
[Team LiB]

• Table of Contents
Oracle® PL/SQL™ by Example, Third Edition

By Benjamin Rosenzweig, Elena Silvestrova

Publisher: Prentice Hall PTR

Pub Date: September 10, 2003

ISBN: 0-13-117261-1

Pages: 768

Start developing applications with Oracle PL/SQL--fast! This integrated book-and-Web learning solution teaches all the
Oracle PL/SQL skills you need, hands on, through real-world labs, extensive examples, exercises, projects, and a
complete Web-based training site. Oracle PL/SQL by Example, Third Edition covers Oracle 10g and all the
fundamentals: Master PL/SQL syntax, iterative and conditional control, scoping, anchored datatypes, cursors, triggers,
security, tables, procedures, functions, packages and Oracle-supplied packages--plus powerful new techniques for
working with exceptions, cursors, collections, and records. Your free Web-based training module includes a Virtual
Study Lounge where you can interact with other learners, work on new projects, and get updates!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
Oracle® PL/SQL™ by Example, Third Edition

By Benjamin Rosenzweig, Elena Silvestrova

Publisher: Prentice Hall PTR

Pub Date: September 10, 2003

ISBN: 0-13-117261-1

Pages: 768

 Copyright

 The Prentice Hall PTR Oracle Series

 Acknowledgments

 Acknowledgments from Ben Rosenzweig

 Acknowledgments from Elena Silvestrova

 About the Authors

 Introduction

 Who This Book Is For

 How This Book Is Organized

 About The Companion Web Site

 What You Will Need

 Using SQL*Plus

 Conventions Used In This Book

 About Prentice Hall Professional Technical Reference

 Chapter 1. Programming Concepts

 Lab 1.1 The Nature of a Computer Program and Programming Languages

 Lab 1.1 Exercises

 Lab 1.1 Exercise Answers

 Lab 1.1 Self-Review Questions

 Lab 1.2 Good Programming Practices

 Lab 1.2 Exercises

 Lab 1.2 Exercise Answers

 Lab 1.2 Self-Review Questions

 Chapter 1 Test Your Thinking

 Chapter 2. PL/SQL Concepts

 Lab 2.1 PL/SQL in Client-Server Architecture

 Lab 2.1 Exercises

 Lab 2.1 Exercise Answers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Lab 2.1 Self-Review Questions

 Lab 2.2 PL/SQL in Sql*Plus

 Lab 2.2 Exercises

 Lab 2.2 Exercise Answers

 Lab 2.2 Self-Review Questions

 Chapter 2 Test Your Thinking

 Chapter 3. General Programming Language Fundamentals

 Lab 3.1 PL/SQL Programming Fundamentals

 Lab 3.1 Exercises

 Lab 3.1 Exercise Answers

 Lab 3.1 Self-Review Questions

 Chapter 3 Test Your Thinking

 Chapter 4. SQL in PL/SQL

 Lab 4.1 Making Use of DML in PL/SQL

 Lab 4.1 Exercises

 Lab 4.1 Exercise Answers

 Lab 4.1 Self-Review Questions

 Lab 4.2 Making Use of SAVEPOINT

 Lab 4.2 Exercises

 Lab 4.2 Exercise Answers

 Lab 4.2 Self-Review Questions

 Chapter 4 Test Your Thinking

 Chapter 5. Conditional Control: IF Statements

 Lab 5.1 IF Statements

 Lab 5.1 Exercises

 Lab 5.1 Exercise Answers

 Lab 5.1 Self-Review Questions

 Lab 5.2 ELSIF Statements

 Lab 5.2 Exercises

 Lab 5.2 Exercise Answers

 Lab 5.2 Self-Review Questions

 Lab 5.3 Nested IF Statements

 Lab 5.3 Exercises

 Lab 5.3 Exercise Answers

 Lab 5.3 Self-Review Questions

 Chapter 5 Test Your Thinking

 Chapter 6. Conditional Control: CASE Statements

 LAB 6.1 CASE Statements

 Lab 6.1 Exercises

 Lab 6.1 Exercise Answers

 Lab 6.1 Self-Review Questions

 Lab 6.2 CASE Expressions

 Lab 6.2 Exercises

 Lab 6.2 Exercise Answers

 Lab 6.2 Self-Review Questions

 Lab 6.3 NULLIF and COALESCE Functions

 Lab 6.3 Exercises

 Lab 6.3 Exercise Answers

 Lab 6.3 Self-Review Questions

 Chapter 6 Test Your Thinking

 Chapter 7. Error Handling and Built-In Exceptions

 Lab 7.1 Handling Errors

 Lab 7.1 Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Lab 7.1 Exercises

 Lab 7.1 Exercise Answers

 Lab 7.1 Self-Review Questions

 Lab 7.2 Built-In Exceptions

 Lab 7.2 Exercises

 Lab 7.2 Exercise Answers

 Lab 7.2 Self-Review Questions

 Chapter 7 Test Your Thinking

 Chapter 8. Iterative Control

 Lab 8.1 Simple Loops

 Lab 8.1 Exercises

 Lab 8.1 Exercise Answers

 Lab 8.1 Self-Review Questions

 Lab 8.2 WHILE Loops

 Lab 8.2 Exercises

 Lab 8.2 Exercise Answers

 Lab 8.2 Self-Review Questions

 Lab 8.3 Numeric FOR Loops

 Lab 8.3 Exercises

 Lab 8.3 Exercise Answers

 Lab 8.3 Self-Review Questions

 Lab 8.4 Nested Loops

 Lab 8.4 Exercises

 Lab 8.4 Exercise Answers

 Lab 8.4 Self-Review Questions

 Chapter 8 Test Your Thinking

 Chapter 9. Introduction to Cursors

 Lab 9.1 Cursor Manipulation

 Lab 9.1 Exercises

 Lab 9.1 Exercise Answers

 Lab 9.1 Self-Review Questions

 Lab 9.2 Using Cursor FOR Loops and Nesting Cursors

 Lab 9.2 Exercises

 Lab 9.2 Exercise Answers

 Lab 9.2 Self-Review Questions

 Chapter 9 Test Your Thinking

 Chapter 10. Exceptions

 Lab 10.1 Exception Scope

 Lab 10.1 Exercises

 Lab 10.1 Exercise Answers

 Lab 10.1 Self-Review Questions

 Lab 10.2 User-Defined Exceptions

 Lab 10.2 Exercises

 Lab 10.2 Exercise Answers

 Lab 10.2 Self-Review Questions

 Lab 10.3 Exception Propagation

 Lab 10.3 Exercises

 Lab 10.3 Exercise Answers

 Lab 10.3 Self-Review Questions

 Chapter 10 Test Your Thinking

 Chapter 11. Exceptions: Advanced Concepts

 Lab 11.1 RAISE_APPLICATION_ERROR

 Lab 11.1 Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Lab 11.1 Exercise Answers

 Lab 11.1 Self-Review Questions

 Lab 11.2 EXCEPTION_INIT Pragma

 Lab 11.2 Exercises

 Lab 11.2 Exercise Answers

 Lab 11.2 Self-Review Questions

 Lab 11.3 SQLCODE and SQLERRM

 Lab 11.3 Exercises

 Lab 11.3 Exercise Answers

 Lab 11.3 Self-Review Questions

 Chapter 11 Test Your Thinking

 Chapter 12. Procedures

 PL/SQL Stored Code

 Lab 12.1 Creating Procedures

 Lab 12.1 Exercises

 Lab 12.1 Exercise Answers

 Lab 12.2 Passing Parameters In and Out of Procedures

 Lab 12.2 Exercises

 Lab 12.2 Exercise Answers

 Lab 12.2 Self-Review Questions

 Chapter 12 Test Your Thinking

 Chapter 13. Functions

 Lab 13.1 Creating and Using Functions

 Lab 13.1 Exercises

 Lab 13.1 Exercise Answers

 Lab 13.1 Self-Review Questions

 Chapter 13 Test Your Thinking

 Chapter 14. Packages

 Lab 14.1 The Benefits of Utilizing Packages

 Lab 14.1 Exercises

 Lab 14.1 Exercise Answers

 Lab 14.1 Self-Review Questions

 Chapter 14 Test Your Thinking

 Chapter 15. Advanced Cursors

 Lab 15.1 Using Parameters with Cursors and FOR UPDATE Cursors

 Lab 15.1 Exercises

 Lab 15.1 Exercise Answers

 Lab 15.2 Cursor Variables

 Lab 15.2 Exercises

 Lab 15.2 Exercise Answers

 Lab 15.2 Self-Review Questions

 Chapter 16. Stored Code

 Lab 16.1 Gathering Stored Code Information

 Lab 16.1 Exercises

 Lab 16.1 Exercise Answers

 Lab 16.1 Self-Review Questions

 Chapter 16 Test Your Thinking

 Chapter 17. Triggers

 Lab 17.1 What Triggers Are

 Lab 17.1 Exercises

 Lab 17.1 Exercise Answers

 Lab 17.1 Self-Review Questions

 Lab 17.2 Types of Triggers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Lab 17.2 Types of Triggers

 Lab 17.2 Exercises

 Lab 17.2 Exercise Answers

 Lab 17.2 Self-Review Questions

 Lab 17.3 Mutating Table Issues

 Lab 17.3 Exercises

 Lab 17.3 Exercise Answers

 Lab 17.3 Self-Review Questions

 Chapter 17 Test Your Thinking

 Chapter 18. Collections

 Lab 18.1 PL/SQL Tables

 Lab 18.1 Exercises

 Lab 18.1 Exercise Answers

 Lab 18.1 Self-Review Questions

 Lab 18.2 Varrays

 Lab 18.2 Exercises

 Lab 18.2 Exercise Answers

 Lab 18.2 Self-Review Questions

 Lab 18.3 Multilevel Collections

 Lab 18.3 Exercises

 Lab 18.3 Exercise Answers

 Lab 18.3 Self-Review Questions

 Chapter 18 Test Your Thinking

 Chapter 19. Records

 Lab 19.1 Records

 Lab 19.1 Exercises

 Lab 19.1 Exercise Answers

 Lab 19.1 Self-Review Questions

 Lab 19.2 Nested Records

 Lab 19.2 Exercises

 Lab 19.2 Exercise Answers

 Lab 19.2 Self-Review Questions

 Lab 19.3 Collections of Records

 Lab 19.3 Exercises

 Lab 19.3 Exercise Answers

 Lab 19.3 Self-Review Questions

 Chapter 19 Test Your Thinking

 Chapter 20. Native Dynamic SQL

 Lab 20.1 EXECUTE IMMEDIATE Statements

 Lab 20.1 Exercises

 Lab 20.1 Exercise Answers

 Lab 20.1 Self-Review Questions

 Lab 20.2 OPEN-FOR, FETCH, and CLOSE STATEMENTS

 Lab 20.2 Exercises

 Lab 20.2 Exercise Answers

 Lab 20.2 Self-Review Questions

 Chapter 20 Test Your Thinking

 Chapter 21. Oracle Supplied Packages

 Lab 21.1 Make Use of Oracle Supplied Packages

 Lab 21.1 Exercises

 Lab 21.1 Exercise Answers

 Appendix A. Answers to Self-Review Questions

 Chapter 1 Programming Concepts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 2 PL/SQL Concepts

 Chapter 3 General Programming Language Fundamentals

 Chapter 4 SQL in PL/SQL

 Chapter 5 Conditional Control: IF Statements

 Chapter 6 Conditional Control: CASE Statements

 Chapter 7 Error Handling and Built-In Exceptions

 Chapter 8 Iterative Control

 Chapter 9 Introduction to Cursors

 Chapter 10 Exceptions

 Chapter 11 Exceptions: Advanced Concepts

 Chapter 12 Procedures

 Chapter 13 Functions

 Chapter 14 Packages

 Chapter 15 Advanced Cursors

 Chapter 16 Stored Code

 Chapter 17 Triggers

 Chapter 18 Collections

 Chapter 19 Records

 Chapter 20 Native Dynamic SQL

 Appendix B. PL/SQL Formatting Guide

 PL/SQL Code Naming Conventions and Formatting Guidelines

 Other Suggestions

 Appendix C. Student Database Schema

 Table and Column Descriptions

 Appendix D. Answers to Test Your Thinking Sections

 Chapter 1 Programming Concepts

 Chapter 2 PL/SQL Concepts

 Chapter 3 General Programming Language Fundamentals

 Chapter 4 SQL in PLSQL

 Chapter 5 Conditional Control: IF Statements

 Chapter 6 Conditional Control: CASE Statements

 Chapter 7 Error Handling and Built-In Exceptions

 Chapter 8 Iterative Control

 Chapter 9 Introduction to Cursors

 Chapter 10 Exceptions

 Chapter 11 Exceptions: Advanced Concepts

 Chapter 12 Procedures

 Chapter 13 Functions

 Chapter 14 Packages

 Chapter 16 Stored Code

 Chapter 17 Triggers

 Chapter 18 Collections

 Chapter 19 Records

 Chapter 20 Native Dynamic SQL

 Appendix E. ANSI SQL Standards

 SQL Standards

 JOINs

 Scalar Subquery

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Library of Congress Cataloging-in-Publication Data

A catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Jessica Balch (Pine Tree Composition, Inc.)

Cover design director: Jerry Votta

Cover design: Nina Scuderi

Art director: Gail Cocker-Bogusz

Interior design: Meg Van Arsdale

Manufacturing buyer: Alexis Heydt-Long

Publisher: Jeff Pepper

Editorial assistant: Linda Ramagnano

Full-service production manager: Anne R. Garcia

© 2004, 2003 Pearson Education, Inc.

Publishing as Prentice Hall Professional Technical Reference

Upper Saddle River, NJ 07458

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact:

U.S. Corporate and Government Sales
1–800–382–3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
1–317–581–3793
international@pearsontechgroup.com

Other company and product names mentioned herein are the trademarks or registered trademarks of their respective
owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing
from the publisher.

Printed in the United States of America

First Printing

Pearson Education Ltd., London
Pearson Education Australia Pty, Limited, Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Ltd., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education–Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The Prentice Hall PTR Oracle Series
The Independent Voice on Oracle

Oracle8i and UNIX Performance Tuning
Alomari

Oracle Web Application Programming for PL/SQL Developers
Boardman/Caffrey/Morse/Rosenzweig

Software Engineering with Oracle: Best Practices for Mission-Critical Systems
Bonazzi

Oracle8i and Java: From Client/Server to E-Commerce
Bonazzi/Stokol

Oracle8 Database Administration for Windows Nt
Brown

Web Development with Oracle Portal
El-Mallah

Java Oracle Database Development
Gallardo

Oracle Desk Reference
Harrison

Oracle SQL High Performance Tuning, SECOND EDITION
Harrison

Oracle Designer: A Template for Developing an Enterprise Standards Document
Kramm/Graziano

Oracle Developer/2000 Forms
Lulushi

Oracle Forms Developer's Handbook
Lulushi

Oracle Forms Interactive Workbook
Motivala

Oracle SQL Interactive Workbook, SECOND EDITION
Rischert

Oracle PL/SQL by Example, THIRD EDITION
Rosenzweig/Silvestrova

Oracle DBA Guide to Data Warehousing and Star Schemas
Scalzo

Oracle DBA Interactive Workbook
Scherer/Caffrey

Oracle Developer 2000 Handbook, SECOND EDITION
Stowe

Data Warehousing with Oracle
Yazdani/Wong

Oracle Certified DBA Exam Question and Answer Book
Yazdani/Wong/Tong

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
Acknowledgments from Ben Rosenzweig

Acknowledgments from Elena Silvestrova

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments from Ben Rosenzweig
I would like to thank my coauthor Elena Silvestrova for being a wonderful and knowledgeable colleague to work with. I
would also like to thank Douglas Scherer for giving me the opportunity to work on this book as well as for providing
constant support and assistance through the entire writing process. I am indebted to Carol Brennan for her technical
edits; she saved me from errors in every chapter. I would like to thank Kathryn Castelle, who did a great job reading
over the manuscript and making suggestions. Finally, I would like to thank the many friends and family, especially
Edward Clarin and Edward Knopping, for helping me through the long process of putting the whole book together, which
included many late nights and weekends.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments from Elena Silvestrova
My contribution to this book reflects the help and advice of many people. I am particularly indebted to the people at
Prentice Hall who diligently worked to bring this book to market. Thanks to all of my students at Columbia University,
who perennially demonstrated that teaching is learning. Thanks to Carol Brennan for her valuable comments and
suggestions. To Ben Rosenzweig and Douglas Scherer, thanks for making this project a rewarding and enjoyable
experience. Special thanks to David Dawson, whose insightful ideas and sincere support encourage me to work hard to
the very end. Most important, thanks to my mom and dad, Natalia and Victor, whose excitement, enthusiasm,
inspiration, and support were exceeded only by their love.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About the Authors
Benjamin Rosenzweig is the Loan Integration Manager at IQ Financial Systems. Prior to that he was a principal
consultant for more than three years at Oracle Corporation in the Custom Development Department. His computer
experience ranges from creating an electronic Tibetan–English Dictionary in Kathmandu, Nepal, to supporting
presentation centers at Goldman Sachs and managing a trading system at TIAA-CREF. Benjamin has been an instructor
at the Columbia University Computer Technology and Application (CTA) program in New York City since 1998. In 2002
he was awarded the "Outstanding Teaching Award" from the Chair and Director of the CTA program. He holds a B.A.
from Reed College and a certificate in database development and design from Columbia University. His previous titles
with Prentice Hall are Oracle Forms Developer: The Complete Video Course (ISBN: 0-13-032124-9), and Oracle Web
Application Programming for PL/SQL Developers (ISBN: 0-13-047731-1).

Elena Silvestrova, a senior software engineer for a prominent New York brokerage firm and securities dealer, has
taught relational database programming in Columbia University's highly esteemed Computer Technology and
Applications program during the past four years. She was educated in database analysis and design at Columbia
University and in applied mathematics at Baku State University in Azerbaijan. A U.S. citizen, Elena has lived in the
United States for more than 10 years. She currently resides in New York.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introduction
Oracle PL/SQL by Example, 3rd edition, presents the Oracle PL/SQL programming language in a unique and highly
effective format. It challenges you to learn Oracle PL/SQL by using it rather than by simply reading about it.

