campaigns been successful?

Who are the company's most valuable customers?

Analysts work with both prebuilt reports of real-time and near-real-time transaction data (in online transaction
processing systems and operational data stores) and historical data (often accessed from data warehouses and data
marts). They may also wish to pose their own questions through ad hoc query tools, perform more sophisticated trend
analysis and forecasting through online analytical processing (OLAP) tools, and possibly build and leverage custom
mathematical models to predict outcomes in which a very large number of variables are present through data mining.
All this information can then be pulled together for viewing in a single desktop via a dashboard or a portal.

Oracle Application Server enables the deployment of business intelligence tools used by business analysts, as well as
the business analysis applications created by software developers. Because the Oracle database is the typical target
database for such analyses, more analysis capabilities have, over time, moved from Oracle's tools into the database
itself. Today, the Oracle database includes a variety of advanced query optimization capabilities, including:

Parallel bitmap star join support

Understanding of summary-level tables in facts and dimensions called materialized views

Advanced analytics and statistics enabled through SQL

Embedded OLAP and data mining capabilities

You can take advantage of these advanced capabilities with the business intelligence components available in Oracle
Application Server.

Business intelligence components in Oracle Application Server include:

OracleAS Portal

OracleAS Portal provides an integration point for custom-built business intelligence applications using OracleAS
Reports Services, OracleAS Discoverer, and other tools. It also provides access to a number of other
applications and web sites through its interface and is evolving into a workplace manager that is highly
customizable by users. Chapter 13 contains a full discussion of this product.

Reporting tools

Reports are typically created in IT organizations using Oracle Reports Developer and are then deployed for
general business usage with OracleAS Reports Services. The OracleAS Reports Services are a part of Oracle
Application Server and is described in greater detail in Chapter 9. Oracle Reports Developer is included in the
Oracle Development Suite.

Query and analysis tools

More savvy business analysts may choose to submit their own ad hoc queries and to generate reports via
OracleAS Discoverer using data residing in the database. Some query and analysis tools available from Oracle
partners can also be deployed using Oracle Application Server.

Oracle Application Server can also serve as a deployment platform for custom-built OLAP and data mining applications.
Advanced application developers can also use Oracle JDeveloper (part of the Oracle Developer Suite) with OracleAS
Business Intelligence JavaBeans (BI Beans) to develop applications that leverage the OLAP Option. In addition, they can
develop data mining applications using JDeveloper with Data Mining for Java (DM4J).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

develop data mining applications using JDeveloper with Data Mining for Java (DM4J).

The Oracle Warehouse Builder (OWB) is an important tool you can use to build and maintain the business intelligence
infrastructure. Bundled with the Oracle Developer Suite or the database, this tool can be used to design target
operational data stores, data warehouses, and data marts, and build extraction, transformation, and loading (ETL)
scripts. Oracle Warehouse Builder allows you to exchange data stored in its Metadata Repository with OracleAS
Discoverer and other tools. The product includes detailed metadata reporting capabilities.

This chapter describes the various business intelligence components available in Oracle Application Server as well as the
use of Oracle's data mining and data warehouse tools. It closes by looking briefly at the management of the business
intelligence infrastructure.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.1 Reporting
Of the tools that business analysts and executives need, reports are the least glamorous but the most often accessed.
Analysts sometimes prefer to avoid reporting software if that software requires help from the IT staff, especially if the
process of creating and deploying the reports is more time-consuming and less flexible than manipulating the data
directly would be. On the other hand, prebuilt reports often appeal to executives because they require no special IT
skills or knowledge to view them. As web-based report generation has become commonplace, the distribution of such
reports within an organization has been greatly improved. Users now need be familiar with only a browser.

The OracleAS Reports Services components in Oracle Application Server include the following:

Oracle AS Reports Servlet running in OC4J

The OracleAS Reports Servlet acts as the intermediary between the Oracle HTTP Server and the OracleAS
Reports Server.

OracleAS Reports Server

The OracleAS Reports Server processes client requests and forwards them to a Reports Engine.

Reports Engine

The Reports Engine actually fetches requested data from data sources, formats the reports, and notifies the
OracleAS Reports Server when jobs are complete.

Multiple Reports Engines can be associated with a Reports Server instance, and you can have more than one server if
you need them for load balancing and availability.

Reports can leverage multiple data sources; these include the Oracle database via SQL or PL/SQL, the Oracle Database
OLAP Option, Oracle Express, XML, JDBC, and text sources. For example, a report might be generated using SQL
queries that leverage analytics in the Oracle database (inverse percentile, hypothetical ranking, etc.). You can also
leverage data sources not supported out-of-the-box by programming to a Java API called the Pluggable Data Source
(PDS) API.

12.1.1 Report Generation and Deployment

Oracle Reports has a wizard-based frontend called Oracle Reports Developer that can build reports. Oracle Reports
Developer is part of the Oracle Developer Suite. The reports created with Oracle Reports Developer can be deployed to
the Web using OracleAS Reports Services support in Oracle Application Server.

Developers can use the Oracle Reports wizards to step through the process of defining Reports structures, sources of
data, break groups, and summaries. A page frame model enables a variety of formats. A Live Previewer displays report
layout and a page of data after the initial format selection. The product provides re-entrant wizards to allow further
modifications. Available formats include tables, matrixes, grouped reports, graphs, and combinations.

You can add graphs to reports through a graphing wizard that features more than 50 different graph types. The graphs
in Oracle's tools are built as "Presentation" Java Beans that enables common graph types among each Oracle business
intelligence tool. The major supported graph categories include the following:

Bar
Horizontal bar
Pie
Line
Area
Combination
Scatter/bubble
Stock
Circular
Pareto
Three-dimensional

Figure 12-1 shows a typical report generated by Oracle Reports with an associated graph.

Reports deployed for web use can be specified at runtime to be output in a variety of formats, such as PDF, plain text,
HTML, HTML extension, or Cascading Style Sheets (HTMLCSS). By default, PDF output from Oracle Reports is
compressed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-1. Oracle Reports' typical report with associated graph

You can also produce reports in formats more commonly used for printing, such as RTF or PostScript, or in data-
oriented formats such as XML or delimited text. Multi-byte character support exists for HTML, PostScript, and PDF.

You can use JSP-based Web Source Reports to create highly customizable and flexible tagged output formats such as
HTML and XML. Using JSPs offers a number of advantages, including:

Separation of static and dynamic content

Support for scripting and tags

Reuse of components and tags

Compilation for permanent execution enabling excellent performance

JSP-based web reports can be created from within Oracle JDeveloper. Version control during the development of reports
and impact analysis is provided via the Software Configuration Manager in the Oracle Developer Suite.

You can direct a report to a number of different destinations—for example, to files, WebDAV URLs, printers, email
destinations, and FTP destinations. You can use an XML distribution file to name the report destinations. Other report
destinations can be created using the Pluggable Destination Java API for Report Engines.

You can also deploy reports of any format to OracleAS Portal. The JSP capabilities in Oracle Reports enable deployment
as HTML if you decide to use them as portlets. This capability allows you to publish web-based reports with dynamic
access to data as it is changed in the database.

Web-based reports can include predefined drill-down capabilities, which allow a business analyst to ask for more detail
about a particular portion of a report. PL/SQL is used as the procedural language in Oracle Reports, but a Java bridge
enables the import of Java classes.

Oracle Reports supports advanced security features such as OracleAS Single Sign-On (which uses the Oracle Internet
Directory) and fine-grained access control. These features ensure that only analysts with proper access rights can see
specific reports. The reports themselves can be created in various customized forms for users or groups of users. These
can be created using customization files that have XML tags to apply against the specific report version.

Some businesses may want to use a single report as a distribution source for different reports, which can lower overall
overhead for the combined set of reports. This technique, known as bursting, allows a report to be split up based on
reporting groups (such as departments) within the report. For example, you may want to split a report into separate
files (such as PDF files) and distribute specific department information to those departments via email.

In some cases, you may want to generate reports in reaction to specific business events. Oracle Reports provides an
Event-Driven Publishing API that's available as a PL/SQL package. Report "jobs" are submitted via HTTP. Reports in
these jobs are then published when triggered by specific database events or by Oracle's AQ query mechanism. The Web
Services interface to the OracleAS Reports Server in Oracle Application Server 10g also enables integration into Java
applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.2 Query and Analysis
Business analysts often want to pose their own "what-if" questions, such as:

What sales volume occurred in the Midwest subregions in 2004?

How did sales compare to 2003?

To answer such questions, analysts need ad hoc query tools that can slice and dice the data, pivot the data, and drill
down to the detailed level. Initially developed as client-server tools, tools of this kind are now mostly browser-based
(though they provide similar functionality to the earlier versions). Because ease of use is very important to most
business analysts, these tools are designed in such a way that queries are typically posed by selecting from lists of
available data (tables and contents) and analysis selections or icons. Users need to know where their data is stored and
what it represents. SQL is generated behind the scenes.

12.2.1 OracleAS Discoverer

Oracle's tool for query and analysis is OracleAS Discoverer, which supports several different client interfaces for
different architectures:

Discoverer Desktop

This interface is the oldest of the three. It is a client-server version and isn't part of Oracle Application Server.

Discover Plus

This interface is browser-based and is part of Oracle Application Server. It is deployed via a Java applet.

Discoverer Viewer

This more limited interface is an HTML browser client that is also part of Oracle Application Server.

Discoverer Plus and Discoverer Viewer are much more popular than Discoverer Desktop and are the focus of this
chapter.

Each Discoverer interface leverages a common End User Layer. The EUL is a metadata layer that provides business
definitions, hiding underlying technical descriptions while providing a map to those specific database fields. Although
OracleAS Discoverer is most often used to query an Oracle relational database, it can also leverage Heterogeneous
Services support in the Oracle database and use ODBC to connect to non-Oracle databases. Note, however, that some
capabilities tied to the Oracle database—in particular, the management of summary tables and query prediction
(described later in this section)—aren't available when OracleAS Discoverer is implemented via ODBC.

OracleAS Discoverer access to data is controlled through security that is regulated at both the application level and the
database level through defined roles. OracleAS Discoverer can leverage the OracleAS Single Sign-On, and can detect
and change expired database passwords.

Information concerning connections to the database is stored in the Oracle Application Server Metadata Repository,
which is a part of the OracleAS Infrastructure introduced in Chapter 2. This information includes the database name,
database username and password, Oracle Applications responsibility (included only when used with Oracle's ERP
Applications), language, and metadata information. Connections can be private and available to specific users, or can be
public and available to all OracleAS Discoverer users. Users can create their own private connections.

As such tools gain importance in making day-to-day decisions, you may want to consider highly available deployment.
If you are deploying OracleAS Discoverer to Oracle Application Server in a highly available manner, make sure to do the
following:

Configure the Oracle Process Manager and Notification Server to monitor and restart OracleAS Discoverer
processes on each middle-tier node. OPMN is described in Chapter 2.

Use the OracleAS Web Cache for load-balancing OracleAS Discoverer requests. OracleAS Web Cache and the
other Oracle Application Server caches are described in Chapter 7.

12.2.1.1 Manipulating and displaying data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2.1.1 Manipulating and displaying data

Discoverer Plus is a browser-based ad hoc query tool that is deployed via a Java applet. This tool provides an easy-to-
use interface for picking and choosing data items (exposed via the EUL) around which to build queries. These queries
can be stored as "workbooks" for reuse as the underlying data changes. Business analysts can manipulate these
workbooks or simply view the contents, depending on their access rights. Workbooks can be scheduled for execution at
specific times using OracleAS Discoverer's Scheduling Manager.

Discoverer Plus's wizards can create more than 50 different graph types for viewing the data in a graphical form (the
same graph types described earlier in Section 12.1.1). Figure 12-2 shows a typical OracleAS Discoverer view of data
and an associated graph.

You can generate OracleAS Discoverer's reports with Discoverer Plus and deploy them to the Web as HTML files. You
can also export them from Discoverer Plus as Excel files, PDF files, or XML for use with Oracle Reports' distribution
capabilities. Information passed via XML includes layout, formatting, exceptions, and parameters.

Figure 12-2. OracleAS Discoverer showing data and associated graph

Discoverer Viewer is an HTML-based browser client that is used mainly to view workbooks and worksheets, although
some additional capabilities (e.g., sorting) are provided. The Viewer can also export data to formats such as XML and
Excel. Discoverer Viewer can be customized to meet corporate standards using a CSS file to define fonts, colors, and
graphics. XML is used to represent application state; the XSL is used for formatting the user interface.

A Discoverer Portlet Provider included with Oracle Application Server allows you to publish workbooks to OracleAS
Portal. Two types of portlets are provided:

Worksheet

This portlet can contain tabular or cross-tabular data, graphs, or both.

List of workbooks

This portlet contains the names of available workbooks.

OracleAS Discoverer and OracleAS Portal
You might want to leverage Oracle Reports when deploying OracleAS Discoverer results to the OracleAS
Portal framework in order to display data in a more visually pleasing way. You can do this as follows:

1. Export your OracleAS Discoverer worksheet in Oracle Reports XML format.

2. Within Oracle Report Builder, modify the layout to give the worksheet a more "published" look.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Within Oracle Report Builder, modify the layout to give the worksheet a more "published" look.

3. After you have finished improving the look of the worksheet, save the report in JSP format.

4. Register the report in OracleAS Portal through the Builder and Administer interfaces.

5. Customize the link to the data by providing automatic passing of identification and password to
the database source in a manner hidden from the OracleAS Portal user.

6. If desired, add prebuilt OracleAS Portal styles to be consistent with other portlets.

7. Add the report definition file to the OracleAS Portal framework.

12.2.1.2 Using analytics and OLAP

As business analysts become more sophisticated, the questions they ask may evolve from "what happened" to "what
trends are present and what might happen in the future." OLAP tools provide the ability to handle time-series and
mathematical analysis for understanding past trends and forecasting the future. OLAP tools use two types of data:

ROLAP

Relational online analytical processing. These tools use data stored in relational databases in a star schema.

MOLAP

Multidimensional online analytical processing. These tools use predefined multidimensional cubes.

Popular MOLAP engines include Oracle's Express Server, Hyperion's Essbase, and Microsoft's Analytic Services. These
MOLAP engines handle queries extremely quickly, and they traditionally work best when the data isn't updated
frequently (because the cube-generation process takes time). Since Oracle9i, Oracle has supported MOLAP cubes stored
within the relational database via the OLAP Option; use of this option provides better scalability and more timely access
to this type of data.

When building a relational query in OracleAS Discoverer, business analysts can select analytic functions provided in the
Oracle database, use predefined functions provided by the administrator, or create their own calculations. Prebuilt
templates are provided for the commonly used analytic calculations provided by the Oracle database. These calculations
include:

Rank
Percent rank
Difference
Percent difference
Preceding value
Following value
Running total
Percent running contribution
Percent contribution
Moving total
Group total
Band by value
Band by rank

The Oracle database's OLAP Option object contains predefined facts, dimensions, and cube structures stored in an
analytic workspace. These features greatly speed pivoting and provide other multidimensional functions. OracleAS
Discoverer support for access to the analytic workspace is a new capability added in 2004.

12.2.1.3 Managing and improving query performance

OracleAS Discoverer uses a cubic cache to maintain query performance in a way that is transparent to both business
analysts and administrators. In a typical three-tier web deployment, the cubic cache is in the middle tier. Because it is
tied to the analyst's session, the cube allows subsequent analysis against the same data without requiring repeated
queries.

OracleAS Discoverer also provides additional facilities that can be used to improve performance. For example, query
performance can be greatly improved when the query is redirected to data that is preaggregated in the database at a
summary level. OracleAS Discoverer can automatically redirect queries to these summary tables. You can use a wizard
in OracleAS Discoverer to simplify creation by defining a summary policy. After setting aside a portion of the database
for summaries (20 MB is typical), OracleAS Discoverer can then analyze available space and recommend, create, and
maintain the summary tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maintain the summary tables.

A business analyst might want to figure out how long a query will take before actually running it. OracleAS Discoverer's
query governor can predict the amount of time a query will take based on comparisons to previous query times of
similar queries. This data is kept in the Oracle database server and is updated so that the predictions become more
accurate over time. The administrator has the option of placing limits on the time allowed for queries to complete. This
provides a safeguard because an analyst could (either intentionally or accidentally) request incredibly complex and
lengthy queries for a particular report. Long-running queries can negatively impact overall database performance for
other business analysts.

12.2.1.4 Using Administrator Edition

Administrators of OracleAS Discoverer can use the Oracle Discoverer Administrator Edition, a part of the Oracle
Developer Suite. Oracle Discoverer Administrator lets administrators perform such functions as formatting business
areas, creating or editing business areas, creating summaries, setting privileges, and managing scheduled workbooks.
Administrators can also set end-user privileges—for example, the ability to use OracleAS Discoverer clients, create or
edit queries, collect query statistics, perform item drills, grant workbooks, schedule workbooks, save workbooks to the
database, and change passwords.

The Oracle Discoverer Administrator Edition also provides the ability to set up and maintain the End User Layer. Wizards
guide the administrator through the process of building the EUL. The EUL can be populated from an Oracle data
dictionary, via a gateway to another source or via the Oracle Warehouse Builder Common Warehouse Metamodel
(CWM) bridge. As an alternative, the EUL can also be created and managed using Oracle Application Server 10g's EUL
command line for Java.

Administrators also control access to workbooks and worksheets through the Discoverer Administrator Edition. As
mentioned earlier, they can put limits on resources available to analysts monitored by the OracleAS Discoverer query
governor.

If there is no client activity for a period of time, an administrator may want to have an
OracleAS Discoverer "time out" because an OracleAS Discoverer session is a live
connection into your corporate data source. For Discoverer Plus, a timeout value can be
set in seconds (Timeout=X) in the pref.txt file. The minimum allowed is 180 seconds. For
Discoverer Viewer, the Web.xml file contains a session-timeout tag that is set in minutes.

12.2.2 Oracle Application Server Business Intelligence Partners

The continued popularity of the Oracle database for business intelligence and data warehousing is driving a growing
number of partnerships among tools vendors. Such partnerships sometimes extend to support of Oracle Application
Server.

Business Objects (www.businessobjects.com) provides an ad hoc query and OLAP capability that can be deployed in
Oracle Application Server in various ways. For example:

The Business Objects' Enterprise analysis tool can be used to generate queries against Oracle relational and
OLAP Option data through SQL.

The Business Objects "Universe," or metadata layer, can be created to enable transparent drill-through from
OLAP data to detailed data stored in relational tables.

An OracleAS Portal toolkit is also available for the viewing of Business Objects-generated reports.

12.2.3 Custom OLAP Applications

Instead of using standard tools to access OLAP, some organizations choose to deploy applications-oriented solutions.
Often, these custom-built solutions are designed to make operations as easy as possible for less-skilled users—although
often at the cost of providing less flexibility.

Back when Oracle's Express Server was popular, custom OLAP applications were built via Oracle's Express Objects. For
today's Oracle database OLAP Option, such applications are now built using Oracle JDeveloper and Business Intelligence
beans. These JavaBeans provide prebuilt components for manipulating tables, crosstabs, and graphs, and for building
queries and calculations similar to the functionality previously found in Oracle Express. Oracle JDeveloper generates
Java code using these building blocks that maps to the Java OLAP API provided by Oracle's OLAP Option. The J2EE-
compliant applications that are produced can be deployed to Oracle Application Server.

12.2.4 Data Warehouses and Oracle Warehouse Builder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The database schema used for business intelligence may be one of several types:

Third normal form (3NF)

In such a model, data is stored once and appears much the same as in online transaction processing. Third
normal form is typically used for operational reporting.

Star schema

In such a model, a large transaction fact table is surrounded by multiple lookup or "dimension" tables. This
model is common in data warehousing. The star schema is especially popular when used with ad hoc query and
analysis tools that explore historical data because the model typically matches the kinds of questions that
business analysts want to ask (see Figure 12-3 for a typical example). This model often includes hierarchies
with summary levels. These models are extremely useful when the business analyst wants to determine, for
example, the number of sales (in a fact table) made by a sales channel (dimension) over a certain period of
time (dimension).

OLAP schema

The analytic workspace in the Oracle OLAP Option takes the star schema model one step further by enabling the
storage of multidimensional cubes (MOLAP) as objects within the same relational database. This approach
further speeds query performance.

Figure 12-3. Star schema viewed through Oracle Warehouse Builder

If you want to perform business analysis on your data, you typically have to create a data warehouse with a star
schema model. Oracle Warehouse Builder, included with the Oracle Developer Suite or the Oracle database, is Oracle's
tool for designing these schema, importing the metadata describing data sources, and designing extraction,
transformation, and loading source-to-target maps. Oracle Warehouse Builder can then automatically generate PL/SQL
scripts for ETL from relational sources, and SQL*Loader files for loading from flat files. SQL*Loader's direct path load
capability can provide rapid parallel loading and bypass the buffer cache and rollback mechanism by writing directly to
the datafile.

Data models and mappings are stored in OWB's Metadata Repository, which is based on a version of the Common
Warehouse Metamodel standard. OWB provides metadata reports, impact analysis, and data lineage diagrams through
a web browser. Metadata interchange to a variety of repositories is available via third-party integration tools. Metadata
of designs may be directly imported from tools such as Oracle Designer, CA's ERwin, and Sybase's PowerDesigner.

If you create an OLAP Option analytic workspace schema, you will typically use OWB and an Analytic Workspace
Manager. Using OWB, you start by first creating a relational dimensional model, then running an OLAP bridge to create
an OLAP catalog and populate the analytic workspace.

In any typical ETL building process, you do the following:

1. Import metadata that describes source tables, including Oracle (via database links) and other relational
databases (through ODBC or gateways), flat files, or application-specific tables (such as those in SAP).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

databases (through ODBC or gateways), flat files, or application-specific tables (such as those in SAP).

2. Design target tables.

3. Map source metadata to target metadata, including mapping functions. The set of mapping functions in OWB
includes a joiner, filter, aggregator, reduplicator, sorter, splitter, sequencer, inline expressions, transformations,
and name and address cleansing operator. Figure 12-4 provides an example of how a typical mapping looks.

Figure 12-4. Typical Oracle Warehouse Builder source table-to-target table
mapping

4. OWB then validates the source-to-target mappings.

5. Once the validation has been performed, generate any of the following:

DDL if target tables are to be created

SQL*Loader control files for the loading of flat files

PL/SQL scripts for ETL from relational sources

OWB can leverage ETL functionality in the Oracle database, such as support for external tables, table functions, merges
(inserts or updates, depending on whether a data item exists), and multitable inserts.

Scripts are deployed to, and run at, the target data warehouse, typically scheduled using the Oracle Enterprise Manager
job scheduler. Although batch jobs are more common, OWB can also create trickle feeds (data is fed nearly
continuously and in near-real time) through the use of advanced queues. For more complex scheduling of ETL jobs
where certain prerequisites must be met, OWB includes an interface to Oracle Workflow. (See the discussion of Oracle
Workflow in Chapter 15)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.3 Data Mining
Data mining, as we define it in this chapter, is the use of mathematical algorithms to model relationships in the data
that solve difficult problems involving large numbers of variables with unknown relationships. You might need such
techniques if you are trying to solve such business problems as fraud detection, customer churn analysis, and
marketing contact response prediction. The algorithms used to solve such problems include clustering techniques that
show how business outcomes can fall within certain groups (such as for market basket analysis) and logic models (if A
occurs, then B or C are possible outcomes), validated against small sample sets and then applied to larger data sets for
prediction.

Since the Oracle9i database release, Oracle has provided a set of data mining algorithms in the database's Data Mining
Option for solving such problems. Algorithms now embedded in the database include:

Naïve Bayes Associations

Adaptive Bayes Networks

Clustering, Support Vector Machines (SVM)

Nonnegative Matrix Factorization (NMF)

These algorithms are accessible via a Java API.

Data mining applications can be custom-built using Oracle's JDeveloper in combination with the Data Mining for Java
interface. DM4J is used to develop, test, and score the models. It provides the ability to define metadata, tune the
generated Java code, view generated XML files, and test application components. The J2EE-generated applications can
be deployed within the database, to Oracle Application Server, or to other J2EE platforms.

OracleAS Personalization is one application of data mining that is bundled with Oracle Application Server. It provides the
tools necessary to instrument a web site, gather data on how a web-site visitor traverses the site, and then use the
data gathered to provide a "personalized" web experience by presenting specific pages that are determined to be of
likely interest to the visitor.

This solution is implemented in three tiers, as shown in Figure 12-5. The Recommendation Engine API (REAPI) is a set
of Java classes that are integrated into the web application on the web site, enabling the gathering of needed data and
specific actions based on recommendations from the middle tier. The data that is gathered as a web-site visitor
traverses the site is captured and sent to an Oracle database installed with the data mining algorithms. There, scoring
takes place to create a sorted, ordered list that is then applied to the middle-tier Recommendation Engine. That engine
services the web site in real time, providing recommendations based on similar, previously analyzed trends.

Figure 12-5. OracleAS Personalization architecture

An OracleAS Personalization Administration User Interface (OPUI) accesses the Mining Object Repository (MOR) in the
backend. The MOR schema contains business model information and is used for configuration and report administration.
A Mining Table Repository (MTR) contains the basic schema needed to create the model of the business, also referred to
as a taxonomy.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.4 Managing Business Intelligence Components
The latest release of Oracle Application Server, Oracle Application Server 10g, was designed to ease the overall
management burden by automating many management tasks for large-scale grid computing deployment. These
include:

Software provisioning, including installation, configuration, cloning, patching, and upgrades

User provisioning, including security and identity management

Application management and monitoring

Workload management, including dynamic resource allocation and failover notification

Systems management and monitoring

Oracle provides Oracle Enterprise Manager, a management tool and framework, as part of every application server and
Oracle database. Management capabilities in Oracle Enterprise Manager include not only generic monitoring of Oracle
Application Server (e.g., CPU and memory usage), but also extended support of specific BI components deployed as
part of Oracle Application Server. For example, configuration of OracleAS Discoverer and OracleAS Reports Services is
performed via Oracle Enterprise Manager. OracleAS Reports Services performance can also be monitored, and job
queues can be viewed and managed through Oracle Enterprise Manager.

The web-based Application Server Control tool, accessible through Oracle Enterprise Manager, allows you to view the
Log Repository error logs. These logs can be populated with warnings and errors generated by OracleAS Discoverer and
OracleAS Reports Server for debugging purposes. The Log Loader, started through Application Server Control, initiates
and populates this Log Repository.

There are myriad ways to use Oracle Enterprise Manager to manage OracleAS Discoverer; here are some examples:

Starting and stopping the OracleAS Discoverer Service

Enabling and disabling client-tier components

Selecting the locale for public connections

Enabling or disabling graphs in Discoverer Viewer and Discoverer Portlet Provider

Managing connections for Discoverer Plus and Discoverer Viewer

Specifying the number of stylesheets to pool for Discoverer Viewer and Discoverer Portlet Provider

Specifying a delay value for the query progress page in Discoverer Viewer

Specifying the communications protocol for the middle tier for Discoverer Plus

Specifying the maximum number of Discoverer Portlet Provider sessions to pool

Starting and stopping Discoverer Servlets

Searching for and analyzing the log files

See Chapter 3 for more information about Oracle Enterprise Manager.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 13. Oracle Application Server Portal
Oracle Application Server Portal is one of the more visible components of the Oracle Application Server product.
Because OracleAS Portal includes a wizard-driven development environment, it is an easy part of Oracle Application
Server for people to begin using quickly. Certain parts of OracleAS Portal can even be used by end users, and this
component is also easy for the Oracle sales team to demonstrate. Because OracleAS Portal provides a complete visual
environment for accessing all kinds of information, end users can quickly see how the addition of OracleAS Portal can
change their computing environment.

If you are unfamiliar with OracleAS Portal, you are likely to pose two immediate questions: what is OracleAS Portal and,
more basically, what is a portal?

Let's answer the second question first. A portal is a way to centralize access to a variety of information sources, from a
collection of web pages to user interfaces with applications. In this sense, a portal is a type of desktop, but with an
important difference. You can think of a portal as a server-resident desktop. Portals are hosted on servers, so they are
under the direct control of the IT organization. This architecture makes them easier to manage and control. Of course,
the more flexible a portal is, the more likely that end users will be satisfied with its appearance and functionality.

OracleAS Portal is the end result of an evolutionary process across revisions and years:

The first version of OracleAS Portal was created by an internal consulting group at Oracle. The purpose of this
version was to provide an easy way to create HTML-based applications to access and interact with data in an
Oracle database. This version was not a public product.

The second version of OracleAS Portal, known as WebDB, was publicly released in 1999. WebDB had more
complete application-building capabilities, but also had the beginnings of a system to organize and classify data.

The current version of OracleAS Portal appeared with the third release of the product. At this point, the
organizational powers of OracleAS Portal had matured, and the idea of portals in general was emerging in the
marketplace. This version has been advanced in the Oracle Application Server 10g release.

OracleAS Portal is a way to present information from a number of sources in one or more HTML-based pages. The place
to start understanding this product is by examining the structure of a page, which we'll do in the next section. In
subsequent sections we'll describe more details of portals, portlets, and the deployment of OracleAS Portal, including
security issues.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.1 An OracleAS Portal Page
OracleAS Portal presents information by the page. A page in OracleAS Portal has the same scope as a standard HTML
page—a page is what a browser holds at any one time.

In OracleAS Portal, though, pages can be assembled from many different sources. Most importantly, a page is a part of
a structural hierarchy, as shown in Figure 13-1.

Figure 13-1. OracleAS Portal hierarchy

The top level in the hierarchy is known as an OracleAS Portal site; it indicates a single installation of OracleAS Portal,
referenced by a specific URL prefix.

The next level in the hierarchy is a page group. A page group contains a group of related pages, as well as any
supporting objects required for the page group, such as styles or page templates, which are described in subsequent
sections. The root page of a page group is typically the home page for that group. You normally organize your OracleAS
Portal sites so that a user can remain within one page group.

Each page group contains pages, and each page can contain subpages. A subpage can be reached from its parent page.
Whenever you copy a page with subpages, you have the option of also copying all subpages associated with the page.
Whenever you delete a page group or page with subpages, you also delete its subordinate pages.

A page, or a portlet within a page (we'll describe portlets later in this chapter), can have parameters assigned to it, and
the value of a parameter can be included in the calling URL for the page. This capability allows you to link to a subpage
or portlet while maintaining some state information. For instance, a click on an item may act as a link to another page
with more detail about the item. The parent page can pass the item identifier to the child page through a parameter.

Clicking a button is an example of a particular OracleAS Portal event. You can write code to execute in response to an
event. Event code can be implemented in JSP code, to execute in response to user actions on the client.

13.1.1 Page Layout and Regions

Each OracleAS Portal page can contain one or more regions, as shown in Figure 13-2.

Figure 13-2. An OracleAS Portal page, with regions highlighted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-2. An OracleAS Portal page, with regions highlighted

The regions in a page provide the basic layout for the page. You can specify where a region goes on a page, in relation
to other regions, and what percent of the width or height of a page a region occupies. A region can automatically have a
banner, as can a grouping of items within a region.

A region contains one of two types of objects—either one or more portlets or one or more items (we'll describe both of
these later in this chapter). A region can contain tabs, each of which brings up its own set of portlets or items. You can
also have a region automatically mark a new piece of content with an icon for a specified time after the content is
initially added to the region.

There are two other specific types of regions:

Subpage region

This type of region automatically contains links to all the subpages for the owning page and nothing else. A
subpage region can contain one or two levels of subpage links.

Tab region

This type of region can't contain anything other than objects but can be configured to include rollover objects
for information about the tab.

A page can't contain another complete page, so if you want a page to appear within a region on another page, you have
to publish the subordinate page as a portlet, and then add that portlet to the region.

13.1.2 Items

An item can do any of the following:

Contain content, such as text or an image

Be a URI that points to another piece of information

Be dynamically created based on a piece of PL/SQL code

You can also create a region that uses a search to automatically add items to the region.

An item can either point to a specific piece of content or be a way to navigate to another location, within the OracleAS
Portal framework or outside of it. When you create an item that navigates you to another location, you can specify
whether that location should appear within the physical boundaries of a region or in its own page or browser instance.
When you create an item, you can assign it an expiration, which allows the item to be displayed for only a certain
length of time or prevents the item from being seen on the site at a specific time.

Items within a region are either sorted by title or size, or simply displayed in the order in which they were added to the
region. Items can be grouped within a region by author, date, category (which is described later in this chapter), or
item type, as well as not grouped at all.

An item region, by default, automatically displays each item in the page on its own row. You can specify that a region
has more than one column, which causes the items in the region to be evenly distributed across the columns. You can
also assign both the number of columns and the number of rows. Doing so limits the display to the number of items
that can be shown in the specified columns and rows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that can be shown in the specified columns and rows.

For convenience, OracleAS Portal enables you to load a group of items at one time by uploading a ZIP file containing
the group. Once the file is loaded, you unzip the items, which maintain the same directory structure they had in the ZIP
file.

13.1.3 Page Appearance

As mentioned at the start of this chapter, OracleAS Portal presents a common interface to many different sources of
data. If you had to create each individual page independently, it would be difficult to establish a standard look and feel
to your OracleAS Portal site. OracleAS Portal has several features that give a standard look and feel to all the pages
within a site: page templates, styles, navigation pages, shared objects, and translations.

13.1.3.1 Page templates

A page template assigns a standard arrangement of regions within a page. If a page is based on a page template, the
template must contain all the regions that will be in the page. A developer or user, with the proper privileges, has the
option to not display all the regions in a page template, but he can't add additional regions to a page based on a
template.

If you make changes to a template, the changes ripple down to all the pages based on that template. You can remove
the association between a page and a template, which stops the propagation of template changes to the page.

Many templates assign specific regions within a page to provide navigation within a page group or site. For instance,
there may be a region at the top of the page that provides access to the home page for the page group, or to a login
and logout page, as well as a region to the left of the page that provides navigation to different parts of the page group.

For convenience, OracleAS Portal allows you to create a page template from an existing page. A page template created
in this manner doesn't include everything in the page but does represent the basic layout of regions in the page.

13.1.3.2 Styles

Styles define overall look-and-feel attributes for a page or region. A style defines the colors and fonts used within the
page or region and can be applied to a single page, to a page group associated with a page template, or to a region
within a page.

There are style properties for items, tabs, and portlets, as well as properties that apply to all of these groups. When a
style is changed, the changes ripple down throughout the items, tabs, and portlets within the area controlled by the
style.

When you create or modify a page, you can assign a style to the page or have the page take on the default style of the
user accessing the page. A page template can require a particular style and not allow any changes in it. If a page isn't
based on one of these restrictive templates, a user can select his own page style from a list of candidate styles. A user
can select a default page style to be used when she views a particular page group or an individual page.

If you don't assign a specific style to a page, the page style uses a default style, either for the page group or, if there is
no default style for the page group, the style defined as the default global style.

13.1.3.3 Navigation pages

Frequently, a page group will have a set of navigation pages that are used throughout the group. You can implement
this functionality by creating a page with the navigation links. These navigation pages also can contain other prebuilt
items, such as a login link; a search box; or an object map, which lists all the page groups and pages in the site.

13.1.3.4 Shared objects

Shared objects can be used in many pages and page templates. Typically, shared objects implement uniform look and
feel (as with color and font definitions or images) or functionality (as with JavaScript form- and field-level validations).

13.1.3.5 Translations

OracleAS Portal can display in different languages, as well as allow users to enter information in different languages.
You enable this capability by creating translations for a page group. Once a translation is created for a page group, a
user can choose a language at sign-in, or by selecting a language with the built-in Set Language portlet. Once a user
has selected a particular language, subsequent contributions of content are kept as part of the specific translation for
the language he has selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the language he has selected.

The translation capability in OracleAS Portal requires manual translation and applies only to text defined for a portal
page, such as category or perspective names or item display names.

13.1.4 Page Groups

A page group is basically a collection of pages, along with objects that support those pages. A page group is analogous
to a root folder in a file system. Page groups represent the highest level in the hierarchy of OracleAS Portal
organization, as shown earlier in Figure 13-1. Each page group contains a root page, which is the top page in the page
hierarchy. A single OracleAS Portal site can have many different root pages.

The key to creating page groups is identifying business units that each should represent. For example, some companies
create separate page groups for each region they serve. Others create page groups for each intranet their portal
supports. Through the use of security, page groups can be hidden from one another. Each page group has its own
security model, which can add administrative overhead to support more page groups.

You can share objects between page groups by either creating them in or promoting them to the Shared Objects page
group. Objects (including page templates, styles, and navigation pages) within this group can be shared with other page
groups to provide a wider scope of reuse and standardization across an entire site.

13.1.5 Types and Attributes

When you create either a page or an item, you must create the object based on a predefined object type. An object
type does several things:

Helps you to classify the information based on its characteristics

Allows you to add information, or metadata, about a particular type of object

Enforces some basic requirements on the type

For instance, if you define a page as a URL page type, you must have a URL indicating where the content for the page is
coming from.

OracleAS Portal comes with a set of standard types, which are associated with pages, items, and regions. You can also
create your own customized types. These customized types can inherit the attributes of an existing page or item type.
You can also include different types of procedures to a page or item type, which automatically adds the procedure to
any page or item of that type.

The page type indicates the source of the information, such as a standard page type for items or portlets, a URL page
type for displaying the contents of other pages on the Web, or a PL/SQL page for displaying the results of a PL/SQL
procedure. The item type performs a similar function for items, specifying whether the item is text, a file, an image, a
link, or one of several other item types.

The type of a page or item specifies some of the attributes associated with the object. An attribute is essentially
metadata about the particular object, such as the name of the object and the author of the object. As with types,
OracleAS Portal comes with a standard set of attributes, and you can also add your own attributes.

There are two classifications of attributes:

Content attributes

These attributes are stored pieces of information about an object. They are associated with page types and item
types.

Display attributes

These attributes can be displayed to an end user and are associated with regions. Administrators can specify
which display attributes are actually available for a particular region.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.2 Portlets
We introduced the concept of a portlet in the previous section. Basically, a portlet is a reusable program that delivers
information. This information can come from a variety of sources. A portlet works with and leverages the services
provided by the OracleAS Portal runtime to integrate its information into the overall OracleAS Portal environment. The
portlet is one of the key enablers for OracleAS Portal's display of information.

A portlet displays information that is collected from a source, known as a portlet provider. The portlet provider collects
the information and then passes it to the portlet, which displays the information. This architecture, and the two types of
portlet providers, are shown in Figure 13-3.

Figure 13-3. Portlet architecture and provider types

A portlet provider can provide information to many different portlets. Portlet providers can be organized into Provider
Groups, which combine related providers. A Database Provider, described later, can be shared between multiple
instances of OracleAS Portal.

Each portlet is registered in the Portlet Repository, which is a part of the overall OracleAS Infrastructure. When you
build a page, you can select any of the portlets in the repository for inclusion in a region.

An individual instance of a portlet can be shared across multiple pages in a page group. By sharing a portlet, you both
ensure a consistent view of the information the portlet is providing and reduce the resources required to retrieve the
information and create the portlet for the end user.

13.2.1 Providers

Portal providers act as the link between a content source and an OracleAS Portal page via portlets. OracleAS Portal
includes many portal providers and can create additional providers to run within the OracleAS Portal environment or to
register external providers. There are two basic types of providers, Web Providers and Database Providers, described in
the following sections.

13.2.1.1 Web Providers

A Web Provider collects information from someplace on the Web and delivers information to its portlets using SOAP
over HTTP. Because it uses the common protocol of SOAP, a Web Provider can be written in virtually any language. A
Web Provider runs in its own environment, while a Database Provider, written in PL/SQL, runs in the Oracle database
that holds the Portal Repository.

The OracleAS Portal Development Kit (PDK), described later in this chapter, comes with a Java framework that makes it
easier to create Web Providers in Java. This framework includes interfaces to use such Oracle Application Server
features as OracleAS Single Sign-On.

13.2.1.2 Database Providers

Database Providers, as their name implies, retrieve information from an Oracle database and are written in PL/SQL.
These Database Providers supply information for portlets based on PL/SQL or JSPs.

Database Providers run in the Oracle database that is also used for the OracleAS Portal Repository. You can access
Database Providers running on other OracleAS Portal instances through a feature called the Federated Portal Adapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database Providers running on other OracleAS Portal instances through a feature called the Federated Portal Adapter.

13.2.2 Using Prebuilt Portlets

Although the overall thrust of OracleAS Portal is now to provide a consolidated interface to many sources of
information, earlier versions of OracleAS Portal put a lot of effort into making it easy to create your own portlets using a
set of portlet wizards.

These wizards prompt you for information and then create PL/SQL packages to implement the portlet. The wizards are
entirely HTML-based, so you can build portlets from any browser.

You can build a number of different types of portlets with OracleAS Portal wizards:

Form portlets

These portlets include simple forms, master detail sets of forms, and forms based on PL/SQL procedures.

Report portlets

These portlets can be built using the Query Wizard, which doesn't require knowledge of SQL or can be based on
an SQL query. You can also create a Query-By-Example report, which provides a form interface for users to
implement their own selection criteria. An item in a report can be used as a link to another portlet page with
detailed information about the item.

Chart portlets

These portlets can include links from chart values to more detailed information.

Hierarchy portlets

These portlets display multiple levels of related information.

Frame driver portlets

These portlets create a page with two frames, with the content of one frame driving the display of information
in the other frame.

URL page portlets

These portlets display the content of a URL.

Data component portlets

These portlets display data in a spreadsheet format.

Calendar portlets

These portlets include links to underlying information based on date.

Dynamic page portlets

These portlets display dynamically created HTML pages.

XML page portlets

These portlets are based on XML.

The most recent version of OracleAS Portal includes two new prebuilt portlets that give a broader range of functionality:

OmniPortlet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This portlet can access data from a variety of sources, including a database, an XML file, a comma-separated
variable file, web pages, or Web Services. The OmniPortlet can display the information in a variety of ways.
OmniPortlet provides some of the same functionality as some of the prebuilt portlets mentioned previously,
such as reports, charts, and forms.

Web Clipping portlet

This portlet makes it easy for a developer to select a web page and have some or all of its content displayed in
a portlet. With the Web Clipping portlet, any web page can be a data source.

These two new portlets are also Web Provider portlets, which means they can exist outside the Oracle database.

OracleAS Portal also includes wizards that help you build portlets that are meant to be part of a page, such as menus,
links, and list-of-values portlets.

Once you have created a portlet, you can use the OracleAS Portal environment to edit the portlet and make changes to
its look, feel, or functionality. For Database Provider portlets, Portal automatically stores each version of a portlet, and
you can recall earlier versions if necessary.

The end result of building a prebuilt portlet with one of the development wizards is a PL/SQL package that is stored in
the OracleAS Portal Repository and run when the portlet is called. The OracleAS Portal development environment
includes an option to compile the PL/SQL package to ensure that any code you may have added to the package
compiles without errors.

In addition to the prebuilt portlets that come with OracleAS Portal, you can download third-party portlets from the
Portal Studio site; it's described in a later subsection.

The development wizards make building portlets fairly easy, and you can include a lot of functionality in these
declaratively created portlets. You can even go so far as to include PL/SQL routines to run at various times during the
processing of a page.

You can access any of the data values on a page, or session values for the page, in PL/SQL
code.

Although you probably shouldn't think about creating mission-critical OLTP applications with portlets, the ease of
creation makes them a viable option for helping users to interact with information in the database through a browser
interface. Also, the Database Provider portlets require that the data they are accessing exist within the Portal
Repository Database, which is frequently not the case. You can use OmniPortlet to access data outside the Portal
Repository Database, because OmniPortlet is a Web Provider.

13.2.3 OracleAS Portal Development Kit

The wizard-driven interface that comes with OracleAS Portal is powerful and productive, but there may be times when
you want to implement some type of functionality that is beyond the scope of these built-in wizards. For these
occasions, the OracleAS Portal team has created the OracleAS Portal Development Kit.

The PDK contains all the information and APIs you need to create your own customized portlets, in either PL/SQL or
Java. Using the PDK is significantly more complex than the simple creation of portlets with the built-in wizards, but it
offers almost unlimited flexibility.

13.2.4 Java Portlets

Two new Java standards, Web Services for Remote Portlets (WSRP) and Java Specification Request 168 (JSR 168),
provide the Java world with specifications for portlets to run in different portal environments.

OracleAS Portal comes with an Oracle JDeveloper Portlet Wizard, which helps you create a portlet out of Java code in
Oracle JDeveloper. This wizard is an add-on for Oracle JDeveloper that allows you to create Java portlet code. This code
can be run against any JSR 168-compliant portal, which includes OracleAS Portal. Portal Studio, described in the next
section, has a section that lets you test a Java portlet to make sure it can properly interoperate with a JSR 168-
compliant portal.

The Oracle JDeveloper Portlet Wizard can also create portlets that use the Oracle PDK, rather than JSR 168, as the
basic API for the portlet. Regardless of which type of Java portlet you create, the portlet is run in the Java Portlet
Container servlet.

13.2.5 Portal Studio

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To encourage the creation and sharing of portlets and providers, Oracle Corporation provides the Portal Studio site
(http://portalstudio.oracle.com). Portal Studio is intended to be a full-service support site, containing the latest versions
of the PDK, a discussion area for developers, integration tools for other applications, and even a way to register and
test your own portlets. Portal Studio includes third-party portlets and providers in its Portal Catalog. The OracleAS
Portal development team and product managers are continually updating this site with new explanations, tutorials, and
sample code.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.3 Classification of Data
OracleAS Portal provides access to information. The more information that is available, the greater the potential
aggregate value of the information. However, large amounts of information can also be hard to organize and
understand. To help make data more accessible, OracleAS Portal comes with two default ways to classify data—
categories and perspectives:

Categories

Each item in an OracleAS Portal site must belong to one, and only one, category. In this way, categories provide
a taxonomy for content in OracleAS Portal. OracleAS Portal comes with its own set of built-in categories, and
you can add your own categories. You can create a hierarchy of categories to further organize your content.
Categories can be made available to specific page groups, or to all page groups.

Perspectives

Perspectives provide a way to organize content based on an idea of who might be interested in the content. For
instance, you might have one perspective for managers, another for developers, and another for sales within
your company. By selecting a particular perspective, a user can quickly focus on the content that is most
pertinent to him.

An item can be assigned to more than one perspective. As with categories, you can create a hierarchy of
perspectives.

Whenever you create either a category or a perspective, a page is created for the item. This page lists the content for
that category or perspective.

In addition to categories and perspectives, you can add specific search terms, which may be used to find data, or you
can use the functionality of Oracle Text to provide further search capabilities. Searching is described in the next section
in the context of end-user interaction.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.4 End-User Interaction
OracleAS Portal is designed to present information to end users. Although an administrator controls the basic creation
and deployment of an OracleAS Portal site, end users can also take advantage of OracleAS Portal to customize their
user experience, to search for information, or even to add content to an existing site.

13.4.1 Customization

End users have a habit of wanting things shown to them in a particular manner, and not all users in a community agree
on what this exact manner should be. OracleAS Portal can help solve this problem by enabling end users to customize
many aspects of their OracleAS Portal interaction.

You can grant the user the ability to customize the appearance of any of his pages. Customization can cover a wide
range of possibilities, from setting the home page to changing the style of a page or page group, to actually moving,
adding, or deleting portlets from a region. You can limit the degree of customization that any particular user has, as
well as lock down any region in a page to prevent user customization of the content of the region.

13.4.2 Working with Content

OracleAS Portal was designed to be user friendly, from the way it displays information to the way it implements wizard-
driven interfaces for developing some types of portlets. Individual end users can also work within the framework of an
OracleAS Portal site to directly interact with content items.

With proper permissions, an end user can manipulate the items in a region. A user can add items to a page. An item
can be text, a link to a file, or a link to another source of information on the Web. An administrator can specify a limit to
the total amount of space allotted to store items for a particular page group.

Of course, not all users should be allowed to add items, willy-nilly, to managed OracleAS Portal sites. To ensure that
added content is appropriate and relevant, a user can be given the privilege of adding content only with approval.
Content approval can be specified for an individual page or for an entire page group.

The approval can be a simple sign-off from another user or an entire approval process involving many different users.
When a user creates a content item, she is automatically informed of the progress of the item through the approval
process, as well as whether the item has been approved or rejected at each step.

End users can also move items from one page or region to another or rearrange the order of items within a region.
Users can also delete items with proper permissions. For existing items, a user can change the item's category, add or
delete an item from a perspective, or add or delete search keywords for the item.

OracleAS Portal also enables users to "check out" a piece of content. If checkin/checkout is enabled for an item, this
ability can be downloaded by only one user at any given time. OracleAS Portal can implement version control on items,
in which older versions of edited items can be saved and retrieved.

There may be times when a user will want to know if a particular page gets new content items. You can set up a page
so that a user with the proper privileges can subscribe to the page and be automatically notified when the contents of
the page change. The notifications come to the user via a built-in notification portlet.

OracleAS Portal supports the use of Web-Distributed Authoring and Versioning (WebDAV) clients to edit content
accessed through OracleAS Portal. WebDAV allows users to view OracleAS Portal as a web folder within Windows
Explorer. This displays OracleAS Portal and portal pages in the same manner as desktop file explorers. Pages are
rendered as folders and items as files. Via this interface, users can seamlessly interact between OracleAS Portal and
their file system by dragging and dropping content, files, and folders.

OracleAS Portal essentially supports WebDAV in parallel with its built-in features for content manipulation, and there are
some restrictions on the types of pages and content that can be used.

13.4.3 Searching

The overall purpose of any OracleAS Portal site is to centralize the display of information. As we suggested earlier, all
this aggregation of content can lead to information overload, as a result of the sheer volume of information. OracleAS
Portal includes the classification schemes mentioned earlier, but also has a built-in search capability to help users find
the information they need quickly.

An OracleAS Portal user can search through an OracleAS Portal site to find specific content. A search can look through
items, pages, categories, and perspectives for a specific word or words.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

items, pages, categories, and perspectives for a specific word or words.

You can add keywords to a particular item to help a user find the item. A user search can
include keywords.

The user can limit the search results to specific page groups, categories, perspectives, or item types, among other
selection criteria. This basic search capability can be accessed through a built-in Search portlet or through a built-in
Search box object built into a page. You can perform more complex searches with the built-in Advanced Search portlet.
You can also limit the results the Advanced Search portlet can return for users.

A user can save a search, which allows her to repeat it without having to reenter all the search criteria. A built-in portlet
provides access to saved searches.

13.4.3.1 Oracle Text

You can enable Oracle Text for an OracleAS Portal site, and doing enables you to offer significantly more sophisticated
searches. With the added capabilities of Oracle Text, a search can automatically look for related words or use
functionality such as the nearness of words to each other, or the sound of the words (known as soundex).

13.4.3.2 Oracle UltraSearch

Oracle Application Server also comes with a component called UltraSearch, an extensible search engine that uses a
crawler to index documents. The documents are indexed from within their own repositories. The crawled information
can build indexes that stay within an Oracle database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.5 Deployment Architecture
As the discussions in previous sections have illustrated, OracleAS Portal lets you combine information from different
sources into a single, server-based interface. But how, exactly, does OracleAS Portal assemble these pages at runtime?
The workflow is shown in Figure 13-4 and is described in the following sections.

Figure 13-4. Requesting and receiving a page from OracleAS Portal

13.5.1 Creating Portal Pages at Runtime

When a browser sends a request for a page to OracleAS Portal, the request is routed to the Parallel Page Engine (PPE),
a Java servlet. The PPE is responsible for implementing and overseeing the creation of a single page from the different
sources of information shown on the page.

The first step in the process is for the PPE to get the metadata for the page. The metadata describes the overall layout
of the page and the portlets used within the page. The PPE builds a structure to hold the page and its information, as
described by the metadata.

Once the metadata is retrieved from the OracleAS Portal Repository, the PPE sends a request to the provider for each
portlet. When the provider has returned the requested portlet, the PPE adds it to the structure it has created for the
page. Once the entire page has been assembled, the PPE returns the page to the requester.

As you can see from this description, the PPE is central to the overall runtime operation of an OracleAS Portal site. To
ensure adequate performance, you can have more than one PPE for an OracleAS Portal site. Each PPE has a default
number of fetchers, which request data from providers. You can increase this number if the performance of your
OracleAS Portal site seems to be suffering from a lack of fetchers.

13.5.2 Caching

The earlier description shows that creating a page involves a number of different resources. There may be pages or
portlets in an OracleAS Portal site that contain the same content for all users. You can reduce the overhead of creating
these pages by caching the pages at a system level.

You can specify the following types of caching for a page or portlet:

Cache page definition at the system level

This approach caches the page metadata once for all users. You can also set an expiration time for this type of
caching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

caching.

Cache page definition only

This approach caches the metadata that build the page for each individual user.

Cache page definition and content for a specified length of time

This approach is helpful for pages that are somewhat dynamic, such as pages listing current news items.

This caching is implemented through the file system on the Oracle Application Server server that is running OracleAS
Portal, and is separate from the caching performed by OracleAS Web Cache (described in Chapter 7). Like other pages,
portal pages can be cached in OracleAS Web Cache as long as they are defined there as being cacheable. You can set a
PPE parameter to prevent OracleAS Web Cache from caching OracleAS Portal pages if desired.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.6 OracleAS Portal Security
OracleAS Portal allows you to assign security to items and pages based on user identity. When a user enters an
OracleAS Portal site, he typically logs in, although a site can also accept anonymous users. OracleAS Portal security
uses the OracleAS Single Sign-On and Oracle Internet Directory facilities built into Oracle Application Server and
described in Chapter 4.

OracleAS Portal supports security for both individual users and groups of users. You can define groups of users through
the OracleAS Portal administration interface.

For each user or group, you assign one of several security levels, including:

The ability to completely manage the page, which allows a user to perform any action on the page

The ability to manage content on the page, with or without an approval process

The ability to customize portlets on the page

The ability to customize styles applied to the page

The ability to view only the page

Each item can have security restrictions attached to it if you have enabled item security for its page. You can have
every item on a page or tab inherit the security restriction of the page or tab. Alternatively, you can allow the person
contributing the item to assign a specific security level to it. As with styles, you can assign access privileges in a page
template and force those security privileges to be assigned to all pages that use the template.

Portlets also have access rights. By default, a portlet inherits its security settings from its provider, but you can assign
specific rights to any individual portlet.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 14. Oracle Application Server Wireless
As Oracle Application Server has evolved, new components have extended the standard capabilities of an application
server to handle new areas of technology. One area of explosive technology growth today is the deployment of
wireless-enabled applications. This growth has been aided by an increase in the sophistication of wireless devices,
including cell phones and Internet-attachable PDA devices, and the growing availability of public wireless connection
sites. Usage of such applications and infrastructure is now becoming commonplace. Oracle Application Server Wireless
provides a platform that enables the deployment of mobile applications.

Of course, the value of OracleAS Wireless applications is that information can be made available to, and can be updated
by, remote users. Advanced OracleAS Wireless features can enable targeted data delivery based on device location. For
example, you may want to provide a guide of local movies available in a particular area based on the current physical
location of a person's cell phone.

The OracleAS Wireless features in Oracle Application Server enable the deployment of a variety of mobile applications,
including:

Browser-based applications

Voice applications

Applications written using Java 2 Micro Edition (J2ME)

Two-way messaging applications using asynchronous services (ASK), alerts, and notifications

Mobile applications can function entirely disconnected, occasionally connected, or fully connected, depending on the
application.

OracleAS Wireless provides components in three areas:

Foundation services

These services are required in the development and deployment of wireless applications. Foundation services
include location-based services, alerts, content syndication, provisioning, personalization, synchronization,
analytics (providing mobile usage reports), and commerce utilities.

Development tools and sample wireless applications

Applications are built using a variety of supported languages and the OracleAS Wireless Development Kit
(WDK).

Support of multiple protocols

These protocols enable access to wireless applications from a variety of devices. For example, OracleAS
Wireless provides the underlying infrastructure for mobile deployment of Oracle's Collaboration Suite and E-
Business Suite applications.

Deployed applications are accessed using a variety of delivery methods via the Multi-Channel Server (see Figure 14-1),
which is described in detail in Section 14.3 later in this chapter.

Figure 14-1. OracleAS Wireless Multi-Channel Server deployment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This chapter describes the OracleAS Wireless Foundation Services and the OracleAS Wireless application development
tools, deployment process, and administration tools.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.1 OracleAS Wireless Foundation Services
The Foundation Services in OracleAS Wireless provide a library of key functions and capabilities needed in the
development and deployment of mobile applications. Services are accessed through APIs provided with the services.
The Foundation Services fall into a number of categories: location-based, alert, content syndication, provisioning,
personalization, synchronization, analytic, and commerce. The following subsections briefly describe each service.

14.1.1 Location-Based Services

Location-based services allow mobile applications to be location-aware. For example, you might want to build an
application that notifies you when a parcel delivery is within a mile of its destination. Here are the services that can
build such an application:

Location framework

These services consist of a set of Java APIs, JSP Tag libraries, and Web Services interfaces for geocoding,
reverse geocoding, mobile positioning mapping, routing, and business directory services.

Static and dynamic location detection

These services enable the input of location manually, from an application, or from a positioning system such as
a GPS.

Privacy management

These services enable or disable the determination of location by others, either permanently or for certain
defined time frames

Functionality in OracleAS Wireless location-based services typically is implemented through an external provider.
OracleAS Wireless includes prebuilt drivers needed to leverage providers of mapping, routing, and positioning solutions.
Examples of solutions providers for such location-based services include InfoUSA, MapInfo, MapQuest, Ericsson, and
Nokia.

14.1.2 Alert Services

Alert services are provided by an alert engine in Oracle Application Server that facilitates the publishing of content (by
content managers) and availability to subscribers (the content users). Alerts can be triggered at certain times or based
on location or threshold values. For example, an application can be built to send an alert to your cell phone when an
employee submits an unusually large expense report while you are on vacation.

14.1.3 Content Syndication Services

Content syndication services allow content to be repurposed or reused. You can specify content sources using a wizard
provided in OracleAS Wireless Foundation Services to specify a content provider. Two types of content services are
provided by OracleAS Wireless:

Transcoding services

These services allow applications developed in WML or cHTML to be dynamically reformatted for use with
phones, PDAs, or voice.

Web clipping services

These services enable you to clip and scrape standard web content using a browser interface and then reuse
this content for display to mobile devices.

14.1.4 Provisioning Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provisioning services support configuring the Wireless Application Protocol (WAP) settings on certain phones (e.g.,
Ericsson or Nokia) to enable access to email and text-based web pages. OracleAS Wireless includes APIs to extend this
support to other devices. Provisioning services also enable integration over-the-air (OTA) that is useful in tasks such as
updating Spatial Information Management (SIM) cards in your device. Provisioning is supported for J2ME-developed
applications or native applications such as icons, MIDI applications, and ring tones.

14.1.5 Personalization Services

Personalization services enable quicklinks that provide shortcuts to applications are commonly used by users. Using
these services, you can enable profiles or portal views, and alert notification for services subscribed to by specific users.
Personalization services also support managing user devices, user application defaults (such as home location), and
user location marks.

14.1.6 Synchronization Services

OracleAS Wireless synchronization services allow you to synchronize J2ME applications and Oracle Lite (Oracle's mobile
database). You can use these services to ensure that devices have up-to-date data and that backend data is made
consistent with locally updated data.

14.1.7 Analytic Services

Analytic services enable the reporting of system usage, response time, user behavior per channel, and user
profile/application matching. Data gathered using these services enables system administrators and planners to
determine the level of service and the popularity of applications.

14.1.8 Commerce Services

OracleAS Wireless commerce services allow Mobile Wallets to be stored in a triple-DES encrypted format in an Oracle
database for added security. You can retrieve such a wallet after providing a PIN. Commerce services also support the
automatic population of forms using wallet data and integration to other systems such as billing systems.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.2 OracleAS Wireless Development
OracleAS Wireless applications can be developed in a completely custom fashion or you can leverage prebuilt
applications that are provided with OracleAS Wireless. Markup languages supported for mobile applications include the
following:

XHTML Mobile Profile

XHTML with XForms

XML

The OracleAS Wireless engine provides translation to the appropriate device markup language.

XForms, as defined by the W3C, enables the creation of rich, device-independent forms
interfaces through data and processing logic that is separate from presentation logic.
Auxiliary scripting isn't needed with XForms, which is an improvement over previous HTML
forms creation methods.

When developing an OracleAS Wireless application, you typically follow these general steps:

1. Define business and technical requirements.

2. Design the mobile application needed to fulfill the requirements.

3. Identify prebuilt business logic for reuse, as appropriate, along with needed Web Services.

4. Decide if the application will be accessed via small-screen browsers, messaging devices such as Short Message
Service (SMS), or a mixture.

5. Build the mobile application using the Oracle JDeveloper Wireless Extension and device simulators.

6. Test the mobile application using the Mobile My Studio.

7. Deploy the mobile application into production for use on real devices.

14.2.1 OracleAS Wireless Development Tools

The primary tools available for OracleAS Wireless development are Oracle JDeveloper, the Wireless Development Kit,
and My Studio.

14.2.1.1 Oracle JDeveloper

Oracle JDeveloper (packaged in the Oracle Developer Suite) is the primary tool used to build OracleAS Wireless
applications. The GUI-based JDeveloper Wireless Extension (JWE) enables you to create mobile applications through
wizards and templates. You can use this tool to edit applications. Its device simulators also allow you to test
applications and advanced systems and to view log files used in the debugging process. You can deploy applications
from the JWE user interface.

14.2.1.2 OracleAS Wireless Development Kit

The Wireless Development Kit can be used with Oracle JDeveloper, as well as with other development environments
and device simulators. You can obtain the WDK at the Oracle Technology Network Wireless web site at
http://otn.oracle.com/tech/wireless/index.html.

The WDK includes the following:

XHTML and J2ME samples

Device detection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Device detection

Error logging

Location services

A wireless client

Java messaging APIs

Web Services

Web Services components include a J2ME SDK and a J2ME Web Services Proxy Server.

A small-footprint version of OracleAS Wireless Multi-Channel Server is provided in the WDK and enables the testing of
wireless applications without requiring deployment of the full Oracle Application Server. The Multi-Channel Server is
described in Section 14.3. The industrial-solution version of the WDK enables developers to build applications using
XForms embedded within XHTML documents and then test them in a Telnet emulator.

Figure 14-2 shows the home page for the Mobile area of the OTN, a free service for developers. The figure shows some
of the mobile resources available through OTN.

Figure 14-2. Oracle Technology Network Mobile web site

14.2.1.3 My Studio

After you have created your application, you deploy it to a web server for voice or browser access, or for messaging.
Applications can be deployed anywhere they are accessible from the Internet. The next step is to test your application.

Oracle provides an online testing facility, the Oracle Mobile My Studio. You can obtain My Studio from
http://studio.oraclemobile.com.

This web site provides test facilities for voice, mobile browser, and two-way SMS. Real-time logs are generated as you
test the applications that you view when debugging your application.

When you come to the My Studio web site for the first time, you need to register on the Welcome page. Once you are a
registered user, you can log in. You will then see tabs for Applications, Samples, and Webservices (see Figure 14-3).
Exploring the My Studio tabs leads you to the following:

Figure 14-3. Home page for My Studio online testing of OracleAS Wireless
applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applications

Applications

Provides a list of existing configured applications that you can view and test. Alternatively, you can configure
new applications for voice and browser access (by providing the name and URL) or SMS and email (by providing
the short name and HTTP parameters your application expects).

Samples

Provides sample application code you can view and test.

Webservices

Enables the registration of new J2ME Web Services and the downloading of registered hubs. Also provides a link
to download the J2ME SDK.

My Studio includes online directions for how to test applications. Other online documentation provides help getting
started, developing applications, and advanced topics related to voice, messaging, and J2ME Web Services. A link to the
Mobile Studio Forum allows you to communicate with other OracleAS Wireless developers.

14.2.2 Prebuilt Wireless Applications

OracleAS Wireless provides a set of prebuilt applications that can be deployed on their own or that can serve as a
starting point for building other applications. These applications are:

Mobile Office

Mobile Messaging

Mobile Location

These applications are described in the following sections.

OracleAS Wireless also provides the underlying infrastructure for mobile and voice access to Oracle's Collaboration Suite
and E-Business Suite.

14.2.2.1 Mobile Office

Mobile Office provides wireless, voice, and messaging applications used to access common office productivity systems.
Supported systems and interfaces include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Supported systems and interfaces include:

Email

Through support of email servers supporting SMTP, POP3, or IMAP4, such as Oracle Collaboration Suite,
Microsoft Exchange, and Lotus Domino

Calendar

Through support of Oracle Collaboration Suite, Oracle Calendar 5.2, and Microsoft Exchange 5.5 and 2000

Directory

Through access to a Corporate Directory deployed using the Oracle Internet Directory or any LDAP directory

Address Book

Through support of Oracle Collaboration Suite, Oracle Calendar 5.2, Microsoft 5.5 and 2000, and Lotus Domino
Release 5 and 6

Tasks

Through support of Microsoft 5.5 and 2000 and Lotus Release 5 and 6

Files

Through support of WebDAV and Oracle Files

Published interfaces are available to extend the use of these applications to nonsupported systems.

14.2.2.2 Mobile Messaging

Mobile Messaging applications provide message exchange via email, SMS, MMS, voice, or fax. You can choose target
destinations from address books or directory entries, or you can specify your own. Alerts and notifications can include
email alerts, calendar appointment reminders and new appointments, and custom alerts using the Alert Service.

14.2.2.3 Mobile Location

Mobile Location applications are location-aware and can be deployed via wireless, voice, or messaging interfaces. These
applications can provide driving directions, find nearby businesses (along with directions to those businesses), and show
locations on maps.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.3 OracleAS Wireless Deployment
OracleAS Wireless applications can be deployed for many different types of access, including wireless Internet browser,
two-way ASK messaging, voice, J2ME devices, and delivery of alerts and notifications. Because of this flexibility, it is
desirable to have a single application delivery via multiple channels. The Multi-Channel Server is designed specifically to
meet this need.

The Multi-Channel Server delivers device-independent content based on the device's capabilities and ensures
compatibility with new and emerging devices. In effect, the Multi-Channel Server provides a common interface that
eliminates the need for device-specific applications. It enables the adaptation of text, images, ring tones, voice
grammars, and audio/video streams for each device type. For example, if an application generates GIF images, and the
device supports only Wireless BitMap (WBMP) format, the adaptation engine adapts the image to WBMP before it is sent
to the device. The Multi-Channel Server also supports standard markup languages and provides the XForms engine.
Devices are detected as they make requests. The Multi-Channel Server supports URL caching and can be deployed
within existing portals.

Browser-based applications are developed using the OracleAS Wireless XML or XHTML languages. Data is accessed
using these applications in a synchronous fashion via wireless Internet-connected devices. The typical communication
protocols used for deployment include CDMA and 1xRTT; GSM with GPRS and UMTS; CDPD; Mobitex; and 802.11 a, b,
and g.

Applications that access data using ASK message protocols via the Multi-Channel Server can operate in disconnected
mode. Messaging devices used for an ASK application might include two-way pagers, email clients, instant messaging
clients, and mobile phones with SMS. Once the Multi-Channel Server receives an incoming message, it parses the
message and sends requests to applications via HTTP. OracleAS Wireless then transforms the content of the response
(initially defined by XHTML tags) and matches it to message services available on the mobile device.

Voice applications respond to requests made via speech or a phone's keypad. Once a request is recognized at a voice
gateway, the request is sent via HTTP to the Multi-Channel Server. From there, it is relayed to the appropriate
application. When the application responds, OracleAS Wireless receives it in XML and transforms it to a user device
markup language (commonly VoiceXML).

Rather than deploying to proprietary device interfaces, some developers prefer to use J2ME as the runtime
environment. OracleAS Wireless makes this possible by extending Web Services to J2ME devices through a Proxy
Server in the J2ME Development Kit.

Three OracleAS Wireless components are used to deliver alerts and notifications:

Data Feeder

Retrieves alert content from a database, file, URL, or other source

Alert Engine

Manages alert subscriptions and triggers

Multi-Channel Server

Formats messages and delivers alerts to specified devices over appropriate channels

Security safeguards are crucial to successful mobile application deployment. In securing your applications, you must
ensure the three fundamental goals of security: privacy, data integrity, and authentication:

Privacy

You can ensure the privacy of your mobile applications by implementing appropriate encryption and decryption
of data.

Data integrity

You can ensure data integrity using various forms of digital security.

Authentication

You can ensure authentication using digital certificates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can ensure authentication using digital certificates.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.4 OracleAS Wireless Administration
You can manage OracleAS Wireless using a variety of administrative tools that are available to developers and
administrators:

Service Manager

Provides a visual interface for creating and managing OracleAS Wireless users, user groups, adapters,
transformers, and services including applications, notifications, and data feeders.

System Manager

Allows system administrators to perform configuration management and performance monitoring of the Multi-
Channel Server, Asynchronous Listener (a preprocessor of asynchronous requests inside the OracleAS Wireless
runtime server process), Location-based Service Provider (providing the actual computation for location
services), and standalone OracleAS Wireless processes. These processes include the Notification Engine, the
Messaging Server (dispatching application invocation requests and responses), and the Location Event Server
(generating events based on location). The System Manager is accessible via the Application Server Control tool
and through Oracle Enterprise Manager. See Chapter 3 for a discussion of these management tools.

Content Manager

Enables the creation of application categories, access points, and bookmarks.

Foundation Manager

Used by "Foundation" developers to create, modify, and delete devices, transformers, regions, digital rights
policies, and API scan policies.

User Manager

Used to edit user profiles, reset PINs and passwords, manage user access and user devices, and view user
application links.

Wireless Customization Portal

Allows users to register with OracleAS Wireless to personalize their own applications and manage their personal
profiles. Users can create their own accounts and manage their devices, locations, and contact rules.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 15. Integration Components
Within your organization, you may have a mixture of business applications based on various technologies deployed in
different areas of the business. You may also need to share data and business processes with other organizations and
partners. To allow you to successfully manage the entire business, such disparate systems must be able to access and
share business processes, data, and services. An integration strategy is key to making effective use of these resources.

Oracle Application Server integration components provide the framework needed to bring together such resources in a
variety of ways:

 Enterprise Application Integration (EAI) is enabled through collaborative interaction between applications.

 Business-to-business (B2B) collaboration is enabled by an exchange of documents among "trading partners,"
two parties that take part in a business transaction. Oracle sometimes refers to this scenario as OracleAS
PartnerConnect.

Web Services integration enables business processes to incorporate Web Services present in local networks or
externally over the Internet.

This Oracle Application Server integration framework allows you to establish a common view of data and business
processes by providing these capabilities.

Two specific integration platforms are provided in Oracle Application Server 10g:

Oracle Application Server InterConnect

OracleAS InterConnect, available since the Oracle9iAS application server, provides high-speed message
exchange (e.g., exchange of hundreds of messages per second) via brokers that are available for a variety of
applications, queuing mechanisms, and data movement protocols.

Oracle Application Server ProcessConnect

An addition to Oracle Application Server 10g, OracleAS ProcessConnect enables business process integration
and automation through the use of J2EE Connector Architecture-based adapters.

OracleAS InterConnect is most commonly used for database-to-database (data) integration or application-to-application
integration (EAI). It can synchronize data through transformations involving multiple trading partners.

OracleAS ProcessConnect provides a single middleware software solution targeted for business process integration
within an enterprise or with trading partners. This platform can enable Business Activity Monitoring (BAM) through the
retrieval of such runtime data as the number and status of activities and the current state of an integration object.
Business Process Optimization (BPO) reports can also be produced, indicating business process efficiency (e.g.,
fulfillment completion time).

BAM is the aggregation and correlation of data from many sources to produce key
performance indicators (KPIs). The KPIs can provide business advisories or to trigger
specific business processes designed to improve business results when predefined
threshold values are reached. This automatic triggering of business processes is called
Business Process Optimization.

An alternative to using OracleAS ProcessConnect for defining and deploying business processes and events is to use a
combination of OracleAS InterConnect with Oracle Workflow. The InterConnect iStudio tool provides a single interface
to build such processes. An Oracle Workflow for Java (OW4J) engine, introduced with Oracle Application Server 10g,
complements the PL/SQL-based Oracle Workflow engine previously available with the Oracle database. OW4J enables
Oracle Workflow deployment to the middle tier. It also supports the execution of methods in Java classes, EJBs, and
Web Services.

This chapter describes the various integration facilities available with Oracle Application Server: OracleAS
ProcessConnect, OracleAS InterConnect, iStudio, and Oracle Workflow for Java. It also outlines some sample
deployment sequences for business process integration.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.1 Oracle Application Server InterConnect
You can use OracleAS InterConnect to integrate applications from Oracle, other software providers, or custom-built
applications using message-oriented middleware. OracleAS InterConnect enables integration through modeling rather
than relying on extensive programming techniques. Integration logic is separate from the integration platform.
OracleAS InterConnect components include a hub, adapters, and a Development Kit. Figure 15-1 shows a typical
deployment configuration.

Figure 15-1. Typical OracleAS InterConnect deployment

The OracleAS InterConnect design and modeling tool, called iStudio, features easy-to-use wizards. Intended for use by
business analysts, iStudio largely eliminates the need to write code when creating business rules and transformation
integration logic. Users of iStudio can define and map data to be exchanged between applications, and can configure
and deploy the integration. Objects can be locked within the tool, thus enabling multiple users to model and design
simultaneously. OracleAS InterConnect supports metadata versioning so that multiple versions of the same object can
coexist or be active at the same time. If business process collaboration is desired, Oracle Workflow can define the
business processes. The iStudio tool is then used to associate semantic maps with these business processes.

Components connected with OracleAS InterConnect and created in iStudio are called application views . Application
views include interest in specific messages, internal datatype identification, and information on how a message should
be mapped to or from an internal datatype. A common view is a hub view in which each spoke is an application view
participating in the integration. Figure 15-2 shows the hub-and-spoke nature of OracleAS InterConnect deployment
between the common view and application views.

Figure 15-2. Typical OracleAS InterConnect hub and spoke

Common views can contain the following components:

Business objects

A collection of logically related integration points—logical occurrences that trigger communications between
applications

Event

An integration point used to model "publish and subscribe"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An integration point used to model "publish and subscribe"

Procedure

An integration point used to model "request/reply"

Common datatype

Data definition for reuse

Transformations, sometimes call mappings , are the integration points to application views.