Just as a grammar workbook would teach you about nouns and verbs by first showing you examples and then asking
you to write sentences, Oracle PL/SQL by Example teaches you about cursors, loops, procedures, triggers, and so on by
first showing you examples and then asking you to create these objects yourself.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who This Book Is For
This book is intended for anyone who needs a quick but detailed introduction to programming with Oracle's PL/SQL
language. The ideal readers are those with some relational database experience, with some Oracle experience,
specifically with SQL and SQL*Plus, but with little or no experience with PL/SQL or with most other programming
languages.

The content of this book is based on the material that is taught in an Introduction to PL/SQL class at Columbia
University's Computer Technology and Applications (CTA) program in New York City. The student body is rather diverse,
in that there are some students who have years of experience with information technology (IT) and programming, but
no experience with Oracle PL/SQL, and then there are those with absolutely no experience in IT or programming. The
content of the book, like the class, is balanced to meet the needs of both extremes. The exercises in this book can be
used as lab and homework assignments to accompany the lectures in such a PL/SQL course.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How This Book Is Organized
The intent of this workbook is to teach you about Oracle PL/SQL by presenting you with a series of challenges followed
by detailed solutions to those challenges. The basic structure of each chapter is as follows:

 Chapter
 Lab
 Exercises
 Exercise Answers (with detailed discussion)
 Self-Review Questions
 Lab …
 Test Your Thinking Questions

Each chapter contains interactive labs that introduce topics about Oracle PL/SQL. The topics are discussed briefly and
then explored though exercises, which are the heart of each lab.

Each exercise consists of a series of steps that you will follow to perform a specific task, along with questions that are
designed to help you discover the important things about PL/SQL programming on your own. The answers to these
questions are given at the end of the Exercises, along with more in-depth discussion of the concepts explored.

The exercises are not meant to be closed-book quizzes to test your knowledge. On the contrary, they are intended to
act as your guide and walk you through a task. You are encouraged to flip back and forth from the exercise question
section to the exercise answer section so that, if need be, you can read the answers and discussions as you go along.

At the end of each lab is a series of multiple-choice self-review questions. These are meant to be closed-book quizzes to
test how well you understood the lab material. The answers to these questions appear in Appendix A.

Finally, at the end of each chapter you will find a Test Your Thinking section, which consists of a series of projects
designed to solidify all of the skills you have learned in the chapter. If you have successfully completed all of the labs in
the chapter, you should be able to tackle these projects with few problems. You will find guidance and/or solutions to
these in Appendix D and at the companion Web site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About The Companion Web Site
The companion Web site is located at:

http://authors.phptr.com/rosenzweig3e/

Here you will find two very important things:

Files you will need before you begin reading the workbook: all of the exercises and questions are based on a
sample database called STUDENT. The files required to create and install the STUDENT schema are
downloadable from the Web site.

Answers to the Test Your Thinking questions.

In addition to required files and Test Your Thinking answers, the Web site will have many other features, like message
board and periodically updated information about the book. There may also be some additional PL/SQL assignments
without answers that can be used for graded homework.

You should visit the companion Web site, download the student schema, and
install it in your database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What You Will Need
There are software programs as well as knowledge requirements necessary to complete the exercise sections of the
workbook. Note that some features covered throughout the workbook are applicable to Oracle 9i only. However, you
will be able to complete a great majority of the exercise sections by using the following products:

Software

Oracle 7.3.4 or higher

SQL*Plus 3.3 or higher

Access to the Internet

Windows 95/98/2000/XP or NT 4.0

Oracle 9 Release 2 and Oracle 10

The PL/SQL compiler is redesigned to enhance performance with each new version of the database. Oracle 9i Release 2
is the final release of Oracle's RDBMS version 9. In 2003 Oracle will release version 10 of Oracle's Database, it flagship
product. The latest version of the database, Oracle 10g, has completely redesigned and re-implemented the PL/SQL
compiler backend, which features code optimization. The new PL/SQL compiler replaces the old compiler. The new
compiler has an immediate improvement in the quality of the code generated by the PL/SQL compiler and thus
improvement in the execution performance of PL/SQL programs. The new compiler in Oracle 10G increases the
performance of PL/SQL code and allows it to execute approximately 2 times faster than an Oracle 8i Database and 1.5
times to 1.75 times as fast as an Oracle9i Database Release 2. The new PL/SQL compiler provides the same execution
for PL/SQL programs as the previous PL/SQL compiler. However, this does not mean that the generated code for a
particular construct is necessarily the same; only the behavior of a program is intended to remain the same. The
improvements in the PL/SQL compiler do not effect the way a programmer writes PL/SQL; the improvements are in the
backend of the database and result in faster execution.

You can use either Oracle Personal Edition or Oracle Enterprise Edition to perform the exercises in this book. If you use
Oracle Enterprise Edition, it can be running on a remote server or locally on your own machine. It is recommended that
you use Oracle 9.2 or Oracle 10.1 in order to perform all the exercise in this book. When a feature will only work in
later versions of the database, the book will state this explicitly. Additionally, you should have access to and be familiar
with SQL*Plus.

You have a number of options for how to edit and run scripts from SQL*Plus. There are also many third-party programs
to edit and debug PL/SQL code. SQL*Plus is used throughout this book, since SQL*Plus comes with all versions of the
Oracle database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using SQL*Plus
You should be familiar with using SQL*Plus to execute SQL statements (if not, then refer to another book in the
Prentice Hall Interactive Oracle Series on this topic, Alice Rishchert's Oracle SQL by Example, 3rd ed., available
December 2003). There are a few key differences between executing SQL statements in SQL*Plus and executing
PL/SQL statements in SQL*Plus. You will be introduced to these differences so that you can work with the exercises in
this book.

You can end an SQL Command in SQL*Plus in one of three ways:

with a semicolon (;)

with a forward slash (/) on a line by itself

with a blank line

The semicolon (;) tells SQL*Plus that you want to run the command that you have just entered. You type the semicolon
at the end of the SELECT statement and then press return. SQL*Plus will process what is in the SQL Buffer (described
next).

 FOR EXAMPLE

SQL> SELECT sysdate
 2 FROM dual
 3 ;

SYSDATE

28-JUL-02

SQL>

The SQL Buffer

SQL*Plus will store the SQL command or PL/SQL block that you have most recently entered in an area of memory
known as the SQL Buffer. The SQL Buffer will remain unchanged until you enter a new command or exit your SQL*Plus
session. You can easily edit the contents of the SQL Buffer by typing the EDIT command at the SQL prompt. The default
text editor will open with the contents of the SQL Buffer. You can edit and save the file and then exit the editor. This will
cause the contents of the SQL Buffer to change to your last saved version.

SQL*Plus commands such as SET SERVEROUTPUT ON are not captured into the SQL Buffer, nor does SQL*Plus store
the semicolon or the forward slash you type to execute a command in the SQL buffer.

When you create stored procedures, functions, or packages, you begin with the CREATE command. When you begin a
PL/SQL block, you start by entering the word DECLARE or BEGIN. Typing either BEGIN, DECLARE, or CREATE will put
the SQL*Plus session into PL/SQL mode.

Running PL/SQL Blocks in SQL*Plus

Once you are in PL/SQL mode, you will not be able to end the block in the same manner that you ended a SQL block.
The semicolon (;) can be used multiple times in a single PL/SQL block; thus when you end a line with a semicolon you
will not terminate the block. You can terminate the PL/SQL block in the SQL Buffer by entering a period (.). This will end
the block and leave the block in the SQL Buffer, but it will not execute it. At this point you have a choice of typing the
EDIT command to edit the block or executing it with a forward slash (/) or a SQL*Plus command RUN.

 FOR EXAMPLE

You may enter and execute a PL/SQL subprogram as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL> BEGIN
 2 DBMS_OUTPUT.PUT_LINE ('This is a PL/SQL Block');
 3 END;
 4 .
SQL> /
This is a PL/SQL Block

PL/SQL procedure successfully completed.

If want to run a script file at a later date, you must remember to terminate it with a period (.) and/or forward slash (/)
before saving it on your computer. If you simply want to put the code into the SQL Buffer and then execute it, you can
end the script with a forward slash (/).

You should terminate PL/SQL blocks stored in the script file with the period if you want to put the code in the SQL
Buffer. You should end the script with forward slash (/) if you want the PL/SQL code in the file to execute.

The failure to end your PL/SQL block with a period (.) and/or a forward slash
(/) will prevent your block from executing.

About the Sample Schema

The STUDENT schema contains tables and other objects meant to keep information about a registration and enrollment
system for a fictitious university. There are ten tables in the system that store data about students, courses,
instructors, and so on. In addition to storing contact information (addresses and telephone numbers) for students and
instructors, and descriptive information about courses (costs and prerequisites), the schema also keeps track of the
sections for particular courses, and the sections in which students have enrolled.

The SECTION is one of the most important tables in the schema because it stores data about the individual sections
that have been created for each course. Each section record also stores information about where and when the section
will meet and which instructor will teach the section. The section table is related to the COURSE and INSTRUCTOR
tables.

The ENROLLMENT table is equally important because it keeps track of which students have enrolled in which sections.
Each enrollment record also stores information about the student's grade and enrollment date. The enrollment table is
related to the STUDENT and SECTION tables.

The schema also has a number of other tables that manage grading for each student in each section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used In This Book
There are several conventions that are used in this book to try and make your learning experience easier. These are
explained here.

This icon is used to flag notes or advice from the authors to you, the reader.
For instance, if there is a particular topic or concept that you really need to
understand for the exam, or if there's something that you need to keep in
mind while working, you will find it set off from the main text like this.

This icon is used to flag tips or especially helpful tricks that will save you time
or trouble. For instance, if there is a shortcut for performing a particular task
or a method that the authors have found useful, you will find it set off from the
main text like this.

Computers are delicate creatures and can be damaged easily. Likewise, they
can be dangerous to work on if you're not careful. This icon is used to flag
information and precautions that will not only save you headaches in the long
run; they may even save you or your computer from harm.

This icon is used to flag passages in which there is a reference to the book's
companion Web site, which is located at
http://authors.phptr.com/rosenzweig3e.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About Prentice Hall Professional Technical
Reference
With origins reaching back to the industry's first computer science publishing program in the 1960s, and formally
launched as its own imprint in 1986, Prentice Hall Professional Technical Reference (PH PTR) has developed into the
leading provider of technical books in the world today. Our editors now publish over 200 books annually, authored by
leaders in the fields of computing, engineering, and business.

Our roots are firmly planted in the soil that gave rise to the technical revolution. Our bookshelf contains many of the
industry's computing and engineering classics: Kernighan and Ritchie's C Programming Language, Nemeth's UNIX
System Adminstration Handbook, Horstmann's Core Java, and Johnson's High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the future for inspiration. We continue to evolve and
break new ground in publishing by providing today's professionals with tomorrow's solutions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Programming Concepts
Chapter Objectives
In this Chapter, you will learn about:

 The Nature of a Computer Program and Programming Languages

 Good Programming Practices

Computers play a large role in the modern world. No doubt you realize how crucial they have become to running any
business today; they have also become one of the sources of entertainment in our lives. You probably use computers
for your everyday tasks as well, such as sending e-mail, paying bills, shopping, reading the latest news on the Internet,
or even playing games.

A computer is a sophisticated device. However, it is important to remember that it is still only a device and cannot think
on its own. In order to be useful, a computer needs instructions to follow. Facilities such as programming languages
allow programmers to provide computers with a list of instructions called programs. These programs tell a computer
what actions to perform. As a result, programming languages and computer programs play an important role in today's
technology.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.1 The Nature of a Computer Program and Programming
Languages

Lab Objectives
After this Lab, you will be able to:

 Understand the Nature of Computer Programs and Programming Languages

 Understand the Differences between Interpreted and Compiled Languages

A computer needs instructions to follow because it cannot think on its own. For instance, when playing a game of
solitaire you must choose which card to move. Each time a card is moved, a set of instructions has been executed to
carry out the move. These instructions compose only a small part of the solitaire program. This program comprises
many more instructions that allow a user to perform actions, such as beginning or ending a game, selecting a card's
color, and so forth. Therefore, a computer program comprises instructions that direct the actions of the computer. In
essence, a program plays the role of guide for a computer. It tells the computer what steps in what order should be
taken to complete a certain task successfully.

Computer programs are created with the help of programming languages. A programming language is a set of
instructions consisting of rules, syntax, numerical and logical operators, and utility functions. Programmers can use
programming languages to create a computer program. There are many different programming languages available
today. However, all programming languages can be divided into three major groups: machine languages, assembly
languages, and high-level languages.

Words such as statement or command are often used when talking about
instructions issued by a program to a computer. These terms are
interchangeable.

Machine Languages

Machine language is the native language of a particular computer because it is defined by the hardware of the
computer. Each instruction or command is a collection of zeros and ones. As a result, machine language is the hardest
language for a person to understand, but it is the only language understood by the computer. All other programming
languages must be translated into machine language. Consider the following example of the commands issued in the
machine language.

 FOR EXAMPLE

Consider the mathematical notation X = X + 1. In programming, this notation reads the value of the variable is
incremented by one. In the following example, you are incrementing the value of the variable by 1 using machine
language specific to an Intel processor.

1010 0001 1110 0110 0000 0001
0000 0011 0000 0110 0000 0001 0000 0000
1010 0011 1110 0110 0000 0001

Assembly Languages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assembly language uses English-like abbreviations to represent operations performed on the data. A computer cannot
understand assembly language directly. A program written in assembly language must be translated into machine
language with the help of the special program called an assembler. Consider the following example of the commands
issued in assembly language.

 FOR EXAMPLE

In this example, you are increasing the value of the variable by 1 as well. This example is also specific to an Intel
processor.

MOV AX, [01E6]
ADD AX, 0001
MOV [01E6], AX

High-Level Languages

A high-level language uses English-like instructions and common mathematical notations. High-level languages allow
programmers to perform complicated calculations with a single instruction. However, it is easier to read and understand
than machine and assembly languages, and it is not as time-consuming to create a program in high-level language as it
is in machine or assembly language.

 FOR EXAMPLE

variable := variable + 1;

This example shows the simple mathematical operation of addition. This instruction can be easily understood by anyone
without programming experience and with basic mathematical knowledge.

Differences Between Interpreted and Compiled Languages

High-level languages can be divided into two groups: interpreted and compiled. Interpreted languages are translated
into machine language with the help of another program called an interpreter. The interpreter translates each
statement in the program into machine language and executes it immediately before the next statement is examined.

A compiled language is translated into machine language with the help of the program called a compiler. Compilers
translate English-like statements into machine language. However, all of the statements must be translated before a
program can be executed. The compiled version of the program is sometimes referred to as an executable.

An interpreted program must be translated into machine language every time it is run. A compiled program is
translated into machine language only once when it is compiled. The compiled version of the program can then be
executed as many times as needed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.1 Exercises

1.1.1 Understand the Nature of Computer Programs and Programming
Languages

a) What is a program?

For the next two questions, consider this scenario: You have been hired to work for the ABC Company. One of your
responsibilities is to produce a daily report that contains complicated calculations.

b) Without using a computer program to fulfill this responsibility, what potential problems do you foresee in
generating this report every day?

c) Based on your observations in question b, how do you think a computer program would make that task
easier?

d) What is a programming language?

For the next question, consider the following code:

0010 0000 1110 0110 0000 0001
0000 0011 0000 0110 1000 0000
1010 0001 1111 0110 0000 0001

e) What type of programming language is this code written in?

For the next question, consider the following code:

MOV AX, [01E9]
ADD AX, 0010
MOV [01E6], AX

f) What type of programming language is this code written in?

For the next question, consider the following code:

variable := 2 * variable - 10;

g) What type of programming language is this code written in?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.2 Understand the Differences Between Interpreted and Compiled Languages

a) What is an interpreted language?

b) What is a compiled language?

c) Which do you think will run quicker, an interpreted or a compiled program?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 1.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

1.1.1 Answers

a) What is a program?

A1: Answer: A computer program comprises instructions that direct the actions of the computer.

b) Without using a computer program to fulfill this responsibility, what potential problems do you foresee in
generating this report every day?

A1: Answer: Programs help us with repetitive, time-consuming, and error-prone tasks. If you do not have a
program that helps you create this report, it might take you a whole day to collect the needed information
for the report and perform the needed calculations. As a result, you will not be able to concentrate on your
other responsibilities. In addition, sooner or later you will probably make mistakes while creating the
report.

c) Based on your observations in question b, how do you think a computer program would make that task
easier?

A2: Answer: Using a program guarantees fast retrieval of needed information and accurate results, assuming
that the program does not contain any errors. Furthermore, once a program is created, the same set of
steps is repeated on a daily basis. Consequently, a well-written program is not susceptible to human
frailties such as typographical errors or the accidental exclusion of a formula.

d) What is a programming language?

A3: Answer: A programming language is a set of instructions consisting of rules, syntax, numerical and logical
operators, and utility functions.

e) What type of programming language is this code written in?

A1: Answer: This is an example of a machine language.

Machine language is understood directly by the computer. Each statement in machine language is represented by a
string of zeros and ones.

This example illustrates the nonintuitive nature of machine language. However, a computer can read these instructions
directly and execute them instantly. You can see that creating a program in a machine language can be a slow and
tedious process. To facilitate program creation, programmers use higher-level languages that are closer to human
language.

f) What type of programming language is this code written in?

A1: Answer: This is an example of an assembly language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A1: Answer: This is an example of an assembly language.

Assembly language uses mnemonic symbols to represent the binary code of machine language. Each assembly
instruction is directly translated into a machine language instruction. You may notice that assembly language is slightly
easier to understand than machine language.

g) What type of programming language is this code written in?

A1: Answer: This is an example of a high-level language.

Programs created in high-level languages are portable. They can be moved from one computer to another because a
high-level programming language is not machine-specific. High-level languages must be translated into machine
language with the help of an interpreter or a compiler.

1.1.2 Answers

a) What is an interpreted language?

A1: Answer: An interpreted language is translated into machine language with the help of another program
called an interpreter. The interpreter translates statement in the program into machine language and
executes it immediately before the next statement is examined.

b) What is a compiled language?

A2: Answer: A compiled language is translated into machine language with the help of the program called a
compiler. Compilers translate English-like statements into machine language.

c) Which do you think will run quicker, an interpreted or a compiled program?

A3: Answer: Generally, interpreted programs run slower than compiled programs.

As you observed earlier, an interpreted program must be translated into machine language every time it is run. A
compiled program is translated into machine language only once when it is compiled, and then it can be executed as
many times as needed. As a result, an interpreted program runs slower than a compiled program.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) What group of programming languages is easiest for the computer to understand?

a. ______ The machine languages

b. ______ The high-level languages

c. ______ The assembly languages

2) Programs created in the machine languages are which of the following?

a. ______ Portable

b. ______ Machine-specific

3) Which of the following is true of interpreted programs?

a. ______ All statements are translated and only then executed.

b. ______ Each statement is translated and executed before the next statement.

4) Before a program written in a high-level language can be executed, which of the following must take place?

a. ______ A program must be interpreted.

b. ______ A program must be compiled.

c. ______ A program can be executed immediately.

5) Which of the following is true of the interpreter?

a. ______ It translates instructions written in assembly language into machine language.

b. ______ It translates machine language into a high-level language.

c. ______ It translates a high-level language into machine language.

Answers appear in Appendix A, Section 1.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.2 Good Programming Practices

Lab Objectives
After this Lab, you will be able to:

 Understand the Nature of Good Programming Practices

 Understand Formatting Guidelines

In the previous section of this chapter you encountered the terms computer program and programming language. You will recall
that a program is a set of instructions, and a programming language is a tool that allows programmers to provide computers with
these instructions. However, the process of creating a computer program is not as simple as just writing down instructions.
Sometimes it can become a tedious and complicated task. Before a computer can be provided with these instructions, a
programmer needs to know what instructions must be specified. In essence, the process of creating a program is akin to the
process of applied problem solving.

Consider this mathematical word problem:

The 1980s speed record for human-powered vehicles was set on a measured 200-meter run by a sleek machine
called Vector. Pedaling back-to-back, its two drivers averaged 69.92 miles per hour.

This awkward mix of units is the way data appeared in an article reporting the event. Determine the speed of the
vehicle in meters per second.[1]

[1] From Physics (with InfoTrac and Revised CD-ROM) Algebra/Trig, 2nd edition, by E. Hecht. © 1998.
Reprinted with permission of Brooks/Cole, a division of Thomson Learning. Fax 800-730-2215.

This word problem involves conversion from miles per hour into meters per second. However, it contains information that has
nothing to do with its solution, such as the name of the vehicle and the number of people needed to operate it. In order to
achieve correct results, you must be able to filter out needed information and discard the rest. Next, you need to know what
formulas must be used for actual conversion.

This is a relatively straightforward example of a problem-solving process that can be used for academic purposes. However, in the
business world, problem descriptions are often incomplete or ambiguous. They are also harder to solve. These problems require
the ability to ask questions that help clarify the problem and an ability to organize the problem into logical parts. By breaking
down the problem, you will be able to focus better on possible solutions and more easily manage each part. Once each part is
fully understood, the solution to the overall problem will readily develop.

This technique of breaking the problem into smaller parts and solving each part is called a top-down approach to problem solving.
When writing a program, you can also approach your task in a top-down manner. However, to solve the problem efficiently, you
need to approach it in a structured manner.

Structured Programming

Structured programming embodies a disciplined approach to writing clear code that is easy to understand, test, maintain, and
modify. A program can be organized into modules called subroutines. These subroutines focus on a particular part of the overall
problem that the program addresses. Subroutines are easier to understand and manage because they are only components of the
overall program. Together, all of the subroutines compose the overall program.

Structured programming also embodies the following three attributes: sequence, selection, and iteration. These attributes, or
structures, describe how statements in the program are executed. Furthermore, a program can contain any of these structures or
a combination of them.

Sequence

Sequence refers to the linear execution of code. In other words, control is passed from one statement to the next statement in
consecutive order. Consider Figure 1.1.

Figure 1.1. Sequence Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.1. Sequence Structure

Figure 1.1 contains rectangular symbols. The rectangular symbol in the diagram can represent not only a single statement, but a
subroutine as well. The arrows represent the flow of control between statements. Control is passed from statement 1 to
statement 2 and then to statement 3. Thus, these statements are executed in the sequential order.

Selection

Selection refers to the decision-making process. For example, when I am trying to choose between different activities for this
weekend, I start with the knowledge that on Friday night I want to go to the movies, Saturday night I want to go dancing, and
Sunday I want to spend a quiet evening at home. In order for me to choose one of the activities, I need to know what day of the
week it is. The logic for my decision of the weekend activities can be illustrated as follows:

IF TODAY IS 'FRIDAY'
 I AM GOING TO SEE A MOVIE
IF TODAY IS 'SATURDAY'
 I AM GOING DANCING
IF TODAY IS 'SUNDAY'
 I AM SPENDING A QUIET EVENING AT HOME

The test conditions "TODAY IS . . ." can evaluate either to TRUE or FALSE based on the day of the week. If today happens to be
Friday, the first test condition "TODAY is 'FRIDAY'" becomes TRUE, and the other test conditions become FALSE. In this case, I am
going to see a movie, and the other activities can be discarded.

Figure 1.2 illustrates the general flow of control of the selection structure.

Figure 1.2. Selection Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.2. Selection Structure

Figure 1.2 contains a diamond shape called the decision symbol. This indicates that a decision must be made or a certain test
condition must be evaluated. This test condition evaluates to TRUE (Yes) or FALSE (No). If the test condition yields TRUE,
statement 1 is executed. If the test condition yields FALSE, statement 2 is executed. It is important for you to remember that a
rectangle can represent a set of statements or a subroutine.

Iteration

Iteration refers to an action that needs to be repeated a finite number of times. The number of times this action is repeated is
based on some terminating factor. Consider the following example. You are reading a chapter from this book. Each chapter has a
finite number of pages. In order to finish the chapter, you need to read through all of the pages. This is indicated as follows:

WHILE THERE ARE MORE PAGES IN THE CHAPTER TO READ
 READ THE CURRENT PAGE
 GO TO THE NEXT PAGE

The terminating factor in this example is the number of pages in the chapter. As soon as the last page in the chapter is read, the
iteration is complete.

Figure 1.3 illustrates the general flow of control of the iteration structure.

Figure 1.3. Iteration Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As long as the condition evaluates to TRUE, the statements inside the iteration structure are repeated. As soon as the condition
evaluates to FALSE, the flow of control is passed to the exit point of the iteration structure.

Differences Between Structured and Nonstructured Programming

Before structured programming became widely used, programs were simply sequential lines of code. This code was not organized
into modules and did not employ many of the structures you encountered earlier in this chapter. The result was a meandering set
of statements that was difficult to maintain and understand. In addition, these programs used multiple GOTO statements that
allow program control to jump all over the code. Almost all programs that use GOTO statements can be rewritten using structures
such as selection and iteration.

Formatting Guidelines

It was mentioned earlier that structured programming allows us to write clear code that is easy to understand, test, maintain, and
modify. However, structured programming alone is not enough to create readable and manageable code. Formatting is a very
important aspect of writing a program. Moreover, your formatting style should stay consistent throughout your programs.

Consider this example of a SELECT statement that has not been formatted.

 FOR EXAMPLE

SELECT s.first_name, s.last_name, e.final_grade FROM student s, enrollment e WHERE s.student_id = e.student_id AND e.final_grade IS NOT NULL;

Even though this example contains only a very simple SELECT statement, you can see that the logic is hard to follow.

Consider the same SELECT statement with a few formatting changes.

 FOR EXAMPLE

SELECT s.first_name, s.last_name, e.final_grade
 FROM student s, enrollment e
 WHERE s.student_id = e.student_id
 AND e.final_grade IS NOT NULL;

You have probably noticed that the second version of the SELECT statement is much easier to read and understand. It is
important to realize that both SELECT statements are syntactically correct. They produce the same output when run.

Usually, the logic depicted in the program is more complex than that of the SELECT statement. Therefore, proper formatting of
the code is extremely important for two major reasons. First, a well-formatted program will facilitate any changes made later by
the program's author. In other words, even the author will understand the logic of the program more easily if he or she needs to
modify the program later. Second, any person who has to maintain the program can more easily follow the logical structure of the
program.

In order for the program to be readable and understandable, there are two main guidelines to follow. First, the format of the
program must illustrate the logical structure of the program. You can reveal the logical structure of the program by using
indentation in your code. Consider the example of the selection structure used earlier in this chapter.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF TODAY IS 'FRIDAY'
 I AM GOING TO SEE A MOVIE
IF TODAY IS 'SATURDAY'
 I AM GOING DANCING
IF TODAY IS 'SUNDAY'
 I AM SPENDING A QUIET EVENING AT HOME

You have probably noticed that each statement following the IF clause is indented. As a result, it is easier to understand what
activity is taken based on the day of the week. You could take this example and format it differently.

 FOR EXAMPLE

IF TODAY IS 'FRIDAY' I AM GOING TO SEE A MOVIE
IF TODAY IS 'SATURDAY' I AM GOING DANCING
IF TODAY IS 'SUNDAY' I AM SPENDING A QUIET EVENING AT HOME

This example also shows a formatted version of the selection structure. However, this formatting style does not reveal the logical
structure of the selection as well as the previous example. As a matter of fact, this example looks like an extremely short story
rather than a program.

Second, your program should contain comments. Comments will help you explain what you are trying to accomplish. However,
you should be careful because too many comments can make your code confusing.

You can use the code format used in this book's examples as you write your programs. It is not the only good format available,
but it will be a good example of formatting technique, which will help you to develop your own style. However, regardless of your
style, you should follow these guidelines when creating a program.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.2 Exercises

1.2.1 Understand the Nature of Good Programming Practices

a) What is a top-down approach?

b) What is structured programming?

c) Create the following selection structure: Determine which season each month of the year belongs to.

d) Create the following iteration structure: For every day of the week display its name.

e) Create the following structure: For every day that falls within the business week, display its name. For
every day that falls on the weekend, display "The weekend is here, and it is here to stay!!!" Hint: You will
need to use iteration and selection structures. The selection structure must be placed inside the iteration
structure.

1.2.2 Understand Formatting Guidelines

a) What is the reason for formatting your code?

b) What are two main guidelines of good formatting?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 1.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

1.2.1 Answers

a) What is a top-down approach?

A1: Answer: The technique of breaking a problem into parts and solving each part is called a top-down
approach to problem solving. By breaking down the problem, it is easier to focus on possible solutions and
manage each part. Once each part is fully understood, the solution to the overall problem can be readily
developed.

b) What is structured programming?

A2: Answer: Structured programming embodies a disciplined approach to writing clear code that is easy to
understand, test, maintain, and modify. A program can be organized into modules called subroutines.
These subroutines focus on a particular part of the overall problem that the program addresses.
Subroutines are easier to understand and manage because they are only components of the overall
program. Together, all of the subroutines compose the overall program.

c) Create the following selection structure: Determine which season each month of the year belongs to.

A3: Answer: Your selection structure should look similar to the following:

IF MONTH IN ('DECEMBER', 'JANUARY', 'FEBRUARY')
 IT IS WINTER
IF MONTH IN ('MARCH', 'APRIL', 'MAY')
 IT IS SPRING
IF MONTH IN ('JUNE', 'JULY', 'AUGUST')
 IT IS SUMMER
IF MONTH IN ('SEPTEMBER', 'OCTOBER', 'NOVEMBER')
 IT IS FALL

The test conditions of this selection structure use the operator IN. This operator allows you to construct the list of valid
months for every season. It is important to understand the use of the parentheses. In this case, it is not done for the
sake of a syntax rule. This use of parentheses allows us to define clearly the list of values for a specific month, hence
helping us to outline the logic of the structure.

Now, consider the following fragment of the selection structure:

IF MONTH IS 'DECEMBER'
 IT IS WINTER
IF MONTH IS 'JANUARY'
 IT IS WINTER
IF MONTH IS 'FEBRUARY'
 IT IS WINTER
…

This selection structure results in the same outcome, yet it is much longer. As a result it does not look well structured,
even though it has been formatted properly.

d) Create the following iteration structure: For every day of the week display its name.

A4: Answer: Your selection structure should look similar to the following:

WHILE THERE ARE MORE DAYS IN THE WEEK
 DISPLAY THE NAME OF THE CURRENT DAY
 GO TO THE NEXT DAY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GO TO THE NEXT DAY

Assume that you are starting your week on Monday—there are six days left. Next, you will display the name of the
current day of the week, which is Monday for the first iteration. Then, you move to the next day. The next day is
Tuesday, and there are five more days in the week. So, you will display the name of the current day—Tuesday—and
move to the next day, and so forth. Once the name of the seventh day (Sunday) has been displayed, the iteration
structure has completed.

e) Create the following structure: For every day that falls within the business week, display its name. For
every day that falls on the weekend, display "The weekend is here, and it is here to stay!!!" Hint: You will
need to use iteration and selection structures. The selection structure must be placed inside the iteration
structure.

A5: Answer: Your structure should look similar to the following:

WHILE THERE ARE MORE DAYS IN THE WEEK
 IF DAY BETWEEN 'MONDAY' AND 'FRIDAY'
 DISPLAY THE NAME OF THE CURRENT DAY
 IF DAY IN ('SATURDAY', 'SUNDAY')
 DISPLAY 'THE WEEKEND IS HERE, AND IT IS HERE TO STAY!!!'
 GO TO THE NEXT DAY

This structure is a combination of two structures: iteration and selection. The iteration structure will repeat its steps for
each day of the week. The selection structure will display the name of the current day or the message "The weekend
is...."

Assume that you are starting your week on Monday again. There are six days left. Next, control of the flow is passed to
the selection structure. Because the current day happens to be Monday, and it falls within the business week, its name
is displayed. Then, control of the flow is passed back to the iteration structure, and you are ready to move to the next
day.

The next day is Tuesday, and there are five more days in the week. So, control is passed to the iteration structure
again. Tuesday also falls within the business week, so its name is displayed as well. Next, control is passed back to the
iteration structure, and you go to the next day, and so forth. Once the day falls on the weekend, the message "The
weekend is . . ." is displayed.

1.2.2 Answers

a) What is the reason for formatting your code?

A1: Answer: A well-formatted program is easier to understand and maintain because format can reveal the
logical structure of the program.

b) What are two main guidelines of good formatting?

A2: Answer: First, the code of the program should be indented so that the logical structure of the program is
clear. Second, the program should contain comments describing what is being accomplished.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 1.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) Which one is not a feature of the structured programming?

a. ______ Iteration

b. ______ Sequence

c. ______ GOTO

d. ______ Modularity

2) Structured programming allows control of the program to jump all over the code.

a. ______ True

b. ______ False

3) Which of the following is true about sequence structure?

a. ______ It refers to the decision-making process.

b. ______ It refers to the linear execution of code.

c. ______ It refers to the repetition of code.

4) A test condition must evaluate to which of the following in order for the selection to execute?

a. ______ TRUE

b. ______ FALSE

c. ______ None of the above

5) A poorly formatted SELECT statement produces output different from a well formatted SELECT statement.

a. ______ True

b. ______ False

c. ______ None of the above

Answers appear in Appendix A, Section 1.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1 Test Your Thinking

In this chapter you learned what a program is. You also defined the concepts of the structured
programming. Here are some projects that will help you test the depth of your understanding.

1) Create the following structure: Based on the value of a number, determine if it
is even or odd. Hint: Before you decide how to define even and odd numbers,
you should decide what structure must be used to achieve the desired results.

2) Create the following structure: The structure you created in the previous
exercise is designed to work with a single number. Modify it so that it can work
with a list of numbers.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. PL/SQL Concepts
Chapter Objectives
In this Chapter, you will learn about:

 PL/SQL in Client-Server Architecture Page

 PL/SQL in SQL*Plus Page

In the previous chapter, you were introduced to some elements of computer programming languages. In this chapter,
you will be introduced to the elements of a specific programming language, PL/SQL, and how it fits in the client-server
architecture.

PL/SQL stands for "Procedural Language Extensions to SQL." PL/SQL extends SQL by adding programming structures
and subroutines available in any high-level language. In this chapter, you will see examples that will illustrate the
syntax and the rules of the language.

PL/SQL is used for both server-side and client-side development. For example, database triggers (code that is attached
to tables, discussed in a later chapter) on the server side and logic behind an Oracle Developer tool on the client side
can be written using PL/SQL. In addition, PL/SQL can be used to develop applications for browsers such as Netscape or
Internet Explorer when used in conjunction with the Oracle Application Server and the PL/SQL Web Development
Toolkit.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.1 PL/SQL in Client-Server Architecture

Lab Objectives
After this Lab, you will be able to:

 Use PL/SQL Anonymous Blocks

 Understand How PL/SQL Gets Executed

Many Oracle applications are built using client-server architecture. The Oracle database resides on the server. The
program that makes requests against this database resides on the client machine. This program can be written in C,
Java, or PL/SQL.

Because PL/SQL is just like any other programming language, it has syntax and rules that determine how programming
statements work together. It is important for you to realize that PL/SQL is not a stand-alone programming language.
PL/SQL is a part of the Oracle RDBMS, and it can reside in two environments, the client and the server. As a result, it is
very easy to move PL/SQL modules between server-side and client-side applications.

In both environments, any PL/SQL block or subroutine is processed by the PL/SQL engine, which is a special component
of many Oracle products. Some of these products are Oracle server, Oracle Forms, and Oracle Reports. The PL/SQL
engine processes and executes any PL/SQL statements and sends any SQL statements to the SQL statement processor.
The SQL statement processor is always located on the Oracle server. Figure 2.1 illustrates the PL/SQL engine residing
on the Oracle server.

Figure 2.1. The PL/SQL Engine and Oracle Server

When the PL/SQL engine is located on the server, the whole PL/SQL block is passed to the PL/SQL engine on the Oracle
server. The PL/SQL engine processes the block according to Figure 2.1.