Generated models and designs are stored in the OracleAS InterConnect metadata repository, which is part of a hub. At
runtime, the metadata repository is the source of instructions enabling message exchange to occur. Runtime
management, which is handled through Oracle Enterprise Manager, includes such management tasks as:

Starting and stopping components

Monitoring message flow

Performing problem detection

Handling error management

15.1.1 OracleAS InterConnect Adapters and Messages

OracleAS InterConnect Adapters provide connectivity via a bridge, the protocol/application-specific portion of the
adapter. The adapters transform and route messages between an application and the hub. Data is transformed from
application views to common views and from common views to application views, as defined in the metadata repository.
Figure 15-3 shows the architecture of an adapter.

Figure 15-3. OracleAS InterConnect Adapter architecture

A number of prepackaged OracleAS InterConnect adapters are available, including:

Technology Adapters

These adapters are used in cases where endpoints don't have APIs. They include Oracle database, Oracle AQ,
MQSeries, HTTP/S, SMTP, FTP, and CICS.

Packaged Application Adapters

These adapters are used to integrate JD Edwards, PeopleSoft, SAP, and Siebel applications.

Adapter SDK

The SDK enables the creation of adapters for applications and protocols that aren't supported by other
adapters. The kit is a collection of Java JAR and Javadoc files.

Messages are commonly communicated using database adapters, Oracle AQ, or XML messaging, or through the Data
Definition Description Language (D3L). All OracleAS InterConnect messages are guaranteed to be delivered exactly
once in the order sent. Messages can be load-balanced across multiple adapters using Real Application Clusters (RAC),
a clustered Oracle database configuration. Routing of messages can be implemented using business rules based on
message content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

message content.

Interfaces to Oracle's E-Business Suite of Applications are typically via database access to
the Oracle Applications interface tables or through an XML gateway (as XML is supported in
several of the technology adapters). Interfaces can be created to Oracle's CRM application
via SOAP and to Oracle's Supply Chain applications via the Supply Chain Trading Connector
(SCTC).

OracleAS InterConnect supports two distinct models:

Publish and subscribe

With this model, applications may be subscribers. These subscribers receive messages whenever they are
published by specific applications. When this model is used, the publishing application doesn't expect a reply.

Request/reply

Alternatively, an application may publish a message and expect a reply either in synchronous mode (the
message can't be received until the reply is sent) or asynchronous mode (the reply is sent after message
reception).

Both publish and subscribe and request/reply messaging can behave in a point-to-point manner if the sending
application calls out which specific application should receive a message.

Values in one application can be mapped to equivalent values in another application by defining domain value maps
using iStudio. Keys for corresponding entities in two different applications can also be correlated using iStudio.

15.1.2 iStudio Interface

The interface in the i Studio modeling and design tool consists of two navigation trees for design and deployment, as
well as five main menus.

Here are the navigation trees:

Design Navigation Tree

Groups objects as Common Views, Applications, Workflow, and Enabling Infrastructure

Deploy Navigation Tree

Groups objects as Applications or Workflow

The menus include:

File Menu

Handles creating and opening existing projects and workspaces, project reloading, object creation and
migration, export of PL/SQL stubs, and metadata push to adapters

Edit Menu

Handles editing, copying, deleting, versioning, or loading objects, renaming applications, adding or removing
applications from domain value maps or cross-reference tables, and deploying events to or editing Workflow
configurations

Procedure Menu

Handles invoking or implementing procedures via wizards

Event Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Handles publishing or subscribing to events via wizards

Help Menu

Handles access to the iStudio User's Guide

Figure 15-4 shows a typical view of the iStudio interface and the Design Navigation Tree.

Figure 15-4. Typical iStudio interface

15.1.3 Oracle Workflow for Java

The Oracle Workflow for Java (OW4J) engine can be used with OracleAS InterConnect to enable business process
definition, automation, and integration. Oracle Workflow for Java enables execution of a sequence of events in a specific
order. You can view the progress of processes through these sequences via either monitors or notification methods (for
example, JMS messages and email). The following components are part of OW4J:

Workflow Builder

Provides a graphical business process-modeling tool

Workflow Engine

Manages business process execution and exception handling

Business Event System

Provides a Java API for propagating events

Process Monitor

Used to view and administer events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory Service

Enables OracleAS Single Sign-On, synchronization with the Oracle Internet Directory, and integration with LDAP

Workflow Manager

Monitors system metrics and processes, and configures and monitors notification mailers

Business process models are typically created using the JDeveloper OW4J Modeler as the Workflow Builder. Business
processes might be either short or long. Very short business processes are served by in-memory workflows. Long-lived
tasks may extend to weeks and beyond.

Version numbers are automatically assigned to workflow tasks, thus enabling different versions of activities.

Models of these processes can be built to include logic for looping, branching into parallel flows and rendezvous,
decomposing into subflows, branching into subtasks, and others. Escalation processes can be created and then
executed after periods of inactivity based on predefined rules. Notification routing can also be set up to handle typical
occurrences such as delegation of responsibility or rerouting during absence of a participant.

The Process Monitor provides a Java applet to review business activities that have been completed, are active, or are
yet to be initiated. Decision makers are identified and their responses are shown. Administrators can intervene to
explore stopped processes or to skip or retry processes. It is possible to review the time and cost of business processes
by exploring workflow processing data stored in an audit database.

The Workflow Manager interface is exposed through Oracle Enterprise Manager. Work items and event messages can be
viewed (including the distribution of event messages by status). This interface enables administrators to more quickly
determine business bottlenecks.

15.1.4 Typical OracleAS InterConnect Deployment Sequence

A typical OracleAS InterConnect deployment sequence includes the following steps:

1. Configure a source triggering mechanism (such as through Oracle AQ).

2. Create a new project in iStudio.

3. Create common view business objects in iStudio and business object events.

4. Create an iStudio application in which an adapter communicates with a business application.

5. Create a cross-reference table mapping keys between systems using iStudio applications.

6. Create published events in iStudio that map application views to common views, perform transformations, and
publish new events to subscribers.

7. Subscribe applications to events in iStudio.

8. Create content-based routing in iStudio if required (e.g., routing based on message or message header
contents via Oracle Workflow with appropriate applied business logic).

9. Create an Oracle Workflow process bundle in iStudio if business logic is to be applied (including a bundle name,
business process, and publish-and-subscribe activities), and then deploy it.

10. Create objects in Oracle Workflow for modeling, and then model business logic.

11. Deploy application queues in iStudio, and test the integration prior to final production deployment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.2 Oracle Application Server ProcessConnect
The linkage of business data or systems leveraged in a corporate business activity is known as Business Process
Integration (BPI). OracleAS ProcessConnect is designed to enable BPI through a single middleware service. Integration
can extend beyond internal business processes to suppliers, partners, and customers. The Oracle BAM and BPO
capabilities described earlier in this chapter are designed to leverage either OracleAS InterConnect or the newer
OracleAS ProcessConnect.

Oracle Corporation expects that OracleAS ProcessConnect will increasingly be used in
situations in which OracleAS InterConnect with Oracle Workflow was previously the only
choice and where adherence to a Java connector standard is desirable.

In building integrated business processes, the following OracleAS ProcessConnect concepts are especially important:

Profiles

Contain identification and contact information

Parties

Contain organizations within a profile (typically applications or trading partners) that participate in B2B
exchanges

Agreements

Contain specific collaborations, roles, and communications options describing how two parties will interact

Events

Contain internal definitions of business data that come from or are sent to a party, including header information
on the party from which the event is coming, information on the party to which to send the event, event
instance creation time, instance life cycle state, event type definition, and body elements

In BPI implementations, message exchange and data flow (defined as data passed as an event) must be in the correct
sequence. Translations and transformations must be recognizable, and data must be validated. Roles define how data
flow events are executed. Figure 15-5 shows a typical OracleAS ProcessConnect flow with adapter interactions.

Data in the form of messages is received from a party as an Oracle record. When OracleAS ProcessConnect receives
this record, it creates two events:

Native event

Provides an internal representation of the business data

Application event

Provides a translation of native event content in a format that can be interpreted by the OracleAS
ProcessConnect

To enable better scalability, a business event can establish a common structure and vocabulary between parties. As
transformations then take place to and from common business events, the number of transformations required is
greatly reduced because all parties can use the business event as a starting point. This efficiency becomes pronounced
when four or more parties exist.

Figure 15-5. OracleAS ProcessConnect adapter interactions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-5. OracleAS ProcessConnect adapter interactions

OracleAS ProcessConnect integration projects generally use either an adapter-centric methodology or a business
process-centric methodology for development:

Adapter-centric

With this methodology, you model capabilities of parties, adapters, and delivery channels before creating roles
or business processes.

Business process-centric

This methodology starts with roles and business process modeling.

In general, Oracle suggests that you choose the methodology that creates the more complex portion of the model first.
We describe the OracleAS ProcessConnect modeling tool in the next section and then delineate typical steps taken in
development using each methodology.

15.2.1 Using OracleAS ProcessConnect

The following OracleAS ProcessConnect components are used to build, deploy, and maintain a business process
integration infrastructure:

Modeling tool

An easy-to-use, web-based business-process modeling tool designed to support the complete life cycle
management of BPI, from modeling to deployment to monitoring and optimization

Metadata Repository

An OracleAS ProcessConnect metamodel schema in the OracleAS Infrastructure database

OC4J ProcessConnect

An OracleAS ProcessConnect component that instantiates the modeling tool and is used by the modeling tool to
read and write integration definitions in the metadata repository

Adapter Framework (AF)

A J2EE connector architecture framework engine that enables Java applications to read the business process
definitions from the runtime metadata repository to adapters and vice versa

Integration Manager (IM)

An event-driven business process execution engine that interfaces to AF

The modeling tool provides a modeling interface to design business processes and to enable business event modeling
for common content. The profile section of the tool enables endpoint modeling (endpoints are defined as the physical
addresses of trading partners), agreement definitions, and trading partner management. Wizards guide you through
end-to-end basic integration, adding end-to-end basic event flows and other event flows, and creating spokes. Version
control of integration objects is supported through an update facility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control of integration objects is supported through an update facility.

Parties (e.g., applications or trading partners) are included in the integration through the use of adapters. The adapters
can be defined using an adapter exchange protocol for specific tasks or can call specific actionable files. There are three
types of OracleAS ProcessConnect adapters:

Technology adapters

HTTP, SMTP, FTP, Oracle database, Oracle AQ, JMS, and Web Services

Packaged application adapters

JD Edwards, PeopleSoft, SAP, and Siebel

Legacy adapters

CICS, IMS/DB, IMS/TM, and Tuxedo

Unlike the older OracleAS InterConnect adapters, OracleAS ProcessConnect adapters are built to the J2EE Connector
Architecture 1.0 specification with extensions to support introspection. Figure 15-6 shows how to select an adapter for
use with a specific application (or party) through the modeling tool.

Figure 15-6. OracleAS ProcessConnect adapter selection

Oracle's E-Business Suite of Applications can be integrated using Database Adapter
connectivity to Oracle Applications interface tables, AQ Adapter connectivity with linkage to
the Application Business Event System, or Web Service Adapter connectivity in which
J2EE-based modules are deployed as Servlets or Business Components for Java.

A deployment section in the modeling tool provides final validation of process integration definitions (e.g., processes
and profiles). Once validated, the tool can deploy the configuration from the design-time repository to a runtime
repository.

The deployment engine supports numerous standards, including:

B2B standards (RosettaNet and AS2)

EDI standards (X.12, UN/EDIFACT)

Web Services

SOAP

WSDL

UDDI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UDDI

Internet transports (HTTP/S, SMTP, FTP/S)

Packaging standards (SOAP 1.1, SMIME 3.0)

Security standards (LDAP, X.509)

Trading partner management (CPP/CPA, TPAML)

RosettaNet, created by a group of technology companies, defines XML-based e-business
standards for the exchange of business documents including transport, routing, packaging,
security, signals, and trading partner agreements.

All actions in the modeling tool are captured in a metadata repository via OC4J ProcessConnect. The repository stores
definition models, the results from monitoring of runtime processes, and administrative actions. An export/import utility
enables movement of integration model objects from one repository to another, which is a typical procedure when
moving from development to production. The object definitions are exported in XML.

Business processes are triggered in reaction to events. Such event triggers might include a state change in a business
document, multiple business event communications, certain integration event behavior, or certain event stages such as
initiation, progress, and completion. Events are created through the modeling tool or by import of XML schemas. Event
services supported include event validation, translation (from one format to another), transformation (e.g., semantics
such as one-to-many), mapping where events are similar, and correlation.

The Integration Diagram viewer shows a high-level view of the entire process integration. Pictured in such a view or
diagram (see Figure 15-7 as an example) is the business process, other roles ("spokes"), all the endpoint parties
participating in the process at every spoke, and agreements in place between endpoints (trading partners) and
processes. From this view, you can drill down to a specific event flow diagram.

Figure 15-7. OracleAS ProcessConnect Integration Diagram

When run concurrently, events and activities must use different business processes. Real-time monitoring of business
events and activities takes place in a reports section of the tool. The administrative section can be linked to Oracle
Enterprise Manager for configuration and management tasks.

15.2.2 Typical Deployment Sequences

As we noted earlier, the approaches that Oracle recommends for business process integration using OracleAS
ProcessConnect vary depending on the complexity of the business processes. Oracle typically suggests an adapter-
centric approach in situations in which business processes are relatively simple, there are a small number of parties,
and endpoint details are known.

The adapter-centric approach typically involves using the modeling tool in the following sequence:

1. Create applications, and add adapter details for each party.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Create native and application events, and select translators for each party.

3. Create roles, transformations, business events, and business processes for each party.

4. Create agreements between parties.

5. Create, deploy, test, and validate the configuration before production.

When more complex business processes are involved, BPI developers use a business process-centric approach. This
approach includes the following steps, in this order:

1. Manually create a business process and business event.

2. Create native and application events and select translators for each party.

3. Use the create spoke wizard in the modeling tool.

4. Create the parties.

5. Add translators and adapters as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Additional Resources
In this concise volume, we've attempted to give you a firm grounding in all the basic concepts you need to understand
Oracle Application Server 10g and begin to use it effectively. We hope we've accomplished this goal.

At the same time, we realize that there is more to using a complex product such as Oracle Application Server than
simply understanding how and why it works the way it does. Although you can't use Oracle Application Server without a
firm grasp of the foundations of the product, you still need details if you're actually going to implement a successful
system.

This appendix lists two types of additional sources of information for the topics covered in this book—relevant web sites,
which act as a constantly changing resource for a variety of information, and a chapter-by-chapter list of relevant
books, articles, and Oracle documentation.

For the chapter-by-chapter list, the sources fall into two basic categories: Oracle documentation (both manuals and
white papers) and third-party sources. Typically, the Oracle documentation provides the type of hands-on information
you will need regarding syntax and keywords, and the third-party sources cover the topics in a more general and
problem-solving way. We've listed the third-party sources first and ended each listing with the relevant Oracle
documentation. Please keep in mind that Oracle Application Server isn't nearly as established or popular a product as
the Oracle database, so there aren't as many sources of third-party information for the product at this time.

Most Oracle documentation is available at the Oracle Technology Network web site
(http://www.otn.oracle.com). Because the locations of specific documents are likely to
change over time, we haven't provided specific URLs for all documents. To find a particular
document, your best bet is to go to the OTN web site and use the Search option to see if it
is available there.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Web Sites

Oracle Corporation—http://www.oracle.com

The home of the company. Contains the latest information and marketing, as well as some good technical and
packaging information.

Oracle Technology Network—http://otn.oracle.com

The focal point of Oracle Corporation's attempt to reach a wider audience of developers. You can find tons of
stuff at the OTN, including low-cost developer versions or free downloads of most Oracle software and lots of
information and discussion forums. You can also sign up for specific technology tracks here. The home page for
information on Oracle Application Server is http://www.oracle.com/appserver/books/.

International Oracle Users Group (IOUG)—http://www.ioug.org

The International Oracle Users Group web site. Includes information on meetings, links to Oracle resources, a
technical repository, discussion forums, and special interest groups.

Apache— http://apache.org

The Apache site. Contains the Apache Web Server, XML Parser implementations, XSLT implementations, XML-
RPC and SOAP Web Service implementations, and much, much more.

OASIS—http://www.uddi.org

The web site for the Universal Description, Discovery, and Integration standards consortium. Contains
information on the UDDI protocol—a major building block for Web Services—and related standards.

O'Reilly Media—http://www.oreilly.com

The O'Reilly Media web site. Contains information about good books on all kinds of web-related technologies,
Oracle technologies, and other technologies. See also http://safari.oreilly.com for online books and
http://oreillynet.com for a variety of specific technology sites (e.g., Apache, Java, XML).

The Server Side—http://www.theserverside.com

The Enterprise Java community web site. Although this site is typically focused on other products, you can pick
up a tip or two about Oracle Application Server and Java programming here.

World Wide Web Consortium—http://w3c.org

The web site for the original web standards, including HTTP, HTML, DOM, and CSS, and the locale for ongoing
web standardization activity.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Books and Oracle Documentation
The following books and Oracle documentation provide additional information for each chapter in this book.

Chapter 1, Introducing Oracle Application Server

Bakken, David E. Encyclopedia of Distributed Computing (Middleware entry), Kluwer Academic Press.
Byous, Jon, Java Technology: An Early History. Sun Microsystems.
http://java.sun.com/features/1998/05/birthday.html.
Garmany, John and Donald Burleson, Oracle Application Server 10g Administration Handbook, McGraw-Hill
Osborne Media.
Greenwald, Rick, Robert Stackowiak, and Jonathan Stern, Oracle Essentials: Oracle Database 10g. O'Reilly
Media, Inc.
MiddleAware, http://www.middleware.net (contains the history of Tuxedo and other middleware components)
Oracle Application Server 10g Concepts, Oracle Corporation.
Oracle Application Server 10g: Grid Computing, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g: New Features Overview, A Technical White Paper, Oracle Corporation.
Oracle9i Application Server Release 2 New Features, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Infrastructure, An Oracle Technical White Paper, Oracle Corporation.
Oracle Application Server 10g FAQ, Oracle Corporation.
http://otn.oracle.com/products/ias/htdocs/as10gfaq.html.

Chapter 2, Architecture

Aliminati, Janga, 9iAS Enterprise Architecture: Architecture Design and Creating Multiple Portals, Wireless,
UltraSearch and SSO Tiers, Oracle Corporation.
Oracle Application Server 10g Advanced Topologies for Enterprise Deployment (9.0.4), Oracle Corporation.
Oracle Application Server 10g Concepts 10g (9.0.4), Oracle Corporation.
Oracle Application Server 10g High Availability Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Services Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Web Cache Administrator's Guide 10g (9.0.4), Oracle Corporation.
Oracle HTTP Server Administrator's Guide 10g (9.0.4), Oracle Corporation.

Chapter 3, Systems Management

Application Service Level Management, Oracle Data Sheet, Oracle Corporation, 2003,
http://otn.oracle.com/products/oem/pdf/DATASHEET_ADSP_0_4.pdf.
Managing the Oracle Application Server with Oracle Enterprise Manager 10g, An Oracle White Paper, Oracle
Corporation.
Oracle9i Application Server: Backup and Recovery, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Administrator's Guide, Oracle Corporation.
Oracle Application Server 10g Concepts 10g (9.0.4), Oracle Corporation.
Oracle Application Server Management: Managing the Application Server with Oracle Enterprise Manager 10g,
Oracle Data Sheet, Oracle Corporation.
Oracle Enterprise Manager Advanced Configuration, Oracle Corporation.
Oracle Enterprise Manager Concepts, Oracle Corporation.
Oracle Enterprise Manager EM2Go, Feature Overview, Oracle Corporation.
Oracle Enterprise Manager Grid Control Installation and Basic Configuration, Oracle Corporation.

Chapter 4, Security and Identity Management

Oracle Application Server 10g Security, Oracle Corporation.
http://otn.oracle.com/products/id_mgmt/osso/htdocs/oracleas_security_10g_fov.html.
Oracle Application Server 10g Security Guide, Oracle Corporation.
Oracle9i Application Server Architecting for Security, Oracle Corporation.
Oracle Application Server Certificate Authority 10g. An Oracle White Paper, Oracle Corporation.
http://otn.oracle.com/products/id_mgmt/oca/pdf/oracleas_certificate_authority_10g_wp.pdf.
Oracle Identity Management Concepts and Architecture. An Oracle White Paper, Oracle Corporation.
http://otn.oracle.com/products/id_mgmt/pdf/OracleAS_IDmanagement_10g_TWP.pdf.
Oracle Internet Directory, Technical White Paper, Oracle Corporation.
http://otn.oracle.com/products/oid/htdocs/oidwp9iAS2.pdf.
Oracle Internet Directory Features Overview, Oracle Corporation.
http://otn.oracle.com/products/oid/htdocs/oid_overview/oidfov9iASv2.html.
Oracle Internet Directory: User Provisioning Integration, Oracle Corporation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Internet Directory: User Provisioning Integration, Oracle Corporation.
http://otn.oracle.com/products/ias/daily/jan29.html.
Pepper, Jason, Worried about Security and Scalability? Not with Oracle9iAS Portal Release 2, Oracle
Corporation.

Chapter 5, Oracle HTTP Server

Bowen, Rich, Apache Administrator's Handbook, Sams Publishing.
Oracle HTTP Server Administrator's Guide 10g (9.0.4), Oracle Corporation.
Overview of Oracle HTTP Server Components, Oracle Corporation.
http://otn.oracle.com/products/ias/ohs/htdocs/OHS-904-TWP.pdf.
Young, Geoffrey and Paul Linder and Randy Kobes, mod_perl Developer's Cookbook, Sams Publishing.

Chapter 6, Oracle Application Server Containers for J2EE

Oracle Application Server 10g Multimedia Tag Library for JSP User's Guide and Reference 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer's Guide 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE Security Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Servlet Developer's Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Services Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide 10g (9.0.4),
Oracle Corporation.
Oracle Application Server Containers for J2EE User's Guide 10g (9.0.4), Oracle Corporation.

Chapter 7, Caching

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE Services Guide 10g (9.0.4), Oracle Corporation.

Chapter 8, Java Development

Bales, Donald, Java Programming with Oracle JDBC, O'Reilly.
Bales, Donald, JDBC Pocket Reference, O'Reilly.
Bergsten, Hans, JavaServer Pages, O'Reilly.
Hunter, Jason and William Crawford, Java Servlet Programming, O'Reilly.
Monson-Haefel, Richard, Enterprise JavaBeans, O'Reilly.
Monson-Haefel, Richard and David A. Chappell, Java Message Service, O'Reilly.
Oaks, Scott, Java Security, O'Reilly.
Oracle Application Server TopLink Application Developer's Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server TopLink Getting Started Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server TopLink Mapping Workbench User's Guide 10g (9.0.4), Oracle Corporation.
Oracle Business Components for Java Developing Business Components 10g (9.0.4), Oracle Corporation.

Chapter 9, Oracle Development

Callan, Steve, "Installation Cookbook: Installing Oracle Application Server 10g Forms and Report Services,"
Database Journal. http://www.databasejournal.com/features/oracle/article.php/3322591.
Enterprise Data Publishing with Oracle Reports: Any Data, Any Format, Anywhere, Oracle Corporation.
Oracle9iAS Reports Services Scalability, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Performance Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Forms Services Deployment Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Reports Services Publishing Reports to The Web 10g (9.0.4), Oracle Corporation.
Oracle Reports 10g New Features, An Oracle White Paper, Oracle Corporation.

Chapter 10, XML Development

Harold, Elliot Rusty and W. Scott Means, XML in a Nutshell, O'Reilly.
Oracle Application Developer's Guide—XML 10g (9.0.4), Oracle Corporation.
Oracle XML Reference 10g (9.0.4), Oracle Corporation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11, Web Services

Chappell, David A., and Tyler Jewell, Java Web Services, O'Reilly.
Cerami, Ethan, Web Services Essentials, O'Reilly.
St. Laurent, Simon, Joe Johnston, and Edd Dumbill, Programming Web Services with XML-RPC, O'Reilly.
Snell, James, Doug Tidwell, and Pavel Kulchenko, Programming Web Services with SOAP, O'Reilly.
Oracle Application Server Web Services Developer's Guide 10g (9.0.4), Oracle Corporation.

Chapter 12, Business Intelligence Components

Enterprise Data Publishing with Oracle Reports: Any Data, Any Format, Anywhere, Oracle Corporation.
Leveraging Oracle Database Features with Oracle Reports: Business Intelligence, Oracle Reports Technical Note,
Oracle Corporation.
Leveraging Oracle Database Features with Oracle Reports: Virtual Private Database, Oracle Reports Technical
Note, Oracle Corporation.
Oracle9i Application Server: Business Intelligence Technical Overview, An Oracle White Paper, Oracle
Corporation.
Oracle9iAS Discoverer: Best Practices for Release 1.0.2.2, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Discoverer Integration with Oracle9iAS Portal, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Discoverer Version 4.1 Capacity Planning Guide, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Reports Services Scalability, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Concepts (Chapter 5), Oracle Corporation.
Oracle Application Server Discoverer 10g, An Oracle White Paper, Oracle Corporation.
Oracle Application Server Discoverer Plus Tutorial 10g, Oracle Corporation.
Oracle Application Server Discoverer Plus User's Guide 10g, Oracle Corporation.
Oracle Application Server Reports Services, Publishing Reports to the Web, Oracle Corporation.
Oracle Discoverer Administrator, Administration Guide 10g, Oracle Corporation.
Oracle Discoverer EUL Command Line for Java, An Oracle White Paper, Oracle Corporation.
Oracle Reports 10g New Features, An Oracle White Paper, Oracle Corporation.

Chapter 13, Oracle Application Server Portal

Getting Started With Oracle Application Server Portal, Oracle Corporation.
Greenwald, Rick and Milbery, Jim, Oracle9iAS Portal Bible, John Wiley & Sons .
Oracle Application Server Portal Configuration Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Portal User's Guide 10g (9.0.4), Oracle Corporation.

Chapter 14, Oracle Application Server Wireless

Oracle9iAS Wireless: Creating a Mobilized Business, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Concepts (Chapter 4), Oracle Corporation.
Oracle Application Server Wireless Administrator's Guide10g, Oracle Corporation.
Oracle Application Server Wireless: Complete Mobile Platform, An Oracle Technical White Paper, Oracle
Corporation.
Oracle Application Server Wireless Developer's Guide10g, Oracle Corporation.
Oracle Application Server Wireless: Messaging Services, An Oracle Technical White Paper, Oracle Corporation.

Chapter 15, Integration Components

Introducing Oracle Workflow for Java, Oracle Workflow Team, Oracle Corporation.
Oracle Application Server 10g Concepts (Chapter 6), Oracle Corporation.
Oracle Application Server 10g InterConnect, An Oracle Technical White Paper, Oracle Corporation.
Oracle Application Server 10g ProcessConnect, An Oracle White Paper, Oracle Corporation.
Oracle Application Server InterConnect User's Guide 10g, Oracle Corporation.
Oracle Application Server Integration Product Overview, An Oracle Technical White Paper, Oracle Corporation.
Oracle Application Server ProcessConnect User's Guide 10g, Oracle Corporation.
Oracle Workflow Administrator's Guide, Oracle Corporation.
Oracle Workflow User's Guide, Oracle Corporation.
Oracle Workflow with J2EE Components, An Oracle Technical White Paper, Oracle Corporation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Oracle Application Server 10g Essentials is a praying mantis. These large, predatory insects
are widely scattered throughout the world; some of the approximately 1,500 species are endangered. They have highly
specialized prehensile legs, with elongated front segments that allow them greater reach. Their long neck-like thorax
enables them to swivel their heads completely to the rear, making them the only insects who can look directly behind
themselves.

The word "mantid" is Greek for "prophet" or "seer." The insects were so named because the position in which they hold
their legs while at rest or preparing to attack their prey gives them the appearance of folding their arms in prayer. In
African art, the praying mantis is often depicted as a god or spirit.

Mantises lie in wait and then quickly pounce on their prey, giving them no time to flee. It is not uncommon for a mantis
to hold onto its prey with one leg while going after another with the second. They eat almost anything-insects, small
reptiles, small birds, and other mantids. Females often eat their mates during copulation; once the process has begun,
she bites off his head. The male's copulatory activity isn't curtailed by this, and in some species is stimulated, because
it's controlled by a ganglion center completely distinct from that controlling the head. By eating her mate, the female
ingests extra protein to nourish her eggs.

A praying mantis will lay 1,000 to 2,000 eggs, protected in foamy, papery capsules that hold 100 to 200 eggs each. The
eggs are laid in the fall and hatch in the spring. Young mantises immediately begin hunting and disperse themselves
over a wide area, presumably to avoid fratricide.

Mary Anne Weeks Mayo was the production editor and proofreader, and Audrey Doyle was the copyeditor for Oracle
Application Server 10g Essentials. Matt Hutchinson and Claire Cloutier provided quality control. Mary Agner provided
production assistance. Ellen Troutman Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 6.1
using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was converted by Julie
Hawks to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Clairemarie Fisher O'Leary.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

<xsql:action> tag
<xsql:dml> tag
<xsql:include-owa> tag
<xsql:include-xsql> tag
<xsql:query> tag
<xsql:ref-cursor-function> tag
3NF (third normal form) database schema

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

access control
accessor methods
action attribute (HTML <form> tag)
action handlers (custom) for XSQL Pages
action tags (XML Pages)
Active Failover Clusters 2nd
Adapter Framework (AF)
Adapter SDK
adapters
 OracleAS InterConnect 2nd
 OracleAS ProcessConnect 2nd
 adapter-centric methodology 2nd
AddHandler directive
ADF (Application Development Framework)
 Business Components for Java
administration
 Application Server Control
 clustered OracleAS instances
 Oracle Delegated Administration Services
 OracleAS Web Cache
 monitoring
 performance monitoring
 starting/stopping instances
 Web Cache Manager
 OracleAS Wireless
Administrator Edition, Oracle Discoverer
Administrator's Guide (Oracle Application Server 10g)
administrators
 context
 privileges and roles
 realm
Advanced Queueing (AQ), Oracle
agents
 OC4J Web Services
agreements (OracleAS ProcessConnect)
Alert Engine (OracleAS Wireless)
alerts
 advisory alerts about Oracle Application Server
 monitoring with Grid Control Home page
 OracleAS Wireless, delivery of
Alteon hardware load balancer (Nortel Network)
analysis [See also query and analysis tools]
 Oracle database capabilities
Analytic Workspace Manager
Apache Web Server 2nd
 1.3 vs. 2.0 code base
 architecture
 Jserv (servlet container) 2nd
 online documentation
 Oracle HTTP Server based on
APIs (application programming interfaces)
 Java
 Oracle Application Server
 Reports Services API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applets
application adapters
application components, Oracle Application Server
application deployment
 J2EE
 OC4J
Application Development Framework (ADF)
application event (OracleAS ProcessConnect)
application scope (cached objects)
Application Server Configuration Management Pack
Application Server Control 2nd 3rd
 accessing, username and password
 administering J2EE
 administering OC4J application clusters
 configuring Forms Services
 home page
 management stack
 managing ports
 security management activities
 viewing and managing log information
 viewing Log Repository error logs
Application Server Diagnostics Pack
application servers, history of
Application Servers, Oracle
 application components
 applications
 business intelligence
 OracleAS Portal
 OracleAS Wireless
 components, additional
 core components
 description of editions
 download site for software
 Enterprise Edition
 family of products
 functionality
 managing
 Oracle Application Server 10g
 grid computing
 Oracle Enterprise Manager, mobile version (EM2Go)
 Standard Edition
 XML, use by components
Application Service Level Management (ASLM)
 Application Server Diagnostics Pack
application service level management (ASLM)
 tools available to Grid Control
Application Service Level Management (ASLM), Oracle Enterprise Manager
application views
 transformations
application.xml file
AQ (Advanced Queueing), Oracle
ASLM [See Application Service Level Management]
asynchronous messaging
attributes (OracleAS Portal objects)
authentication
 Java Authentication and Authorization Service [See JAAS]
 multilevel, OracleAS Single Sign-On
 Oracle Application Server 2nd
 Web Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authorization
 Java Authentication and Authorization Service [See JAAS]
 Oracle Application Server services
 Web Services
availability
 of an application server
 of web-based applications

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

B2B (business-to-business) collaboration
backup and recovery
 backups, types of
 complete backup of Oracle Application Server environment
 using Oracle Application Server backups for recovery
Backup and Recovery Tool, OracleAS
BAM (Business Activity Monitoring)
BC4J (Oracle Business Components for Java)
bean-managed persistence (BMP)
 mapping EJBs to relational databases
bean-managed transactions (BMT) 2nd
Beans wizard (Oracle JDeveloper)
BEEP (Blocks Extensible Exchange Protocol)
BI [See business intelligence components]
BI Beans (Business Intelligence JavaBeans) 2nd
BIG-IP hardware load balancer (F5 Networks)
bind-params attribute (XSQL Pages tags)
block names (Java objects in Web Object Cache)
 implicit and explicit
block naming policy
Blocks Extensible Exchange Protocol (BEEP)
BMP [See bean-managed persistence]
books about Oracle Application Server
BPI (Business Process Integration)
BPO (Business Process Optimization)
browsers 2nd [See also web browsers]
 OracleAS Discoverer Viewer
bursting reports 2nd
Business Activity Monitoring (BAM)
Business Components for Java, Oracle Application Server 2nd
business entities
 modeled by EJB entity beans
 registration in UDDI
Business Intelligence and Forms installation
business intelligence components 2nd
 data mining
 listing of
 managing
 partnerships among tool vendors
 reporting
 query and analysis
 resource reference for
Business Intelligence JavaBeans (BI Beans) 2nd
business intelligence, database schemas for
business logic
 enabled through JavaBeans and Enterprise JavaBeans (EJBs)
 modeled by EJB session beans
business objects
Business Objects, query and analysis tool
Business Process Integration (BPI)
Business Process Optimization (BPO)
business process-centric methodology (OracleAS ProcessConnect)
 deployment sequence
business processes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 integration of, OracleAS ProcessConnect
 modeling of, Oracle Workflow
 models of
 triggered by events
business rules and data layer, web applications
business-to-business (B2B) collaboration

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C/C++
 mod_fastcgi module and
 OracleAS support for web-based applications in
 XML class generator for C++
cache cluster
cache hierarchies
cache key (Reports Cache)
cache key policy (caching rules)
cache.conf file (mod_plsql)
CacheAccess class
 put() method
CacheEventListener interface
CacheLoader class
 custom, creating
caching [See also OracleAS Web Cache]2nd
 cacheability rules, indicating compression in
 cacheability/invalidation rules
 cubic cache, OracleAS Discoverer
 of data sources, support by OC4J
 Java Object Cache 2nd 3rd
 basic principles
 how it works
 initialization
 invalidating cached objects
 management of
 OracleAS Portal pages
 Reports Cache 2nd
 clustered Reports Servers
 resource reference
 Web Object Cache 2nd
 basic principles
 invalidating cached objects
 organization
 repository management
caching policy property (caching rules)
Calculated Ratio forwarding algorithm
callback methods (Apache modules)
canonical format (XML documents) 2nd
Cascading Style Sheets (CSS)
CAST/MULTISET statements (SQL)
categories (OracleAS Portal data)
central repository
certificates [See SSL, certificates]
certified platforms, information on
CGI (Common Gateway Interface)
 environment for stored procedures
 mod_fastcgi, Oracle HTTP Server
Chart portlets
class generators (XML)
client side, uses of PL/SQL on
clients, Web Services 2nd
 dynamic
 static
cloning, automated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clustered database solution
clustering
 administering OC4J application clusters
 multiple instances of OracleAS Web Cache
 OC4J instances
 OracleAS Active Failover clusters 2nd
 OracleAS Cold Failover clusters
 OracleAS components
 OracleAS instances 2nd
 for high availability
 managing clusters
 OracleAS Web Cache instances
 Reports Servers
CMP [See container-managed persistence]
code base (Java 2 security model)
cold (complete) backups
Cold Failover Clusters
 Active Failover Clusters vs.
command-line tools
 OracleXML
 uddiadmin.jar
 WebServicesAssembler.jar
committing with XSU
common datatype
common views
Common Warehouse Metamodel (CWM) 2nd
complete backups of OracleAS environment
 using OracleAS Backup and Recovery Tool
component-managed EJB transactions
component-managed security
components, OracleAS
 business intelligence
 listing of
 resource reference
 integration components 2nd
 XML, use of
compression, Web Cache
configuration
 backup tool for configuration files
 Distributed Configuration Management [See DCM]
 Oracle Enterprise Manager, Application Server Configuration Management Pack
configuration files, mod_plsql
connection attribute (XSQL Pages tags)
Connection Manager
connection pooling, provided by resource adapters
container-managed persistence (CMP)
 mapping of EJBs to relational databases
container-managed security
container-managed transactions (CMT)
content attributes (OracleAS Portal)
content generation, dynamic
content management (OracleAS Content Management SDK)
context administrators
control layer (web applications)
controller (MVC), using Struts as
cookies
CORBA RMI/IIOP (RMI over IIOP)
core components, OracleAS 2nd
 interactions among

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OC4J (Oracle Application Server Containers for J2EE)
 Oracle HTTP Server
 Web Cache
CSS (Cascading Style Sheets)
cubic cache
custom action handler for XSQL Pages
Custom Tag Handler (Reports servlet)
Customer Support Identification (CSI)
CWM (Common Warehouse Metamodel) 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

D3L (Data Definition Description Language)
DADs (database access descriptors)
dads.conf file (mod_plsql)
data access technologies, OracleAS 10g
data and business rules layer (web applications)
data component portlets
Data Definition Description Language (D3L)
Data Definition Language (DDL) 2nd
Data Feeder (OracleAS Wireless)
Data Form wizard (Oracle JDeveloper)
Data Manipulation Language (DML)
data mining 2nd
 developing applications with JDeveloper and DM4J
 OracleAS Personalization
data protection
data sources
 OC4J, types of
 Oracle Reports
data warehouses
 Oracle Warehouse Builder (OWB)
 Oracle Warehouse Builder Common Warehouse Metamodel
 OWB and
Data-Direct (type 4) JDBC drivers
data-sources.xml file
database access descriptors (DADs)
database availability concepts
Database Providers (OracleAS Portal)
database repositories
database stored procedures
 as RPCs
databases
 management tools, Oracle Enterprise Manager
 Oracle
 advanced query optimization
 XML functionality
 RAC (Real Application Clusters) as
DataSource object (JDBC)
datatypes, common
DBAccessBean
DCM (Distributed Configuration Management) 2nd 3rd
 backups of
DDL (Data Definition Language)
Delegated Administration Services, Oracle 2nd
delegation model (for privileges)
deleting from a database using an XML document
demilitarized zones [See DMZs]
deployment
 applications
 J2EE deployment
 OC4J deployment
 OC4J development
 common OracleAS Web Cache topologies
 secure, Oracle Application Server
 delegation of privileges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DMZ deployment
 Oracle Enterprise Manager
deployment descriptors
 application.xml file
 ejb-jar.xml files
 EJBs
 J2EE, OC4J counterparts
 servlet (web.xml files)
Deployment wizard (Oracle JDeveloper)
destinations for reports
development
 Java
 development tools
 Oracle Application Server APIs and tag libraries
 resource reference
 web applications
 OC4J, using as development environment
 Oracle
 Forms Services
 Reports Services
 resource reference for
 OracleAS Wireless
 tools for
 XML
 Oracle XML parsers
 resource reference
 XML Transviewer Beans
 XSU (XML SQL Utility)
diagnostics pack for Oracle Application Server
directives, Apache Web Server
Directory Provisioning Integration Service, Oracle 2nd
directory services [See Oracle Internet Directory]
Discoverer [See OracleAS Discoverer]
disk cache
 File System Cache
 Java Object Cache
display attributes (OracleAS Portal)
DISTRIBUTE attribute (cached objects)
distributed cache (Java Object Cache)
Distributed Configuration Management [See DCM]
distributing reports
DM4J (Data Mining for Java)
DML (Data Manipulation Language)
 <xsql:dml> tag (XML Pages)
DMS (Dynamic Monitoring Service) 2nd 3rd
 mod_dms 2nd
DMZs (demilitarized zones)
 deployment of
dockable windows (Oracle JDeveloper)
document (literal) style, Web Services calls
document model approach, XML parsers
Document Type Definitions (DTDs)
documentation, Oracle
DOM (Document Object Model) parsers
domain value maps
DOMBuilder Bean
DOMParser class
drill-down capabilities, web-based reports
drivers, implementing J2EE Connectors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DTDs (Document Type Definitions)
dynamic caching scheme
dynamic client (Web Services)
dynamic content generation, Oracle modules for
dynamic HTML pages, caching
Dynamic Monitoring Service [See DMS]
dynamic page portlets

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

E-Business Suite of Applications
 integration of
 interfaces to
 OracleAS Web Cache support of
EAI (Enterprise Application Integration)
EAR (Enterprise Application aRchive) files
 application that uses EJBs and servlets
Edge Side Includes (ESI) 2nd 3rd
 configuring ESI provider site
 invalidating fragments
 using ESI tags to identify dynamic objects in static pages
EJBs (Enterprise JavaBeans)
 deployment descriptors
 deployment of
 mapping to relational databases
 OC4J EJB container 2nd
 remote communications with (RMI)
 replications of states for multiple JVMs
 RPCs, using as
 state replication in clustered OC4J instances
 stateless EJBs as Web Services
 stateless session EJB services
 storage in relational database tables with OracleAS TopLink
 transaction scope, definitions of
 types of
 web application data and business rules layer
EM [See Oracle Enterprise Manager]
EM2Go 2nd
email
 provided by Mobile Office
embedded JMS resources
embedded resource adapters
emulated data sources
encoding, Web Services
 XML 1.0 standard
End User Layer (EUL) 2nd
 building with Discoverer Administrator
 leveraged by Discoverer interfaces
endpoint, Web Service
Enterprise Application aRchive (EAR) files
 application that uses EJBs and servlets
Enterprise Application Integration (EAI)
Enterprise Edition, Oracle Application Server 2nd
Enterprise Information Systems (EIS), access by J2EE applications
Enterprise Manager [See Oracle Enterprise Manager Oracle Enterprise Manager 10g]
enterprise messaging systems (EMSs)
Enterprise User Security
entities in UDDI
entity beans (EJB)
ESI [See Edge Side Includes]
EUL [See End User Layer]
event-based model, XML parsers
event-based reporting
Event-Driven Publishing API, Oracle Reports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

events
 common view
 OracleAS Portal
 OracleAS ProcessConnect
 triggering business processes
expiration policy (for cached objects)
explicit block names
explicit invalidation (cached objects)
eXtensible Markup Language [See XML]
EXtensible Stylesheet Language for Transformations (XSLT)
extraction, transformation, and loading (ETL)
 building process

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

F5 Networks, BIG-IP hardware load balancer
failover solutions
 clustered OracleAS Web Cache instances
 Oracle Application Server infrastructure
 OracleAS Active Failover clusters
farm
 cluster versus
Fastest Response forwarding algorithm
federated identities
File System Cache
File Transfer Protocol (FTP)
file-based repositories
firewalls
 proprietary network protocols and
 RMI tunneling through
fixed return null (caching) scheme
fixed wait caching scheme
form portlets
Forms Services [See OracleAS Forms Services]
forms, HTML
 directing response to another servlet or entity in presentation layer
forwarding algorithms
 rerouting requests to failed OC4J instance
 supported by hardware load balancers
 Weighted Available Capacity
fragments (web page), caching
frame driver portlets
FTP (File Transfer Protocol)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

garbage-collection process for invalid cached objects
Geographic Location forwarding algorithm
global authentication
graphical mapping tool, Mapping Workbench
graphical user interfaces [See GUIs]
graphs
 adding to reports
 creating with OracleAS Discoverer Plus
grid computing
Grid Control 2nd
 accessing, username and password
 MetaLink, automatic connection to
 Performance page
 using
 home page
 J2EE Applications page
 Web Applications page
groups (Java Object Cache)
GUIs (graphical user interfaces)
 Oracle JDeveloper IDE
 web applications
GZIP compression algorithm

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hardware (OracleAS), tracking
hardware clusters
 OracleAS Cold Failover Clusters
 running Oracle Application Server on
hardware load balancer
 using in front of multiple OracleAS Web Cache instances
Heterogeneous Services support, Oracle database
heuristics, performance assurance (OracleAS Web Cache)
hierarchies
hierarchies of OracleAS Web Cache
 compression of content
Hierarchy portlets
high availability for application servers
 infrastructure failover
 provided by OracleAS Web Cache
HTML
 browser client based on (Discoverer Viewer)
 in JavaServer Pages
 Oracle Enterprise Manager
 produced by servlets to provide web content
 transforming to XHTML with PDKIS
 use with PL/SQL programs
 web applications, presentation layer
HTML <form> tag, hardcoding servlet URL in
HTML pages
 caching static pages
 dynamic, caching
HTTP [See also Oracle HTTP Server]
 caching of web content transmitted over
 replicating HTTP session objects
 use by Web Services 2nd
HTTP validators
HTTPRequest object (Java servlets)
HTTPS for Client Connections (Oracle HTTPS)
HTTPS, support by OracleAS Web Cache
HttpServletRequest object
Hypertext Markup Language [See HTML]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

identity management
IDEs (Integrated Development Environments)
 Oracle JDeveloper
 OracleAS InterConnect
 third-party support for Oracle Application Server
IIS (Internet Information Server), Microsoft
implicit block names
implicit invalidation (cached objects)
include fragments
incremental backups
infrastructure, Oracle Application Server
 backups of
 failover solutions
 Identity Management
 Metadata Repository
inline fragments
InputStream class
inquiry Web Service (UDDI)
INSERT statement (SQL)
inserting data into database with XML document
installation types, Oracle Application Server
installation, Oracle Universal Installer
Integrated Development Environments [See IDEs]
integration components, Oracle Application Server
 OracleAS InterConnect
 OracleAS ProcessConnect
 OW4J (Oracle Workflow for Java
 resource reference for
Integration Manager (IM) (OracleAS ProcessConnect)
InterConnect [See OracleAS InterConnect]
interfaces [See also APIs; GUIs]
 programming interfaces, Web Object Cache
Internet Directory [See Oracle Internet Directory]
Internet, three-tier architecture
interprocess communication (IPC), use by OracleAS Web Cache
intrusion detection
 Oracle HTTP Server, logging of authentication attempts
invalidating cached objects
 invalidation messages
 Java Object Cache
 performance and
 rules for
 Web Object Cache
islands 2nd
iStudio
 components created in
 defining domain value maps
 menus
 navigation trees
items (OracleAS Portal pages)
 end user manipulation of
 types and attributes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE (Java 2 Enterprise Edition) 2nd [See also OC4J]
 administering through Application Server Control
 APIs supported by OC4J releases
 application deployment
 clustered OC4J instances and
 deployment of applications to OC4J
 Grid Control J2EE Applications page
 J2EE and Web Cache installation, OracleAS
 OC4J, using as development environment
 Oracle JDeveloper as IDE
 security of applications using Web Services
J2EE Connector Architecture
 OracleAS ProcessConnect adapters
J2ME Web Services
JAAS (Java Authentication and Authorization Service) 2nd 3rd
 Web Services authentication
JAR (Java ARchive) files
Java
 applets [See applets]
 application development [See development]
 class generators, XML
 code embedded in HTML [See JSPs]
 emergence of programming language
 Java 2 Enterprise Edition [See J2EE]
 objects, storage in relational database tables with OracleAS TopLink
 Oracle Application Server 4.0
 Oracle Application Server support for web-based application run in OC4J
 Oracle Application Server, Java Edition 2nd
 Oracle Enterprise Manager
 portlets
 programming language, capabilities of
 servlets [See servlets]
 XDK for, XML Transviewer Beans
 XSU APIs for
Java APIs
 Oracle Application Server extensions accessible via
 use by Oracle Application Server
Java ARchive (JAR) files
Java Data Objects (JDO)
Java ESI tags (JESI tags)
Java Message Service [See JMS]
Java Naming and Directory Interface [See JNDI]
Java Object Cache 2nd
 basic principles of
 how it works
 initialization
 invalidating cached objects
 management of
 used as repository by Web Object Cache
Java object repository (Web Object Cache)
Java System Web Server
Java Transaction API (JTA)
Java Virtual Machines [See JVMs]
JavaBeans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BI (Business Intelligence) 2nd
 JDBC used in, web applications
 XML Transviewer Beans
JavaScript
JavaServer Pages [See JSPs]
JAZN (OC4J JAAS Provider)
JDBC (Java DataBase Connectivity)
 driver as example of resource adapter
 used in JavaBeans, for web applications
 used in servlets, for web applications
JDeveloper
 Application Development Framework (ADF)
 developing OLAP applications
 named user licensing
 OracleAS Wireless applications
 OW4J Modeler
 Portlet Wizard
JDeveloper Wireless Extension (JWE)
JDO (Java Data Objects)
JESI tags (Java ESI tags)
JMS (Java Message Service)
 resource providers
 support by OracleAS Web Services
 Web Services
JNDI (Java Naming and Directory Interface)
Jserv (servlet container)
 legacy support by Apache
 mod_oprocmgr
JSPs (JavaServer Pages)
 calling Oracle Reports from
 ESI use in
 integrating XSQL Pages with
 OC4J translator 2nd 3rd
 tag libraries
 web applications, presentation layer
 Web Object Cache tag library
 Web Source Reports
JTA (Java Transaction API)
JVMs (Java Virtual Machines)
 multiple JVMs per OC4J instance 2nd
JWE (JDeveloper Wireless Extension)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Key Performance Indicators (KPIs)
keytool (JDK)
KPIs (Key Performance Indicators)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LDAP (Lightweight Directory Access Protocol)
 JAZN support of LDAP-based provider
 Oracle Directory Provisioning Integration Service
 Oracle Identity Management Services
 user manager (JAAS provider)
Least Connections forwarding algorithm
levels of invalidation (cached objects)
lexical substitution parameters (XSQL Pages)
Linux, Oracle Application Servers for
load balancing
 choices for load balancer
 clustered OC4J instances
 clustered Oracle Application Server instances
 InterConnect messages across multiple adapters
 operating system load balancer
 Oracle HTTP Server as load balancer
 OracleAS Web Cache as load balancer for clustered instances 2nd
 stateful, configuring OracleAS Web Cache for
load() (CacheLoader)
local cache (Java Object Cache)
logging
 Apache Web Server
 viewing and managing logs with Application Server Control
 viewing Log Repository error logs
looking up available Web Services

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

maintenance benefits of cache cluster
management [See also Oracle Enterprise Manager]
 backup, recovery, and security
 performing backup and recovery
 security
 identity [See Oracle Identity Management]
 Java Object Cache
 modules providing for Oracle HTTP Server
 password, with Oracle Wallet Manager
 Web Object Cache repositories
Mapping Workbench (graphical mapping tool)
mappings (application views)
markup languages for mobile applications
materialized views
memory cache
 Java Object Cache
 OracleAS Web Cache as
message broker infrastructure, OracleAS InterConnect
message-driven beans (MDB)
messages
 indicating invalid cached objects 2nd
 OracleAS InterConnect
messaging system
 OracleAS JMS (OC4J JMS)
messaging systems
 enterprise, access to
messaging, JMS models for
metadata for OracleAS Portal page
Metadata Repository
 backup tool for
 database connection information
 farm assignments based on
 Oracle Warehouse Builder
 OracleAS ProcessConnect
 RAC database as
 secure access to
 use by shadow processes
MetaLink web site, for product support
Metric-Based forwarding algorithm
Microsoft
 Internet Information Server (IIS)
 Open DataBase Connectivity (ODBC)
 Transaction Server (MTS)
middle tier
middle-tier products
 Oracle Application Server 10g
 Oracle, redesign in 2000
 security in
middleware
 Internet computing model
 Oracle, in application server products
Mining Object Repository (MOR)
Mining Table Repository (MTR)
mobile applications, markup languages for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mobile Location
Mobile Messaging
Mobile Office
mod_certheaders 2nd
mod_dms 2nd
mod_fastcgi
mod_jserv
mod_oc4j 2nd 3rd
 request for Reports Services
mod_onsint 2nd
mod_oprocmgr 2nd
mod_oradav
mod_ossl 2nd
mod_osso 2nd
mod_perl
mod_plsql 2nd
 routing stored procedure requests to Oracle database
 support for XML standards
model 1 programming
model 2 programming
model-view-controller [See MVC framework]
modeling tool (OracleAS ProcessConnect)
 deployment engine
modules
 Apache, plugged in (mods)
 supplied by Oracle for Oracle HTTP Server
 Oracle modules
 third-party modules
MOLAP (multidimensional online analytic processing)
MTR (Mining Table Repository)
Multi-Channel Server
 delivery of OracleAS Wireless alerts
 small-footprint version, WDK
multiversion caching
mutator methods
MVC (model-view-controller) framework
 leveraged by ADF
 Struts as implementation of model
My Studio

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

namespaces, XML
naming and directory implementations, JNDI access to
native event (OracleAS ProcessConnect)
navigation pages (OracleAS Portal)
navigation trees (iStudio)
Netegrity SiteMinder (identity management)
network attached storage (NAS)
nodes
non-JTA data sources
nonemulated data sources
Nortel Network, Alteon hardware load balancer
Notification Server, Oracle (ONS)
notifications (OracleAS Wireless), delivery of
null data source

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object type (OracleAS Portal page or item)
object-relational mapping
 JDO (Java Data Objects)
 OracleAS TopLink
objects
 caching [See caching]
 Java Data Objects (JDO)
 marking as noncacheable
OC4J (Oracle Application Server Containers for J2EE) 2nd 3rd
 application deployment
 J2EE deployment
 OC4J deployment
 OC4J development
 clustering instances of
 complete J2EE implementation
 components
 EJB container
 JSP translator
 relationships among
 servlet container
 data sources, types of
 description of
 DMS sensors built into
 J2EE and OracleAS Web Cache installation
 J2EE APIs supported, listing of
 Java Object Cache
 Java Transaction API
 load balancing by Oracle HTTP Server
 mod_oc4j, Oracle HTTP Server
 multiple instances per host
 resource reference
 services
 J2EE Connector Architecture
 JAAS
 Java DataBase Connectivity
 Java Message Service
 Java Object Cache
 JNDI
 Oracle HTTPS
 Remote Method Invocation
 standalone J2EE server, using as
 two-phase commits
 Web Object Cache [See Web Object Cache]
 XDKs, use for Java-based web applications
OC4J ProcessConnect
OC4J Web Services
 agents
OCI (type 2) JDBC driver
ODBC (Open DataBase Connectivity)
ÒInternet databaseÓ (Oracle8i)
OJMS (Oracle JMS)
OLAP [See online analytical processing]
OmniPortlet
OMS [See Oracle Management Service]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

online (incremental) backups
online analytical processing (OLAP)
 business intelligence database schema
 Business Objects tools for
 custom applications
 custom applications, Oracle Application Server as deployment platform
 tools for
 using with Discoverer
ONS (Oracle Notification Server)
operating systems
 load balancers
 tracking for OracleAS
OPMN (Oracle Process Manager and Notification Server) 2nd 3rd
 configuring to monitor and restart Discoverer processes
 control of Reports Server
 mod_onsint, used with OHS
Oracle
 Advanced Queuing, (AQ)
 application server documentation
 Application Server family of products
 application servers and
 HTTPS for Client Connections
 JDBC drivers
 RMI/ORMI (RMI over Oracle RMI)
 support, working with
 technology introductions, timeline for
Oracle Application Server 10g
 grid computing 2nd 3rd
 Oracle Enterprise Manager 10g 2nd
 packages included in
Oracle Application Server 10g Administrator's Guide
Oracle Application Server Containers for J2EE [See OC4J]
Oracle Application Server Repository Creation Assistant (Oracle RepCA)
Oracle Database 10g
 deployable on computer grids
Oracle Developer Suite
 Discoverer Administrator Edition 2nd
 Forms Developer
 Reports Developer 2nd
 Software Configuration Manager
Oracle Enterprise Manager 2nd
 Application Service Level Management (ASLM)
 creating cluster definition
 EM2Go, mobile version 2nd
 managing business intelligence components
 managing configuration files for Forms Services
 modifying Oracle HTTP Server configuration files
 Oracle Enterprise Manager 10g
 publishing Web Services
 runtime management of InterConnect
 security management through
 UDDI Registry
Oracle Enterprise Manager 10g 2nd [See also Application Server Control; Grid Control]3rd
 Application Server Control
 Grid Control 2nd 3rd
 accessing
 patch management
 optional application server packs
Oracle HTTP Server 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache Web Server, architecture of
 description of
 J2EE and OracleAS Web Cache installation
 load balancing for clustered OC4J instances or multiple JVMs
 modules supplied by Oracle
 Oracle modules
 third-party modules
 OracleAS Web Cache, using with
 resource reference
 security
 SSL communications
 third-party listener support
Oracle Identity Management 2nd 3rd
 benefits of using OID for
 certificates
 Oracle wallets
 OracleAS Single Sign-On and
 services included in
 third-party services, using with
Oracle Internet Directory 2nd 3rd 4th 5th
 Oracle Application Server Standard Edition
 passwords for
 services provided by
Oracle JDeveloper [See JDeveloper]
Oracle JMS (OJMS)
Oracle Management Service
Oracle PL/SQL Web Toolkit
Oracle record
Oracle RMI (ORMI)
Oracle Technology Network (OTN)
 download site for Application Server
 J2EE APIs currently supported by OC4J, documentation for
 list of third-party IDEs supporting Oracle Application Server
 Wireless Development Kit (WDK)
Oracle Text
Oracle Thin (type 4) JDBC driver
Oracle Universal Installer
Oracle wallets [See wallets, Oracle]
Oracle Warehouse Builder (OWB)
 data warehouses and
Oracle Warehouse Builder Common Warehouse Metamodel (CWM)
Oracle Workflow
 using with OracleAS InterConnect
Oracle Workflow for Java [See OW4J]
oracle.j2ee.ws.client package
oracle.j2ee.ws.client.wsdl package
Oracle8i
Oracle9iAS 2nd
 HTML-based Oracle Enterprise Manager
OracleAS Certificate Authority [See SSL, certificates]
OracleAS Discoverer 2nd 3rd 4th 5th
 Administrator Edition, using
 caching content with OracleAS Web Cache
 Discoverer Plus 2nd 3rd
 Discoverer Portlet Provider 2nd
 Discoverer Viewer 2nd 3rd
 End User Layer (EUL)
 managing with Oracle Enterprise Manager
 query governor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 query performance
 timing out sessions
 using analytics and OLAP
 visually pleasing data displays
OracleAS Forms Services 2nd 3rd 4th
 how it works
 managing
 running applications
 security, configuring
OracleAS InterConnect 2nd 3rd
 adapters
 components connected with
 deployment sequence
 hub and spoke deployment
 iStudio interface
 messages
 metadata repository
 OW4J, using with
 runtime management of
OracleAS Personalization 2nd
 data mining
 Portal and Wireless installation
OracleAS Personalization Administration User Interface (OPUI)
OracleAS Portal 2nd
 business intelligence
 calling reports from Reports Services
 classification of data
 deploying reports to
 deployment architecture
 caching
 creating pages at runtime
 description of
 end-user interaction
 customization of
 searching
 working with content
 Java portlets
 Oracle9iAS
 OracleAS Web Cache, use of
 page groups
 pages
 appearance of
 items
 layout and regions
 page groups
 types and attributes
 Portal and Wireless installation
 Portal Development Kit (PDK) 2nd
 portlets
 portal providers
 prebuilt
 publishing workbooks to
 resource reference for
 security
 Standard Edition
 types and attributes
 use of XML
 visually pleasing displays of OracleAS Discoverer results
OracleAS ProcessConnect 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 adapter-centric methodology
 adapters, types of
 business process-centric methodology
 components
 deployment engine
 deployment sequences
 events created on receipt of record
 Integration Diagram viewer
OracleAS Reports Services 2nd 3rd 4th
 caching reports 2nd
 calling
 event-based reporting
 from OracleAS Portal
 from Web Services
 clustering Reports Servers
 components
 custom tag handler
 distributing reports
 handling requests
 how it works
 managing with Oracle Enterprise Manager
 OracleAS Single Sign-On, using with
 XML, use of 2nd
OracleAS Single Sign-On 2nd 3rd 4th
 implementing for OracleAS Forms Services applications
 mod_osso
 Oracle Identity Management and
 OracleAS Reports Services, using with
 plug-in for third-party web servers
 redirection, OracleAS Web Cache support of
OracleAS SOAP 2nd 3rd [See also SOAP]
OracleAS TopLink 2nd 3rd
 object-relational mapping with
OracleAS Web Cache 2nd 3rd 4th
 administration
 monitoring
 performance monitoring
 starting/stopping
 basic principles
 compression
 how it works
 invalidating cached objects
 cacheability/invalidation rules
 invalidation messages
 performance assurance
 J2EE and OracleAS Web Cache installation, OracleAS 2nd
 load balancing
 for clustered Oracle Application Server instances
 OracleAS Discoverer requests
 topologies for
 clustering
 hierarchies
 multiple instances
 multiple origin servers, supporting
 types of caching
 dynamic pages
 multiple page versions for single URL
 partial page
 personalization in a page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session-encoded URLs
 static pages
OracleAS Web Cache Manager
 monitoring information
OracleAS Wireless 2nd 3rd 4th
 administrative tools
 caching with OracleAS Web Cache
 delivery of alerts and notifications
 deployment
 development
 prebuilt applications
 resource reference for
 security
 XSLT transformation, use of
OracleXML (command-line utility)
origin server
 OracleAS Web Cache communications with
 OracleAS Web Cache support for multiple
ORMI (Oracle RMI)
OutputStream class
OW4J (Oracle Workflow for Java) 2nd
OWB (Oracle Warehouse Builder)
OWM [See Wallet Manager, Oracle]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packaged application adapters
packages (Oracle Application Server), available at this time
page groups (OracleAS Portal) 2nd
page template (OracleAS Portal)
pages (OracleAS Portal)
 appearance of
 caching
 creating at runtime
 items
 layout and regions
 page groups
 styles
 types and attributes
Parallel Page Engine (PPE)
parameters, binding to embedded SQL statements (XSQL Pages)
parsers, XML
 DOM (Document Object Model)
 Oracle XML parsers
 SAX (Simple API for XML)
partial page caching
parties (OracleAS ProcessConnect)
passwords
 management with Oracle Wallet Manager
 proliferation of, avoiding with OracleAS Single Sign-On
patches
 getting information on from MetaLink
 tracking for Oracle Application Server
PDF format, reports in
PDIKS (Portal Developer Kit Integration Services)
PDK (Portal Development Kit) 2nd
PDS (Pluggable Data Source) API
performance
 cache invalidation and
 improvement with caching
 measuring with Application Server Diagnostics Pack
 monitoring for Web Cache
 monitoring for web-based applications
 query performance, OracleAS Discoverer
 Web Services as remote procedure calls
performance assurance heuristics (OracleAS Web Cache)
Performance page (Grid Control)
Perl (mod_perl)
persistence
 EJBs, mapping to relational databases
 entity bean, bean-managed
 entity bean, container-managed
persistence management, OC4J
persistent message queues
Personalization [See OracleAS Personalization]
personalization information in a web page
perspectives (OracleAS Portal data)
PL/SQL
 API for XSU
 Database Providers, OracleAS Portal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Oracle JDeveloper as IDE for
 OracleAS Reports Services API
 reference cursor, producing XML with
 stateless PL/SQL Web Services
 stored procedures 2nd
 use in OracleAS Forms Services
 web applications
 XSU APIs for
PL/SQL Server Pages (PSPs) 2nd
PL/SQL Web Toolkit
platforms, certified
plsql.conf file (mod_plsql)
Pluggable Data Source (PDS) API
Pluggable Destination Java API for Report Engines
plugged-in modules (mods)
point-to-point model (messaging)
policies
 accountability for actions contrary to
 caching
 block naming policy
 indicating invalid cached objects
 JAAS, storage of
 Java 2 security model
 organization by realm
 state-based
 tracking for Oracle Application Server
 value-based
pool cache
popularity ratings, using to remove invalid cached objects
Portal [See OracleAS Portal]
Portal and Wireless installation
Portal Catalog
Portal Developer Kit Integration Services (PDKIS)
Portal Repository
Portal Studio
portals
 definition of
 Wireless Customization Portal
portlet providers
Portlet Repository
Portlet Wizard (JDeveloper)
portlet wizards
portlets 2nd
 Discoverer Portlet Provider 2nd
 Java
 within pages
 portal providers
 prebuilt
 third-party
ports, managing
PPE (Parallel Page Engine)
predictable cache invalidation
prepared statements (SQL), preventing SQL injection attacks with
presentation layer (web applications)
 UIX
priority property (caching rules)
privileges
 administrator
 application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delegation of
 granting higher with multilevel authentication
 policy (Java 2 security model)
Procedure Language extension to SQL [See PL/SQL]
procedures
Process Manager and Notification Server, Oracle [See OPMN]
ProcessConnect [See OracleAS ProcessConnect]
profiles (OracleAS ProcessConnect)
programming interfaces (Web Object Cache)
proprietary network protocols
protocols (Internet), standardized
provider types (JAZN)
providers (OracleAS Portal)
proxies
 Oracle HTTP Server acting as
 Web Service proxy
PSPs (PL/SQL Server Pages) 2nd
public/private key pairs, generated with keytool
publish and subscribe model (messaging)
 OracleAS InterConnect
publishing a Web Service
put() (CacheAccess)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

query and analysis tools 2nd
 Business Objects
 custom OLAP applications
 data warehouses, OWB and
 Discoverer Plus
 Discoverer Viewer
 OracleAS Discoverer
 Administrator Edition
 analytics and OLAP, using
 query performance
query governor, OracleAS Discoverer
queueing cache invalidation requests
queueing messages

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RAC [See Real Application Clusters]
RADs (Resource Access Descriptors)
Random forwarding algorithm
RBAC (role-based access control)
Real Application Clusters (RAC)
 OracleAS InterConnect message load balancing
realm
realm administrator
RealmLoginModule (OC4J)
Recommendation Engine API (REAPI)
record, Oracle
recovery [See backup and recovery]
reference cursor (PL/SQL)
regions (Java Object Cache) 2nd
regions (OracleAS Portal pages)
 styles for
relational databases, mapping Java object-oriented architecture to
relational online analytical processing (ROLAP) 2nd
Remote Cache Deployment
Remote Method Invocation (RMI)
remote procedure calls [See RPCs]
removal time (for cached objects)
replication of HTTP session objects 2nd
report portlets
reporting tools 2nd
Reports engines 2nd
 optimal number of
Reports Server
Reports Services [See OracleAS Reports Services]
Reports servlet 2nd
 Custom Tag Handler
request handling (Reports Server)
request life cycle (Apache)
request/reply model (OracleAS InterConnect messages)
Resource Access Descriptors (RADs)
resource adapters
Resource Provider interface (OC4J)
resource reference for Oracle Application Server
 books and Oracle documentation
 business intelligence components
 caching
 integration components
 Java development
 OC4J
 Oracle development
 Oracle HTTP Server
 OracleAS Portal
 OracleAS Wireless
 Web Services
 web sites
 XML development
RMI (Remote Method Invocation)
RMI/IIOP protocol
RMI/ORMI (RMI over Oracle RMI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROLAP (relational online analytical processing) 2nd
role-based access control (RBAC)
roles
 administrative
 delegation by realm and context administrators
 organization by realm
 storage by JAAS providers
root page (OracleAS Portal)
RosettaNet
Round Robin forwarding algorithm
 rerouting requests to failed OC4J instance
RPCs (remote procedure calls) 2nd
 Web Services as, performance and
 Web Services calls

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

scalability, Oracle Application Server
 clustering OC4J instances
 horizontal scaling
 provided by OracleAS Web Cache 2nd
 vertical scaling with OC4J
SCTC (Supply Chain Trading Connector)
SDKs
 Adapter SDK
 OracleAS InterConnect
searching an OracleAS Portal site
searching for all application servers
Secure Sockets Layer [See SSL]
security
 component- and container-managed, support by resource adapters
 EJB, container- or component-managed
 J2EE applications using Web Services
 Oracle Application Server framework
 deployment architecture
 JAAS
 listing of key components
 Oracle Identity Management
 Oracle Internet Directory
 security services
 Oracle HTTP Server, modules for
 OracleAS Discoverer, access to data
 OracleAS Forms Services
 OracleAS Portal
 OracleAS Reports Services
 levels of
 reports called from OracleAS Portal
 OracleAS Web Cache support of
 OracleAS Wireless
 secure deployment
 delegation of privileges
 DMZs
 Oracle Enterprise Manager
 Web Services
security management
 provided by resource adapters
security model (Java 2)
selector property (caching rules)
server affinity
Server Side Includes (SSIs)
server side, uses of PL/SQL on
service description, Web Services 2nd
service discovery, Web Services 2nd
 looking up a Web Service
 publishing a Web Service
 updating UDDI entry
service provider interfaces (SPIs)
service provider, Web Services
 OC4J Web Services agents
 RPC- versus document-style calls
 Web Services Assembler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Service Request (SR)
service requester, Web Services
services, Oracle middle-tier product (2000)
servlet containers
 Jserv 2nd
 OC4J
 servlet life cycle management
servlets
 controller servlets
 created from JSP files
 deployment of
 JDBC used in
 Jserv container, Apache 2nd
 Oracle Reports servlet
 web applications, presentation layer
 Web Object Cache, use with
session beans (EJB)
session binding
session management, OC4J
session objects, replication of 2nd
session scope (cached objects)
session-encoded URLs, caching
SetHandler directive
shadow processes 2nd
 OracleAS Metadata Repository, use of
shared objects (OracleAS Portal pages)
Shared Objects page group
Simple API for XML (SAX) parsers
Simple Mail Transfer Protocol (SMTP)
Simple Object Access Protocol [See SOAP]
Single Sign-On [See OracleAS Single Sign-On]
site (OracleAS Portal)
SOAP
 encoding of Web Services request
 OracleAS SOAP 2nd
 OracleAS Web Services, support of
 service description
 standards
 UDDI SOAP-based Web Services
 Web Providers (OracleAS Portal), use by
 XML standards
Software Configuration Manager
software installations and patches, tracking
SPIs (service provider interfaces)
SQL [See also PL/SQL]
 creation and execution of by EJB container
 new standard (SQL 1999)
 performing DML with JDBC used in servlets
 SQLJ compiler for embedding in Java code
 XML SQL Utility
 XSQL Pages 2nd
 converting XML to SQL
 XSU (XML SQL Utility)
 transforming XML to SQL
SQL injection
SR (Service Request)
SSIs (Server Side Includes)
SSL (Secure Sockets Layer)
 certificates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 client-side
 management with Oracle Wallet Manager
 Oracle HTTP Server, management of
 OracleAS Certificate Authority 2nd 3rd 4th
 infrastructure inside OC4J (Oracle HTTPS)
 mod_ossl, OHS
 Oracle HTTP Server support of
 secure connections
 Web Services, using with
standalone JMS resources
standalone resource adapters
Standard Edition (Oracle Application Server)
star schema
state replication for HTTP session objects and EJBs 2nd
state-based policies
stateful EJB
stateful failover for OC4J clusters
stateful Java class services
stateless EJB
stateless Java class services
stateless PL/SQL services
stateless session EJB services
static client (Web Services)
static HTML pages, caching
static objects combined with dynamic objects in web pages
storage area network (SAN) disk devices
stored procedures
 names of
 as RPCs
 as Web Services
stream access cache (Java Object Cache)
Struts
 controller, using as
 web site for information
styles (OracleAS Portal pages)
stylesheets
 CSS (Cascading Style Sheets)
 XSLT
subpage region (OracleAS Portal)
subpages (OracleAS Portal)
subregions (Java Object Cache) 2nd
summaries, improving query performance with
Sun ONE Web Server [See Java System Web Server]
SunOne (identity management) service
Supply Chain Trading Connector (SCTC)
support, Oracle
Surrogate-Control response-header

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tab region (OracleAS Portal pages)
tag libraries, JSP
 Web Object Cache tag library
taxonomy
Technical Assistance Request (TAR) [See Service Request]
technology adapters
templates, OracleAS Portal pages
thin client
third normal form (3NF) database schema
third-party identity management services
third-party IDEs that support Oracle Application Server deployment
three-tier architecture
 Internet
 Oracle Application Server implemented in
TopLink [See OracleAS TopLink]
transaction management
 OC4J
 provided by resource adapters
transaction monitor
transaction performance monitoring
transactions
 application servers, history of
 bean-managed transactions, EJB
 container-managed transactions, EJBs
 Java Transaction API (JTA)
 MTS (Microsoft Transaction Server)
 stateful
transformations
 application views
 business events
 SDKs for, OracleAS InterConnect
 XML documents
 Java, using
 SQL to XML with XSU
translations (OracleAS Portal pages)
translator for JSPs (OC4J)
transport protocols, Web Services
tree structure (XML documents)
tree-structured approach, XML parsers
two-phase commits 2nd
Type 2 JDBC drivers
Type 4 JDBC drivers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UDDI (Universal Description, Discovery, and Integration) 2nd
 directory for publishing Web Services
 directory management
 inquiry Web Service
 OracleAS Web Services, support of
 service discovery for Web Services
 specification
 updating Web Service entries
UIX, employed by ADF as view
UltraSearch
Universal Description, Discovery, and Integration [See UDDI]
Unix, Oracle Application Servers for
unpredictable cache invalidation
UPDATE statement (SQL)
updating a database using an XML document
URL mapping directives
 in mod_oc4j.conf
 mod]
URL page portlets
URLs
 multiple page versions for single URL
 session-encoded
user authentication
user roles
users
 identity management for
 organization by realm
 storage by JAAS providers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

valid XML document
validation
 of cached objects
 HTML form information
 XML document against an XML Schema
validators, HTTP
view (MVC)
views
 application views
 common
 materialized
 use in transforming SQL document to XML

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

W3C (World Wide Web Consortium)
 WSDL specification
Wallet Manager, Oracle (OWM)
wallets, Oracle
WDK (Wireless Development Kit)
Web Application aRchive (WAR) file
web applications
 developing
 control layer
 data and business rules layer
 presentation layer
 PL/SQL
Web Applications page (Grid Control)
web browsers
 compressed content, handling of
 HTML content produced by servlets
 JavaScript, compatibility issues caused by
Web Cache [See OracleAS Web Cache]
Web Clipping portlet
web listener (Oracle Application Server)
Web Object Cache 2nd 3rd
 basic principles
 invalidating cached objects
 organization of
 repository management
web page for this book
web pages
 compression by OracleAS Web Cache
 multiple versions for single URL, caching
 partial page caching
 personalization information, specifying
Web Providers (OracleAS Portal)
web servers
 Apache
 third-party, used with Oracle HTTP Server
 third-party, using OracleAS Web Cache with
Web Service proxy
Web Services 2nd
 architecture
 encoding
 integration of
 interface to the Reports Server
 interoperability of RPCs
 J2ME
 Oracle Application Server support of 2nd
 resource reference for
 running OracleAS Reports Services as
 security
 service
 service description 2nd
 service discovery 2nd
 looking up Web Service
 publishing Web Service
 updating UDDI entry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 service provider
 OC4J Web Services agents
 Web Services Assembler
 service requester
 standards
 SOAP
 UDDI
 WSDL
 XML
 XML-RPC
 use of HTTP as transparent protocol
Web Services Assembler
Web Services Description Language [See WSDL]
Web Services for Remote Portlets (WSRP)
web sites for Oracle Application Server information
web-based reports
 predefined drill-down capabilities
web.xml files
WebDAV (Web Distributed Authoring and Versioning)
 mod_oradav, Oracle HTTP Server
 support by OracleAS Portal
Weighted Available Capacity forwarding algorithm
well-formed XML documents
Windows [See also Microsoft]
 Active Directory (identity management)
 MTS (Microsoft Transaction Server)
windows, dockable (Oracle JDeveloper)
Wireless Development Kit (WDK)
Wireless installation
workbooks
 controlling access to
 publishing to OracleAS Portal
Workflow [See Oracle Workflow OW4J]
worksheets
 controlling access to
World Wide Web Consortium (W3C)
 WSDL specification
WSDL (Web Services Description Language)
 configuring Web Services Assembler to generate file
 Oracle Application Server, support of
 oracle.j2ee.ws.client.wsdl package
 SOAP service description
 specification
WSRP (Web Services for Remote Portlets)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X.509 certificates [See also SSL, certificates]
 Triple-DES encryption for private keys
XDKs (XML Developer Kits)
 features of
XForms
XForms engine
XHTML
 OracleAS Wireless
 transforming HTML document to with PDKIS
XML 2nd
 class generators
 DTDs and XML schemas
 encoding schemes, Web Services
 file user manager (JAAS provider)
 invalidation messages for cached objects
 Oracle Application Server components, use by
 Oracle JDeveloper as IDE for
 OracleAS Reports Services and
 OracleAS Wireless
 parsers, Oracle
 reports based on, exchange via HTTP
 resource reference for development
 standards
 Namespace Version 1.0
 parsers
 Version 1.0
 XML Path Language (XPath)
 XML Schema
 XSLT
 UIX presentation layer
 Web Services encoding scheme, use in
 WSDL (Web Services Description Language)
 XDKs (XML Developer Kits)
 XDKs (XML Development Kits)
 features of
 XSQL Pages
XML application
XML Class Generator
XML page portlets
XML Schema
 UDDI
 W3C recommendations, Oracle support for
XML Schema Processor
XML SQL Utility [See XSU]
XML Transviewer Beans
XML-based provider, JAZN support of
XML-RPC
 service description
 specifications and implementations for
 XML 1.0 standard
XMLDocument class
XPath (XML Path Language)
XSLT (EXtensible Stylesheet Language for Transformations)
 use by OracleAS Wireless

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XSLTransformer Bean
XSQL Pages 2nd
 configuration
 converting XML to SQL
 integrating with JSP
 SQL, converting to XML
XSQLActionHandler interface
XSU (XML SQL Utility) 2nd
 mapping customizations
 PL/SQL API for
 transforming XML to SQL
 committing
 deleting from a database
 inserting data
 mapping customizations
 updating a database

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Web Sites

Oracle Corporation—http://www.oracle.com

The home of the company. Contains the latest information and marketing, as well as some good technical and
packaging information.