When the PL/SQL engine is located on the client, as it is in Oracle Developer Tools, the PL/SQL processing is done on
the client side. All SQL statements that are embedded within the PL/SQL block are sent to the Oracle server for further
processing. When PL/SQL block contains no SQL statements, the entire block is executed on the client side.

Using PL/SQL has several advantages. For example, when you issue a SELECT statement in SQL*Plus against the
STUDENT table, it retrieves a list of students. The SELECT statement you issued at the client computer is sent to the
database server to be executed. The results of this execution are then sent back to the client. As a result, you will see
rows displayed on your client machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rows displayed on your client machine.

Now, assume that you need to issue multiple SELECT statements. Each SELECT statement is a request against the
database and is sent to the Oracle server. The results of each SELECT statement are sent back to the client. Each time
a SELECT statement is executed, network traffic is generated. Hence, multiple SELECT statements will result in multiple
round trip transmissions, adding significantly to the network traffic.

When these SELECT statements are combined into a PL/SQL program, they are sent to the server as a single unit. The
SELECT statements in this PL/SQL program are executed at the server. The server sends the results of these SELECT
statements back to the client, also as a single unit. Therefore, a PL/SQL program encompassing multiple SELECT
statements can be executed at the server and have the results returned to the client in one round trip. This obviously is
a more efficient process than having each SELECT statement executed independently. This model is illustrated in Figure
2.2.

Figure 2.2. PL/SQL in Client-Server Architecture

Figure 2.2 compares two applications. The first application uses four independent SQL statements that generate eight
trips on the network. The second application combines SQL statements into a single PL/SQL block. This PL/SQL block is
then sent to the PL/SQL engine. The engine sends SQL statements to the SQL statement processor and checks the
syntax of PL/SQL statements. As you can see, only two trips are generated on the network.

In addition, applications written in PL/SQL are portable. They can run in any environment that Oracle can run in. Since
PL/SQL does not change from one environment to the next, different tools can use a PL/SQL script.

PL/SQL Block Structure

A block is the most basic unit in PL/SQL. All PL/SQL programs are combined into blocks. These blocks can also be
nested one within the other. Usually, PL/SQL blocks combine statements that represent a single logical task. Therefore,
different tasks within a single program can be separated into blocks. As a result, it is easier to understand and maintain
the logic of the program.

PL/SQL blocks can be divided into two groups: named and anonymous. Named PL/SQL blocks are used when creating
subroutines. These subroutines are procedures, functions, and packages. The subroutines then can be stored in the
database and referenced by their names later. In addition, subroutines such as procedures and functions can be defined
within the anonymous PL/SQL block. These subroutines exist as long as this block is executing and cannot be
referenced outside the block. In other words, subroutines defined in one PL/SQL block cannot be called by another
PL/SQL block or referenced by their names later. Subroutines are discussed in Chapters 12 through 14. Anonymous
PL/SQL blocks, as you have probably guessed, do not have names. As a result, they cannot be stored in the database
and referenced later.

PL/SQL blocks contain three sections: declaration section, executable section, and exception-handling section. The
executable section is the only mandatory section of the block. Both the declaration and exception-handling sections are
optional. As a result, a PL/SQL block has the following structure:

DECLARE
 Declaration statements
BEGIN
 Executable statements
EXCEPTION
 Exception-handling statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Exception-handling statements
END;

Declaration Section

The declaration section is the first section of the PL/SQL block. It contains definitions of PL/SQL identifiers such as
variables, constants, cursors, and so on. PL/SQL identifiers are covered in detail throughout this book.

 FOR EXAMPLE

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
 v_counter NUMBER := 0;

The example given shows a declaration section of an anonymous PL/SQL block. It begins with the keyword DECLARE
and contains two variable declarations and one constant declaration. The names of the variables, v_first_name and
v_last_name, are followed by their datatypes and sizes. The name of the constant, v_counter, is followed by its datatype
and a value assigned to it. Notice that a semicolon terminates each declaration.

Executable Section

The executable section is the next section of the PL/SQL block. This section contains executable statements that allow
you to manipulate the variables that have been declared in the declaration section.

 FOR EXAMPLE

BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||
 ' '||v_last_name);
END;

The example given shows the executable section of the PL/SQL block. It begins with the keyword BEGIN and contains a
SELECT INTO statement from the STUDENT table. The first and last names for student ID 123 are selected into two
variables: v_first_name and v_last_name. Chapter 4 contains a detailed explanation of the SELECT INTO statement. Then
the values of the variables, v_first_name and v_last_name, are displayed on the screen with the help of
DBMS_OUTPUT.PUT_LINE statement. This statement will be covered later in this chapter in greater detail. The end of
the executable section of this block is marked by the keyword END. The executable section of any PL/SQL block always
begins with the keyword BEGIN and ends with the keyword END.

Exception-Handling Section

The exception-handling section is the last section of the PL/SQL block. This section contains statements that are
executed when a runtime error occurs within the block. Runtime errors occur while the program is running and cannot
be detected by the PL/SQL compiler. Once a runtime error occurs, control is passed to the exception-handling section of
the block. The error is then evaluated, and a specific exception is raised or executed. This is best illustrated by the
following example.

 FOR EXAMPLE

BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||
 ' '||v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with '||
 'student id 123');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'student id 123');
END;

This shows the exception-handling section of the PL/SQL block. It begins with the keyword EXCEPTION. The WHEN
clause evaluates which exception must be raised. In this example, there is only one exception, called
NO_DATA_FOUND, and it is raised when the SELECT statement does not return any rows. If there is no record for
student ID 123 in the STUDENT table, control is passed to the exception-handling section and the
DBMS_OUTPUT.PUT_LINE statement is executed. Chapters 7, 10, and 11 contain more detailed explanations of the
exception-handling section.

You have seen examples of the declaration section, executable section, and exception-handling section. Consider
combining these examples into a single PL/SQL block.

 FOR EXAMPLE

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||
 ' '||v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with '||
 'student id 123');
END;

How PL/SQL Gets Executed

Every time an anonymous PL/SQL block is executed, the code is sent to the PL/SQL engine on the server, where it is
compiled. A named PL/SQL block is compiled only at the time of its creation, or if it has been changed. The compilation
process includes syntax checking, binding, and p-code generation.

Syntax checking involves checking PL/SQL code for syntax or compilation errors. Syntax error occurs when a statement
does not exactly correspond to the syntax of the programming language. Errors such as a misspelled keyword, a
missing semicolon at the end of the statement, or an undeclared variable are examples of syntax errors.

Once the programmer corrects syntax errors, the compiler can assign a storage address to program variables that are
used to hold data for Oracle. This process is called binding. It allows Oracle to reference storage addresses when the
program is run. At the same time, the compiler checks references to the stored objects such as table names or column
names in the SELECT statement, or a call to a named PL/SQL block.

Next, p-code is generated for the PL/SQL block. P-code is a list of instructions to the PL/SQL engine. For named blocks,
p-code is stored in the database, and it is used the next time the program is executed. Once the process of compilation
has completed successfully, the status of a named PL/SQL block is set to VALID, and it is also stored in the database. If
the compilation process was not successful, the status of a named PL/SQL block is set to INVALID.

It is important to remember that successful compilation of the named PL/SQL
block does not guarantee successful execution of this block in the future. If, at
the time of execution, any one of the stored objects referenced by the block is
not present in the database or not accessible to the block, execution will fail.
At such time, the status of the named PL/SQL block will be changed to
INVALID.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.1 Exercises

2.1.1 Use PL/SQL Anonymous Blocks

a) Why it is more efficient to combine SQL statements into PL/SQL blocks?

b) What are the differences between named and anonymous PL/SQL blocks?

For the next two questions, consider the following code:

DECLARE
 v_name VARCHAR2(50);
 v_total NUMBER;
BEGIN
 SELECT i.first_name||' '||i.last_name, COUNT(*)
 INTO v_name, v_total
 FROM instructor i, section s
 WHERE i.instructor_id = s.instructor_id
 AND i.instructor_id = 102
 GROUP BY i.first_name||' '||i.last_name;

 DBMS_OUTPUT.PUT_LINE
 ('Instructor '||v_name||' teaches '||v_total||
 ' courses');

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such instructor');
END;

The SELECT statement in the preceding example is supported by multiple
versions of Oracle. However, Oracle 9i also supports the new ANSI 1999 SQL
standard, and the SELECT statement can be modified as follows according to
this new standard:

SELECT i.first_name||' '||i.last_name, COUNT(*)
 INTO v_name, v_total
 FROM instructor i
 JOIN section s
 ON (i.instructor_id = s.instructor_id)
 WHERE i.instructor_id = 102
GROUP BY i.first_name||' '||i.last_name;

Notice, the FROM clause contains only one table, INSTRUCTOR. Following the
FROM clause is the JOIN clause that lists the second table, SECTION. Next, the
ON clause lists the join condition between the two tables

i.instructor_id = s.instructor_id

which has been moved from the WHERE clause.

You will find detailed explanations and examples of the statements using new
ANSI 1999 SQL standard in Appendix E and in the Oracle help. Throughout this
book we will try to provide you with examples illustrating both standards;
however, our main focus will remain on PL/SQL features rather than SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

however, our main focus will remain on PL/SQL features rather than SQL.

c) Based on the example just provided, describe the structure of a PL/SQL block.

d) What happens when runtime error NO_DATA_FOUND occurs in the PL/SQL block just shown?

2.1.2 Understand How PL/SQL Gets Executed

a) What happens when an anonymous PL/SQL block is executed?

b) What steps are included in the compilation process of a PL/SQL block?

c) What is a syntax error?

d) How does a syntax error differ from a runtime error?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 2.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

2.1.1 Answers

a) Why it is more efficient to combine SQL statements into PL/SQL blocks?

A1: Answer: It is more efficient to use SQL statements within PL/SQL blocks because network traffic can be
decreased significantly, and an application becomes more efficient as well.

When an SQL statement is issued on the client computer, the request is made to the database on the server, and the
result set is sent back to the client. As a result, a single SQL statement causes two trips on the network. If multiple
SELECT statements are issued, the network traffic can increase significantly very quickly. For example, four SELECT
statements cause eight network trips. If these statements are part of the PL/SQL block, there are still only two network
trips made, as in the case of a single SELECT statement.

b) What are the differences between named and anonymous PL/SQL blocks?

A2: Answer: Named PL/SQL blocks can be stored in the database and referenced later by their names. Since
anonymous PL/SQL blocks do not have names, they cannot be stored in the database and referenced
later.

c) Based on the example just provided, describe the structure of a PL/SQL block.

A1: Answer: PL/SQL blocks contain three sections: declaration section, executable section, and exception-
handling section. The executable section is the only mandatory section of the PL/SQL block.

The declaration section holds definitions of PL/SQL identifiers such as variables, constants, and cursors. The declaration
section starts with the keyword DECLARE. The declaration section

DECLARE
 v_name VARCHAR2(50);
 v_total NUMBER;

contains definitions of two variables, v_name and v_total.

The executable section holds executable statements. It starts with the keyword BEGIN and ends with the keyword END.
The executable section shown in bold letters

BEGIN
 SELECT i.first_name||' '||i.last_name, COUNT(*)
 INTO v_name, v_total
 FROM instructor i, section s
 WHERE i.instructor_id = s.instructor_id
 AND i.instructor_id = 102
 GROUP BY i.first_name||' '||i.last_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GROUP BY i.first_name||' '||i.last_name;

 DBMS_OUTPUT.PUT_LINE
 ('Instructor '||v_name||' teaches '||v_total||
 ' courses');

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such instructor');
END;

contains a SELECT INTO statement that assigns values to the variables v_name and v_total, and a
DBMS_OUTPUT.PUT_LINE statement that displays their values on the screen.

The exception-handling section of the PL/SQL block contains statements that are executed only if runtime errors occur
in the PL/SQL block. The following exception-handling section

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such instructor');

contains the DBMS_OUTPUT.PUT_LINE statement that is executed when runtime error NO_DATA_FOUND occurs.

d) What happens when runtime error NO_DATA_FOUND occurs in the PL/SQL block just shown?

A2: Answer: When a runtime error occurs in the PL/SQL block, control is passed to the exception-handling
section of the block. The exception NO_DATA_FOUND is evaluated then with the help of the WHEN clause.

When the SELECT INTO statement

SELECT i.first_name||' '||i.last_name, COUNT(*)
 INTO v_name, v_total
 FROM instructor i, section s
 WHERE i.instructor_id = s.instructor_id
 AND i.instructor_id = 102
GROUP BY i.first_name||' '||i.last_name;

does not return any rows, control of execution is passed to the exception-handling section of the block. Next, the
DBMS_OUTPUT.PUT_LINE statement associated with the exception NO_DATA_FOUND is executed. As a result, the
message "There is no such instructor" is displayed on the screen.

2.1.2 Answers

a) What happens when an anonymous PL/SQL block is executed?

A1: Answer: When an anonymous PL/SQL block is executed, the code is sent to the PL/SQL engine on the
server, where it is compiled.

b) What steps are included in the compilation process of a PL/SQL block?

A2: Answer: The compilation process includes syntax checking, binding, and p-code generation.

Syntax checking involves checking PL/SQL code for compilation errors. Once syntax errors have been corrected, a
storage address is assigned to the variables that are used to hold data for Oracle. This process is called binding. Next,
p-code is generated for the PL/SQL block. P-code is a list of instructions to the PL/SQL engine. For named blocks, p-
code is stored in the database, and it is used the next time the program is executed.

c) What is a syntax error?

A3: Answer: A syntax error occurs when a statement does not correspond to the syntax rules of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A3: Answer: A syntax error occurs when a statement does not correspond to the syntax rules of the
programming language. An undefined variable or a misplaced keyword are examples of syntax error.

d) How does a syntax error differ from a runtime error?

A4: Answer: A syntax error can be detected by the PL/SQL compiler. A runtime error occurs while the program
is running and cannot be detected by the PL/SQL compiler.

A misspelled keyword is an example of the syntax error. For example, the script

BEIN
 DBMS_OUTPUT.PUT_LINE ('This is a test');
END;

contains a syntax error. You should try to find this error.

A SELECT INTO statement returning no rows is an example of a runtime error. This error can be handled with the help
of the exception-handling section of the PL/SQL block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) SQL statements combined into PL/SQL blocks cause an increase in the network traffic.

a. _____ True

b. _____ False

2) Which of the following sections is mandatory for a PL/SQL block?

a. _____ Exception-handling section

b. _____ Executable section

c. _____ Declaration section

3) The exception-handling section in a PL/SQL block is used to

a. _____ handle compilation errors.

b. _____ handle runtime errors.

c. _____ handle both compilation and runtime errors.

4) A PL/SQL compiler can detect

a. _____ syntax errors.

b. _____ runtime errors.

c. _____ both compilation and runtime errors.

5) P-code is stored in the database for

a. _____ anonymous PL/SQL blocks.

b. _____ named PL/SQL blocks.

Answers appear in Appendix A, Section 2.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.2 PL/SQL in Sql*Plus

Lab Objectives
After this Lab, you will be able to:

 Use Substitution Variables

 Use the DBMS_OUTPUT.PUT_LINE statement

SQL*Plus is an interactive tool that allows you to type SQL or PL/SQL statements at the command prompt. These
statements are then sent to the database. Once they are processed, the results are sent back from the database and
displayed on the screen. However, there are some differences between entering SQL and PL/SQL statements.

Consider the following example of a SQL statement.

 FOR EXAMPLE

SELECT first_name, last_name
 FROM student;

The semicolon terminates this SELECT statement. Therefore, as soon as you type the semicolon and hit the ENTER key,
the result set is displayed to you.

Now, consider the example of the PL/SQL block used in the previous Lab.

 FOR EXAMPLE

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||
 ' '||v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with '||
 'student id 123');
END;
.
/

There are two additional lines at the end of the block containing "." and "/". The "." marks the end of the PL/SQL block
and is optional. The "/" executes the PL/SQL block and is required.

When SQL*Plus reads a SQL statement, it knows that the semicolon marks the end of the statement. Therefore, the
statement is complete and can be sent to the database. When SQL*Plus reads a PL/SQL block, a semicolon marks the
end of the individual statement within the block. In other words, it is not a block terminator. Therefore, SQL*Plus needs
to know when the block has ended. As you have seen in the preceding example, it can be done with a period and a
forward slash.

Substitution Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We noted earlier that PL/SQL is not a stand-alone programming language. It only exists as a tool within the Oracle
programming environment. As a result, it does not really have capabilities to accept input from a user. However,
SQL*Plus allows a PL/SQL block to receive input information with the help of substitution variables. Substitution
variables cannot be used to output values, because no memory is allocated for them. SQL*Plus will substitute a variable
before the PL/SQL block is sent to the database. Substitution variables are usually prefixed by the ampersand (&)
character or double ampersand (&&) character. Consider the following example.

 FOR EXAMPLE

DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||
 ' '||v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

When this example is executed, the user is asked to provide a value for the student ID. The student's name is then
retrieved from the STUDENT table if there is a record with the given student ID. If there is no record with the given
student ID, the message from the exception-handling section is displayed on the screen.

The preceding example uses a single ampersand for the substitution variable. When a single ampersand is used
throughout the PL/SQL block, the user is asked to provide a value for each occurrence of the substitution variable.
Consider the following example.

 FOR EXAMPLE

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Today is '||'&sv_day');
 DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
END;

This example produces the following output:

Enter value for sv_day: Monday
old 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'&sv_day');
new 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'Monday');
Enter value for sv_day: Tuesday
old 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
new 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'Tuesday');
Today is Monday
Tomorrow will be Tuesday

PL/SQL procedure successfully completed.

When a substitution variable is used in the script, the output produced by the
program contains the statements that show how the substitution was done. For
example, consider the following lines of the output produced by the preceding
example:

old 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'&sv_day');
new 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'Monday');

If you do not want to see these lines displayed in the output produced by the
script, use the SET command option before you run the script, as shown:

SET VERIFY OFF;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET VERIFY OFF;

Then the output appears as follows:

Enter value for sv_day: Monday
Enter value for sv_day: Tuesday
Today is Monday
Tomorrow will be Tuesday

PL/SQL procedure successfully completed.

You have probably noticed that the substitution variable sv_day appears twice in this PL/SQL block. As a result, when
this example is run, the user is asked twice to provide the value for the same variable. Now, consider an altered version
of the example as follows (changes are shown in bold).

 FOR EXAMPLE

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Today is '||'&&sv_day');
 DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
END;

In this example, the substitution variable sv_day is prefixed by double ampersand in the first DBMS_OUTPUT.PUT_LINE
statement. As a result, this version of the example produces different output.

Enter value for sv_day: Monday
old 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'&&sv_day');
new 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'Monday');
old 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
new 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'Monday');
Today is Monday
Tomorrow will be Monday

PL/SQL procedure successfully completed.

From the output shown, it is clear that the user is asked only once to provide the value for the substitution variable
sv_day. As a result, both DBMS_ OUTPUT.PUT_LINE statements use the value of Monday entered by the user.

When a substitution variable is assigned to the string (text) datatype, it is a good practice to enclose it with single
quotes. You cannot always guarantee that a user will provide text information in single quotes. This practice will make
your program less error prone. This is illustrated in the following code fragment.

 FOR EXAMPLE

v_course_no VARCHAR2(5) := '&sv_course_no';

As mentioned earlier, substitution variables are usually prefixed by the ampersand (&) character or double ampersand
(&&) characters. These are default characters that denote substitution variables. There is a special SET command option
available in SQL*Plus that allows you to change the default character (&) to any other character or disable the
substitution variable feature. This SET command has the following syntax:

SET DEFINE character

or

SET DEFINE ON

or

SET DEFINE OFF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET DEFINE OFF

The first set command option changes the prefix of the substitution variable from an ampersand to another character.
However, it is important for you to note that this character cannot be alphanumeric or white space. The second (ON
option) and third (OFF option) control whether SQL*Plus will look for substitution variables or not. In addition, the ON
option changes the value of the character back to the ampersand.

DBMS_OUTPUT.PUT_LINE

You already have seen some examples of how the DBMS_OUTPUT.PUT_LINE statement can be used. This statement is
used to display information on the screen. It is very helpful when you want to see how your PL/SQL block is executed.
For example, you might want to see how variables change their values throughout the program, in order to debug it.

The DBMS_OUTPUT.PUT_LINE is a call to the procedure PUT_LINE. This procedure is a part of the DBMS_OUTPUT
package that is owned by the Oracle user SYS.

DBMS_OUTPUT.PUT_LINE writes information to the buffer for storage. Once a program has been completed, the
information from the buffer is displayed on the screen. The size of the buffer can be set between 2,000 and 1,000,000
bytes. Before you can see the output printed on the screen, one of the following statements must be entered before the
PL/SQL block.

SET SERVEROUTPUT ON;

or

SET SERVEROUTPUT ON SIZE 5000;

The first SET statement enables the DBMS_OUTPUT.PUT_LINE statement, and the default value for the buffer size is
used. The second SET statement not only enables the DBMS_OUTPUT.PUT_LINE statement, but also changes the buffer
size from its default value to 5,000 bytes.

Similarly, if you do not want information to be displayed on the screen by the DBMS_OUTPUT.PUT_LINE statement, the
following SET command can be issued prior to the PL/SQL block.

SET SERVEROUTPUT OFF;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.2 Exercises

2.2.1 Use Substitution Variables

In this exercise, you will calculate the square of a number. The value of the number will be provided with the help of a
substitution variable. Then the result will be displayed on the screen.

Create the following PL/SQL script:

-- ch02_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_num NUMBER := &sv_num;
 v_result NUMBER;
BEGIN
 v_result := POWER(v_num, 2);
 DBMS_OUTPUT.PUT_LINE ('The value of v_result is: '||
 v_result);
END;

Execute the script, and then answer the following questions:

a) If the value of v_num is equal to 10, what output is printed on the screen?

b) What is the purpose of using a substitution variable?

c) Why is it considered a good practice to enclose substitution variables with single quotes for string
datatypes?

2.2.2 Use the DBMS_OUTPUT.PUT_LINE Statement

In this exercise, you will determine the day of the week based on today's date. You will then display the results on the
screen.

Create the following PL/SQL script:

-- ch02_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_day VARCHAR2(20);
BEGIN
 v_day := TO_CHAR(SYSDATE, 'Day');
 DBMS_OUTPUT.PUT_LINE ('Today is '||v_day);
END;

Execute the script, and then answer the following questions:

a) What was printed on the screen?

b) What will be printed on the screen if the statement SET SERVEROUTPUT OFF is issued? Why?

c) How would you change the script to display the time of the day as well?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 2.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

2.2.1 Answers

a) If the value of v_num is equal to 10, what output is printed on the screen?

A1: Answer: Your output should look like the following:

Enter value for v_num: 10
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 10;
The value of v_result is: 100

PL/SQL procedure successfully completed.

The first line of the output asks you to provide a value for the substitution variable sv_num. Then the actual substitution
is shown to you in lines 2 and 3. In the second line, you can see the original statement from the PL/SQL block. In the
third line, you can see the same statement with the substitution value. The next line shows the output produced by the
DBMS_OUTPUT.PUT_LINE statement. Finally, the last line informs you that your PL/SQL block was executed
successfully.

b) What is the purpose of using a substitution variable?

A2: Answer: A substitution variable allows the PL/SQL block to accept information provided by the user at the
time of execution. Substitution variables are used for input purposes only. They cannot be used to output
values for a user.

c) Why is it considered a good practice to enclose substitution variables with single quotes for string
datatypes?

A3: Answer: A program cannot depend wholly on a user to provide text information in single quotes. Enclosing
a substitution variable with single quotes allows a program to be less error-prone.

2.2.2 Answers

a) What was printed on the screen?

A1: Answer: Your output should look like the following:

Today is Friday

PL/SQL procedure successfully completed.

In this example, SQL*Plus does not ask you to enter the value of the v_day variable because no substitution variable is
used. The value of v_day is computed with the help of TO_CHAR and SYSDATE functions. Then it is displayed on the
screen with the help of the DBMS_OUTPUT.PUT_LINE statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

screen with the help of the DBMS_OUTPUT.PUT_LINE statement.

b) What will be printed on the screen if the statement SET SERVEROUTPUT OFF is issued? Why?

A2: Answer: If the statement SET SERVEROUTPUT OFF is issued prior to the execution of the PL/SQL block, no
output will be printed on the screen. The output will look like following:

PL/SQL procedure successfully completed.

It is important to note that when substitution variables are used, the user is prompted to enter the value for the
variable regardless of the SERVEROUTPUT setting. The prompt for the user is provided by SQL*Plus and does not
depend on the option chosen for the SERVEROUTPUT.

c) How would you change the script to display the time of the day as well?

A3: Answer: Your script should look similar to this script. Changes are shown in bold letters.

-- ch02_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_day VARCHAR2(20);
BEGIN
 v_day := TO_CHAR(SYSDATE, 'Day, HH24:MI');
 DBMS_OUTPUT.PUT_LINE ('Today is '|| v_day);
END;

The statement shown in bold has been changed in order to display time of the day as well. The output produced by this
PL/SQL block is as follows:

Today is Friday , 23:09

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 2.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) SQL*Plus understands a semicolon as a terminating symbol of a PL/SQL block.

a. _____ True

b. _____ False

2) Substitution variables are used to

a. _____ read input information provided by a user.

b. _____ provide a user with output information.

c. _____ both a and b.

3) PUT_LINE is one of the procedures from the DBMS_OUTPUT package.

a. _____ True

b. _____ False

4) DBMS_OUTPUT.PUT_LINE writes information to the buffer for storage before it is displayed on the screen.

a. _____ True

b. _____ False

5) The SET command SET SERVEROUTPUT ON SIZE 8000 is used to

a. _____ enable the DBMS_OUTPUT.PUT_LINE statement only.

b. _____ change the buffer size only.

c. _____ enable the DBMS_OUTPUT.PUT_LINE statement and change the buffer size.

Answers appear in Appendix A, Section 2.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2 Test Your Thinking

In this chapter you learned about PL/SQL concepts. You explored PL/SQL block structure, substitution
variables, and the DBMS_OUTPUT.PUT_LINE statement. Here are some exercises that will help you test
the depth of your understanding.

1) In order to calculate the area of a circle, the circle's radius must be squared
and then multiplied by p. Write a program that calculates the area of a circle.
The value for the radius should by provided with the help of a substitution
variable. Use 3.14 for the value of p. Once the area of the circle is calculated,
display it on the screen.

2) Rewrite the script ch02_2b.sql, version 2.0. In the output produced by the
script, extra spaces appear after the day of the week. The new script must
remove the extra spaces after the day of the week.

The current output:

Today is Friday , 23:09

The new output should have the format as shown:

Today is Friday, 23:09

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. General Programming Language
Fundamentals
Chapter Objectives
In this Chapter, you will learn about:

 PL/SQL Programming Fundamentals

In the first two chapters you learned about the difference between machine language and a programming language.
You have also learned how PL/SQL is different from SQL and about the PL/SQL basic block structure. This is similar to
learning the history behind a foreign language and in what context it is used. In order to use the PL/SQL language, you
will have to learn the key words, what they mean, and when and how to use them. First, you will encounter the
different types of key words and then their full syntax. Finally, in this chapter, you will expand on simple block structure
with an exploration of scope and nesting blocks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 3.1 PL/SQL Programming Fundamentals

Lab Objectives
After this Lab, you will be able to:

 Make Use of PL/SQL Language Components

 Make Use of PL/SQL Variables

 Handle PL/SQL Reserved Words

 Make Use of Identifiers in PL/SQL

 Make Use of Anchored Data types

 Declare and Initialize Variables

 Understand the Scope of a Block, Nested Blocks, and Labels

In most languages, you have only two sets of characters: numbers and letters. Some languages, such as Hebrew or
Tibetan, have specific characters for vowels that are not placed in line with consonants. Additionally, other languages,
such as Japanese, have three character sets: one for words originally taken from the Chinese language, another set for
native Japanese words, and then a third for other foreign words. In order to speak any foreign language, you have to
begin by learning these character sets. Then you progress to learn how to make words from these character sets.
Finally, you learn the parts of speech and you can begin talking. You can think of PL/SQL as being a more complex
language because it has many character types and, additionally, many types of words or lexical units that are made
from these character sets. Once you learn these, you can progress to learn the structure of the PL/SQL language.

Character Types

The PL/SQL engine accepts four types of characters: letters, digits, symbols (*, +, -, =, etc.), and white space. When
elements from one or more of these character types are joined together, they will create a lexical unit (these lexical
units can be a combination of character types). The lexical units are the words of the PL/SQL language. First you need
to learn the PL/SQL vocabulary, and then you will move on to the syntax, or grammar. Soon you can start talking in
PL/SQL.

Although PL/SQL can be considered a language, don't try talking to your fellow
programmers in PL/SQL. For example, at a dinner table of programmers, if you
say, "BEGIN, LOOP FOR PEAS IN PLATE EXECUTE EAT PEAS, END LOOP,
EXCEPTION WHEN BROCCOLI FOUND EXECUTE SEND TO PRESIDENT BUSH,
END EAT PEAS," you may not be considered human. This type of language is
reserved for Terminators and the like.

Lexical Units

A language such as English contains different parts of speech. Each part of speech, such as a verb or noun, behaves in
a different way and must be used according to specific rules. Likewise, a programming language has lexical units that
are the building blocks of the language. PL/SQL lexical units fall within one of the following five groups:

1. Identifiers. Identifiers must begin with a letter and may be up to 30 characters long. See a PL/SQL manual for a
more detailed list of restrictions; generally, if you stay with characters, numbers, and " ", and avoid reserved
words, you will not run into problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

words, you will not run into problems.

2. Reserved words. Reserved words are words that PL/SQL saves for its own use (e.g., BEGIN, END, SELECT).

3. Delimiters. These are characters that have special meaning to PL/SQL, such as arithmetic operators and
quotation marks.

4. Literals. A literal is any value (character, numeric, or Boolean [true/false]) that is not an identifier. 123,
"Declaration of Independence," and FALSE are examples of literals.

5. Comments. These can be either single-line comments (i.e., --) or multiline comments (i.e., /* */).

See Appendix B, "PL/SQL Formatting Guide," for details on formatting.

In the following exercises, you will practice putting these units together.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 3.1 Exercises

3.1.1 Make Use of PL/SQL Language Components

Now that you have the character types and the lexical units, it is equivalent to knowing the alphabet and how to spell
out words.

a) Why does PL/SQL have so many different types of characters? What are they used for?

b) What would be the equivalent of a verb and a noun in English in PL/SQL? Do you speak PL/SQL?

3.1.2 Make Use of PL/SQL Variables

Variables may be used to hold a temporary value.

Syntax : <variable-name> <data type> [optional default
assignment]

Variables may also be known as identifiers. There are some restrictions that you need to be familiar with: Variables
must begin with a letter and may be up to 30 characters long. Consider the following example:

 FOR EXAMPLE

This example contains a list of valid identifiers:

v_student_id
v_last_name
V_LAST_NAME
apt_#

It is important to note that the identifiers v_last_name and V_LAST_NAME are considered identical because PL/SQL is not
case sensitive.

Next, consider an example of illegal identifiers:

 FOR EXAMPLE

X+Y
1st_year
student ID

Identifier X+Y is illegal because it contains the "+" sign. This sign is reserved by PL/SQL to denote an addition
operation, and it is referred to as a mathematical symbol. Identifier, 1st_year is illegal because it starts with a number.
Finally, identifier student ID is illegal because it contains a space.

Next, consider another example:

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 first&last_names VARCHAR2(30);
BEGIN
 first&last_names := 'TEST NAME';
 DBMS_OUTPUT.PUT_LINE(first&last_names);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

In this example, you declare a variable called first&last_names. Next, you assign a value to this variable and display this
value on the screen. When run, the example produces the following output:

Enter value for last_names: Elena
old 2: first&last_names VARCHAR2(30);
new 2: firstElena VARCHAR2(30);
Enter value for last_names: Elena
old 4: first&last_names := 'TEST NAME';
new 4: firstElena := 'TEST NAME';
Enter value for last_names: Elena
old 5: DBMS_OUTPUT.PUT_LINE(first&last_names);
new 5: DBMS_OUTPUT.PUT_LINE(firstElena);
TEST NAME
PL/SQL procedure successfully completed.

Consider the output produced. Because there is an ampersand (&) present in the name of the variable first&last_names,
the portion of the variable is considered to be a substitution variable (you learned about substitution variables in
Chapter 2). In other words, the portion of the variable name after the ampersand (last_names) is treated by the PL/SQL
compiler as a substitution variable. As a result, you are prompted to enter the value for the last_names variable every
time the compiler encounters it.

It is important to realize that while this example does not produce any syntax errors, the variable first&last_names is still
an invalid identifier because the ampersand character is reserved for substitution variables. To avoid this problem,
change the name of the variable from first&last_names to first_and_last_names. Therefore, you should use an ampersand
sign in the name of a variable only when you use it as a substitution variable in your program.

 FOR EXAMPLE

-- ch03_1a.pls
SET SERVEROUTPUT ON
DECLARE
 v_name VARCHAR2(30);
 v_dob DATE;
 v_us_citizen BOOLEAN;
BEGIN
 DBMS_OUTPUT.PUT_LINE(v_name||'born on'||v_dob);
END;

a) If you ran the previous example in a SQL*Plus, what would be the result?

b) Run the example and see what happens. Explain what is happening as the focus moves from one line to the
next.

3.1.3 Handle PL/SQL Reserved Words

Reserved words are ones that PL/SQL saves for its own use (e.g., BEGIN, END, and SELECT). You cannot use reserved
words for names of variables, literals, or user-defined exceptions.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 exception VARCHAR2(15);
BEGIN
 exception := 'This is a test';
 DBMS_OUTPUT.PUT_LINE(exception);
END;

a) What would happen if you ran the preceding PL/SQL block? Would you receive an error message? If so,
explain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1.4 Make Use of Identifiers in PL/SQL

Take a look at the use of identifiers in the following example:

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 v_var1 VARCHAR2(20);
 v_var2 VARCHAR2(6);
 v_var3 NUMBER(5,3);
BEGIN
 v_var1 := 'string literal';
 v_var2 := '12.345';
 v_var3 := 12.345;
 DBMS_OUTPUT.PUT_LINE('v_var1: '||v_var1);
 DBMS_OUTPUT.PUT_LINE('v_var2: '||v_var2);
 DBMS_OUTPUT.PUT_LINE('v_var3: '||v_var3);
END;

In this example, you declare and initialize three variables. The values that you assign to them are literals. The first two
values, 'string literal' and '12.345' are string literals because they are enclosed by single quotes. The third value,
12.345, is a numeric literal. When run, the example produces the following output:

v_var1: string literal
v_var2: 12.345
v_var3: 12.345
PL/SQL procedure successfully completed.

Consider another example that uses numeric literals:

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 v_var1 NUMBER(2) := 123;
 v_var2 NUMBER(3) := 123;
 v_var3 NUMBER(5,3) := 123456.123;
BEGIN
 DBMS_OUTPUT.PUT_LINE('v_var1: '||v_var1);
 DBMS_OUTPUT.PUT_LINE('v_var2: '||v_var2);
 DBMS_OUTPUT.PUT_LINE('v_var3: '||v_var3);
END;

a) What would happen if you ran the preceding PL/SQL block?

3.1.5 Make Use of Anchored Data Types

The data type that you assign to a variable can be based on a database object. This is called an anchored declaration
since the variable's data type is dependent on that of the underlying object. It is wise to make use of anchored data
types when possible so that you do not have to update your PL/SQL when the data types of base objects change.

Syntax: <variable_name> <type attribute>%TYPE

The type is a direct reference to a database column.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR EXAMPLE

-- ch03_2a.pls
SET SERVEROUTPUT ON
DECLARE
 v_name student.first_name%TYPE;
 v_grade grade.numeric_grade%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE(NVL(v_name, 'No Name ')||
 ' has grade of '||NVL(v_grade, 0));
END;

a) In the previous example, what has been declared? State the data type and value.