Oracle Technology Network—http://otn.oracle.com

The focal point of Oracle Corporation's attempt to reach a wider audience of developers. You can find tons of
stuff at the OTN, including low-cost developer versions or free downloads of most Oracle software and lots of
information and discussion forums. You can also sign up for specific technology tracks here. The home page for
information on Oracle Application Server is http://www.oracle.com/appserver/books/.

International Oracle Users Group (IOUG)—http://www.ioug.org

The International Oracle Users Group web site. Includes information on meetings, links to Oracle resources, a
technical repository, discussion forums, and special interest groups.

Apache— http://apache.org

The Apache site. Contains the Apache Web Server, XML Parser implementations, XSLT implementations, XML-
RPC and SOAP Web Service implementations, and much, much more.

OASIS—http://www.uddi.org

The web site for the Universal Description, Discovery, and Integration standards consortium. Contains
information on the UDDI protocol—a major building block for Web Services—and related standards.

O'Reilly Media—http://www.oreilly.com

The O'Reilly Media web site. Contains information about good books on all kinds of web-related technologies,
Oracle technologies, and other technologies. See also http://safari.oreilly.com for online books and
http://oreillynet.com for a variety of specific technology sites (e.g., Apache, Java, XML).

The Server Side—http://www.theserverside.com

The Enterprise Java community web site. Although this site is typically focused on other products, you can pick
up a tip or two about Oracle Application Server and Java programming here.

World Wide Web Consortium—http://w3c.org

The web site for the original web standards, including HTTP, HTML, DOM, and CSS, and the locale for ongoing
web standardization activity.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Books and Oracle Documentation
The following books and Oracle documentation provide additional information for each chapter in this book.

Chapter 1, Introducing Oracle Application Server

Bakken, David E. Encyclopedia of Distributed Computing (Middleware entry), Kluwer Academic Press.
Byous, Jon, Java Technology: An Early History. Sun Microsystems.
http://java.sun.com/features/1998/05/birthday.html.
Garmany, John and Donald Burleson, Oracle Application Server 10g Administration Handbook, McGraw-Hill
Osborne Media.
Greenwald, Rick, Robert Stackowiak, and Jonathan Stern, Oracle Essentials: Oracle Database 10g. O'Reilly
Media, Inc.
MiddleAware, http://www.middleware.net (contains the history of Tuxedo and other middleware components)
Oracle Application Server 10g Concepts, Oracle Corporation.
Oracle Application Server 10g: Grid Computing, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g: New Features Overview, A Technical White Paper, Oracle Corporation.
Oracle9i Application Server Release 2 New Features, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Infrastructure, An Oracle Technical White Paper, Oracle Corporation.
Oracle Application Server 10g FAQ, Oracle Corporation.
http://otn.oracle.com/products/ias/htdocs/as10gfaq.html.

Chapter 2, Architecture

Aliminati, Janga, 9iAS Enterprise Architecture: Architecture Design and Creating Multiple Portals, Wireless,
UltraSearch and SSO Tiers, Oracle Corporation.
Oracle Application Server 10g Advanced Topologies for Enterprise Deployment (9.0.4), Oracle Corporation.
Oracle Application Server 10g Concepts 10g (9.0.4), Oracle Corporation.
Oracle Application Server 10g High Availability Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Services Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Web Cache Administrator's Guide 10g (9.0.4), Oracle Corporation.
Oracle HTTP Server Administrator's Guide 10g (9.0.4), Oracle Corporation.

Chapter 3, Systems Management

Application Service Level Management, Oracle Data Sheet, Oracle Corporation, 2003,
http://otn.oracle.com/products/oem/pdf/DATASHEET_ADSP_0_4.pdf.
Managing the Oracle Application Server with Oracle Enterprise Manager 10g, An Oracle White Paper, Oracle
Corporation.
Oracle9i Application Server: Backup and Recovery, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Administrator's Guide, Oracle Corporation.
Oracle Application Server 10g Concepts 10g (9.0.4), Oracle Corporation.
Oracle Application Server Management: Managing the Application Server with Oracle Enterprise Manager 10g,
Oracle Data Sheet, Oracle Corporation.
Oracle Enterprise Manager Advanced Configuration, Oracle Corporation.
Oracle Enterprise Manager Concepts, Oracle Corporation.
Oracle Enterprise Manager EM2Go, Feature Overview, Oracle Corporation.
Oracle Enterprise Manager Grid Control Installation and Basic Configuration, Oracle Corporation.

Chapter 4, Security and Identity Management

Oracle Application Server 10g Security, Oracle Corporation.
http://otn.oracle.com/products/id_mgmt/osso/htdocs/oracleas_security_10g_fov.html.
Oracle Application Server 10g Security Guide, Oracle Corporation.
Oracle9i Application Server Architecting for Security, Oracle Corporation.
Oracle Application Server Certificate Authority 10g. An Oracle White Paper, Oracle Corporation.
http://otn.oracle.com/products/id_mgmt/oca/pdf/oracleas_certificate_authority_10g_wp.pdf.
Oracle Identity Management Concepts and Architecture. An Oracle White Paper, Oracle Corporation.
http://otn.oracle.com/products/id_mgmt/pdf/OracleAS_IDmanagement_10g_TWP.pdf.
Oracle Internet Directory, Technical White Paper, Oracle Corporation.
http://otn.oracle.com/products/oid/htdocs/oidwp9iAS2.pdf.
Oracle Internet Directory Features Overview, Oracle Corporation.
http://otn.oracle.com/products/oid/htdocs/oid_overview/oidfov9iASv2.html.
Oracle Internet Directory: User Provisioning Integration, Oracle Corporation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Internet Directory: User Provisioning Integration, Oracle Corporation.
http://otn.oracle.com/products/ias/daily/jan29.html.
Pepper, Jason, Worried about Security and Scalability? Not with Oracle9iAS Portal Release 2, Oracle
Corporation.

Chapter 5, Oracle HTTP Server

Bowen, Rich, Apache Administrator's Handbook, Sams Publishing.
Oracle HTTP Server Administrator's Guide 10g (9.0.4), Oracle Corporation.
Overview of Oracle HTTP Server Components, Oracle Corporation.
http://otn.oracle.com/products/ias/ohs/htdocs/OHS-904-TWP.pdf.
Young, Geoffrey and Paul Linder and Randy Kobes, mod_perl Developer's Cookbook, Sams Publishing.

Chapter 6, Oracle Application Server Containers for J2EE

Oracle Application Server 10g Multimedia Tag Library for JSP User's Guide and Reference 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer's Guide 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE Security Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Servlet Developer's Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Services Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide 10g (9.0.4),
Oracle Corporation.
Oracle Application Server Containers for J2EE User's Guide 10g (9.0.4), Oracle Corporation.

Chapter 7, Caching

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference 10g (9.0.4), Oracle
Corporation.
Oracle Application Server Containers for J2EE Services Guide 10g (9.0.4), Oracle Corporation.

Chapter 8, Java Development

Bales, Donald, Java Programming with Oracle JDBC, O'Reilly.
Bales, Donald, JDBC Pocket Reference, O'Reilly.
Bergsten, Hans, JavaServer Pages, O'Reilly.
Hunter, Jason and William Crawford, Java Servlet Programming, O'Reilly.
Monson-Haefel, Richard, Enterprise JavaBeans, O'Reilly.
Monson-Haefel, Richard and David A. Chappell, Java Message Service, O'Reilly.
Oaks, Scott, Java Security, O'Reilly.
Oracle Application Server TopLink Application Developer's Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server TopLink Getting Started Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server TopLink Mapping Workbench User's Guide 10g (9.0.4), Oracle Corporation.
Oracle Business Components for Java Developing Business Components 10g (9.0.4), Oracle Corporation.

Chapter 9, Oracle Development

Callan, Steve, "Installation Cookbook: Installing Oracle Application Server 10g Forms and Report Services,"
Database Journal. http://www.databasejournal.com/features/oracle/article.php/3322591.
Enterprise Data Publishing with Oracle Reports: Any Data, Any Format, Anywhere, Oracle Corporation.
Oracle9iAS Reports Services Scalability, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Performance Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Forms Services Deployment Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Reports Services Publishing Reports to The Web 10g (9.0.4), Oracle Corporation.
Oracle Reports 10g New Features, An Oracle White Paper, Oracle Corporation.

Chapter 10, XML Development

Harold, Elliot Rusty and W. Scott Means, XML in a Nutshell, O'Reilly.
Oracle Application Developer's Guide—XML 10g (9.0.4), Oracle Corporation.
Oracle XML Reference 10g (9.0.4), Oracle Corporation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11, Web Services

Chappell, David A., and Tyler Jewell, Java Web Services, O'Reilly.
Cerami, Ethan, Web Services Essentials, O'Reilly.
St. Laurent, Simon, Joe Johnston, and Edd Dumbill, Programming Web Services with XML-RPC, O'Reilly.
Snell, James, Doug Tidwell, and Pavel Kulchenko, Programming Web Services with SOAP, O'Reilly.
Oracle Application Server Web Services Developer's Guide 10g (9.0.4), Oracle Corporation.

Chapter 12, Business Intelligence Components

Enterprise Data Publishing with Oracle Reports: Any Data, Any Format, Anywhere, Oracle Corporation.
Leveraging Oracle Database Features with Oracle Reports: Business Intelligence, Oracle Reports Technical Note,
Oracle Corporation.
Leveraging Oracle Database Features with Oracle Reports: Virtual Private Database, Oracle Reports Technical
Note, Oracle Corporation.
Oracle9i Application Server: Business Intelligence Technical Overview, An Oracle White Paper, Oracle
Corporation.
Oracle9iAS Discoverer: Best Practices for Release 1.0.2.2, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Discoverer Integration with Oracle9iAS Portal, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Discoverer Version 4.1 Capacity Planning Guide, An Oracle White Paper, Oracle Corporation.
Oracle9iAS Reports Services Scalability, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Concepts (Chapter 5), Oracle Corporation.
Oracle Application Server Discoverer 10g, An Oracle White Paper, Oracle Corporation.
Oracle Application Server Discoverer Plus Tutorial 10g, Oracle Corporation.
Oracle Application Server Discoverer Plus User's Guide 10g, Oracle Corporation.
Oracle Application Server Reports Services, Publishing Reports to the Web, Oracle Corporation.
Oracle Discoverer Administrator, Administration Guide 10g, Oracle Corporation.
Oracle Discoverer EUL Command Line for Java, An Oracle White Paper, Oracle Corporation.
Oracle Reports 10g New Features, An Oracle White Paper, Oracle Corporation.

Chapter 13, Oracle Application Server Portal

Getting Started With Oracle Application Server Portal, Oracle Corporation.
Greenwald, Rick and Milbery, Jim, Oracle9iAS Portal Bible, John Wiley & Sons .
Oracle Application Server Portal Configuration Guide 10g (9.0.4), Oracle Corporation.
Oracle Application Server Portal User's Guide 10g (9.0.4), Oracle Corporation.

Chapter 14, Oracle Application Server Wireless

Oracle9iAS Wireless: Creating a Mobilized Business, An Oracle White Paper, Oracle Corporation.
Oracle Application Server 10g Concepts (Chapter 4), Oracle Corporation.
Oracle Application Server Wireless Administrator's Guide10g, Oracle Corporation.
Oracle Application Server Wireless: Complete Mobile Platform, An Oracle Technical White Paper, Oracle
Corporation.
Oracle Application Server Wireless Developer's Guide10g, Oracle Corporation.
Oracle Application Server Wireless: Messaging Services, An Oracle Technical White Paper, Oracle Corporation.

Chapter 15, Integration Components

Introducing Oracle Workflow for Java, Oracle Workflow Team, Oracle Corporation.
Oracle Application Server 10g Concepts (Chapter 6), Oracle Corporation.
Oracle Application Server 10g InterConnect, An Oracle Technical White Paper, Oracle Corporation.
Oracle Application Server 10g ProcessConnect, An Oracle White Paper, Oracle Corporation.
Oracle Application Server InterConnect User's Guide 10g, Oracle Corporation.
Oracle Application Server Integration Product Overview, An Oracle Technical White Paper, Oracle Corporation.
Oracle Application Server ProcessConnect User's Guide 10g, Oracle Corporation.
Oracle Workflow Administrator's Guide, Oracle Corporation.
Oracle Workflow User's Guide, Oracle Corporation.
Oracle Workflow with J2EE Components, An Oracle Technical White Paper, Oracle Corporation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Additional Resources
In this concise volume, we've attempted to give you a firm grounding in all the basic concepts you need to understand
Oracle Application Server 10g and begin to use it effectively. We hope we've accomplished this goal.

At the same time, we realize that there is more to using a complex product such as Oracle Application Server than
simply understanding how and why it works the way it does. Although you can't use Oracle Application Server without a
firm grasp of the foundations of the product, you still need details if you're actually going to implement a successful
system.

This appendix lists two types of additional sources of information for the topics covered in this book—relevant web sites,
which act as a constantly changing resource for a variety of information, and a chapter-by-chapter list of relevant
books, articles, and Oracle documentation.

For the chapter-by-chapter list, the sources fall into two basic categories: Oracle documentation (both manuals and
white papers) and third-party sources. Typically, the Oracle documentation provides the type of hands-on information
you will need regarding syntax and keywords, and the third-party sources cover the topics in a more general and
problem-solving way. We've listed the third-party sources first and ended each listing with the relevant Oracle
documentation. Please keep in mind that Oracle Application Server isn't nearly as established or popular a product as
the Oracle database, so there aren't as many sources of third-party information for the product at this time.

Most Oracle documentation is available at the Oracle Technology Network web site
(http://www.otn.oracle.com). Because the locations of specific documents are likely to
change over time, we haven't provided specific URLs for all documents. To find a particular
document, your best bet is to go to the OTN web site and use the Search option to see if it
is available there.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Evolution of the Application Server
The concept of an application server has evolved over the past decade or so, combining several different strands of
functionality that we'll explore in this section.

1.1.1 Early Beginnings

Long before Java or application servers existed, there was already a need to service transactions between distributed
systems. The transaction monitor was originally created to provide a two-phase commit, assuring that transactions
were made real only when committed on two different platforms. Examples of early transaction monitors that gained
popularity include CICS (from IBM) and Tuxedo (originally developed by AT&T and later acquired by BEA). Tuxedo first
appeared in 1983 and evolved from simply guaranteeing reliable transactions to also providing a middle tier for
offloading the workload from transaction-processing databases. Use of the middle tier enabled the database to support
many more transaction-processing users at higher performance levels.

By the mid-1980s, the transaction monitor was sometimes referred to as a middleware solution and soon came to be
known as an application server. Heterogeneous computer and transaction-processing database support, via the
X/Open's XA interface, first appeared in 1989. Other functionality soon was added to the middle-tier solutions, including
fault tolerance, load balancing, and more security deployment models.

In 1991, Sun Microsystems began developing a new programming tool in anticipation of a coming convergence of
computers and digital consumer devices. With few takers for the technology in the early 1990s, Sun's focus turned
toward building and enabling applications for the newly popular Internet and to partnerships with companies such as
Netscape. Possibly the most important outcome of this research was the emergence of the Java programming language
in 1995.

By its nature, the Internet is enabled through a three-tier architecture consisting of the following components, which
are shown in Figure 1-1:

A thin client (browser) on the front end

An application server in the middle tier

A database/server on the back end

Figure 1-1. Typical three-tier configuration with Oracle Application Server

Thus, the Internet computing model created another market for middleware at the same time that Java gained
popularity for Internet programming. The natural evolution of application servers toward serving and supporting Java-
based applications began. Several providers of early transaction monitors merged their middleware offerings into new
application server packaging.

Another result of the growth of applications deployment over the Internet via a middle tier was widespread adoption of
standardized protocols that allowed these applications to communicate with each other. These protocols now include:

XML

eXtensible Markup Language

SOAP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SOAP

Simple Object Access Protocol[1] (for messages based on XML)

[1] Although this is the original expansion of the acronym, the current SOAP acronym isn't associated with
this name; see Chapter 11 for details.

WSDL

Web Services Description Language

UDDI

Universal Description, Discovery, and Integration

The last three protocols are used in the deployment of Web Services, which are getting increasing attention because
they provide a way to combine different functionality from separate application modules to other applications.

1.1.2 Oracle and Application Servers

Oracle Corporation was born in the late 1970s as a company named RSI. Early relational database technology was
provided to government agencies through custom consulting, and was then made commercially available as a product
in 1979. In 1983, RSI was renamed Oracle Corporation for consistency with the database product name. At this time,
the developers made a critical decision to create a portable version of Oracle (Version 3) that ran not only on DEC
VAX/VMS systems (the initial platform for the product), but also on Unix and other platforms.

Early Oracle database implementations were commonly deployed on minicomputers, and many customers began to
explore using distributed databases utilizing several of these relatively inexpensive platforms. At about the same time
that the first application servers appeared to manage these configurations for transactions, Oracle began building
distributed features in the database for handling distributed queries and two-phase transactional commits. Although
Oracle was building such capabilities in the database, popular transaction-processing monitor support was added
through interfaces such as XA to enable greater scalability and ensure the portability of such applications to the Oracle
database.

Oracle8i, the "Internet database," added native transaction coordination with the Microsoft Transaction Server (MTS) for
Windows platforms. To handle the growing number of connections needed, Oracle also added a Connection Manager
feature to the database packaging.

Oracle middleware didn't appear in an application server product as such until 1997-98. Oracle Application Server 4.0
was Oracle's first complete attempt to create a Java-based middle tier in response to the growing Internet deployment
model.

In 2000, Oracle redesigned its middle-tier product to enable the following:

Application services

Communications services

Connectivity services

Integration and commerce services

Management services

System services

Components provided in these services and with some specific solutions included industry-standard Web Services,
transaction and message handling, Portal technology (including portlets and content management), clustering support,
integration components, security and directory support, business intelligence solutions, and wireless support. This
redesigned product was known as Oracle9i Application Server or Oracle9iAS and is the basis of the application server
described in this book. The "i" was included in the product name, as it was in the Oracle8i and Oracle9i databases, to
indicate Oracle's focus on the Internet computing model.

The current version of Oracle's application server product is Oracle Application Server 10g, where "g" stands for "grid,"
indicating Oracle's view that grid computing will be an increasingly popular model for database deployment. Grid
computing leverages a large number of systems, also known as nodes, on an as-needed basis. Key components in grid
computing include the following:

Nodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nodes

 Network attached storage (NAS) or storage area network (SAN) disk devices

A database deployable across the nodes (Oracle Database 10g with Real Application Clusters)

A middle-tier infrastructure for access and load balancing (Oracle Application Server 10g)

Table 1-1 provides a timeline for some key Oracle technology introductions that led to and include the Oracle
Application Server family.

Table 1-1. History of Oracle technology introductions
Year Feature

1979 Oracle Release 2: the first commercially available relational database to use SQL.

1983 Single code base for Oracle across multiple platforms.

1984 Portable toolset.

1986 Client/server and distributed Oracle relational database.

1987 CASE and 4GL toolset.

1993 Oracle7 with cost-based optimizer.

1997 Oracle8 generally available; Oracle previews Oracle Application Server 4.0.

1998 Oracle Application Server 4.0 generally available; Java-based middle tier.

1999 Oracle8i generally available; Java Virtual Machine in the database.

2001 Oracle9i Application Server generally available; Oracle integration in middle tier includes Portal technology;
OracleAS Web Cache in Oracle9iAS announced.

2001 Oracle9i generally available.

2003 Oracle Database10g enables grid computing and simplifies and automates key management tasks; Oracle
Application Server 10g generally available.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 The Oracle Application Server Family
Oracle Application Server 10g is the name of the most recent major version of the Oracle Application Server family of
products. These products all share common source code. The family includes the following packages:

Oracle Application Server Java Edition

A version targeted for Java developers.

Oracle Application Server Standard Edition

A version targeted for deployment requiring less middle-tier functionality.

Oracle Application Server Enterprise Edition

A version targeted for more complex deployment. This version offers additional functionality, including business
intelligence and integration components and the OracleAS Personalization and OracleAS Wireless features.

At the time of this writing, these were the only packages available for Oracle Application
Server. If additional packages or bundles are offered, we'll provide updates on the web
page for this book (see the Preface).

Oracle focuses development around a single source-code model for all its products, including Oracle Application Server.
The Oracle Application Server releases are available today on Windows, RedHat and SuSE Linux, and on Unix platforms
such as HP Compaq Tru64, HP/UX, IBM AIX, and Sun Solaris. Because features are consistent across platforms for
implementations of Oracle Application Server, companies can migrate easily to various hardware vendors and operating
systems while leveraging their investments in Oracle technology. This development strategy also enables Oracle to
focus on implementing new features only once in its product set, instead of having to add functionality at different times
to different implementations.

Oracle Application Server 10g includes a web listener based on the popular Apache Web Server distribution. It also
includes support for Java 2 Enterprise Edition (J2EE) containers and a JavaServer Pages (JSP) translator, as well as
business logic and data access technologies. Business logic may be enabled through JavaBeans© and Enterprise
JavaBeans (EJBs). Data access technologies may include Java DataBase Connectivity (JDBC), SQLJ, EJBs, and J2EE
resource adapters. Finally, Oracle Application Server also provides the infrastructure needed for developing, deploying,
and managing Web Services.

Every Oracle Application Server edition also includes Oracle Enterprise Manager 10g Application Server Control, a tool
used for configuring and managing each server. Another tool, Oracle Enterprise Manager 10g Grid Control, is used to
manage multiple Oracle Application Servers and can provide a single point of access to each Application Server Control
installed with multiple servers. The Grid Control software is installed from a separate Grid Control CD.

The following sections briefly describe each Oracle Application Server edition. At this point, we won't attempt to explain
the features mentioned here. You will find more detailed information in Section 1.3.

1.2.1 Oracle Application Server Java Edition

Oracle Application Server Java Edition is a specific Oracle Application Server package created by Oracle for developers
of Java-based software who aren't interested in the deployment features available in other Oracle Application Server
editions. The Java Edition bundle includes the following:

Oracle HTTP Server

 Oracle Application Server Containers for J2EE (OC4J)

Oracle Business Components for Java (BC4J)

Oracle Application Server TopLink

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Application Server TopLink

Oracle JDeveloper named user licensing

This edition is the least expensive version of Oracle Application Server.

1.2.2 Oracle Application Server Standard Edition

In terms of functionality and pricing, Oracle Application Server Standard Edition is packaged to compete in the entry-
level category for application servers. The Standard Edition adds the following components to features previously noted
for the Java Edition:

Oracle Application Server Portal

Oracle Application Server Single Sign-On security

Oracle Application Server Content Management Software Development Kit (SDK)

A restricted-use Oracle Internet Directory is provided in the Standard Edition to enable OracleAS Single Sign-On.

1.2.3 Oracle Application Server Enterprise Edition

Oracle Application Server Enterprise Edition is aimed at larger-scale implementations that require additional features.
Enterprise Edition adds the following features to those available in the Java Edition and the Standard Edition:

OracleAS Forms Services and OracleAS Reports Services

OracleAS Discoverer

Oracle Internet Directory

Oracle Workflow

Oracle Application Server InterConnect and Oracle Application Server ProcessConnect

OracleAS Personalization

OracleAS Wireless

Before Oracle Application Server 10g, OracleAS Personalization and OracleAS Wireless, described next, were available
only as options.

OracleAS Personalization

This feature provides a means by which a web server can gather data on how a web-site visitor traverses the
site. This data is sent to an Oracle database where a taxonomy describing the business and business goals is
defined. Analysis of this data occurs periodically using data mining algorithms in the database, and
recommendations are created. These recommendations are populated in middle-tier "recommendation engines"
that can redirect web-site users to "personalized" web pages of material that are likely to interest them.

OracleAS Wireless

This feature provides an integrated set of capabilities enabling multichannel mobile access, including voice, to
applications. At the core of OracleAS Wireless is support of HTTP and XML. OracleAS Wireless enables the
building of portlets that can be displayed on wireless devices. It also provides mobile services such as personal
information management (PIM) and email, and location-based and two-way messaging services.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Oracle Application Server Components
Up to this point, we've introduced a lot of features available in different versions of Oracle Application Server without
providing much explanation of what they do. The following subsections group the main components of Oracle
Application Server into three basic categories—core components, application components, and additional components—
and describe briefly what these components do.

Remember that this chapter includes only summary descriptions of the components that
make up Oracle Application Server. Subsequent chapters will describe these components in
greater detail.

1.3.1 Core Components

The components that make up the core of Oracle Application Server are the Oracle HTTP Server, Oracle Application
Server Containers for J2EE, and OracleAS Web Cache.

1.3.1.1 Oracle HTTP Server

The Oracle HTTP Server, which is based on the Apache Web Server, provides the services needed to handle incoming
HTTP requests and can serve as a proxy server. Developers can program in languages such as Perl, C, C++, PL/SQL,
and Java, and can leverage libraries and frameworks such as BC4J, the XML Developer's Kit, Java Naming and Directory
Interface (JNDI), and JDBC. The Oracle HTTP Server supports Server Side Includes for adding content (such as header
or footer information) across all of a web site's pages. Servers can be clustered in high-availability configurations, and
Oracle HTTP Server also supports load balancing, which can couple high availability with scalability. Security support
includes OracleAS Single Sign-On and encryption with the Secure Sockets Layer (SSL).

Chapter 5 describes the Oracle HTTP Server in greater detail.

1.3.1.2 Oracle Application Server Containers for J2EE

Oracle Application Server Containers for J2EE (OC4J) is a set of J2EE-certified containers executed using any standard
Java Virtual Machine (JVM). OC4J provides a JSP translator, a servlet engine, and an EJB container. It also provides
other J2EE services to the containers, such as JNDI, JDBC, Java Message Service (JMS), Java Authentication and
Authorization Service (JAAS), and Java Transaction API (JTA). OC4J supports clustering, load balancing, and application
state replication for web and EJB applications, thus enabling highly available and scalable configurations. OC4J can use
Java Object Cache in the OC4J containers.

Chapter 6 describes OC4J in greater detail.

1.3.1.3 OracleAS Web Cache

OracleAS Web Cache is a memory cache that speeds the delivery of content to requesters. OracleAS Web Cache can
store both static and dynamic pages, as well as parts of pages that are marked with Edge Side Include (ESI) tags. This
cache also provides other types of functionality, such as balancing request loads between multiple instances of the
Oracle HTTP Server and monitoring the speed at which content is returned to users.

Chapter 7 describes OracleAS Web Cache, as well as the other Oracle Application Server caches (Java Object Cache and
Web Object Cache), in greater detail.

1.3.2 Application Components

The components of Oracle Application Server described in the following subsections provide capabilities that can create
and deploy applications.

1.3.2.1 Web Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3.2.1 Web Services

Web Services are extensively supported in Oracle Application Server. The product includes support for the following:

Java classes (either stateful or stateless) as remote procedure call (RPC) or document-style Web Services

Stateless EJBs as Web Services

 PL/SQL stored procedures as Web Services

JMS topics and queues as document-style Web Services

Clients can invoke these either dynamically or statically.

Other standards supported include publishing and query with UDDI and typed and untyped SOAP messages with SOAP
header access via an application programming interface (API). A dynamic WSDL tester allows you to create web-based
clients and simplify the testing of Web Services during development.

Chapter 11 describes Oracle Application Server Web Services in greater detail.

1.3.2.2 Oracle Application Server TopLink

OracleAS TopLink is an object-relational persistence tool used to store Java objects and EJBs in relational database
tables. The visual mapping interface allows developers to define how Java classes are mapped to database schema.
Thus, a Java developer using OracleAS TopLink doesn't need to write SQL calls. Using the visual mapping tool, the
developer can usually handle database schema changes without needing to recode the Java applications. The mapping
tool provides graphical views of relationships, queries, locking, caching, sequencing, and other areas of interest that
enable performance tuning.

Chapter 8 describes OracleAS TopLink in greater detail.

1.3.2.3 Oracle JDeveloper

Oracle JDeveloper is a part of Oracle Developer Suite, rather than of Oracle Application Server itself, but it can create
the Java applications that are deployed on an Oracle Application Server platform. Oracle JDeveloper was introduced by
Oracle in 1998 to enable the development of basic Java applications without the need to write large amounts of code. At
the core of Oracle JDeveloper is an advanced application development framework. Oracle JDeveloper provides
numerous wizards that create Java and J2EE objects and project types. Some wizards in Oracle JDeveloper include:

A Data Form wizard

A Beans wizard for creating Java Beans and BeanInfo classes

A Deployment wizard providing "one-click" deployment of J2EE applications to OC4J

Database development features include various Oracle drivers, a Connection Editor to hide the complexity of using the
JDBC API to establish connections, database components to bind visual controls, and a SQLJ precompiler for embedding
SQL in Java code (which you can then use with the Oracle database).

Oracle Application Server comes with a limited-use license for Oracle JDeveloper. The development tool is packaged in
the Oracle Developer Suite.

Chapter 8 describes Oracle JDeveloper in greater detail.

1.3.2.4 OracleAS Forms Services

Oracle Application Server Forms Services provide data handling, navigation, database access, and database validation
for Oracle Forms applications. These services allow Oracle Forms to run in an N-tier web environment.

Forms deployed to Oracle Application Server are developed using the Oracle Forms Developer, an interactive
development tool that is part of the Oracle Developer Suite. Oracle Developer allows you to define applications by
defining values for properties, rather than by writing procedural code. Oracle Developer supports a variety of clients,
including traditional client-server PCs and Java-based clients. The Forms Builder includes a built-in JVM for previewing
web applications.

Chapter 9 describes Oracle Application Server Forms Services in greater detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3.2.5 OracleAS Reports Services

Oracle Application Server Reports Services enable the rapid deployment and publishing of web-based reports. Reports
can also leverage the Oracle Application Server Single Sign-On capabilities and can be embedded as portlets in
OracleAS Portal.

Reports are created using the Oracle Reports Developer, a part of the Oracle Developer Suite. Data can be formatted in
tables, matrixes, group reports, graphs, and combinations. You can achieve high-quality presentation using Cascading
Style Sheets (CSS), an HTML extension. Using OracleAS Reports Services, XML-based reports can be exchanged via
HTTP, and paper-based layouts can be deployed over the Internet using PDF format.

Chapter 9 describes Oracle Application Server Reports Services in greater detail, and Chapter 12 describes Reports
deployed for business intelligence.

1.3.3 Additional Components

The components described in the following subsections provide extended functionality that is an important part of
Oracle Application Server. These components relate to specific areas of IT, such as business intelligence and
integration, or provide capabilities that can be used by developers, such as OracleAS Portal or the Oracle Internet
Directory.

1.3.3.1 OracleAS Portal

OracleAS Portal, packaged with Oracle Application Server, provides an HTML-based tool for developing web-enabled
application interfaces and content-driven web sites. Portal applications can be developed using wizards in a WYSIWYG
portal development environment. Using this environment, you can create and deploy static and dynamic portal content.
Users can be granted access to the environment to create their own customization. For example, you can grant an
OracleAS Portal user permission to choose which content areas and links appear in his portal pages.

Java or PL/SQL developers may wish to leverage the functionality of OracleAS Portal without having to use the Portal
Development environment. For such power developers, Oracle also provides a Java and PL/SQL Portal Development Kit
for custom portlet development or application integration.

Portals are deployed as an integrated service in Oracle Application Server and can use directory services, the OracleAS
Web Cache, J2EE services, and business intelligence services provided by OracleAS Reports Services and OracleAS
Discoverer.

The support of portlets enables a single web page to be divided into different areas that
can independently display information and interact with the user.

Chapter 13 describes OracleAS Portal in greater detail.

1.3.3.2 OracleAS Discoverer

OracleAS Discoverer is a business intelligence tool used for ad hoc queries and user-generated reports. OracleAS
Discoverer also provides an interface to relational online analytical processing (ROLAP) by leveraging analytic features
present in the Oracle database and as of 2004, also provides an interface to the Oracle OLAP Option. Included in Oracle
Application Server are:

Discoverer Plus

A Java-based browser client that can be used to generate ad hoc queries, reports, and graphs

Discoverer Viewer

An HTML-based browser client that can execute reports or graphs created in Discoverer Plus or the Desktop
version of Discoverer

Discoverer Portlet Provider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A package used for lists of workbooks and worksheets

OracleAS Discoverer can leverage the Oracle Application Server Single Sign-On capabilities and can also export
workbooks to Oracle Reports Developer for deployment in OracleAS Reports Services.

OracleAS Discoverer has an End User Layer (EUL) that is metadata-driven, enabling business definitions to hide and
map to underlying technical descriptions. The EUL is set up and maintained via Oracle Discoverer Administration Edition,
a part of the Oracle Developer Suite. Wizards guide the administrator through the process of building the EUL. In
addition to managing the EUL, administrators can put limits on resources available to analysts monitored by the
OracleAS Discoverer query governor.

Chapter 12 describes OracleAS Discoverer in greater detail.

1.3.3.3 Oracle Internet Directory

The Oracle Internet Directory provides users a means of connecting to an Oracle server without requiring a client-side
configuration file. The Oracle Internet Directory is a Lightweight Directory Access Protocol (LDAP) directory that
supports the Single Sign-On capability of Oracle Application Server.

Chapter 2 and Chapter 4 describe the Oracle Internet Directory in greater detail.

1.3.3.4 Oracle Workflow

Oracle Workflow provides a graphical workflow builder that facilitates the modeling of business processes. A rules-based
engine and business event system is stored in an Oracle database. Messages can be transmitted via Advanced Queuing
(AQ), Oracle Net, HTTP, or HTTP using SSL (HTTPS). Oracle Workflow provides key capabilities needed to deploy Oracle
Application Server InterConnect, described in the next section.

Chapter 15 describes Oracle Workflow in greater detail.

1.3.3.5 Oracle Application Server InterConnect

Oracle Application Server InterConnect provides a heterogeneous application integration platform through logic and
services. Deployed in a "hub-and-spoke" manner, Oracle Application Server leverages Oracle Workflow and Oracle AQ
to provide a message broker infrastructure. AQ enables asynchronous messages between Oracle databases with
adapters available to extend support to other message types and applications. Content-based publish-and-subscribe
solutions can be deployed using a rules engine to determine relevant subscribing applications. As new content is
published to a subscriber list, the rules on the list determine which subscribers should receive the content, thus
efficiently serving the needs of different subscriber communities.

OracleAS InterConnect includes a design-time Integrated Development Environment (IDE), adapters, a metadata
repository, a management infrastructure (used with Oracle Enterprise Manager), and SDKs (for writing custom
adapters, transformations, and IDE extensions). Adapters are available for HTTP, HTTPS, AQ, Oracle database, FTP,
MQSeries, CICS, SAP, PeopleSoft, Siebel, JDEdwards, and CICS.

Chapter 15 describes OracleAS InterConnect in greater detail.

1.3.3.6 Oracle Application Server ProcessConnect

Oracle Application Server ProcessConnect is new to Oracle Application Server 10g. Using wizards to create a hub-and-
spoke deployment model, it's designed to make business process integration feasible. OracleAS ProcessConnect
includes a modeling tool, a metadata repository, and adapters. These adapters are based on the JCA specification and
enable connections to technology (such as Web Services), packaged applications (e.g., JD Edwards, PeopleSoft, SAP,
and Siebel), and legacy systems.

Chapter 15 describes OracleAS ProcessConnect in greater detail.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Managing Oracle Application Servers
Oracle Application Server includes many features designed to ease the burden of management. One of the focuses of
Oracle Application Server 10g is to automate many of the management tasks needed for large-scale grid computing
deployment. Management capabilities provided in Oracle Application Server include the following:

Software provisioning (installation, configuration, cloning, patching, upgrades)

User provisioning (including security and identity management)

Application management and monitoring

Workload management (including dynamic resource allocation and failover notification)

Systems management and monitoring

Chapter 3 describes each management topic in greater detail.

1.4.1 Oracle Enterprise Manager

Oracle Enterprise Manager, a management tool and framework, is a part of every version of Oracle Application Server
and the Oracle database. This product has evolved from a Windows-based database management solution and a
browser-based tool built on Java to the current HTML-based version. The Oracle Application Server 10g Grid Control
web-based tool can manage multiple Oracle Application Servers and databases and provide access to each Application
Server Control tool (installed with each Oracle Application Server). Oracle Enterprise Manager 10g can manage other
Oracle software as well, including Oracle Collaboration Suite and E-Business Suite.

At the time of this writing, most of the functionality in previous non-HTML versions of
Oracle Enterprise Manager now appears in the HTML version.

Multiple database and infrastructure administrators can access the Oracle Enterprise Manager repository at the same
time to manage multiple Oracle products.

The HTML-based Oracle Enterprise Manager console was first released with Oracle9iAS; that version provided important
new application performance management and configuration management features. The HTML version supported in that
release supplemented the earlier Java-based Oracle Enterprise Manager. Oracle Enterprise Manager 10g, released with
Oracle Database 10g, includes both Java and HTML versions.

The HTML-based version of Oracle Enterprise Manager is used specifically to manage Oracle Application Server. Oracle
Enterprise Manager can be deployed in several ways:

As a central console, monitoring multiple databases and application servers' leveraging agents (e.g., Grid
Control)

As a database "product console" (easily installed with each individual database)

Through remote access (also known as studio mode)

In this book, we'll focus on the HTML-based console that manages Oracle Application Server. The HTML-based console
includes advanced management capabilities for rapid installation, deployment across grids of computers, application
service level monitoring and management, provisioning, upgrades, and automated patching. For example, application
deployment of OC4J is managed via the Oracle Enterprise Manager HTML version.

Chapter 3 describes Oracle Enterprise Manager in greater detail.

1.4.2 EM2Go

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EM2Go is a mobile version of Oracle Enterprise Manager that provides a subset of the functionality available in Oracle
Enterprise Manager 10g. EM2Go is accessed through a Pocket PC browser on a PDA device. EM2Go monitors the
availability and performance of the various application servers managed by Oracle Application Server.

Chapter 3 describes EM2Go in greater detail.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 What's Next?
Most readers of technical books skip around in the text, checking out the chapters that seem most likely to help them
solve their particular needs at a particular point in time. However, because Oracle Application Server is such a rich and
varied suite of software, we encourage you to read this book sequentially. We want to be sure that you familiarize
yourself with the varied capabilities available in the product and described in this book.

In the past, we've encountered a number of Oracle Application Server customers who set out to evaluate new
technologies, not realizing that the product they own already provided the very technology solution they were seeking.
Usually, such customers had simply focused on only one of Oracle Application Server's many capabilities; for example,
those familiar with Oracle Application Server's Java capabilities may be less aware of its business intelligence
capabilities.

With this introduction to Oracle Application Server capabilities and packaging behind us, we'll move on:

Chapter 2, Chapter 3, and Chapter 4 cover basic information on Oracle Application Server architecture, systems
management, and security and identity management.

Chapter 5, Chapter 6, and Chapter 7 provide detailed information on core Oracle Application Server
components: Oracle HTTP Server, OC4J, and OracleAS Web Cache.

The remaining chapters cover the building and deployment of functional solutions, including Java, XML, other
Oracle development tools, Web Services, business intelligence tools, OracleAS Portal, mobile (OracleAS
Wireless) solutions, and integration capabilities.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introducing Oracle Application Server
Over the past decade or so, IT environments—particularly those supporting large amounts of data—have been moving
toward a different kind of overall architecture. In the past, most IT systems were deployed over two primary tiers: a
client, which ran the applications, and a server, which hosted the database and some other types of generalized logic
and services.

For a number of reasons—including scalability, availability, and security—a new tier has been introduced between the
client and the server. This middle tier hosts a variety of services that function as intermediaries between the client
machines (which act as user interfaces) and the data they use. These services include virtual machines that run
application logic, specialized server processes that deliver specific functionality (e.g., reporting or integrating
information into portals), and infrastructure services (e.g., handling web communications or caching information for
improved performance).

Oracle Application Server consists of a set of components that deliver all this functionality, and more. For example,
Oracle Application Server can:

Respond to HTTP requests

Run application code

Provide a security infrastructure

Supply some specific capabilities, such as business intelligence tools, mobile tools and applications, and a
messaging system

Offer improved performance and response time

Provide the high availability and scalability needed in an enterprise environment

This book is designed to give you a broad overview of the components that make up Oracle Application Server and how
they operate. The goal of the book is to provide you with a clear understanding of the concepts and capabilities of
Oracle Application Server, particularly those available in the latest release of the product, Oracle Application Server
10g. This latest release provides a wide range of functionality, and this book tries to explain what that functionality is,
rather than how to implement specific examples. This book isn't merely a description of components, however: it
attempts to give you a thorough grounding in the concepts and technology that make up Oracle Application Server 10g.
With this framework, you will be able to understand the full range of the product and more rapidly assimilate the details
of the product's implementation.

This first chapter sets the stage for the rest of the book. It provides an introduction to a range of topics, most of which
are described in greater detail later in the book. A few of the basics, however—for example, a brief history of the
evolution of "application servers" and Oracle's packaging—are described only in this chapter, so we encourage you to
read it carefully, even if you already have some familiarity with Oracle Application Server.

Before diving into the specific foundations of the product, we'll take a step back to provide some context. We'll discuss
why application servers were created and how they evolved, and then we'll move on to introduce the basic features and
configurations of Oracle Application Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 XML, DTDs, and XML Schemas
For an XML document to be used for information exchange, it must be parseable, and to be parseable, it must be well-
formed. A well-formed document, among other rules, must have an end tag for every start tag, and different start and
end tags may not be placed in such a matter as to cross each other's boundaries.

For instance, Example 10-1 is a well-formed XML document that contains information about a person named Jane Doe,
born on January 1, 1980.

Example 10-1. An example of a well-formed XML document

<?xml version="1.0"?>

<person>

 <name>

 <last_name>Doe</last_name>

 <first_name>Jane</first_name>

 </name>

 <birth_date>1980-01-01</birth_date>

 <gender>Female</gender>

</person>

If a document is to be shared with more than one computer program, or shared between organizations, it should also
be valid. A valid XML document is one that conforms to an agreed-upon format. An XML document is valid if it can be
validated against a Document Type Definition (DTD) or an XML Schema.

DTD is the first schema standard developed for formally describing an XML document's format. A DTD is narrative
document-centric, so while it provides a means to describe a document's structure, it doesn't include the ability to
specify datatypes.

To continue with the Jane Doe example, Example 10-2 shows a DTD that can validate the XML document in Example
10-1.

Example 10-2. An example of a Document Type Definition

<!ELEMENT person (name, birth_date, gender)>

<!ELEMENT name (last_name, first_name)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT birth_date (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

XML Schema, a more recent standard, is data document-centric. Not only does it define document structure, it also
supports user-defined datatypes and some object-oriented principles, such as inheritance. By validating an XML
document against its XML Schema, you can validate its structure as well as the datatypes of its content. This is ideal for
computer-to-computer data exchange.

Example 10-3 is an example of a possible XML Schema for the XML document in Example 10-1. If you compare this
XML Schema with the DTD in Example 10-2, you'll see the additional specification of the datatypes for each element.
Not only do XML Schemas add datatypes, but they also add complex constraints and namespace support, concepts that
we will address in the sections that follow.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-3. An example of an XML Schema

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="person">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="last_name"

 type="xsd:string" minOccurs="1"/>

 <xsd:element name="first_name"

 type="xsd:string" minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="birth_date"

 type="xsd:date"/>

 <xsd:element name="gender"

 type="xsd:string" minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

A DTD, an XML Schema, or both can be used to define an XML document's vocabulary. This vocabulary, which is a
formal specification, is called an XML application. This type of application is very different from our normal notion of an
application, such as a set of programs coded in a programming language such as Java or PL/SQL. This distinction also
brings to light the fact that XML itself isn't a programming language, a protocol, or a database management system.

Because of its capabilities and its promise as a universal data format, XML has suffered more than its fair share of hype.
While XML is ideal for storing information in a universal format, making it a perfect choice for information exchange, it
makes a poor database. Yes, it can be used as a database to store relatively small amounts of information in an
organized manner, but beyond that, information stored as XML is slow to retrieve and/or manipulate when compared to
information stored in an object-relational database such as Oracle.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 XML Standards
The World Wide Web Consortium, a group of individuals that participate in the establishment of web-related standards,
has created many XML-related standards, including XML 1.0, XML's first formal specification, and more recently, XML
Schema. Oracle Application Server provides support for these established XML standards both in the database via the
mod_plsql module and in the application server for web-based applications written in any of the following:

C or C++ that runs in mod_fastcgi

Java that runs in OC4J

Web Services

10.2.1 XML

XML Version 1.0 is XML's first formal specification (recommendation) from the W3C. It defines the syntax used to create
a well-formed XML document. In addition, it defines the structure of a DTD, a schema that, in turn, can validate one of
its XML document instances.

Oracle Application Server is XML 1.0-compliant, which means that the server's internal use of XML, along with the tools
and APIs it provides, all comply with the XML Version 1.0 recommendation from the W3C.

10.2.2 XML Namespaces

XML Namespaces exist to eliminate potentially ambiguous XML element (tag) names when XML applications are
combined to create a new XML application. An XML Namespace associates a URI with a namespace prefix. The prefix is
added to an element name in an XML document to maintain the element name's uniqueness within the document. This
qualification becomes necessary when element names from two different XML applications used in another XML
application use the same element name. Without the prefix, the elements with the same name collide; this creates
ambiguity that, in turn, causes confusion about the element's meaning. The associated namespace URI creates a
context for an otherwise ambiguous element.

The XML Namespace Version 1.0 recommendation isn't part of the XML 1.0 recommendation. It post-dates XML 1.0 and
isn't a dependent specification. XML Namespaces may be used if necessary, but they are by no means required for an
XML document to be compliant with the 1.0 recommendation.

Oracle Application Server supports the XML Namespace's 1.0 recommendation from the W3C.

10.2.3 XML Path Language

XML Path Language is a non-XML based language that identifies a particular part, or parts, of an XML document. XPath
treats an XML document and its content as a tree structure, in much the same way operating systems treat file
systems. By doing so, it allows you to write an expression that identifies a specific element, attribute, text, comment,
processing instruction, or namespace within an XML document. XPath expressions can also specify Boolean values,
numbers, or strings.

Oracle Application Server supports XPath Version 1.0.

10.2.4 Extensible Stylesheet Language Transformations

EXtensible Stylesheet Language for Transformations (XSLT) is an XML application that allows you to specify a set of
rules that transform an XML document into another document format. Although typically used for XML-to-XML
document transformation, XSLT can be used to create a text document of any kind.

An XSLT stylesheet is an XML document that contains rules for transformation. The rules in an XSL stylesheet use XPath
notation to identify the targets of rules. Using an XSL stylesheet, an XSLT processor transforms an input XML document
to another format using the rules specified in a stylesheet.

Oracle Application Server supports XSLT Version 1.0.

10.2.5 XML Schemas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An XML Schema is an XML document that describes the composition of a valid XML document in much greater detail
than is possible using a DTD. An XML Schema adds the concepts of datatypes (both simple and complex), datatype
inheritance, and element and attribute constraints to the structural capabilities of a DTD. However, XML Schemas
improve on DTDs at the expense of additional complexity.

Oracle Application Server provides support for parts 0-2 of the W3C's XML Schema recommendation from May 2, 2001.

10.2.6 XML Parsers

XML parsers can read an XML document from an operating system file or stream and present the XML document's
information as a tree structure in memory after the entire file is read, or in an event-based fashion as a document is
read. Each approach has its strengths and weaknesses:

Tree-structured approach, or document model

This approach makes it feasible to query any part of an XML document at any time. It also allows you to modify
an XML document, but it can require a great deal of memory.

Event-based model

This approach conserves memory consumption, but it can process a document only as it is read.

Because of the opposing constraints, two types of XML parsers exist: Document Object Model (DOM) parsers and
Simple API for XML (SAX) parsers.

10.2.6.1 Document Object Model

The Document Object Model (DOM) is a specification for reading and modifying (and saving) an XML document as a tree
structure. The elements that make up a particular XML document create a hierarchical structure that can be
represented as a tree with the first element of an XML document as the root. In many ways, this tree structure, shown
in Figure 10-1, is similar to the one presented by most modern operating systems' file systems.

Figure 10-1. A tree of DOM nodes for Example 10-1

At its core, DOM is a set of APIs that represent an XML document as a set of object nodes, as in Figure 10-1. A node
type exists for each kind of XML structural and content syntax. DOM's strength is that it allows random access to any
part of an XML document.

Oracle Application Server supports DOM Version 2.0. It provides DOM APIs for C, C++, Java, and PL/SQL.

10.2.6.2 Simple API for XML

The Simple API for XML (SAX) is a specification for reading an XML document that reports each XML artifact—for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Simple API for XML (SAX) is a specification for reading an XML document that reports each XML artifact—for
example, an element or an attribute—as an event as a document is read. The events are reported by calling the
callback functions of a programmatically registered document handler. SAX's strength is its low memory consumption.

Example 10-4 lists the callback events generated when parsing the XML document from Example 10-1. The events in
this list are named using their corresponding function names in the Java interface org.sax.xml.ContentHandler. Any values
passed to the callback functions are shown after the function names.

Example 10-4. A list of SAX events for Example 10-1

setDocumentLocator

startDocument

startElement: localName=person, qualifiedName=person

ignorableWhitespace:

startElement: localName=name, qualifiedName=name

ignorableWhitespace:

startElement: localName=last_name, qualifiedName=last_name

characters: Doe

ignorableWhitespace:

startElement: localName=first_name, qualifiedName=first_name

characters: Jane

ignorableWhitespace:

ignorableWhitespace:

startElement: localName=birth_date, qualifiedName=birth_date

characters: 1980-01-01

ignorableWhitespace:

startElement: localName=gender, qualifiedName=gender

characters: Female

ignorableWhitespace:

endDocument

Oracle Application Server supports SAX Version 2.0. It provides SAX APIs for languages that support callback functions:
C, C++, and Java.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 XML Developer Kits
Oracle provides XML Developer Kits (XDKs) that can develop web applications that leverage XML in four programming
languages:

XDK for Java

XDK for C

XDK for C++

XDK for PL/SQL

These XDKs are used in the Oracle Application Server Containers for J2EE (OC4J) for Java-based web applications, while
mod_fastcgi is used for C and C++, and mod_plsql is used for PL/SQL.

Along with the XDK APIs and command-line utilities that execute these APIs, Oracle Application Server provides several
XML tools, including:

XML Class Generator

 XML SQL Utility for performing database queries that produce XML, and also insert XML into an Oracle database

 XSQL Pages that produce web content using XML similar to JSPs

A substantial amount of additional XML functionality is available when you use an Oracle database. However, because
that functionality is available only with an Oracle database, it isn't covered here.

Table 10-1 lists the various features supported by the four XDKs. Of the four, the XDK for Java is the most feature-rich.

Table 10-1. XML Developer Kits and features
Feature Java C C++ PL/SQL

XML 1.0

XML Namespaces 1.0
XML Path Language 1.0

XML Schemas Part 0-2
XML Parser: DOM 1.0

XML Parser: DOM 2.0 Core

XML Parser: DOM 2.0 Traversal

XML Parser: SAX 1.0

XML Parser: SAX 2.0 ~[1] ~[1]
XML Parser: nonvalidating mode

XML Parser: validation against DTD

XML Parser: validation against Schema
XSLT 1.0

XML Class Generator

XML Transviewer Beans

[1] Partial implementation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] Partial implementation

10.3.1 XML Parsers

The Oracle XML parsers are composed of two components:

XML Parser

Supports XML 1.0, including XML Namespaces, XPath, XSLT, DOM, and SAX with validation against a DTD

XML Schema Processor

Adds the ability to handle XML Schema documents to the XML Parser; it also enables the parser to validate an
XML document against an XML Schema

10.3.2 XML Class Generators

The two available XML class generators, for Java and C++, create source code in the form of class files, from a DTD.
The XML class generator for Java can also create class files from an XML Schema. Generated class files can then be
used programmatically to construct XML documents in your web applications.

Manually coding a class file (in Java or C++) that represents an XML document can be both tedious and fraught with
opportunities for creating errors. Using an XML class file generator removes the burden of coding such classes from a
programmer while, at the same time, eliminating possible coding errors.

10.3.3 XML Transviewer Beans

The XML Transviewer Beans are a set of JavaBeans that are part of the XDK for Java. These Beans are components for
viewing and transforming XML documents with Java. The XML Transviewer Beans are:

DOMBuilder Bean

A nonvisual JavaBean wrapped around the XML Parser for Java's DOMParser class that allows you to build one or
more DOM trees asynchronously and provides all the functionality of the DOMParser class with a JavaBean
interface

XSLTransformer Bean

A nonvisual JavaBean wrapped around the XML Parser for Java's XSLT engine that allows you to perform one or
more XSL transformations asynchronously and provides all the functionality of the XSLT engine with a JavaBean
interface

DBAccessBean

A nonvisual JavaBean that creates CLOB tables in a database and then use retrieves or stores XML documents
in one of its CLOB tables

These components may be used server-side in web-based application development.

10.3.4 XML SQL Utility

The XML SQL Utility (XSU), a proprietary Oracle tool that can be used in any application server, allows you to perform a
query against a database that is output as well-formed XML. XSU also supports extracting data from any well-formed
XML document, then using that data to perform a SQL DML statement such as an INSERT, UPDATE, or DELETE. In
addition, using XSU, you can create DTDs from a SQL query and perform XSL transformations.

XSU APIs exist for Java and PL/SQL. A command-line utility, OracleXML, also exists. XSU can be used in any middle-tier
web server that supports Java servlets because it is a set of Java classes.

10.3.4.1 SQL to XML

The XSU can create a well-formed XML document from a SQL SELECT statement. It outputs the XML document as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XSU can create a well-formed XML document from a SQL SELECT statement. It outputs the XML document as a
Java String as a DOM tree in the form of a Java class XMLDocument or as SAX events. When creating an XML document,
XSU outputs the columns of a SQL statement as XML elements that use the names or alias names of the columns in the
order in which they appear in the SQL statement. Column elements are then enclosed in a <ROW> element, so a
<ROW> element exists for each row from a query's result set. All <ROW> elements are, in turn, enclosed by a
<ROWSET> element for the SELECT statement. An XML processing instruction is placed at the beginning of the XML
document to identify the document as an XML document. This format of wrapping database result set rows with <ROW>
and <ROWSET> tags is called by Oracle a canonical format.

For example, by specifying the query:

select last_name, first_name

from person

order by last_name, first_name;

XSU would create a document in canonical format similar to the following:

<?xml version='1.0'?>

<ROWSET>

 <ROW num="1">

 <LAST_NAME>Bales</LAST_NAME>

 <FIRST_NAME>Don</FIRST_NAME>

 </ROW>

 <ROW num="2">

 <LAST_NAME>Greenwald</LAST_NAME>

 <FIRST_NAME>Rick</FIRST_NAME>

 </ROW>

 <ROW num="3">

 <LAST_NAME>Stackowiak</LAST_NAME>

 <FIRST_NAME>Bob</FIRST_NAME>

 </ROW>

</ROWSET>

If a query is executed against an object table, the result set may consist of a complex datatype structure—a nested
table or array. A complex datatype is represented by elements for each column in the user-defined datatype, which are,
in turn, enclosed by an element whose name is derived from the name of the user-defined datatype.

A nested table or array is represented by elements for each column in the collection, enclosed by an element whose
name is derived by the name of the collection with _ITEM appended to it, with all item elements then enclosed by an
element whose name is derived using the name of the collection.

Generated XML can be customized in any of three ways:

By manipulating the source SQL statement

By customizing default mappings

Possibly by postprocessing the created XML document using XSLT

Of the three techniques, the first is the most performant, while the last is the least performant.

Here are some example techniques for manipulating the source SQL statement:

Using alias names on columns to get the desired element names

Using the at sign (@) in a column alias to make the column an element attribute instead of an element value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the at sign (@) in a column alias to make the column an element attribute instead of an element value

Using subqueries or the SQL statements CAST/MULTISET to produce nested results

Using views or object-relational views with user-defined datatypes against relational tables to create new
column names, complex datatypes, or embedded collections

XSU mapping customizations allow you to:

Specify that NULL values should be indicated with a null attribute instead of omitting an element

Specify the format for dates

Specify the case used for element names

Specify that collection elements should contain a cardinality attribute

Change the name of the ROW element or omit it altogether

Change the name of the ROW element's attribute num or omit it altogether

Change the name of the ROWSET element or omit it altogether

You can also register an XSL stylesheet with XSU. The registered stylesheet is then used by XSU to automatically post-
transform the XML document generated with the SQL statement.

10.3.4.2 XML to SQL

The XSU can also be used to apply a SQL INSERT, UPDATE, or DELETE statement against a database based on an XML
document in the canonical format defined earlier. If an XML document isn't in the desired or canonical format, any of
three techniques can be applied to make it compatible:

By manipulating the SQL target

By customizing default mappings

Possibly by preprocessing the XML document using XSLT

In many ways, these are the inverse of the SQL to XML customizations.

You can manipulate the SQL target by creating a view or object-relational view against a table or set of tables to make
the format of the XML input document match the database. You can create INSTEAD-OF triggers to distribute required
SQL statements to the appropriate members of a multitable or multiobject view.

In this direction, XSU mapping customizations allow you to:

Use case-insensitive matching for mapping element names to SQL column names

Map an alternative element name to the canonical element ROW

Specify the format for dates

Just as with the SQL-to-XML generation, an XSL stylesheet can be registered with XSU that, in turn, is used by XSU to
automatically pretransform the input XML document.

10.3.4.3 Inserting

To insert data into a database using an XML document, XSU does the following:

1. Retrieves the target table's metadata from the database. XSU uses the metadata to create an appropriate SQL
INSERT statement.

2. If an XSL stylesheet is registered, transforms the XML document.

3. Extracts data by matching element names in the possibly transformed XML document to column names in the
SQL INSERT statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Executes the INSERT statement.

By default, XSU tries to map values for all columns in the target SQL object (table, view, object-relational view, etc.).
The Java and PL/SQL APIs allow you to specify the column names you want used in the INSERT statement.

10.3.4.4 Updating

To update a database using an XML document, you must first use the Java or PL/SQL API to set a list of (primary) key
columns. Then XSU follows a process that is similar to inserting data, this time creating an appropriate SQL UPDATE
statement. The columns to be updated can also be constrained by specifying the desired column names using the API.

10.3.4.5 Deleting

Deleting from a database using an XML document is similar to updating. Just as with an UPDATE statement, you must
first specify the (primary) key column names using the API. XSU then follows the same process it does for inserting and
updating.

10.3.4.6 Committing

XSU normally batches updates. If auto-commit is turned on in the JDBC driver supplying the database connection for
XSU, and if the batch execution is successful, a batch is committed. If auto-commit is turned off, you must manually
commit, or all SQL statement operations will have to wait to be committed when the JDBC connection is closed.

10.3.4.7 PL/SQL

The PL/SQL API for XSU is a wrapper around the Java API, so almost all the Java API functionality, as well as how it is
employed programmatically, is the same for both APIs. XSU can be accessed in Oracle Application Server
programmatically using the Java API in OC4J, using the PL/SQL API used by stored procedures executed through
mod_plsql, or using XSQL Pages, described in the next section.

10.3.5 XSQL Pages

XSQL Pages simplify access to the XSU in a web server. XSQL Pages is a framework built on top of XSU that processes
XSQL Pages document tags to create dynamic content in the form of XML. The process is similar to the way in which a
JSP translator processes JavaServer Pages.

XSQL Pages documents are valid XML documents with a vocabulary that allows you to select, insert, update, and delete
against a database using embedded SQL. XSQL tags also provide additional capabilities such as executing stored
procedures, including other XML documents, and XSQL Pages.

XSQL Pages documents, by default, end with a .xsql suffix. When these documents are requested from Oracle
Application Server, they are automatically processed by the XSQL servlet residing in the OC4J. The XSQL servlet
processes the XSQL tags, creating an XML document. If an XSLT processing instruction is found, XSQL uses it to
transform the XML document into another format. The resulting XML document is then sent to the requestor. An XSQL
Pages file can also be processed using the XSQL Command Line Utility or programmatically using the Java class
XSQLRequest.

10.3.5.1 Configuration

The XSQL Pages configuration is maintained in an XML document named XSQLConfig.xml. XSQLConfig.xml contains
information such as database connections, database tuning parameters, stylesheet cache parameters, and so on.

10.3.5.2 SQL to XML

An XML Pages document can use five action tags to produce an XML document:

<xsql:query>

This tag embeds a SQL SELECT statement. When the SELECT statement is executed, it produces canonical XML
content that incorporates the rows and columns of the SELECT statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsql:dml>

This tag executes any other kind of SQL statement: DML or DDL.

<xsql:ref-cursor-function>

This tag allows you to use a PL/SQL reference cursor returned from a stored procedure to produce XML just as
with the use of a SELECT statement described earlier.

<xsql:include-owa>

This tag allows you to call a stored procedure that, in turn, uses the Oracle PL/SQL Web Toolkit functions in
packages HTF and HTP to produce XML.

<xsql:include-xsql>

This tag allows you to include another XSQL Pages document in your current XSQL Page.

The first four action tags require a connection to a database. A database connection for these tags is specified with an
attribute called connection. The value of the connection attribute corresponds to an alias for a database connection
configured in XML document XSQLConfig.xml, as described earlier.

Parameters can be bound to embedded SQL statements or stored procedures with a bind-params attribute. Lexical
substitution parameters can also be employed. These start with an at sign (@).

Parameter values can come from any of the following:

An explicit XSQL Pages <xsql:include-param> declaration

An HTTP cookie

An HTTP session object

An HTTP request object

A default value attribute

If no parameter value is found, a NULL value is used for a bind variable, while an empty string is used for lexical
substitution parameters.

Default values can be specified for bind variables and lexical substitution parameters. A default value is specified
including an attribute with the same name as the bind variable or lexical substitution parameter in question. This
seemingly duplicate attribute's value specifies the desired default value. The database connection, bind-params, and
default value attributes can be placed within the tag that requires them, or within one of its enclosing parents' tags.

10.3.5.3 XML to SQL

XSQL Pages can take a valid XML document in the canonical format or any valid XML document, such as XHTML, and
transform it into the canonical format from an HTTP POST and use it to perform a SQL INSERT, UPDATE, or DELETE
statement against a database. The XSQL servlet can also transform HTTP POST parameters into a valid XML document,
transform the document into the canonical format using XSLT, and then use the canonically transformed XML document
to perform these SQL operations.

The SQL INSERT, UPDATE, and DELETE statements are accomplished using the <xsql:insert-request>, <xsql:update-
request>, and <xsql:delete-request> tags, respectively. In addition, a valid XML document sent as a request parameter in
an HTTP GET request can insert data into a database using the <xsql:insert-param> tag.

10.3.5.4 Custom XSQL action handlers

You can create a custom action handler for XSQL pages by creating a Java class file that implements the
oracle.xml.xsql.XSQLActionHandler interface. You then access the custom handler with the <xsql:action> tag, specifying the
fully qualified name of your XSQLActionHandler class in the attribute handler.

10.3.5.5 Integrating XSQL Pages with JSP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3.5.5 Integrating XSQL Pages with JSP

A JSP calls on the services of XSQL Pages using a <jsp:include> or <jsp:forward> tag. In these tags, a programmer calls
upon the XSQL Pages' XSQL servlet. In turn, the XSQL servlet either retrieves the requested data or applies the
requested DML statement against the database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 Oracle Application Server Components and XML
Several of the Oracle Application Server components use XML in various ways. Their use of XML ranges from simply
using XML documents (to save configuration data) to creating XML documents as output. The most notable use of XML
by Oracle Application Server components is found in OracleAS Portal and OracleAS Report Services. These two Oracle
Application Server components can use XML as a data source, and produce XML documents for output. This capability
makes it possible to use the XML SQL Utility or XSQL Pages to produce input for OracleAS Portal and OracleAS Reports
Services or use output from OracleAS Portal and OracleAS Reports Services to update a database with XML SQL Utility
or XSQL Pages, or both.

The OracleAS Wireless component, covered separately in Chapter 14, uses XSLT transformation bidirectionally to enable
alternative presentation layers for web-based applications to wireless devices such as handheld computers and cell
phones. Web Services, the topic of Chapter 11, employ XML to provide a computer-centric, rather than human-centric,
view of the Web. Web Services enable heterogeneous computer systems to exchange data over an intranet or the
Internet.

OracleAS Portal's Portal Developer Kit Integration Services (PDKIS) allows you to extract data from an external source
identified by a URL. If the URL points to a well-formed HTML document, the HTML document can be parsed and used for
content in a portlet. PDKIS can also transform an HTML document into an XHTML document. (As mentioned earlier,
XHTML is an XML version of HTML.) The XHTML document can then be further transformed using an XSL stylesheet to
create content for a portlet.

OracleAS Reports Services can use an XML document as a data source for a report. It can also output reports as XML
documents and perform XSL transformations on report output.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. XML Development
EXtensible Markup Language (XML) is a metamarkup language for text documents that allows you to store information
in a self-describing format. With XML, you organize information by surrounding it with user-defined, human-readable
tags, similar to those used in HTML, but not limited to the tag names used by HTML. Instead, tag names are chosen
that best describe the information they organize. XML organizes information hierarchically. In addition, the character
set used to encode an XML document is specified within the document. Combined, these features make XML a universal
format for information exchange.

This chapter starts with a brief introduction to XML. Next, it introduces the various relevant XML standards that exist
and examines the support Oracle Application Server provides for these standards. We cover the support in various
programming languages such as C, C++, Java, and PL/SQL. Then we include an overview of the XML tools that Oracle
Application Server provides for XML development. The chapter finishes up with a glimpse at how some of the Oracle
Application Server components employ the use of XML.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.1 Web Services Architecture
A well-documented architecture is central to interoperability. From a simplistic viewpoint, the Web Services architecture
consists of a client that sends a request in the form of an XML document—a message—over a network to a server that
hosts a Web Service. The hosted Web Service processes the request and returns the result as an XML document to the
client, as shown in Figure 11-1.

Figure 11-1. A Web Service client and service interaction

In many ways, especially when HTTP is used as the transport, this process is similar to a person using a web browser to
look at a dynamically generated HTML page, except that it is a computer requesting the result, not a human being. A
Web Service client can be a database stored procedure, a servlet or EJB in an application server, a Java client
application, or another Web Service, to name just a few possibilities.

From this simplistic explanation you may have noted that a Web Service requires:

A method call in the form of a function or procedure to act as the service

A standardized encoding to ensure that both the client and the service understand the format of the data

A standardized protocol for transporting the serialized data

But how do you know that a particular Web Service even exists? And if you do know that it exists, what are its
specifications? These requirements are addressed using a layered architecture, as shown in Figure 11-2 and described
in the sections that follow.

Figure 11-2. Web Services architecture stack

11.1.1 Service

For Web Services, the actual service provided can be written in any programming language that has a Web Services
implementation, or that can create valid XML documents and stream them to and from a network. Nowadays, that's just
about every commonly used programming language. For example, you can use a simple Java class with a function, as
in Example 11-1.

Example 11-1. A sample service method written in Java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-1. A sample service method written in Java

public class Stateless {

 public Stateless() {}

 public String sayHello(String param) {

 return "Hello " + param + "!";

 }

}

The method sayHello() returns a String in which the passed parameter is prefixed with the word Hello, and then
returned.

11.1.2 Encoding

For both the Web Service requester and provider to understand a conversation, they need to use an agreed-upon
vocabulary and syntax. This is where the XML becomes useful. Two popular encoding standards exist: XML-RPC and
SOAP. Example 11-2 shows a SOAP-encoded request to execute the sayHello() service method from Example 11-1.

Example 11-2. A sample sayHello() SOAP request

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:

xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/

XMLSchema">

<SOAP-ENV:Body>

<ns1:sayHello xmlns:ns1="urn:test-Stateless" SOAP-ENV:encodingStyle="http://schemas.

xmlsoap.org/soap/encoding/">

<param0 xsi:type="xsd:string">Don</param0>

</ns1:sayHello>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 11-3 shows the response to the SOAP request in Example 11-2. It may seem that a lot of XML is required just
to call a function, but this well-thought-out encoding scheme ensures that a Web Service can exchange any type of
data.

Example 11-3. A sample sayHello() SOAP response

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:

xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/

XMLSchema">

<SOAP-ENV:Body>

<ns1:sayHelloResponse xmlns:ns1="urn:test-Stateless" SOAP-ENV:encodingStyle="http://

schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:string">Hello Don!</return>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<return xsi:type="xsd:string">Hello Don!</return>

</ns1:sayHelloResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

11.1.3 Transport

A transport protocol is used to send a request across a network to the server and back again to the client program.
HyperText Transport Protocol is commonly used as the transport protocol for Web Services. However, it isn't a
requirement. Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and, more recently, Blocks Extensible
Exchange Protocol (BEEP) may also be used. Which protocol is used is simply a matter of the Web Service
implementation's capabilities.

11.1.4 Service Description

A service description is a document on how to access a Web Service. With XML-RPC, this usually consists of a well-
written specification in the form of a word processing document. For SOAP, the Web Services Description Language
(WSDL), an XML application (vocabulary) can describe SOAP-encoded Web Services in a standardized computer-
readable way. Both document types are typically available on the same server as the hosted Web Service. They identify
the names of the available services, the encoding used, the transport protocol, and the location of the service. Example
11-4 is a WSDL document for the service in Example 11-1.

Example 11-4. A sample WSDL document

<?xml version="1.0" encoding="UTF-8" ?>

<definitions name="Stateless" targetNamespace="http://test/Stateless.wsdl" xmlns="http://

schemas.xmlsoap.org/wsdl/" xmlns:tns="http://test/Stateless.wsdl" xmlns:xsd="http://www.

w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<documentation>WSDL for Service: Stateless, generated by Oracle WSDL toolkit (version: 1.

1)</documentation>

<types>

<schema targetNamespace="http://test/Stateless.xsd" xmlns:tns="http://test/Stateless.xsd"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xsd="http://www.w3.org/2001/XMLSchema" />

</types>

<message name="sayHelloInput">

<part name="param0" type="xsd:string" />

</message>

<message name="sayHelloOutput">

<part name="output" type="xsd:string" />

</message>

<portType name="StatelessPortType">

<operation name="sayHello">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<operation name="sayHello">

<input message="tns:sayHelloInput" />

<output message="tns:sayHelloOutput" />

</operation>

</portType>

<binding name="StatelessBinding" type="tns:StatelessPortType">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />

<operation name="sayHello">

<soap:operation soapAction="urn:test-Stateless/sayHello" />

<input>

<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:test-Stateless" />

</input>

<output>

<soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:test-Stateless" />

</output>

</operation>

</binding>

<service name="Stateless">

<port name="StatelessPort" binding="tns:StatelessBinding">

<soap:address location="http://www.myserver.com:7779/test/Stateless" />

</port>

</service>

</definitions>

11.1.5 Service Discovery

The top layer of the Web Services architecture is about discovering what Web Services are available. This functionality
is currently accomplished with Universal Description, Discovery, and Integration (UDDI). UDDI is a specification for a
network directory of available Web Services.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.2 Web Services Standards
The work of establishing basic standards for Web Services isn't complete. Specifications exist for discovery, description,
transport, and encoding. Some of these specifications have been submitted to the W3C to become standards
(recommendations).

11.2.1 Extensible Markup Language

Both encoding schemes, XML-RPC and SOAP, are XML 1.0 applications. XML-RPC is a fairly simple XML application, so it
uses only basic XML syntax. SOAP is a more complex application that makes extensive use of namespaces and XML
Schemas.

11.2.2 XML-RPC

XML-RPC is a Web Service specification that uses a small XML vocabulary to encode its request and result messages
and HTTP as the transport protocol. XML-RPC is a lightweight Web Service implementation that has limited datatype
support. Regardless, it is effective and has implementations for most programming languages and operating systems.

Oracle Application Server doesn't provide direct support for XML-RPC; however, that doesn't mean you can't use it with
Oracle Application Server. Because XML-RPC has implementations in C, C++, Perl, and Java, you can deploy any of
these implementations on Oracle Application Server.

You can find the specifications and a list of implementations for XML-RPC at http://www.xmlrpc.com.

11.2.3 SOAP

SOAP 1.1, originally called Simple Object Access Protocol when IBM and Microsoft, among others, submitted it to the
W3C in April of 2000, is now an acronym without a name. SOAP 1.2 was released as an official recommendation in June
of 2003. The working group decided that the name did not correctly describe the standard, so they dropped the name
but kept the acronym.

Oracle Application Server currently supports SOAP 1.1 with two implementations:

OracleAS SOAP

An enhanced version of the Apache organization's SOAP

OC4J Web Services

Oracle's own highly performant implementation, which supports JavaBeans, EJBs, database stored procedures,
and the JMS.

Of course, as with XML-RPC, you can also deploy on Oracle Application Server any third-party SOAP implementation, or
agent as the W3C calls it, that is written in C, C++, Perl, or Java.

You can find specifications for SOAP at http://www.w3.org/2002/ws/.

11.2.4 Web Services Description Language

Web Services Description Language, an XML application, describes a Web Service specification in a computer-readable
format. A WSDL document describes:

The service methods available

The datatypes used for requests and results for each service method

The transport protocol to be used

The location of a Web Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The location of a Web Service

The WSDL 1.1 specification submitted by IBM, Microsoft, and Oracle, among many others, to the W3C in March 2001,
has been in working draft status for a Version 2.0 since November 2003.

At the time this book is being written, Oracle Application Server tools currently support WSDL 1.1. Oracle Application
Server Web Services deployments expose a service's WSDL document at the service's endpoint.

You can find the specification for WSDL at http://www.w3.org/2002/ws/.

11.2.5 Universal Description, Discovery, and Integration

Universal Description, Discovery, and Integration is a specification for a network-accessible directory of available Web
Services. UDDI contains information about several entities in its XML Schema:

businessEntity

Contains information about organizations

businessService

Contains information about the Web Services these organizations provide

bindingTemplate

Contains information about the location of a Web Service

tModel

Contains information about where to find the Web Service's technical specifications

This information is usually found in the form of a WSDL document. The additional entity, publisherAssertion, defines
relations between two business entities. The relationship between these entities is outlined in Figure 11-3. As of this
writing, the UDDI specification has not been submitted to the W3C.

Figure 11-3. A UDDI data model

Oracle Application Server tools support UDDI 2.0. In addition, Oracle Application Server provides a UDDI directory that
can be used to publish Web Services on your corporate intranet or be synchronized with UDDI directories on the
Internet. The Oracle Application Server UDDI agent is managed through Application Server Control.

You can find the specification for UDDI at http://www.uddi.org/specification.html.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.3 Service Provider
As mentioned earlier, Oracle provides two implementations for Web Services on Oracle Application Server: OracleAS
SOAP and OC4J Web Services. Oracle's official stand on OracleAS SOAP, an enhanced version of the Apache
organization's Java-based SOAP implementation, is that it is in maintenance mode. In other words, Oracle will continue
to maintain OracleAS SOAP for the time being, but you are strongly encouraged to use OC4J Web Services instead. For
that reason, we cover only OC4J Web Services and its tools in the remainder of this chapter.

11.3.1 OC4J Web Services Agents

Web Services are implemented in OC4J by seven servlets for the following seven types of service objects:

A stateless Java class

Using an RPC-style XML message

A stateless Java class

Using a document-style XML message

A stateful Java class

Using an RPC-style XML message

A stateful Java class

Using a document-style XML message

A stateless session EJB

Using an RPC-style XML message

A stateless PL/SQL stored procedure

Using an RPC-style message

Java Message Service (JMS)

Using a document-style XML message

As demonstrated in Figure 11-4, an OC4J Web Services servlet is responsible for parsing an incoming request in the
form of an XML message, calling the appropriate service, encoding the result into an XML document, and then sending
the XML document back to the requester through the Oracle HTTP Server.

Figure 11-4. OC4J Web Service architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By creating seven different servlets for these seven different service types, Oracle has simplified the process of creating
a Web Service so that it consists only of programming the service method, configuring the service via an XML file, and
then generating a deployment Enterprise Application Archive file. The resultant EAR file is then deployed on Oracle
Application Server using Application Server Control. In addition, a different servlet for each service type makes the
servlet's code base smaller and more efficient, which leads to better performance.

11.3.1.1 RPC-style versus document-style

Two styles of Web Services calls are supported:

Remote procedure calls

As mentioned earlier, an RPC is a parameterized encoding in which the parameters for a service are encoded
with elements in the XML message sent to and received from the service.

Document (literal)

The document or literal style doesn't encode parameters. Instead, it sends an entire encapsulated XML
document as the message payload.

11.3.1.2 Stateless Java class services

Stateless Java class services, whether they are RPC- or document-style, are provided by a Java class that has one or
more public methods. Each public method is exposed as a service. An RPC-style service can use one of the many
default datatypes specified in the SOAP schema. In contrast, the document-style service must receive, return, or
receive and return an XML document passed as an instance of Java class org.w3c.dom.Element. OC4J maintains a cache of
instances of each stateless service for reuse to increase performance.

11.3.1.3 Stateful Java class services

Stateful Java class services, whether they are RPC- or document-style, are provided by a Java class that has one or
more public methods and maintains one or more instance variables. Instances of stateful services aren't cached by
OC4J. Instead, they are stored in the HTTP session object for each user's session.

11.3.1.4 Stateless session EJB services

Any stateless session EJB can be used as an RPC-style service. The public methods exposed by the EJB's remote
interface are accessible as services. As with stateless Java classes, instances of stateless session EJBs are cached by
OC4J for reuse.

11.3.1.5 Java Message Service services

Oracle Application Server Java Message Service and Oracle Advanced Queuing, as well as any desired third-party
messaging systems, are supported by OC4J Web Services. JMS Web Services expose JMS sends and receives as
services, for both queues and topics. A JMS Web Services client can act as producer or consumer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3.1.6 Stateless PL/SQL services

Any Oracle PL/SQL stored procedure that is part of a PL/SQL package can be used as an RPC-style service. Both PL/SQL
procedures and functions declared in a package's specification are exposed as services. These services are executed
through a dedicated servlet that uses a JDBC data source to access the host database.

11.3.2 Web Services Assembler

Oracle Application Server provides a command-line tool written in Java called WebServicesAssembler.jar that packages
services into a Web Services EAR file for deployment on Oracle Application Server. Using the Web Services Assembler,
Web Service development becomes a matter of doing the following:

Creating a JavaBean, EJB, or stored procedure to provide service methods

Editing the Web Services Assembler configuration file, adding directives required for the type and style of
service

Executing the Web Services Assembler to create a deployment EAR file

Deploying the EAR file using Application Server Control

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.4 Service Description
In addition to configuring your Web Service, you can also edit the Web Services Assembler configuration file to specify
whether a WSDL file is automatically generated as part of the packing process or if the Web Services Assembler is to
include a WDSL file you already created during the creation of the EAR file. You can also direct it to create Web Service
proxy JAR files.

A Web Service proxy is a class generated by the Web Services Assembler that is a complete client-side SOAP
implementation for the specified Web Service. With the proxy, you can create a working client by simply instantiating a
copy of the proxy and then calling a proxy method with the same name and the same parameters as the target service.

Both the generated WSDL and the proxy JAR files are available at a Web Service's endpoint. Figure 11-5 is an example
of a Web Service's endpoint for the service method in Example 11-1. The WSDL file is available at the Service
Description link. You can test an RPC-style Web Service by following its service method link. In this case, the link is
sayHello. In addition, two proxy JAR files are made available, one containing the Java source for the proxy and the
second containing the compiled class files.

Figure 11-5. OC4J Web Service endpoint

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.5 Service Discovery
Oracle Application Server provides a UDDI directory you can use to publish your Web Services on your corporate
intranet. Appropriately, the UDDI directory is maintained using its own set of Web Services. Additions, updates,
deletions, and queries all take place using SOAP over HTTP.

Oracle provides a Java API for the UDDI SOAP-based Web Services as a convenience for Java programmers. However,
any programming language that can access a Web Service using SOAP can interact with the directory.

11.5.1 Publishing a Web Service

Web Services can be published to the UDDI directory with a user-written program that uses the Java API and the UDDI
publish web service, or during the last step of the EAR file deployment in Application Server Control. If an EAR file
contains references to one of the Web Services servlets, Application Server Control displays an additional set of screens
where you can publish Web Services during the deployment of an EAR file.

11.5.2 Looking Up a Web Service

Consumers can look up available Web Services using a user-written program that uses the Java API and the UDDI
inquiry Web Service. The inquiry Web Service allows you to programmatically perform a query against the UDDI
directory as one of the following:

A White Pages search

Using an organization's name, contact's name, address, etc.

A Yellow Pages search

Using standardized classifications such as NAICS, ISO-3166, and UNSPSC

A Green Pages search

Using technical information about a service

Oracle Application Server also provides a Java Client library that allows you to easily build your own directory search
engine.

11.5.3 Updating a Web Service

A published Web Services entry in the UDDI directory can be updated with a user-written program that uses the Java
API or with the UDDI Registry in Application Server Control. Using the UDDI Registry, you search for an existing service
in the directory by one of the categorization taxonomies deployed with the registry. Once you find an entry, you can
update any of its fields. You can also add a service to additional organizational categories.

Figure 11-6 is an example of the UDDI Registry update screen available through Application Server Control. This figure
shows the update screen for a published service from Example 11-1.

Figure 11-6. Oracle UDDI Registry page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5.4 Directory Management

The UDDI Registry itself is managed with the uddiadmin.jar Java command-line tool; it allows you to manage properties
for the directory. Here are some examples:

Add and delete directory users

Specify quotas

Modify properties about the registry's own directory entry

Import entities

Configure and enable replication

In addition, the UDDI Registry supports deployment on Microsoft SQL Server, IBM DB2, and noninfrastructure-related
Oracle databases.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

11.6 Service Requester
Oracle Application Server makes creating a Web Services requester, or client program, extremely easy. As mentioned
earlier, OC4J Web Services provide a Web Services home page for each deployed Web Service as shown in Figure 11-5.
On this home page are links to a WSDL file, and Web Services proxy files generated by the Web Services Assembler
program. The Web Services Assembler tool can even generate a Web Service proxy for Web Services not published on
Oracle Application Server. In addition to supporting service calls, a proxy generated by the Web Services Assembler
also supports SOAP headers.

Oracle Application Server defines two types of clients that can execute a Web Service: a static client and a dynamic
client. These clients are described in the next sections.

11.6.1 Static Client

A static client , in Oracle's terminology, is one that is created with all the information necessary to execute a Web
Service. To access an OC4J Web Service as a static client, all you need is to create a Java program that makes a copy
of the proxy object for the service and then use the proxy to call a method by the same name and with the same
parameters as the service.

11.6.2 Dynamic Client

A dynamic client is one that looks up an available Web Service and executes it at runtime. In this case, the client
doesn't know the location of the Web Service or may not even know the name of the Web Service until the time that it
looks up available Web Services in a UDDI directory. Once it locates a service (either because it's the first service found
or because it uses some other type of determination to choose one of multiple services), the dynamic client looks up its
specification via a link to a WSDL file and then uses the specifications in the WSDL file to invoke the desired Web
Service.

Oracle Application Server provides two Java packages, oracle.j2ee.ws.client and oracle.j2ee.ws.client.wsdl, that work in
concert to dynamically invoke a Web Service given the location of a WSDL file. If you combine these with the use of the
UDDI API, you can indeed dynamically identify and execute a Web Service at runtime.

11.6.3 Web Services Security

Oracle Application Server supports authentication and authorization for Web Services using the same mechanisms as
for other Oracle Application Server applications. Authentication is enabled using JAAS as implemented in OC4J. Web
Services can ensure data privacy and integrity by using SSL.

Chapter 4 describes overall Oracle Application Server security.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11. Web Services
Web Services are functions or procedures that are accessible to other computer programs over a network, using a
standard transport protocol and encoding. Typically, the transport protocol used is HTTP, the encoding is XML-RPC or
SOAP, and the messages communicated between programs are exchanged as XML documents.

Web Services are all about interoperability. By encapsulating programming language-specific function or procedure call
syntax into a standardized XML document syntax, Web Services allow any program deployed on any operating system
to utilize a candidate function or procedure exposed as a Web Service.

Exposing program functions or procedures to be called remotely isn't a new idea. Database stored procedures and EJBs
are two longstanding examples of remote procedure calls. What's new with Web Services is the level of interoperability
built into them.

To call a database stored procedure, you must use a proprietary or standardized API such as JDBC. However, such APIs
allow your program to call only functions or procedures that exist in a target database. These APIs also require a
proprietary network protocol. Corporate firewalls typically don't allow proprietary protocols to pass through them, so
their use can limit the level of interoperability.

To call an EJB, you can either use the EJB API or CORBA, but this solution allows only an Enterprise Java program, or a
program written with a programming language that uses a CORBA API, to use the target EJB. Once again, a network
protocol, RMI, is used that may not be supported by a corporate firewall.

In contrast, Web Services allow any programming language on any operating system in which a Web Services client
implementation exists to call a target Web Service. In addition, the use of HTTP as a transport protocol, which is
generally supported by all firewalls, allows easy access to Web Services.

Of course, this highly interoperable, lowest-common-denominator approach comes with a price: slower performance.
Web Services as remote procedure calls are significantly slower than database stored procedures or EJBs. This is
understandable because extra steps are involved:

Encoding a remote procedure call into the XML document on the client-side

Parsing the XML document to call the desired function on the server-side

Encoding the result into an XML document on the server-side

Parsing the XML document to retrieve the desired result on the client-side

Regardless, Web Services are an ideal solution when it comes to integrating heterogeneous computer applications.

This chapter begins by taking a brief look at the architecture used by Web Services. Next, it covers the commonly used
protocols and standards used for Web Services, highlighting Oracle Application Server's support for each. It finishes up
by examining Oracle Application Server's implementation of Web Services, including programming and management
tools.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.1 Reporting
Of the tools that business analysts and executives need, reports are the least glamorous but the most often accessed.
Analysts sometimes prefer to avoid reporting software if that software requires help from the IT staff, especially if the
process of creating and deploying the reports is more time-consuming and less flexible than manipulating the data
directly would be. On the other hand, prebuilt reports often appeal to executives because they require no special IT
skills or knowledge to view them. As web-based report generation has become commonplace, the distribution of such
reports within an organization has been greatly improved. Users now need be familiar with only a browser.

The OracleAS Reports Services components in Oracle Application Server include the following:

Oracle AS Reports Servlet running in OC4J

The OracleAS Reports Servlet acts as the intermediary between the Oracle HTTP Server and the OracleAS
Reports Server.

OracleAS Reports Server

The OracleAS Reports Server processes client requests and forwards them to a Reports Engine.

Reports Engine

The Reports Engine actually fetches requested data from data sources, formats the reports, and notifies the
OracleAS Reports Server when jobs are complete.

Multiple Reports Engines can be associated with a Reports Server instance, and you can have more than one server if
you need them for load balancing and availability.

Reports can leverage multiple data sources; these include the Oracle database via SQL or PL/SQL, the Oracle Database
OLAP Option, Oracle Express, XML, JDBC, and text sources. For example, a report might be generated using SQL
queries that leverage analytics in the Oracle database (inverse percentile, hypothetical ranking, etc.). You can also
leverage data sources not supported out-of-the-box by programming to a Java API called the Pluggable Data Source
(PDS) API.

12.1.1 Report Generation and Deployment

Oracle Reports has a wizard-based frontend called Oracle Reports Developer that can build reports. Oracle Reports
Developer is part of the Oracle Developer Suite. The reports created with Oracle Reports Developer can be deployed to
the Web using OracleAS Reports Services support in Oracle Application Server.

Developers can use the Oracle Reports wizards to step through the process of defining Reports structures, sources of
data, break groups, and summaries. A page frame model enables a variety of formats. A Live Previewer displays report
layout and a page of data after the initial format selection. The product provides re-entrant wizards to allow further
modifications. Available formats include tables, matrixes, grouped reports, graphs, and combinations.

You can add graphs to reports through a graphing wizard that features more than 50 different graph types. The graphs
in Oracle's tools are built as "Presentation" Java Beans that enables common graph types among each Oracle business
intelligence tool. The major supported graph categories include the following:

Bar
Horizontal bar
Pie
Line
Area
Combination
Scatter/bubble
Stock
Circular
Pareto
Three-dimensional

Figure 12-1 shows a typical report generated by Oracle Reports with an associated graph.

Reports deployed for web use can be specified at runtime to be output in a variety of formats, such as PDF, plain text,
HTML, HTML extension, or Cascading Style Sheets (HTMLCSS). By default, PDF output from Oracle Reports is
compressed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-1. Oracle Reports' typical report with associated graph

You can also produce reports in formats more commonly used for printing, such as RTF or PostScript, or in data-
oriented formats such as XML or delimited text. Multi-byte character support exists for HTML, PostScript, and PDF.

You can use JSP-based Web Source Reports to create highly customizable and flexible tagged output formats such as
HTML and XML. Using JSPs offers a number of advantages, including:

Separation of static and dynamic content

Support for scripting and tags

Reuse of components and tags

Compilation for permanent execution enabling excellent performance

JSP-based web reports can be created from within Oracle JDeveloper. Version control during the development of reports
and impact analysis is provided via the Software Configuration Manager in the Oracle Developer Suite.

You can direct a report to a number of different destinations—for example, to files, WebDAV URLs, printers, email
destinations, and FTP destinations. You can use an XML distribution file to name the report destinations. Other report
destinations can be created using the Pluggable Destination Java API for Report Engines.

You can also deploy reports of any format to OracleAS Portal. The JSP capabilities in Oracle Reports enable deployment
as HTML if you decide to use them as portlets. This capability allows you to publish web-based reports with dynamic
access to data as it is changed in the database.

Web-based reports can include predefined drill-down capabilities, which allow a business analyst to ask for more detail
about a particular portion of a report. PL/SQL is used as the procedural language in Oracle Reports, but a Java bridge
enables the import of Java classes.

Oracle Reports supports advanced security features such as OracleAS Single Sign-On (which uses the Oracle Internet
Directory) and fine-grained access control. These features ensure that only analysts with proper access rights can see
specific reports. The reports themselves can be created in various customized forms for users or groups of users. These
can be created using customization files that have XML tags to apply against the specific report version.

Some businesses may want to use a single report as a distribution source for different reports, which can lower overall
overhead for the combined set of reports. This technique, known as bursting, allows a report to be split up based on
reporting groups (such as departments) within the report. For example, you may want to split a report into separate
files (such as PDF files) and distribute specific department information to those departments via email.

In some cases, you may want to generate reports in reaction to specific business events. Oracle Reports provides an
Event-Driven Publishing API that's available as a PL/SQL package. Report "jobs" are submitted via HTTP. Reports in
these jobs are then published when triggered by specific database events or by Oracle's AQ query mechanism. The Web
Services interface to the OracleAS Reports Server in Oracle Application Server 10g also enables integration into Java
applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.2 Query and Analysis
Business analysts often want to pose their own "what-if" questions, such as:

What sales volume occurred in the Midwest subregions in 2004?

How did sales compare to 2003?

To answer such questions, analysts need ad hoc query tools that can slice and dice the data, pivot the data, and drill
down to the detailed level. Initially developed as client-server tools, tools of this kind are now mostly browser-based
(though they provide similar functionality to the earlier versions). Because ease of use is very important to most
business analysts, these tools are designed in such a way that queries are typically posed by selecting from lists of
available data (tables and contents) and analysis selections or icons. Users need to know where their data is stored and
what it represents. SQL is generated behind the scenes.

12.2.1 OracleAS Discoverer

Oracle's tool for query and analysis is OracleAS Discoverer, which supports several different client interfaces for
different architectures:

Discoverer Desktop

This interface is the oldest of the three. It is a client-server version and isn't part of Oracle Application Server.

Discover Plus

This interface is browser-based and is part of Oracle Application Server. It is deployed via a Java applet.

Discoverer Viewer

This more limited interface is an HTML browser client that is also part of Oracle Application Server.

Discoverer Plus and Discoverer Viewer are much more popular than Discoverer Desktop and are the focus of this
chapter.

Each Discoverer interface leverages a common End User Layer. The EUL is a metadata layer that provides business
definitions, hiding underlying technical descriptions while providing a map to those specific database fields. Although
OracleAS Discoverer is most often used to query an Oracle relational database, it can also leverage Heterogeneous
Services support in the Oracle database and use ODBC to connect to non-Oracle databases. Note, however, that some
capabilities tied to the Oracle database—in particular, the management of summary tables and query prediction
(described later in this section)—aren't available when OracleAS Discoverer is implemented via ODBC.

OracleAS Discoverer access to data is controlled through security that is regulated at both the application level and the
database level through defined roles. OracleAS Discoverer can leverage the OracleAS Single Sign-On, and can detect
and change expired database passwords.

Information concerning connections to the database is stored in the Oracle Application Server Metadata Repository,
which is a part of the OracleAS Infrastructure introduced in Chapter 2. This information includes the database name,
database username and password, Oracle Applications responsibility (included only when used with Oracle's ERP
Applications), language, and metadata information. Connections can be private and available to specific users, or can be
public and available to all OracleAS Discoverer users. Users can create their own private connections.

As such tools gain importance in making day-to-day decisions, you may want to consider highly available deployment.
If you are deploying OracleAS Discoverer to Oracle Application Server in a highly available manner, make sure to do the
following:

Configure the Oracle Process Manager and Notification Server to monitor and restart OracleAS Discoverer
processes on each middle-tier node. OPMN is described in Chapter 2.

Use the OracleAS Web Cache for load-balancing OracleAS Discoverer requests. OracleAS Web Cache and the
other Oracle Application Server caches are described in Chapter 7.

12.2.1.1 Manipulating and displaying data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2.1.1 Manipulating and displaying data

Discoverer Plus is a browser-based ad hoc query tool that is deployed via a Java applet. This tool provides an easy-to-
use interface for picking and choosing data items (exposed via the EUL) around which to build queries. These queries
can be stored as "workbooks" for reuse as the underlying data changes. Business analysts can manipulate these
workbooks or simply view the contents, depending on their access rights. Workbooks can be scheduled for execution at
specific times using OracleAS Discoverer's Scheduling Manager.

Discoverer Plus's wizards can create more than 50 different graph types for viewing the data in a graphical form (the
same graph types described earlier in Section 12.1.1). Figure 12-2 shows a typical OracleAS Discoverer view of data
and an associated graph.

You can generate OracleAS Discoverer's reports with Discoverer Plus and deploy them to the Web as HTML files. You
can also export them from Discoverer Plus as Excel files, PDF files, or XML for use with Oracle Reports' distribution
capabilities. Information passed via XML includes layout, formatting, exceptions, and parameters.

Figure 12-2. OracleAS Discoverer showing data and associated graph

Discoverer Viewer is an HTML-based browser client that is used mainly to view workbooks and worksheets, although
some additional capabilities (e.g., sorting) are provided. The Viewer can also export data to formats such as XML and
Excel. Discoverer Viewer can be customized to meet corporate standards using a CSS file to define fonts, colors, and
graphics. XML is used to represent application state; the XSL is used for formatting the user interface.

A Discoverer Portlet Provider included with Oracle Application Server allows you to publish workbooks to OracleAS
Portal. Two types of portlets are provided:

Worksheet

This portlet can contain tabular or cross-tabular data, graphs, or both.

List of workbooks

This portlet contains the names of available workbooks.

OracleAS Discoverer and OracleAS Portal
You might want to leverage Oracle Reports when deploying OracleAS Discoverer results to the OracleAS
Portal framework in order to display data in a more visually pleasing way. You can do this as follows:

1. Export your OracleAS Discoverer worksheet in Oracle Reports XML format.

2. Within Oracle Report Builder, modify the layout to give the worksheet a more "published" look.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Within Oracle Report Builder, modify the layout to give the worksheet a more "published" look.

3. After you have finished improving the look of the worksheet, save the report in JSP format.

4. Register the report in OracleAS Portal through the Builder and Administer interfaces.

5. Customize the link to the data by providing automatic passing of identification and password to
the database source in a manner hidden from the OracleAS Portal user.

6. If desired, add prebuilt OracleAS Portal styles to be consistent with other portlets.

7. Add the report definition file to the OracleAS Portal framework.

12.2.1.2 Using analytics and OLAP

As business analysts become more sophisticated, the questions they ask may evolve from "what happened" to "what
trends are present and what might happen in the future." OLAP tools provide the ability to handle time-series and
mathematical analysis for understanding past trends and forecasting the future. OLAP tools use two types of data:

ROLAP

Relational online analytical processing. These tools use data stored in relational databases in a star schema.

MOLAP

Multidimensional online analytical processing. These tools use predefined multidimensional cubes.

Popular MOLAP engines include Oracle's Express Server, Hyperion's Essbase, and Microsoft's Analytic Services. These
MOLAP engines handle queries extremely quickly, and they traditionally work best when the data isn't updated
frequently (because the cube-generation process takes time). Since Oracle9i, Oracle has supported MOLAP cubes stored
within the relational database via the OLAP Option; use of this option provides better scalability and more timely access
to this type of data.

When building a relational query in OracleAS Discoverer, business analysts can select analytic functions provided in the
Oracle database, use predefined functions provided by the administrator, or create their own calculations. Prebuilt
templates are provided for the commonly used analytic calculations provided by the Oracle database. These calculations
include:

Rank
Percent rank
Difference
Percent difference
Preceding value
Following value
Running total
Percent running contribution
Percent contribution
Moving total
Group total
Band by value
Band by rank

The Oracle database's OLAP Option object contains predefined facts, dimensions, and cube structures stored in an
analytic workspace. These features greatly speed pivoting and provide other multidimensional functions. OracleAS
Discoverer support for access to the analytic workspace is a new capability added in 2004.

12.2.1.3 Managing and improving query performance

OracleAS Discoverer uses a cubic cache to maintain query performance in a way that is transparent to both business
analysts and administrators. In a typical three-tier web deployment, the cubic cache is in the middle tier. Because it is
tied to the analyst's session, the cube allows subsequent analysis against the same data without requiring repeated
queries.

OracleAS Discoverer also provides additional facilities that can be used to improve performance. For example, query
performance can be greatly improved when the query is redirected to data that is preaggregated in the database at a
summary level. OracleAS Discoverer can automatically redirect queries to these summary tables. You can use a wizard
in OracleAS Discoverer to simplify creation by defining a summary policy. After setting aside a portion of the database
for summaries (20 MB is typical), OracleAS Discoverer can then analyze available space and recommend, create, and
maintain the summary tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maintain the summary tables.

A business analyst might want to figure out how long a query will take before actually running it. OracleAS Discoverer's
query governor can predict the amount of time a query will take based on comparisons to previous query times of
similar queries. This data is kept in the Oracle database server and is updated so that the predictions become more
accurate over time. The administrator has the option of placing limits on the time allowed for queries to complete. This
provides a safeguard because an analyst could (either intentionally or accidentally) request incredibly complex and
lengthy queries for a particular report. Long-running queries can negatively impact overall database performance for
other business analysts.

12.2.1.4 Using Administrator Edition

Administrators of OracleAS Discoverer can use the Oracle Discoverer Administrator Edition, a part of the Oracle
Developer Suite. Oracle Discoverer Administrator lets administrators perform such functions as formatting business
areas, creating or editing business areas, creating summaries, setting privileges, and managing scheduled workbooks.
Administrators can also set end-user privileges—for example, the ability to use OracleAS Discoverer clients, create or
edit queries, collect query statistics, perform item drills, grant workbooks, schedule workbooks, save workbooks to the
database, and change passwords.

The Oracle Discoverer Administrator Edition also provides the ability to set up and maintain the End User Layer. Wizards
guide the administrator through the process of building the EUL. The EUL can be populated from an Oracle data
dictionary, via a gateway to another source or via the Oracle Warehouse Builder Common Warehouse Metamodel
(CWM) bridge. As an alternative, the EUL can also be created and managed using Oracle Application Server 10g's EUL
command line for Java.

Administrators also control access to workbooks and worksheets through the Discoverer Administrator Edition. As
mentioned earlier, they can put limits on resources available to analysts monitored by the OracleAS Discoverer query
governor.

If there is no client activity for a period of time, an administrator may want to have an
OracleAS Discoverer "time out" because an OracleAS Discoverer session is a live
connection into your corporate data source. For Discoverer Plus, a timeout value can be
set in seconds (Timeout=X) in the pref.txt file. The minimum allowed is 180 seconds. For
Discoverer Viewer, the Web.xml file contains a session-timeout tag that is set in minutes.

12.2.2 Oracle Application Server Business Intelligence Partners

The continued popularity of the Oracle database for business intelligence and data warehousing is driving a growing
number of partnerships among tools vendors. Such partnerships sometimes extend to support of Oracle Application
Server.

Business Objects (www.businessobjects.com) provides an ad hoc query and OLAP capability that can be deployed in
Oracle Application Server in various ways. For example:

The Business Objects' Enterprise analysis tool can be used to generate queries against Oracle relational and
OLAP Option data through SQL.

The Business Objects "Universe," or metadata layer, can be created to enable transparent drill-through from
OLAP data to detailed data stored in relational tables.

An OracleAS Portal toolkit is also available for the viewing of Business Objects-generated reports.

12.2.3 Custom OLAP Applications

Instead of using standard tools to access OLAP, some organizations choose to deploy applications-oriented solutions.
Often, these custom-built solutions are designed to make operations as easy as possible for less-skilled users—although
often at the cost of providing less flexibility.

Back when Oracle's Express Server was popular, custom OLAP applications were built via Oracle's Express Objects. For
today's Oracle database OLAP Option, such applications are now built using Oracle JDeveloper and Business Intelligence
beans. These JavaBeans provide prebuilt components for manipulating tables, crosstabs, and graphs, and for building
queries and calculations similar to the functionality previously found in Oracle Express. Oracle JDeveloper generates
Java code using these building blocks that maps to the Java OLAP API provided by Oracle's OLAP Option. The J2EE-
compliant applications that are produced can be deployed to Oracle Application Server.

12.2.4 Data Warehouses and Oracle Warehouse Builder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The database schema used for business intelligence may be one of several types:

Third normal form (3NF)

In such a model, data is stored once and appears much the same as in online transaction processing. Third
normal form is typically used for operational reporting.

Star schema

In such a model, a large transaction fact table is surrounded by multiple lookup or "dimension" tables. This
model is common in data warehousing. The star schema is especially popular when used with ad hoc query and
analysis tools that explore historical data because the model typically matches the kinds of questions that
business analysts want to ask (see Figure 12-3 for a typical example). This model often includes hierarchies
with summary levels. These models are extremely useful when the business analyst wants to determine, for
example, the number of sales (in a fact table) made by a sales channel (dimension) over a certain period of
time (dimension).

OLAP schema

The analytic workspace in the Oracle OLAP Option takes the star schema model one step further by enabling the
storage of multidimensional cubes (MOLAP) as objects within the same relational database. This approach
further speeds query performance.

Figure 12-3. Star schema viewed through Oracle Warehouse Builder

If you want to perform business analysis on your data, you typically have to create a data warehouse with a star
schema model. Oracle Warehouse Builder, included with the Oracle Developer Suite or the Oracle database, is Oracle's
tool for designing these schema, importing the metadata describing data sources, and designing extraction,
transformation, and loading source-to-target maps. Oracle Warehouse Builder can then automatically generate PL/SQL
scripts for ETL from relational sources, and SQL*Loader files for loading from flat files. SQL*Loader's direct path load
capability can provide rapid parallel loading and bypass the buffer cache and rollback mechanism by writing directly to
the datafile.

Data models and mappings are stored in OWB's Metadata Repository, which is based on a version of the Common
Warehouse Metamodel standard. OWB provides metadata reports, impact analysis, and data lineage diagrams through
a web browser. Metadata interchange to a variety of repositories is available via third-party integration tools. Metadata
of designs may be directly imported from tools such as Oracle Designer, CA's ERwin, and Sybase's PowerDesigner.

If you create an OLAP Option analytic workspace schema, you will typically use OWB and an Analytic Workspace
Manager. Using OWB, you start by first creating a relational dimensional model, then running an OLAP bridge to create
an OLAP catalog and populate the analytic workspace.

In any typical ETL building process, you do the following:

1. Import metadata that describes source tables, including Oracle (via database links) and other relational
databases (through ODBC or gateways), flat files, or application-specific tables (such as those in SAP).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

databases (through ODBC or gateways), flat files, or application-specific tables (such as those in SAP).

2. Design target tables.

3. Map source metadata to target metadata, including mapping functions. The set of mapping functions in OWB
includes a joiner, filter, aggregator, reduplicator, sorter, splitter, sequencer, inline expressions, transformations,
and name and address cleansing operator. Figure 12-4 provides an example of how a typical mapping looks.

Figure 12-4. Typical Oracle Warehouse Builder source table-to-target table
mapping

4. OWB then validates the source-to-target mappings.

5. Once the validation has been performed, generate any of the following:

DDL if target tables are to be created

SQL*Loader control files for the loading of flat files

PL/SQL scripts for ETL from relational sources

OWB can leverage ETL functionality in the Oracle database, such as support for external tables, table functions, merges
(inserts or updates, depending on whether a data item exists), and multitable inserts.

Scripts are deployed to, and run at, the target data warehouse, typically scheduled using the Oracle Enterprise Manager
job scheduler. Although batch jobs are more common, OWB can also create trickle feeds (data is fed nearly
continuously and in near-real time) through the use of advanced queues. For more complex scheduling of ETL jobs
where certain prerequisites must be met, OWB includes an interface to Oracle Workflow. (See the discussion of Oracle
Workflow in Chapter 15)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.3 Data Mining
Data mining, as we define it in this chapter, is the use of mathematical algorithms to model relationships in the data
that solve difficult problems involving large numbers of variables with unknown relationships. You might need such
techniques if you are trying to solve such business problems as fraud detection, customer churn analysis, and
marketing contact response prediction. The algorithms used to solve such problems include clustering techniques that
show how business outcomes can fall within certain groups (such as for market basket analysis) and logic models (if A
occurs, then B or C are possible outcomes), validated against small sample sets and then applied to larger data sets for
prediction.

Since the Oracle9i database release, Oracle has provided a set of data mining algorithms in the database's Data Mining
Option for solving such problems. Algorithms now embedded in the database include:

Naïve Bayes Associations

Adaptive Bayes Networks

Clustering, Support Vector Machines (SVM)

Nonnegative Matrix Factorization (NMF)

These algorithms are accessible via a Java API.

Data mining applications can be custom-built using Oracle's JDeveloper in combination with the Data Mining for Java
interface. DM4J is used to develop, test, and score the models. It provides the ability to define metadata, tune the
generated Java code, view generated XML files, and test application components. The J2EE-generated applications can
be deployed within the database, to Oracle Application Server, or to other J2EE platforms.

OracleAS Personalization is one application of data mining that is bundled with Oracle Application Server. It provides the
tools necessary to instrument a web site, gather data on how a web-site visitor traverses the site, and then use the
data gathered to provide a "personalized" web experience by presenting specific pages that are determined to be of
likely interest to the visitor.

This solution is implemented in three tiers, as shown in Figure 12-5. The Recommendation Engine API (REAPI) is a set
of Java classes that are integrated into the web application on the web site, enabling the gathering of needed data and
specific actions based on recommendations from the middle tier. The data that is gathered as a web-site visitor
traverses the site is captured and sent to an Oracle database installed with the data mining algorithms. There, scoring
takes place to create a sorted, ordered list that is then applied to the middle-tier Recommendation Engine. That engine
services the web site in real time, providing recommendations based on similar, previously analyzed trends.

Figure 12-5. OracleAS Personalization architecture

An OracleAS Personalization Administration User Interface (OPUI) accesses the Mining Object Repository (MOR) in the
backend. The MOR schema contains business model information and is used for configuration and report administration.
A Mining Table Repository (MTR) contains the basic schema needed to create the model of the business, also referred to
as a taxonomy.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

12.4 Managing Business Intelligence Components
The latest release of Oracle Application Server, Oracle Application Server 10g, was designed to ease the overall
management burden by automating many management tasks for large-scale grid computing deployment. These
include:

Software provisioning, including installation, configuration, cloning, patching, and upgrades

User provisioning, including security and identity management

Application management and monitoring

Workload management, including dynamic resource allocation and failover notification

Systems management and monitoring

Oracle provides Oracle Enterprise Manager, a management tool and framework, as part of every application server and
Oracle database. Management capabilities in Oracle Enterprise Manager include not only generic monitoring of Oracle
Application Server (e.g., CPU and memory usage), but also extended support of specific BI components deployed as
part of Oracle Application Server. For example, configuration of OracleAS Discoverer and OracleAS Reports Services is
performed via Oracle Enterprise Manager. OracleAS Reports Services performance can also be monitored, and job
queues can be viewed and managed through Oracle Enterprise Manager.

The web-based Application Server Control tool, accessible through Oracle Enterprise Manager, allows you to view the
Log Repository error logs. These logs can be populated with warnings and errors generated by OracleAS Discoverer and
OracleAS Reports Server for debugging purposes. The Log Loader, started through Application Server Control, initiates
and populates this Log Repository.

There are myriad ways to use Oracle Enterprise Manager to manage OracleAS Discoverer; here are some examples:

Starting and stopping the OracleAS Discoverer Service

Enabling and disabling client-tier components

Selecting the locale for public connections

Enabling or disabling graphs in Discoverer Viewer and Discoverer Portlet Provider

Managing connections for Discoverer Plus and Discoverer Viewer

Specifying the number of stylesheets to pool for Discoverer Viewer and Discoverer Portlet Provider

Specifying a delay value for the query progress page in Discoverer Viewer

Specifying the communications protocol for the middle tier for Discoverer Plus

Specifying the maximum number of Discoverer Portlet Provider sessions to pool

Starting and stopping Discoverer Servlets

Searching for and analyzing the log files

See Chapter 3 for more information about Oracle Enterprise Manager.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 12. Business Intelligence Components
The use of business intelligence systems has been steadily gaining in popularity as companies use increasingly larger
amounts of data to make strategic and tactical decisions. Business intelligence systems allow business analysts to
answer fundamental business questions, such as:

How many of a company's products have been sold in specific geographic areas over particular periods of time?

Who are the company's most reliable suppliers?

Have particular product campaigns been successful?

Who are the company's most valuable customers?

Analysts work with both prebuilt reports of real-time and near-real-time transaction data (in online transaction
processing systems and operational data stores) and historical data (often accessed from data warehouses and data
marts). They may also wish to pose their own questions through ad hoc query tools, perform more sophisticated trend
analysis and forecasting through online analytical processing (OLAP) tools, and possibly build and leverage custom
mathematical models to predict outcomes in which a very large number of variables are present through data mining.
All this information can then be pulled together for viewing in a single desktop via a dashboard or a portal.

Oracle Application Server enables the deployment of business intelligence tools used by business analysts, as well as
the business analysis applications created by software developers. Because the Oracle database is the typical target
database for such analyses, more analysis capabilities have, over time, moved from Oracle's tools into the database
itself. Today, the Oracle database includes a variety of advanced query optimization capabilities, including:

Parallel bitmap star join support

Understanding of summary-level tables in facts and dimensions called materialized views

Advanced analytics and statistics enabled through SQL

Embedded OLAP and data mining capabilities

You can take advantage of these advanced capabilities with the business intelligence components available in Oracle
Application Server.

Business intelligence components in Oracle Application Server include:

OracleAS Portal

OracleAS Portal provides an integration point for custom-built business intelligence applications using OracleAS
Reports Services, OracleAS Discoverer, and other tools. It also provides access to a number of other
applications and web sites through its interface and is evolving into a workplace manager that is highly
customizable by users. Chapter 13 contains a full discussion of this product.

Reporting tools

Reports are typically created in IT organizations using Oracle Reports Developer and are then deployed for
general business usage with OracleAS Reports Services. The OracleAS Reports Services are a part of Oracle
Application Server and is described in greater detail in Chapter 9. Oracle Reports Developer is included in the
Oracle Development Suite.

Query and analysis tools

More savvy business analysts may choose to submit their own ad hoc queries and to generate reports via
OracleAS Discoverer using data residing in the database. Some query and analysis tools available from Oracle
partners can also be deployed using Oracle Application Server.

Oracle Application Server can also serve as a deployment platform for custom-built OLAP and data mining applications.
Advanced application developers can also use Oracle JDeveloper (part of the Oracle Developer Suite) with OracleAS
Business Intelligence JavaBeans (BI Beans) to develop applications that leverage the OLAP Option. In addition, they can
develop data mining applications using JDeveloper with Data Mining for Java (DM4J).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

develop data mining applications using JDeveloper with Data Mining for Java (DM4J).

The Oracle Warehouse Builder (OWB) is an important tool you can use to build and maintain the business intelligence
infrastructure. Bundled with the Oracle Developer Suite or the database, this tool can be used to design target
operational data stores, data warehouses, and data marts, and build extraction, transformation, and loading (ETL)
scripts. Oracle Warehouse Builder allows you to exchange data stored in its Metadata Repository with OracleAS
Discoverer and other tools. The product includes detailed metadata reporting capabilities.

This chapter describes the various business intelligence components available in Oracle Application Server as well as the
use of Oracle's data mining and data warehouse tools. It closes by looking briefly at the management of the business
intelligence infrastructure.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.1 An OracleAS Portal Page
OracleAS Portal presents information by the page. A page in OracleAS Portal has the same scope as a standard HTML
page—a page is what a browser holds at any one time.

In OracleAS Portal, though, pages can be assembled from many different sources. Most importantly, a page is a part of
a structural hierarchy, as shown in Figure 13-1.

Figure 13-1. OracleAS Portal hierarchy

The top level in the hierarchy is known as an OracleAS Portal site; it indicates a single installation of OracleAS Portal,
referenced by a specific URL prefix.

The next level in the hierarchy is a page group. A page group contains a group of related pages, as well as any
supporting objects required for the page group, such as styles or page templates, which are described in subsequent
sections. The root page of a page group is typically the home page for that group. You normally organize your OracleAS
Portal sites so that a user can remain within one page group.

Each page group contains pages, and each page can contain subpages. A subpage can be reached from its parent page.
Whenever you copy a page with subpages, you have the option of also copying all subpages associated with the page.
Whenever you delete a page group or page with subpages, you also delete its subordinate pages.

A page, or a portlet within a page (we'll describe portlets later in this chapter), can have parameters assigned to it, and
the value of a parameter can be included in the calling URL for the page. This capability allows you to link to a subpage
or portlet while maintaining some state information. For instance, a click on an item may act as a link to another page
with more detail about the item. The parent page can pass the item identifier to the child page through a parameter.

Clicking a button is an example of a particular OracleAS Portal event. You can write code to execute in response to an
event. Event code can be implemented in JSP code, to execute in response to user actions on the client.

13.1.1 Page Layout and Regions

Each OracleAS Portal page can contain one or more regions, as shown in Figure 13-2.

Figure 13-2. An OracleAS Portal page, with regions highlighted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-2. An OracleAS Portal page, with regions highlighted

The regions in a page provide the basic layout for the page. You can specify where a region goes on a page, in relation
to other regions, and what percent of the width or height of a page a region occupies. A region can automatically have a
banner, as can a grouping of items within a region.

A region contains one of two types of objects—either one or more portlets or one or more items (we'll describe both of
these later in this chapter). A region can contain tabs, each of which brings up its own set of portlets or items. You can
also have a region automatically mark a new piece of content with an icon for a specified time after the content is
initially added to the region.

There are two other specific types of regions:

Subpage region

This type of region automatically contains links to all the subpages for the owning page and nothing else. A
subpage region can contain one or two levels of subpage links.

Tab region

This type of region can't contain anything other than objects but can be configured to include rollover objects
for information about the tab.

A page can't contain another complete page, so if you want a page to appear within a region on another page, you have
to publish the subordinate page as a portlet, and then add that portlet to the region.

13.1.2 Items

An item can do any of the following:

Contain content, such as text or an image

Be a URI that points to another piece of information

Be dynamically created based on a piece of PL/SQL code

You can also create a region that uses a search to automatically add items to the region.

An item can either point to a specific piece of content or be a way to navigate to another location, within the OracleAS
Portal framework or outside of it. When you create an item that navigates you to another location, you can specify
whether that location should appear within the physical boundaries of a region or in its own page or browser instance.
When you create an item, you can assign it an expiration, which allows the item to be displayed for only a certain
length of time or prevents the item from being seen on the site at a specific time.

Items within a region are either sorted by title or size, or simply displayed in the order in which they were added to the
region. Items can be grouped within a region by author, date, category (which is described later in this chapter), or
item type, as well as not grouped at all.

An item region, by default, automatically displays each item in the page on its own row. You can specify that a region
has more than one column, which causes the items in the region to be evenly distributed across the columns. You can
also assign both the number of columns and the number of rows. Doing so limits the display to the number of items
that can be shown in the specified columns and rows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that can be shown in the specified columns and rows.

For convenience, OracleAS Portal enables you to load a group of items at one time by uploading a ZIP file containing
the group. Once the file is loaded, you unzip the items, which maintain the same directory structure they had in the ZIP
file.

13.1.3 Page Appearance

As mentioned at the start of this chapter, OracleAS Portal presents a common interface to many different sources of
data. If you had to create each individual page independently, it would be difficult to establish a standard look and feel
to your OracleAS Portal site. OracleAS Portal has several features that give a standard look and feel to all the pages
within a site: page templates, styles, navigation pages, shared objects, and translations.

13.1.3.1 Page templates

A page template assigns a standard arrangement of regions within a page. If a page is based on a page template, the
template must contain all the regions that will be in the page. A developer or user, with the proper privileges, has the
option to not display all the regions in a page template, but he can't add additional regions to a page based on a
template.

If you make changes to a template, the changes ripple down to all the pages based on that template. You can remove
the association between a page and a template, which stops the propagation of template changes to the page.

Many templates assign specific regions within a page to provide navigation within a page group or site. For instance,
there may be a region at the top of the page that provides access to the home page for the page group, or to a login
and logout page, as well as a region to the left of the page that provides navigation to different parts of the page group.

For convenience, OracleAS Portal allows you to create a page template from an existing page. A page template created
in this manner doesn't include everything in the page but does represent the basic layout of regions in the page.

13.1.3.2 Styles

Styles define overall look-and-feel attributes for a page or region. A style defines the colors and fonts used within the
page or region and can be applied to a single page, to a page group associated with a page template, or to a region
within a page.

There are style properties for items, tabs, and portlets, as well as properties that apply to all of these groups. When a
style is changed, the changes ripple down throughout the items, tabs, and portlets within the area controlled by the
style.

When you create or modify a page, you can assign a style to the page or have the page take on the default style of the
user accessing the page. A page template can require a particular style and not allow any changes in it. If a page isn't
based on one of these restrictive templates, a user can select his own page style from a list of candidate styles. A user
can select a default page style to be used when she views a particular page group or an individual page.

If you don't assign a specific style to a page, the page style uses a default style, either for the page group or, if there is
no default style for the page group, the style defined as the default global style.

13.1.3.3 Navigation pages

Frequently, a page group will have a set of navigation pages that are used throughout the group. You can implement
this functionality by creating a page with the navigation links. These navigation pages also can contain other prebuilt
items, such as a login link; a search box; or an object map, which lists all the page groups and pages in the site.

13.1.3.4 Shared objects

Shared objects can be used in many pages and page templates. Typically, shared objects implement uniform look and
feel (as with color and font definitions or images) or functionality (as with JavaScript form- and field-level validations).

13.1.3.5 Translations

OracleAS Portal can display in different languages, as well as allow users to enter information in different languages.
You enable this capability by creating translations for a page group. Once a translation is created for a page group, a
user can choose a language at sign-in, or by selecting a language with the built-in Set Language portlet. Once a user
has selected a particular language, subsequent contributions of content are kept as part of the specific translation for
the language he has selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the language he has selected.

The translation capability in OracleAS Portal requires manual translation and applies only to text defined for a portal
page, such as category or perspective names or item display names.

13.1.4 Page Groups

A page group is basically a collection of pages, along with objects that support those pages. A page group is analogous
to a root folder in a file system. Page groups represent the highest level in the hierarchy of OracleAS Portal
organization, as shown earlier in Figure 13-1. Each page group contains a root page, which is the top page in the page
hierarchy. A single OracleAS Portal site can have many different root pages.

The key to creating page groups is identifying business units that each should represent. For example, some companies
create separate page groups for each region they serve. Others create page groups for each intranet their portal
supports. Through the use of security, page groups can be hidden from one another. Each page group has its own
security model, which can add administrative overhead to support more page groups.

You can share objects between page groups by either creating them in or promoting them to the Shared Objects page
group. Objects (including page templates, styles, and navigation pages) within this group can be shared with other page
groups to provide a wider scope of reuse and standardization across an entire site.

13.1.5 Types and Attributes

When you create either a page or an item, you must create the object based on a predefined object type. An object
type does several things:

Helps you to classify the information based on its characteristics

Allows you to add information, or metadata, about a particular type of object

Enforces some basic requirements on the type

For instance, if you define a page as a URL page type, you must have a URL indicating where the content for the page is
coming from.

OracleAS Portal comes with a set of standard types, which are associated with pages, items, and regions. You can also
create your own customized types. These customized types can inherit the attributes of an existing page or item type.
You can also include different types of procedures to a page or item type, which automatically adds the procedure to
any page or item of that type.

The page type indicates the source of the information, such as a standard page type for items or portlets, a URL page
type for displaying the contents of other pages on the Web, or a PL/SQL page for displaying the results of a PL/SQL
procedure. The item type performs a similar function for items, specifying whether the item is text, a file, an image, a
link, or one of several other item types.

The type of a page or item specifies some of the attributes associated with the object. An attribute is essentially
metadata about the particular object, such as the name of the object and the author of the object. As with types,
OracleAS Portal comes with a standard set of attributes, and you can also add your own attributes.

There are two classifications of attributes:

Content attributes

These attributes are stored pieces of information about an object. They are associated with page types and item
types.

Display attributes

These attributes can be displayed to an end user and are associated with regions. Administrators can specify
which display attributes are actually available for a particular region.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.2 Portlets
We introduced the concept of a portlet in the previous section. Basically, a portlet is a reusable program that delivers
information. This information can come from a variety of sources. A portlet works with and leverages the services
provided by the OracleAS Portal runtime to integrate its information into the overall OracleAS Portal environment. The
portlet is one of the key enablers for OracleAS Portal's display of information.

A portlet displays information that is collected from a source, known as a portlet provider. The portlet provider collects
the information and then passes it to the portlet, which displays the information. This architecture, and the two types of
portlet providers, are shown in Figure 13-3.

Figure 13-3. Portlet architecture and provider types

A portlet provider can provide information to many different portlets. Portlet providers can be organized into Provider
Groups, which combine related providers. A Database Provider, described later, can be shared between multiple
instances of OracleAS Portal.

Each portlet is registered in the Portlet Repository, which is a part of the overall OracleAS Infrastructure. When you
build a page, you can select any of the portlets in the repository for inclusion in a region.

An individual instance of a portlet can be shared across multiple pages in a page group. By sharing a portlet, you both
ensure a consistent view of the information the portlet is providing and reduce the resources required to retrieve the
information and create the portlet for the end user.

13.2.1 Providers

Portal providers act as the link between a content source and an OracleAS Portal page via portlets. OracleAS Portal
includes many portal providers and can create additional providers to run within the OracleAS Portal environment or to
register external providers. There are two basic types of providers, Web Providers and Database Providers, described in
the following sections.

13.2.1.1 Web Providers

A Web Provider collects information from someplace on the Web and delivers information to its portlets using SOAP
over HTTP. Because it uses the common protocol of SOAP, a Web Provider can be written in virtually any language. A
Web Provider runs in its own environment, while a Database Provider, written in PL/SQL, runs in the Oracle database
that holds the Portal Repository.

The OracleAS Portal Development Kit (PDK), described later in this chapter, comes with a Java framework that makes it
easier to create Web Providers in Java. This framework includes interfaces to use such Oracle Application Server
features as OracleAS Single Sign-On.

13.2.1.2 Database Providers

Database Providers, as their name implies, retrieve information from an Oracle database and are written in PL/SQL.
These Database Providers supply information for portlets based on PL/SQL or JSPs.

Database Providers run in the Oracle database that is also used for the OracleAS Portal Repository. You can access
Database Providers running on other OracleAS Portal instances through a feature called the Federated Portal Adapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database Providers running on other OracleAS Portal instances through a feature called the Federated Portal Adapter.

13.2.2 Using Prebuilt Portlets

Although the overall thrust of OracleAS Portal is now to provide a consolidated interface to many sources of
information, earlier versions of OracleAS Portal put a lot of effort into making it easy to create your own portlets using a
set of portlet wizards.

These wizards prompt you for information and then create PL/SQL packages to implement the portlet. The wizards are
entirely HTML-based, so you can build portlets from any browser.

You can build a number of different types of portlets with OracleAS Portal wizards:

Form portlets

These portlets include simple forms, master detail sets of forms, and forms based on PL/SQL procedures.

Report portlets

These portlets can be built using the Query Wizard, which doesn't require knowledge of SQL or can be based on
an SQL query. You can also create a Query-By-Example report, which provides a form interface for users to
implement their own selection criteria. An item in a report can be used as a link to another portlet page with
detailed information about the item.

Chart portlets

These portlets can include links from chart values to more detailed information.

Hierarchy portlets

These portlets display multiple levels of related information.

Frame driver portlets

These portlets create a page with two frames, with the content of one frame driving the display of information
in the other frame.

URL page portlets

These portlets display the content of a URL.

Data component portlets

These portlets display data in a spreadsheet format.

Calendar portlets

These portlets include links to underlying information based on date.

Dynamic page portlets

These portlets display dynamically created HTML pages.

XML page portlets

These portlets are based on XML.

The most recent version of OracleAS Portal includes two new prebuilt portlets that give a broader range of functionality:

OmniPortlet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This portlet can access data from a variety of sources, including a database, an XML file, a comma-separated
variable file, web pages, or Web Services. The OmniPortlet can display the information in a variety of ways.
OmniPortlet provides some of the same functionality as some of the prebuilt portlets mentioned previously,
such as reports, charts, and forms.

Web Clipping portlet

This portlet makes it easy for a developer to select a web page and have some or all of its content displayed in
a portlet. With the Web Clipping portlet, any web page can be a data source.

These two new portlets are also Web Provider portlets, which means they can exist outside the Oracle database.

OracleAS Portal also includes wizards that help you build portlets that are meant to be part of a page, such as menus,
links, and list-of-values portlets.

Once you have created a portlet, you can use the OracleAS Portal environment to edit the portlet and make changes to
its look, feel, or functionality. For Database Provider portlets, Portal automatically stores each version of a portlet, and
you can recall earlier versions if necessary.

The end result of building a prebuilt portlet with one of the development wizards is a PL/SQL package that is stored in
the OracleAS Portal Repository and run when the portlet is called. The OracleAS Portal development environment
includes an option to compile the PL/SQL package to ensure that any code you may have added to the package
compiles without errors.

In addition to the prebuilt portlets that come with OracleAS Portal, you can download third-party portlets from the
Portal Studio site; it's described in a later subsection.

The development wizards make building portlets fairly easy, and you can include a lot of functionality in these
declaratively created portlets. You can even go so far as to include PL/SQL routines to run at various times during the
processing of a page.

You can access any of the data values on a page, or session values for the page, in PL/SQL
code.

Although you probably shouldn't think about creating mission-critical OLTP applications with portlets, the ease of
creation makes them a viable option for helping users to interact with information in the database through a browser
interface. Also, the Database Provider portlets require that the data they are accessing exist within the Portal
Repository Database, which is frequently not the case. You can use OmniPortlet to access data outside the Portal
Repository Database, because OmniPortlet is a Web Provider.

13.2.3 OracleAS Portal Development Kit

The wizard-driven interface that comes with OracleAS Portal is powerful and productive, but there may be times when
you want to implement some type of functionality that is beyond the scope of these built-in wizards. For these
occasions, the OracleAS Portal team has created the OracleAS Portal Development Kit.

The PDK contains all the information and APIs you need to create your own customized portlets, in either PL/SQL or
Java. Using the PDK is significantly more complex than the simple creation of portlets with the built-in wizards, but it
offers almost unlimited flexibility.

13.2.4 Java Portlets

Two new Java standards, Web Services for Remote Portlets (WSRP) and Java Specification Request 168 (JSR 168),
provide the Java world with specifications for portlets to run in different portal environments.

OracleAS Portal comes with an Oracle JDeveloper Portlet Wizard, which helps you create a portlet out of Java code in
Oracle JDeveloper. This wizard is an add-on for Oracle JDeveloper that allows you to create Java portlet code. This code
can be run against any JSR 168-compliant portal, which includes OracleAS Portal. Portal Studio, described in the next
section, has a section that lets you test a Java portlet to make sure it can properly interoperate with a JSR 168-
compliant portal.

The Oracle JDeveloper Portlet Wizard can also create portlets that use the Oracle PDK, rather than JSR 168, as the
basic API for the portlet. Regardless of which type of Java portlet you create, the portlet is run in the Java Portlet
Container servlet.

13.2.5 Portal Studio

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To encourage the creation and sharing of portlets and providers, Oracle Corporation provides the Portal Studio site
(http://portalstudio.oracle.com). Portal Studio is intended to be a full-service support site, containing the latest versions
of the PDK, a discussion area for developers, integration tools for other applications, and even a way to register and
test your own portlets. Portal Studio includes third-party portlets and providers in its Portal Catalog. The OracleAS
Portal development team and product managers are continually updating this site with new explanations, tutorials, and
sample code.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.3 Classification of Data
OracleAS Portal provides access to information. The more information that is available, the greater the potential
aggregate value of the information. However, large amounts of information can also be hard to organize and
understand. To help make data more accessible, OracleAS Portal comes with two default ways to classify data—
categories and perspectives:

Categories

Each item in an OracleAS Portal site must belong to one, and only one, category. In this way, categories provide
a taxonomy for content in OracleAS Portal. OracleAS Portal comes with its own set of built-in categories, and
you can add your own categories. You can create a hierarchy of categories to further organize your content.
Categories can be made available to specific page groups, or to all page groups.

Perspectives

Perspectives provide a way to organize content based on an idea of who might be interested in the content. For
instance, you might have one perspective for managers, another for developers, and another for sales within
your company. By selecting a particular perspective, a user can quickly focus on the content that is most
pertinent to him.

An item can be assigned to more than one perspective. As with categories, you can create a hierarchy of
perspectives.

Whenever you create either a category or a perspective, a page is created for the item. This page lists the content for
that category or perspective.

In addition to categories and perspectives, you can add specific search terms, which may be used to find data, or you
can use the functionality of Oracle Text to provide further search capabilities. Searching is described in the next section
in the context of end-user interaction.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.4 End-User Interaction
OracleAS Portal is designed to present information to end users. Although an administrator controls the basic creation
and deployment of an OracleAS Portal site, end users can also take advantage of OracleAS Portal to customize their
user experience, to search for information, or even to add content to an existing site.

13.4.1 Customization

End users have a habit of wanting things shown to them in a particular manner, and not all users in a community agree
on what this exact manner should be. OracleAS Portal can help solve this problem by enabling end users to customize
many aspects of their OracleAS Portal interaction.

You can grant the user the ability to customize the appearance of any of his pages. Customization can cover a wide
range of possibilities, from setting the home page to changing the style of a page or page group, to actually moving,
adding, or deleting portlets from a region. You can limit the degree of customization that any particular user has, as
well as lock down any region in a page to prevent user customization of the content of the region.

13.4.2 Working with Content

OracleAS Portal was designed to be user friendly, from the way it displays information to the way it implements wizard-
driven interfaces for developing some types of portlets. Individual end users can also work within the framework of an
OracleAS Portal site to directly interact with content items.

With proper permissions, an end user can manipulate the items in a region. A user can add items to a page. An item
can be text, a link to a file, or a link to another source of information on the Web. An administrator can specify a limit to
the total amount of space allotted to store items for a particular page group.

Of course, not all users should be allowed to add items, willy-nilly, to managed OracleAS Portal sites. To ensure that
added content is appropriate and relevant, a user can be given the privilege of adding content only with approval.
Content approval can be specified for an individual page or for an entire page group.

The approval can be a simple sign-off from another user or an entire approval process involving many different users.
When a user creates a content item, she is automatically informed of the progress of the item through the approval
process, as well as whether the item has been approved or rejected at each step.

End users can also move items from one page or region to another or rearrange the order of items within a region.
Users can also delete items with proper permissions. For existing items, a user can change the item's category, add or
delete an item from a perspective, or add or delete search keywords for the item.

OracleAS Portal also enables users to "check out" a piece of content. If checkin/checkout is enabled for an item, this
ability can be downloaded by only one user at any given time. OracleAS Portal can implement version control on items,
in which older versions of edited items can be saved and retrieved.

There may be times when a user will want to know if a particular page gets new content items. You can set up a page
so that a user with the proper privileges can subscribe to the page and be automatically notified when the contents of
the page change. The notifications come to the user via a built-in notification portlet.

OracleAS Portal supports the use of Web-Distributed Authoring and Versioning (WebDAV) clients to edit content
accessed through OracleAS Portal. WebDAV allows users to view OracleAS Portal as a web folder within Windows
Explorer. This displays OracleAS Portal and portal pages in the same manner as desktop file explorers. Pages are
rendered as folders and items as files. Via this interface, users can seamlessly interact between OracleAS Portal and
their file system by dragging and dropping content, files, and folders.

OracleAS Portal essentially supports WebDAV in parallel with its built-in features for content manipulation, and there are
some restrictions on the types of pages and content that can be used.

13.4.3 Searching

The overall purpose of any OracleAS Portal site is to centralize the display of information. As we suggested earlier, all
this aggregation of content can lead to information overload, as a result of the sheer volume of information. OracleAS
Portal includes the classification schemes mentioned earlier, but also has a built-in search capability to help users find
the information they need quickly.

An OracleAS Portal user can search through an OracleAS Portal site to find specific content. A search can look through
items, pages, categories, and perspectives for a specific word or words.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

items, pages, categories, and perspectives for a specific word or words.

You can add keywords to a particular item to help a user find the item. A user search can
include keywords.

The user can limit the search results to specific page groups, categories, perspectives, or item types, among other
selection criteria. This basic search capability can be accessed through a built-in Search portlet or through a built-in
Search box object built into a page. You can perform more complex searches with the built-in Advanced Search portlet.
You can also limit the results the Advanced Search portlet can return for users.

A user can save a search, which allows her to repeat it without having to reenter all the search criteria. A built-in portlet
provides access to saved searches.

13.4.3.1 Oracle Text

You can enable Oracle Text for an OracleAS Portal site, and doing enables you to offer significantly more sophisticated
searches. With the added capabilities of Oracle Text, a search can automatically look for related words or use
functionality such as the nearness of words to each other, or the sound of the words (known as soundex).

13.4.3.2 Oracle UltraSearch

Oracle Application Server also comes with a component called UltraSearch, an extensible search engine that uses a
crawler to index documents. The documents are indexed from within their own repositories. The crawled information
can build indexes that stay within an Oracle database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.5 Deployment Architecture
As the discussions in previous sections have illustrated, OracleAS Portal lets you combine information from different
sources into a single, server-based interface. But how, exactly, does OracleAS Portal assemble these pages at runtime?
The workflow is shown in Figure 13-4 and is described in the following sections.

Figure 13-4. Requesting and receiving a page from OracleAS Portal

13.5.1 Creating Portal Pages at Runtime

When a browser sends a request for a page to OracleAS Portal, the request is routed to the Parallel Page Engine (PPE),
a Java servlet. The PPE is responsible for implementing and overseeing the creation of a single page from the different
sources of information shown on the page.

The first step in the process is for the PPE to get the metadata for the page. The metadata describes the overall layout
of the page and the portlets used within the page. The PPE builds a structure to hold the page and its information, as
described by the metadata.

Once the metadata is retrieved from the OracleAS Portal Repository, the PPE sends a request to the provider for each
portlet. When the provider has returned the requested portlet, the PPE adds it to the structure it has created for the
page. Once the entire page has been assembled, the PPE returns the page to the requester.

As you can see from this description, the PPE is central to the overall runtime operation of an OracleAS Portal site. To
ensure adequate performance, you can have more than one PPE for an OracleAS Portal site. Each PPE has a default
number of fetchers, which request data from providers. You can increase this number if the performance of your
OracleAS Portal site seems to be suffering from a lack of fetchers.

13.5.2 Caching

The earlier description shows that creating a page involves a number of different resources. There may be pages or
portlets in an OracleAS Portal site that contain the same content for all users. You can reduce the overhead of creating
these pages by caching the pages at a system level.

You can specify the following types of caching for a page or portlet:

Cache page definition at the system level

This approach caches the page metadata once for all users. You can also set an expiration time for this type of
caching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

caching.

Cache page definition only

This approach caches the metadata that build the page for each individual user.

Cache page definition and content for a specified length of time

This approach is helpful for pages that are somewhat dynamic, such as pages listing current news items.

This caching is implemented through the file system on the Oracle Application Server server that is running OracleAS
Portal, and is separate from the caching performed by OracleAS Web Cache (described in Chapter 7). Like other pages,
portal pages can be cached in OracleAS Web Cache as long as they are defined there as being cacheable. You can set a
PPE parameter to prevent OracleAS Web Cache from caching OracleAS Portal pages if desired.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

13.6 OracleAS Portal Security
OracleAS Portal allows you to assign security to items and pages based on user identity. When a user enters an
OracleAS Portal site, he typically logs in, although a site can also accept anonymous users. OracleAS Portal security
uses the OracleAS Single Sign-On and Oracle Internet Directory facilities built into Oracle Application Server and
described in Chapter 4.

OracleAS Portal supports security for both individual users and groups of users. You can define groups of users through
the OracleAS Portal administration interface.

For each user or group, you assign one of several security levels, including:

The ability to completely manage the page, which allows a user to perform any action on the page

The ability to manage content on the page, with or without an approval process

The ability to customize portlets on the page

The ability to customize styles applied to the page

The ability to view only the page

Each item can have security restrictions attached to it if you have enabled item security for its page. You can have
every item on a page or tab inherit the security restriction of the page or tab. Alternatively, you can allow the person
contributing the item to assign a specific security level to it. As with styles, you can assign access privileges in a page
template and force those security privileges to be assigned to all pages that use the template.

Portlets also have access rights. By default, a portlet inherits its security settings from its provider, but you can assign
specific rights to any individual portlet.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 13. Oracle Application Server Portal
Oracle Application Server Portal is one of the more visible components of the Oracle Application Server product.
Because OracleAS Portal includes a wizard-driven development environment, it is an easy part of Oracle Application
Server for people to begin using quickly. Certain parts of OracleAS Portal can even be used by end users, and this
component is also easy for the Oracle sales team to demonstrate. Because OracleAS Portal provides a complete visual
environment for accessing all kinds of information, end users can quickly see how the addition of OracleAS Portal can
change their computing environment.

If you are unfamiliar with OracleAS Portal, you are likely to pose two immediate questions: what is OracleAS Portal and,
more basically, what is a portal?

Let's answer the second question first. A portal is a way to centralize access to a variety of information sources, from a
collection of web pages to user interfaces with applications. In this sense, a portal is a type of desktop, but with an
important difference. You can think of a portal as a server-resident desktop. Portals are hosted on servers, so they are
under the direct control of the IT organization. This architecture makes them easier to manage and control. Of course,
the more flexible a portal is, the more likely that end users will be satisfied with its appearance and functionality.

OracleAS Portal is the end result of an evolutionary process across revisions and years:

The first version of OracleAS Portal was created by an internal consulting group at Oracle. The purpose of this
version was to provide an easy way to create HTML-based applications to access and interact with data in an
Oracle database. This version was not a public product.

The second version of OracleAS Portal, known as WebDB, was publicly released in 1999. WebDB had more
complete application-building capabilities, but also had the beginnings of a system to organize and classify data.

The current version of OracleAS Portal appeared with the third release of the product. At this point, the
organizational powers of OracleAS Portal had matured, and the idea of portals in general was emerging in the
marketplace. This version has been advanced in the Oracle Application Server 10g release.

OracleAS Portal is a way to present information from a number of sources in one or more HTML-based pages. The place
to start understanding this product is by examining the structure of a page, which we'll do in the next section. In
subsequent sections we'll describe more details of portals, portlets, and the deployment of OracleAS Portal, including
security issues.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.1 OracleAS Wireless Foundation Services
The Foundation Services in OracleAS Wireless provide a library of key functions and capabilities needed in the
development and deployment of mobile applications. Services are accessed through APIs provided with the services.
The Foundation Services fall into a number of categories: location-based, alert, content syndication, provisioning,
personalization, synchronization, analytic, and commerce. The following subsections briefly describe each service.

14.1.1 Location-Based Services

Location-based services allow mobile applications to be location-aware. For example, you might want to build an
application that notifies you when a parcel delivery is within a mile of its destination. Here are the services that can
build such an application:

Location framework

These services consist of a set of Java APIs, JSP Tag libraries, and Web Services interfaces for geocoding,
reverse geocoding, mobile positioning mapping, routing, and business directory services.

Static and dynamic location detection

These services enable the input of location manually, from an application, or from a positioning system such as
a GPS.

Privacy management

These services enable or disable the determination of location by others, either permanently or for certain
defined time frames

Functionality in OracleAS Wireless location-based services typically is implemented through an external provider.
OracleAS Wireless includes prebuilt drivers needed to leverage providers of mapping, routing, and positioning solutions.
Examples of solutions providers for such location-based services include InfoUSA, MapInfo, MapQuest, Ericsson, and
Nokia.

14.1.2 Alert Services

Alert services are provided by an alert engine in Oracle Application Server that facilitates the publishing of content (by
content managers) and availability to subscribers (the content users). Alerts can be triggered at certain times or based
on location or threshold values. For example, an application can be built to send an alert to your cell phone when an
employee submits an unusually large expense report while you are on vacation.

14.1.3 Content Syndication Services

Content syndication services allow content to be repurposed or reused. You can specify content sources using a wizard
provided in OracleAS Wireless Foundation Services to specify a content provider. Two types of content services are
provided by OracleAS Wireless:

Transcoding services

These services allow applications developed in WML or cHTML to be dynamically reformatted for use with
phones, PDAs, or voice.

Web clipping services

These services enable you to clip and scrape standard web content using a browser interface and then reuse
this content for display to mobile devices.

14.1.4 Provisioning Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provisioning services support configuring the Wireless Application Protocol (WAP) settings on certain phones (e.g.,
Ericsson or Nokia) to enable access to email and text-based web pages. OracleAS Wireless includes APIs to extend this
support to other devices. Provisioning services also enable integration over-the-air (OTA) that is useful in tasks such as
updating Spatial Information Management (SIM) cards in your device. Provisioning is supported for J2ME-developed
applications or native applications such as icons, MIDI applications, and ring tones.

14.1.5 Personalization Services

Personalization services enable quicklinks that provide shortcuts to applications are commonly used by users. Using
these services, you can enable profiles or portal views, and alert notification for services subscribed to by specific users.
Personalization services also support managing user devices, user application defaults (such as home location), and
user location marks.

14.1.6 Synchronization Services

OracleAS Wireless synchronization services allow you to synchronize J2ME applications and Oracle Lite (Oracle's mobile
database). You can use these services to ensure that devices have up-to-date data and that backend data is made
consistent with locally updated data.

14.1.7 Analytic Services

Analytic services enable the reporting of system usage, response time, user behavior per channel, and user
profile/application matching. Data gathered using these services enables system administrators and planners to
determine the level of service and the popularity of applications.

14.1.8 Commerce Services

OracleAS Wireless commerce services allow Mobile Wallets to be stored in a triple-DES encrypted format in an Oracle
database for added security. You can retrieve such a wallet after providing a PIN. Commerce services also support the
automatic population of forms using wallet data and integration to other systems such as billing systems.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.2 OracleAS Wireless Development
OracleAS Wireless applications can be developed in a completely custom fashion or you can leverage prebuilt
applications that are provided with OracleAS Wireless. Markup languages supported for mobile applications include the
following:

XHTML Mobile Profile

XHTML with XForms

XML

The OracleAS Wireless engine provides translation to the appropriate device markup language.

XForms, as defined by the W3C, enables the creation of rich, device-independent forms
interfaces through data and processing logic that is separate from presentation logic.
Auxiliary scripting isn't needed with XForms, which is an improvement over previous HTML
forms creation methods.

When developing an OracleAS Wireless application, you typically follow these general steps:

1. Define business and technical requirements.

2. Design the mobile application needed to fulfill the requirements.

3. Identify prebuilt business logic for reuse, as appropriate, along with needed Web Services.

4. Decide if the application will be accessed via small-screen browsers, messaging devices such as Short Message
Service (SMS), or a mixture.

5. Build the mobile application using the Oracle JDeveloper Wireless Extension and device simulators.

6. Test the mobile application using the Mobile My Studio.

7. Deploy the mobile application into production for use on real devices.

14.2.1 OracleAS Wireless Development Tools

The primary tools available for OracleAS Wireless development are Oracle JDeveloper, the Wireless Development Kit,
and My Studio.

14.2.1.1 Oracle JDeveloper

Oracle JDeveloper (packaged in the Oracle Developer Suite) is the primary tool used to build OracleAS Wireless
applications. The GUI-based JDeveloper Wireless Extension (JWE) enables you to create mobile applications through
wizards and templates. You can use this tool to edit applications. Its device simulators also allow you to test
applications and advanced systems and to view log files used in the debugging process. You can deploy applications
from the JWE user interface.