3.1.6 Declare and Initialize Variables

In PL/SQL, variables must be declared in order to be referenced. This is done in the initial declarative section of a
PL/SQL block. Remember that each declaration must be terminated with a semicolon. Variables can be assigned using
the assignment operator ":=". If you declare a variable to be a constant, it will retain the same value throughout the
block; in order to do this, you must give it a value at declaration.

Type the following into a text file and run the script from a SQL*Plus session.

-- ch03_3a.pls
SET SERVEROUTPUT ON
DECLARE
 v_cookies_amt NUMBER := 2;
 v_calories_per_cookie CONSTANT NUMBER := 300;
BEGIN
 DBMS_OUTPUT.PUT_LINE('I ate ' || v_cookies_amt ||
 ' cookies with ' || v_cookies_amt *
 v_calories_per_cookie || ' calories.');
 v_cookies_amt := 3;
 DBMS_OUTPUT.PUT_LINE('I really ate ' ||
 v_cookies_amt
 || ' cookies with ' || v_cookies_amt *
 v_calories_per_cookie || ' calories.');
 v_cookies_amt := v_cookies_amt + 5;
 DBMS_OUTPUT.PUT_LINE('The truth is, I actually ate '
 || v_cookies_amt || ' cookies with ' ||
 v_cookies_amt * v_calories_per_cookie
 || ' calories.');
END;

a) What will the output be for the preceding script? Explain what is being declared and what the value of the
variable is throughout the scope of the block.

 FOR EXAMPLE

-- ch03_3a.pls
SET SERVEROUTPUT ON
DECLARE
 v_lname VARCHAR2(30);
 v_regdate DATE;
 v_pctincr CONSTANT NUMBER(4,2) := 1.50;
 v_counter NUMBER := 0;
 v_new_cost course.cost%TYPE;
 v_YorN BOOLEAN := TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 v_YorN BOOLEAN := TRUE;
BEGIN
 DBMS_OUTPUT.PUT.PUT_LINE(V_COUNTER);
 DBMS_OUTPUT.PUT_LINE(V_NEW_COST);
END;

b) In the previous example, add the following expressions to the beginning of the procedure (immediately
after the BEGIN in the previous example), then explain the values of the variables at the beginning and at
the end of the script.

v_counter := NVL(v_counter, 0) + 1;
v_new_cost := 800 * v_pctincr;

PL/SQL variables are held together with expressions and operators. An expression is a sequence of variables and
literals, separated by operators. These expressions are then used to manipulate data, perform calculations, and
compare data.

Expressions are composed of a combination of operands and operators. An operand is an argument to the operator; it
can be a variable, a constant, a function call. An operator is what specifies the action (+, **, /, OR, etc.).

You can use parentheses to control the order in which Oracle evaluates an expression. Continue to add the following to
your SQL script the following:

v_counter := ((v_counter + 5)*2) / 2;
v_new_cost := (v_new_cost * v_counter)/4;

c) What will the values of the variables be at the end of the script?

3.1.7 Understand the Scope of a Block, Nested Blocks, and Labels

Scope of a Variable

The scope, or existence, of structures defined in the declaration section are local to that block. The block also provides
the scope for exceptions that are declared and raised. Exceptions will be covered in more detail in Chapters 7, 10, and
11.

The scope of a variable is the portion of the program in which the variable can be accessed, or where the variable is
visible. It usually extends from the moment of declaration until the end of the block in which the variable was declared.
The visibility of a variable is the part of the program where the variable can be accessed.

BEGIN -- outer block
 BEGIN -- inner block
 ...;
 END; -- end of inner block
END; -- end of outer block

Labels and Nested Blocks

Labels can be added to a block in order to improve readability and to qualify the names of elements that exist under the
same name in nested blocks. The name of the block must precede the first line of executable code (either the BEGIN or
DECLARE) as follows:

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch03_4a.pls
set serveroutput on
 <<find_stu_num>>
 BEGIN
 DBMS_OUTPUT.PUT_LINE('The procedure
 find_stu_num has been executed.');
 END find_stu_num;

The label optionally appears after END. In SQL*Plus, the first line of a PL/SQL block cannot be a label. For commenting
purposes, you may alternatively use "- -" or /*, ending with */.

Blocks can be nested in the main section or in an exception handler. A nested block is a block that is placed fully within
another block. This has an impact on the scope and visibility of variables. The scope of a variable in a nested block is
the period when memory is being allocated for the variable and extends from the moment of declaration until the END
of the nested block from which it was declared. The visibility of a variable is the part of the program where the variable
can be accessed.

 FOR EXAMPLE

-- ch03_4b.pls
SET SERVEROUTPUT ON
<< outer_block >>
DECLARE
 v_test NUMBER := 123;
BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Outer Block, v_test: '||v_test);
 << inner_block >>
 DECLARE
 v_test NUMBER := 456;
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Inner Block, v_test: '||v_test);
 DBMS_OUTPUT.PUT_LINE
 ('Inner Block, outer_block.v_test: '||
 outer_block.v_test);
 END inner_block;
END outer_block;

This example produces the following output:

Outer Block, v_test: 123
Inner Block, v_test: 456
Inner Block, outer_block.v_test: 123

a) If the following example were run in SQL*Plus, what do you think would be displayed?

-- ch03_5a.pls
SET SERVEROUTPUT ON
DECLARE
 e_show_exception_scope EXCEPTION;
 v_student_id NUMBER := 123;
BEGIN
 DBMS_OUTPUT.PUT_LINE('outer student id is '
 ||v_student_id);
 DECLARE
 v_student_id VARCHAR2(8) := 125;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('inner student id is '
 ||v_student_id);
 RAISE e_show_exception_scope;
 END;
EXCEPTION
 WHEN e_show_exception_scope
 THEN
 DBMS_OUTPUT.PUT_LINE('When am I displayed?');
 DBMS_OUTPUT.PUT_LINE('outer student id is '
 ||v_student_id);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

b) Now run the example and see if it produces what you expected. Explain how the focus moves from one
block to another in this example.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 3.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 3.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

3.1.1 Answers

a) Why does PL/SQL have so many different types of characters? What are they used for?

A1: Answer: The PL/SQL engine recognizes different characters as having different meaning and therefore
processes them differently. PL/SQL is neither a pure mathematical language nor a spoken language, yet it
contains elements of both. Letters will form various lexical units such as identifiers or key words,
mathematic symbols will form lexical units known as delimiters that will perform an operation, and other
symbols, such as /*, indicate comments that should not be processed.

b) What would be the equivalent of a verb and a noun in English in PL/SQL? Do you speak PL/SQL?

A2: Answer: A noun would be similar to the lexical unit known as an identifier. A verb would be similar to the
lexical unit known as a delimiter. Delimiters can simply be quotation marks, but others perform a function
such as to multiply "*".

3.1.2 Answers

a) If you ran the previous example in a SQL*Plus, what would be the result?

A1: Answer: Assuming SET SERVEROUTPUT ON had been issued, you would get only born on. The reason is that
the variables v_name and v_dob have no values.

b) Run the example and see what happens. Explain what is happening as the focus moves from one line to
the next.

A2: Answer: Three variables are declared. When each one is declared, its initial value is null. v_name is set as a
varchar2VARCHAR2 with a length of 30, v_dob is set as a character type date, and v_us_citizen is set to
BOOLEAN. Once the executable section begins, the variables have no value and, therefore, when the
DBMS_OUTPUT is told to print their values, it prints nothing.

This can be seen if the variables were replaced as follows: Instead of v_name, use NVL(v_name, 'No Name') and instead of
v_dob use NVL (v_dob, '01-Jan-1999'). Then run the same block and you will get

No Name born on 01-Jan-1999

In order to make use of a variable, you must declare it in the declaration section of the PL/SQL block. You will have to
give it a name and state its data type. You also have the option to give your variable an initial value. Note that if you do
not assign a variable an initial value, it will be null. It is also possible to constrain the declaration to "not null," in which
case you must assign an initial value. Variables must first be declared and then they can be referenced. PL/SQL does
not allow forward references. You can set the variable to be a constant, which means it cannot change.

3.1.3 Answers

a) What would happen if you ran the preceding PL/SQL block? Would you receive an error message? If so,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a) What would happen if you ran the preceding PL/SQL block? Would you receive an error message? If so,
explain.

A1: Answer: In this example, you declare a variable called exception. Next, you initialize this variable and
display its value on the screen.

This example illustrates an invalid use of reserved words. To the PL/SQL compiler, "exception" is a
reserved word and it denotes the beginning of the exception-handling section. As a result, it cannot be
used to name a variable. Consider the huge error message produced by this tiny example.

exception VARCHAR2(15);
 *
ERROR at line 2:
ORA-06550: line 2, column 4:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
begin function package pragma procedure subtype type use
<an identifier> <a double-quoted delimited-identifier>
 cursor
form current
The symbol "begin was inserted before "EXCEPTION"
to continue.
ORA-06550: line 4, column 4:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
begin declare exit for goto if loop mod null pragma
 raise
return select update while <an identifier>
<a double-quoted delimited-identifier> <a bin
ORA-06550: line 5, column 25:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
() - + mod not null others <an identifier>
<a double-quoted delimited-identifier> <a bind variable>
avg
count current exists max min prior sql s
ORA-06550: line 7, column 0:
PLS-00103: Encountered the symbol "end-of-file" when
expecting one of the following:
begin declare end exception exit for goto if loop

Here is a question you should ask yourself: If you did not know that the word "exception" is a reserved word, do you
think you would attempt to debug the preceding script after looking at this error message? I know I would not.

3.1.4 Answers

a) What would happen if you ran the preceding PL/SQL block?

A1: Answer: In this example, you declare and initialize three numeric variables. The first declaration and
initialization (v_var1 NUMBER(2) := 123) causes an error because the value 123 exceeds the specified
precision. The second variable declaration and initialization (v_var2 NUMBER(3) := 123) does not cause any
errors because the value 123 corresponds to the specified precision. The last declaration and initialization
(v_var3 NUMBER(5,3) := 123456.123) causes an error because the value 123456.123 exceeds the specified
precision. As a result, this example produces the following output:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 2

3.1.5 Answers

a) In the previous example, what has been declared? State the data type and value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a) In the previous example, what has been declared? State the data type and value.

A1: Answer: The variable v_name was declared with the identical data type as the column first_name from the
database table STUDENT - varchar2(25). Additionally, the variable v_grade was declared the identical data
type as the column grade_numeric on the grade database table – number NUMBER(3). Each has a value of
null.

Most Common Data Types
VARCHAR2(maximum_length)

Stores variable-length character data.

Takes a required parameter that specifies a maximum length up to 32,767 bytes.

Does not use a constant or variable to specify the maximum length; an integer literal must be
used.

The maximum width of a VARCHAR2 database column is 4000 bytes.

CHAR[(maximum_length)]

Stores fixed-length (blank-padded if necessary) character data.

Takes an optional parameter that specifies a maximum length up to 32,767 bytes.

Does not use a constant or variable to specify the maximum length; an integer literal must be
used. If maximum length is not specified, it defaults to 1.

The maximum width of a CHAR database column is 2000 bytes; the default is 1 byte.

NUMBER[(precision, scale)]

Stores fixed or floating-point numbers of virtually any size.

Precision is the total number of digits.

Scale determines where rounding occurs.

It is possible to specify precision and omit scale, in which case scale is 0 and only integers are
allowed.

Constants or variables cannot be used to specify precision and scale; integer literals must be used.

Maximum precision of a NUMBER value is 38 decimal digits.

Scale can range from -84 to 127.

For instance, a scale of 2 rounds to the nearest hundredth (3.456 becomes 3.46).

Scale can be negative, which causes rounding to the left of the decimal point. For example, a scale
of -3 rounds to the nearest thousandth (3456 becomes 3000). A scale of zero rounds to the
nearest whole number. If you do not specify the scale, it defaults to zero.

BINARY_INTEGER

Stores signed integer variables.

Compares to the NUMBER data type. BINARY_INTEGER variables are stored in the binary format,
which takes less space.

Calculations are faster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calculations are faster.

Can store any integer value in the range -2,147,483,747 through 2,147,483,747.

This data type is primarily used for indexing a PL/SQL table. This will be explained in more depth in
Chapter 16, "PL/SQL Tables." You cannot create a column in a regular table of binary_integer type.

DATE

Stores fixed-length date values.

Valid dates for DATE variables include January 1, 4712 B.C. to December 31, A.D. 9999.

When stored in a database column, date values include the time of day in seconds since midnight.
The date portion defaults to the first day of the current month; the time portion defaults to
midnight.

Dates are actually stored in binary format and will be displayed according to the default format.

TIMESTAMP

This is a new data type introduced with Oracle 9i. It is an extension of the DATE data type. It
stores fixed-length date values with precision down to a fraction of a second with up to 9 places
after the decimal (the default is 6). Here is an example of the default this displays for this data
type: '12-JAN-2002 09.51.44.000000 PM'

The "with timezone" or "with local timezone" option allows the TIMESTAMP to be related to a
particular time zone. This will then be adjusted to the time zone of the database. For example, this
would allow a global database to have an entry in London and New York recorded as being the
same time even though it will display as noon in New York and 5 P.M. in London.

BOOLEAN

Stores the values TRUE and FALSE and the nonvalue NULL. Recall that NULL stands for a missing,
unknown, or inapplicable value.

Only the values TRUE and FALSE and the nonvalue NULL can be assigned to a BOOLEAN variable.

The values TRUE and FALSE cannot be inserted into a database column.

LONG

Stores variable-length character strings.

The LONG data type is like the VARCHAR2 data type, except that the maximum length of a LONG
value is 2 gigabytes.

You cannot select a value longer than 4000 bytes from a LONG column into a LONG variable.

LONG columns can store text, arrays of characters, or even short documents. You can reference
LONG columns in UPDATE, INSERT, and (most) SELECT statements, but not in expressions, SQL
function calls, or certain SQL clauses, such as WHERE, GROUP BY, and CONNECT BY.

LONG RAW

Stores raw binary data of variable length up to 2 gigabytes.

LOB (Large Object)

There are four types of LOBS: BLOB, CLOB, NCLOB, and BFILE. These can store binary objects,
such as image or video files, up to 4 gigabytes in length.

A BFILE is a large binary file stored outside the database. The maximum size is 4 gigabytes.

ROWID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROWID

Internally, every Oracle database table has a ROWID pseudocolumn, which stores binary values
called rowids.

Rowids uniquely identify rows and provide the fastest way to access particular rows.

Use the ROWID data type to store rowids in a readable format.

When you select or fetch a rowid into a ROWID variable, you can use the function ROWIDTOCHAR,
which converts the binary value into an 18-byte character string and returns it in that format.

Extended rowids use a base 64 encoding of the physical address for each row. The encoding
characters are A–Z, a–z, 0–9, +, and /. Row ID in Oracle 9i is as follows:
OOOOOOFFFBBBBBBRRR. Each component has a meaning. The first section, OOOOOO, signifies
the database segment. The next section, FFF, indicates the tablespace- relative datafile number of
the datafile that contains the row. The following section, BBBBBB, is the data block that contains
the row. The last section, RRR, is the row in the block (keep in mind that this may change in future
versions of Oracle).

3.1.6 Answers

a) What will the output be for the preceding script? Explain what is being declared and what the value of the
variable is throughout the scope of the block.

A1: Answer: The server output will be

I ate 2 cookies with 600 calories.
I really ate 3 cookies with 900 calories.
The truth is, I actually ate 8 cookies with
2400 calories.
PL/SQL procedure successfully completed.

Initially the variable v_cookies_amt is declared to be a NUMBER with the value of 2, and the variable
v_calories_per_cookie is declared to be a CONSTANT NUMBER with a value of 300 (since it is declared to be a
tCONSTANT, it will not change its value). In the course of the procedure, the value of v_cookies_amt is later
set to be 3, and then finally it is set to be its current value, 3 plus 5, thus becoming 8.

b) In the previous example, add the following expressions to the beginning of the procedure (immediately
after the BEGIN in the previous example), then explain the values of the variables at the beginning and at
the end of the script.

A1: Answer: Initially the variable v_lname is declared as a data type VARCHAR2 with a length of 30 and a value
of null. The variable v_regdate is declared as data type date with a value of null. The variable v_pctincr is
declared as CONSTANT NUMBER with a length of 4 and a precision of 2 and a value of 1.15. The variable
v_counter is declared as NUMBER with a value of 0. The variable v_YorN is declared as a variable of
BOOLEAN data type and a value of TRUE.

The output of the procedure will be as follows (make sure you have entered SET SERVEROUTPUT ON
earlier on in your SQL*Plus session):

1
1200
PL/SQL procedure successfully completed.

Once the executable section is complete, the variable v_counter will be changed from null to 1. The value of
v_new_cost will change from null to 1200 (800 times 1.50).

Note that a common way to find out the value of a variable at different points in a block is to add a
DBMS_OUTPUT.PUT_LINE(v_variable_name); throughout the block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) What will the values of the variables be at the end of the script?

A1: Answer: The value of v_counter will then change from 1 to 6, which is ((1 + 5) *2))/2, and the value of
new_cost will go from 1200 to 1800, which is (800 * 6)/4. The output from running this procedure will be:

6
1800
PL/SQL procedure successfully completed.

Operators (Delimiters): the Separators in an Expression
Arithmetic (**, *, /, +, -)

Comparison(=, <>, !=, <, >, <=, >=, LIKE, IN, BETWEEN, IS NULL)

Logical (AND, OR, NOT)

String (||, LIKE)

Expressions

Operator Precedence

**, NOT

+, - (arithmetic identity and negation) *, / +, -, || =, <>, !=, <=, >=,
<, >, LIKE, BETWEEN, IN, IS NULL

AND— logical conjunction

OR— logical inclusion

3.1.7 Answers

a) If the following example were run in SQL*Plus, what do you think would be displayed?