14.2.1.2 OracleAS Wireless Development Kit

The Wireless Development Kit can be used with Oracle JDeveloper, as well as with other development environments
and device simulators. You can obtain the WDK at the Oracle Technology Network Wireless web site at
http://otn.oracle.com/tech/wireless/index.html.

The WDK includes the following:

XHTML and J2ME samples

Device detection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Device detection

Error logging

Location services

A wireless client

Java messaging APIs

Web Services

Web Services components include a J2ME SDK and a J2ME Web Services Proxy Server.

A small-footprint version of OracleAS Wireless Multi-Channel Server is provided in the WDK and enables the testing of
wireless applications without requiring deployment of the full Oracle Application Server. The Multi-Channel Server is
described in Section 14.3. The industrial-solution version of the WDK enables developers to build applications using
XForms embedded within XHTML documents and then test them in a Telnet emulator.

Figure 14-2 shows the home page for the Mobile area of the OTN, a free service for developers. The figure shows some
of the mobile resources available through OTN.

Figure 14-2. Oracle Technology Network Mobile web site

14.2.1.3 My Studio

After you have created your application, you deploy it to a web server for voice or browser access, or for messaging.
Applications can be deployed anywhere they are accessible from the Internet. The next step is to test your application.

Oracle provides an online testing facility, the Oracle Mobile My Studio. You can obtain My Studio from
http://studio.oraclemobile.com.

This web site provides test facilities for voice, mobile browser, and two-way SMS. Real-time logs are generated as you
test the applications that you view when debugging your application.

When you come to the My Studio web site for the first time, you need to register on the Welcome page. Once you are a
registered user, you can log in. You will then see tabs for Applications, Samples, and Webservices (see Figure 14-3).
Exploring the My Studio tabs leads you to the following:

Figure 14-3. Home page for My Studio online testing of OracleAS Wireless
applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applications

Applications

Provides a list of existing configured applications that you can view and test. Alternatively, you can configure
new applications for voice and browser access (by providing the name and URL) or SMS and email (by providing
the short name and HTTP parameters your application expects).

Samples

Provides sample application code you can view and test.

Webservices

Enables the registration of new J2ME Web Services and the downloading of registered hubs. Also provides a link
to download the J2ME SDK.

My Studio includes online directions for how to test applications. Other online documentation provides help getting
started, developing applications, and advanced topics related to voice, messaging, and J2ME Web Services. A link to the
Mobile Studio Forum allows you to communicate with other OracleAS Wireless developers.

14.2.2 Prebuilt Wireless Applications

OracleAS Wireless provides a set of prebuilt applications that can be deployed on their own or that can serve as a
starting point for building other applications. These applications are:

Mobile Office

Mobile Messaging

Mobile Location

These applications are described in the following sections.

OracleAS Wireless also provides the underlying infrastructure for mobile and voice access to Oracle's Collaboration Suite
and E-Business Suite.

14.2.2.1 Mobile Office

Mobile Office provides wireless, voice, and messaging applications used to access common office productivity systems.
Supported systems and interfaces include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Supported systems and interfaces include:

Email

Through support of email servers supporting SMTP, POP3, or IMAP4, such as Oracle Collaboration Suite,
Microsoft Exchange, and Lotus Domino

Calendar

Through support of Oracle Collaboration Suite, Oracle Calendar 5.2, and Microsoft Exchange 5.5 and 2000

Directory

Through access to a Corporate Directory deployed using the Oracle Internet Directory or any LDAP directory

Address Book

Through support of Oracle Collaboration Suite, Oracle Calendar 5.2, Microsoft 5.5 and 2000, and Lotus Domino
Release 5 and 6

Tasks

Through support of Microsoft 5.5 and 2000 and Lotus Release 5 and 6

Files

Through support of WebDAV and Oracle Files

Published interfaces are available to extend the use of these applications to nonsupported systems.

14.2.2.2 Mobile Messaging

Mobile Messaging applications provide message exchange via email, SMS, MMS, voice, or fax. You can choose target
destinations from address books or directory entries, or you can specify your own. Alerts and notifications can include
email alerts, calendar appointment reminders and new appointments, and custom alerts using the Alert Service.

14.2.2.3 Mobile Location

Mobile Location applications are location-aware and can be deployed via wireless, voice, or messaging interfaces. These
applications can provide driving directions, find nearby businesses (along with directions to those businesses), and show
locations on maps.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.3 OracleAS Wireless Deployment
OracleAS Wireless applications can be deployed for many different types of access, including wireless Internet browser,
two-way ASK messaging, voice, J2ME devices, and delivery of alerts and notifications. Because of this flexibility, it is
desirable to have a single application delivery via multiple channels. The Multi-Channel Server is designed specifically to
meet this need.

The Multi-Channel Server delivers device-independent content based on the device's capabilities and ensures
compatibility with new and emerging devices. In effect, the Multi-Channel Server provides a common interface that
eliminates the need for device-specific applications. It enables the adaptation of text, images, ring tones, voice
grammars, and audio/video streams for each device type. For example, if an application generates GIF images, and the
device supports only Wireless BitMap (WBMP) format, the adaptation engine adapts the image to WBMP before it is sent
to the device. The Multi-Channel Server also supports standard markup languages and provides the XForms engine.
Devices are detected as they make requests. The Multi-Channel Server supports URL caching and can be deployed
within existing portals.

Browser-based applications are developed using the OracleAS Wireless XML or XHTML languages. Data is accessed
using these applications in a synchronous fashion via wireless Internet-connected devices. The typical communication
protocols used for deployment include CDMA and 1xRTT; GSM with GPRS and UMTS; CDPD; Mobitex; and 802.11 a, b,
and g.

Applications that access data using ASK message protocols via the Multi-Channel Server can operate in disconnected
mode. Messaging devices used for an ASK application might include two-way pagers, email clients, instant messaging
clients, and mobile phones with SMS. Once the Multi-Channel Server receives an incoming message, it parses the
message and sends requests to applications via HTTP. OracleAS Wireless then transforms the content of the response
(initially defined by XHTML tags) and matches it to message services available on the mobile device.

Voice applications respond to requests made via speech or a phone's keypad. Once a request is recognized at a voice
gateway, the request is sent via HTTP to the Multi-Channel Server. From there, it is relayed to the appropriate
application. When the application responds, OracleAS Wireless receives it in XML and transforms it to a user device
markup language (commonly VoiceXML).

Rather than deploying to proprietary device interfaces, some developers prefer to use J2ME as the runtime
environment. OracleAS Wireless makes this possible by extending Web Services to J2ME devices through a Proxy
Server in the J2ME Development Kit.

Three OracleAS Wireless components are used to deliver alerts and notifications:

Data Feeder

Retrieves alert content from a database, file, URL, or other source

Alert Engine

Manages alert subscriptions and triggers

Multi-Channel Server

Formats messages and delivers alerts to specified devices over appropriate channels

Security safeguards are crucial to successful mobile application deployment. In securing your applications, you must
ensure the three fundamental goals of security: privacy, data integrity, and authentication:

Privacy

You can ensure the privacy of your mobile applications by implementing appropriate encryption and decryption
of data.

Data integrity

You can ensure data integrity using various forms of digital security.

Authentication

You can ensure authentication using digital certificates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can ensure authentication using digital certificates.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

14.4 OracleAS Wireless Administration
You can manage OracleAS Wireless using a variety of administrative tools that are available to developers and
administrators:

Service Manager

Provides a visual interface for creating and managing OracleAS Wireless users, user groups, adapters,
transformers, and services including applications, notifications, and data feeders.

System Manager

Allows system administrators to perform configuration management and performance monitoring of the Multi-
Channel Server, Asynchronous Listener (a preprocessor of asynchronous requests inside the OracleAS Wireless
runtime server process), Location-based Service Provider (providing the actual computation for location
services), and standalone OracleAS Wireless processes. These processes include the Notification Engine, the
Messaging Server (dispatching application invocation requests and responses), and the Location Event Server
(generating events based on location). The System Manager is accessible via the Application Server Control tool
and through Oracle Enterprise Manager. See Chapter 3 for a discussion of these management tools.

Content Manager

Enables the creation of application categories, access points, and bookmarks.

Foundation Manager

Used by "Foundation" developers to create, modify, and delete devices, transformers, regions, digital rights
policies, and API scan policies.

User Manager

Used to edit user profiles, reset PINs and passwords, manage user access and user devices, and view user
application links.

Wireless Customization Portal

Allows users to register with OracleAS Wireless to personalize their own applications and manage their personal
profiles. Users can create their own accounts and manage their devices, locations, and contact rules.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 14. Oracle Application Server Wireless
As Oracle Application Server has evolved, new components have extended the standard capabilities of an application
server to handle new areas of technology. One area of explosive technology growth today is the deployment of
wireless-enabled applications. This growth has been aided by an increase in the sophistication of wireless devices,
including cell phones and Internet-attachable PDA devices, and the growing availability of public wireless connection
sites. Usage of such applications and infrastructure is now becoming commonplace. Oracle Application Server Wireless
provides a platform that enables the deployment of mobile applications.

Of course, the value of OracleAS Wireless applications is that information can be made available to, and can be updated
by, remote users. Advanced OracleAS Wireless features can enable targeted data delivery based on device location. For
example, you may want to provide a guide of local movies available in a particular area based on the current physical
location of a person's cell phone.

The OracleAS Wireless features in Oracle Application Server enable the deployment of a variety of mobile applications,
including:

Browser-based applications

Voice applications

Applications written using Java 2 Micro Edition (J2ME)

Two-way messaging applications using asynchronous services (ASK), alerts, and notifications

Mobile applications can function entirely disconnected, occasionally connected, or fully connected, depending on the
application.

OracleAS Wireless provides components in three areas:

Foundation services

These services are required in the development and deployment of wireless applications. Foundation services
include location-based services, alerts, content syndication, provisioning, personalization, synchronization,
analytics (providing mobile usage reports), and commerce utilities.

Development tools and sample wireless applications

Applications are built using a variety of supported languages and the OracleAS Wireless Development Kit
(WDK).

Support of multiple protocols

These protocols enable access to wireless applications from a variety of devices. For example, OracleAS
Wireless provides the underlying infrastructure for mobile deployment of Oracle's Collaboration Suite and E-
Business Suite applications.

Deployed applications are accessed using a variety of delivery methods via the Multi-Channel Server (see Figure 14-1),
which is described in detail in Section 14.3 later in this chapter.

Figure 14-1. OracleAS Wireless Multi-Channel Server deployment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This chapter describes the OracleAS Wireless Foundation Services and the OracleAS Wireless application development
tools, deployment process, and administration tools.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.1 Oracle Application Server InterConnect
You can use OracleAS InterConnect to integrate applications from Oracle, other software providers, or custom-built
applications using message-oriented middleware. OracleAS InterConnect enables integration through modeling rather
than relying on extensive programming techniques. Integration logic is separate from the integration platform.
OracleAS InterConnect components include a hub, adapters, and a Development Kit. Figure 15-1 shows a typical
deployment configuration.

Figure 15-1. Typical OracleAS InterConnect deployment

The OracleAS InterConnect design and modeling tool, called iStudio, features easy-to-use wizards. Intended for use by
business analysts, iStudio largely eliminates the need to write code when creating business rules and transformation
integration logic. Users of iStudio can define and map data to be exchanged between applications, and can configure
and deploy the integration. Objects can be locked within the tool, thus enabling multiple users to model and design
simultaneously. OracleAS InterConnect supports metadata versioning so that multiple versions of the same object can
coexist or be active at the same time. If business process collaboration is desired, Oracle Workflow can define the
business processes. The iStudio tool is then used to associate semantic maps with these business processes.

Components connected with OracleAS InterConnect and created in iStudio are called application views . Application
views include interest in specific messages, internal datatype identification, and information on how a message should
be mapped to or from an internal datatype. A common view is a hub view in which each spoke is an application view
participating in the integration. Figure 15-2 shows the hub-and-spoke nature of OracleAS InterConnect deployment
between the common view and application views.

Figure 15-2. Typical OracleAS InterConnect hub and spoke

Common views can contain the following components:

Business objects

A collection of logically related integration points—logical occurrences that trigger communications between
applications

Event

An integration point used to model "publish and subscribe"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An integration point used to model "publish and subscribe"

Procedure

An integration point used to model "request/reply"

Common datatype

Data definition for reuse

Transformations, sometimes call mappings , are the integration points to application views.

Generated models and designs are stored in the OracleAS InterConnect metadata repository, which is part of a hub. At
runtime, the metadata repository is the source of instructions enabling message exchange to occur. Runtime
management, which is handled through Oracle Enterprise Manager, includes such management tasks as:

Starting and stopping components

Monitoring message flow

Performing problem detection

Handling error management

15.1.1 OracleAS InterConnect Adapters and Messages

OracleAS InterConnect Adapters provide connectivity via a bridge, the protocol/application-specific portion of the
adapter. The adapters transform and route messages between an application and the hub. Data is transformed from
application views to common views and from common views to application views, as defined in the metadata repository.
Figure 15-3 shows the architecture of an adapter.

Figure 15-3. OracleAS InterConnect Adapter architecture

A number of prepackaged OracleAS InterConnect adapters are available, including:

Technology Adapters

These adapters are used in cases where endpoints don't have APIs. They include Oracle database, Oracle AQ,
MQSeries, HTTP/S, SMTP, FTP, and CICS.

Packaged Application Adapters

These adapters are used to integrate JD Edwards, PeopleSoft, SAP, and Siebel applications.

Adapter SDK

The SDK enables the creation of adapters for applications and protocols that aren't supported by other
adapters. The kit is a collection of Java JAR and Javadoc files.

Messages are commonly communicated using database adapters, Oracle AQ, or XML messaging, or through the Data
Definition Description Language (D3L). All OracleAS InterConnect messages are guaranteed to be delivered exactly
once in the order sent. Messages can be load-balanced across multiple adapters using Real Application Clusters (RAC),
a clustered Oracle database configuration. Routing of messages can be implemented using business rules based on
message content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

message content.

Interfaces to Oracle's E-Business Suite of Applications are typically via database access to
the Oracle Applications interface tables or through an XML gateway (as XML is supported in
several of the technology adapters). Interfaces can be created to Oracle's CRM application
via SOAP and to Oracle's Supply Chain applications via the Supply Chain Trading Connector
(SCTC).

OracleAS InterConnect supports two distinct models:

Publish and subscribe

With this model, applications may be subscribers. These subscribers receive messages whenever they are
published by specific applications. When this model is used, the publishing application doesn't expect a reply.

Request/reply

Alternatively, an application may publish a message and expect a reply either in synchronous mode (the
message can't be received until the reply is sent) or asynchronous mode (the reply is sent after message
reception).

Both publish and subscribe and request/reply messaging can behave in a point-to-point manner if the sending
application calls out which specific application should receive a message.

Values in one application can be mapped to equivalent values in another application by defining domain value maps
using iStudio. Keys for corresponding entities in two different applications can also be correlated using iStudio.

15.1.2 iStudio Interface

The interface in the i Studio modeling and design tool consists of two navigation trees for design and deployment, as
well as five main menus.

Here are the navigation trees:

Design Navigation Tree

Groups objects as Common Views, Applications, Workflow, and Enabling Infrastructure

Deploy Navigation Tree

Groups objects as Applications or Workflow

The menus include:

File Menu

Handles creating and opening existing projects and workspaces, project reloading, object creation and
migration, export of PL/SQL stubs, and metadata push to adapters

Edit Menu

Handles editing, copying, deleting, versioning, or loading objects, renaming applications, adding or removing
applications from domain value maps or cross-reference tables, and deploying events to or editing Workflow
configurations

Procedure Menu

Handles invoking or implementing procedures via wizards

Event Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Handles publishing or subscribing to events via wizards

Help Menu

Handles access to the iStudio User's Guide

Figure 15-4 shows a typical view of the iStudio interface and the Design Navigation Tree.

Figure 15-4. Typical iStudio interface

15.1.3 Oracle Workflow for Java

The Oracle Workflow for Java (OW4J) engine can be used with OracleAS InterConnect to enable business process
definition, automation, and integration. Oracle Workflow for Java enables execution of a sequence of events in a specific
order. You can view the progress of processes through these sequences via either monitors or notification methods (for
example, JMS messages and email). The following components are part of OW4J:

Workflow Builder

Provides a graphical business process-modeling tool

Workflow Engine

Manages business process execution and exception handling

Business Event System

Provides a Java API for propagating events

Process Monitor

Used to view and administer events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory Service

Enables OracleAS Single Sign-On, synchronization with the Oracle Internet Directory, and integration with LDAP

Workflow Manager

Monitors system metrics and processes, and configures and monitors notification mailers

Business process models are typically created using the JDeveloper OW4J Modeler as the Workflow Builder. Business
processes might be either short or long. Very short business processes are served by in-memory workflows. Long-lived
tasks may extend to weeks and beyond.

Version numbers are automatically assigned to workflow tasks, thus enabling different versions of activities.

Models of these processes can be built to include logic for looping, branching into parallel flows and rendezvous,
decomposing into subflows, branching into subtasks, and others. Escalation processes can be created and then
executed after periods of inactivity based on predefined rules. Notification routing can also be set up to handle typical
occurrences such as delegation of responsibility or rerouting during absence of a participant.

The Process Monitor provides a Java applet to review business activities that have been completed, are active, or are
yet to be initiated. Decision makers are identified and their responses are shown. Administrators can intervene to
explore stopped processes or to skip or retry processes. It is possible to review the time and cost of business processes
by exploring workflow processing data stored in an audit database.

The Workflow Manager interface is exposed through Oracle Enterprise Manager. Work items and event messages can be
viewed (including the distribution of event messages by status). This interface enables administrators to more quickly
determine business bottlenecks.

15.1.4 Typical OracleAS InterConnect Deployment Sequence

A typical OracleAS InterConnect deployment sequence includes the following steps:

1. Configure a source triggering mechanism (such as through Oracle AQ).

2. Create a new project in iStudio.

3. Create common view business objects in iStudio and business object events.

4. Create an iStudio application in which an adapter communicates with a business application.

5. Create a cross-reference table mapping keys between systems using iStudio applications.

6. Create published events in iStudio that map application views to common views, perform transformations, and
publish new events to subscribers.

7. Subscribe applications to events in iStudio.

8. Create content-based routing in iStudio if required (e.g., routing based on message or message header
contents via Oracle Workflow with appropriate applied business logic).

9. Create an Oracle Workflow process bundle in iStudio if business logic is to be applied (including a bundle name,
business process, and publish-and-subscribe activities), and then deploy it.

10. Create objects in Oracle Workflow for modeling, and then model business logic.

11. Deploy application queues in iStudio, and test the integration prior to final production deployment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

15.2 Oracle Application Server ProcessConnect
The linkage of business data or systems leveraged in a corporate business activity is known as Business Process
Integration (BPI). OracleAS ProcessConnect is designed to enable BPI through a single middleware service. Integration
can extend beyond internal business processes to suppliers, partners, and customers. The Oracle BAM and BPO
capabilities described earlier in this chapter are designed to leverage either OracleAS InterConnect or the newer
OracleAS ProcessConnect.

Oracle Corporation expects that OracleAS ProcessConnect will increasingly be used in
situations in which OracleAS InterConnect with Oracle Workflow was previously the only
choice and where adherence to a Java connector standard is desirable.

In building integrated business processes, the following OracleAS ProcessConnect concepts are especially important:

Profiles

Contain identification and contact information

Parties

Contain organizations within a profile (typically applications or trading partners) that participate in B2B
exchanges

Agreements

Contain specific collaborations, roles, and communications options describing how two parties will interact

Events

Contain internal definitions of business data that come from or are sent to a party, including header information
on the party from which the event is coming, information on the party to which to send the event, event
instance creation time, instance life cycle state, event type definition, and body elements

In BPI implementations, message exchange and data flow (defined as data passed as an event) must be in the correct
sequence. Translations and transformations must be recognizable, and data must be validated. Roles define how data
flow events are executed. Figure 15-5 shows a typical OracleAS ProcessConnect flow with adapter interactions.

Data in the form of messages is received from a party as an Oracle record. When OracleAS ProcessConnect receives
this record, it creates two events:

Native event

Provides an internal representation of the business data

Application event

Provides a translation of native event content in a format that can be interpreted by the OracleAS
ProcessConnect

To enable better scalability, a business event can establish a common structure and vocabulary between parties. As
transformations then take place to and from common business events, the number of transformations required is
greatly reduced because all parties can use the business event as a starting point. This efficiency becomes pronounced
when four or more parties exist.

Figure 15-5. OracleAS ProcessConnect adapter interactions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-5. OracleAS ProcessConnect adapter interactions

OracleAS ProcessConnect integration projects generally use either an adapter-centric methodology or a business
process-centric methodology for development:

Adapter-centric

With this methodology, you model capabilities of parties, adapters, and delivery channels before creating roles
or business processes.

Business process-centric

This methodology starts with roles and business process modeling.

In general, Oracle suggests that you choose the methodology that creates the more complex portion of the model first.
We describe the OracleAS ProcessConnect modeling tool in the next section and then delineate typical steps taken in
development using each methodology.

15.2.1 Using OracleAS ProcessConnect

The following OracleAS ProcessConnect components are used to build, deploy, and maintain a business process
integration infrastructure:

Modeling tool

An easy-to-use, web-based business-process modeling tool designed to support the complete life cycle
management of BPI, from modeling to deployment to monitoring and optimization

Metadata Repository

An OracleAS ProcessConnect metamodel schema in the OracleAS Infrastructure database

OC4J ProcessConnect

An OracleAS ProcessConnect component that instantiates the modeling tool and is used by the modeling tool to
read and write integration definitions in the metadata repository

Adapter Framework (AF)

A J2EE connector architecture framework engine that enables Java applications to read the business process
definitions from the runtime metadata repository to adapters and vice versa

Integration Manager (IM)

An event-driven business process execution engine that interfaces to AF

The modeling tool provides a modeling interface to design business processes and to enable business event modeling
for common content. The profile section of the tool enables endpoint modeling (endpoints are defined as the physical
addresses of trading partners), agreement definitions, and trading partner management. Wizards guide you through
end-to-end basic integration, adding end-to-end basic event flows and other event flows, and creating spokes. Version
control of integration objects is supported through an update facility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control of integration objects is supported through an update facility.

Parties (e.g., applications or trading partners) are included in the integration through the use of adapters. The adapters
can be defined using an adapter exchange protocol for specific tasks or can call specific actionable files. There are three
types of OracleAS ProcessConnect adapters:

Technology adapters

HTTP, SMTP, FTP, Oracle database, Oracle AQ, JMS, and Web Services

Packaged application adapters

JD Edwards, PeopleSoft, SAP, and Siebel

Legacy adapters

CICS, IMS/DB, IMS/TM, and Tuxedo

Unlike the older OracleAS InterConnect adapters, OracleAS ProcessConnect adapters are built to the J2EE Connector
Architecture 1.0 specification with extensions to support introspection. Figure 15-6 shows how to select an adapter for
use with a specific application (or party) through the modeling tool.

Figure 15-6. OracleAS ProcessConnect adapter selection

Oracle's E-Business Suite of Applications can be integrated using Database Adapter
connectivity to Oracle Applications interface tables, AQ Adapter connectivity with linkage to
the Application Business Event System, or Web Service Adapter connectivity in which
J2EE-based modules are deployed as Servlets or Business Components for Java.

A deployment section in the modeling tool provides final validation of process integration definitions (e.g., processes
and profiles). Once validated, the tool can deploy the configuration from the design-time repository to a runtime
repository.

The deployment engine supports numerous standards, including:

B2B standards (RosettaNet and AS2)

EDI standards (X.12, UN/EDIFACT)

Web Services

SOAP

WSDL

UDDI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UDDI

Internet transports (HTTP/S, SMTP, FTP/S)

Packaging standards (SOAP 1.1, SMIME 3.0)

Security standards (LDAP, X.509)

Trading partner management (CPP/CPA, TPAML)

RosettaNet, created by a group of technology companies, defines XML-based e-business
standards for the exchange of business documents including transport, routing, packaging,
security, signals, and trading partner agreements.

All actions in the modeling tool are captured in a metadata repository via OC4J ProcessConnect. The repository stores
definition models, the results from monitoring of runtime processes, and administrative actions. An export/import utility
enables movement of integration model objects from one repository to another, which is a typical procedure when
moving from development to production. The object definitions are exported in XML.

Business processes are triggered in reaction to events. Such event triggers might include a state change in a business
document, multiple business event communications, certain integration event behavior, or certain event stages such as
initiation, progress, and completion. Events are created through the modeling tool or by import of XML schemas. Event
services supported include event validation, translation (from one format to another), transformation (e.g., semantics
such as one-to-many), mapping where events are similar, and correlation.

The Integration Diagram viewer shows a high-level view of the entire process integration. Pictured in such a view or
diagram (see Figure 15-7 as an example) is the business process, other roles ("spokes"), all the endpoint parties
participating in the process at every spoke, and agreements in place between endpoints (trading partners) and
processes. From this view, you can drill down to a specific event flow diagram.

Figure 15-7. OracleAS ProcessConnect Integration Diagram

When run concurrently, events and activities must use different business processes. Real-time monitoring of business
events and activities takes place in a reports section of the tool. The administrative section can be linked to Oracle
Enterprise Manager for configuration and management tasks.

15.2.2 Typical Deployment Sequences

As we noted earlier, the approaches that Oracle recommends for business process integration using OracleAS
ProcessConnect vary depending on the complexity of the business processes. Oracle typically suggests an adapter-
centric approach in situations in which business processes are relatively simple, there are a small number of parties,
and endpoint details are known.

The adapter-centric approach typically involves using the modeling tool in the following sequence:

1. Create applications, and add adapter details for each party.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Create native and application events, and select translators for each party.

3. Create roles, transformations, business events, and business processes for each party.

4. Create agreements between parties.

5. Create, deploy, test, and validate the configuration before production.

When more complex business processes are involved, BPI developers use a business process-centric approach. This
approach includes the following steps, in this order:

1. Manually create a business process and business event.

2. Create native and application events and select translators for each party.

3. Use the create spoke wizard in the modeling tool.

4. Create the parties.

5. Add translators and adapters as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 15. Integration Components
Within your organization, you may have a mixture of business applications based on various technologies deployed in
different areas of the business. You may also need to share data and business processes with other organizations and
partners. To allow you to successfully manage the entire business, such disparate systems must be able to access and
share business processes, data, and services. An integration strategy is key to making effective use of these resources.

Oracle Application Server integration components provide the framework needed to bring together such resources in a
variety of ways:

 Enterprise Application Integration (EAI) is enabled through collaborative interaction between applications.

 Business-to-business (B2B) collaboration is enabled by an exchange of documents among "trading partners,"
two parties that take part in a business transaction. Oracle sometimes refers to this scenario as OracleAS
PartnerConnect.

Web Services integration enables business processes to incorporate Web Services present in local networks or
externally over the Internet.

This Oracle Application Server integration framework allows you to establish a common view of data and business
processes by providing these capabilities.

Two specific integration platforms are provided in Oracle Application Server 10g:

Oracle Application Server InterConnect

OracleAS InterConnect, available since the Oracle9iAS application server, provides high-speed message
exchange (e.g., exchange of hundreds of messages per second) via brokers that are available for a variety of
applications, queuing mechanisms, and data movement protocols.

Oracle Application Server ProcessConnect

An addition to Oracle Application Server 10g, OracleAS ProcessConnect enables business process integration
and automation through the use of J2EE Connector Architecture-based adapters.

OracleAS InterConnect is most commonly used for database-to-database (data) integration or application-to-application
integration (EAI). It can synchronize data through transformations involving multiple trading partners.

OracleAS ProcessConnect provides a single middleware software solution targeted for business process integration
within an enterprise or with trading partners. This platform can enable Business Activity Monitoring (BAM) through the
retrieval of such runtime data as the number and status of activities and the current state of an integration object.
Business Process Optimization (BPO) reports can also be produced, indicating business process efficiency (e.g.,
fulfillment completion time).

BAM is the aggregation and correlation of data from many sources to produce key
performance indicators (KPIs). The KPIs can provide business advisories or to trigger
specific business processes designed to improve business results when predefined
threshold values are reached. This automatic triggering of business processes is called
Business Process Optimization.

An alternative to using OracleAS ProcessConnect for defining and deploying business processes and events is to use a
combination of OracleAS InterConnect with Oracle Workflow. The InterConnect iStudio tool provides a single interface
to build such processes. An Oracle Workflow for Java (OW4J) engine, introduced with Oracle Application Server 10g,
complements the PL/SQL-based Oracle Workflow engine previously available with the Oracle database. OW4J enables
Oracle Workflow deployment to the middle tier. It also supports the execution of methods in Java classes, EJBs, and
Web Services.

This chapter describes the various integration facilities available with Oracle Application Server: OracleAS
ProcessConnect, OracleAS InterConnect, iStudio, and Oracle Workflow for Java. It also outlines some sample
deployment sequences for business process integration.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Oracle Application Server Core Components
At its core, Oracle Application Server consists of three components:

Oracle HTTP Server

Oracle Application Server Containers for J2EE

OracleAS Web Cache

Each component, described briefly in the following subsections, plays a major role in Oracle Application Server
operations; they also provide some supporting functionality to their counterparts in various configurations.

2.1.1 Oracle HTTP Server

The Oracle HTTP Server is the web server for Oracle Application Server. It takes an incoming request in the form of a
URI. It then either sends the requested static content—for example, an HTML file—directly to the requestor, or reroutes
a request for dynamic content, effectively handing off the request, to an appropriate executable resource.

The Oracle HTTP Server can process a dynamic request using any of the following:

Common Gateway Interface (CGI) environment

For example, programs written in C, C++, Java, Perl, and other languages

FastCGI

An optimized CGI environment

mod_perl

A highly efficient Perl execution environment

mod_OC4J

A scalable J2EE environment

mod_plsql

A module that executes PL/SQL stored procedures in an Oracle database

Chapter 5 describes the Oracle HTTP Server in detail.

2.1.2 Oracle Application Server Containers for J2EE

OC4J is a set of J2EE containers and a JavaServer Pages translator that provides a J2EE-certified Java environment that
is scalable both horizontally and vertically. You can cluster OC4J instances across hosts; doing so eliminates both
hardware and software failure and provides almost unlimited capacity. You can run multiple JVMs in an OC4J instance to
leverage the capacity of hardware with multiple CPUs.

Chapter 6 describes OC4J in detail.

2.1.3 OracleAS Web Cache

OracleAS Web Cache is an optional component that can play several important roles:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Web Cache is an optional component that can play several important roles:

It can offload request processing from the Oracle HTTP Server and OC4J by efficiently caching both static and
dynamic content. OracleAS Web Cache is highly configurable and programmable, so what it caches can be
customized to fit any application's needs.

It can be used as a front end load balancer to the application server when Oracle Application Server is
clustered.

Because using OracleAS Web Cache so often makes sense in the Oracle Application Server
environment, the remainder of this chapter assumes its use.

Chapter 7 describes OracleAS Web Cache, as well as the other caches used by Oracle Application Server, in detail.

2.1.4 Core Component Interaction

Figure 2-1 shows the relationships among the three main components of Oracle Application Server.

As shown in the figure, the interactions among components work as follows:

1. OracleAS Web Cache receives an end-user request and determines whether the requested content is available
in its cache. If the content is available, it returns that content. Otherwise, it forwards the request to the Oracle
HTTP Server.

2. The Oracle HTTP Server immediately sends static content to the end user through OracleAS Web Cache. If the
request is for dynamic content, it forwards the request to the appropriate dynamic content provider.

3. If Java-generated content is requested, OC4J processes the request using a JSP or servlet, and then sends the
dynamically generated content to the Oracle HTTP Server. The Oracle HTTP Server then passes it on to
OracleAS Web Cache.

4. Finally, OracleAS Web Cache passes the content on to the end user.

Figure 2-1. Interactions among Oracle Application Server core components

As the figure illustrates, there are additional dynamic processing engines, such as FastCGI, mod_perl, and PL/SQL. The
architecture also includes a number of shadow processes, shown in gray, that support the use of Oracle Application
Server core components. These shadow processes include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Process Manager and Notification Server (OPMN)

Monitors the core components to ensure that they continue running

Distributed Configuration Management (DCM)

Marshals Oracle Application Server's configuration data between OPMN and the core components

Dynamic Monitoring Service (DMS)

Gathers performance statistics

See Section 2.2.3 for more detailed information on these processes.

The configuration data itself is kept in a repository, which is part of the Oracle Application Server infrastructure,
described in the next section.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Oracle Application Server Infrastructure
Shadow processes such as OPMN, DCM, and DMS, and configuration management tools such as Oracle Enterprise
Manager, depend on a repository of configuration data. This repository is part of what is known as the Oracle
Application Server Infrastructure. The OracleAS Infrastructure may consist of a simple file-based repository, or may be
as complex as a database repository with an LDAP server.

2.2.1 OracleAS Infrastructure Components

The OracleAS Infrastructure is divided into two parts:

OracleAS Metadata Repository

Holds Oracle Application Server configuration information and other component information in a collection of
schemas

Oracle Identity Management

Contains several subcomponents that work together to provide a seamless Single Sign-on facility

In addition, the Application Server Control tool and a group of shadow processes can be considered a part of the overall
OracleAS Infrastructure.

2.2.1.1 OracleAS Metadata Repository

The OracleAS Metadata Repository is either operating system file-based or an Oracle database. The Java Edition of
Oracle Application Server uses a file-based repository for DCM. The Portal/Wireless Edition and the BI/Forms Edition
always use an OracleAS Metadata Repository in an Oracle database.

If Oracle Application Server is clustered (a topic described later in this chapter) and a file-based repository is being
used, one of the clustered Oracle Application Server instances is designated as a central repository. This designation
isn't necessary if a database repository is being used.

The OracleAS Infrastructure installation normally clones a new Oracle database to use as a database repository. During
the installation process, it is possible to use an existing database instance for the OracleAS Metadata Repository,
instead of creating a new one. However, specifying an existing instance has an impact on the use of the OracleAS
Backup and Recovery Tool, described in Chapter 3.

2.2.1.2 Oracle Identity Management

Oracle Identity Management is a term used with Oracle Application Server 10g that encompasses all the components
used to support enterprise-style security in Oracle Application Server. All these components depend on the OracleAS
Metadata Repository:

Oracle Internet Directory

Provides an LDAP directory for security principals (login information)

Oracle Directory Provisioning Integration Service

Allows the LDAP directory to import and replicate data between homogeneous or heterogeneous types of LDAP
servers

Oracle Delegated Administration Services

Allows regional administrators and users to update directory information in the Oracle Internet Directory

OracleAS Single Sign-On

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Single Sign-On

Supports the Single Sign-on capability for all Oracle Application Server applications

OracleAS Certificate Authority

Provides an infrastructure for creating and maintaining SSL certificates

Chapter 4 describes Oracle Application Server security in greater detail.

2.2.2 Application Server Control

The web-based Oracle Enterprise Manager 10g tool used to monitor and control Oracle Application Server is known as
Application Server Control. Application Server Control is actually an Oracle Application Server application that is
installed with the OracleAS Infrastructure and with each individual application server home. The tool has a graphical
user interface and is used to manage individual instances of Oracle Application Server. Other portions of the overall
Oracle Enterprise Manager 10g product handle management of the database and a grid of computing resources.

Oracle Enterprise Manager stores component configuration data in the Metadata Repository. Doing so simplifies the
management for multiple Oracle Application Server instances when Oracle Application Server clusters are being used.

Chapter 3 describes Oracle Enterprise Manager 10g, Application Server Control, and Grid Control, as well as other
Oracle Application Server management tools, in more detail.

2.2.3 Shadow Processes

Oracle Application Server has many different components, and some deployment architectures may have more than
one instance of any one of these components. To keep the burden of monitoring, managing, and coordinating the
interaction between these components from being too overwhelming, Oracle Application Server includes three shadow
processes, shown earlier in Figure 2-1:

Oracle Process Manager and Notification Server

Distributed Configuration Management

Dynamic Monitoring Service

These shadow processes also use the OracleAS Metadata Repository. DCM updates component configuration files so
that they will match the values in the repository. OPMN uses the repository to identify what components should be
started and monitored. DMS stores runtime statistics in the repository.

2.2.3.1 Oracle Process Manager and Notification Server

The Oracle Process Management and Notification Server monitors the health of the individual components in an Oracle
Application Server architecture. OPMN monitors and manages all Oracle Application Server components, with the
exception of the following:

The repository database, if used

The listener for the database

The Application Server Console

If a particular component becomes unavailable, OPMN automatically restarts it. OPMN also informs any dependent
component that a component isn't available. For example, suppose that a request for a Java application comes into an
Oracle HTTP Server. It is passed to the mod_oc4j module, which passes the request to an OC4J process. If the OC4J
process goes down, OPMN lets the mod_oc4J process know that it should prevent any additional requests from being
routed to the failed process. In this way, OPMN simplifies management while making the entire set of Oracle Application
Server components highly available.

2.2.3.2 Distributed Configuration Management

For high availability and scalability, you can create clusters of Oracle Application Server components (Oracle HTTP
Server and OC4J) and OracleAS Web Cache. The Distributed Configuration Management service coordinates
configuration information across all members of a cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configuration information across all members of a cluster.

DCM automatically replicates base configuration information to a new member of a cluster. It also propagates changes
to any of this information to all members of a cluster. In addition to this base information, each cluster member also
has some individual configuration parameters of its own, such as port numbers for the instance.

You can also use DCM to make a backup of your configuration files that can be used to restore these crucial files in the
event of corruption.

DCM is invoked through the Application Server Control tool or via the dcmctl command-line tool.

2.2.3.3 Dynamic Monitoring Service

Oracle Application Server uses the Dynamic Monitoring Service to collect information about the performance of some of
its components. DMS uses sensors to measure various types of durations or simply the occurrence of different types of
events. DMS periodically collects the information from these sensors and compiles it into metrics. You can access these
metrics using a variety of different tools. The most commonly used is dmstool, a command-line tool for presenting DMS
metrics. The metrics may also be accessed in different portions of the Application Server Control tool.

DMS sensors are built into Oracle Application Server Containers for J2EE, so metrics are automatically provided for all
applications that run in an OC4J container. You can add sensors to any application you deploy on Oracle Application
Server through a DMS API, so the use of DMS is completely extensible. You can also turn off DMS to save the small
amount of overhead incurred.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 Installation Types
The complexity of the Oracle Application Server infrastructure depends on the type of product installation. There are
three Oracle Application Server installation types:

J2EE and Web Cache

Portal and Wireless

Business Intelligence and Forms

Each installation type builds on its predecessor's functionality; consequently, each requires a more complex
infrastructure.

2.3.1 J2EE and Web Cache

The J2EE and Web Cache installation provides a high-performing and very scalable J2EE application server. In the
Enterprise Edition version of the Oracle Application Server product, it consists of the following:

Oracle HTTP Server

Oracle Application Server Containers for J2EE

OracleAS Web Cache

Note, however, that OracleAS Web Cache isn't included in the Java and Standard Editions.

This installation requires a DCM repository in which Oracle Application Server configuration data can be stored. The
repository for this version can be either file-based or stored in an Oracle database.

2.3.1.1 Portal and Wireless

The Portal and Wireless installation contains all the components of the J2EE and OracleAS Web Cache installation. It
also contains:

OracleAS Portal, a complete, out-of-the-box, user-configurable portal solution

OracleAS Wireless, which allows you to use web-based applications on mobile devices

Although this edition doesn't contain the following components, it uses them at runtime, so the infrastructure has to
exist before you install this edition:

Identity Management

This infrastructure must exist in the form of Oracle Application Server Single Sign-On product support; this
product allows your users to use one set of login credentials for all applications running on the application
server.

Oracle Internet Directory

This infrastructure is added to the Identity Management infrastructure because Oracle Application Server Single
Sign-On requires an LDAP server.

Note that OracleAS Portal and OracleAS Wireless store their own application data in the infrastructure's OracleAS
Metadata Repository.

2.3.1.2 Business Intelligence and Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3.1.2 Business Intelligence and Forms

The Business Intelligence and Forms installation contains all the components available in the OracleAS Portal and
OracleAS Wireless installation, as well as the following additional components:

OracleAS Discoverer

OracleAS Forms Services

OracleAS Reports Services

OracleAS Personalization

This installation doesn't add any more complexity to the infrastructure because no additional infrastructure components
are required, but it does add more metadata. Like the Portal and Wireless edition, the Business Intelligence and Forms
edition uses a preexisting infrastructure. However, there is also a standalone installation for the Forms Server and
Reports Server that doesn't require an infrastructure.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Scalability Architectures
Oracle Application Server is highly scalable as a J2EE application server. As demand for a particular J2EE web
application grows, so too can the application server's capacity grow, both vertically and horizontally. The following
subsections describe the various types of scaling supported by the product.

2.4.1 Vertical Scaling with OC4J

Oracle Application Server can scale its capacity vertically by running more than one instance of OC4J on a given host, or
by running more than one Java Virtual Machine in a given instance of OC4J.

2.4.1.1 Multiple OC4J instances per host

An Oracle Application Server instance can be configured to run one or more instances of OC4J. In such a configuration,
each OC4J instance runs with its own JVM. However, running multiple instances of OC4J on the same host is more of a
configuration convenience than it is a means of scalability because multiple OC4J instances on a single machine share
the same configuration files.

It isn't uncommon for several applications to share an application server. By running multiple OC4J instances, each
heterogeneous application can run in its own OC4J instance. This reduces the risk that the deployment of an application
may affect other applications (or appear that it has). It also makes it possible to do resource consumption accounting
by application, which is a necessary evil in many business environments.

2.4.1.2 Multiple JVM processes per OC4J instance

Vertical scaling is better achieved by running more than one JVM process in an OC4J instance. Doing so leverages the
processing power of a host that has multiple CPUs.

When more than one JVM process is running, HTTP session objects and EJB states are replicated among the JVMs. In
addition to the server's offering increased capacity to process incoming requests in such a configuration, the server is
also better equipped to recover from JVM process failures. In case of such a failure, it can redirect a request to one of
the other JVMs running in the same OC4J instance.

Replicating HTTP session objects can become a resource-intensive task. To better manage this state replication, Oracle
Application Server provides a mechanism that provides a finer level of control. Each JVM is assigned to an island. An
island logically groups JVMs together for the purpose of HTTP session object replication. If two or more JVMs have the
same island name (even in clustered Oracle Application Server instances on different hosts), HTTP session objects are
replicated among them. This capability means that you can control which JVMs replicate state with each other.

For example, if you have an OC4J instance that has four JVM processes running, you can have two JVMs assigned to
default_island, and the other two assigned to island_two. With this configuration, HTTP session objects are replicated
between the two JVMs that are part of the same island. This reduces the overhead of replicating each HTTP session
object because each JVM has only one replication site, rather than three.

In contrast, no refined replication control exists for EJB state. EJB state replication doesn't use the island replication
facility. The state of any stateful EJB is replicated among all JVMs in an OC4J instance (or in clustered Oracle Application
Server instances).

2.4.2 Horizontal Scaling with Oracle Application Server

Horizontal scaling is accomplished using clusters. A cluster groups two or more Oracle Application Server instances so
that they appear as one application server. Clustered Oracle Application Server instances utilize only the Oracle HTTP
Server and OC4J components.

Figure 2-2 shows two Oracle Application Server instances in a cluster. In this figure, a load balancer receives a user
request. The load balancer forwards the request to an Oracle Application Server instance, where it is processed. Looking
at the figure, you can see that both instances of Oracle Application Server use the same metadata repository, as well as
any other resource, such as an application database.

Figure 2-2. Clustered Oracle Application Server instances

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-2. Clustered Oracle Application Server instances

2.4.2.1 Oracle Application Server farm

To be clustered, Oracle Application Server instances must be part of the same farm. A farm is a group of one or more
Oracle Application Server instances (clustered or not) that share the same OracleAS Infrastructure or that use the same
Oracle Application Server instance for their file-based OracleAS Metadata Repository.

Oracle Application Server instances automatically become part of a farm during installation. The farm assignment is
based on which OracleAS Infrastructure or Oracle Application Server instance (for a file-based repository) they use for
their OracleAS Metadata Repository. This assignment can be changed at a later date using Oracle Enterprise Manager.

2.4.2.2 Oracle Application Server cluster definition

An Oracle Application Server cluster definition is created within a farm using Oracle Enterprise Manager. After a cluster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Oracle Application Server cluster definition is created within a farm using Oracle Enterprise Manager. After a cluster
is defined, the first Oracle Application Server instance added to the cluster defines the cluster-wide configuration.
Thereafter, each server that is added to the cluster gets its configuration and any deployed applications from the
cluster-wide configuration. The only configuration properties that aren't part of the cluster-wide configuration are the
OC4J-specific properties: the number of JVM processes per OC4J instance and the ports an OC4J instance uses to
communicate with the Oracle HTTP Server.

2.4.2.3 Cluster management

Clustered Oracle Application Server instances appear as one application server not only to the end user but also to the
Oracle Application Server administrator. If changes are made to any Oracle Application Server instance in a cluster, the
DCM process automatically replicates the changes to all the other instances in the cluster. This process significantly
reduces the amount of work an administrator has to do to deploy applications in a clustered environment.

2.4.3 Load Balancing

As mentioned earlier, a load balancer is required when Oracle Application Server instances are being clustered together.
There are three traditional choices for load balancing:

Hardware

Operating system

OracleAS Web Cache

Of the three, Oracle recommends using a hardware-based load balancer. The following subsections describe these three
approaches, along with a brief discussion of load balancing with the Oracle HTTP Server.

2.4.3.1 Hardware load balancer

A hardware load balancer works by receiving a request from an end user and then forwarding the request to a clustered
Oracle Application Server instance. Hardware load balancers support various forwarding algorithms, including the
following:

Fastest Response

Forwards a request to the application server that responds the most quickly

Round Robin

Forwards a request to the next application server in a predetermined list of servers

Least Connections

Forwards a request to the application server with the fewest number of connections

Calculated Ratio

Forwards a request to the application server with the best calculated ratio based on predetermined statistics

Geographic Location

Forwards a request to the application server located closest to the requestor

Hardware load balancers are preferred because they are faster and have redundant components that eliminate
downtime caused by mechanical or electrical failure. Figure 2-3 shows a typical hardware load balancer configuration.
In this figure, an end user sends a request to a hardware load balancer. The hardware load balancer forwards the
request to a clustered instance of OracleAS Web Cache. OracleAS Web Cache returns cached content, if available. If
cached content isn't available, it forwards the request on to a clustered instance of Oracle Application Server.

Figure 2-3. A hardware load balancer example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. A hardware load balancer example

Examples of hardware load balancers include the following products:

F5 Networks' BIG-IP

See http://www.f5.com/f5products/bigip/

Nortel Network's Alteon

See http://www.nortelnetworks.com/products/01/alteon/

2.4.3.2 Operating system load balancer

Some operating systems provide a built-in load-balancing mechanism. In particular, Microsoft Windows Advanced
Server allows you to forward requests to different machines that share the same IP or MAC level address. In addition,
load-balancing software applications are available for almost all operating systems.

2.4.3.3 OracleAS Web Cache load balancer

OracleAS Web Cache can be used as a load balancer for clustered Oracle Application Server instances. When OracleAS
Web Cache acts as a load balancer, it uses a Weighted Available Capacity algorithm to determine the particular Oracle
Application Server instance to which it will forward the request. This algorithm uses a weight, assigned by an
administrator, to distribute the load unequally among instances. If the weighted available capacity is the same,
OracleAS Web Cache uses a Round Robin algorithm.

If an Oracle Application Server instance fails, OracleAS Web Cache redistributes requests to the remaining instances.
Meanwhile, OracleAS Web Cache intermittently polls the failed server until it is once again available to process requests.
At that time, the failed server is included in the load-balancing algorithm.

For more information about this capability of OracleAS Web Cache, see the detailed discussion in Chapter 7.

2.4.3.4 Oracle HTTP Server load balancer

While our discussion so far has focused on load-balancing requests to clustered Oracle Application Server instances,
another type of load balancing may also be taking place. Oracle HTTP Server's mod_oc4j load-balances requests among
multiple JVM processes in an OC4J instance or among OC4J instances in a cluster.

If an OC4J instance is configured to use two or more JVM processes or is part of a cluster, mod_oc4j routes a stateful
request to the JVM that last processed the stateful request. If the JVM that last processed a stateful request has failed,
the request is rerouted using a predetermined algorithm to another OC4J instance's JVM process that is part of the
same island as the failed JVM.

Three algorithms are available for rerouting a request to a failed OC4J instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Round Robin

As usual with a Round Robin algorithm, mod_oc4j uses the next OC4J instance (and the next JVM process in the
same island), remote and local to the Oracle Application Server instance, on a predetermined list.

Random

With the Random algorithm, an OC4J instance is picked randomly from the predetermined list.

Metric-Based

This algorithm uses OC4J performance metrics to determine where to route a request.

All these algorithms can be configured with local affinity, so a local OC4J process is used in favor of a remote process.
Similarly, the Round Robin and Random algorithms can employ a weighting factor to determine which OC4J process is
chosen.

Stateless requests are always processed using one of these predetermined algorithms. You can configure the desired
algorithm, along with all the other settings, using Oracle Enterprise Manager.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.5 High Availability
The availability of an application server can be measured by comparing the actual amount of time it is operational
against the total time it could possibly be available. Highly available systems may need to operate 100% of the time. To
accomplish that level of availability, you must address every possible single point of failure. In addition to hardware and
software failures, you must have a way to continue operations while both the hardware and software are being
upgraded or replaced.

Oracle Application Server solves these high-availability problems with clusters and with two different failover solutions
for the OracleAS Infrastructure.

2.5.1 Oracle Application Server Clusters

We introduced the concept of clusters earlier in this chapter. Although both a farm and a cluster are made up of
multiple instances of Oracle Application Server components, a cluster is a more integrated grouping than a farm.

In a cluster, the individual instances of a component are aware of each other, and they cooperate to provide service.
The OPMN server keeps the members of a cluster informed as to the status of other members in that cluster, so if one
member fails, the others pick up its load. The members of a cluster are designed to be interchangeable, providing a
higher level of availability than an individual instance or a group of instances in a farm.

You can create clusters of OracleAS Web Cache instances or Oracle Application Servers. As mentioned earlier, a cluster
requires some type of load balancer in front of the cluster to distribute the load. The redundant nature of an individual
instance within a cluster makes clustering a way to provide a high-availability solution.

Oracle Application Server can also run on hardware clusters. These clusters provide an underlying redundancy and
transparency for anything running on them, including Oracle Application Server.

2.5.2 Infrastructure Failover

Oracle Application Server clusters deliver high availability with their own software. However, these clusters don't
provide high availability for the OracleAS Infrastructure. Because all Oracle Application Server components need to
access the infrastructure and because the availability of an entire system is dependent on every part of the system, this
deficiency can imperil the availability of your application server.

To address this risk, you can implement Oracle Application Server 10g with either of two types of failover solutions:

Oracle Application Server Cold Failover Clusters

This approach uses hardware clustering to provide some measure of availability protection.

Oracle Application Server Active Failover Clusters

This approach provides a higher level of availability and combines it with increased scalability for your
infrastructure.

2.5.2.1 OracleAS Cold Failover Clusters

The OPMN server manages most Oracle Application Server components and services, and this server can automatically
restart any failed processes. This capability protects against the failure of individual components of Oracle Application
Server. However, larger problems, such as server failure, are beyond the scope of OPMN. Thus, Oracle Application
Server provides an availability solution, OracleAS Cold Failover Clusters, that guards against these larger-scale failures.

OracleAS Cold Failover Clusters are built on capabilities inherent in a hardware cluster. A hardware cluster facilitates the
sharing of resources between nodes, provides a health-monitoring heartbeat, and supports failover from one node to
another without impacting users. Hardware clusters provide a "virtual IP" address, which it can associate with either
node in the cluster. Users don't know which physical node is servicing requests for the virtual IP address.

If you are familiar with database availability concepts, you will recognize the term cold failover. With Oracle Application
Server, the term has the same meaning it does for a database: one identical set of resources stands by, waiting for a
failure in the primary system. If that system fails, the cluster starts to use the standby system. Figure 2-4 shows the
architecture of a typical OracleAS Cold Failover Clusters implementation before a failure has occurred.

Figure 2-4. OracleAS Cold Failover Clusters prefailure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-4. OracleAS Cold Failover Clusters prefailure

Because many Oracle Application Server components depend on the infrastructure for continuous operation, OracleAS
Cold Failover Clusters are designed to protect the components of the OracleAS Infrastructure. If an active node in an
OracleAS Cold Failover Cluster configuration fails, the IP address is switched to the failover node, and the infrastructure
processes are started on that node. Once these processes are available, middle-tier components can access the new
infrastructure, as shown in Figure 2-5. Because the storage for both infrastructure nodes is shared, there is no need to
recreate or migrate the information in the database.

Figure 2-5. OracleAS Cold Failover Clusters post-failure

You can have instances of other Oracle Application Server and OracleAS Web Cache coexisting on either node in the
OracleAS Cold Failover Cluster. However, no failover for these instances is supported. You can group the instances in
their own cluster, but the operation of these clusters is separate from the operation of the OracleAS Cold Failover
Cluster.

2.5.2.2 OracleAS Active Failover Clusters

Oracle Application Server 10g, in its initial release, provides limited (i.e., beta-style) support for another type of failover
solution: Active Failover Clusters. OracleAS Active Failover Clusters uses the same architecture as OracleAS Cold
Failover Clusters.

At the time of this writing, OracleAS Active Failover Clusters is still in limited release. By
the time you read this book, OracleAS Active Failover Clusters is likely to be available for a
number of platforms for Oracle Application Server. For up-to-date information on certified
platforms, please see
http://otn.oracle.com/products/ias/hi_av/10g_904_HA_Certification.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The big difference between OracleAS Active Failover Clusters and OracleAS Cold Failover Clusters is that with OracleAS
Active Failover Clusters, you don't have to have one node in the hardware cluster sitting around waiting for a failure.
Both infrastructure nodes can service infrastructure requests. Because both nodes in an OracleAS Active Failover
Cluster are servicing requests, OracleAS Active Failover Clusters can provide some scalability, in addition to the
availability offered by both types of failover clusters.

The architecture for an OracleAS Active Failover Cluster configuration is shown in Figure 2-6.

Figure 2-6. OracleAS Active Failover Clusters architecture

The major differences between this configuration and a OracleAS Cold Failover Cluster configuration are the following:

An OracleAS Active Failover Cluster configuration uses a hardware load balancer in front of the active
infrastructure nodes.

The infrastructure uses Real Application Clusters (RAC) for its database.

Both nodes have the same infrastructure components running at the same time, and the load is split between the
infrastructure nodes. If one node fails, the failover is much faster and more transparent than it is for OracleAS Cold
Failover Clusters.

OracleAS Active Failover Clusters use a RAC database to provide scalability and availability for the OracleAS Metadata
Repository. RAC is Oracle's clustered database solution. It runs on a hardware cluster and allows any application to run
against a clustered database without modification. For more information on RAC, please refer to the discussion in our
companion database book Oracle Essentials (O'Reilly).

In addition to using RAC for the OracleAS Metadata Repository, OracleAS Active Failover Clusters have duplicate
infrastructure processes, such as those used for identity management, running on each node in the cluster. All nodes in
an OracleAS Active Failover Cluster must have virtually identical configurations, down to the pathnames for Oracle
HOME directories.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.6 Oracle Application Server Applications
The following sections provide brief descriptions of the applications that are part of the architecture of Oracle
Application Server. Each application, or set of applications, is covered in it own chapter; the following sections focus on
how they fit into the overall architecture of Oracle Application Server.

2.6.1 OracleAS Portal

OracleAS Portal performs its basic construction of portal pages in the Portal Page Engine, which is a J2EE application.
OracleAS Portal also makes extensive use of the PL/SQL language in the construction of its pages. OracleAS Portal is
closely integrated with the OracleAS Single Sign-on capability provided by the Oracle Identity Management
infrastructure, so an OracleAS Portal installation requires an infrastructure.

Chapter 13 describes OracleAS Portal in detail.

2.6.2 OracleAS Wireless

Oracle AS Wireless is designed to enable wireless devices such as cell phones, messaging devices/pagers, and wireless
Internet-connected laptops to connect to an application that provides content. The Oracle Application Server
architecture includes a device/network gateway provider, an XML application framework, and an adapter that enables
communication to and from the application leveraging a multichannel server.

Chapter 14 describes OracleAS Wireless and its various mobile components in detail.

2.6.3 Business Intelligence

The primary business intelligence (BI) components available in Oracle Application Server are OracleAS Discoverer and
OracleAS Reports Services. Oracle Application Server also includes an OracleAS Personalization component that
leverages data mining features to present web-site pages based on previously analyzed tendencies of visitors.

OracleAS Discoverer tools enabled for Internet access include Discoverer Plus and Discoverer Viewer:

Discoverer Plus

This tool is a full-featured ad hoc query and analysis tool. It is initiated using a downloaded Java applet. After
the initial applet download, the applet resides in local cache.

Discoverer Viewer

This tool can view intelligence query results and charts generated by Discoverer Plus in a browser. It is servlet-
based and leverages Discoverer Services.

Both tools take advantage of the fact that Oracle Application Server contains a data cache, which enables rapid data
manipulation without the need to requery the back-end database. The database tier of the architecture contains
Discoverer workbooks, the End User Layer, and, of course, the data.

The OracleAS Reports Services component lets you create high-quality printed and web-based reports. OracleAS
Reports Services uses Java servlets (known as Java servers) to receive requests and then direct the requests to a
runtime engine that provides the requested functionality. You can configure the number of runtime engines for
OracleAS Reports Servers initially started, the maximum number of engines that can be running at one time, and the
idle time before an engine is shut down. Multiple OracleAS Reports Servers can provide load balancing, although not
failover.

Chapter 9 describes OracleAS Reports Services in detail, and Chapter 12 describes OracleAS Discoverer and other
business intelligence components.

2.6.4 OracleAS Forms Services

OracleAS Forms Services can build applications that provide an interactive graphical interface for data entry with
support for data validation. As with OracleAS Reports Services, OracleAS Forms Services use Java servlets to receive
requests and direct them to a runtime engine. Each user has a matching runtime process, which is also a Java servlet.
As with OracleAS Reports Servers, you can have multiple OracleAS Forms Servers that can provide load balancing,
although not failover.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

although not failover.

Chapter 9 describes OracleAS Forms Services in detail.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Architecture
If you understand the architecture of Oracle Application Server, you will have an excellent framework for understanding
how the product works. Learning how the various components of Oracle Application Server interact can help you avoid
many potential problems as you get the product up and running and provide a foundation that lets you quickly identify
the root cause of any problems you do encounter.

Your particular role may determine what you want to learn from this chapter:

Programmer

As a programmer, you may want to understand how Oracle Application Server handles each incoming request
so that you can properly troubleshoot problems.

Designer

As a designer, you will want to know what features are available so that you can provide the best user
interface.

Systems analyst or architect

As a systems analyst or architect, you may want to know what overall functions can be accomplished using the
product.

Manager

As a manager, you may need a high-level understanding of Oracle Application Server so that you can compare
it to similar middleware product offerings.

To best serve all these audiences, this chapter covers the big picture. We identify the major components of Oracle
Application Server and explain how they interact. We also examine the product's infrastructure and the management
and high-availability options available with it. Our goal here is to give you enough information on each individual
component (most of which were introduced very briefly in Chapter 1) so that you can understand how Oracle
Application Server works as a whole. You will see that some of Oracle Application Server's functionality is actually
implemented by J2EE, by PL/SQL, or by hybrid applications that are implemented using Oracle Application Server's core
components. Subsequent chapters provide more detailed discussions on each component introduced here.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Application Server Control
The Application Server Control tool is the main administrative console for Oracle Application Server. An Application
Server Control instance is installed in each application server home and provides a web-based interface for
administering that application server. Figure 3-1 shows the Application Server Control home page.

Figure 3-1. Application Server Control home page

From the home page, you can:

Start, stop, enable, disable, and configure Oracle Application Server components and view their status

Create additional OC4J components

Deploy applications

View pie charts showing CPU and memory usage

Monitor hosts

Connect to links to manage J2EE applications, ports, and infrastructure

View log files, and manage the log repository

For example, you can examine the Log Repository (described later) through a Log Viewer by selecting the Logs link
appearing in the upper right on this page.

Application Server Control provides a wide spectrum of capabilities. The following sections look at a few typical
administrative functions available through this tool.

3.1.1 Application Server Control Management Stack

The Application Server Control management stack that enables the management functions you can perform with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Server Control management stack that enables the management functions you can perform with
Application Server Control consists of the following services, introduced in Chapter 2:

Distributed Configuration Management

DCM manages configurations tied to a specific OracleAS Metadata Repository and can propagate Oracle
Application Server configurations across an entire cluster.

Oracle Process Manager and Notification

OPMN provides process control (e.g., starting and stopping application servers) and process monitoring for
application servers.

Dynamic Monitoring Service

DMS collects performance data, including OC4J application and OracleAS Web Cache performance. The data is
collected by the Oracle Enterprise Manager 10g Management Agents for use in real-time performance
monitoring and for historical monitoring in Grid Control.

Application Server Control uses these facilities in a variety of ways. For example, you can use Application Server Control
to configure the two key Oracle Application Server business intelligence components, OracleAS Discoverer and OracleAS
Reports Services. You can also monitor OracleAS Reports Services performance, and can view and manage OracleAS
Reports Services job queues.

3.1.2 Managing Ports

You can use Application Server Control to reconfigure ports, used by Oracle Application Server components and
services, and allocated during installation. You can also view or change these ports. Links to the Oracle Application
Server documentation make it easy to prevent conflict with other ports on your system by determining ports that may
be affected by your changes.

3.1.3 Viewing and Managing Log Information

During normal operation, various Oracle Application Server components populate logs with information—for example,
startup and shutdown information, warnings, and errors. You can use Application Server Control to view this
information.

Oracle Application Server components that generate log files include:

Core components

BC4J, OC4J, Oracle HTTP Server, and OracleAS Web Cache

Management and installation components

Oracle Enterprise Manager 10g, DCM, OPMN, and the Universal Installer

Deployable tools and enabling technology components

OracleAS Portal, OracleAS Discoverer, OracleAS Forms Services, OracleAS Reports Services, and OracleAS
Wireless

Using the Logs link in Application Server Control, you can easily search for log files related to any of these components.
You can also browse these logs directly from the Application Server Control user interface to help you diagnose
problems.

You have the option of consolidating log information into a single repository, and doing so simplifies the diagnostic
process when you are analyzing multiple components. The Log Loader, started through Application Server Control,
initiates and populates the Log Repository. Warning and error messages that are gathered here are used when you
troubleshoot problems that can occur in specific Oracle Application Server components. You'll also find these useful
when reporting problems to Oracle Support (described in the last section of this chapter).

3.1.4 Administering J2EE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can perform a variety of J2EE administration functions by invoking the OC4J home page through Application Server
Control. These include:

Adding OC4J instances (via a wizard)

Configuring J2EE resources, J2EE application security, Java Messaging Services, and other J2EE services

Deploying and monitoring J2EE and Web Services applications (via a wizard-based interface)

3.1.5 Administering Clusters

You can also use Application Server Control to manage a group of application servers hosting a common set of OC4J
applications as a cluster. Setting up a cluster allows you to modify common configuration settings only once for all
cluster members. You can also deploy applications across the cluster in a single step. The architecture of clusters is
described in Chapter 2.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Grid Control
The web-based Grid Control tool is a key part of Oracle Enterprise Manager 10g. You can use this tool to manage and
monitor multiple application servers through a single interface. This interface provides a single view of all the
application servers along with links to each server's Application Server Control. Because other infrastructure
components are also monitored, Grid Control gives you a way to measure and assure levels of application service that
leverage multiple components.

While Application Server Control is used for administrative tasks on an individual application server or cluster, Grid
Control can manage multiple application servers remotely and/or through firewalls.

As mentioned earlier, you can also use Grid Control to manage databases, Oracle
Collaboration Suite, and Oracle E-Business Suite. However, the focus in this section is on
its use with Oracle Application Server.

3.2.1 Grid Control Infrastructure

The Grid Control infrastructure includes the following components used to manage Oracle Application Server:

Grid Control Console

The console, sometimes called the central console, allows you to view, monitor, and manage application servers
as well as other Oracle components.

Oracle Management Service

Oracle Management Service, a J2EE application deployed on Oracle Application Server, renders Oracle
Enterprise Manager's HTML user interface.

Management Repository

This central repository of enterprise-wide management data includes many types of data—for example,
hardware and software configuration data leveraged in life-cycle, cloning, and patch management. It also stores
historic performance and availability data used for trend analysis and reporting.

Oracle Management Agents

These agents monitor the application servers and communicate the results of this monitoring back to the Oracle
Management Service. They also are responsible for running jobs for the Application Server Control tool. You
deploy one Management Agent on each host. The agent will then monitor all components on that host, including
all installed Oracle software and non-Oracle components using Oracle Enterprise Manager 10g's extensibility.

The Grid Control architecture for managing multiple application server targets is shown in Figure 3-2. The protocol used
may be either HTTP or HTTPS.

Figure 3-2. Grid Control architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Management Agents are available for the wide variety of operating systems on which Oracle Application Server runs
and are responsible for automatic service discovery, performance monitoring, and job execution. Management Agents
can also send Simple Network Management Protocol (SNMP) traps to performance monitors in tools such as CA
Unicenter Network and Systems Management, the HP OpenView Operations console, and IBM Tivoli. Agents can also
perform any generic response action, such as writing to a log file or another console's API (which allows Oracle
Enterprise Manager to integrate well with other management tools and procedures).

3.2.2 Using Grid Control

This section takes a closer look at managing Oracle Application Server through Grid Control. Logging into the console
brings you to the console home page. That page shows the status of all components in your environment, as well as
rollups of jobs, events, critical patches, and deployments.

Figure 3-3 shows Grid Control's monitoring of an Oracle Application Server infrastructure. The pull-down Deployments
Summary selected in this figure lists all the Oracle Application Server instances installed. You can also choose to view
only the status of application servers by choosing only Application Servers under the View dropdown list on the upper
left.

Figure 3-3. Oracle Enterprise Manager 10g's Grid Control console home page

You can quickly search for all application servers by selecting Application Servers under Target Search. This results in a
list of all application server targets, including high-level statistics and status for each. Selecting a link to a particular
Oracle Application Server instance brings you to the Grid Control Application Server home page for that instance (see
Figure 3-4 for the top portion of how this page typically appears).

The Grid Control home page operates in a different way from the Application Server Control home page, which you can
access via the Administer link in the Related Links section.

Four links are shown, enabling you to quickly navigate the interface: Home (your initial location), J2EE Applications,
Web Applications, and Performance.

At the top of the console page, you will also find links to Setup (for setting up and managing additional administrators,
notification methods, etc.), Preferences (for example, notification schedules), Help, and Logout.

Figure 3-4. A portion of Grid Control's Application Server Control home page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-4. A portion of Grid Control's Application Server Control home page

Home page

This page is designed to give you a quick view of the status of an application server and is segmented into the
following areas: general characteristics (e.g., status, availability, URL, version, installation type, Oracle home,
and host links), an application URL response chart, a list of components (e.g., Oracle AS Web Cache, Oracle
HTTP Server), a list of current alerts (for parameters such as memory usage), a list of host alerts (for
parameters such as CPU utilization), and related links. The Host link takes you to the host home page where
you'll find performance and configuration information for the host, as well as a software inventory. Related links
allow you to access other areas, such as the patch list, metrics, manage metrics (with thresholds), alert history,
blackout history, monitoring configuration (if you have the OPERATOR TARGET privilege), and administration (a
login prompt for the Application Server Control tool will appear). Of course, many of these areas also include
additional drill-downs.

J2EE Applications page

This page is typically used to determine where J2EE application performance bottlenecks are. It displays a list of
J2EE applications, along with their total processing time, average servlet/JSP processing time, number of
servlets/JSPs processed, total servlet/JSP processing time, average EJB method execution time, number of EJB
methods executed, and total EJB method execution time. Because the screen shows resource usage, you can
drill down to find the source of bottlenecks.

Web Applications page

This page provides an overview of all monitored web applications and their status, as well as a summary of all
outstanding availability and transaction performance alerts. Drill-downs provide ASLM tools that enable you to
ensure high availability and optimal performance of web-based applications, as well as diagnose application
performance problems. The availability of web applications is defined by administrator-specified criteria that
determine whether your application is up. Application Service Level Management tools also let you monitor
application performance through a multidimensional approach: using synthetic transaction performance
monitoring, and measuring the actual application response times as experienced by your real end users. Once a
performance problem is detected, you can interactively trace transactions from the client through the middle
tier down to the SQL statement level, thus enabling you to quickly identify the components that may have
contributed to application bottlenecks. Historically, page performance is also traced through the J2EE activity
tiers, providing deep diagnostics that identify the processing time consumed at the JSP, servlet, EJB method,
and SQL statement levels.

Performance page

This page graphically shows charts of parameters such as CPU usage, memory usage, OracleAS Web Cache hit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This page graphically shows charts of parameters such as CPU usage, memory usage, OracleAS Web Cache hit
rate, HTTP response and load, HTTP server process usage, active HTTP connections, servlet response and load,
and number of active sessions. Refreshes can be manual or automatic at various intervals. Historical trending of
various time lengths can be viewed to trends of up to 31 days. Through various links you can identify top
servlets and top JSPs (servlets and JSPs can be ranked by requests processed, average processing time, or total
processing time).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 EM2Go
Although EM2Go isn't part of Oracle Application Server itself, Oracle Application Server administrators will find this
product very helpful in monitoring their targets while on the run. EM2Go is the mobile component of Oracle Enterprise
Manager 10g. It facilitates administrator access to a subset of the Oracle Enterprise Manager functionality through a
Pocket PC browser on a PDA device.

Because EM2Go leverages the architecture of Oracle Enterprise Manager 10g, no additional infrastructure is required to
start using the product. EM2Go includes the following:

 Oracle Management Service, a J2EE web application hosted by Oracle Application Server 10g

A Management Repository for its persistent data store

Distributed, lightweight Oracle Agents that monitor all services on the host and execute remote operations on
managed services

Communication between EM2Go and Oracle Management Service, and between Oracle Management Service and the
Agents, is performed via HTTP or HTTPS.

Oracle Enterprise Manager automatically gathers and evaluates diagnostic information from Oracle Application Server
systems distributed across the enterprise. As with all services managed by Oracle Enterprise Manager, an extensive
array of Oracle Application Server performance metrics are automatically monitored against predefined thresholds, and
alerts are generated when metrics exceed these thresholds. The EM2Go home page displays all the alerts, enabling the
administrator to drill down into the alert details to investigate what triggered the problem. Using EM2Go, the
administrator can monitor the availability of the application servers. The diagnostic reports for CPU usage and memory
usage are also available from your device, providing a graphical view of current or historical data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4 Optional Oracle Enterprise Manager Application Server Packs
Two add-on packs, available through Oracle Enterprise Manager 10g, provide you with additional Oracle Application
Server management capabilities. They supplement the standard functionality by allowing you access to specific,
functional areas within Grid Control.

These packs are particularly useful if you need to monitor multiple Oracle Application Server components. Monitoring
multiple components will help you understand such characteristics of your environment as web application availability,
end-user performance, transaction performance, on-demand cross-tier transaction performance, and historical cross-
tier application performance.

Oracle Enterprise Manager 10g Application Server Diagnostics Pack

This pack helps you to identify performance bottlenecks and provides tools for resolving problems. It enables
ASLM through end-to-end analysis of performance across multiple components. You can measure the
performance seen by end users, web server performance, and transaction processing times. By comparing
these different measurements, you can quickly diagnose where the source of a performance problem lies. You
can also trace transaction paths, identify bottlenecks such as the slowest URLs and problematic EJBs and SQL,
and understand performance through other components including servlets, JSPs, and JDBC.

Oracle Enterprise Manager 10g Application Server Configuration Management Pack

This pack allows you to track current Oracle Application Server hardware, operating systems, patches, and
policies, as well as other current software installations and patches. It also enables automated cloning and
patching.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5 Backup, Recovery, and Security Management
The management tasks discussed in previous sections represent only a portion of those that must be performed at a
typical site. Many other management tasks are ordinarily the responsibility of your organization's database
administrator (DBA). However, backup, recovery, and security management are often the responsibility of the Oracle
Application Server administrator, so the following sections will touch upon these tasks. For details, consult the Oracle
documentation.

3.5.1 Performing Backup and Recovery

Backing up your configuration and application data in such a way that it can be recovered in the event of a failure or
error is an essential maintenance task for any administrator. When you back up Oracle Application Server, make sure
that your backup procedures back up both Oracle Application Server itself and the contents of the Oracle Application
Server infrastructure (if used); that infrastructure is frequently housed in an Oracle database.

A complete backup of your Oracle Application Server environment includes the following:

Configuration files for the instance, the Oracle software files, and system files.

Contents of the OracleAS Metadata Repository (if used); remember that the repository is an integral part of the
infrastructure.

Additional files associated with the Oracle environment, such as log files, configuration files for the database,
and other scripts and information used by Oracle Application Server components.

Make sure that your backup plan includes backup steps for all this information.

3.5.1.1 Types of backup

As with the Oracle database, two basic types of backup are available for Oracle Application Server:

Complete, or cold, backup

With this type of backup, you back up all Oracle HOME directories in the middle tier, including the Oracle HOME
for the Oracle database used for the infrastructure, a complete cold backup of the OracleAS Metadata
Repository, and a complete backup of all Oracle system files.

Online, or incremental, backup

With this type of backup, you back up only the configuration files that have changed since the time of the last
backup and perform an online backup of the OracleAS Metadata Repository.

With Oracle Application Server, as with any software, make sure to perform periodic complete backups as well as more
frequent incremental backups. If you make a major change to your Oracle Application Server environment, take that
opportunity to perform a complete backup to avoid losing the effects of this change.

Oracle Application Server farms and clusters are managed using DCM. You can use DCM directly or invoke it via
Application Server Control. The DCM requires a repository, either in the database or as a set of files. If you use file-
based DCM, you also have to back up (and subsequently recover) the files used as part of your backup procedure.
These files are located on the repository host for the cluster or farm. If you use a database for the configuration
information, standard backup procedures will also back up this information.

DCM lets you create an archive of a particular configuration. You can use this archive as a
way to save known "good" configurations. This allows you to restore previous
configurations if you need to do so later.

3.5.1.2 OracleAS Backup and Recovery Tool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5.1.2 OracleAS Backup and Recovery Tool

The OracleAS Backup and Recovery Tool is a Perl script that backs up configuration files and the Metadata Repository.
This tool is included on the OracleAS Application Server Repository Creation Assistant (OracleAS RepCA) CD set that
comes with Oracle Application Server. The OracleAS Backup and Recovery Tool automates the process of backing up all
the individual entities needed for a complete Oracle Application Server backup, as described in the previous section.

The OracleAS Backup and Recovery Tool has its own set of configuration files that indicate which directories it uses to
hold the different portions of the backup. You need to install the tool for each infrastructure and middle-tier server in
your environment, and edit the configuration for each instance of the tool. You can add files, directories, or groups of
files and directories (using wildcards) to the configuration file.

3.5.1.3 Backup

You can use the OracleAS Backup and Recovery Tool to perform either complete or incremental backups of
configuration files, the OracleAS Metadata Repository, or both. You can specify the level of an incremental backup,
where each level backs up the files that have changed since the time of the last backup at the same level.

The OracleAS Backup and Recovery Tool doesn't back up or recover a OracleAS Metadata Repository that was added to
an existing database. You have to handle this database through standard Oracle backup and recovery procedures in
coordination with the BRT.

3.5.1.4 Recovery

You can use Oracle Application Server backups to recover your installation, whether or not you have experienced a
failure that has corrupted the Metadata Repository.

If the repository has been corrupted, you have to recover it to a point in time just before the corruption occurred. If
only configuration files have been lost, you can simply restore them using the OracleAS Backup and Recovery Tool. The
Oracle Application Server documentation contains complete instructions for using this tool, as well as information that
can help you determine which type of recovery operation you need to perform.

3.5.2 Implementing Secure Access and Management

If you are performing security management, you must have an appropriate username and password to access the
Application Server Control or Grid Control tools:

Application Server Control

Use the ias_admin username and supply your assigned password to gain access to Application Server Control.

Grid Control

Use your Oracle Enterprise Manager 10g username and password to gain access to Grid Control.

If you plan to use the Oracle Internet Directory, the default for any password that you
create must be at least five characters with at least one numeric character.

The OracleAS Metadata Repository and the Grid Control Management Repository are stored in Oracle databases. Oracle
database administrators or database security administrators typically uses a DBA username (e.g., SYS) and connect as
SYSDBA to start these database instances and perform other operations. Doing so provides the administrator with the
necessary privileges (the rights to execute certain SQL statements) that have been assigned to the DBA roles (named
groups of privileges).

Administrators who access Grid Control only for the purpose of monitoring individual application servers may not be
provided these extended privileges or given login access to the Application Server Control tool. The details, however,
depend on how your organization decides to maintain security and grant access.

Most users of Oracle Application Server simply need user authentication. For large implementations, you may want to
configure global authentication across these distributed systems for users and Grid Control administrators and their
roles. Global authentication allows you to maintain a single authentication list for multiple distributed servers and to
implement OracleAS Single Sign-On.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

implement OracleAS Single Sign-On.

You can use OracleAS Single Sign-On for authentication when logging into Grid Control.
You can also secure the communication between agents and Oracle Management Services
so that HTTPS is used.

Chapter 4 describes Oracle Application Server user security and identity management in more detail. But for now, be
aware that in typical three-tier implementations, Oracle Application Server runs some of the application logic, serves as
an interface between the clients and database servers, and provides the Oracle Identity Management infrastructure.
The Oracle Internet Directory provides directory services running as applications against an Oracle database. The
directory synchronization service, provisioning integrated service, and delegated administrative service are part of the
Oracle Internet Directory. Security in middle-tier applications is controlled by applications' privileges and by preserving
client identities through all three tiers. You can use the Application Server Control tool to configure and change
configurations of the Oracle Internet Directory and OracleAS Single Sign-On.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.6 Working with Oracle Support
No matter how much you know about Oracle Application Server, there are bound to be some issues that you can't
resolve without help from Oracle Corporation. Part of the job of the Oracle Application Server administrator (or the DBA
serving in that role) is to help resolve those issues. Oracle offers several levels of support:

Basic product support

Advanced support

Incident support

Each support option costs extra, but regardless of your support level, you can get the most from Oracle by
understanding how to best work with them.

Resolving problems with the assistance of Worldwide Customer Support Services can initially be frustrating to novices
who report problems. You may be required to provide a lot of detailed technical information as part of this process.
Oracle's mechanism for responding to a reported Oracle Application Server problem is called a Service Request (SR)—
formerly known as a Technical Assistance Request (TAR). Oracle responds to Service Requests based on the priority or
severity level at which problems are reported:

Priority level 2

If the problem is impacting your ability to complete a project or do business, you should report the problem as
priority level 2 to assure a timely response. If the problem is initially assigned a lower level, and the response
hasn't been adequate, you should escalate the problem-resolution priority.

Priority level 1

If business is halted because of the problem, you should report the problem as priority level 1. However, note
that if you report a problem at level 1, you must be available for a callback (even after hours). Otherwise,
Oracle will assume that the problem isn't as severe as initially reported, and they may lower the priority level
for resolution.

You can report problems via phone, via email, or at the MetaLink web site. MetaLink support, which is included with
basic product support, has become increasingly popular in recent years. With MetaLink you can quickly get answers to
problems similar to your own. You may save time this way or even avoid the need for a physical response. MetaLink
provides proactive notifications, customized home pages, technical libraries and forums, product life-cycle information,
a bug database, and the ability to log SRs (TARs).

When you contact Oracle Support, you need your Customer Support Identification (CSI) number. Oracle Sales
Consultants can also provide advice regarding how to report problems. In addition, Worldwide Customer Support
Services offers training regarding effective use of their services.

Oracle Support issues MetaLink Notes whenever software bugs or vulnerabilities are discovered, and issues appropriate
patches. Oracle Enterprise Manager 10g's Grid Control tool can automatically connect to MetaLink to provide you with
up-to-date patch availability information specific to your installation. You can automatically gather patch-level
information about your Oracle Application Servers using the enterprise configuration-management capabilities in Grid
Control (viewable by selecting the Deployments tab, shown in Figure 3-5). Here you'll also find a link to lists of critical
patch advisory alerts and the patches that should be applied in response to those alerts. You can then select the
patches, stage them, and install them through Oracle Enterprise Manager's job system.

Figure 3-5. Grid Control configuration and patch management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Systems Management
Many Oracle Application Server users aren't aware of all the management activities that go on around them. But
comprehensive and effective systems management is vital to providing a reliable, available, and secure environment.
Without this management, even the most highly functional environment may not be optimally implemented or used. In
Oracle Application Server, the focus of systems management is Oracle Enterprise Manager 10g.

Oracle Enterprise Manager 10g is the latest version of Oracle Enterprise Manager, a management tool framework with a
graphical user interface that can manage a variety of Oracle products, including Oracle Database, Collaboration Suite,
E-Business Suite, and, of course, Oracle Application Server. Oracle distributed the first version of Oracle Enterprise
Manager with Oracle7 and added a browser-based Oracle Enterprise Manager console (built with Java) with Oracle8i
and an HTML console with Oracle9iAS.

Every time a new Oracle product or product version is introduced, the new features and capabilities also introduce new
management challenges. In the past, keeping up with this ever-increasing list of features required a fairly steep
learning curve for novices. Recently, however, Oracle has simplified management by providing self-managing and self-
tuning features in its products and by implementing more automated management facilities in Oracle Enterprise
Manager 10g.

Our focus in this chapter is the use of Oracle Enterprise Manager 10g in managing Oracle
Application Server. For more general information about Oracle Enterprise Manager 10g,
consult the Oracle documentation. See the Appendix for specific references for Oracle
Enterprise Manager 10g and other products described in this chapter.

Two basic tools are available through Oracle Enterprise Manager 10g that allow you to manage Oracle Application
Server: Oracle Enterprise Manager 10g Application Server Control, which comes as part of Oracle Application Server
10g, and Oracle Enterprise Manager 10g Grid Control, Oracle's management solution for your entire Oracle
environment, including Oracle Application Server. (Throughout this book we refer to these tools simply as Application
Server Control and Grid Control.)

Application Server Control

This GUI tool is the standard administrative console for Oracle Application Server. When you install Oracle
Application Server, an Application Server Control instance is installed for each individual application server you
manage. You can use the console to provide a variety of administrative tasks on that server. For example, you
can start and stop an application server, enable and disable Oracle Application Server components, modify
server configurations, create Oracle Application Server Containers for J2EE, deploy and monitor J2EE
applications, manage ports and clusters, and examine logs.

Grid Control

This GUI console provides additional management capabilities not available in Application Server Control. Grid
Control is typically installed on a single location to provide a central console that allows you to monitor and
access all the application servers in your environment. In addition to managing multiple application servers,
Grid Control also allows you to manage databases, applications, and hosts. Using Grid Control you can link to
and launch each Application Server Control. You can also perform historical monitoring, alerting, management
of jobs and policies, Application Service Level Management (ASLM) and monitoring, and configuration
management.

Both Oracle Application Server 10g and Oracle Database 10g are designed to be deployable on computer grids
in which many servers are used and need to be managed. Grid Control allows you to perform a variety of grid
management tasks such as resource pooling, provisioning of computer resources, dynamic workload
management, and dynamic control of changing grid components. While Grid Control is designed particularly to
simplify grid management, it also greatly simplifies the management of more traditional Oracle multitier
implementations.

This chapter briefly describes the use of Application Server Control and Grid Control. It also discusses other
management functions—backup, recovery, and security—that are the responsibility of the Oracle Application Server
administrator. It concludes with a discussion of working with Oracle Support to resolve system management problems
that may arise. You will need to understand each area if you are going to design and implement effective management
strategies for your own Oracle Application Server environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Oracle Application Server Security Objectives
Oracle Application Server is designed to provide both basic and advanced security services while adhering to security
standards. Oracle Application Server provides the following security services:

Authentication

Verifies the identity of users and systems requesting applications, resources, and data (see the sidebar,
"Identity Management").

Authorization

Provides system-level determination and granting of the proper level of privileges to users or systems, thus
possibly limiting their ability to use applications or resources or to manipulate data.

Access control

Grants access to applications, data, and other resources consistent with security policies based on the
authentication of the user, the authorization she has, and the type of access being requested.

Accountability and intrusion detection

Ensures that activities contrary to policies are detected and recorded.

Data protection

Protects data from access by unauthorized users via such mechanisms as encryption and integrity checks.

Identity Management
Identity management is a term used to describe the process of authenticating users and maintaining
their identity over time and across multiple applications. Section 4.2.1, describes the framework used for
the centralized management of user security in many Oracle Application Server deployments. Some
Oracle Application Server components, such as OracleAS Reports Services and OracleAS Forms Services,
may be deployed using their own user management and security services. OC4J applications may also be
deployed using non-Oracle identity management services, such as Microsoft Active Directory, SunOne
(formerly iPlanet), and Netegrity SiteMinder. These third-party management services can be used with
Oracle Identity Management.

In managing Oracle Application Server, your security goal should be to deploy the product in such a way that it can
pass an independent security assessment. In such a secure deployment, you also need to consider coding practices,
eliminate single points of failure in the security mechanism, set minimal privileges as a default, and enable intrusion
detection to limit damage from security breaches. Those are extensive security topics that go well beyond the scope of
this chapter. See the Appendix, however, for additional sources of security information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Oracle Application Server Security Framework
Oracle Application Server provides a security framework that incorporates the following key components:

OracleAS Single Sign-On

Enables use of a single password for authentication when establishing an initial connection and transparent
authentication in subsequent connections. See the discussion of OracleAS Single Sign-On in Section 4.2.1.

Oracle Internet Directory

Used for authorization and user provisioning (e.g., supplying relevant user information needed for
authentication by other services). See Section 4.2.2.

Oracle HTTP Server

Based on Apache and includes its own basic security mechanisms to restrict access to directories or URLs. See
Chapter 5.

Java Authentication and Authorization Service

Enables secure access and execution of J2EE applications. JAAS is described in Section 4.2.3.

Oracle Application Server Certificate Authority

Used in the authentication process to ensure that entities such as users, databases, and clients are who they
say they are. See Section 4.2.1.2.

The discussion of these components in this chapter only scratches the surface. Consult the Appendix for references to
more detailed security-related documentation.

You may also consider using other Oracle Application Server components as you develop secure applications, such as
OracleAS Web Cache, OC4J, and OracleAS Portal. For information about OracleAS Web Cache, OC4J, and OracleAS
Portal, see Chapter 7, Chapter 6, and Chapter 13, respectively.

Figure 4-1 shows a typical Oracle Application Server security deployment architecture.

Figure 4-1. Oracle Application Server security deployment architecture

The Oracle HTTP Server shown in this figure relies on authentication methods that can restrict access to files and
services such as basic user authentication (and OracleAS Single Sign-On), client-supplied X.509 certificates, and
authentication by IP or hostname addresses. (Oracle Identity Management's role in authentication is described in the
next section.) The Oracle HTTP Server enables intrusion detection by logging authentication attempts. It also extends
the more generic Apache HTTP server through Oracle-specific mods such as the one for OracleAS Single Sign-On.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SSL connections are desirable in highly secure environments in which encryption and data integrity are mandated. SSL
connections rely on digital certificate authentication using the Public Key Infrastructure (PKI). (See Section 4.2.1.2.)
Because OracleAS Web Cache provides a caching front end to the Oracle HTTP Server and proxies requests to Oracle
HTTP Server where necessary, OracleAS Web Cache is typically the termination point for SSL connections. However,
OracleAS Web Cache can pass the contents of the SSL certificates to the Oracle HTTP Server for further use.

Additional advanced security mechanisms can be implemented with the Oracle HTTP Server. The SSL cryptographic
protocol protects data between the Oracle HTTP Server and web clients. Session renegotiation is supported in such a
way that different directories can have different degrees of encryption. Because SSL processing can consume a
significant portion of CPU resources, Oracle Application Server 10g allows for the use of external dedicated SSL
appliances to speed up the encryption process. SSL connections from the Oracle HTTP Server to OC4J are also
supported.

The security of J2EE applications using Web Services is usually dependent on the coding of the applications themselves.
But such applications can also be integrated as part of a more secure implementation using HTTP authentication, Oracle
Wallets (described in a later section), or the UDDI registry. Introduced in Chapter 1, UDDI is essentially a "Yellow
Pages" directory in which business entities can register themselves and the services they provide.

4.2.1 Oracle Identity Management

Oracle Identity Management provides user authentication, management, and authorization for Oracle Application Server
services. Specific components of Oracle Application Server, such as OracleAS Portal, OracleAS Forms Services, OracleAS
Reports Services, and OracleAS Discoverer, are designed to leverage Oracle Identity Management as well.

Oracle Identity Management includes the following services:

Oracle Internet Directory

An LDAP-compliant directory service for centralized user management that provides LDAP APIs for C, Java, and
PL/SQL.

Oracle Directory Provisioning Integration Service

A set of bidirectional services and interfaces that can notify applications and non-Oracle LDAP directories of
changes to user information. These services enable synchronization of the Oracle Internet Directory with other
repositories, non-Oracle directories, and metadirectories.

Oracle Delegated Administration Service

A part of Oracle Internet Directory providing trusted administration of directory information by users and
application administrators.

OracleAS Single Sign-On

A service providing OracleAS Single Sign-On access to applications accessed through Oracle Application Server
and other web applications.

OracleAS Certificate Authority

A service used for generating and publishing X509v3 certificates used in authentication based on a PKI.

The Oracle Internet Directory enables users to be defined by identity, credentials, profiles, and preferences in a single
and central location. All other Oracle Identity Management services rely on the Oracle Internet Directory to provide this
information.

As noted earlier, Oracle Identity Management isn't required for all Oracle Application Server deployments. For example,
a simple OC4J application might use other identity management services such as Microsoft Active Directory. In other
situations, you might choose to use the Oracle Internet Directory preconfigured for directory synchronization with
Microsoft Active Directory or other LDAP-compliant directories.

The challenge of managing multiple user accounts in a large organization can be mitigated
by using the Oracle Internet Directory for identity management. You can use the Oracle
Internet Directory to consolidate separated user definitions to a single location and also
synchronize passwords with non-Oracle Internet directories. For example, you can
synchronize the orclpassword attribute in the Oracle Internet Directory with the userpassword
attribute in SunONE/iPlanet.

Oracle calls this directory-based user management Enterprise User Security. It allows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle calls this directory-based user management Enterprise User Security. It allows
passwords to be maintained for application users in a central location. The identity
management infrastructure can also manage database roles and security clearances (for
use with the Oracle database's Label Security feature).

4.2.1.1 Oracle Identity Management and OracleAS Single Sign-On

Oracle Identity Management supports a variety of complex password policies. These fall into two categories:

Value-based policies (including minimum lengths and the presence of a minimum number of special characters)

 State-based policies (e.g., expiration and maximum number of retries)

Many users face a proliferation of passwords as they gain access to more applications and systems. Because it is so
easy for users to forget passwords when they have so many to remember, users may end up writing them down in
public places, thus creating a security risk. Oracle Identity Management can help lift this burden on users by enabling
deployment of single sign-on, allowing a single user and password combination across these applications and systems.

Follow these steps to set up a basic single sign-on system:

1. Install the identity management infrastructure database, database server, and single sign-on servers using the
Oracle Universal Installer.

2. Configure the HTTP servers in the single sign-on middle tier.

3. Configure the HTTP hardware load balancer or OracleAS Web Cache.

4. Configure the identity management infrastructure database single sign-on server to accept authentication
requests from an externally published address of the OracleAS Single Sign-On server.

5. Reregister the mod_osso (OracleAS Single Sign-On extension) to the OracleAS Single Sign-On middle tier.

Federated identities are supported in OracleAS Single Sign-On; these allow user identities to be authenticated from one
or more trusted authentication sources. Multilevel authentication is also supported and can grant higher privileges with
higher degrees of authentication through the use of certificates, which are described in the next section.

4.2.1.2 Certificates

Certificates are used in the authentication process to ensure that entities such as users, databases, and clients are who
they say they are. An OracleAS Certificate Authority (OCA) can grant a certificate that is signed by the OCA private key
and then publish the certificate with the entity's name and a public key. The certificate also usually includes information
about rights, uses, and privileges assigned, a serial number, and an expiration date.

Where data is encrypted using an owner's private key, it can be decrypted only with a matching public key. Similarly,
data encrypted using a public key (usually data to be shared with another entity) can be decrypted only with that
entity's matching private key.

The OracleAS Certificate Authority is critical to creating the public keys. The management of public keys is often said to
occur through a PKI.

4.2.1.3 Oracle wallets

You can use Oracle wallets as part of the enabling infrastructure in highly secure Oracle Application Server
implementations. A wallet is a password-protected container that stores private keys, certificates, and trusted
certificates needed by SSL.

Security managers can use the Oracle Wallet Manager to manage passwords, provide Triple-DES encryption for storing
private keys associated with X.509 certificates, store wallets in a Microsoft Windows registry, store X.509 certificates
and private keys in the PKCS#12 format, and store multiple certificates for each wallet (SSL, S/MIME signature, S/MIME
encryption, code-signing, and certificate authority signing). Wallets can be uploaded and retrieved from LDAP-compliant
directories.

4.2.2 Oracle Internet Directory

The Oracle Internet Directory is an LDAP-compliant directory service used for Oracle Application Server user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Oracle Internet Directory is an LDAP-compliant directory service used for Oracle Application Server user
management. The Lightweight Directory Access Protocol is a standard for directories of users and resources. As an
LDAP-compliant directory service, the Oracle Internet Directory can interact with other LDAP-compliant directories,
mentioned earlier in the description of the Oracle Directory Provisioning and Integration Service.

You may want to configure a highly available Oracle Internet Directory by deploying the Oracle Internet Directory
repository across multiple database instances in a RAC configuration. In such a configuration, multiple Oracle database
servers appear as a single instance. When you do this, you may also want to use a hardware load balancer as a front
end to the multiple Oracle Internet Directory instances. Using RAC and a load balancer can also provide a high-
availability OracleAS Single Sign-On service, or you can configure highly available OracleAS Single Sign-On using
failover to a standby machine or through Oracle Internet Directory replication.

If you build a RAC configuration, you should consider coordinating the issuing of certificates. For example, keeping
private keys in only one location is desirable for security. You can do this by storing the SSL certificate on a hardware
accelerator appliance. The SSL session key negotiation and symmetric encryption workload from the Oracle HTTP
Server or OracleAS Web Cache would also be handled on the appliance, resulting in better performance.

4.2.3 Java Authentication and Authorization Service

The Java Authentication and Authorization Service can ensure secure access and execution of J2EE applications. The
JAAS provider includes a Java standard framework and programming interface supporting user authentication,
authorization, and implementation of JAAS policies (permissions).

Two providers store users, roles, and JAAS policies:

XML file user manager

Supports role-based access control and authentication from XML files

LDAP user manager

Provides role-based access control and authentication using LDAP and the Oracle Internet Directory

J2EE applications can be integrated in an OracleAS Single Sign-On deployment model.

A J2EE application can use JAAS to restrict access to specific users based on the specific authorization permissions they
have been granted. For example, consider usage in a retail firm. A contract administrator determines which product
suppliers are allowed to deliver to retail store locations. The contract administrator user is given permission to use the
application to add suppliers and products to the database. JAAS enables authentication of the contract administrator's
login identification and the authorization needed to update supplier and product information. A store manager might use
the same application to monitor shipments from these suppliers to determine when to expect the arrival of inventory.
However, if that manager isn't permitted to negotiate contracts, he would not be given authorization to add suppliers or
products to the database.

For more information on JAAS and its use with OC4J, see Section 6.2.8 in Chapter 6.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Secure Deployment
To ensure security throughout your IT environment, you have to decide how you are going to deploy the components of
the overall environment. This section covers some of the considerations you need to keep in mind when implementing a
secure deployment of Oracle Application Server 10g, including the use of DMZs, the delegation of security privileges,
and the use of Oracle Enterprise Manager 10g to manage security.

4.3.1 DMZ Deployment

Oracle Application Server 10g enables deployment using a DMZ topology. In the context of computer networking, a
DMZ is a server placed between two firewalls and thus separated from the Internet and intranet(s). Its placement
means that the server exists in a secure buffer zone.

The word DMZ comes from a military term referring to a "demilitarized zone." DMZ was a
term used during the Korean War to indicate a no-man's land where troops residing in
North Korea and South Korea were not allowed to enter. The DMZ was a zone of security
created to prevent attacks or incursions from either side.

In one typical deployment, you might want to use a DMZ to separate an OracleAS Portal repository database from the
database containing business data. The DMZ prevents a hacker from gaining access to the OracleAS Portal password in
Oracle Application Server and then using the OracleAS Portal's DBA privileges to wreak havoc on corporate data. In
another typical deployment, you might use the DMZ topology for intrusion containment.

Figure 4-2 shows a typical DMZ deployment in an Oracle Application Server environment.

Figure 4-2. Oracle Application Server typical DMZ deployment

For details about DMZ deployment strategies, see the Oracle Application Server 10g Security Guide, a part of the
standard Oracle Application Server documentation set. (That manual, and many others, are referenced in the
Appendix.) In that guide, Oracle provides the following recommendations:

Make sure that all OracleAS Web Cache, HTTP servers, OracleAS Single Sign-On HTTP servers, HTTP load
balancers, and HTTPS-to-HTTP appliances reside in the DMZ.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

balancers, and HTTPS-to-HTTP appliances reside in the DMZ.

If direct Oracle Internet Directory access is needed from the Internet, place the Oracle Internet Directory
servers in the DMZ.

Don't allow J2EE servers to be directly accessible to the intranet. (Instead, place business logic behind a J2EE
firewall.)

Place databases containing metadata and the Oracle Internet Directory database behind a firewall in an
infrastructure DMZ.

Deploy OracleAS Portal on a single HTTP server with OC4J within the web server tier's DMZ; you can also
deploy OracleAS Discoverer, OracleAS Reports Services, and OracleAS Forms Services behind an OC4J firewall.

4.3.2 Delegation of Privileges

An Oracle Internet Directory infrastructure may be shared by administrators of applications in different business areas
or with different responsibilities. A delegation model provided in Oracle Application Server enables the delegation of
appropriate levels of privileges within a shared infrastructure.

Delegation is structured as follows:

The Oracle Internet Directory super user orcladmin creates an identity management realm, identifies the realm
administrator, and delegates all privileges to the realm administrator.

The realm administrator delegates roles for managing Oracle components and grants privileges associated with
those roles.

The context administrators, in turn, delegate Oracle Application Server roles.

Oracle Application Server user roles include installation administration, application administration, identity
management infrastructure administration, and Oracle Application Server application users.

4.3.3 Security Management Through Oracle Enterprise Manager 10g

Oracle Enterprise Manager 10g provides a single interface for managing multiple Oracle Application Servers through the
Application Server Control tool installed for each application server being monitored. We discussed Oracle Enterprise
Manager 10g, Application Server Control, and other system management tools in more detail in Chapter 3.

You can use Application Server Control for a number of different security management activities. For example, through
Application Server Control you can configure application security resources, including JAAS provider services. You can
also configure and modify the Oracle Internet Directory and OracleAS Single Sign-On. You can use the Application
Server Control Infrastructure page to change infrastructure services if you change the Oracle HTTP Server OracleAS
Single Sign-On port number on an identity management installation, the Oracle Internet Directory port number (non-
SSL or SSL), the Oracle Internet Directory Mode (dual-mode or SSL), or the host on which Oracle Identity Management
or the OracleAS Metadata Repository resides. If you do this, you must perform a variety of manual command-line tasks
to prepare the new infrastructure services before using Application Server Control to make the change (those tasks are
described in the Oracle Application Server 10g Administrator's Guide).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Security and Identity Management
In recent years, the increased accessibility of corporate data and business information via the Internet has been
accompanied by corresponding security threats. Every system is vulnerable to hackers. Some of these hackers are
criminals; some are pranksters. Either way, they can wreak havoc with corporate software and data.

Careful security planning and implementation is a key part of systems management. You need to control access to your
corporate applications and protect both applications and their underlying data from harm caused by both malicious
outsiders and careless insiders. Securing the Oracle Application Server environment is a multipronged effort, requiring
that you consider security in all parts of your overall Oracle component infrastructure: the Oracle Application Server,
the database, and any E-Business Suite applications deployed in your environment. In implementing a secure solution,
you also need to take non-Oracle components into account. For example, you should analyze the security of your web
browsers, assess underlying operating system vulnerabilities, determine whether your configuration requires a firewall,
and investigate the need for virtual private networks (VPNs).

This chapter focuses on how to implement Oracle Application Server as part of a secure infrastructure. We describe
components of the Oracle Application Server security framework that provide both the security and the identity
management needed for centralized user management and support for complex password management policies. We
conclude the chapter by briefly describing approaches and architectures for secure deployment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Apache Architecture
Before examining how Oracle has extended the Apache server for use in Oracle Application Server, you need to take
some time to learn about Apache's basic architecture. The Apache architecture (prefork model) consists of a parent
process that starts one or more child processes (Unix) or threads (Windows). The child processes each serve a single
request at a time. When a child process finishes serving a request, it once again becomes available to serve another
request.

A child process manages a request through its life cycle. The request life cycle can be broken down into phases. Each
request is taken through the life cycle phases until the request is completed, or until an error occurs. Figure 5-1 shows
the Apache request life cycle. Apache functionality is provided by modules that are plugged into an appropriate phase of
the request life cycle.

Figure 5-1. The Apache request life cycle

Modules are typically plugged in using an AddHandler or SetHandler directive within a URL mapping directive in the Apache
configuration file httpd.conf. A module has hooks in the form of callback methods that are implemented for the desired
phase of the life cycle. The URL directive activates the handler based on a particular characteristic of a request's URI.

At the end of each request, Apache logs the request URI to an access log file. A different access log can be created for
each URL mapping directive you specify in the configuration file. In addition, you can customize the format with
directives or replace the logging mechanism altogether with the appropriate directive. If an error occurs, the error is
logged to its own error log file.

Tools exist that allow an Apache server administrator to analyze these logs for bad URLs, traffic patterns, and so on.
Using these tools, an administrator can eliminate bad links, plan server capacity, or identify malicious activity—to name
only a few possibilities.

To learn more about Apache, check out the Apache documentation available online at http://httpd.apache.org. You may
also want to consult the book Apache: The Definitive Guide (O'Reilly)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Oracle-Supplied Modules
Oracle supplies some key, additional modules that turn Apache into the Oracle HTTP Server. Oracle has also made
minor improvements to the code base in the area of security and other defect fixes.

The Oracle HTTP Server installs most but not all of the standard Apache modules. Those removed from Apache are
either deprecated or have something to do with authentication. OracleAS Single Sign-On has replaced the removed
authentication modules' functionality.

What About Apache 2.0?
Those of you who are Apache administrators may be asking why Oracle is using the Apache Version 1.3
code base and not the Apache 2.0 code base. The reason is that at the time Oracle Application Server
was first in the works (back in 2001), Apache 2.0 didn't even exist. Oracle decided to use Apache Version
1.3 because, at that time, "it proved highly reliable, secure, and had great performance
characteristics."[1] Apache Version 2.0 was released for production in April of 2002. Although it offers
improved performance and important new features (e.g., support for IPv6), Oracle has stated that it is
still "less reliable and has more security vulnerabilities than Version 1.3." Oracle's current plans are to
use Apache 2.0 on Release 10.0.4 of Oracle Application Server, provided that Apache 2.0 is appropriately
secure and defect-free at that time.

[1] A quote from one of Oracle's Statement of Direction documents for Oracle Application Server.

5.2.1 Third-Party Modules

Oracle includes the following third-party modules that aren't part of the standard Apache distribution:

mod_fastcgi
mod_perl
mod_jserv

The following sections briefly describe these modules.

5.2.1.1 mod_fastcgi

mod_fastcgi provides an efficient CGI environment that allows C, C++, or any executable program to run in a performant
manner. In a FastCGI environment, each program runs in a cached child process. This improves performance over the
CGI environment because it avoids the need to recreate a new process for each request.

Java and Perl programs can be run via CGI, but OC4J (described in Chapter 6) and mod_perl (described in the next
section) provide a better-performing environment for these two programming languages.

5.2.1.2 mod_perl

mod_perl provides an efficient and highly integrated Perl environment. Like FastCGI, mod_perl operates more efficiently
by caching Perl processes. Unlike CGI, mod_perl provides complete access to Apache's request life cycle API. This
capability allows mod_perl programmers to write both web applications and Apache modules using Perl.

5.2.1.3 mod_jserv

mod_jserv exists solely for legacy Apache Jserv support. Release 9.0.1 of Oracle Application Server used an Oracle-
modified version of Apache Jserv as its servlet container. Jserv has long since been replaced by OC4J; mod_jserv will be
discontinued with Release 10.1.2.

5.2.2 Oracle Modules

Oracle also has a set of its own modules that add functionality to the Oracle HTTP Server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_certheaders

Provides OracleAS Web Cache and load-balancing hardware SSL termination at the Oracle HTTP Server

mod_oc4j and mod_plsql

Provide dynamic content generation

mod_oradav

Provides Web Distributed Authoring and Versioning (WebDAV) support

mod_ossl and mod_osso

Provide security services

mod_dms , mod_oprocmgr, and mod_onsint

Provide Oracle Application Server management integration

5.2.2.1 mod_certheaders

mod_certheaders enables OracleAS Web Cache and other load-balancing hardware SSL termination at the Oracle HTTP
Server. This allows the Oracle HTTP Server to pass SSL information to the other modules. The information is passed
using HTTP headers and is then accessible as CGI environment variables.

5.2.2.2 mod_oc4j

mod_oc4j routes requests to OC4J using the ajp13 protocol. It allows Oracle Application Server to execute J2EE
programs in OC4J in response to a request's URI.

The Oracle HTTP Server uses a separate configuration file for mod_oc4j, appropriately named mod_oc4j.conf, that is
included into the Oracle HTTP Server's main configuration file httpd.conf. URL mapping directives in mod_oc4j.conf
determine which URI requests are forwarded to OC4J. In addition, mapping of context directories (how the URL is
mapped into OC4J) and protocol settings are also entered into mod_oc4j.conf. As with all Oracle HTTP Server
configuration files, mod_oc4j.conf is modified using Oracle Enterprise Manager Application Server Control.

5.2.2.3 mod_plsql

mod_plsql routes requests to an Oracle database. It executes PL/SQL stored procedures in an Oracle database in
response to a request's URI. A stored procedure used in this way is analogous to a CGI program or Java servlet.

mod_plsql has three configuration files:

cache.conf

Configures mod_plsql's PL/SQL cache

dads.conf

Contains URL mapping directives with connection information in the form of database access descriptors (DADs)
that are automatically used by mod_plsql to log into an Oracle database

plsql.conf

Contains directives to load mod_plsql and to set its logging location

The cache.conf and dads.conf files are included in plsql.conf, which, in turn, is included in oracle_apache.conf.
oracle_apache.conf is included in the Oracle HTTP Server's main configuration file httpd.conf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.2.4 mod_oradav

mod_oradav enables distributed authoring and versioning using the WebDAV protocol. mod_oradav can read and write files
to either the server's local file system or an Oracle database.

mod_oradav has one configuration file, moddav.conf. Directives in this file load the module and map a URI to either a
local file system directory or an Oracle database.

5.2.2.5 mod_ossl

mod_ossl provides Oracle SSL support. This module replaces the OpenSSL module mod_ssl. Oracle's implementation of
SSL supports SSL Version 3.0, based on Certicom and RSA technology.

5.2.2.6 mod_osso

mod_osso enables OracleAS Single Sign-On support. With OracleAS Single Sign-On, a user can use the same
authentication credentials to log into all applications supported by the same OracleAS Single Sign-On server.

5.2.2.7 mod_dms

mod_dms provides a hook into Oracle's Dynamic Monitoring Service. DMS measures runtime performance statistics for
the Oracle HTTP Server and OC4J.

5.2.2.8 mod_oprocmgr

mod_oprocmgr provides legacy support for Oracle-modified Apache Jserv (servlet container) and provides a hook into
DMS. It will be discontinued with release 10.1.2.

5.2.2.9 mod_onsint

mod_onsint provides a hook into the Oracle Notification Server (ONS), which is a component of the Oracle Process
Manager and Notification Server. OPMN starts, stops, and ensures that the Oracle HTTP Server and OC4J are up and
running. OPMN provides fault tolerance by restarting an Apache process if it fails.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Third-Party Listener Support
Oracle Application Server can also use two other web servers (listeners) besides Apache:

Java System Web Server (formerly Sun ONE Web Server)

 Microsoft Internet Information Server (IIS)

Oracle Application Server provides a proxy plug-in that allows you to transparently forward requests from these two
servers to the Oracle HTTP Server. In this setup, the Oracle HTTP Server acts as a reverse HTTP proxy server; it
receives and forwards a request to the appropriate content engine, but then points a redirect to the third-party listener.
The Oracle HTTP Server as a proxy server mimics the host address and port of these listeners so that the proxy is
completely transparent to any applications using the third-party listener.

Oracle Application Server also provides a lightweight single sign-on plug-in for these two servers. The plug-in is a
partial implementation of the OracleAS Single Sign-On module. It allows these servers to seamlessly integrate with
OracleAS Single Sign-On on the application server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Oracle HTTP Server
The Oracle HTTP Server acts as the web server or listener for Oracle Application Server. Based on the Open Source
Apache Web Server (Version 1.3 code base), the Oracle HTTP Server is the heart of Oracle Application Server, directing
requests to the appropriate source for the requests. Requests for both static and dynamic content are processed
through the Oracle HTTP Server. Static content is served from the local file system, while the Oracle HTTP Server
redirects dynamic content requests to the appropriate executable resource.

Oracle isn't the first organization to use Apache as the web server component of their application server. Several others
have also used Apache. So why is Apache such an attractive choice for a web server?

Apache has an extremely flexible architecture; most of its functionality is provided by a set of plugged-in
modules, or mods. You can add any desired functionality to Apache by creating an appropriate module. Oracle
has created several custom mods for Oracle Application Server, as we'll discuss later in this chapter.

Apache has a very flexible configuration system. Directives specified in a set of text-based configuration files
are used to load any desired module and have it process requests using a variety of methods—for example, by
location, file type, or other indicators.

Largely because of its large installed base (more than 64% of all Internet web sites at the time of this writing),
Apache has become a very stable and secure web server. Combine this with the ability to leverage a large
existing Apache administrator workforce, and it makes sense to use Apache's existing code base as a basis for
the Oracle HTTP Server.

This chapter delves into the workings of the Oracle HTTP Server. It starts with an overview of the Apache architecture.
Next, it covers the modules Oracle bundles with the Oracle HTTP Server that aren't part of a standard Apache
distribution. It touches on how security and management services hook into the Oracle HTTP Server, and it finishes up
with a look at integrating third-party listeners with the Oracle HTTP Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 OC4J Components
OC4J consists of three components:

A servlet container

An EJB container

A JSP translator

The servlet and EJB containers have access to a standard set of services provided by the J2EE architecture that are
managed by the server.

The following sections describe these components and the relationships among them.

6.1.1 Servlet Container

A servlet is a server-side Java program that extends the functionality of the application server in which it resides. A
servlet container is the server-managed environment for executing a Java servlet.

J2EE defines both a generic servlet and an extension called an HTTP servlet. An HTTP servlet has all the generic servlet
capabilities plus functionality specific to dealing with the HTTP protocol. HTTP servlets are the most common type of
servlet used in a servlet container because HTTP is the most common application-level protocol used on the Internet
today. When someone requests dynamic content from a Java application server such as OC4J using HTTP, the request
is most likely serviced by an HTTP servlet.

A servlet container manages the life cycle of a servlet as follows:

1. It loads any necessary class files from the host file system.

2. After class files have been loaded, it initializes the servlet. At any subsequent time that a request requiring the
servlet is received, the already loaded and initialized servlet is executed.

3. When the application server shuts down, the servlet instance is destroyed, and the memory it used is garbage-
collected.

A servlet is very performant because the same loaded and initialized servlet, already in memory, is used for each
request.

A servlet container also provides a set of standard services to a servlet. A common example is access to data sources,
which provide servlets with access to databases. Services are discussed in more depth later in this chapter.

The Hypertext Markup Language (HTML) produced by servlets to provide content for a web browser is sent to the
browser by calling an HTTP servlet method that streams output back to the browser. This mechanism implies that a
programmer writes Java code to produce web content. Creating web content in this Java-centric fashion may be well
suited to programmers, but not web designers. To enable web designers to create dynamic content, an alternate
method of designing servlets was created that is HTML-, not Java-centric. This alternative is called JavaServer Pages,
described in the next section.

6.1.2 JavaServer Pages Translator

A JavaServer Pages translator parses a JSP file, typically composed of HTML and Java code snippets and/or tags, and
creates a corresponding servlet. This servlet is then executed in the servlet container like any other servlet. The
difference here is that the source code in a JSP file consists of HTML with embedded Java code instead of Java code with
embedded HTML.

JSP also offers a means of using other markup languages such as Wireless Markup Language (WML) for mobile devices
or, better yet, XML. If XML is used, an XML technology called the eXtensible Stylesheet Language for Transformations
(XSLT) translates the markup into a suitable format for the device on which it's used: HTML for a web browser or WML
for a wireless device. See Chapter 10 for a discussion of XML and Chapter 14 for information about OracleAS Wireless.

6.1.3 Enterprise JavaBeans Container

An EJB container is a server-managed environment for executing EJBs. An EJB is a Java program that can be executed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An EJB container is a server-managed environment for executing EJBs. An EJB is a Java program that can be executed
as a component in a distributed fashion. A client program, a servlet, or another EJB can remotely execute the methods
in an EJB. An EJB can also be executed locally if it exists in the same application server as the calling servlet or EJB. The
EJB container provides transaction, security, and persistence management, as well as access to other server services
such as Data Sources.

In the J2EE architecture, an EJB can isolate business logic, represent a persistent entity, or process asynchronous
information feeds. Appropriately, there are three types of EJBs: session, entity, and message-driven.

Session bean

A session bean, or EJB, is used for business logic. A session bean can be stateful, or stateless. A stateful EJB
remembers its internal values between invocations, while a stateless EJB doesn't. A stateful EJB is typically used
to model complex business processes that require several steps to complete, whereas a stateless EJB is used
for simple, one-method invocation processes and computations.

Entity bean

An entity bean, or EJB, is used to model a business entity. It typically retrieves its internal values from, and
saves its values to, a relational database. Behavior that is intrinsic to the entity is modeled using its own
methods. (For some, which methods belong in the entity bean and which belong in a session bean that uses the
entity bean can be a source of confusion.) An entity bean can use container- or bean-managed persistence.
With container-managed persistence (CMP), the EJB container is responsible for creating and executing SQL to
retrieve and save values from and to a database. With bean-managed persistence (BMP), it's the programmer's
responsibility to write the required persistence code using JDBC, Java Data Objects (JDO), or a value-added
object-relational mapping tool such as TopLink.

Message-driven bean (MDB)

A message-driven bean, or EJB, processes a stream of asynchronous messages from a queue. The
asynchronous nature of messaging systems allows a client to post messages to a queue without waiting for a
response. In turn, it allows a message consumer, such as an MDB, to process messages from a queue
independent of a conversation with a client program. MDBs process messages delivered via the Java Message
Service (JMS) API. JMS provides an implementation-independent API for accessing messaging systems. One of
the strengths of MDBs is that they can process messages concurrently, providing a scalable means of handling
asynchronous information.

Transactions can be container- or bean-managed:

Container-managed transactions

In such transactions, the EJB container coordinates commits or rollbacks in a distributed fashion.

Bean (or component)-managed transactions

In such transactions, the component is responsible for its own transaction coordination.

In a similar fashion, security and persistence (as mentioned earlier) can be managed by the container or by the
component. When the container is responsible for these services, the programmer declaratively specifies the
appropriate parameters in a file called a deployment descriptor .

Whether exposing its configuration using a deployment descriptor, or being self-managed, an EJB exists as an
independent software component that can conceivably be mixed and matched with other components to build an
application.

6.1.4 OC4J Component Relationships

Figure 6-1 demonstrates the relationship between these three components and the services to which they have access:

1. A request is sent to the application server's Oracle HTTP Server. The request is identified as a servlet or a JSP
by its URI and is appropriately forwarded to OC4J.

2. The servlet, possibly generated by translating a JSP, may access an EJB or other OC4J container services, such
as a data source, to produce dynamic content.

3. The servlet, in turn, streams any generated content back through the Oracle HTTP Server to the browser.

Figure 6-1. OC4J component relationships

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-1. OC4J component relationships

OC4J provides access to the J2EE architecture's APIs and to Oracle's own value-added APIs by what it refers to as OC4J
Services. These services are described in the next section.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 OC4J Services
This section takes a high-level look at each service provided by OC4J to servlets and EJBs. Some of these are standard
J2EE services while others are Oracle value-added services. The OC4J services consist of the following:

Java Naming and Directory Interface (JNDI)

J2EE Connector Architecture

Java DataBase Connectivity (JDBC)

Java Message Service (JMS)

Remote Method Invocation (RMI)

Server-side HTTPS

Java Transaction API (JTA)

Java Authentication and Authorization Service (JAAS)

Java Mail

Java API for XML Parsing (JAXP)

Java Object Cache

We'll discuss JNDI first because it is often used to access other resources in the list.

6.2.1 Java Naming and Directory Interface

The Java Naming and Directory Interface provides Java programs with standardized access to various naming and
directory implementations. Within OC4J, servlets and EJBs can access global resources, such as Data Sources, and
environment variables defined in each servlet or EJB deployment descriptor with the default JNDI context. The OC4J's
naming mechanism is implemented using an XML file.

If a servlet or EJB requires access to an external directory, such as LDAP implemented by the Oracle Internet Directory,
the URI to the external directory can be specified as a parameter in the servlet or EJB's deployment descriptor, looked
up via JNDI using the default context, and then used to create a new context that accesses the external directory once
again using JNDI.

JNDI can access various naming and directory services using service provider interfaces (SPIs) to abstract the API for
the naming or directory service. This capability allows JNDI to use any desired naming or directory service. The service
can be enabled by configuring its SPI.

6.2.2 J2EE Connector Architecture

The J2EE Connector Architecture provides a standardized interface for J2EE applications to access existing Enterprise
Information Systems (EIS), such as Peoplesoft, SAP, mainframes, and so on. A Java program can access any EIS for
which a J2EE Connector implementation exists. A J2EE Connector is implemented in the form of a driver called a
resource adapter. A resource adapter is a driver that connects to and communicates with an EIS.

A JDBC driver is an example of a resource adapter that allows a servlet or EJB to connect to a database. However, the
JDBC API existed long before the J2EE Connector Architecture, and JDBC drivers are very commonly used, so they have
their own configuration facilities.

There are two types of resource adapters:

Standalone resource adapter

This type of resource adapter is globally available—that is, it is available to all applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This type of resource adapter is globally available—that is, it is available to all applications.

Embedded resource adapter

This type of resource adapter exists within a deployed Enterprise Application aRchive (EAR) file, available to the
components within an application, but not to other applications running on the same instance of the OC4J.

Resource adapters must abide by a set of quality of service contracts, which means that they must provide connection
pooling, transaction management, and security management as follows:

Connection pooling

Provides a way to efficiently allocate resource adapter instances by caching them in a pool. This ability allows
the connections to be checked out of a pool when needed, and then checked back in when they are no longer
needed. Connection pooling reduces the instantaneous workload (the number of resources in use at the same
time at both ends of a connection) on the OC4J and the host EIS.

Transaction management

Provides a facility whereby the resource adapter implements the Java Transaction API so that an EIS that is
being accessed can participate in a global distributed transaction.

Security management

Provides a facility whereby the resource adapter supports authentication, authorization, and secure connections.

In addition, resource adapters must support both component- and container-managed security. Component-managed
security is simple enough; all connection information is supplied programmatically. However, with container-managed
security, information such as sign-on parameters is specified declaratively in the application's deployment descriptor.

6.2.3 Java DataBase Connectivity

The Java DataBase Connectivity API provides Java programs with standardized access to tabular data sources. Modeled
after Microsoft's Open DataBase Connectivity (ODBC) API, JDBC was originally designed to access relational databases.
JDBC has evolved, as has ODBC, to handle any tabular data, including comma- and tab-separated values in operating
system data files. In addition, with the publication of the new SQL standard, SQL 1999, and Oracle's complete
implementation of the new SQL standard, Oracle's JDBC drivers now support even object-relational data.

OC4J supports both Oracle and non-Oracle JDBC drivers. For the Oracle database, the Oracle Thin (type 4) and OCI
(type 2) drivers are supported. For non-Oracle databases, Data-Direct (type 4) drivers for IBM DB2 UDB, Microsoft SQL
Server, Informix, and Sybase are provided with OC4J. It is entirely possible to use any JDBC driver, because the OC4J
is a standard J2EE server implementation.

Type 2 drivers are part Java and part operating-system executable code. Type 4 drivers
are 100% pure Java.

Access to JDBC is configured globally through Application Server Control, which in turn makes an entry in the global
data-sources.xml file. Configuration can also be made locally in a servlet, EJB, or enterprise application's deployment
descriptor. In addition, an application can be packaged with its own data-sources.xml file.

A servlet or EJB uses JNDI to look up and retrieve a DataSource at runtime. A DataSource is a JDBC object that represents
a logical JDBC connection to a tabular data source. A servlet or EJB manipulates the data in the host database through
the methods of objects created by a DataSource.

OC4J has three types of data sources (not to be confused with driver types):

Emulated data sources

Emulate the XA API without providing a full XA implementation. (The XA API is discussed later in Section 6.2.4.)
An emulated data source acts as though it supports JTA, but it doesn't support two-phase commits. This allows
the emulated data source to perform better than its nonemulated counterpart, yet still support local
transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transactions.

Nonemulated data sources

Provide full XA and JTA global transaction support. A nonemulated data source is recommended only for
distributed transactions because the additional overhead of full support can unnecessarily impede the
performance of transactions when full support isn't needed.

Non-JTA data sources

Provide no global transaction support.

OC4J supports the caching of data sources to efficiently allocate database resources and to improve application
performance. Three caching schemes are available:

Dynamic scheme

This scheme grows the pool of cached data sources as needed, and later it removes unused data sources when
they are no longer used. The minimum pool size can be configured so that data sources are already cached
upon startup of the OC4J instance in which they reside.

Fixed wait scheme

This scheme uses a maximum parameter to limit the number of data sources in a pool. When the limit is
reached, and a servlet or EJB requests a connection, it must wait indefinitely until another process returns a
data source to the pool.

Fixed return null scheme

This scheme works in a way that's similar to the fixed wait scheme, but instead of waiting indefinitely, it
immediately returns a null data source (effectively no data source) to the servlet or EJB if a data source isn't
available in the pool.

6.2.4 Java Transaction API

The Java Transaction API provides a standardized set of interfaces for managing a distributed transaction. Java
programs, such as EJBs, are intrinsically distinct components that are assembled into applications at deployment time.
You can define transaction scope between various EJBs and their methods in either of two ways:

Bean-managed transactions (BMT)

Transaction scope is defined programmatically during development in each EJB's deployment descriptor.

Container-managed transactions (CMT)

Transaction scope is defined declaratively at deployment time in each EJB's deployment descriptor.

OC4J, like any other J2EE-compliant EJB container, supports both bean-managed and container-managed transactions.
In addition, the OC4J supports two-phase commits. In the context of OC4J, a two-phase commit is a transaction that
involves two or more Oracle databases. In other words, when two or more resources involved in a transaction are all
Oracle databases, OC4J's two-phase commit process guarantees that all involved databases will commit or roll back a
given transaction.

6.2.5 Java Message Service

The Java Message Service provides Java programs with standardized access to enterprise messaging systems.
Messaging systems provide a persistent message queue: one or more programs can place messages on a given queue,
while one or more programs can retrieve or consume messages from a given queue.

A queue is what gives messaging products the ability to support asynchronous messaging, and asynchronous
messaging is, in turn, what makes enterprise messaging systems (EMSs) uniquely useful. An EMS provides guaranteed
execution (delivery) of messages, without incurring the waits that an otherwise synchronous procedure call would incur.
A servlet or session EJB can act as a JMS client message producer, able to place messages on a queue, or a
synchronous message consumer, while a message-driven EJB can act as a JMS client message consumer, retrieving
messages from a queue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages from a queue.

JMS provides two messaging models:

Point-to-point model

One message producer queues messages to one and only one message consumer.

Publish-and-subscribe model

One message producer queues messages to one or more message consumers.

OC4J provides a Resource Provider interface that allows you to transparently add JMS implementations to the server.
JMS resource providers are looked up using JNDI through the local context similar to JDBC resources. Just like JDBC
resources, JMS resources can be configured as standalone (available to all applications in an OC4J instance) or
embedded (available only to the application in which it is configured).

Oracle JMS (OJMS) is a provider that can be used to access Oracle Advanced Queuing, the Oracle database's enterprise
messaging system. Several third-party resource provider interfaces are also supplied that allow access to other
systems, including SonicMQ, SwiftMQ, and WebSphereMQ.

As of the OC4J Release 9.0.4, OC4J has its own messaging system, OracleAS JMS, also known as OC4J JMS. OC4J JMS
provides an in-memory and/or disk-based persistent JMS implementation in OC4J. With this addition, OC4J has become
a complete enterprise messaging system in and of itself.

6.2.6 Remote Method Invocation

Remote Method Invocation is the protocol used by client-side applications, servlets, and EJBs to remotely communicate
with EJBs. The remote communication is in the form of remote method execution. While RMI is a standard used by all
J2EE-compliant EJB containers, OC4J provides value-added protocol extensions.

As part of the EJB 2.0 specification, EJBs can be configured to use the CORBA RMI/IIOP (RMI over IIOP) protocol to
facilitate communication between EJBs deployed on different application servers. Using this form of component-to-
component communication allows you to deploy components on any tier, provide dynamic load balancing, and enable
horizontal scaling. However, the RMI/IIOP protocol doesn't support all these features when used with OC4J.

The default protocol used by OC4J is RMI/ORMI (RMI over Oracle RMI). Oracle RMI is a proprietary RMI implementation
that is highly optimized for use with OC4J. ORMI supports application load balancing and failover between OC4J
instances. ORMI also supports RMI tunneling. RMI tunneling enables EJBs to communicate through a firewall using the
HTTP protocol, which is passed unscathed through most firewalls.

6.2.7 HTTPS for Client Connections

Oracle HTTPS for Client Connections (Oracle HTTPS) provides an SSL infrastructure inside OC4J to support SSL
communication between the Oracle HTTP Server and OC4J, a client-side application program and OC4J, or a servlet
residing in OC4J acting as a client program accessing another servlet or web site using SSL. Oracle HTTPS supports the
following common cipher suites:

Key exchanges of 512, 768, or 1024 bits using RSA or Diffie-Hillman

Null, 40-, or 128-bit encryption using RC4 or DES

Message authentication using MD5 or SHA1

Oracle HTTP Server SSL certificates are managed with Oracle Wallet Manager (OWM). OWM can generate public/private
key pairs and certificate requests. A signed certificate request and the associated trusted certificate are added to OWM's
wallet to create a complete wallet. That wallet, in turn, can be exported to use in a Java SSL-based client-side
application.

OC4J's SSL certificates are managed using the JDK's keytool. keytool can also generate public/private key pairs and
certificate requests. A signed certificate request and the associated trusted certificate are added to OC4J's keystore
using keytool. Like OWM, keytool can export a client-side certificate.

Once signed certificates have been created for both the Oracle HTTP Server and OC4J, they can be exchanged to
provide SSL communication between the two server components. In addition, configured OC4J can use its SSL
configuration to enable SSL communication between a client-side application and OC4J or a servlet inside OC4J and
another SSL server.

6.2.8 Java Authentication and Authorization Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Java Authentication and Authorization Service is the Java implementation of the standard Pluggable Authentication
Module (PAM) framework. JAAS acts as a user-based adjunct to the Java 2 security model. In the Java 2 security
model, access control is driven by a set of privileges, called a policy, that are granted to a code base. A code base is the
location from which a Java program is executed.

With JAAS, code-base policies are effectively overridden by policies granted to a particular user logged into an
application. As its name suggests, JAAS provides a standardized set of APIs that facilitate user login (authentication)
and control over what a user may or may not do while logged in (authorization).

JAAS is a set of abstract classes that are implemented at runtime by a JAAS provider. OC4J supports JAAS with the
OC4J JAAS Provider (JAZN).[1] JAZN supports two provider types:

[1] Don't ask how they got JAZN out of OC4J JAAS Provider.

XML-based provider

This type of provider stores realm, user, and policy information in an XML file typically named jazn-data.xml
that is co-located with an OC4J instance.

LDAP-based provider

This type of provider uses LDAP to access an LDAP directory, such as the Oracle Internet Directory, where it too
stores realm, user, and policy information. The LDAP provider type is tightly integrated with OracleAS Single
Sign-On, which enables a user to use one user ID and password to log on to all applications.

A realm is a high-level identifier that organizes users, roles, and policies. Using an external realm, you can import users
from other systems: NT, LDAP, Unix password, DB, and so on.

Using JAAS requires program modifications; it isn't enabled transparently. First, an administrator must configure one or
more login modules, and a set of policies for an application. Next, a programmer must make minor code changes so
that affected class methods are called with a user's security policy instead of with the code base's policy.

OC4J has its own default login module, RealmLoginModule, but can be configured to use any JAAS-compliant login
module. JAZN can be configured programmatically or by using a components deployment descriptor. The JAZN user
manager handles authentication and authorization for OC4J. It can be configured through Application Server Control to
use JAZN-XML for the XML-based provider or JAZN-LDAP for the LDAP-based provider.

You can configure the XML-based provider's users, roles, and policy using the command line-based JAZN Admin tool.
You can configure the LDAP-based provider's users, roles, and policy using the Oracle Internet Directory's Delegated
Administrative Service (DAS).

Managing policy assignment by user can become quite cumbersome. To improve manageability, both provider types
support role-based access control (RBAC) by allowing you to create a principal (normally a user, but now a role name),
add a policy to that principal (a role), and then add other principals (users as members) to that role. Roles can also be
added to roles, effectively creating a role hierarchy.

6.2.9 Java Object Cache

Java Object Cache is an Oracle value-added service provided by OC4J that exists to improve the performance of Java-
based applications. Java Object Cache caches expensive-to-create or frequently accessed Java objects. Java Object
Cache is both a memory- and/or a disk-based cache. It is meant to complement OracleAS Web Cache where applicable.

With Java Object Cache, cached objects can be shared between servlets and EJBs. They can be invalidated—that is,
flagged as no longer cached—by the amount of time they have been present in the cache (time-to-live), by the amount
of time they have not been accessed (idle), or on demand.

Java Object Cache provides a flexible resource organization structure based on a top-level identifier called a region. A
region can be subdivided into more regions, appropriately called subregions. Each cached object belongs to one and
only one region or subregion. Groups can be created that combine regions for mass property manipulation or
invalidation of cached objects.

Java Object Cache also provides flexible management either programmatically or through its Java Object Cache
properties file. Java Object Cache can be configured as either a local cache or a distributed cache. A local cache is
available only to Java programs running in the same OC4J where the cache resides. When the Java Object Cache is
configured as a distributed cache, cached objects are available to all OC4J instances that are part of the same cluster.

Web Object Cache is an HTTP-centric object cache implementation that uses the Java Object Cache for its repository.
Web Object Cache is used solely with servlets (and JSPs that are actually servlets). It uses information from a servlet's
HTTPRequest object to automatically define regions in Java Object Cache.

See Chapter 7 for more information on Java Object Cache and Web Object Cache, as well as a complete description of
OracleAS Web Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Web Cache.

6.2.10 Other APIs

The previous sections briefly describe all of Oracle's officially designated OC4J services. However, keep in mind that all
Java APIs can be used in Oracle Application Server with the appropriate configuration. The servlet API exists as a way
to extend Oracle Application Server. Some of the other Oracle components available in Oracle Application Server are
themselves J2EE applications. Hence, using J2EE you have basically unlimited capability to create a server-side solution.

Note that we haven't touched on XML or Web Services in this chapter. These two topics are described separately in
Chapter 10 and Chapter 11, primarily because Oracle Application Server provides more than just Java support for these
areas.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Application Deployment
Application deployment is the process of making a J2EE application available to end users on an application server.
OC4J can deploy a J2EE application in an EAR file or a WAR (Web Application aRchive) file. When deploying a WAR file,
OC4J automatically wraps a WAR file in an EAR file. OC4J provides a mapping mechanism so that differences in
deployment environments can be resolved during the deployment process. OC4J also supports application development
by accessing servlets and EJBs from an operating system directory without requiring OC4J-specific deployment
descriptors. The remainder of this section takes a closer look at how OC4J handles application deployment, starting with
standard J2EE deployment.

6.3.1 J2EE Deployment

J2EE applications are typically composed of JSPs, servlets, and EJBs. In a well-written J2EE application, each program
unit acts as a separate and distinct component. To facilitate the composition of components into a working application,
J2EE components have a descriptor file. A descriptor file exposes any configuration parameters, such as database
resources, so that they can be specified declaratively—that is, without changing a line of Java code.

EJBs are placed into a Java ARchive (JAR) file that contains the EJB, with any supporting custom classes, and a
deployment descriptor file named ejb-jar.xml. There is typically one JAR file for each session or message-driven EJB,
whereas a JAR file usually contains multiple entity EJBs because related entity EJBs must be co-located.

All servlets under a particular application context directory in a servlet container use the same deployment descriptor
file named web.xml; so do any JSP files that reside in the same application context directory because the JSP translator
automatically compiles them into servlets. The servlets, JSPs, any supporting custom class libraries, JSP tag libraries,
and the web.xml file are all placed into a WAR file; such a file facilitates deployment of a web application to another web
container.

To create an application that uses both EJBs and servlets, WAR files and any required EJB JAR files are placed into a
EAR file, along with an application deployment descriptor file appropriately named application.xml.

Applications are usually developed on one server, deployed on a second for quality assurance testing, and then
deployed on a third to put them into production. If the environments aren't exactly the same, how do you resolve the
differences? It is possible to make the appropriate changes to the individual J2EE descriptor files for the target
environment before archiving the files into a WAR or EAR file, but this is at best a deployment nightmare. Another
solution is for the host application server to provide a mapping mechanism during deployment. That is how OC4J solves
this deployment problem.

6.3.2 OC4J Deployment

In OC4J, each J2EE deployment descriptor has an OC4J-specific counterpart that can map a J2EE deployment resource
name to one that is available in the OC4J. Let's look at an example. Suppose that a data source defined on a
development server is named DefaultDS and that the appropriate entry in the web application's deployment descriptor
file, web.xml, references that name, yet on the production server, a dedicated data source named MyAppDS is defined
for the web application. You can map the J2EE deployment descriptor reference DefaultDS to the dedicated data source
name by specifying the mapping in the appropriate OC4J-specific deployment descriptor file orion-web.xml. Table 6-2
shows the relationships between the J2EE and OC4J specific deployment descriptor files.

Table 6-2. Deployment descriptor relationships
Type J2EE OC4J

EJB ejb-jar.xml orion-ejb-jar.xml

Web (servlet and JSP) web.xml orion-web.xml

Application application.xml orion-application.xml

Resource adapter ra.xml[2]
oc4j-ra.xml

oc4j-connectors.xml

[2] Supplied with the resource adapter

Using this mechanism, OC4J can deploy any J2EE-compliant application without having to modify its deployment
descriptors. Deployment mappings are specified during deployment using Application Server Control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.3 OC4J Development

You can use OC4J as a development environment to compile EJBs, servlets, and so on, in the server directory tree.
Doing so requires you to create a standard deployment directory structure and the appropriate J2EE deployment
descriptor files, and make a set of manual configuration changes through Application Server Control.

If you create a separate development instance for each development project, you can restart OC4J quickly, without
incurring the wrath of developers who may be working on other projects. When using OC4J as a development
environment, your application's response times will be slower because nonarchived classes are loaded as-needed,
whereas archived classes (that is, classes in JAR files) are cached in memory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Standalone J2EE Server
While OC4J is normally installed as part of Oracle Application Server, it can also be installed as a standalone J2EE
server. This is ideal for creating a lightweight development environment. One member of a development team can
install OC4J standalone on his personal computer to produce a fully functional workgroup development environment.
Other members of the team can work directly in a development directory, storing and compiling their Java code in
place.

When ready, the completed J2EE application can be packaged from the development directory and deployed on a
complete Oracle Application Server installation acting as a quality assurance server for testing, then later moved to a
production environment. Using OC4J in this fashion gives a development team a great deal of control over their
development environment, while not requiring a great deal of expense to duplicate a production J2EE environment.

Oracle provides an OC4J standalone download available on the Oracle Technology Network (OTN) web site for just this
purpose. You can download OC4J along with its OC4J Standalone User's Guide. As stated earlier, it can be run with any
JDK of the appropriate version. This also makes it possible to develop a J2EE application on any platform that supports
Java, not just on platforms that support Oracle Application Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Clustering
Clustering OC4J instances allows Oracle Application Server to solve both hardware and software reliability and
scalability problems. Oracle Application Server can group two or more OC4J instances into a cluster, whether or not
they reside on the same host. Clustered OC4J instances appear to the outside world as one application server, providing
high reliability and almost unlimited scalability.

Various load-balancing mechanisms are available to direct incoming requests between clustered OC4J instances. If one
clustered instance fails, another picks up where it left off, using the appropriate load-balancing mechanism. Clustering
OC4J instances across hosts solves both the hardware and software reliability problems. The bulk of what clustering is
and how it is employed in Oracle Application Server was covered in Chapter 2, but a few relevant J2EE issues are
discussed in this section.

OC4J provides stateful failover for clusters via HTTP session object and EJB state replication. This means that each
user's session, and each EJB's state, is replicated between OC4J instances.

The HTTP session objects in a web (servlet) container are selectively replicated across all OC4J instances that are part
of the same cluster and processes that are part of the same island. An OC4J island is a way to group one or more OC4J
JVM processes. Rather than having to replicate HTTP session objects among all OC4J processes (which can be very
resource-intensive), islands allow selective replication. This fine-grained control prevents replication within a cluster
from degrading OC4J's performance.

EJB state replication is handled differently. Because of the nature of EJBs—they are all independent components—EJB
state is replicated between all OC4J instances in a cluster. There is no fine-grained replication control mechanism.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Oracle Application Server Containers for
J2EE
The Oracle Application Server Containers for J2EE product provides the Java environment for the Oracle Application
Server. OC4J is a 100% pure Java J2EE Server. As such, it can use—and applications can be developed with—any
standard Java Development Kit (JDK). This standardization allows you the option of using the JVM that best leverages
your hardware platform. OC4J has J2EE-certified Servlet and EJB containers, and a JSP translator. OC4J provides all the
standard J2EE services such as session, transaction, and persistence management.

Table 6-1 lists the various J2EE APIs supported by the OC4J releases at the time of this writing.

Table 6-1. OC4J J2EE API support

 Release

API 9.0.1 9.0.2 9.0.3 9.0.4

Java Development Kit (JDK) 1.1 1.3 1.3 1.4

Enterprise JavaBeans (EJB) 1.1 1.1+ 2.0 2.0

J2EE Connector Architecture 1.0 1.0 1.0

Java Authentication and Authorization Service (JAAS) 1.0 1.0 1.0

JavaMail API 1.1.2 1.1.2 1.1.2

Java API for XML Parsing (JAXP) 1.0 1.1 1.1

Java Database Connectivity (JDBC) 1.1 2.0 2.0+ 2.0+

Java Message Service (JMS) 1.0.1 1.0.1 1.0.2 1.0.2b

Java Naming and Directory Interface (JNDI) 1.2 1.2 1.2

JavaServer Pages (JSP) 1.0 1.1 1.2 1.2

Java Transaction API (JTA) 1.0.1 1.0.1 1.0.1

Java Servlet 2.0 2.3 2.3 2.3

This information may be out of date by the time you read this, but the list demonstrates Oracle's commitment to
support the most current versions of J2EE APIs in a timely manner. If you're interested in knowing what J2EE APIs are
currently supported, go to the Oracle Technology Network web site at http://otn.oracle.com and look up the information
under documentation, application server, OC4J User's Guide.

As discussed in Chapter 2, OC4J can be clustered across hosts to provide almost unlimited horizontal scaling to satisfy
any level of demand. However, OC4J can also be configured with several instances on a host to ease the management
of applications, or to run as a lightweight standalone server for application development purposes.

A great deal of what we describe in this chapter is standard J2EE functionality. Nevertheless, we cover this functionality
to ensure that readers of all levels will be able to understand the added value the J2EE portion of Oracle Application
Server provides. In addition, this chapter covers Oracle value-added services, touches on server management,
discusses how deployment is supported, examines standalone configuration, and finishes up with the impact that
clustering the OC4J has on maintaining state in J2EE applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 OracleAS Web Cache
OracleAS Web Cache is the primary caching mechanism provided with Oracle Application Server. An OracleAS Web
Cache instance sits in front of one or more Oracle HTTP Servers, as described in Chapter 2. The responses to all
requests directed to the Oracle HTTP Server through OracleAS Web Cache can be cached in OracleAS Web Cache, which
means that this cache can handle any web content transmitted with the standard HTTP protocol. Thus, OracleAS Web
Cache works with Oracle Application Server as well as with any other HTTP application server.

Web Cache can also act as a load balancer for multiple instances of Oracle Application Server, and it provides some
high-availability features as well. By caching selected request responses, OracleAS Web Cache reduces the load on the
application server. The load is reduced because cached content no longer needs to be regenerated. CPU cycles and
other resources are thus freed, thereby improving performance for those items that can't be cached.

OracleAS Web Cache was designed to work on low-cost machines. Because OracleAS Web Cache works as an in-
memory cache, its capabilities are more dependent on addressable, available memory than they are upon CPU speed or
number of CPUs. OracleAS Web Cache was designed to use two processors. Oracle's own My Oracle site, for example,
uses a pair of two-way Intel machines as its own OracleAS Web Cache cluster.

7.1.1 Basic Principles

OracleAS Web Cache is a server accelerator. OracleAS Web Cache instances act as a front end cache for pages, content
fragments, and other objects coming from one or more application servers. OracleAS Web Cache can also be used with
third-party web servers, such as BEA's WebLogic or IBM's WebSphere.

In the simplest case, a web server delivers static pages in response to a client request. In this case, the server retrieves
a page from disk. For many sources of web content, however, the case isn't nearly so simple. A page may be based on
dynamic content, changing either with time or because of the characteristics of the user who has made a request. A
page may even be assembled from several sources of content, which can individually be either static or dynamic.

A database uses a memory cache to hold frequently used data, allowing for faster retrieval. OracleAS Web Cache does
the same thing with web pages and, more importantly, portions of web pages. This second capability expands the scope
of potential performance improvement.

Many web pages are customized: a simple page contains common elements as well as portions specific to the user or
the situation. For instance, the home page for an application is largely the same for all users, but may contain special
greetings or messages for a particular user. OracleAS Web Cache can assemble the page from different fragments,
providing the performance improvement of a memory cache everywhere content is reused.

Several other components of Oracle Application Server may also use OracleAS Web Cache to improve performance:

OracleAS Portal

OracleAS Portal comes with a set of predefined caching and invalidation rules.

OracleAS Discoverer

OracleAS Discoverer content can be cached by OracleAS Web Cache.

Oracle AS Wireless

OracleAS Wireless content can also be cached by OracleAS Web Cache. Note, however, that OracleAS Web
Cache is used by the OracleAS Wireless server as a repository for content, rather than as a front end, which is
the role it plays for normal HTTP requests.

eBusiness Suite

Portions of Oracle's eBusiness Suite are also supported by OracleAS Web Cache.

OracleAS Web Cache also supports a variety of security configurations including HTTPS communications between a
browser and itself and between itself and origin servers, as well as redirection for an OracleAS Single Sign-On server.
OracleAS Web Cache can also communicate with client programs that use client-side SSL certificates. In this case,
OracleAS Web Cache forwards the certificate information in special HTTP request headers, which are then used by the
Oracle HTTP Server for authentication.

OracleAS Web Cache can provide scalability and high availability in several different ways.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Web Cache can provide scalability and high availability in several different ways.

OracleAS Web Cache provides rapid response by being able to cache both static and dynamic content, allowing
pages to be returned directly from OracleAS Web Cache without having to access the originating application
server. This rapid response allows the cache to provide support for more users.

If a request comes in that can be satisfied directly from OracleAS Web Cache, there is no need to go to the
application server for the content. In this scenario, OracleAS Web Cache provides availability even though the
application server may be unavailable.

If OracleAS Web Cache can't contact the required web server (known as the origin server in this context), the
instance returns a standard apology page. This page can be modified, but it can contain only static HTML. If you
want to include other elements, such as an image or a company logo, you can designate another HTTP server to
serve up these images and embed the images in your apology page.

OracleAS Web Cache can load-balance for multiple application servers, increasing the scalability of the overall
site.

OracleAS Web Cache instances can be clustered, with each cache instance providing failover for other cache
instances as well as scalability for the entire OracleAS Web Cache.

The following subsections describe how OracleAS Web Cache handles incoming requests and the various topologies that
can be used for OracleAS Web Cache and their implications. We also cover the basics of how OracleAS Web Cache
moves content out of the cache with invalidation; how OracleAS Web Cache handles static, dynamic, and partial pages;
administration of OracleAS Web Cache instances; and other features of the product.

7.1.2 How It Works

OracleAS Web Cache sits in front of a web server, as shown in Figure 7-1. The web server here is referred to as an
origin server. The web server could also be a proxy server used to access content outside the firewall.

Figure 7-1. OracleAS Web Cache fulfilling user requests

When a request comes into an OracleAS Web Cache instance, it determines whether the request is for a site that uses
the instance. That information is provided by the Host request-field header from the request, the host portion of the
URL, or the src attribute of the ESI include tag, which is explained later in this chapter.

ESI stands for Edge Side Includes, an open standard specification for defining web-page
components for dynamic page assembly. More information on ESI is available at
http://www.esi.org.

If the request is for a document from a site that uses the instance, OracleAS Web Cache checks to see if the document
is in the cache. If OracleAS Web Cache can satisfy the request, it returns the page to the user. If it can't satisfy the
request, it requests the object from the application server after appending a Surrogate-Control response-header field to
the document. The application server returns the object to OracleAS Web Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the document. The application server returns the object to OracleAS Web Cache.

If the object is specified as cacheable, by either a caching rule or an attribute in the returned Surrogate-Control
response-header, the object is cached for future use. For pages that are constructed of page fragments, using ESI (as
described later), OracleAS Web Cache follows the same procedure for each fragment.

Once the document is available, OracleAS Web Cache returns it to the user. If the newly retrieved object is marked as
being cacheable, the object is placed in OracleAS Web Cache's cache.

The flow of logic for OracleAS Web Cache requests is shown in Figure 7-2.

Figure 7-2. Logic flow of requests to OracleAS Web Cache

Objects remain in the cache until they are either removed (because of demand for cache resources) or marked invalid,
as described later. If the total size used by OracleAS Web Cache exceeds a configurable percentage of the overall
memory available for the instance, OracleAS Web Cache will initiate a garbage-collection routine that will select content
to be removed. You might want to set the maximum size for any single cached object to avoid using up too much cache
memory too quickly.

OracleAS Web Cache lets you set a maximum size for any cached object. Any object that exceeds the specified size isn't
cached, regardless of how it is marked or how caching rules apply to it.

7.1.3 Topologies for OracleAS Web Cache

Earlier, Figure 7-1 showed a simple configuration for an OracleAS Web Cache instance, with a single OracleAS Web
Cache instance supporting a group of sites. OracleAS Web Cache can be on the same machine with multiple instances of
an application server. In this configuration, OracleAS Web Cache uses interprocess communication (IPC) to assign
requests to application server instances.

If, instead, OracleAS Web Cache is on a different machine, it uses HTTP to communicate with the origin server. In this
configuration, a single OracleAS Web Cache instance can communicate with multiple origin servers. OracleAS Web
Cache uses a connection pool for each origin server for faster communication with the server.

OracleAS Web Cache can work in several other topologies to provide additional features and benefits. Although
OracleAS Web Cache is primarily used for caching content, you can also use it as a load balancer that supports
application server failover. Three common OracleAS Web Cache deployment topologies include:

Use of OracleAS Web Cache to support load balancing and failover for multiple origin servers

Use of multiple instances of OracleAS Web Cache for load balancing and failover for OracleAS Web Cache itself

Use of multiple instances of OracleAS Web Cache in a cluster

Another set of topologies, known as hierarchies, is used for specific needs, such as geographic distribution of caching.