-- ch03_5a.pls
SET SERVEROUTPUT ON
DECLARE
 e_show_exception_scope EXCEPTION;
 v_student_id NUMBER := 123;
BEGIN
 DBMS_OUTPUT.PUT_LINE('outer student id is '
 ||v_student_id);
 DECLARE
 v_student_id VARCHAR2(8) := 125;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('inner student id is '
 ||v_student_id);
 RAISE e_show_exception_scope;
 END;
EXCEPTION
 WHEN e_show_exception_scope
 THEN
 DBMS_OUTPUT.PUT_LINE('When am I displayed?');
 DBMS_OUTPUT.PUT_LINE('outer student id is '
 ||v_student_id);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

A1: Answer: The following would result:

outer student id is 123
inner student id is 125
When am I displayed?
outer student id is 123
PL/SQL procedure successfully completed.

b) Now run the example and see if it produces what you expected. Explain how the focus moves from one
block to another in this example.

A2: Answer: The variable e_Show_Exception_Scope is declared as an exception type in the declaration section of
the block. There is also a declaration of the variable called v_student_id of data type NUMBER that is
initialized to the number 123. This variable has a scope of the entire block, but it is visible only outside of
the inner block. Once the inner block begins, another variable, named v_student_id, is declared. This time it
is of data type VARCHAR2(8) and is initialized to 125. This variable will have a scope and visibility only
within the inner block. The use of DBMS_OUTPUT helps to show which variable is visible. The inner block
raises the exception e_Show_Exception_Scope; this means that the focus will move out of the execution
section and into the exception section. The focus will look for an exception named e_Show_Exception_Scope.
Since the inner block has no exception with this name, the focus will move to the outer block's exception
section and it will find the exception. The inner variable v_student_id is now out of scope and visibility. The
outer variable v_student_id (which has always been in scope) now regains visibility. Because the exception
has an IF/THEN construct, it will execute the DBMS_OUTPUT call. This is a simple use of nested blocks.
Later in the book you will see more complex examples. Once you have covered exception handling in
depth in Chapters 7, 10, and 11, you will see that there is greater opportunity to make use of nested
blocks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 3.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) If a variable is declared as follows, what are the results?

v_fixed_amount CONSTANT NUMBER;

a. _____ A NUMBER variable called v_fixed_amount has been declared (it will remain as a constant
once initialized).

b. _____ A NUMBER variable called v_fixed_amount has been declared (it will remain as null).

c. _____ An error message will result because constant initialization must be done in the executable
section of the block.

d. _____ An error message will result because the declaration for the CONSTANT is missing an
assignment to a NUMBER.

2) Which of the following are valid character types for PL/SQL?

a. _____ Numbers

b. _____ English letters

c. _____ Paragraph returns

d. _____ Arithmetic symbols

e. _____ Japanese Kanji

3) A variable may be used for which of the following?

a. _____ To hold a constant, such as the value of p

b. _____ To hold the value of a counter that keeps changing

c. _____ To place a value that will be inserted into the database

d. _____ To hold onto the function of an operand

e. _____ To hold any value as long as you declare it

4) Which of the following will declare a variable that is of the identical data type as the student_id in the
database table STUDENT in the CTA database?

a. _____ v_id student_id := 123;

b. _____ v_id binary integer;

c. _____ v_id numberNUMBER := 24;

d. _____ v_id student_id%type;

5) The value of a variable is set to null after the 'end;' of the block is issued.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 3.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3 Test Your Thinking

Before starting these projects, take a look at the formatting guidelines in Appendix B. Make your variable
names conform to the standard. At the top of the declaration section, put a comment stating which
naming standard you are using.

1) Write a PL/SQL block

a. That includes declarations for the following variables:

A VARCHAR2 data type that can contain the string
'Introduction to Oracle PL/SQL'

A NUMBER that can be assigned 987654.55, but not
987654.567 or 9876543.55

A CONSTANT (you choose the correct data type) that is
auto-initialized to the value '603D'

A BOOLEAN

A DATE data type autoinitialized to one week from
today

b. In the body of the PL/SQL block, put a DBMS_OUTPUT.PUT_LINE
message for each of the variables that received an autoinitialization
value.

c. In a comment at the bottom of the PL/SQL block, state the value of
your NUMBER data type.

2) Alter the PL/SQL block you created in Project 1 to conform to the following
specs:

a. Remove the DBMS_OUTPUT.PUT_LINE messages.

b. In the body of the PL/SQL block, write a selection test (IF) that does
the following (use a nested IF statement where appropriate):

i. Check whether the VARCHAR2 you created contains the course
named 'Introduction to Underwater Basketweaving'.

ii. If it does, then put a DBMS_OUTPUT.PUT_LINE message on
the screen that says so.

iii. If it does not, then test to see if the CONSTANT you created
contains the room number 603D.

iv. If it does, then put a DBMS_OUTPUT.PUT_LINE message on
the screen that states the course name and the room number
that you've reached in this logic.

v. If it does not, then put a DBMS_OUTPUT.PUT_LINE Message on
the screen that states that the course and location could not
be determined.

c. Add a WHEN OTHERS EXCEPTION that puts a
DBMS_OUTPUT.PUT_LINE message on the screen that says that an
error occurred.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. SQL in PL/SQL
Chapter Objectives
In this Chapter, you will learn about:

 Making Use of DML in PL/SQL

 Making Use of SAVEPOINT

This chapter is a collection of some fundamental elements of using SQL statements in PL/SQL blocks. In the previous
chapter, you initialized variables with the ":=" syntax; in this chapter, we will introduce the method of using a SQL
select statement to update the value of a variable. These variables can then be used in DML statements (INSERT,
DELETE, or UPDATE). Additionally, we will demonstrate how you can use a sequence in your DML statements within a
PL/SQL block much as you would in a stand-alone SQL statement.

A transaction in Oracle is a series of SQL statements that have been grouped together into a logical unit by the
programmer. A programmer chooses to do this in order to maintain data integrity. Each application (SQL*Plus,
Procedure Builder, and so forth) maintains a single database session for each instance of a user login. The changes to
the database that have been executed by a single application session are not actually "saved" into the database until a
COMMIT occurs. Work within a transaction up to and just prior to the commit can be rolled back; once a commit has
been issued, work within that transaction cannot be rolled back.

In order to exert transaction control, a SAVEPOINT can be used to break down large SQL statements into individual
units that are easier to manage. In this chapter, we will cover the basic elements of transaction control so you will know
how to manage your PL/SQL code by use of COMMIT, ROLLBACK, and principally SAVEPOINT.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.1 Making Use of DML in PL/SQL

Lab Objectives
After this Lab, you will be able to:

 Use the SELECT INTO Syntax for Variable Initialization

 Use DML in PL/SQL Block

 Make Use of a Sequence in a PL/SQL Block

Variables Initialization with SELECT INTO

In PL/SQL, there are two main methods of giving value to variables in a PL/SQL block. The first one, which you learned
in Chapter 2, "PL/SQL Concepts," is initialization with the ":=" syntax. In this lab we will learn how to initialize a
variable with a select statement by making use of SELECT INTO syntax.

A variable that has been declared in the declaration section of the PL/SQL block can later be given a value with a
SELECT statement. The correct syntax is as follows:

SELECT item_name
 INTO variable_name
 FROM table_name;

It is important to note that any single row function can be performed on the item to give the variable a calculated
value.

 FOR EXAMPLE

-- ch04_1a.sql
SET SERVEROUTPUT ON
DECLARE
 v_average_cost VARCHAR2(10);
BEGIN
 SELECT TO_CHAR(AVG(cost), '$9,999.99')
 INTO v_average_cost
 FROM course;
 DBMS_OUTPUT.PUT_LINE('The average cost of a '||
 'course in the CTA program is '||
 v_average_cost);
END;

In this example, a variable is given the value of the average cost of a course in the course table. First, the variable
must be declared in the declaration section of the PL/SQL block. In this example, the variable is given the datatype of
VARCHAR2(10) because of the functions used on the data. The same select statement that would produce this outcome
in SQL*Plus would be

SELECT TO_CHAR(AVG(cost), '$9,999.99')
 FROM course;

The TO_CHAR function is used to format the cost; in doing this, the number datatype is converted to a character
datatype. Once the variable has a value, it can be displayed to the screen in SQL*Plus using the PUT_LINE procedure of
the DBMS_OUTPUT package.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.1 Exercises

4.1.1 Use the SELECT INTO Syntax for Variable Initialization

Run the PL/SQL block from the pre-exercise example.

a) What is displayed on the SQL*Plus screen? Explain the results.

b) Take the same PL/SQL block and place the line with the DBMS_OUTPUT before the SELECT INTO statement.
What is displayed on the SQL*Plus screen? Explain what the value of the variable is at each point in the
PL/SQL block.

Data definition language (DDL) is not valid in a simple PL/SQL block (more advanced techniques such as procedures in
the DBMS_SQL package will enable you to make use of DDL), yet data manipulation (DML) is easily achieved either by
use of variables or by simply putting a DML statement into a PL/SQL block. Here is an example of a PL/SQL block that
UPDATES an exiting entry in the zipcode table.

 FOR EXAMPLE

-- ch04_2a.sql
DECLARE
 v_city zipcode.city%TYPE;
BEGIN
 SELECT 'COLUMBUS'
 INTO v_city
 FROM dual;
 UPDATE zipcode
 SET city = v_city
 WHERE ZIP = 43224;
END;

It is also possible to insert data into a database table in a PL/SQL block, as shown in the following example.

 FOR EXAMPLE

-- ch04_3a.sql
DECLARE
 v_zip zipcode.zip%TYPE;
 v_user zipcode.created_by%TYPE;
 v_date zipcode.created_date%TYPE;
BEGIN
 SELECT 43438, USER, SYSDATE
 INTO v_zip, v_user, v_date
 FROM dual;
 INSERT INTO zipcode
 (ZIP, CREATED_BY ,CREATED_DATE, MODIFIED_BY,
 MODIFIED_DATE
)
 VALUES(v_zip, v_user, v_date, v_user, v_date);
END;

SELECT statements that return no rows or too many rows will cause an error
to occur that can be trapped by using an exception. You will learn more about
handling exceptions in Chapters 7, 10, and 11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.2 Use DML in a PL/SQL Block

a) Write a PL/SQL block that will insert a new student in the student table. Use your own information for the
data.

Using an Oracle Sequence

An Oracle sequence is an Oracle database object that can be used to generate unique numbers. You can use sequences
to automatically generate primary key values.

Accessing and Incrementing Sequence Values

Once a sequence is created, you can access its values in SQL statements with these pseudocolumns:

CURRVAL Returns the current value of the sequence

NEXTVAL Increments the sequence and returns the new value.

 FOR EXAMPLE

This statement creates the sequence ESEQ:

CREATE SEQUENCE eseq
 INCREMENT BY 10

The first reference to ESEQ.NEXTVAL returns 1. The second returns 11. Each subsequent reference will return a value
10 greater than the one previous.

(Even though you will be guaranteed unique numbers, you are not guaranteed contiguous numbers. In some systems
this may be a problem, for example, when generating invoice numbers.)

Drawing Numbers from a Sequence

Beginning with Oracle v7.3, a sequence value can be inserted directly into a table without first selecting it. (Previously it
was necessary to use the SELECT INTO syntax and put the new sequence number into a variable and then you can
insert the variable.)

 FOR EXAMPLE

For this example, a table called test01 will be used: First the table test01 is created and then the sequence test_seq,
then the sequence is used to populate the table.

-- ch04_3a.sql
CREATE TABLE test01 (col1 number);
CREATE SEQUENCE test_seq
 INCREMENT BY 5;
BEGIN
 INSERT INTO test01
 VALUES (test_seq.NEXTVAL);
END;
/
Select * FROM test01;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.3 Make Use of a Sequence in a PL/SQL Block

In this last exercise for this lab, you will make use of all the material covered so far in this chapter.

a) Write a PL/SQL block that will insert a new student in the student table. Use your own information for the
data. Create two variables that are used in the select statement. Get the USER and SYSDATE for the
variables. Finally, use the existing student_id_seq sequence to generate a unique id for the new student.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 4.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

4.1.1 Answers

Run the PL/SQL block from the pre-exercise example.

a) What is displayed on the SQL*Plus screen? Explain the results.

A1: Answer: You will see the following result:

The average cost of a course in the CTA program
is $1,198.33
PL/SQL procedure successfully completed.

In the declaration section of the PL/SQL block, the variable v_average_cost is declared as a varchar2. In the executable
section of the block, this variable is given the value of the average cost from the course table by means of the SELECT
INTO syntax. The SQL function TO_CHAR is issued to format the number. The DBMS_OUTPUT is then used to show the
result to the screen.

b) Take the same PL/SQL block and place the line with the DBMS_OUTPUT before the SELECT INTO
statement. What is displayed on the SQL*Plus screen? Explain what the value of the variable is at each
point in the PL/SQL block.

A2: Answer: You will see the following result:

The average cost of a course in the CTA program is
PL/SQL procedure successfully completed.

The variable v_average_cost will be set to NULL when it is first declared. Because the DBMS_OUTPUT is placed before the
variable is given a value, the output for the variable will be NULL. After the SELECT INTO, the variable will be given the
same value as in the original block described in question a, but it will not be displayed because there is not another
DBMS_OUTPUT line in the PL/SQL block.

4.1.2 Answers

a) Write a PL/SQL block that will insert a new student in the student table. Use your own information for the
data.

A1: Answer: The following is one example of how this could be handled:

-- ch04_4a.sql
DECLARE
 v_max_id number;
BEGIN
 SELECT MAX(student_id)
 INTO v_max_id
 FROM student;
 INSERT into student
 (student_id, last_name, zip,
 created_by, created_date,
 modified_by, modified_date,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 modified_by, modified_date,
 registration_date
)
 VALUES (v_max_id + 1, 'Rosenzweig',
 11238, 'BROSENZ ', '01-JAN-99',
 'BROSENZ', '01-JAN-99', '01-JAN-99'
);
END;

In order to generate a unique ID, the maximum student_id is selected into a variable and then it is incremented by one.
It is important to remember in this example that there is foreign key on the zip item in the student table, which means
that the zipcode you choose to enter must be in the ZIPCODE table.

4.1.3 Answers

a) Write a PL/SQL block that will insert a new student in the student table. Use your own information for the
data. Create two variables that are used in the select statement. Get the USER and SYSDATE for the
variables. Finally, use the existing student_id_seq sequence to generate a unique id for the new student.

A1: Answer: The following is one example of how this could be handled:

-- ch04_5a.sql
DECLARE
 v_user student.created_by%TYPE;
 v_date student.created_date%TYPE;
BEGIN
 SELECT USER, sysdate
 INTO v_user, v_date
 FROM dual;
 INSERT INTO student
 (student_id, last_name, zip,
 created_by, created_date, modified_by,
 modified_date, registration_date
)
 VALUES (student_id_seq.nextval, 'Smith',
 11238, v_user, v_date, v_user, v_date,
 v_date
);
END;

In the declaration section of the PL/SQL block, two variables are declared. They are both set to be datatypes within the
student table using the %TYPE method of declaration. This ensures the datatypes match the columns of the tables into
which they will be inserted. The two variables v_user and v_date are given values from the system by means of SELECT
INTO. The value of the student_id is generated by using the next value of the student_id_seq sequence.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) Which of the following are valid methods to initialize value for a variable?

a. _____ Declare a sequence

b. _____ The ":=" syntax

c. _____ SET SERVEROUTPUT ON

d. _____ SELECT INTO statement

2) Which of the following are valid DML or DDL statements in a PL/SQL Block?

a. _____ INSERT

b. _____ CREATE TABLE

c. _____ CREATE SEQUENCE

d. _____ UPDATE

3) Complete the following statement with the correct syntax for inserting a sequence in a PL/SQL BLOCK.

INSERT INTO STUDENT (student_id, last_name)

a. _____ VALUES (student_id_seq.currval, 'Smith');

b. _____ VALUES ('Smith', student_id_seq.currval);

c. _____ VALUES (student_id_seq.nextval, 'Smith');

d. _____ VALUES (nextval, 'Smith');

4) Which of the following are true statements about an Oracle sequence?

a. _____ It can use a DML statement only in stand-alone SQL, not in a PL/SQL block.

b. _____ It is a database object.

c. _____ It is useful for generating contiguous numbers for invoicing.

d. _____ It can be used to generate unique primary keys.

Answers appear in Appendix A, Section 4.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.2 Making Use of SAVEPOINT

Lab Objectives
After this Lab, you will be able to:

 Make Use of COMMIT, ROLLBACK and SAVEPOINT in a PL/SQL Block

Transactions are a means to break programming code into manageable units. Grouping transactions into smaller
elements is a standard practice that ensures an application will save only correct data. Initially, any application will have
to connect to the database in order to access the data. It is important to point out that when a user is issuing DML
statements in an application, the changes are not visible to other users until a COMMIT or ROLLBACK has been issued.
Oracle guarantees a read-consistent view of the data. Until that point, all data that have been inserted or updated will
be held in memory and only available to the current user. The rows that have been changed will be locked by the
current user and will not be available for updating to other users until the locks have been released. A COMMIT or a
ROLLBACK statement will release these locks. Transactions can be controlled more readily by marking points of the
transaction with the SAVEPOINT command.

For more details on transaction control (such as row locking issues), see the
companion volume, Oracle DBA Interactive Workbook, by Douglas Scherer and
Melanie Caffrey (Prentice Hall, 2000).

COMMIT— Makes events within a transaction permanent

ROLLBACK— Erases events within a transaction

Additionally, you can use a SAVEPOINT to control transactions. Transactions are defined in the PL/SQL block from one
SAVEPOINT to another. The use of the SAVEPOINT command allows you to break your SQL statements into units so
that in a given PL/SQL block, some units can be committed (saved to the database) and some can be rolled back
(undone) and so forth.

Note that there is a distinction between transaction and a PL/SQL block. The
start and end of a PL/SQL block do not necessarily mean the start and end of a
transaction.

In order to demonstrate the need for transaction control, we will examine a two-step data-manipulation process. For
example, suppose that the fees for all courses in the CTA database that had a prerequisite course needed to be
increased by 10 percent and at the same time all courses that did not have a prerequisite needed to be decreased by
10 percent. This is a two-step process. If one step had been successful but the second step was not, then the data
concerning course cost would be inconsistent in the database. Because this adjustment is based on a change in
percentage, there would be no way to track what part of this course adjustment had been successful and what had not
been.