7.1.3.1 OracleAS Web Cache and multiple origin servers

The ability to support multiple application servers is built into OracleAS Web Cache's architecture. This capability allows
OracleAS Web Cache to load-balance requests across multiple application servers and to provide automatic failover
when an application server instance fails.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when an application server instance fails.

Sometimes, a web site is supported by more than one application server. In this situation, a single OracleAS Web Cache
instance can manage requests for pages from as many as 100 application servers, and load-balance among them.

OracleAS Web Cache automatically sends requests to the origin server with the most available resources. The quantity
of available resources for a particular origin server is determined by the workload and capacity for the server. The
workload is based on the number of active connections to the origin server. An OracleAS Web Cache administrator
establishes the maximum number of connections for each origin server. The available resources are determined by
subtracting the workload from the capacity. If all origin servers have an equal capacity, OracleAS Web Cache uses a
Round-Robin method to assign new connections.

If a connection request or a configurable number of read/write requests to an origin server fails, OracleAS Web Cache
considers the server unavailable. For an unavailable server, existing requests for documents return errors, but
subsequent requests to the server are failed-over to another origin server. The capacity of the failed server is assigned
to the failover server. Once the failed server responds to a request to a designated URL on the server, the server is
considered available, and capacity for the server is reassigned to it.

The operations we've described so far make sense for stateless requests; one origin server is as good as any other. But
what about stateful requests that depend upon earlier interactions with the failed origin server? Stateful transactions
require server affinity to emulate persistent connections to a server, such as for use with a shopping cart.

You can configure OracleAS Web Cache to perform stateful load balancing using session binding. Session binding
requires that the origin server use cookies and session IDs to indicate server affinity for a particular request. This is
done automatically by Oracle Application Server. Server affinity ensures that a stateful request will consistently return
to the server that is maintaining its state.

If a request requires a connection to a particular origin server, but that server is already
handling maximum capacity, the session binding for that request is disabled, and an error
message is returned to the user.

7.1.3.2 Multiple instances of OracleAS Web Cache

Multiple instances of OracleAS Web Cache can be used together, either in a cluster or in a failover configuration. In both
configurations, you can use a hardware load balancer in front of OracleAS Web Cache instances, as shown in Figure 7-3.
In addition, in both configurations, the load balancer recognizes a single logical OracleAS Web Cache and balances
requests across the instances.

Figure 7-3. Multiple instances of OracleAS Web Cache

OracleAS Web Cache can be configured to automatically restart an instance if a failure has been detected. If you have
installed OracleAS Web Cache as part of a complete Oracle Application Server installation, the Oracle Process Manager
and Notification Server monitors the health of an OracleAS Web Cache instance and performs the restart when
necessary. If you have installed OracleAS Web Cache as a standalone product, a watchdog process restarts the
instance. This process can be disabled if desired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance. This process can be disabled if desired.

You can configure a hardware load balancer to send only HTTP or HTTPS requests to an instance of OracleAS Web
Cache. For example, you might designate an OracleAS Web Cache instance to receive only HTTPS requests if you are
going to use some type of SSL accelerator hardware only on that machine.

You can use an L7 switch to route requests to OracleAS Web Cache or an origin server via the Application Layer (Layer
7) of the OSI model. This configuration might make sense if there are certain types of content that you don't want to
cache—for example, protected or transactional content—so you would want to completely bypass the OracleAS Web
Cache servers.

7.1.3.3 Clustering

Multiple instances of OracleAS Web Cache can also be combined into a cache cluster . A cache cluster uses the same
basic hardware configuration used for unclustered, multiple instances of OracleAS Web Cache, but it offers some
additional functionality as well.

A cache cluster is a group of cache instances that look like a single cache. A cache cluster still requires the use of a
hardware or software load balancer, as described earlier. All the instances in the cluster use the same common
configuration information, such as site definitions and caching rules, and receive the same invalidation messages.

In a cluster configuration, OracleAS Web Cache instances can periodically ping each other to determine whether they
are still alive, or can wait for either a connection request failure or a designated number of read and write request
failures to demonstrate that an instance is no longer alive.

You can dynamically add OracleAS Web Cache instances to an established cache cluster, although you do have to
restart the cluster for the new member to be included. Each member of the cluster is assigned a relative capacity, and
document ownership is distributed among the instances based on their relative capacity.

Requests are handled as follows for a cache cluster:

If a request comes into a cache instance for a document it owns, it works just like a single cache instance.

If a request comes into a cache instance for a document that is owned by another instance, the cache instance
passes the request off to the owning instance.

If a cache instance doesn't respond to a request for a document in a specified length of time, the requesting
instance assumes that the other instance has failed. When this occurs, the documents owned by the failed
instance are redistributed to the remaining instances according to their designated capacity.

In the last case, the other instances of the OracleAS Web Cache cluster periodically ping a specified URL for the failed
server so that they will recognize when the instance rejoins the cluster. When an instance rejoins the cluster, document
ownership is again redistributed according to the new relative capacities of the available instances. Keep in mind that
while document ownership is redistributed, document content isn't. The new instance will retrieve a document that it
now owns once the document is requested.

Although each document is owned by a single cache instance, the content may be needed by other instances. Once the
content is requested and returned to another instance, the requesting server caches the content itself, so future
requests to that server won't require a redirection. In this way, the same popular content may be contained in multiple
cache instances.

The upshot of this design is that the most popular objects in an OracleAS Web Cache cluster are most resilient to the
failure of an individual OracleAS Web Cache instance because popular objects typically reside in more than one instance
and don't have to be refreshed if one instance fails.

Some operating systems—for example, some flavors of Windows 2000 and Windows 2003—include the ability to load-
balance requests across nodes in an operating system-defined cluster. In such a configuration, the operating system
also recognizes node failure and uses automatic IP takeover in the event of a failure.

A cache cluster offers a number of benefits not provided by unclustered, multiple instances of OracleAS Web Cache,
including:

Increased scalability

Multiple instances of OracleAS Web Cache can be combined for greater caching capability, but without
increasing the number of content requests to the origin server.

Improved maintenance

Maintenance is easier because all members of a cache cluster share the same configuration, and one member
typically receives a single invalidation message. In addition, you can add members to, or remove members
from, a cache cluster without having to worry how it will affect management overhead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.3.4 Hierarchies

You can use hierarchies of OracleAS Web Cache in two basic configurations:

Remote Cache Deployment

One configuration of OracleAS Web Cache implements enterprise content delivery networks with Remote Cache
Deployment. In this configuration, OracleAS Web Cache can provide better response time by caching frequently
used content closer to the eventual user of the data, such as in a remote location or LAN segment, as shown in
Figure 7-4.

Figure 7-4. Using OracleAS Web Cache as Remote Cache Deployment

Edge Side Includes

A second type of hierarchy uses instances of OracleAS Web Cache on ESI providers (described later) and an
instance of OracleAS Web Cache on a subscriber machine, which assembles the ESI fragments into a web page.
This type of hierarchy is especially appropriate for an OracleAS Portal deployment, in which complete pages are
assembled from different sources. OracleAS Portal is described in detail in Chapter 13.

When you configure a cache hierarchy, the origin servers for the upstream caches, such as the ESI subscriber machine,
are the downstream instances of OracleAS Web Cache. If you can't specify a site definition for an ESI provider machine,
and there is a firewall between the subscriber instance and the unknown ESI provider, you must configure a proxy
server because OracleAS Web Cache uses DNS to locate undefined ESI providers.

7.1.4 Types of Caching

Three different types of information can be cached in OracleAS Web Cache: static HTML pages, dynamic HTML pages,
and page fragments.

7.1.4.1 Static page caching

For static pages, the use of OracleAS Web Cache is straightforward. If a document is cacheable, it is placed in the cache
until it becomes invalid, either through receipt of an invalidation message or after a request for the document comes in
and the caching rules indicate that it has expired.

Static pages are swapped out of OracleAS Web Cache if the cache becomes full, and the garbage-collection process
selects the page as a candidate for removal, as described earlier.

7.1.4.2 Dynamic page caching

Dynamic pages are pages that can have different content for different situations or different users. These pages can be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic pages are pages that can have different content for different situations or different users. These pages can be
generated using a variety of scripting and programming languages and modules. Examples include JSPs, Active Server
Pages (ASPs), PL/SQL Server Pages (PSPs), Java servlets, and CGI calls.

Sometimes these dynamic pages are completely unique. In these cases, OracleAS Web Cache would have to potentially
cache each individual page. Frequently, though, pages are very similar, with only some different areas. In some
scenarios, described in the following subsections, OracleAS Web Cache can substitute dynamic values or to recognize
when a page can be reused for multiple users.

In other scenarios, developers can combine some static objects with dynamic objects by caching portions of an overall
page.

7.1.4.2.1 Multiple versions for a single URL

Some web sites create different versions of the same page for different sets of users. These sites either use a cookie
with an identifying value or encode the value in the URL.

If a cookie is used, the value for the cookie is passed back from the origin server in the Set-Cookie response header,
which is stored with the document. When a subsequent request comes in with a value in the corresponding Cookie
request header, OracleAS Web Cache returns the appropriate page. OracleAS Web Cache can also use values in
request-header fields to determine which version of a page to return.

If appropriate, you can configure OracleAS Web Cache to ignore embedded URL
parameters when determining which page to return. This approach avoids the requirement
to cache every version of a web page with distinct URL embedded information, such as a
session ID. You can also configure OracleAS Web Cache to ignore POST body parameters,
as discussed in the next section.

You can use multiversion caching to support different cached pages for different types or groups of browsers. This
technique allows you to build in flexible pages for different browsers while still taking advantage of OracleAS Web
Cache.

7.1.4.2.2 Personalization in a page

You can specify personalization information in a web page with special OracleAS Web Cache HTML tags. When OracleAS
Web Cache receives a request for the page, the specified information is retrieved from a cookie, from a URL embedded
parameter, or from POST body parameters.

When you specify the attribute that will be used for personalization, you can also specify whether to return the page for
requests that are missing the attribute, or what to use in place of the attribute for pages missing a value.

7.1.4.2.3 Session-encoded URLs

Some web pages use session-specific information in internal hyperlinks. You can also configure OracleAS Web Cache to
substitute session values in hyperlinks that use session-encoded URLs. As with personalization attributes, you can
specify how OracleAS Web Cache should handle a request with missing session information.

7.1.4.3 Partial page caching

As mentioned earlier, some pages combine static objects, such as a page template and logos, with dynamic objects.
These pages use ESI tags to indicate where the dynamic objects are located on the page and where to get their
content.

ESI tags were originally introduced by Oracle and Akamai, and are on the standards track
for the World Wide Web Consortium (W3C).

OracleAS Web Cache can work with both include fragments, which are always fetched, and inline fragments, which are
identified with a unique name and can be reused by multiple pages without refetching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

identified with a unique name and can be reused by multiple pages without refetching.

OracleAS Web Cache can cache page fragments independently, with each fragment having its own validation rules. This
method allows OracleAS Web Cache to cache individual fragments, which can be used in many different pages. Each
fragment has its own set of validation rules; these rules can use the same information and logic as a rule for an entire
page. This separation means that an individual fragment doesn't have to be re-fetched every time a page requiring the
fragment is requested.

For instance, you can have the template and logos for a page cached indefinitely, the news for the day cached for
several hours, and stock prices not cached at all. By separating all these fragments into separate ESI fragments,
OracleAS Web Cache can intelligently refresh the fragments as appropriate. ESI tags can use XML stylesheets to
transform content into HTML.

When you configure the origin servers that OracleAS Web Cache will access, you can specify that the site is an ESI
provider only, which prevents browsers from accessing the site directly. You don't have to configure all sites that are
ESI providers. However, failing to configure an ESI provider site disables OracleAS Web Cache's capacity heuristics
capability, as we discuss in the next section. If there is a firewall between an ESI provider and a OracleAS Web Cache
subscriber cache, as described in Section 7.1.3.4, you must configure a proxy server to contact the ESI provider.

For ESI use in JSPs, a set of Java ESI tags, known as JESI tags, can implement ESI fragments more productively. JESI
tags will automatically create the surrogate control headers that are used by ESI fragments to determine caching
characteristics. By using JESI tags with JSPs, you can use JSP expressions for more flexible implementation of caching
rules.

7.1.5 Cache Invalidation

Caching is, of course, nothing new in the world of computing. Databases have long used caches to improve
performance. In a database cache, the database uses the concept of least-recently-used (LRU) to swap out blocks of
data when the cache becomes full.

In Oracle Application Server, OracleAS Web Cache performs the same type of operation when it becomes full, but there
are also other options for removing content from an OracleAS Web Cache instance. Some content stored in OracleAS
Web Cache changes frequently, while some rarely changes at all. To handle this breadth of "freshness," OracleAS Web
Cache lets you specify when content becomes invalid, which marks it as ready to be discarded from the cache.

Validation is the process of verifying whether an object in OracleAS Web Cache is still valid. Invalidation is the process
used to flag an object as no longer being available. Invalidating an object doesn't necessarily remove it from the cache.
Once an object is put into OracleAS Web Cache, it remains valid until it is marked as invalid.

There are basically two types of invalidation:

Predictable

This type of invalidation can be indicated with an expiration time, either in elapsed time or at a specific time.

Unpredictable

This type of invalidation occurs in response to some other event. Unpredictable invalidation can be implemented
with a message, as described later.

There are two ways to indicate that an object is invalid:

Policies

These are evaluated each time a request is made for an object.

Messages

These are sent to OracleAS Web Cache, either manually or programmatically.

If an object in OracleAS Web Cache is marked as invalid, the next request for the object causes OracleAS Web Cache to
fetch a fresh version of the object from the origin server.

Just as you assign validation rules to objects and groups of objects, you can mark objects
as noncacheable, which means that they are never placed in OracleAS Web Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These techniques are used for the OracleAS Web Cache instance itself to invalidate content. OracleAS Web Cache can
use HTTP validators, included in the browser request, to ensure that delivery of cached documents is appropriate.
OracleAS Web Cache compares the If-Modified-Since value with the value in the Last-Modified response-header field of
the cached document, or compares the If-None-Match validator with the ETag response-header field of the cached
document.

OracleAS Web Cache has its own set of caching rules (described later), but it can also accept caching directives, either
in the Surrogate-Control response-header field in the object returned from the origin server, or in the HTTP Cache-
Control header. If there is a rule in more than one of these areas, the Surrogate-Control rule overrides OracleAS Web
Cache rules, which override the HTTP Cache-Control header. If a Surrogate-Control response-header rule is used,
additional properties in the OracleAS Web Cache rule, such as compression, can be merged with the rule.

If you are using a hierarchy of caches, the top cache instance in the hierarchy receives the invalidation message and
then propagates it to the other downstream caches. If you are using cache instances in a cluster, you can choose either
to have a cluster member act as an invalidation coordinator (which propagates invalidation messages) or to send
invalidation messages to all members of the cluster.

Invalid objects are removed from OracleAS Web Cache by a garbage-collection process. This process runs when the
OracleAS Web Cache instance runs out of space. The garbage-collection process uses a heuristic algorithm to determine
which objects to remove, which takes into consideration the popularity of an object (how long it has been since the
object was requested), whether an object is invalid, and other considerations. An object is marked as invalid, based on
rules and messages, but it isn't discarded from the cache until a garbage-collection process is initiated by the load on
the OracleAS Web Cache instance.

7.1.5.1 Cacheability/invalidation rules

You describe the objects that an OracleAS Web Cache instance should cache by specifying caching rules. A caching rule
contains four properties:

Selector

Specifies the pages to which a rule applies. The selector contains a URL expression, which could be based on a
URL prefix, a file extension type, or a regular expression (for more extensive logical selection). It can also be
based on a URL or POST body parameter, or on a POST body expression.

Caching policy

Indicates whether the selected URL should be cached. You can also indicate whether the URL has an expiration
policy or whether it should be compressed. An expiration policy uses a time-based indicator, which can work on
the amount of time an object is in the cache, on the amount of time since an object was last requested, or on
information in the HTTP Expires or Cache-Control response fields.

Cache key policy

Defines what information OracleAS Web Cache uses to create a unique ID for an object. This ID is used to
retrieve the object from the cache for subsequent requests. This information can include the site name, the URL
of the object, the POST body expressions, the cookie names and values, and the HTTP request header name
and values.

Priority

Defines the order of use of the caching rules. If some objects aren't cacheable, this property specifies their rules
first to avoid excess overhead.

OracleAS Web Cache comes with some default caching rules, such as one used with OracleAS Wireless. If you don't
specify any caching rules, content isn't cached. Even if content isn't cached, OracleAS Web Cache can still be used as a
load balancer to multiple origin servers.

7.1.5.2 Invalidation messages

To invalidate an object by a message, an OracleAS Web Cache instance must receive an HTTP POST message from one
of two accounts—the administrator account or the invalidator account. Both accounts are set up at installation time and
can be modified with Web Cache Manager. These messages must be received on the invalidation listening port, which is
also configured at runtime.

The message contains information presented in XML that identifies the page to be invalidated. There are two types of
XML descriptions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML descriptions:

Basic

Lists the identifying URL

Advanced

Uses pattern and range matching to identify a number of different pages

Invalidation messages can be sent in a variety of ways, including:

Via Telnet

From OracleAS Web Cache Manager

Via application logic

From database triggers using Oracle's UTL_TCP built-in package

With scripting languages

OracleAS Web Cache ships with an API for invalidation messages for Java and PL/SQL. An invalidation message sent by
OracleAS Web Cache Manager can include a removal time, which must be later than the invalidation time. This time is
used for performance assurance heuristics, discussed in the next section.

If you use ESIs, you can invalidate fragments, based on the retrieval of another inline fragment. For instance, if one
inline fragment is invalid, you may want to indicate that the other fragments associated with the document are also
invalid.

OracleAS Web Cache sends an HTTP response for all invalidation requests. This response contains a status code
indicating the outcome of the request. The application that sent the request can use this information in its own logic.

7.1.5.3 Performance assurance heuristics

Objects in OracleAS Web Cache can be marked as invalid, as explained earlier, but a large number of objects can
become invalid at any one time. For example, a bulk application of changes to material used in an online catalog may
invalidate all the pages in the catalog. How does OracleAS Web Cache avoid impacting performance when it saturates
the origin server with requests for new versions?

The answer is that OracleAS Web Cache uses something called performance assurance heuristics . These heuristics are
used to create a queue for refresh requests. If the capacity of the origin application server is exceeded, OracleAS Web
Cache uses this queue to keep the number of requests to a more reasonable level. Requests are prioritized in the queue
based on two factors:

Levels of invalidation defined for the object

Popularity of the object

The concept of levels of invalidation is based on the concept of removal time. You can specify a removal time for an
object, which indicates how long an invalid object can stay in the cache before it is removed. The greater the time since
an object has been invalidated, the staler it is. There may be multiple levels of staleness.

For example, a web page may contain the following:

A logo, which is static

A news feed, which should be updated on a regular basis

An account balance, which must always be up to date

If OracleAS Web Cache determines that refresh requests are overwhelming the origin server, it can assemble the page
with a stale version of the news feed item, but not the account balance. The only real consequence of this decision for
the user is that it provides slightly older news content, while providing better performance for all users.

If objects are equally stale, OracleAS Web Cache uses popularity ratings to remove the least-requested object. In this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If objects are equally stale, OracleAS Web Cache uses popularity ratings to remove the least-requested object. In this
way, OracleAS Web Cache can smooth out the performance it delivers, regardless of the number of objects that are
invalid at any one time. In addition, you can use this feature to help address issues associated with surges of traffic. By
designating some content as acceptable for stale delivery, you allow OracleAS Web Cache to automatically throttle back
its requests as demand grows.

7.1.6 Compression

OracleAS Web Cache uses the standard GZIP compression algorithm to reduce the size of pages returned to the
browser (assuming that the requesting browser supports this type of compression). On average, OracleAS Web Cache
compression can reduce the size of compressed documents by 75%. A compressed document may contain both cached
and noncached elements, or may be a complete page that has not been cached. OracleAS Web Cache itself stores
content in a compressed format to save caching space.

If the HTTP header for a request indicates that a browser can expand compressed content, OracleAS Web Cache
compresses the content before returning it, reducing bandwidth requirements and potentially improving response time.
Most browsers have supported the GZIP algorithm since 1997. However, OracleAS Web Cache caches both compressed
and uncompressed version of objects, and returns whichever is appropriate.

You indicate whether you want content to be compressed by supplying the appropriate information in the cacheability
rules you specify to select the content. Because these rules allow the use of regular expressions for evaluating
cacheability, you can use the same flexible expressions to determine whether content is to be compressed. If the origin
server has already compressed content, OracleAS Web Cache recognizes this in the response header and does no
further compression.

If you are using a hierarchy of caches, you should configure the OracleAS Web Cache closest to the origin server to
compress content, and configure the downstream OracleAS Web Cache instances so that they don't compress. This
approach delivers the compressed content early on in the flow of the response, and consequently, the transmission
benefits over the greatest distance.

7.1.7 Administration

There are three ways to start an OracleAS Web Cache instance:

Through the command line, using the OPMN Server

Through OracleAS Web Cache Manager

Through Application Server Control

Of the three, OracleAS Web Cache Manager (shown in Figure 7-5) is the tool most often used to manage OracleAS Web
Cache instances. This tool is the interface to the management process for OracleAS Web Cache, which in turn must be
running to use the Manager.

Figure 7-5. Sample OracleAS Web Cache Manager page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use OracleAS Web Cache Manager to start and stop OracleAS Web Cache instances, administer invalidation or
rollover log files, monitor performance and activity, and configure OracleAS Web Cache instances. You can also use the
OracleAS Web Cache Manager to associate specific caching rules with URLs or sets of URLs. In addition, you can create
and view caching rules with this tool, as well as edit some of the attributes of the rules, such as expiration policies,
compression, and the content of HTTP request headers.

Most changes specified through OracleAS Web Cache Manager aren't applied until an OracleAS Web Cache instance is
restarted. However, some of the changes do take effect as soon as the changes are saved. Such changes include
setting levels of detail for the event logs, changing the buffering for event logs and access logs, enabling and disabling
the inclusion of diagnostic information in the HTML response body, and setting routing to origin servers.

OracleAS Web Cache Manager tracks whether other members of a cache cluster have a different configuration and
allows you to bring those members' configuration into conformance. Once you have matched the configurations, you
can restart all instances of a cluster with a single button push. You can also choose to stagger the restart of the
instance to reduce the impact on operations.

7.1.7.1 Monitoring OracleAS Web Cache

OracleAS Web Cache Manager can display a list of the most popular documents, based on the number of requests and
the most recently received requests. This list can be limited to either cached documents or noncached documents. You
can also get a listing of all documents in the cache at the present time, but this list is saved to a file.

To highlight potential performance improvements, OracleAS Web Cache Manager can give you a list of the most popular
documents that return cache misses, which provides the information you need to adjust caching rules to reduce the
number of misses.

OracleAS Web Cache uses an event log to record events and errors. Events include cache hits, cache misses, and
invalidations. Events can be recorded with details of the request that triggered the events, such as the IP address of the
browser that made the request and details about the site and URL of the request.

Event log files are periodically rolled over, with the old log file stored. Rollover intervals can be configured to once a
week, once a day, hourly, or never. Starting with Oracle Application Server 10g, you can set the level of detail in the
OracleAS Web Cache log.

OracleAS Web Cache Manager displays information about the overall health and operations of an OracleAS Web Cache
instance. The information includes health and utilization statistics for the instance, error and invalidation statistics,
requests for each origin server supported by the instance, and information about fresh and stale documents that have
been served from the cache.

For troubleshooting purposes, OracleAS Web Cache includes diagnostic information in the HTTP Server response-header
fields by default. If you choose to do so, you can have this information added to the response body.

7.1.7.2 OracleAS Web Cache and performance monitoring

In addition to the event log mentioned in the previous section, OracleAS Web Cache also keeps an access log, which
tracks information about HTTP requests sent to it. OracleAS Web Cache can be configured to use its access log to
determine user response times for HTTP requests because the access log includes information about the elapsed time
from a request to its response.

The access log can be analyzed through OracleAS Web Cache Manager and can be output into either an HTML file or a
comma-separated file for import into a spreadsheet or database. The access log can also be used more fully by Oracle
Enterprise Manager 10g's Application Service Level Management feature, which ships with Grid Control, a web-based
tool described in Chapter 3. ASLM helps administrators to understand the actual performance their end users are
receiving by tracking the time it takes for a response to an end-user request to be returned to the user. The OracleAS
Web Cache access logs are used to track time—from the time a request comes into OracleAS Web Cache until the time
the response is returned to the user. ASLM can't be used without these access logs, so OracleAS Web Cache contributes
substantially to the overall management capabilities of Oracle Enterprise Manager 10g.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Java Object Cache
OracleAS Web Cache improves performance by caching all kinds of content accessed via HTTP. Two other types of
caches, Java Object Cache and Web Object Cache (described in the next section), are used specifically to support Java
and web objects.

Java Object Cache is a service provided by OC4J. OC4J is the Java servlet, JSP, and EJB environment provided by
Oracle Application Server, and was described in Chapter 6. Similar to OracleAS Web Cache, Java Object Cache allows
the selective caching of content. However, Java Object Cache caching is performed within OC4J before content is
generated by Java code. Java Object Cache also provides disk, pool, and stream-accessed caches in addition to a
memory cache.

Figure 7-6 illustrates Java Object Cache's use in OC4J. An HTTP request to a servlet or JSP in the web container, or an
RMI request to an EJB in the EJB container, can access a cached object in Java Object Cache. The object in the cache
can be loaded by a cache loader class that, in turn, can retrieve virtually any information it needs from any source.

Figure 7-6. Java Object Cache architecture

7.2.1 Basic Principles

Java Object Cache exists to cache frequently accessed or expensive objects created by Java code. An expensive object
is one that requires a significant amount of CPU resources or a great deal of time to generate. Any Java object type can
be stored in Java Object Cache.

A programmatically defined hierarchy of namespaces, called regions, organizes Java Object Cache. Typically, a region is
created for each application. Then one or more subregions are defined for each part of an application that uses the
cache. Regions or subregions can be combined to create a group. Groups allow multiple regions to be manipulated at
the same time.

Java Object Cache can cache objects in four ways:

You can place objects in memory.

You can place objects on disk. OracleAS Web Cache, in contrast, stores objects only in memory.

You can access objects through a pool mechanism.

You can access objects using streams.

Objects may be placed in the cache automatically by an implementation of the CacheLoader class, or programmatically
using the CacheAccess class. The following subsections expand on this very high-level view of Java Object Cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using the CacheAccess class. The following subsections expand on this very high-level view of Java Object Cache.

7.2.2 How It Works

As mentioned earlier, Java Object Cache is organized by regions, subregions, and groups. Regions define a namespace
within the cache. If a region isn't specified, the default region is used.

The first step in using the cache is to define a top-level region, which is typically the name of an application. Once a
top-level region has been created, that region can be further subdivided into subregions. A subregion can also be
divided into additional subregions, creating a hierarchy of regions, as shown in Figure 7-7.

Figure 7-7. Java Object Cache organization example

One or more regions or subregions can be placed into a group. A group definition allows you to apply caching attributes
or to invalidate cached objects for the regions in a group. A region (or subregion) can be a member of only one group
at a time.

Figure 7-7 demonstrates a possible organization for Java Object Cache. In this case, the application is called MyApp. It
has several servlets, MyServlet1, MyServlet2, and MyServlet3. The cache is organized by creating a top-level region
MyApp. The region is subdivided into three subregions using the names of the servlets. This creates a set of
namespaces in which objects that need to be shared between servlets can be stored in region MyApp, while objects
specific to a particular servlet are stored in the servlets' own region. A Servlets group has been created that groups the
servlet subregions; this grouping allows all the servlet caches to be invalidated at once.

7.2.3 Types of Caching

Four types of cache mechanisms exist for Java Object Cache: memory, disk, stream access, and pool. You can select
the mechanism that best fits your needs and the resource constraints (e.g., available memory and disk space) of your
system. Methods exist that allow you to update any cached memory, disk, or stream access object.

Figure 7-8 shows the relationship between the four cache types, described in the following paragraphs.

Figure 7-8. Java Object Cache: cache types

Memory cache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory cache is stored in the JVM's heap. This is the fastest form of cache, but only if there is enough real
memory on the host server so that the operating system isn't required to use its virtual memory mechanism
that swaps its real memory to disk. If the cost of creating a memory cached object is significant, you can
configure the cache in such a way that it saves the object to disk if it is invalidated, then retrieves it from disk
when it is needed. Memory cached objects can be updated by obtaining a private copy of an object, updating it,
and then explicitly placing the object back into the cache.

Disk cache

Disk cache is stored in a designated local operating system directory. While not as fast as memory cache, disk
cache has some advantages. Any object that requires a significant amount of CPU processing time or that
requires a great deal of time to retrieve resources to create, can be cached to disk, eliminating the cost of
recreating the object. A LRU algorithm is used, which deletes disk objects when space is needed. Like a memory
object, a disk object can be updated by obtaining a private copy, updating it, and then explicitly placing it into
the cache.

Stream access and pool are special cache types that use the memory cache, the disk cache, or both:

Stream access cache

Stream access cache solves the problem of dealing with very large objects. This type of cache is accessed using
the Java classes OutputStream and InputStream. Class OutputStream places an object into this type of cache, while
InputStream accesses an object. Stream access cache objects are automatically loaded into disk cache. How a
stream access object is actually stored is transparent to the application using the cache. Java Object Cache
determines the best storage method—memory or disk. This determination is based on the size of an object and
the available resources in Java Object Cache. Streams can typically access very large objects one small chunk
at a time. Such objects would otherwise require a significant amount of memory to materialize all at once.

Pool cache

Pool cache solves the problem of managing a pool of identical resources. Pool cache is accessed through a
check-out/check-in system. A pool object contains a collection of like objects. An application-defined factory
object creates objects for the collection. The cache provides a minimum and maximum pool size mechanism
that allows you to create an initial minimum number of objects in a pool and to set a maximum number of
objects allowed in a given pool. A pool cache can also allocate shared resources such as a custom resource
adapter.

7.2.4 Cache Initialization

An object can be placed into one of the four cache types automatically using a CacheLoader object or explicitly using the
CacheAccess.put() method. Because placing objects in the cache is done programmatically, doing so can be coordinated
between processes.

When a cache region, subregion, or group is defined, it is given a set of default attributes. These default attributes, in
turn, become the defaults for an object placed in the cache at that location. The default attributes can be overridden
with object-specific attributes at the time an object is cached. Some attributes must be defined when an object is stored
in the cache, while others can be modified after an object is already in the cache.

An object can be loaded automatically by setting its LOADER attribute to an instance of a custom CacheLoader class at the
time the object is defined. You create a custom CacheLoader class by extending the CacheLoader class, overriding its load(
) method. Then, whenever the object is accessed, if it doesn't already exist in the cache, Java Object Cache uses the
custom CacheLoader to load the desired object into the cache.

An object can be explicitly loaded using the CacheAccess.put() method. This requires you to create the object, and then
pass it to the cache as a parameter of the put() method. There are drawbacks to explicit loading; in particular, you will
have to detect and reload the object explicitly if it is invalidated. An event-handling mechanism, the interface
CacheEventListener, exists to help with this cache management issue.

After an object is defined by including a LOADER attribute or is placed into a cache explicitly, it can be accessed using
the CacheAccess.get() method. However, two factors affect its visibility within an application:

The Java class loader (not the cache loader) used to load the classes placed into the cache

The value of the DISTRIBUTE attribute

Where a particular class loader exists in the class loader hierarchy determines the visibility of the objects it loads. For
an object to be visible in both the web and EJB containers, or even shared between servlets (and JSPs), a system class
loader (not a servlet class loader) must load it. This means that any classes used for objects that will be cached in Java
Object Cache and shared between servlets, etc., must be placed on a class path that is available to the application
server, not just to a web application in a web container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server, not just to a web application in a web container.

A cached object's DISTRIBUTE attribute determines whether the object is replicated across clustered instances of OC4J.
If OC4J is clustered, and if Java Object Cache is configured as a distributed cache, any object that has the DISTRIBUTE
attribute set will be replicated to each instance of OC4J and will therefore be accessible to all.

7.2.5 Cache Invalidation

Invalidation is the process used to flag an object as no longer being available. Invalidating an object doesn't necessarily
remove it from the cache. An invalidated object remains in the cache until the resources it has in use are required by
Java Object Cache to cache another object. If an object that is currently invalidated is requested, it will be reloaded if
its LOADER attribute is set, or it will throw a CacheException error.

Cached objects can be implicitly or explicitly invalidated:

Implicit invalidation

Implicit invalidation takes place automatically if you have set a time attribute. Two attributes control time
invalidation: time-to-live and idle time. You can set the time-to-live or idle time by calling the appropriate
method when an object is defined or after it has been placed into the cache. When the time-to-live expires, or
when the idle time is reached, the associated object is invalidated.

Explicit invalidation

An object can be explicitly invalidated by calling the CacheAccess.invalidate() method. An object can be removed
from the cache altogether by calling CacheAccess.destroy() instead of invalidate().

You can set invalidation rules for entire regions, subregions, or groups by setting the time-to-live or idle time attributes
for the desired organizational unit. You can also explicitly invalidate a region, a subregion, or a group.

7.2.6 Cache Management

Java Object Cache's global configuration is managed manually by setting properties in its configuration file, or
programmatically using the Cache class. Unlike OracleAS Web Cache, Java Object Cache isn't managed via Application
Server Control or DCM. Either the manual or the programmatic method allows you to specify the cache's memory size,
its disk size and location, the cache cleanup interval, and other attributes, as well as to configure the cache as a local or
distributed cache.

The contents of a local cache are available only to programs run on the OC4J instance where Java Object Cache resides.
When a cache is configured as a distributed cache, its contents are replicated to every other distributed Java Object
Cache in the same cluster. Using a distributed cache requires a great deal more resources, so it may make more sense
to use a local cache even in a clustered environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Web Object Cache
The third type of Oracle Application Server cache, Web Object Cache, is used specifically to support web objects. Web
Object Cache is an HTTP-centric Java object caching service for servlets and JSP, provided by the OC4J. We refer to
Web Object Cache as HTTP-centric because it typically uses information from the servlet request object,
HttpServletRequest, such as the URI, query string, and cookies, to automatically formulate a name to use for storing and
retrieving objects in a Java Object Cache.

Web Object Cache caching takes place within the OC4J web container before any content produced from a servlet or
JSP is sent. Web Object Cache is best used for expensive-to-create or frequently used Java-generated objects. It isn't a
substitute for OracleAS Web Cache, in which rendered content is cached and distributed outside of OC4J. Instead, use
OracleAS Web Object Cache only to cache sections of content that need to be merged within an OC4J servlet. Outside
OC4J, on the other hand, ESI can be used in OracleAS Web Cache.

A Web Object Cache Java API exists for use in servlets, and a Web Object Cache tag library exists for use in JSPs. A tag
library is a set of custom tags that effectively extends the tags available when creating a source file such as an HTML
file. These tags are preprocessed by a JSP translator, resulting in a servlet that is then compiled and executed.

Java objects are stored in Web Object Cache using block names. Cache policies determine block naming, as well as
expiration rules. These policies can be specified declaratively in a policy descriptor file or programmatically using the
API or tag library.

To use Web Object Cache effectively, you must split web pages into blocks so that appropriate parts of dynamically
generated page content can be cached to improve performance.

7.3.1 Basic Principles

Web Object Cache consists of two components:

Programming interfaces

These interfaces consist of the Web Object Cache servlet API and the Web Object Cache JSP tag library.

Java object repository

This repository has two possible implementations: Java Object Cache or File System Cache.

The API and the tag library (which uses the API) can be used to programmatically set block naming and expiration
policies. In addition, the API offers a set of general-purpose cache storage and retrieval methods. The tag library
further abstracts these into specific tags for storing and retrieving String, XML DOM, and serializable Java object types.
The tag library also offers an include mechanism that uses Web Object Cache cached content. Web Object Cache
provides a special interface class, CloneableCacheObj, which allows the API to completely clone copies of variables to
solve the problem of a shared item's being inappropriately modified by multiple users of the item.

The repository used by Web Object Cache can be of any appropriate implementation. As mentioned, two
implementations exist:

Java Object Cache

This cache, described earlier in this chapter, provides both a memory- and a disk-based caching mechanism.

File System Cache

This cache is strictly a disk-based caching mechanism.

7.3.2 Cache Organization

When items are cached, they are given either an implicit or an explicit block name:

Implicit block name

Implicit block naming, the default, is controlled by attributes of a CachePolicy object. Block naming attributes can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implicit block naming, the default, is controlled by attributes of a CachePolicy object. Block naming attributes can
be set programmatically using the API or tag library, or declaratively using a policy descriptor file that is
deployed with the web application.

Explicit block name

Explicit naming is performed programmatically using the API or tag library.

You can cache an object with different types of access. The access scope can be session or application:

Session scope

An object cached with session scope is available only within the current HTTP session.

Application scope

An object cached with application scope is available to all HTTP sessions in an instance. If Java Object Cache is
used as the repository, and it is configured for distributed mode, application scope objects are available to all
instances of OC4J that are part of the same cluster.

7.3.3 Caching Policies

The block naming policy is determined in various ways:

Using the attributes set in a CachePolicy object

Using the API or tag library

Using a policy descriptor file

Sometimes, the policy is determined using both the API or tag library and the policy descriptor file.

An implicit block naming policy allows you to use any combination of the HTTP request information (URI, query string,
and cookies) to formulate an appropriate block name. Even combinations that selectively specify some query string
parameters or cookies can be configured. This creates a powerful, adaptable mechanism that automatically determines
the block name for a cached object, in effect, relieving the programmer from having to create a custom naming
mechanism. If you wish, you can set a block name explicitly.

An important part of a cache policy is the expiration policy. The expiration policy is set using an ExpirationPolicy object,
which is an attribute of a cache policy. Like a block naming policy, an expiration policy is set either using the API or tag
library or with a policy descriptor file. You can use either of two time-related approaches:

You can set a time-to-live value. When the time-to-live expires, the cached object is invalidated.

You can set a fixed day-of-the-month, day-of-the-week, and/or time-of-day. Doing so allows you to invalidate a
cached object once a month, once a week, or once a day at a specified time.

7.3.4 Cache Invalidation

Invalidation is the process used to flag an object as no longer being available. Invalidating an object doesn't necessarily
remove it from the cache. When an object's expiration policy is met, the object is invalidated. An object can also be
invalidated explicitly using the API or tag library. Whether an invalidated object is removed from Web Object Cache
depends upon the repository. However, once invalidated (if requested from the cache), an object isn't returned from
the cache. Instead, it must be recreated and recached. Fortunately, because of the programming interfaces, this
happens transparently.

It is also possible to invalidate several objects at a time. The API and tag library provide methods for identifying and
invalidating objects using a partial block name or wildcard specification.

7.3.5 Repository Management

Currently, you can use one of the two repositories that exist for Web Object Cache: Java Object Cache or File System

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Currently, you can use one of the two repositories that exist for Web Object Cache: Java Object Cache or File System
Cache. The desired repository for a web application is specified in a cache repository descriptor file that is deployed with
a web application. If Java Object Cache is specified, additional Java Object Cache properties must be set in the OC4J
instance's global web application descriptor file and a Java Object Cache properties file whose location is specified in
that descriptor. If File System Cache is specified, a location for the disk cache must also be specified in the cache
repository descriptor.

Of the two implementations, Java Object Cache is faster because it is both a memory-based and a disk-based cache,
and it is more manageable because it allows you to set limits on the resources it uses. Java Object Cache can also be
configured to replicate its cached objects across clustered OC4J instances. File System Cache is slower because it is
only a disk cache, and it is less manageable because it allows you only to configure where to store serialized Java
objects. You have no configurable control over how much disk space it may use. In addition, File System Cache's
cached objects are available only to the local instance of OC4J.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Caching
For users, performance is the most visible aspect of any IT solution. Developers must make sure that the applications
they build provide users with the functionality they need. Unfortunately, if those applications can't achieve adequate
performance, the developers' efforts aren't judged as successful. Consequently, the search for ways to improve
performance never ends.

Oracle Application Server includes three different types of caches that play a role in improving the overall performance
of the product:

OracleAS Web Cache

An in-memory cache for web content of all kinds, including static pages, dynamic pages, and pages assembled
from both static and dynamic content.

Java Object Cache

A cache for frequently used or expensive-to-create objects used by a particular Java application.

Web Object Cache

A Java Object Cache implementation used for HTTP-centric Java objects.

All three caches improve performance in the same way—by making commonly used data available more rapidly. This
chapter describes the architecture and use of each cache.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Developing Web Applications
Trying to understand what technologies should be applied when developing a web-based application is a common
dilemma. Should you use HTML, Java, JavaScript, applets, servlets, EJBs, and/or XML? In some organizations there is
no dilemma because someone else, someplace else in your organization, has already made the choice for you. If you
are given the choice, however, what approach should you use?

Your first step is to understand how Java and related technologies can be used for web-based applications. This section
examines the use of Java and related technologies for web-based application development in three layers: the
presentation layer, the data and business rules layer, and the control layer, as depicted in Figure 8-1.

Figure 8-1. Web application architecture

8.1.1 Presentation Layer

The presentation layer represents the interface to the application that will be used by a human being. In a presentation
(or view) layer of a web-based application, it isn't uncommon to see a combination of HTML, JavaScript, Java applets,
and XML employed to provide a graphical user interface for an end user. The following are some examples:

HTML can create a data-entry form, a menu, and so on.

JavaScript can provide client-side (web-browser) based validation and enhanced functionality that is beyond the
capabilities of a simple HTML form.

A Java applet can be used in an HTML form to extend the capabilities of JavaScript or to replace HTML form tags
altogether, by providing a rich GUI using Java.

8.1.1.1 HTML

An HTML form, created using the <form> related tags in HTML, provides a simple user interface. It doesn't allow you to
do any fancy client-side validation or dynamic population of drop-down list boxes. It's like using a block-mode terminal
from the good old days, where everything in the form must be transmitted to the server to be validated. If a validation
error occurs, the server must rerender the entire HTML form and send it back to the end user's browser.

This type of validation can be both time-consuming and resource-intensive. It also creates a poor experience for the
user of the application. However, it is extremely lightweight, efficient, portable, and well supported.

8.1.1.2 JavaScript

By adding JavaScript routines to an HTML page you can perform client-side validation, dynamic loading of drop-down
list box values, custom error windows, and so on. Using JavaScript can improve the GUI capabilities of an HTML form so
that the end user's experience is closer to that of using a client-server application. Of course, this enhanced end-user
experience comes with a price, which is that JavaScript isn't equally supported on all browsers. That, in turn, means
that you will have compatibility issues. Regardless, the use of JavaScript as an extension to HTML forms is very popular.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that you will have compatibility issues. Regardless, the use of JavaScript as an extension to HTML forms is very popular.

8.1.1.3 Java applets

If JavaScript can't extend an HTML form's capabilities to match your requirements, you can extend JavaScript's
capabilities with a Java applet or use an applet to provide some additional GUI functionality on part of a web page. You
can also replace the combination of an HTML form and JavaScript altogether by using a Java applet as a rich-content
GUI.

Using a Java applet as a rich-content GUI allows you to provide a client-server application look-and-feel inside a
browser. That is how Oracle's Forms applications, for example, are used on the Web, by employing an applet run inside
your browser. The one drawback with applets used in this fashion is that they are large, and consequently take longer
than HTML pages to download and display in a browser.

8.1.1.4 JSP and Java servlets

JavaServer Pages are nothing but Java servlets alternatively created by coding HTML with scriptlets and other JSP
syntax, instead of by coding Java that outputs HTML, as is done in a servlet. Because JSP is nothing but a servlet, the
discussion in this section covers both technologies.

Java servlets can generate the HTML pages that are then presented in an end user's browser. Essentially, you use a
servlet to create HTML forms, possibly with embedded JavaScript routines and applet tags, to load an applet. Servlets
(or JSPs) allow you to retrieve values from a database, create a form, and send it to the browser. When the user
submits the form back to the server, it calls another servlet (or possibly the same one, depending on design) to process
the data values and update the database.

You can see from the discussion in the previous sections that HTML, JavaScript, and applets are probably used together,
with the HTML generated by a servlet. But what about the data and business rules? How do you retrieve and save an
application's data? Where are the business rules kept? That is where JDBC and EJBs are used:

JDBC allows your program to access a relational database.

EJBs allow you to create modular, reusable software components that encapsulate business logic and data
persistence.

The following sections describe these capabilities.

8.1.2 Data and Business Rules Layer

In the data and business rules layer of a web-based application, it isn't uncommon to see a combination of JDBC,
JavaBeans, Java Data Objects (JDO), EJBs, and XML manipulating data and executing business rules. Several
approaches can be used to manipulate data used in a web application:

JDBC used directly in a servlet

JDBC used in JavaBeans

OracleAS Toplink, OracleAS Business Components for Java, or another proprietary object-relational mapping
tool that implements its solution as JavaBeans or EJBs

JDO

EJB

Several of these persistence technologies may also be combined and then used in a servlet. As you go through the
options listed here, the complexity, programming required, and infrastructure required all increase.

8.1.2.1 JDBC used in servlets

You can use JDBC directly in your servlets. JDBC allows you to perform SQL Data Manipulation Language (DML), such
as inserts, updates, deletes, and selects, along with stored procedure calls and Data Definition Language (DDL).

If you do use JDBC directly in your servlets, make sure to use prepared statements to prevent SQL injection.

With SQL injection, values entered into fields of your HTML form are actually additional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With SQL injection, values entered into fields of your HTML form are actually additional
SQL syntax. This maliciously added SQL syntax allows the perpetrator to select all values
from a table or damage the validity of data in a table by erroneously inserting, updating,
or deleting rows. SQL injection is possible if you use a JDBC Statement which allows you to
perform dynamic SQL, but not if you use a PreparedStatement.

8.1.2.2 JDBC used in JavaBeans

If the size of your application requires multiple servlets to access the same information, you should consider
consolidating your JDBC code in a JavaBean that represents a table in the database. Alternatively, use one of the other
more complex solutions covered in the following sections.

If you create a JavaBean that represents a table in the database, you can add routines to select, insert, update, and
delete entries as well as accessors and mutators. Accessors and mutators are methods that allow you to get and set
column values. This level of abstraction is well suited for JSPs because you can then use JSP bean declarations instead
of large embedded scriptlets in your JSPs to retrieve and save data.

8.1.2.3 Object-relational mapping tools

Object-relational (OR) mapping tools also allow you to use simple JavaBeans for data abstraction. These tools provide a
framework that glues JavaBeans to a persistence layer such as a database. Oracle Application Server provides two OR
mapping tools: OracleAS TopLink and OracleAS Business Components for Java. Object-relational mapping tools add
value because they significantly reduce the amount of time it takes to create code for persisting data in a relational
database.

8.1.2.4 Java Data Objects

Java Data Objects is a more recent public specification and standard for object-relational mapping. It can also be used
in the same way as custom JavaBeans. JDO simplifies a lot of the coding required to make your own beans. However,
using JDO comes with a price: you have to license a JDO implementation, learn how to use yet another technology, and
do some special coding just for JDO.

8.1.2.5 Enterprise JavaBeans

If your application is one with high transaction volumes or a large user base, or one in which many servlets will need to
share the information and business processes, Enterprise Java Beans are your best bet. EJBs provide a business
process and data abstraction that treats each EJB as a distributed component that can be called by any program. EJBs
provide services that ease management of transactions and deployment of an application.

EJBs allow you to more easily separate data from the business rules that may manipulate the data. This, in turn, leads
to a more adaptable and longer-lived application. Once again, this comes at a price. As with JDO, you'll have to learn
how to use yet another technology and do some special coding just for EJBs.

8.1.3 Control Layer

The control layer acts as a traffic cop between the presentation layer and the data and business rules layer. One
important aspect of a web-based application is how to direct the response of an HTML form to another servlet (or other
entity) in the presentation layer. One common approach is to hardcode the URL of the servlet that will process a form in
the action attribute of the HTML <form> tag. This approach is referred to as model 1 programming. This works just fine,
but it makes your application's modules programmatically dependent on each other.

An improvement on this approach is model 2 programming with which the same controller servlet is specified in the
action attribute of every form. The controller servlet then forwards the HTML form's response on to the desired servlet.
The desired servlet's URL is stored in a configuration file, as shown in Figure 8-2.

Figure 8-2. A model 2 controller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-2. A model 2 controller

Struts is a configurable implementation of a model 2, Model-View-Controller (MVC) framework. You can find additional
information about Struts at http://jakarta.apache.org/struts/.

8.1.4 Other Considerations for Web-Based Applications

You might also consider making sure that the output of your servlets is XHTML instead of HTML. XHTML is an XML
implementation of HTML, one in which HTML documents are well-formed and valid XML documents. Using XML from the
start gives you an advantage if you need to provide a presentation layer of your application to another device, such as a
cell phone. In this case, your servlet's output can be forwarded to a filter servlet that transforms HTML (XHTML) to
Wireless Markup Language for the handheld device. This process is possible because your HTML is actually XML.
Chapter 10 describes XML in more detail.

After reading this overview of Java web-based application development, you may have realized that the most
formidable part of web-based application development is the number of technologies you must master to build a user-
friendly application. There are many good Java books out there that can help you. O'Reilly, for example, has books on
each of these topics. You can find very well-written books on servlets, EJBs, Struts, and JavaScript at
http://www.oreilly.com. Choosing a development tool that aids you in these technologies can also help tremendously.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Development Tools
Writing programs in Java can be accomplished with something as simple as your favorite text editor and the javac
compiler. However, developing business applications with Java (or any other language, for that matter) requires a host
of tools and technologies. To simplify management of the tools and technologies required for application development,
and at the same time improve the efficiency of the development staff, IDEs were created.

An IDE combines a modeling tool, text editor, compiler, make utility, deployment tool, and so on, into one application
that seamlessly integrates the use of each tool with the next during the development life cycle. As you will see shortly,
many IDE vendors provide support for Oracle Application Server, typically as a deployment destination.

8.2.1 Oracle JDeveloper

Oracle JDeveloper is Oracle's IDE for Java. Oracle JDeveloper, an excellent IDE in its own right, is tightly integrated with
Oracle Application Server. Because it is so tightly integrated, this section will spend a little time providing an overview
of this tool.

8.2.1.1 IDE

Oracle JDeveloper is a J2EE, XML, and PL/SQL development environment that supports the full development life cycle,
from modeling a business solution through its deployment. The IDE itself is extensible, so other development tools and
technologies can be added to the environment as needed.

Oracle JDeveloper provides tools for source code control, data and object modeling, coding, debugging, profiling, and
deployment. The editor does both syntactic and semantic verification of your code as it is entered. It also provides
context-sensitive help in the form of access to API documentation. Many complex or mundane programming tasks are
simplified with the use of wizards.

Figure 8-3 shows a typical Oracle JDeveloper screen setup. The smaller window sections are called dockable windows .
You select the dockable windows you desire from the view menu. Displayed in this figure are the Application Navigator,
Class Structure, Data Control Panel, Help, Editor, and Error Message windows.

Figure 8-3. An example of the Oracle JDeveloper IDE's GUI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle JDeveloper can build J2EE and/or XML applications or Web Services that can be deployed onto any J2EE server.
However, Oracle JDeveloper is also tightly integrated with Oracle Application Server through its Application
Development Frameworks that use OracleAS Business Components for Java and OracleAS TopLink.

8.2.1.2 Application Development Framework

Oracle JDeveloper's Application Development Framework (ADF) allows you to use several combinations of technologies
to build web applications. ADF leverages the Open Source, Model 2, MVC implementation, Struts. Using Struts as the
controller, ADF employs combinations of other technologies for the model and view, such as:

EJB as the model and JSP as the view

OracleAS Business Components for Java (BC4J) as the model and JSP as the view

OracleAS TopLink as the model and UIX as the view. UIX is a presentation layer developed using XML

8.2.1.3 OracleAS Business Components for Java

OracleAS Business Components for Java, or ADF Business Components as it is known in Oracle JDeveloper, is an
application framework that implements common design patterns. OracleAS Business Components for Java expands on
the standard J2EE by providing solutions for data access, network traffic minimization, object-relational mapping,
validation, and user-interface data binding.

OracleAS Business Components for Java applications are deployable on any application server. Oracle Enterprise
Manager's Application Server Control tool is an example of an application that uses OracleAS Business Components for
Java.

8.2.1.4 TopLink

OracleAS TopLink is an advanced object-relational mapping tool that some may say resides in the same solution space
as EJB QL and JDO. However, unlike these technologies, OracleAS TopLink makes mapping relational database
architecture to Java's object-oriented architecture easy by providing a superior mapping tool called the Mapping
Workbench.[1] With OracleAS TopLink, it's possible to persist any Java object in any relational database that is also
supported by a JDBC 2.0 driver.

[1] The OracleAS TopLink mapping editor is fully integrated into Oracle JDeveloper 10g (9.0.5).

OracleAS TopLink's graphical mapping tool, Mapping Workbench, presents relational databases with an object-oriented
view. This means that Java programmers with no SQL experience can map Java classes into a relational database
structure.

OracleAS TopLink is extremely flexible. It can map JavaBeans as well as EJBs to a relational database. It supports the
mapping of both container-managed persistence and bean-managed persistence EJBs. OracleAS TopLink even supports
mapping in a Java Client two-tier application.

8.2.2 Third-Party Support

Many of today's top IDEs provide support for Oracle Application Server. In addition, other products exist that extend the
capabilities of Oracle Application Server. The following is a short list of third-party IDEs that support Oracle Application
Server deployment:

Borland's JBuilder

Computer Associates' COOL:Joe

Macromedia's Dreamweaver MX and UltraDev

Rational's Rational Rose

Sun's Sun ONE Studio

TogetherSoft's Together ControlCenter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because a list such as this can change dramatically over time, it's best if you consult it online. You can find an up-to-
date list at http://otn.oracle.com/products/ias/9ias_partners.html.

As discussed earlier in Chapter 6, you can even code directly in a deployment directory on the server. In this
configuration, you can simply use your favorite text editor and the Sun JDK's javac compiler to build your application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Oracle Application Server APIs and Tag Libraries
In addition to Oracle Application Server's support for J2EE, it also provides access to components of Oracle Application
Server and application frameworks via a set of proprietary APIs and JSP tag libraries. The following is a list of these
APIs and tag libraries:

OracleAS Business Components API Reference

OracleAS Business Components Generic Domains API Reference

OracleAS Business Components InterMedia Domains API Reference

OracleAS Business Components Oracle Domains API Reference

Certificate Authority Java API Reference

Dynamic Monitoring Service API Reference

Edge Side Includes for Java (JESI)

HTTPClient API Reference

JAAS Provider API Reference

Support for JavaServer Pages API Reference

Java Object Cache API Reference

Oracle JSP Tag Libraries

Oracle Internet Directory API Reference

JDBC API Reference

SQLJ API Reference

Syndication Services API Reference

XML API Reference

OracleAS Personalization API Reference

OracleAS Single Sign-On API Reference

OracleAS TopLink API Reference

UltraSearch API Reference

Unified Messaging API Reference

OracleAS Web Cache Invalidation API Reference

OracleAS Web Clipping API Reference

Web Services SOAP API Reference

Web Services Proxy API Reference

Web Services UDDI Client API Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Web Services UDDI Client API Reference

OracleAS Wireless API Reference

OracleAS Wireless J2ME SDK API Reference

OracleAS Workflow API Reference

As you can see from this list, Oracle Application Server exposes all its capabilities to the Java application developer.
Oracle Application Server also provides an extensive library of XML and Web Services APIs, which are covered
separately in Chapter 10 and Chapter 11. In addition to these Java development tools, Oracle Application Server is
tightly integrated with the Oracle database, exposing all its capabilities as well. This integration makes the combination
of the Oracle database and Oracle Application Server an ideal environment for enterprise application development and
deployment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Java Development
This chapter explores the myriad possibilities that exist when you use Oracle Application Server as a destination for
applications developed using the Java programming language and its application programming interfaces. This richness
of possibilities exists for three reasons:

Java programming language capabilities

The object-oriented nature of the Java programming language makes it infinitely extensible. Every class created
extends the capabilities of the language. The Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition APIs
are well-engineered classes that extend the language to make it possible to build Java Client and server-side
applications primarily through composition. Composition is the process of using existing components rather than
having to recreate functionality for every program. Typically, only classes that are part of the business problem
being addressed need to be created.

OC4J's complete J2EE implementation

The Oracle Application Server Containers for J2EE is a full-featured, highly scalable J2EE environment. Because
OC4J provides a complete J2EE implementation, it includes all the classes available in both J2SE and J2EE for
creating new applications. Functionality that doesn't exist can be added to OC4J easily because the J2EE
environment itself provides a framework to address this requirement.

Oracle Application Server extensions that are accessible via Java APIs

Beyond J2EE, Oracle Application Server provides a set of Java APIs that bring additional functionality to the
table. APIs exist to solve business problems using Oracle products such as OracleAS Business Components for
Java, OracleAS Messaging, OracleAS Personalization, OracleAS Single Sign-On, and transformation for OracleAS
Wireless devices. In addition, Oracle Application Server APIs allow developers to log application activity, report
performance statistics, and manage expensive-to-create, long-lived Java objects in a cache.

Combined, these factors make Oracle Application Server, with its certified J2EE environment and Oracle-supplied Java
APIs, an ideal platform for building and deploying web-based applications.

This chapter begins by taking a look at the various technologies commonly used in the development of web-based
applications. Next, it examines the development tools available that support Oracle Application Server. These tools
range from Oracle's own JDeveloper IDE through use of the Sun JDK. The chapter then touches on OracleAS TopLink
and BC4J (Oracle's Java data-binding solution) and finishes up with a discussion of Oracle's Java APIs and Tag Libraries.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 PL/SQL
The Procedure Language extension to SQL (PL/SQL) is Oracle's proprietary programming language. It is used both
server-side and client-side:

On the server side

PL/SQL is used in the Oracle database to program stored procedures and triggers.

On the client side

PL/SQL is used in Oracle's declarative development tools, Oracle Forms and Oracle Reports, to program
behavior.

PL/SQL's strengths lie in its seamless integration with SQL and in its excellent server-side performance. Because
Oracle's tools, Oracle Forms and Oracle Reports, also use PL/SQL as their programming language, these tools can
leverage both seamless integration with the database and existing PL/SQL database programmer expertise for client-
side development.

9.1.1 Using PL/SQL

PL/SQL uses the same datatypes as SQL in the database; hence, no datatype conversions are necessary. PL/SQL
effectively adds procedural language constructs, such as IF-THEN-ELSE logic, FOR loops, and so on, to SQL. Because
PL/SQL stored procedures are executed in the database, this capability eliminates the data access delays caused by
moving data across a network. This makes PL/SQL the superior choice for data-intensive manipulations in the database.

Oracle Application Server provides a way to produce dynamic content via Oracle database stored procedures. The
execution of stored procedures for web applications is facilitated through the Oracle HTTP Server module mod_plsql; the
Oracle HTTP Server was described in detail in Chapter 5.

PL/SQL is a rich and powerful language that we only touch upon in this book. For much more detailed information, see
Oracle PL/SQL Programming (O'Reilly).

9.1.2 PL/SQL Web Applications

Oracle HTTP Server uses the mod_plsql module to route stored procedure requests to an Oracle database. mod_plsql
provides a CGI environment for stored procedures. A request URI routed to mod_plsql from the Oracle HTTP Server is
mapped to a corresponding stored procedure in the database as follows:

The name of the stored procedure—schema, package name, and procedure name (as required to eliminate
ambiguity)—is specified in the URI.

Any HTTP parameter values are mapped to stored procedure parameters with exactly the same names as the
HTTP parameters.

Extra path information, cookies, and CGI environment variables are also made available.

The logic of a stored procedure can use any of this information to formulate a response in the form of text that is then
streamed back to the requester through mod_plsql to the Oracle HTTP Server, and so on. Two software development kits
are available to aid the developer: the PL/SQL Web Toolkit and PL/SQL Server Pages. If you're familiar with Java, note
that these can be compared to Java servlets and JSPs, respectively.

PL/SQL Web Toolkit

This toolkit provides a set of Oracle stored procedure packages (e.g., HTP, HTF, OWA_UTIL) that allow a PL/SQL
programmer to call procedures or functions to produce HTML output. These packages also provide access to CGI
environment variables and cookies. Using the PL/SQL Web Toolkit, a programmer writes a stored procedure
that outputs HTML tags and data.

PL/SQL Server Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In contrast, PL/SQL Server Pages are HTML files with embedded PL/SQL scriptlets. The scriptlets (small pieces
of PL/SQL code) may call PL/SQL Web Toolkit procedures and functions. PSPs are compiled into stored
procedures when they are loaded into the database using the loadpsp utility.

The difference between using the PL/SQL Web Toolkit and using PL/SQL Server Pages is that PL/SQL Web Toolkit
procedures are PL/SQL programs with embedded HTML, while PL/SQL Server Pages are HTML files with embedded
PL/SQL. The PL/SQL Web Toolkit is typically a more appropriate choice for programmers, whereas PSPs are a better fit
for web designers. Ultimately, every PSP becomes a stored procedure.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 OracleAS Forms Services
For many years, OracleAS Forms Services has been one of the most popular 4GL development environments for Oracle
database applications. OracleAS Forms Services was designed originally to be closely integrated with the Oracle
database. As we mentioned, OracleAS Forms Services uses PL/SQL as the language for its extended logic. The same
Oracle sales team that provided the Oracle database was also able to helpfully supply this development tool. But, as the
technology environment evolved, OracleAS Forms Services was caught in a bind. Like many client-server tools,
OracleAS Forms Services split the runtime functionality of its applications between the client and the server.

The new environment of Internet computing required a slightly different deployment model. To address this new
requirement, the OracleAS Forms Services development team created a new deployment model in 1997 with Release
4.1. In this new model, a Java applet talks to a Java servlet on a server. That server, in turn, calls the OracleAS Forms
Services runtime. With this new deployment model, OracleAS Forms Services deployment was transformed from a two-
tier client-server architecture into a three-tier web-based architecture.

9.2.1 How It Works

The interaction between a web client and an Oracle Forms application through OracleAS Forms Services is shown in
simplified form in Figure 9-1.

Figure 9-1. Simplified OracleAS Forms Services architecture

Interaction proceeds as follows:

1. The initial contact is between a browser and the Oracle HTTP Server instance, with a URL that indicates an
Oracle Forms application. The Oracle HTTP Server instance forwards the URI request through mod_oc4j to the
Oracle Forms servlet, which is run in an OC4J instance.

2. The Oracle Forms servlet starts by creating some HTML, based on the application and the browser type. This
HTML is passed to the Oracle Forms Listener servlet.

3. The Oracle Forms Listener servlet passes the HTML back to the client. The servlet also creates an Oracle Forms
runtime process (written in C) for the application.

4. The HTML passed to the client starts the client-side applet and spawns a client request for a particular form.

5. Once the connection between the Oracle Forms Listener and the client is established, further interaction
between the client and the runtime process is done through the Oracle Forms Listener servlet. At this point, the
Oracle Forms servlet is no longer needed.

A single Oracle Forms Listener servlet can manage communications between multiple clients and their runtime
processes.

Developers can still use the familiar Oracle Forms development environment, but they now deploy Oracle Forms
applications as browser-based clients connecting over the Internet or an intranet to a middle tier of Oracle Application
Server. This new architecture also brings other features with it, as we explain in subsequent sections.

OracleAS Forms Services applications use a default HTML template to pass environment variables to the browser, but
you can also create your own templates by modifying the default template to include either hardcoded values for
parameters or dynamic parameters from the Oracle Forms configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameters or dynamic parameters from the Oracle Forms configuration file.

9.2.2 Running Oracle Forms Services Applications

Once you create an application in Oracle Forms Developer, it can be deployed through OracleAS Forms Services. You
have to create a configuration for the application either manually or through a portion of the Oracle Enterprise Manager
10g Application Server Control tool (described in Chapter 3). For more information on using Oracle Enterprise Manager
to manage OracleAS Forms Services, see Section 9.2.3.

When a user wants to run an OracleAS Forms Services application, the interaction proceeds as follows, from the user's
point of view:

1. The user sends a URL (containing the pathname) to the Oracle Forms servlet. This URL also contains the name
of the configuration file or the name of a section of the configuration file.

2. Based on the configuration file, the Oracle Forms servlet returns an HTML page, which is specific for the type of
browser being used by the client.

3. The HTML page loads a client-side applet, which runs in a JVM on the client.

The Java client-side applet is used to display OracleAS Forms Services forms and can
display multiple forms simultaneously.

The Oracle Forms applet on the client requires a specific version of a JVM to run properly. Because the native JVM on a
particular browser may not be appropriate, Oracle supplies a client-side plug-in called Oracle JInitiator. Oracle JInitiator
allows the use of an alternative JVM to run the client-side Oracle Forms applet as a plug-in to Netscape Navigator or
Microsoft Internet Explorer.

Some parts of a particular form are common across all users accessing that form, such as screen definitions and
application logic. Once these parts are loaded for a form, subsequent users of the same form can share these entities in
memory, with only their private application data requiring its own dedicated memory.

The architecture for OracleAS Forms Services is different from the standard client-server architecture, and that fact has
implications for the performance of applications. In the multitier OracleAS Forms Services environment, the limiting
performance factor is frequently the bandwidth from the client to the middle tier. For this reason, OracleAS Forms
Services applications optimize the communications between the client and the middle tier. For instance, OracleAS Forms
Services applications bundle events together after each navigation event. These event bundles interact between the
OracleAS Forms Server and the back-end database without having to communicate with the client applet.

Although each individual user has a OracleAS Forms Services runtime process, you can have multiple instances of
OracleAS Forms Services. Because the Oracle Forms servlets are standard OC4J applications, you can use any of the
normal load-balancing options for OC4J for these Oracle Forms Listeners.

You can create a pool of runtime engines for a particular application in the configuration file for the application. The
runtime engines in this pool service users for the application. You can configure a number of instances to be started
when an administrator starts the application from Application Server Control, as we discuss in the following section.

9.2.3 Managing OracleAS Forms Services

The Application Server Control tool lets you set parameters to control the operation of an OracleAS Forms Services
application. For example, you can control the look and feel of the client portion of the application or the specific title of a
particular HTML page returned to the client. The configuration file can also be used to provide different versions of the
same application in different languages.

For most parameters, you can override the value in the configuration file by including the parameter in the URL that
calls the OracleAS Forms Services application. You can also specify parameters that can't be overridden for a particular
application in this configuration file.

Oracle Enterprise Manager gives you an easy interface for managing the underlying configuration files used by OracleAS
Forms Services. You can still manually edit these files, but after making changes, you will have to stop all the DCM
processes, as well as Oracle Enterprise Manager, to have the changes recognized by Oracle Enterprise Manager. If you
don't do this, any subsequent changes made through Oracle Enterprise Manager will simply overwrite the manually
changed configuration files.

You can have multiple configurations in separate sections of the configuration file. You might want to do this if different
users have different versions of the OracleAS Forms Services application.

Many different parameters shape the appearance and behavior of your OracleAS Forms Services application. A
comprehensive list of these parameters is beyond the scope of this book. Please refer to the OracleAS Forms Services
documentation for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

documentation for more information.

The portion of Application Server Control that handles OracleAS Forms Services can be used to limit access to OracleAS
Forms Services. You can disallow any new user connections to these services on a particular server, or you can kill
specific user sessions.

9.2.4 Configuring Security

OracleAS Forms Services can be configured to use the OracleAS Single Sign-On capability of Oracle Application Server
without additional code. In Oracle Application Server, OracleAS Single Sign-On uses the identity management that is
based on the Oracle Internet Directory. Although Oracle Forms applications have traditionally used a database
username and password for security, the Oracle Forms Listener servlet can take this information and use the Oracle
Internet Directory to implement OracleAS Single Sign-On with an OracleAS Forms Services application. Because the
handling of OracleAS Single Sign-On is done by the OracleAS Forms servlets, not in the Oracle Forms Runtime Process,
existing Oracle Forms applications can take advantage of OracleAS Single Sign-On without any modification. In fact, the
form itself is unaware of whether OracleAS Single Sign-On was used, although the form can acquire this information if
your logic requires it.

You can create user accounts with connect information in the Oracle Internet Directory, which in turn creates Resource
Access Descriptors (RADs) once a user connects to OracleAS Forms Services. As of the Oracle Application Server 10g
release, you can configure OracleAS Forms Services to allow all users to create their own RADs on the fly if none exists;
previous releases returned an error in such cases. Also new in Oracle Application Server 10g is the fact that updating a
password in the database automatically updates the RAD information in the Oracle Internet Directory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 OracleAS Reports Services
Oracle Reports, like Oracle Forms, is a part of the Oracle Developer Suite and has been a part of the Oracle technology
stack for many years. We discuss the use of Oracle Reports in the context of business intelligence solutions in Chapter
12, but an in-depth discussion of the use and capabilities of Oracle Reports is beyond the scope of this chapter.

In brief, Oracle Reports enables a developer to combine data from many sources (including an Oracle database, XML
data, JDBC data feeds, and even customizable data sources) into a report that can be distributed either on paper or
within the web environment. Reports can be generated as HTML, XML, PDF files, RTF format, and many other formats
as well.

This section concentrates on Oracle Application Server Reports Services, the component of Oracle Application Server
that is responsible for providing a middle tier for deploying Oracle Reports. OracleAS Reports Services is responsible for
creating Oracle Reports engines to generate reports, for distributing reports across multiple servers, and for caching
reports for rapid reuse.

9.3.1 How It Works

OracleAS Reports Services can be used either inside or outside a web environment. The architecture of OracleAS
Reports Services within a web environment is shown in simplified form in Figure 9-2.

Figure 9-2. Simplified OracleAS Reports Services architecture

Requests come into the Oracle HTTP Server, and are then passed to an OracleAS Reports servlet through the mod_oc4j
module. The OracleAS Reports servlet is responsible for coordinating requests with the OracleAS Reports Server. The
server handles the processing, scheduling, and distribution of reports. It also maintains the state of all current report
requests.

The OracleAS Reports Server is monitored and controlled by the Oracle Process Management and Notification Server
(described in Chapter 2), although you can start and stop the OracleAS Reports Server in other ways—for example,
with a command-line prompt or from a URL.

The actual creation of reports is handled by Reports engines, which are written in C. There can be many Reports
engines for each OracleAS Reports Server. You can configure the maximum, minimum, and initial number of engines for
a OracleAS Reports Server, as well as the amount of time a Reports engine can be idle before it is automatically shut
down by OPMN.

Several additional components are included in the OracleAS Reports Services architecture but aren't displayed in the
simplified version shown in the figure:

OracleAS Reports Cache

Used by the OracleAS Reports Server for caching reports for subsequent use, based on rules established for the
report.

Custom Tag Handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Custom Tag Handler

A part of the Reports servlet, used to call Oracle Reports from JSPs with special tags. You can use these tags to
gain access to data models developed in reports.

OracleAS Single Sign-On

Because OracleAS Single Sign-On is a part of Oracle Application Server, you can use this security architecture
with OracleAS Reports Services. If you choose to use OracleAS Single Sign-On, the Oracle Reports servlet
interacts with the OracleAS Single Sign-On service to validate user credentials. If a user doesn't exist in the
Oracle Internet Directory, the Oracle Delegated Administration Services, which allow a user to maintain his login
credentials, prompts the user for connection information, which is stored in the Oracle Internet Directory. You
can also use OracleAS Reports Services with its own security authentication, although OracleAS Reports
Services is installed using OracleAS Single Sign-On by default.

Security can be implemented at three levels in OracleAS Reports Services—on the
application that calls a report, on the report and its destination resources, or on the
underlying data sources for the report.

Pluggable engines

These are custom engines that can hook into the OracleAS Reports Server to use its capabilities, such as
scheduling, distribution, and content. OracleAS Reports Services comes with a URL engine, which lets you
distribute content from any publicly available URL using these features of the OracleAS Reports Server.

Reports CGI

Used to call reports dynamically from a browser using CGI, and included for backward compatibility.

You can invoke OracleAS Reports Services from outside a web environment. You can use the command-line argument
rwclient to call the OracleAS Reports Server directly. You can also call the OracleAS Reports Server from the SRW built-in
PL/SQL package or can expose OracleAS Reports Services as a Web Service.

9.3.2 Handling Requests

A request that comes into an OracleAS Reports Server can include parameters that shape the report. If the request is
made from a browser, the parameters can be included in the calling URL, or that URL can use a key to identify a group
of parameters. The parameter groups and values are stored by key name in the cgicmd.dat file.

When a request comes in to an OracleAS Reports Server, the server first determines if the request can be satisfied
either by a currently running job or by a report in the OracleAS Report Cache, described in the next section. If a request
can't be satisfied by one of these two methods, the request is placed in one of two queues:

Current job queue

For immediate requests

Scheduled job queue

For scheduled requests

OracleAS Reports Services also has two more queues:

Completed jobs queue

For job history; you can configure a limit to the number of jobs kept in the completed jobs queue

Failed jobs queue

For failed jobs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For failed jobs

OracleAS Reports Server keeps requests that come from a browser in memory. In the event of a server crash, these
requests will have to be resubmitted. Requests that are slated for a print queue, a file, or OracleAS Portal will be
restarted in the event of an OracleAS Reports Server failure.

You can view the contents of either the current job queue or the scheduled job queue through the Application Server
Control tool in Oracle Enterprise Manager. Both of these queues are persistent; if an OracleAS Reports Server crashes,
only the currently running jobs are lost.

If a request requires authentication, OracleAS Reports Server calls the mod_osso module before placing the requests in
either queue.

You configure the maximum number of Reports engines for an OracleAS Reports Server. If a request is made, and the
maximum number of Reports engines aren't currently running, OracleAS Reports Server creates a new engine to run
the request at the top of the current job queue. If the maximum number of engines are already running, the top job in
the current job queue waits, and the first available engine takes the job.

Internal testing from Oracle has determined that the optimal number of Reports engines is
two times the number of CPUs on a server.

With Oracle Application Server 10g, several different Reports engines can exist with different environment conditions,
such as the ability to handle reports with different languages. When a report request arrives with a particular
configuration, OracleAS Reports Server directs it to an available Reports engine that is appropriate for the request.

Once a Reports engine has completed the creation of the report, the report is placed in the OracleAS Reports Cache,
and the OracleAS Reports Server is notified of its availability. The OracleAS Reports Server then distributes the report.

The steps described here are valid for running reports with a paper layout, whether they are standard reports or JSP
reports. If you want to display a report with a paper layout in a browser, the report can be sent as an Adobe Acrobat
(PDF) file format. If you want to run a report with a web layout, you can save the report definition as a JSP in Oracle
Forms Developer and then execute the report like a standard JSP.

9.3.3 OracleAS Reports Cache

A report is a static view of constantly changing data. There may be times when the same report can fulfill more than
one request—either by design or by the coincidences of usage patterns. Consequently, OracleAS Reports Services tries
to optimize the use of reports and diminish the resource requirements for serving reports to a user community.

As mentioned earlier, the destination for reports created by a Reports engine is the OracleAS Reports Cache. When a
report is put into that cache, the report is assigned a cache key. The cache key includes most of the parameters that
shape the report, with the exception of destination information, server information, and the TOLERANCE parameter
(described later in this section). You can configure an OracleAS Reports Server instance to ignore specified parameters
in creating the cache key.

When a request comes in, the OracleAS Reports Server looks in the OracleAS Reports Cache for a report with the same
cache key. A report in the cache with an identical cache key can sometimes be reused for another request.

The request itself can include the TOLERANCE parameter. This parameter has a value in minutes, hours, or day, or
alternately contains a specific time. If a report has a TOLERANCE parameter, the OracleAS Reports Server searches the
completed jobs queue for a report with an identical cache key that isn't older than allowed by the time value specified
by the TOLERANCE parameter or earlier than the time specified by that parameter.

The size of the OracleAS Reports Cache is configurable, either by the total size of the cache or by the number of
documents the cache is allowed to hold. As the cache is filled, the least-used reports are swapped out of the cache.

9.3.4 Distributing Reports

Once a report is created, it can be distributed to a variety of destinations—for example, to the browser issuing a
request, to one or more recipients via email, to a file or a printer, or to OracleAS Portal. You can also create your own
custom destinations using the Oracle Application Server Reports Services API. That API supports the distribution of
reports to other destinations, such as via FTP or a fax machine.

With Oracle Application Server 10g, the creation of reports is done by the Reports engine, independent of the eventual
destination of the report. The OracleAS Reports Server is responsible for distributing the report to its final destinations.

You can create complex types of distributions for reports. Each report has three distinct sections—a header, a trailer,
and a body. You can distribute each section separately, and you can also create individual reports based on groups
specified in the body of the report. You can send each report or report section to one or more destinations. You can also
create destinations based on one or more data values in a variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

create destinations based on one or more data values in a variable.

For example, if you have a report on employees by department, you can have a department summary section sent to
the appropriate head of the department, as well as individual employee reports, sent to each employee. The
department heads and employees can be indicated by data variables within the report. This scenario, sometimes
referred to as bursting reports, allows a single report pass to generate a wide spectrum of reports.

An XML file is used to describe these complex distributions. You specify the distribution XML file as part of the report
request. For more information on these complex distributions, please refer to the Oracle Application Server Reports
Services documentation.

9.3.5 XML and Reports Services

The distribution file mentioned in the previous section is an XML file. XML (described in greater detail in Chapter 10),
which can also be used as a format for reports or to modify reports with customization files.

Although you can build a report completely from scratch using XML, Oracle recommends following an alternate process
whereby you save a report as XML. You can apply one or more XML customization files to the saved report; these files
are used to modify characteristics in the report.

For example, you might want to format a particular field using its XML attributes in a customization file. Once you have
perfected the XML customization file, you can use it to apply the same formatting to other reports that contain the
same field, either by running each report or by applying the modifications as part of a batch process.

9.3.6 Clustering

You can cluster together any number of OracleAS Reports Servers. Each member of the cluster is aware of the other
members of the cluster, and all members of the cluster work together to handle incoming requests.

When a request comes in to one OracleAS Reports Server in a cluster, either from a client or off the scheduled job
queue, the request will go through the standard set of steps for determining how to handle the request, but will
supplement each step with an examination of other members of the cluster. For example, the first step when receiving
a request is to see if there is information in the OracleAS Reports Cache to handle the request. With a cluster, this step
is followed by a determination of whether there is information in the OracleAS Reports Caches of any other members of
the cluster to handle the request. The same process is followed when looking for currently running jobs, for an
appropriate Reports engine that is available, and for checking the number of Reports engines running against the
maximum number of engines configured for the OracleAS Reports Server.

Each member of a cluster maintains its own local OracleAS Reports Cache, so the failure of any member eliminates the
contents of its cache and prevents access by the other members of the cluster to this information. Such failure also
prevents access by the OracleAS Reports Server and its engines.

Clusters are formed by appending a cluster name onto the name of the OracleAS Reports Server. You can submit a
request to the cluster, rather than to a server in the cluster, by specifying the cluster name as the server.

9.3.7 Calling OracleAS Reports Services

You can access OracleAS Reports Services directly from a browser or from the command line. But you may want to
generate or schedule reports based on other interactions and interfaces. OracleAS Reports Services comes with an API
that can make a request to the services based on a database event, such as a changed value in the database. Two
other interfaces also are frequently used to access reports from OracleAS Reports Services—through OracleAS Portal
and as a web service. We describe both of these interfaces in subsequent sections.

9.3.7.1 Event-based reporting

In general, reports are the way that information in a database is disseminated to groups of users. Oracle Application
Server Reports Services brings many helpful capabilities to this task—for example, easily readable presentation,
multiple copies, and ease of access. Historically, however, there has been an inevitable problem with reports and the
data they represent. A report gives an accurate view of data—at the time the report was generated. This data can
change at any point in time after this generation. OracleAS Reports Services has a way to overcome this limitation and
make reports more timely.

The OracleAS Reports Services API is a PL/SQL package that can be called from any other PL/SQL procedure. The
package lets you submit a request to a OracleAS Reports Server and pass up to 255 parameter values with the request.
Submitting a job returns a job identification, which can check the status of the job or cancel the job.

9.3.7.2 OracleAS Portal

OracleAS Portal is another component of Oracle Application Server, discussed in detail in Chapter 13. You can call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OracleAS Portal is another component of Oracle Application Server, discussed in detail in Chapter 13. You can call
reports from OracleAS Reports Services to be displayed within the OracleAS Portal framework, either within its own
portlet or as an item link on another page.

The interaction between OracleAS Portal and OracleAS Reports Services requires a few additional considerations. If you
are calling a report from the Portal environment:

You can limit access to the report through security restrictions on the calling OracleAS Portal page. Because
OracleAS Portal uses OracleAS Single Sign-on, a user identity flows to OracleAS Reports Services, which
imposes its own set of report and data access security restrictions.

You must register all OracleAS Reports Servers and reports in your OracleAS Portal environment

You can use availability calendars in OracleAS Portal to restrict the days and times that reports can be
requested from OracleAS Reports Services.

Although you can publish a report to OracleAS Portal, you can't use OracleAS Portal as a destination when you are using
an XML distribution file.

9.3.7.3 Web Services

Web Services are a way to access some kind of functionality or information over the Web, using XML to describe the
information requested.

If you want to run OracleAS Reports Services as a Web Service, you run the rwwebservices OC4J servlet. This application
provides endpoints for accessing an OracleAS Reports Server as a Web Service. Other applications can use this servlet
to get the version of the API used to access the OracleAS Reports Server, get information about the server or any
particular job, and submit and kill jobs for the OracleAS Reports Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Oracle Development
Oracle Application Server provides both a development platform and a deployment platform. Many of the components in
Oracle Application Server are based on open standards, such as Java and the Apache Web Server, and those are
described in earlier chapters of this book.

But Oracle Application Server is an Oracle product, and many users consider acquiring the product because of their past
involvement with the Oracle database. Consequently, three areas of Oracle Application Server focus on Oracle-specific
technologies:

PL/SQL, the long-standing language used within the Oracle database

Deployment services for Oracle Forms applications

Deployment services for Oracle Reports applications

OracleAS Forms Services and Reports Services come as part of the Enterprise Edition of Oracle Application Server 10g.
You can install a version of Oracle Application Server specifically to support these services. This installation includes the
OracleAS Infrastructure (described in Chapter 2), which is used to implement security services for Oracle Forms and
Oracle Reports.

This chapter describes the use of PL/SQL, OracleAS Forms Services, and OracleAS Reports Services in Oracle
Application Server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Oracle Application Server 10g Essentials is a praying mantis. These large, predatory insects
are widely scattered throughout the world; some of the approximately 1,500 species are endangered. They have highly
specialized prehensile legs, with elongated front segments that allow them greater reach. Their long neck-like thorax
enables them to swivel their heads completely to the rear, making them the only insects who can look directly behind
themselves.

The word "mantid" is Greek for "prophet" or "seer." The insects were so named because the position in which they hold
their legs while at rest or preparing to attack their prey gives them the appearance of folding their arms in prayer. In
African art, the praying mantis is often depicted as a god or spirit.

Mantises lie in wait and then quickly pounce on their prey, giving them no time to flee. It is not uncommon for a mantis
to hold onto its prey with one leg while going after another with the second. They eat almost anything-insects, small
reptiles, small birds, and other mantids. Females often eat their mates during copulation; once the process has begun,
she bites off his head. The male's copulatory activity isn't curtailed by this, and in some species is stimulated, because
it's controlled by a ganglion center completely distinct from that controlling the head. By eating her mate, the female
ingests extra protein to nourish her eggs.

A praying mantis will lay 1,000 to 2,000 eggs, protected in foamy, papery capsules that hold 100 to 200 eggs each. The
eggs are laid in the fall and hatch in the spring. Young mantises immediately begin hunting and disperse themselves
over a wide area, presumably to avoid fratricide.

Mary Anne Weeks Mayo was the production editor and proofreader, and Audrey Doyle was the copyeditor for Oracle
Application Server 10g Essentials. Matt Hutchinson and Claire Cloutier provided quality control. Mary Agner provided
production assistance. Ellen Troutman Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 6.1
using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was converted by Julie
Hawks to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Clairemarie Fisher O'Leary.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Oracle Application Server 10g Essentials, the image of a praying mantis, and related trade dress are trademarks of
O'Reilly Media, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation,
Inc. in the United States and other countries. O'Reilly Media, Inc. is independent of Oracle Corporation. Java™ and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About This Book
Five years ago, two of us were the principal coauthors of Oracle Essentials, a new kind of book that attempted to
describe all the underlying principles that shape the Oracle database, one written concisely for an intelligent audience.
Oracle Essentials was not a large book—there were fewer than 350 pages in that first edition (we have since written
two more editions)—but it covered a lot of ground. It did not attempt to describe detailed syntax; instead, it focused on
broad architectural concepts and important features.

The more we thought about it, the more we realized that Oracle Application Server was, in some ways, even more in
need of this type of treatment. Oracle Application Server contains many different types of functionality, from its basic
web server features to its support of business intelligence. Many people who consider using the product are familiar
with only a portion of the entire range of capabilities or are overwhelmed by the choices provided. Few people have a
grasp of how larger issues, such as the interplay between components or the various architectural choices for deploying
Oracle Application Server.

Hence this book. The goals of Oracle Application Server 10g Essentials, summarized in the next section, are similar to
the goals we tried to achieve in our earlier book that many people have found very helpful. We hope we have met our
objectives for this book as well.

Goals of This Book

Our main goal is to give you a foundation for understanding and using Oracle Application Server effectively and
efficiently. Therefore, we wrote with these principles in mind:

Focus

We've tried to concentrate on the most important Oracle Application Server issues and components. Each
chapter aims to provide a comprehensive but concise discussion of how Oracle handles an area and the
repercussions of that treatment.

Brevity

One of the first decisions we made was to concentrate on principles rather than syntax and to keep the book
short and well-focused on underlying concepts. Including myriad syntax diagrams and examples would defeat
this purpose. Moreover, such material is readily available in the product documentation.

Acceleration

We've tried to make this an ideal first Oracle Application Server book for a wide spectrum of Oracle users—but
not the last! You will very likely have to refer to Oracle documentation or other, more specific books for more
details about using Oracle Application Server and its components. However, we hope this book will act as an
accelerator for you. With this book's solid foundation, you will be able to take detailed information from other
sources and put it to the best use.

Among us, the authors have more than 40 years of experience with Oracle. We've tried to apply that experience here
as best we can.

Audience for This Book

We wrote this book for people at all levels of Oracle expertise, as well as for those with varying degrees of familiarity
with the different areas of capabilities within Oracle Application Server. There are many types of readers:

Those concerned with using and managing web servers

Those who do Java© development and deployment

Those who use Oracle's own tools, such as Oracle Forms and Oracle Reports

Those who use and develop for Oracle Application Server Portal

Those who use and administer business intelligence, mobile, or integration software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Those who use and administer business intelligence, mobile, or integration software

And these are only a few of the "typical" Oracle Application Server users.

Chances are that some of the items in this brief list apply to you, and some don't. However, because Oracle Application
Server comes with all this functionality, we believe you can use the product more effectively if you have background
that helps you understand the varied capabilities of Oracle Application Server.

Our guiding principle has been to present this information compactly without making it overly tutorial. We figure that
the most important ratio in a book such as this is the amount of useful information you get balanced against the time it
takes you to get it. We sincerely hope this volume provides a terrific bang for the buck.

Structure of This Book

This book is divided into 15 chapters and 1 appendix, as follows.

Chapter 1, describes the range of Oracle Application Server capabilities and some of the options for purchase and
installation.

Chapter 2, describe the basic architecture of Oracle Application Server and optional deployment architectures used to
provide scalability and availability. This chapter provides the core technical information needed to effectively use the
product.

Chapter 3, provides a brief overview of the processes and tools used to manage the complete Oracle Application Server
environment.

Chapter 4, looks at how Oracle Application Server provides security and identity management services that can be used
for all the components that make up the Oracle Application Server environment.

Chapter 5, is the first chapter in a series of chapters examining specific components of Oracle Application Server. The
Oracle HTTP Server is the core of the Oracle Application Server environment.

Chapter 6, covers the OC4J container that runs Java applications. Oracle Application Server, in its most basic state, is
used as a Java deployment platform, and OC4J is the target of these deployments.

Chapter 7, looks at the three caches used in Oracle Application Server—the Oracle Application Server Web Cache, which
is used for all types of content, and the Java Object Cache and Web Object Cache, which are used with OC4J. Use of
these caches can significantly accelerate the performance of Oracle Application Server.

Chapter 8, covers Java development and deployment with Oracle Application Server.

Chapter 9, looks at three Oracle-specific development technologies—PL/SQL, Oracle Application Server Forms Service,
and Oracle Application Server Reports Services—and describes how they are used and deployed with Oracle Application
Server.

Chapter 10, describes the use of Oracle Application Server with XML.

Chapter 11, explores the use of the Web Services technology with Oracle Application Server and its component
development options.

Chapter 12, looks at the issues facing business intelligence users and the ways in which Oracle Application Server
Portal, Oracle Reports, and Discoverer address these issues. The chapter also touches on data mining and management
of the business intelligence components in Oracle Application Server.

Chapter 13, covers the OracleAS Portal product and its range of capabilities.

Chapter 14, describes the use of Oracle Application Server as a platform for mobile computing.

Chapter 15, describes the integration software that is included with some editions of Oracle Application Server.

The Appendix, lists a variety of additional resources—both online and offline—you can use to learn more about the
topics presented in this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Oracle Application Server Software
The way to get the most out of this book is to actually try out the Oracle Application Server software itself. Oracle
Corporation invites you to download the product for free from the Oracle Technology Network (OTN). You can find out
how to do that by going to:

http://www.oracle.com/appserver/books/

There you will find documentation, instructions for obtaining the software, and a wealth of information about all aspects
of the product.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Used for file and directory names, example URLs, emphasis, and new terms where they are defined.

Constant width

Used for code examples and literals.

Constant width italic

In code examples, indicates an element (e.g., a parameter) that you supply.

UPPERCASE

Generally indicates Oracle keywords.

lowercase

In code examples, generally indicates user-defined items such as variables.

This icon indicates a tip, suggestion, or general note. For example, we'll tell you if you
need to use a particular version of Oracle or if an operation requires certain privileges.

This icon indicates a warning or caution. For example, we'll tell you if Oracle doesn't
behave as you'd expect or if a particular operation negatively impacts performance.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata and any additional information. You can access this page at:

http://www.oreilly.com/catalog/appserver/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly Network, see the O'Reilly
web site at:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Each author has arrived at this collaboration through a different path, but we would all like to thank the many people
who made this book both possible and a joy to write.

First of all, we're all grateful to each other. Bob and Rick worked together on Oracle Essentials, but Don was new to the
mix. What was quite amazing about this process was how well we meshed. Although this particular birthing process
included occasional pain and frustration, we sincerely believe the result is far better because all three of us were
involved in the gestation. Many times, as one of us wrote a chapter, we would pause to consider a detailed point and
then simply pose a question and move on, confident that one of our coauthors would be sure to fill in the blank, egg us
on to rewrite, or deliver constructive criticism.

This book would not have been possible without the invaluable assistance of many, many people at Oracle Corporation.
This book was the brainchild of Thomas Kurian and Lisa Goldstein, and we would like to give a special thank you to Lisa
for her stewardship of this book, from inception to completion—the second most important birthing activity of her
recent life. Many thanks to Sheila Cepero as well for her help in getting this book from the drawing board to production.

Pete Farkas provided invaluable tips on Oracle Application Server and did a tremendous job of managing the intricate
review process at Oracle (as well as reviewing a number of chapters himself).

Many people helped out with that review process and although we have tried our best to mention everyone here, we
may simply be unaware of certain contributions. If we have missed anyone, please let us know so that we can thank
you in a subsequent printing of this book. Many thanks to our reviewers: Janga Aliminati, Christine Chan, Jim Clark, Rob
Clark, Brian Conneen, Lee Cooper, John Deeb, Lars Ewe, Pete Farkas, Mikael Fransson, Gordon Jackson, Ragu Kodali,
John Lang, Bruce Lowenthal, Debu Panda, Blaise Ribet, Ekkehard Rohwedder, Donald Smith, Deepak Thomas, Philipp
Weckerle, and Rin Zimmerman. These reviewers did a great job of checking our text, suggesting changes, and finding
errors. However, any remaining errors are exclusively our own responsibility.

And thanks as always to the terrific O'Reilly team—our editor, Debby Russell, our production editor, Mary Anne Weeks
Mayo, and everyone else who had a hand in this book.

From Rick

Many thanks to Christine Chan who provided a great deal of help in clarifying technical points. Many current and former
Oracle employees offered me assistance at various crucial points in the writing and editing process, including Ashesh
Parekh, Todd Vender, and Nick Kritikos. A special thanks to Raz Alivarius for his contribution to Chapter 13 and to
Judson Althoff for getting the ball rolling.

From Robert

Thanks to:

The pilots at American Airlines and United Airlines. By avoiding turbulence, I was able to complete much of my
portion of the book on dozens of flights while accumulating frequent flyer miles at the same time.

Doughnut-shop owners in northern Illinois. Without these pastries, the book may have never gotten off the
ground. Fortunately(?), we were powered by sugar when we created the outline.

My management for their continuing support. I'd especially like to thank Susan Cook and Mark Salser. In
addition, the guys in Oracle's Enterprise Technology Center, especially Jim Olsen and Geoff Grandstaff, were
helpful in providing Grid Control access to a pool of Oracle Application Servers. I'd also like to thank the Oracle
Technology Business Unit Application Server specialists and, in the area of business intelligence, Louis Nagode.

Oracle product managers and developers. They continue to produce excellent documentation that was used in
providing the basis for much of what was assembled in this book.

Oracle's customers. As always, Oracle's customers have a practical understanding of Oracle Application Server
and its components.

From Donald

I would like to thank Kathy Bishop from Corporate Communications at Red Hat for supplying me with a copy of Red Hat
Enterprise on which to run Oracle Application Server 10g.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
For more than 15 years, Oracle® Corporation has been one of the world's leading technology companies. Much of the
company's reputation is built on its enterprise database product—the leading database for online transaction processing
and enterprise applications for more than a decade. In recent years, however, Oracle has enhanced its product
offerings to encompass a complete technology stack, including the E-Business Suite (providing applications), the
Collaboration Suite (providing communication throughout an organization), and Oracle Application Server, which is the
focus of this book.

Oracle Application Server is a middle-tier application platform suite offering a variety of capabilities. Although Oracle
Application Server has grown in popularity and functionality in recent years, there has been a dearth of third-party
books about the product. Our goal is to remedy this situation.

In this book, we use the term Oracle Application Server to refer mainly to Oracle
Application Server 10g, the latest release of Oracle's product. Where necessary, we also
describe features in the previous product releases, particularly in Oracle9i Application
Server. Many features are identical across versions. Note, however, that because some
readers may be using older releases, when we describe a new feature that was first made
available in a particular release, we indicate that fact to help avoid confusion.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Dedication

For my family, LuAnn, Elinor, Josephine, and Robin, who have granted me a life more wonderful than I
could have imagined.

—Rick Greenwald

To Jodie, my love, in our 25th year of marriage, and to my boys Nick and Mike, who are passing
through their teenage years almost "like everyone else" their age.

—Robert Stackowiak

For my wife Diane and daughter Kristyn, who sacrifice their time and my presence so that I may write.

—Donald Bales

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

access control
accessor methods
action attribute (HTML <form> tag)
action handlers (custom) for XSQL Pages
action tags (XML Pages)
Active Failover Clusters 2nd
Adapter Framework (AF)
Adapter SDK
adapters
 OracleAS InterConnect 2nd
 OracleAS ProcessConnect 2nd
 adapter-centric methodology 2nd
AddHandler directive
ADF (Application Development Framework)
 Business Components for Java
administration
 Application Server Control
 clustered OracleAS instances
 Oracle Delegated Administration Services
 OracleAS Web Cache
 monitoring
 performance monitoring
 starting/stopping instances
 Web Cache Manager
 OracleAS Wireless
Administrator Edition, Oracle Discoverer
Administrator's Guide (Oracle Application Server 10g)
administrators
 context
 privileges and roles
 realm
Advanced Queueing (AQ), Oracle
agents
 OC4J Web Services
agreements (OracleAS ProcessConnect)
Alert Engine (OracleAS Wireless)
alerts
 advisory alerts about Oracle Application Server
 monitoring with Grid Control Home page
 OracleAS Wireless, delivery of
Alteon hardware load balancer (Nortel Network)
analysis [See also query and analysis tools]
 Oracle database capabilities
Analytic Workspace Manager
Apache Web Server 2nd
 1.3 vs. 2.0 code base
 architecture
 Jserv (servlet container) 2nd
 online documentation
 Oracle HTTP Server based on
APIs (application programming interfaces)
 Java
 Oracle Application Server
 Reports Services API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applets
application adapters
application components, Oracle Application Server
application deployment
 J2EE
 OC4J
Application Development Framework (ADF)
application event (OracleAS ProcessConnect)
application scope (cached objects)
Application Server Configuration Management Pack
Application Server Control 2nd 3rd
 accessing, username and password
 administering J2EE
 administering OC4J application clusters
 configuring Forms Services
 home page
 management stack
 managing ports
 security management activities
 viewing and managing log information
 viewing Log Repository error logs
Application Server Diagnostics Pack
application servers, history of
Application Servers, Oracle
 application components
 applications
 business intelligence
 OracleAS Portal
 OracleAS Wireless
 components, additional
 core components
 description of editions
 download site for software
 Enterprise Edition
 family of products
 functionality
 managing
 Oracle Application Server 10g
 grid computing
 Oracle Enterprise Manager, mobile version (EM2Go)
 Standard Edition
 XML, use by components
Application Service Level Management (ASLM)
 Application Server Diagnostics Pack
application service level management (ASLM)
 tools available to Grid Control
Application Service Level Management (ASLM), Oracle Enterprise Manager
application views
 transformations
application.xml file
AQ (Advanced Queueing), Oracle
ASLM [See Application Service Level Management]
asynchronous messaging
attributes (OracleAS Portal objects)
authentication
 Java Authentication and Authorization Service [See JAAS]
 multilevel, OracleAS Single Sign-On
 Oracle Application Server 2nd
 Web Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authorization
 Java Authentication and Authorization Service [See JAAS]
 Oracle Application Server services
 Web Services
availability
 of an application server
 of web-based applications

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

B2B (business-to-business) collaboration
backup and recovery
 backups, types of
 complete backup of Oracle Application Server environment
 using Oracle Application Server backups for recovery
Backup and Recovery Tool, OracleAS
BAM (Business Activity Monitoring)
BC4J (Oracle Business Components for Java)
bean-managed persistence (BMP)
 mapping EJBs to relational databases
bean-managed transactions (BMT) 2nd
Beans wizard (Oracle JDeveloper)
BEEP (Blocks Extensible Exchange Protocol)
BI [See business intelligence components]
BI Beans (Business Intelligence JavaBeans) 2nd
BIG-IP hardware load balancer (F5 Networks)
bind-params attribute (XSQL Pages tags)
block names (Java objects in Web Object Cache)
 implicit and explicit
block naming policy
Blocks Extensible Exchange Protocol (BEEP)
BMP [See bean-managed persistence]
books about Oracle Application Server
BPI (Business Process Integration)
BPO (Business Process Optimization)
browsers 2nd [See also web browsers]
 OracleAS Discoverer Viewer
bursting reports 2nd
Business Activity Monitoring (BAM)
Business Components for Java, Oracle Application Server 2nd
business entities
 modeled by EJB entity beans
 registration in UDDI
Business Intelligence and Forms installation
business intelligence components 2nd
 data mining
 listing of
 managing
 partnerships among tool vendors
 reporting
 query and analysis
 resource reference for
Business Intelligence JavaBeans (BI Beans) 2nd
business intelligence, database schemas for
business logic
 enabled through JavaBeans and Enterprise JavaBeans (EJBs)
 modeled by EJB session beans
business objects
Business Objects, query and analysis tool
Business Process Integration (BPI)
Business Process Optimization (BPO)
business process-centric methodology (OracleAS ProcessConnect)
 deployment sequence
business processes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 integration of, OracleAS ProcessConnect
 modeling of, Oracle Workflow
 models of
 triggered by events
business rules and data layer, web applications
business-to-business (B2B) collaboration

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C/C++
 mod_fastcgi module and
 OracleAS support for web-based applications in
 XML class generator for C++
cache cluster
cache hierarchies
cache key (Reports Cache)
cache key policy (caching rules)
cache.conf file (mod_plsql)
CacheAccess class
 put() method
CacheEventListener interface
CacheLoader class
 custom, creating
caching [See also OracleAS Web Cache]2nd
 cacheability rules, indicating compression in
 cacheability/invalidation rules
 cubic cache, OracleAS Discoverer
 of data sources, support by OC4J
 Java Object Cache 2nd 3rd
 basic principles
 how it works
 initialization
 invalidating cached objects
 management of
 OracleAS Portal pages
 Reports Cache 2nd
 clustered Reports Servers
 resource reference
 Web Object Cache 2nd
 basic principles
 invalidating cached objects
 organization
 repository management
caching policy property (caching rules)
Calculated Ratio forwarding algorithm
callback methods (Apache modules)
canonical format (XML documents) 2nd
Cascading Style Sheets (CSS)
CAST/MULTISET statements (SQL)
categories (OracleAS Portal data)
central repository
certificates [See SSL, certificates]
certified platforms, information on
CGI (Common Gateway Interface)
 environment for stored procedures
 mod_fastcgi, Oracle HTTP Server
Chart portlets
class generators (XML)
client side, uses of PL/SQL on
clients, Web Services 2nd
 dynamic
 static
cloning, automated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clustered database solution
clustering
 administering OC4J application clusters
 multiple instances of OracleAS Web Cache
 OC4J instances
 OracleAS Active Failover clusters 2nd
 OracleAS Cold Failover clusters
 OracleAS components
 OracleAS instances 2nd
 for high availability
 managing clusters
 OracleAS Web Cache instances
 Reports Servers
CMP [See container-managed persistence]
code base (Java 2 security model)
cold (complete) backups
Cold Failover Clusters
 Active Failover Clusters vs.
command-line tools
 OracleXML
 uddiadmin.jar
 WebServicesAssembler.jar
committing with XSU
common datatype
common views
Common Warehouse Metamodel (CWM) 2nd
complete backups of OracleAS environment
 using OracleAS Backup and Recovery Tool
component-managed EJB transactions
component-managed security
components, OracleAS
 business intelligence
 listing of
 resource reference
 integration components 2nd
 XML, use of
compression, Web Cache
configuration
 backup tool for configuration files
 Distributed Configuration Management [See DCM]
 Oracle Enterprise Manager, Application Server Configuration Management Pack
configuration files, mod_plsql
connection attribute (XSQL Pages tags)
Connection Manager
connection pooling, provided by resource adapters
container-managed persistence (CMP)
 mapping of EJBs to relational databases
container-managed security
container-managed transactions (CMT)
content attributes (OracleAS Portal)
content generation, dynamic
content management (OracleAS Content Management SDK)
context administrators
control layer (web applications)
controller (MVC), using Struts as
cookies
CORBA RMI/IIOP (RMI over IIOP)
core components, OracleAS 2nd
 interactions among

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OC4J (Oracle Application Server Containers for J2EE)
 Oracle HTTP Server
 Web Cache
CSS (Cascading Style Sheets)
cubic cache
custom action handler for XSQL Pages
Custom Tag Handler (Reports servlet)
Customer Support Identification (CSI)
CWM (Common Warehouse Metamodel) 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

D3L (Data Definition Description Language)
DADs (database access descriptors)
dads.conf file (mod_plsql)
data access technologies, OracleAS 10g
data and business rules layer (web applications)
data component portlets
Data Definition Description Language (D3L)
Data Definition Language (DDL) 2nd
Data Feeder (OracleAS Wireless)
Data Form wizard (Oracle JDeveloper)
Data Manipulation Language (DML)
data mining 2nd
 developing applications with JDeveloper and DM4J
 OracleAS Personalization
data protection
data sources
 OC4J, types of
 Oracle Reports
data warehouses
 Oracle Warehouse Builder (OWB)
 Oracle Warehouse Builder Common Warehouse Metamodel
 OWB and
Data-Direct (type 4) JDBC drivers
data-sources.xml file
database access descriptors (DADs)
database availability concepts
Database Providers (OracleAS Portal)
database repositories
database stored procedures
 as RPCs
databases
 management tools, Oracle Enterprise Manager
 Oracle
 advanced query optimization
 XML functionality
 RAC (Real Application Clusters) as
DataSource object (JDBC)
datatypes, common
DBAccessBean
DCM (Distributed Configuration Management) 2nd 3rd
 backups of
DDL (Data Definition Language)
Delegated Administration Services, Oracle 2nd
delegation model (for privileges)
deleting from a database using an XML document
demilitarized zones [See DMZs]
deployment
 applications
 J2EE deployment
 OC4J deployment
 OC4J development
 common OracleAS Web Cache topologies
 secure, Oracle Application Server
 delegation of privileges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DMZ deployment
 Oracle Enterprise Manager
deployment descriptors
 application.xml file
 ejb-jar.xml files
 EJBs
 J2EE, OC4J counterparts
 servlet (web.xml files)
Deployment wizard (Oracle JDeveloper)
destinations for reports
development
 Java
 development tools
 Oracle Application Server APIs and tag libraries
 resource reference
 web applications
 OC4J, using as development environment
 Oracle
 Forms Services
 Reports Services
 resource reference for
 OracleAS Wireless
 tools for
 XML
 Oracle XML parsers
 resource reference
 XML Transviewer Beans
 XSU (XML SQL Utility)
diagnostics pack for Oracle Application Server
directives, Apache Web Server
Directory Provisioning Integration Service, Oracle 2nd
directory services [See Oracle Internet Directory]
Discoverer [See OracleAS Discoverer]
disk cache
 File System Cache
 Java Object Cache
display attributes (OracleAS Portal)
DISTRIBUTE attribute (cached objects)
distributed cache (Java Object Cache)
Distributed Configuration Management [See DCM]
distributing reports
DM4J (Data Mining for Java)
DML (Data Manipulation Language)
 <xsql:dml> tag (XML Pages)
DMS (Dynamic Monitoring Service) 2nd 3rd
 mod_dms 2nd
DMZs (demilitarized zones)
 deployment of
dockable windows (Oracle JDeveloper)
document (literal) style, Web Services calls
document model approach, XML parsers
Document Type Definitions (DTDs)
documentation, Oracle
DOM (Document Object Model) parsers
domain value maps
DOMBuilder Bean
DOMParser class
drill-down capabilities, web-based reports
drivers, implementing J2EE Connectors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DTDs (Document Type Definitions)
dynamic caching scheme
dynamic client (Web Services)
dynamic content generation, Oracle modules for
dynamic HTML pages, caching
Dynamic Monitoring Service [See DMS]
dynamic page portlets

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

E-Business Suite of Applications
 integration of
 interfaces to
 OracleAS Web Cache support of
EAI (Enterprise Application Integration)
EAR (Enterprise Application aRchive) files
 application that uses EJBs and servlets
Edge Side Includes (ESI) 2nd 3rd
 configuring ESI provider site
 invalidating fragments
 using ESI tags to identify dynamic objects in static pages
EJBs (Enterprise JavaBeans)
 deployment descriptors
 deployment of
 mapping to relational databases
 OC4J EJB container 2nd
 remote communications with (RMI)
 replications of states for multiple JVMs
 RPCs, using as
 state replication in clustered OC4J instances
 stateless EJBs as Web Services
 stateless session EJB services
 storage in relational database tables with OracleAS TopLink
 transaction scope, definitions of
 types of
 web application data and business rules layer
EM [See Oracle Enterprise Manager]
EM2Go 2nd
email
 provided by Mobile Office
embedded JMS resources
embedded resource adapters
emulated data sources
encoding, Web Services
 XML 1.0 standard
End User Layer (EUL) 2nd
 building with Discoverer Administrator
 leveraged by Discoverer interfaces
endpoint, Web Service
Enterprise Application aRchive (EAR) files
 application that uses EJBs and servlets
Enterprise Application Integration (EAI)
Enterprise Edition, Oracle Application Server 2nd
Enterprise Information Systems (EIS), access by J2EE applications
Enterprise Manager [See Oracle Enterprise Manager Oracle Enterprise Manager 10g]
enterprise messaging systems (EMSs)
Enterprise User Security
entities in UDDI
entity beans (EJB)
ESI [See Edge Side Includes]
EUL [See End User Layer]
event-based model, XML parsers
event-based reporting
Event-Driven Publishing API, Oracle Reports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

events
 common view
 OracleAS Portal
 OracleAS ProcessConnect
 triggering business processes
expiration policy (for cached objects)
explicit block names
explicit invalidation (cached objects)
eXtensible Markup Language [See XML]
EXtensible Stylesheet Language for Transformations (XSLT)
extraction, transformation, and loading (ETL)
 building process

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

F5 Networks, BIG-IP hardware load balancer
failover solutions
 clustered OracleAS Web Cache instances
 Oracle Application Server infrastructure
 OracleAS Active Failover clusters
farm
 cluster versus
Fastest Response forwarding algorithm
federated identities
File System Cache
File Transfer Protocol (FTP)
file-based repositories
firewalls
 proprietary network protocols and
 RMI tunneling through
fixed return null (caching) scheme
fixed wait caching scheme
form portlets
Forms Services [See OracleAS Forms Services]
forms, HTML
 directing response to another servlet or entity in presentation layer
forwarding algorithms
 rerouting requests to failed OC4J instance
 supported by hardware load balancers
 Weighted Available Capacity
fragments (web page), caching
frame driver portlets
FTP (File Transfer Protocol)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

garbage-collection process for invalid cached objects
Geographic Location forwarding algorithm
global authentication
graphical mapping tool, Mapping Workbench
graphical user interfaces [See GUIs]
graphs
 adding to reports
 creating with OracleAS Discoverer Plus
grid computing
Grid Control 2nd
 accessing, username and password
 MetaLink, automatic connection to
 Performance page
 using
 home page
 J2EE Applications page
 Web Applications page
groups (Java Object Cache)
GUIs (graphical user interfaces)
 Oracle JDeveloper IDE
 web applications
GZIP compression algorithm

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hardware (OracleAS), tracking
hardware clusters
 OracleAS Cold Failover Clusters
 running Oracle Application Server on
hardware load balancer
 using in front of multiple OracleAS Web Cache instances
Heterogeneous Services support, Oracle database
heuristics, performance assurance (OracleAS Web Cache)
hierarchies
hierarchies of OracleAS Web Cache
 compression of content
Hierarchy portlets
high availability for application servers
 infrastructure failover
 provided by OracleAS Web Cache
HTML
 browser client based on (Discoverer Viewer)
 in JavaServer Pages
 Oracle Enterprise Manager
 produced by servlets to provide web content
 transforming to XHTML with PDKIS
 use with PL/SQL programs
 web applications, presentation layer
HTML <form> tag, hardcoding servlet URL in
HTML pages
 caching static pages
 dynamic, caching
HTTP [See also Oracle HTTP Server]
 caching of web content transmitted over
 replicating HTTP session objects
 use by Web Services 2nd
HTTP validators
HTTPRequest object (Java servlets)
HTTPS for Client Connections (Oracle HTTPS)
HTTPS, support by OracleAS Web Cache
HttpServletRequest object
Hypertext Markup Language [See HTML]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

identity management
IDEs (Integrated Development Environments)
 Oracle JDeveloper
 OracleAS InterConnect
 third-party support for Oracle Application Server
IIS (Internet Information Server), Microsoft
implicit block names
implicit invalidation (cached objects)
include fragments
incremental backups
infrastructure, Oracle Application Server
 backups of
 failover solutions
 Identity Management
 Metadata Repository
inline fragments
InputStream class
inquiry Web Service (UDDI)
INSERT statement (SQL)
inserting data into database with XML document
installation types, Oracle Application Server
installation, Oracle Universal Installer
Integrated Development Environments [See IDEs]
integration components, Oracle Application Server
 OracleAS InterConnect
 OracleAS ProcessConnect
 OW4J (Oracle Workflow for Java
 resource reference for
Integration Manager (IM) (OracleAS ProcessConnect)
InterConnect [See OracleAS InterConnect]
interfaces [See also APIs; GUIs]
 programming interfaces, Web Object Cache
Internet Directory [See Oracle Internet Directory]
Internet, three-tier architecture
interprocess communication (IPC), use by OracleAS Web Cache
intrusion detection
 Oracle HTTP Server, logging of authentication attempts
invalidating cached objects
 invalidation messages
 Java Object Cache
 performance and
 rules for
 Web Object Cache
islands 2nd
iStudio
 components created in
 defining domain value maps
 menus
 navigation trees
items (OracleAS Portal pages)
 end user manipulation of
 types and attributes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE (Java 2 Enterprise Edition) 2nd [See also OC4J]
 administering through Application Server Control
 APIs supported by OC4J releases
 application deployment
 clustered OC4J instances and
 deployment of applications to OC4J
 Grid Control J2EE Applications page
 J2EE and Web Cache installation, OracleAS
 OC4J, using as development environment
 Oracle JDeveloper as IDE
 security of applications using Web Services
J2EE Connector Architecture
 OracleAS ProcessConnect adapters
J2ME Web Services
JAAS (Java Authentication and Authorization Service) 2nd 3rd
 Web Services authentication
JAR (Java ARchive) files
Java
 applets [See applets]
 application development [See development]
 class generators, XML
 code embedded in HTML [See JSPs]
 emergence of programming language
 Java 2 Enterprise Edition [See J2EE]
 objects, storage in relational database tables with OracleAS TopLink
 Oracle Application Server 4.0
 Oracle Application Server support for web-based application run in OC4J
 Oracle Application Server, Java Edition 2nd
 Oracle Enterprise Manager
 portlets
 programming language, capabilities of
 servlets [See servlets]
 XDK for, XML Transviewer Beans
 XSU APIs for
Java APIs
 Oracle Application Server extensions accessible via
 use by Oracle Application Server
Java ARchive (JAR) files
Java Data Objects (JDO)
Java ESI tags (JESI tags)
Java Message Service [See JMS]
Java Naming and Directory Interface [See JNDI]
Java Object Cache 2nd
 basic principles of
 how it works
 initialization
 invalidating cached objects
 management of
 used as repository by Web Object Cache
Java object repository (Web Object Cache)
Java System Web Server
Java Transaction API (JTA)
Java Virtual Machines [See JVMs]
JavaBeans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BI (Business Intelligence) 2nd
 JDBC used in, web applications
 XML Transviewer Beans
JavaScript
JavaServer Pages [See JSPs]
JAZN (OC4J JAAS Provider)
JDBC (Java DataBase Connectivity)
 driver as example of resource adapter
 used in JavaBeans, for web applications
 used in servlets, for web applications
JDeveloper
 Application Development Framework (ADF)
 developing OLAP applications
 named user licensing
 OracleAS Wireless applications
 OW4J Modeler
 Portlet Wizard
JDeveloper Wireless Extension (JWE)
JDO (Java Data Objects)
JESI tags (Java ESI tags)
JMS (Java Message Service)
 resource providers
 support by OracleAS Web Services
 Web Services
JNDI (Java Naming and Directory Interface)
Jserv (servlet container)
 legacy support by Apache
 mod_oprocmgr
JSPs (JavaServer Pages)
 calling Oracle Reports from
 ESI use in
 integrating XSQL Pages with
 OC4J translator 2nd 3rd
 tag libraries
 web applications, presentation layer
 Web Object Cache tag library
 Web Source Reports
JTA (Java Transaction API)
JVMs (Java Virtual Machines)
 multiple JVMs per OC4J instance 2nd
JWE (JDeveloper Wireless Extension)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Key Performance Indicators (KPIs)
keytool (JDK)
KPIs (Key Performance Indicators)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LDAP (Lightweight Directory Access Protocol)
 JAZN support of LDAP-based provider
 Oracle Directory Provisioning Integration Service
 Oracle Identity Management Services
 user manager (JAAS provider)
Least Connections forwarding algorithm
levels of invalidation (cached objects)
lexical substitution parameters (XSQL Pages)
Linux, Oracle Application Servers for
load balancing
 choices for load balancer
 clustered OC4J instances
 clustered Oracle Application Server instances
 InterConnect messages across multiple adapters
 operating system load balancer
 Oracle HTTP Server as load balancer
 OracleAS Web Cache as load balancer for clustered instances 2nd
 stateful, configuring OracleAS Web Cache for
load() (CacheLoader)
local cache (Java Object Cache)
logging
 Apache Web Server
 viewing and managing logs with Application Server Control
 viewing Log Repository error logs
looking up available Web Services

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

maintenance benefits of cache cluster
management [See also Oracle Enterprise Manager]
 backup, recovery, and security
 performing backup and recovery
 security
 identity [See Oracle Identity Management]
 Java Object Cache
 modules providing for Oracle HTTP Server
 password, with Oracle Wallet Manager
 Web Object Cache repositories
Mapping Workbench (graphical mapping tool)
mappings (application views)
markup languages for mobile applications
materialized views
memory cache
 Java Object Cache
 OracleAS Web Cache as
message broker infrastructure, OracleAS InterConnect
message-driven beans (MDB)
messages
 indicating invalid cached objects 2nd
 OracleAS InterConnect
messaging system
 OracleAS JMS (OC4J JMS)
messaging systems
 enterprise, access to
messaging, JMS models for
metadata for OracleAS Portal page
Metadata Repository
 backup tool for
 database connection information
 farm assignments based on
 Oracle Warehouse Builder
 OracleAS ProcessConnect
 RAC database as
 secure access to
 use by shadow processes
MetaLink web site, for product support
Metric-Based forwarding algorithm
Microsoft
 Internet Information Server (IIS)
 Open DataBase Connectivity (ODBC)
 Transaction Server (MTS)
middle tier
middle-tier products
 Oracle Application Server 10g
 Oracle, redesign in 2000
 security in
middleware
 Internet computing model
 Oracle, in application server products
Mining Object Repository (MOR)
Mining Table Repository (MTR)
mobile applications, markup languages for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mobile Location
Mobile Messaging
Mobile Office
mod_certheaders 2nd
mod_dms 2nd
mod_fastcgi
mod_jserv
mod_oc4j 2nd 3rd
 request for Reports Services
mod_onsint 2nd
mod_oprocmgr 2nd
mod_oradav
mod_ossl 2nd
mod_osso 2nd
mod_perl
mod_plsql 2nd
 routing stored procedure requests to Oracle database
 support for XML standards
model 1 programming
model 2 programming
model-view-controller [See MVC framework]
modeling tool (OracleAS ProcessConnect)
 deployment engine
modules
 Apache, plugged in (mods)
 supplied by Oracle for Oracle HTTP Server
 Oracle modules
 third-party modules
MOLAP (multidimensional online analytic processing)
MTR (Mining Table Repository)
Multi-Channel Server
 delivery of OracleAS Wireless alerts
 small-footprint version, WDK
multiversion caching
mutator methods
MVC (model-view-controller) framework
 leveraged by ADF
 Struts as implementation of model
My Studio

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

namespaces, XML
naming and directory implementations, JNDI access to
native event (OracleAS ProcessConnect)
navigation pages (OracleAS Portal)
navigation trees (iStudio)
Netegrity SiteMinder (identity management)
network attached storage (NAS)
nodes
non-JTA data sources
nonemulated data sources
Nortel Network, Alteon hardware load balancer
Notification Server, Oracle (ONS)
notifications (OracleAS Wireless), delivery of
null data source

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object type (OracleAS Portal page or item)
object-relational mapping
 JDO (Java Data Objects)
 OracleAS TopLink
objects
 caching [See caching]
 Java Data Objects (JDO)
 marking as noncacheable
OC4J (Oracle Application Server Containers for J2EE) 2nd 3rd
 application deployment
 J2EE deployment
 OC4J deployment
 OC4J development
 clustering instances of
 complete J2EE implementation
 components
 EJB container
 JSP translator
 relationships among
 servlet container
 data sources, types of
 description of
 DMS sensors built into
 J2EE and OracleAS Web Cache installation
 J2EE APIs supported, listing of
 Java Object Cache
 Java Transaction API
 load balancing by Oracle HTTP Server
 mod_oc4j, Oracle HTTP Server
 multiple instances per host
 resource reference
 services
 J2EE Connector Architecture
 JAAS
 Java DataBase Connectivity
 Java Message Service
 Java Object Cache
 JNDI
 Oracle HTTPS
 Remote Method Invocation
 standalone J2EE server, using as
 two-phase commits
 Web Object Cache [See Web Object Cache]
 XDKs, use for Java-based web applications
OC4J ProcessConnect
OC4J Web Services
 agents
OCI (type 2) JDBC driver
ODBC (Open DataBase Connectivity)
ÒInternet databaseÓ (Oracle8i)
OJMS (Oracle JMS)
OLAP [See online analytical processing]
OmniPortlet
OMS [See Oracle Management Service]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

online (incremental) backups
online analytical processing (OLAP)
 business intelligence database schema
 Business Objects tools for
 custom applications
 custom applications, Oracle Application Server as deployment platform
 tools for
 using with Discoverer
ONS (Oracle Notification Server)
operating systems
 load balancers
 tracking for OracleAS
OPMN (Oracle Process Manager and Notification Server) 2nd 3rd
 configuring to monitor and restart Discoverer processes
 control of Reports Server
 mod_onsint, used with OHS
Oracle
 Advanced Queuing, (AQ)
 application server documentation
 Application Server family of products
 application servers and
 HTTPS for Client Connections
 JDBC drivers
 RMI/ORMI (RMI over Oracle RMI)
 support, working with
 technology introductions, timeline for
Oracle Application Server 10g
 grid computing 2nd 3rd
 Oracle Enterprise Manager 10g 2nd
 packages included in
Oracle Application Server 10g Administrator's Guide
Oracle Application Server Containers for J2EE [See OC4J]
Oracle Application Server Repository Creation Assistant (Oracle RepCA)
Oracle Database 10g
 deployable on computer grids
Oracle Developer Suite
 Discoverer Administrator Edition 2nd
 Forms Developer
 Reports Developer 2nd
 Software Configuration Manager
Oracle Enterprise Manager 2nd
 Application Service Level Management (ASLM)
 creating cluster definition
 EM2Go, mobile version 2nd
 managing business intelligence components
 managing configuration files for Forms Services
 modifying Oracle HTTP Server configuration files
 Oracle Enterprise Manager 10g
 publishing Web Services
 runtime management of InterConnect
 security management through
 UDDI Registry
Oracle Enterprise Manager 10g 2nd [See also Application Server Control; Grid Control]3rd
 Application Server Control
 Grid Control 2nd 3rd
 accessing
 patch management
 optional application server packs
Oracle HTTP Server 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache Web Server, architecture of
 description of
 J2EE and OracleAS Web Cache installation
 load balancing for clustered OC4J instances or multiple JVMs
 modules supplied by Oracle
 Oracle modules
 third-party modules
 OracleAS Web Cache, using with
 resource reference
 security
 SSL communications
 third-party listener support
Oracle Identity Management 2nd 3rd
 benefits of using OID for
 certificates
 Oracle wallets
 OracleAS Single Sign-On and
 services included in
 third-party services, using with
Oracle Internet Directory 2nd 3rd 4th 5th
 Oracle Application Server Standard Edition
 passwords for
 services provided by
Oracle JDeveloper [See JDeveloper]
Oracle JMS (OJMS)
Oracle Management Service
Oracle PL/SQL Web Toolkit
Oracle record
Oracle RMI (ORMI)
Oracle Technology Network (OTN)
 download site for Application Server
 J2EE APIs currently supported by OC4J, documentation for
 list of third-party IDEs supporting Oracle Application Server
 Wireless Development Kit (WDK)
Oracle Text
Oracle Thin (type 4) JDBC driver
Oracle Universal Installer
Oracle wallets [See wallets, Oracle]
Oracle Warehouse Builder (OWB)
 data warehouses and
Oracle Warehouse Builder Common Warehouse Metamodel (CWM)
Oracle Workflow
 using with OracleAS InterConnect
Oracle Workflow for Java [See OW4J]
oracle.j2ee.ws.client package
oracle.j2ee.ws.client.wsdl package
Oracle8i
Oracle9iAS 2nd
 HTML-based Oracle Enterprise Manager
OracleAS Certificate Authority [See SSL, certificates]
OracleAS Discoverer 2nd 3rd 4th 5th
 Administrator Edition, using
 caching content with OracleAS Web Cache
 Discoverer Plus 2nd 3rd
 Discoverer Portlet Provider 2nd
 Discoverer Viewer 2nd 3rd
 End User Layer (EUL)
 managing with Oracle Enterprise Manager
 query governor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 query performance
 timing out sessions
 using analytics and OLAP
 visually pleasing data displays
OracleAS Forms Services 2nd 3rd 4th
 how it works
 managing
 running applications
 security, configuring
OracleAS InterConnect 2nd 3rd
 adapters
 components connected with
 deployment sequence
 hub and spoke deployment
 iStudio interface
 messages
 metadata repository
 OW4J, using with
 runtime management of
OracleAS Personalization 2nd
 data mining
 Portal and Wireless installation
OracleAS Personalization Administration User Interface (OPUI)
OracleAS Portal 2nd
 business intelligence
 calling reports from Reports Services
 classification of data
 deploying reports to
 deployment architecture
 caching
 creating pages at runtime
 description of
 end-user interaction
 customization of
 searching
 working with content
 Java portlets
 Oracle9iAS
 OracleAS Web Cache, use of
 page groups
 pages
 appearance of
 items
 layout and regions
 page groups
 types and attributes
 Portal and Wireless installation
 Portal Development Kit (PDK) 2nd
 portlets
 portal providers
 prebuilt
 publishing workbooks to
 resource reference for
 security
 Standard Edition
 types and attributes
 use of XML
 visually pleasing displays of OracleAS Discoverer results
OracleAS ProcessConnect 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 adapter-centric methodology
 adapters, types of
 business process-centric methodology
 components
 deployment engine
 deployment sequences
 events created on receipt of record
 Integration Diagram viewer
OracleAS Reports Services 2nd 3rd 4th
 caching reports 2nd
 calling
 event-based reporting
 from OracleAS Portal
 from Web Services
 clustering Reports Servers
 components
 custom tag handler
 distributing reports
 handling requests
 how it works
 managing with Oracle Enterprise Manager
 OracleAS Single Sign-On, using with
 XML, use of 2nd
OracleAS Single Sign-On 2nd 3rd 4th
 implementing for OracleAS Forms Services applications
 mod_osso
 Oracle Identity Management and
 OracleAS Reports Services, using with
 plug-in for third-party web servers
 redirection, OracleAS Web Cache support of
OracleAS SOAP 2nd 3rd [See also SOAP]
OracleAS TopLink 2nd 3rd
 object-relational mapping with
OracleAS Web Cache 2nd 3rd 4th
 administration
 monitoring
 performance monitoring
 starting/stopping
 basic principles
 compression
 how it works
 invalidating cached objects
 cacheability/invalidation rules
 invalidation messages
 performance assurance
 J2EE and OracleAS Web Cache installation, OracleAS 2nd
 load balancing
 for clustered Oracle Application Server instances
 OracleAS Discoverer requests
 topologies for
 clustering
 hierarchies
 multiple instances
 multiple origin servers, supporting
 types of caching
 dynamic pages
 multiple page versions for single URL
 partial page
 personalization in a page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session-encoded URLs
 static pages
OracleAS Web Cache Manager
 monitoring information
OracleAS Wireless 2nd 3rd 4th
 administrative tools
 caching with OracleAS Web Cache
 delivery of alerts and notifications
 deployment
 development
 prebuilt applications
 resource reference for
 security
 XSLT transformation, use of
OracleXML (command-line utility)
origin server
 OracleAS Web Cache communications with
 OracleAS Web Cache support for multiple
ORMI (Oracle RMI)
OutputStream class
OW4J (Oracle Workflow for Java) 2nd
OWB (Oracle Warehouse Builder)
OWM [See Wallet Manager, Oracle]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packaged application adapters
packages (Oracle Application Server), available at this time
page groups (OracleAS Portal) 2nd
page template (OracleAS Portal)
pages (OracleAS Portal)
 appearance of
 caching
 creating at runtime
 items
 layout and regions
 page groups
 styles
 types and attributes
Parallel Page Engine (PPE)
parameters, binding to embedded SQL statements (XSQL Pages)
parsers, XML
 DOM (Document Object Model)
 Oracle XML parsers
 SAX (Simple API for XML)
partial page caching
parties (OracleAS ProcessConnect)
passwords
 management with Oracle Wallet Manager
 proliferation of, avoiding with OracleAS Single Sign-On
patches
 getting information on from MetaLink
 tracking for Oracle Application Server
PDF format, reports in
PDIKS (Portal Developer Kit Integration Services)
PDK (Portal Development Kit) 2nd
PDS (Pluggable Data Source) API
performance
 cache invalidation and
 improvement with caching
 measuring with Application Server Diagnostics Pack
 monitoring for Web Cache
 monitoring for web-based applications
 query performance, OracleAS Discoverer
 Web Services as remote procedure calls
performance assurance heuristics (OracleAS Web Cache)
Performance page (Grid Control)
Perl (mod_perl)
persistence
 EJBs, mapping to relational databases
 entity bean, bean-managed
 entity bean, container-managed
persistence management, OC4J
persistent message queues
Personalization [See OracleAS Personalization]
personalization information in a web page
perspectives (OracleAS Portal data)
PL/SQL
 API for XSU
 Database Providers, OracleAS Portal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Oracle JDeveloper as IDE for
 OracleAS Reports Services API
 reference cursor, producing XML with
 stateless PL/SQL Web Services
 stored procedures 2nd
 use in OracleAS Forms Services
 web applications
 XSU APIs for
PL/SQL Server Pages (PSPs) 2nd
PL/SQL Web Toolkit
platforms, certified
plsql.conf file (mod_plsql)
Pluggable Data Source (PDS) API
Pluggable Destination Java API for Report Engines
plugged-in modules (mods)
point-to-point model (messaging)
policies
 accountability for actions contrary to
 caching
 block naming policy
 indicating invalid cached objects
 JAAS, storage of
 Java 2 security model
 organization by realm
 state-based
 tracking for Oracle Application Server
 value-based
pool cache
popularity ratings, using to remove invalid cached objects
Portal [See OracleAS Portal]
Portal and Wireless installation
Portal Catalog
Portal Developer Kit Integration Services (PDKIS)
Portal Repository
Portal Studio
portals
 definition of
 Wireless Customization Portal
portlet providers
Portlet Repository
Portlet Wizard (JDeveloper)
portlet wizards
portlets 2nd
 Discoverer Portlet Provider 2nd
 Java
 within pages
 portal providers
 prebuilt
 third-party
ports, managing
PPE (Parallel Page Engine)
predictable cache invalidation
prepared statements (SQL), preventing SQL injection attacks with
presentation layer (web applications)
 UIX
priority property (caching rules)
privileges
 administrator
 application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delegation of
 granting higher with multilevel authentication
 policy (Java 2 security model)
Procedure Language extension to SQL [See PL/SQL]
procedures
Process Manager and Notification Server, Oracle [See OPMN]
ProcessConnect [See OracleAS ProcessConnect]
profiles (OracleAS ProcessConnect)
programming interfaces (Web Object Cache)
proprietary network protocols
protocols (Internet), standardized
provider types (JAZN)
providers (OracleAS Portal)
proxies
 Oracle HTTP Server acting as
 Web Service proxy
PSPs (PL/SQL Server Pages) 2nd
public/private key pairs, generated with keytool
publish and subscribe model (messaging)
 OracleAS InterConnect
publishing a Web Service
put() (CacheAccess)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

query and analysis tools 2nd
 Business Objects
 custom OLAP applications
 data warehouses, OWB and
 Discoverer Plus
 Discoverer Viewer
 OracleAS Discoverer
 Administrator Edition
 analytics and OLAP, using
 query performance
query governor, OracleAS Discoverer
queueing cache invalidation requests
queueing messages

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RAC [See Real Application Clusters]
RADs (Resource Access Descriptors)
Random forwarding algorithm
RBAC (role-based access control)
Real Application Clusters (RAC)
 OracleAS InterConnect message load balancing
realm
realm administrator
RealmLoginModule (OC4J)
Recommendation Engine API (REAPI)
record, Oracle
recovery [See backup and recovery]
reference cursor (PL/SQL)
regions (Java Object Cache) 2nd
regions (OracleAS Portal pages)
 styles for
relational databases, mapping Java object-oriented architecture to
relational online analytical processing (ROLAP) 2nd
Remote Cache Deployment
Remote Method Invocation (RMI)
remote procedure calls [See RPCs]
removal time (for cached objects)
replication of HTTP session objects 2nd
report portlets
reporting tools 2nd
Reports engines 2nd
 optimal number of
Reports Server
Reports Services [See OracleAS Reports Services]
Reports servlet 2nd
 Custom Tag Handler
request handling (Reports Server)
request life cycle (Apache)
request/reply model (OracleAS InterConnect messages)
Resource Access Descriptors (RADs)
resource adapters
Resource Provider interface (OC4J)
resource reference for Oracle Application Server
 books and Oracle documentation
 business intelligence components
 caching
 integration components
 Java development
 OC4J
 Oracle development
 Oracle HTTP Server
 OracleAS Portal
 OracleAS Wireless
 Web Services
 web sites
 XML development
RMI (Remote Method Invocation)
RMI/IIOP protocol
RMI/ORMI (RMI over Oracle RMI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROLAP (relational online analytical processing) 2nd
role-based access control (RBAC)
roles
 administrative
 delegation by realm and context administrators
 organization by realm
 storage by JAAS providers
root page (OracleAS Portal)
RosettaNet
Round Robin forwarding algorithm
 rerouting requests to failed OC4J instance
RPCs (remote procedure calls) 2nd
 Web Services as, performance and
 Web Services calls

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

scalability, Oracle Application Server
 clustering OC4J instances
 horizontal scaling
 provided by OracleAS Web Cache 2nd
 vertical scaling with OC4J
SCTC (Supply Chain Trading Connector)
SDKs
 Adapter SDK
 OracleAS InterConnect
searching an OracleAS Portal site
searching for all application servers
Secure Sockets Layer [See SSL]
security
 component- and container-managed, support by resource adapters
 EJB, container- or component-managed
 J2EE applications using Web Services
 Oracle Application Server framework
 deployment architecture
 JAAS
 listing of key components
 Oracle Identity Management
 Oracle Internet Directory
 security services
 Oracle HTTP Server, modules for
 OracleAS Discoverer, access to data
 OracleAS Forms Services
 OracleAS Portal
 OracleAS Reports Services
 levels of
 reports called from OracleAS Portal
 OracleAS Web Cache support of
 OracleAS Wireless
 secure deployment
 delegation of privileges
 DMZs
 Oracle Enterprise Manager
 Web Services
security management
 provided by resource adapters
security model (Java 2)
selector property (caching rules)
server affinity
Server Side Includes (SSIs)
server side, uses of PL/SQL on
service description, Web Services 2nd
service discovery, Web Services 2nd
 looking up a Web Service
 publishing a Web Service
 updating UDDI entry
service provider interfaces (SPIs)
service provider, Web Services
 OC4J Web Services agents
 RPC- versus document-style calls
 Web Services Assembler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Service Request (SR)
service requester, Web Services
services, Oracle middle-tier product (2000)
servlet containers
 Jserv 2nd
 OC4J
 servlet life cycle management
servlets
 controller servlets
 created from JSP files
 deployment of
 JDBC used in
 Jserv container, Apache 2nd
 Oracle Reports servlet
 web applications, presentation layer
 Web Object Cache, use with
session beans (EJB)
session binding
session management, OC4J
session objects, replication of 2nd
session scope (cached objects)
session-encoded URLs, caching
SetHandler directive
shadow processes 2nd
 OracleAS Metadata Repository, use of
shared objects (OracleAS Portal pages)
Shared Objects page group
Simple API for XML (SAX) parsers
Simple Mail Transfer Protocol (SMTP)
Simple Object Access Protocol [See SOAP]
Single Sign-On [See OracleAS Single Sign-On]
site (OracleAS Portal)
SOAP
 encoding of Web Services request
 OracleAS SOAP 2nd
 OracleAS Web Services, support of
 service description
 standards
 UDDI SOAP-based Web Services
 Web Providers (OracleAS Portal), use by
 XML standards
Software Configuration Manager
software installations and patches, tracking
SPIs (service provider interfaces)
SQL [See also PL/SQL]
 creation and execution of by EJB container
 new standard (SQL 1999)
 performing DML with JDBC used in servlets
 SQLJ compiler for embedding in Java code
 XML SQL Utility
 XSQL Pages 2nd
 converting XML to SQL
 XSU (XML SQL Utility)
 transforming XML to SQL
SQL injection
SR (Service Request)
SSIs (Server Side Includes)
SSL (Secure Sockets Layer)
 certificates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 client-side
 management with Oracle Wallet Manager
 Oracle HTTP Server, management of
 OracleAS Certificate Authority 2nd 3rd 4th
 infrastructure inside OC4J (Oracle HTTPS)
 mod_ossl, OHS
 Oracle HTTP Server support of
 secure connections
 Web Services, using with
standalone JMS resources
standalone resource adapters
Standard Edition (Oracle Application Server)
star schema
state replication for HTTP session objects and EJBs 2nd
state-based policies
stateful EJB
stateful failover for OC4J clusters
stateful Java class services
stateless EJB
stateless Java class services
stateless PL/SQL services
stateless session EJB services
static client (Web Services)
static HTML pages, caching
static objects combined with dynamic objects in web pages
storage area network (SAN) disk devices
stored procedures
 names of
 as RPCs
 as Web Services
stream access cache (Java Object Cache)
Struts
 controller, using as
 web site for information
styles (OracleAS Portal pages)
stylesheets
 CSS (Cascading Style Sheets)
 XSLT
subpage region (OracleAS Portal)
subpages (OracleAS Portal)
subregions (Java Object Cache) 2nd
summaries, improving query performance with
Sun ONE Web Server [See Java System Web Server]
SunOne (identity management) service
Supply Chain Trading Connector (SCTC)
support, Oracle
Surrogate-Control response-header

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

<xsql:action> tag
<xsql:dml> tag
<xsql:include-owa> tag
<xsql:include-xsql> tag
<xsql:query> tag
<xsql:ref-cursor-function> tag
3NF (third normal form) database schema

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tab region (OracleAS Portal pages)
tag libraries, JSP
 Web Object Cache tag library
taxonomy
Technical Assistance Request (TAR) [See Service Request]
technology adapters
templates, OracleAS Portal pages
thin client
third normal form (3NF) database schema
third-party identity management services
third-party IDEs that support Oracle Application Server deployment
three-tier architecture
 Internet
 Oracle Application Server implemented in
TopLink [See OracleAS TopLink]
transaction management
 OC4J
 provided by resource adapters
transaction monitor
transaction performance monitoring
transactions
 application servers, history of
 bean-managed transactions, EJB
 container-managed transactions, EJBs
 Java Transaction API (JTA)
 MTS (Microsoft Transaction Server)
 stateful
transformations
 application views
 business events
 SDKs for, OracleAS InterConnect
 XML documents
 Java, using
 SQL to XML with XSU
translations (OracleAS Portal pages)
translator for JSPs (OC4J)
transport protocols, Web Services
tree structure (XML documents)
tree-structured approach, XML parsers
two-phase commits 2nd
Type 2 JDBC drivers
Type 4 JDBC drivers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UDDI (Universal Description, Discovery, and Integration) 2nd
 directory for publishing Web Services
 directory management
 inquiry Web Service
 OracleAS Web Services, support of
 service discovery for Web Services
 specification
 updating Web Service entries
UIX, employed by ADF as view
UltraSearch
Universal Description, Discovery, and Integration [See UDDI]
Unix, Oracle Application Servers for
unpredictable cache invalidation
UPDATE statement (SQL)
updating a database using an XML document
URL mapping directives
 in mod_oc4j.conf
 mod]
URL page portlets
URLs
 multiple page versions for single URL
 session-encoded
user authentication
user roles
users
 identity management for
 organization by realm
 storage by JAAS providers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

valid XML document
validation
 of cached objects
 HTML form information
 XML document against an XML Schema
validators, HTTP
view (MVC)
views
 application views
 common
 materialized
 use in transforming SQL document to XML

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

W3C (World Wide Web Consortium)
 WSDL specification
Wallet Manager, Oracle (OWM)
wallets, Oracle
WDK (Wireless Development Kit)
Web Application aRchive (WAR) file
web applications
 developing
 control layer
 data and business rules layer
 presentation layer
 PL/SQL
Web Applications page (Grid Control)
web browsers
 compressed content, handling of
 HTML content produced by servlets
 JavaScript, compatibility issues caused by
Web Cache [See OracleAS Web Cache]
Web Clipping portlet
web listener (Oracle Application Server)
Web Object Cache 2nd 3rd
 basic principles
 invalidating cached objects
 organization of
 repository management
web page for this book
web pages
 compression by OracleAS Web Cache
 multiple versions for single URL, caching
 partial page caching
 personalization information, specifying
Web Providers (OracleAS Portal)
web servers
 Apache
 third-party, used with Oracle HTTP Server
 third-party, using OracleAS Web Cache with
Web Service proxy
Web Services 2nd
 architecture
 encoding
 integration of
 interface to the Reports Server
 interoperability of RPCs
 J2ME
 Oracle Application Server support of 2nd
 resource reference for
 running OracleAS Reports Services as
 security
 service
 service description 2nd
 service discovery 2nd
 looking up Web Service
 publishing Web Service
 updating UDDI entry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 service provider
 OC4J Web Services agents
 Web Services Assembler
 service requester
 standards
 SOAP
 UDDI
 WSDL
 XML
 XML-RPC
 use of HTTP as transparent protocol
Web Services Assembler
Web Services Description Language [See WSDL]
Web Services for Remote Portlets (WSRP)
web sites for Oracle Application Server information
web-based reports
 predefined drill-down capabilities
web.xml files
WebDAV (Web Distributed Authoring and Versioning)
 mod_oradav, Oracle HTTP Server
 support by OracleAS Portal
Weighted Available Capacity forwarding algorithm
well-formed XML documents
Windows [See also Microsoft]
 Active Directory (identity management)
 MTS (Microsoft Transaction Server)
windows, dockable (Oracle JDeveloper)
Wireless Development Kit (WDK)
Wireless installation
workbooks
 controlling access to
 publishing to OracleAS Portal
Workflow [See Oracle Workflow OW4J]
worksheets
 controlling access to
World Wide Web Consortium (W3C)
 WSDL specification
WSDL (Web Services Description Language)
 configuring Web Services Assembler to generate file
 Oracle Application Server, support of
 oracle.j2ee.ws.client.wsdl package
 SOAP service description
 specification
WSRP (Web Services for Remote Portlets)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X.509 certificates [See also SSL, certificates]
 Triple-DES encryption for private keys
XDKs (XML Developer Kits)
 features of
XForms
XForms engine
XHTML
 OracleAS Wireless
 transforming HTML document to with PDKIS
XML 2nd
 class generators
 DTDs and XML schemas
 encoding schemes, Web Services
 file user manager (JAAS provider)
 invalidation messages for cached objects
 Oracle Application Server components, use by
 Oracle JDeveloper as IDE for
 OracleAS Reports Services and
 OracleAS Wireless
 parsers, Oracle
 reports based on, exchange via HTTP
 resource reference for development
 standards
 Namespace Version 1.0
 parsers
 Version 1.0
 XML Path Language (XPath)
 XML Schema
 XSLT
 UIX presentation layer
 Web Services encoding scheme, use in
 WSDL (Web Services Description Language)
 XDKs (XML Developer Kits)
 XDKs (XML Development Kits)
 features of
 XSQL Pages
XML application
XML Class Generator
XML page portlets
XML Schema
 UDDI
 W3C recommendations, Oracle support for
XML Schema Processor
XML SQL Utility [See XSU]
XML Transviewer Beans
XML-based provider, JAZN support of
XML-RPC
 service description
 specifications and implementations for
 XML 1.0 standard
XMLDocument class
XPath (XML Path Language)
XSLT (EXtensible Stylesheet Language for Transformations)
 use by OracleAS Wireless

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XSLTransformer Bean
XSQL Pages 2nd
 configuration
 converting XML to SQL
 integrating with JSP
 SQL, converting to XML
XSQLActionHandler interface
XSU (XML SQL Utility) 2nd
 mapping customizations
 PL/SQL API for
 transforming XML to SQL
 committing
 deleting from a database
 inserting data
 mapping customizations
 updating a database

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Oracle Application Server 10g Essentials

By Donald Bales, Rick Greenwald, Robert Stackowiak

Publisher: O'Reilly

Pub Date: August 2004

ISBN: 0-596-00621-7

Pages: 282

This new guide provides the perfect introduction to the Oracle Application Server for users of any level. Divided into
three concise sections, the book covers server basics, core components, and server functionality. Designed to be the
ideal first OracleAS book, Oracle Application Server 10g Essentials offers Oracle application developers and
administrators everything they need to know to use this powerful server effectively and efficiently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Oracle Application Server 10g Essentials

By Donald Bales, Rick Greenwald, Robert Stackowiak

Publisher: O'Reilly

Pub Date: August 2004

ISBN: 0-596-00621-7

Pages: 282

 Copyright

 Dedication

 Preface

 About This Book

 About the Oracle Application Server Software

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Chapter 1. Introducing Oracle Application Server

 Section 1.1. Evolution of the Application Server

 Section 1.2. The Oracle Application Server Family

 Section 1.3. Oracle Application Server Components

 Section 1.4. Managing Oracle Application Servers

 Section 1.5. What's Next?

 Chapter 2. Architecture

 Section 2.1. Oracle Application Server Core Components

 Section 2.2. Oracle Application Server Infrastructure

 Section 2.3. Installation Types

 Section 2.4. Scalability Architectures

 Section 2.5. High Availability

 Section 2.6. Oracle Application Server Applications

 Chapter 3. Systems Management

 Section 3.1. Application Server Control

 Section 3.2. Grid Control

 Section 3.3. EM2Go

 Section 3.4. Optional Oracle Enterprise Manager Application Server Packs

 Section 3.5. Backup, Recovery, and Security Management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.6. Working with Oracle Support

 Chapter 4. Security and Identity Management

 Section 4.1. Oracle Application Server Security Objectives

 Section 4.2. Oracle Application Server Security Framework

 Section 4.3. Secure Deployment

 Chapter 5. Oracle HTTP Server

 Section 5.1. Apache Architecture

 Section 5.2. Oracle-Supplied Modules

 Section 5.3. Third-Party Listener Support

 Chapter 6. Oracle Application Server Containers for J2EE

 Section 6.1. OC4J Components

 Section 6.2. OC4J Services

 Section 6.3. Application Deployment

 Section 6.4. Standalone J2EE Server

 Section 6.5. Clustering

 Chapter 7. Caching

 Section 7.1. OracleAS Web Cache

 Section 7.2. Java Object Cache

 Section 7.3. Web Object Cache

 Chapter 8. Java Development

 Section 8.1. Developing Web Applications

 Section 8.2. Development Tools

 Section 8.3. Oracle Application Server APIs and Tag Libraries

 Chapter 9. Oracle Development

 Section 9.1. PL/SQL

 Section 9.2. OracleAS Forms Services

 Section 9.3. OracleAS Reports Services

 Chapter 10. XML Development

 Section 10.1. XML, DTDs, and XML Schemas

 Section 10.2. XML Standards

 Section 10.3. XML Developer Kits

 Section 10.4. Oracle Application Server Components and XML

 Chapter 11. Web Services

 Section 11.1. Web Services Architecture

 Section 11.2. Web Services Standards

 Section 11.3. Service Provider

 Section 11.4. Service Description

 Section 11.5. Service Discovery

 Section 11.6. Service Requester

 Chapter 12. Business Intelligence Components

 Section 12.1. Reporting

 Section 12.2. Query and Analysis

 Section 12.3. Data Mining

 Section 12.4. Managing Business Intelligence Components

 Chapter 13. Oracle Application Server Portal

 Section 13.1. An OracleAS Portal Page

 Section 13.2. Portlets

 Section 13.3. Classification of Data

 Section 13.4. End-User Interaction

 Section 13.5. Deployment Architecture

 Section 13.6. OracleAS Portal Security

 Chapter 14. Oracle Application Server Wireless

 Section 14.1. OracleAS Wireless Foundation Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 14.1. OracleAS Wireless Foundation Services

 Section 14.2. OracleAS Wireless Development

 Section 14.3. OracleAS Wireless Deployment

 Section 14.4. OracleAS Wireless Administration

 Chapter 15. Integration Components

 Section 15.1. Oracle Application Server InterConnect

 Section 15.2. Oracle Application Server ProcessConnect

 Additional Resources

 Web Sites

 Books and Oracle Documentation

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