 FOR EXAMPLE

In this example, you see one PL/SQL block that performs two updates on the cost item in the course table. In the first
step (this code is commented for the purpose of emphasizing each update), the cost is updated with a cost that is 10
percent less whenever the course does not have a prerequisite. In the second step, the cost is increased by 10 percent
when the course has a prerequisite.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when the course has a prerequisite.

-- ch04_6a.sql
BEGIN
-- STEP 1
 UPDATE course
 SET cost = cost - (cost * 0.10)
 WHERE prerequisite IS NULL;
-- STEP 2
 UPDATE course
 SET cost = cost + (cost * 0.10)
 WHERE prerequisite IS NOT NULL;
END;

Let's assume that the first update statement succeeds, but the second update statement fails because the network went
down. The data in the course table is now inconsistent because courses with no prerequisite have had their cost
reduced but courses with prerequisites have not been adjusted. To prevent this sort of situation, statements must be
combined into a transaction. So, either both statements will succeed, or both statements will fail.

A transaction usually combines SQL statements that represent a logical unit of work. The transaction begins with the
first SQL statement issued after the previous transaction, or the first SQL statement issued after connecting to the
database. The transaction ends with the COMMIT or ROLLBACK statement.

COMMIT

When a COMMIT statement is issued to the database, the transaction has ended, and the following statements are true:

All work done by the transaction becomes permanent.

Other users can see changes in data made by the transaction.

Any locks acquired by the transaction are released.

A COMMIT statement has the following syntax:

COMMIT [WORK];

The word WORK is optional and is used to improve readability. Until a transaction is committed, only the user executing
that transaction can see changes in the data made by his session.

 FOR EXAMPLE

Suppose User A issues the following command on a student table that exists in another schema but has a public
synonym of student:

-- ch04_6a.sql
INSERT INTO student
 (student_id, last_name, zip, registration_date,
 created_by, created_date, modified_by,
 modified_date
)
 VALUES (student_id_seq.nextval, 'Tashi', 10015,
 '01-JAN-99', 'STUDENTA', '01-JAN-99',
 'STUDENTA', '01-JAN-99'
);

Then User B enters the following command to query table known by its public synonym student, while logged on to his
session.

SELECT *
 FROM student
 WHERE last_name = 'Tashi';

Then User A issues the following command:

COMMIT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMMIT;

Now if User B enters the same query again, he will not see the same results.

In this next example, there are two sessions: User A and User B. User A inserts a record into the student table. User B
queries the student table, but does not get the record that was inserted by User A. User B cannot see the information
because User A has not committed the work. When User A commits the transaction, User B, upon resubmitting the
query, sees the records inserted by User A.

Note that this is covered in more depth in the companion volume, Oracle DBA
Interactive Workbook, by Douglas Scherer and Melanie Caffrey (Prentice Hall,
2000).

ROLLBACK

When a ROLLBACK statement is issued to the database, the transaction has ended, and the following statements are
true:

All work done by the user is undone, as if it hadn't been issued.

Any locks acquired by the transaction are released.

A ROLLBACK statement has the following syntax:

ROLLBACK [WORK];

The WORK keyword is optional and is available for increased readability.

SAVEPOINT

The ROLLBACK statement undoes all work done by the user in a specific transaction. With the SAVEPOINT command,
however, only part of the transaction can be undone. A SAVEPOINT command has the following syntax:

SAVEPOINT name;

The word name is the SAVEPOINT's name. Once a SAVEPOINT is defined, the program can roll back to the SAVEPOINT.
A ROLLBACK statement, then, has the following syntax:

ROLLBACK [WORK] to SAVEPOINT name;

When a ROLLBACK to SAVEPOINT statement is issued to the database, the following statements are true:

Any work done since the SAVEPOINT is undone. The SAVEPOINT remains active, however, until a full COMMIT
or ROLLBACK is issued. It can be rolled back to again, if desired.

Any locks and resources acquired by the SQL statements since the SAVEPOINT will be released.

The transaction is not finished, because SQL statements are still pending.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.2 Exercises

4.2.1 Make Use of COMMIT, ROLLBACK, and SAVEPOINT in a PL/SQL Block

Log into the CTA schema and enter the following series of commands. (Optionally, you can write the PL/SQL block in a
text file and then run the script from the SQL*Plus prompt.)

-- ch04_7a.sql
BEGIN
 INSERT INTO student
 (student_id, Last_name, zip, registration_date,
 created_by, created_date, modified_by,
 modified_date
)
 VALUES (student_id_seq.nextval, 'Tashi', 10015,
 '01-JAN-99', 'STUDENTA', '01-JAN-99',
 'STUDENTA','01-JAN-99'
);
 SAVEPOINT A;
 INSERT INTO student
 (student_id, Last_name, zip, registration_date,
 created_by, created_date, modified_by,
 modified_date
)
 VALUES (student_id_seq.nextval, 'Sonam', 10015,
 '01-JAN-99', 'STUDENTB','01-JAN-99',
 'STUDENTB', '01-JAN-99'
);
 SAVEPOINT B;
 INSERT INTO student
 (student_id, Last_name, zip, registration_date,
 created_by, created_date, modified_by,
 modified_date
)
 VALUES (student_id_seq.nextval, 'Norbu', 10015,
 '01-JAN-99', 'STUDENTB', '01-JAN-99',
 'STUDENTB', '01-JAN-99'
);
 SAVEPOINT C;
 ROLLBACK TO B;
END;

a) If you issue the following command, what would you expect to see? Why?

SELECT *
 FROM student
 WHERE last_name = 'Norbu';

b) Try it. What happened? Why?

Now issue

ROLLBACK to SAVEPOINT A;

c) What happened?

d) If you issue the following, what do you expect to see?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d) If you issue the following, what do you expect to see?

SELECT last_name
 FROM student
 WHERE last_name = 'Tashi';

e) Issue the command and explain your findings.

SAVEPOINT is often used before a complicated section of the transaction. If
this part of the transaction fails, it can be rolled back, allowing the earlier part
to continue.

It is important to note the distinction between transactions and PL/SQL blocks.
When a block starts, it does not mean that the transaction starts. Likewise, the
start of the transaction need not coincide with the start of a block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 4.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

4.2.1 Answers

a) If you issue the following command, what would you expect to see? Why?

SELECT *
 FROM student
 WHERE last_name = 'Norbu';

A1: Answer: You will not be able to see any data because the ROLLBACK to (SAVEPOINT) B has undone the
last insert statement where the student 'Norbu' was inserted.

b) Try it. What happened? Why?

A2: Answer: When you issue this command, you will get the message "no rows selected."

Three students were inserted in this PL/SQL block. First, Sonam in SAVEPOINT A, then Tashi in SAVEPOINT B, and
finally Norbu was inserted in SAVEPOINT C. Then when the command ROLLBACK to B was issued, the insert of Norbu
was undone.

Now issue

ROLLBACK to SAVEPOINT A;

c) What happened?

A1: Answer: The insert in SAVEPOINT B was just undone. This deleted the insert of Tashi who was inserted in
SAVEPOINT B.

d) If you issue the following, what do you expect to see?

SELECT last_name
 FROM student
 WHERE last_name = 'Tashi';

A2: Answer: You will see the data for Tashi.

e) Issue the command and explain your findings.

A3: Answer: You will see one entry for Tashi, as follows:

LAST_NAME

Tashi

Tashi was the only student that was successfully entered into the database. The ROLLBACK to SAVEPOINT
A undid the insert statement for Norbu and Sonam.

A Single PL/SQL Block Can Contain Multiple Transactions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Example:

Declare
 v_Counter NUMBER;
BEGIN
 v_counter := 0;
 FOR i IN 1..100
 LOOP
 v_counter := v_counter + 1;
 IF v_counter = 10
 THEN
 COMMIT;
 v_counter := 0;
 END IF;
 END LOOP;
END;

In this example, as soon as the value of v_counter becomes equal to 10, the work is committed. So, there
will be a total of 10 transactions contained in this one PL/SQL block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 4.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) User A can ROLLBACK User B's insert statement.

a. _____ True

b. _____ False

2) When a COMMIT has been issued, which of the following are true? (Choose all that apply.)

a. _____ All memory holds on the data have been released.

b. _____ All data inserts are available to other users.

c. _____ You have to get married.

d. _____ The transaction is not finished because SQL statements are still pending.

3) What defines a logical unit of work?

a. _____ From one SAVEPOINT to the next.

b. _____ From one ROLLBACK to the next.

c. _____ From one COMMIT to the next.

d. _____ All of the above.

4) Which of the following is an advantage of using SAVEPOINTS in a PL/SQL block?

a. _____ It prevents inconsistent data.

b. _____ It allows one to group code into manageable units.

c. _____ It prevents one from duplicating a primary key.

d. _____ It locks rows and prevents other users from updating the same row.

Answers appear in Appendix A, Section 4.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4 Test Your Thinking

In the chapter discussion, you learned how to use numerous SQL techniques in a PL/SQL block. First, you
learned how to use SELECT INTO to generate values for a variable. Then you learned the various DML
methods, including the use of a sequence. Finally, you learned how to manage transactions by using
savepoints. Complete the following projects by writing the code for each step and running it and then
going on to the next step.

1) Create a table called CHAP4 with two columns; one is ID (a number) and the
second is NAME, which is a varchar2(20).

2) Create a sequence called CHAP4_SEQ that increments by units of 5.

3) Write a PL/SQL block that performs the following in this order:

a. Declares 2 variables, one for the v_name and one for v_id. The
v_name variable can be used throughout the block for holding the
name that will be inserted; realize that the value will change in the
course of the block.

b. The block then inserts into the table the name of the student that is
enrolled in the most classes and uses a sequence for the ID; afterward
there is SAVEPOINT A.

c. Then the student with the least enrollments is inserted; afterward
there is SAVEPOINT B.

d. Then the instructor who is teaching the maximum number of courses is
inserted in the same way. Afterward there is SAVEPOINT C.

e. Using a SELECT INTO statement, hold the value of the instructor in the
variable v_id.

f. Undo the instructor insert by use of rollback.

g. Insert the instructor teaching the least amount of courses but do not
use the sequence to generate the ID; instead use the value from the
first instructor whom you have since undone.

h. Now insert the instructor teaching the most number of courses and use
the sequence to populate his ID.

Add DBMS_OUTPUT throughout the block to display the values of the variables
as they change. (This is good practice for debugging.)

The answers to Test Your Thinking can be found in Appendix D and on the web site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Conditional Control: IF Statements
Chapter Objectives
In this Chapter, you will learn about:

 IF Statements

 ELSIF Statements

 Nested IF Statements

In almost every program that you write, you need to make decisions. For example, if it is the end of the fiscal year,
bonuses must be distributed to the employees based on their salaries. In order to compute employee bonuses, a
program needs to have a conditional control. In other words, it needs to employ a selection structure (you learned
about selection structure in Chapter 1).

Conditional control allows you to control the flow of the execution of the program based on a condition. In programming
terms, it means that the statements in the program are not executed sequentially. Rather, one group of statements or
another will be executed depending on how the condition is evaluated.

In PL/SQL, there are three types of conditional control: IF, ELSIF, and CASE statements. In this chapter, you will
explore two types of conditional control—IF and ELSIF—and how these types can be nested one inside of another. CASE
statements are discussed in the next chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.1 IF Statements

Lab Objectives
After this Lab, you will be able to:

 Use IF-THEN Statements

 Use IF-THEN-ELSE Statements

An IF statement has two forms: IF-THEN and IF-THEN-ELSE. An IF-THEN statement allows you to specify only one
group of actions to take. In other words, this group of actions is taken only when a condition evaluates to TRUE. An IF-
THEN-ELSE statement allows you to specify two groups of actions, and the second group of actions is taken when a
condition evaluates to FALSE or NULL.

IF-THEN Statements

An IF-THEN statement is the most basic kind of a conditional control and has the following structure:

IF CONDITION THEN
 STATEMENT 1;
 ...
 STATEMENT N;
END IF;

The reserved word IF marks the beginning of the IF statement. Statements 1 through N are a sequence of executable
statements that consist of one or more of the standard programming structures. The word CONDITION between
keywords IF and THEN determines whether these statements are executed. END IF is a reserved phrase that indicates
the end of the IF-THEN construct.

This flow of the logic from the preceding structure of the IF-THEN statement is illustrated in the Figure 5.1.

Figure 5.1. IF-THEN Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When an IF-THEN statement is executed, a condition is evaluated to either TRUE or FALSE. If the condition evaluates to
TRUE, control is passed to the first executable statement of the IF-THEN construct. If the condition evaluates to FALSE,
control is passed to the first executable statement after the END IF statement.

Consider the following example. You have two numeric values stored in the variables, v_num1 and v_num2. You need to
arrange your values so that the smaller value is always stored in v_num1, and the larger value is always stored in the
v_num2.

 FOR EXAMPLE

DECLARE
 v_num1 NUMBER := 5;
 v_num2 NUMBER := 3;
 v_temp NUMBER;
BEGIN
 -- if v_num1 is greater than v_num2 rearrange their values
 IF v_num1 > v_num2 THEN
 v_temp := v_num1;
 v_num1 := v_num2;
 v_num2 := v_temp;
 END IF;

 -- display the values of v_num1 and v_num2
 DBMS_OUTPUT.PUT_LINE ('v_num1 = '||v_num1);
 DBMS_OUTPUT.PUT_LINE ('v_num2 = '||v_num2);
END;

In this example, condition v_num1 > v_num2 evaluates to TRUE because 5 is greater that 3. Next, the values are
rearranged so that 3 is assigned to v_num1, and 5 is assigned to v_num2. It is done with the help of the third variable,
v_temp, which is used for temporary storage.

This example produces the following output:

v_num1 = 3
v_num2 = 5

PL/SQL procedure successfully completed.

IF-THEN-ELSE Statement

An IF-THEN statement specifies the sequence of statements to execute only if the condition evaluates to TRUE. When
this condition evaluates to FALSE, there is no special action to take except to proceed with execution of the program.

An IF-THEN-ELSE statement enables you to specify two groups of statements. One group of statements is executed
when the condition evaluates to TRUE. Another group of statements is executed when the condition evaluates to FALSE.
This is indicated as follows:

IF CONDITION THEN
 STATEMENT 1;
ELSE
 STATEMENT 2;
END IF;
STATEMENT 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STATEMENT 3;

When CONDITION evaluates to TRUE, control is passed to STATEMENT 1; when CONDITION evaluates to FALSE, control
is passed to STATEMENT 2. After the IF-THEN-ELSE construct has completed, STATEMENT 3 is executed. This flow of
the logic is illustrated in the Figure 5.2.

Figure 5.2. IF-THEN-ELSE Statement

The IF-THEN-ELSE construct should be used when trying to choose between
two mutually exclusive actions. Consider the following example:

DECLARE
 v_num NUMBER := &sv_user_num;
BEGIN
 -- test if the number provided by the user is even
 IF MOD(v_num,2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END IF;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

It is important to realize that for any given number only one of the DBMS_
OUTPUT.PUT_LINE statements is executed. Hence, the IF-THEN-ELSE construct
enables you to specify two and only two mutually exclusive actions.

When run, this example produces the following output:

Enter value for v_user_num: 24
old 2: v_num NUMBER := &v_user_num;
new 2: v_num NUMBER := 24;
24 is even number
Done

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULL Condition

In some cases, a condition used in an IF statement can be evaluated to NULL instead of TRUE or FALSE. For the IF-
THEN construct, the statements will not be executed if an associated condition evaluates to NULL. Next, control will be
passed to the first executable statement after END IF. For the IF-THEN-ELSE construct, the statements specified after
the keyword ELSE will be executed if an associated condition evaluates to NULL.

 FOR EXAMPLE

DECLARE
 v_num1 NUMBER := 0;
 v_num2 NUMBER;
BEGIN
 IF v_num1 = v_num2 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num1 = v_num2');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('v_num1 != v_num2');
 END IF;
END;

This example produces the following output:

v_num1 != v_num2

PL/SQL procedure successfully completed.

The condition

v_num1 = v_num2

is evaluated to NULL because a value is not assigned to the variable v_num2. Therefore, variable v_num2 is NULL. Notice
that the IF-THEN-ELSE construct is behaving as if the condition evaluated to FALSE, and the second
DBMS_OUTPUT.PUT_LINE statement is executed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.1 Exercises

5.1.1 Use the IF-THEN Statement

In this exercise, you will use the IF-THEN statement to test whether the date provided by the user falls on the weekend.
In other words, if the day happens to be Saturday or Sunday.

Create the following PL/SQL script:

-- ch05_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
 v_day VARCHAR2(15);
BEGIN
 v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

 IF v_day IN ('SATURDAY', 'SUNDAY') THEN
 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');
 END IF;

 --- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

In order to test this script fully, execute it twice. For the first run, enter '09-JAN-2002', and for the second run, enter
'13-JAN-2002'. Execute the script, and then answer the following questions:

a) What output was printed on the screen (for both dates)?

b) Explain why the output produced for the two dates is different.

Remove the RTRIM function from the assignment statement for v_day as follows:

v_day := TO_CHAR(v_date, 'DAY');

Run the script again, entering '13-JAN-2002' for v_date.

c) What output was printed on the screen? Why?

d) Rewrite this script using the LIKE operator instead of the IN operator, so that it produces the same results
for the dates specified earlier.

e) Rewrite this script using the IF-THEN-ELSE construct. If the date specified does not fall on the weekend,
display a message to the user saying so.

5.1.2 Use the IF-THEN-ELSE Statement

In this exercise, you will use the IF-THEN-ELSE statement to check how many students are enrolled in course number
25, section 1. If there are 15 or more students enrolled, section 1 of course number 25 is full. Otherwise, section 1 of
course number 25 is not full and more students can register for it. In both cases, a message should be displayed to the
user indicating whether section 1 is full. Try to answer the questions before you run the script. Once you have answered
the questions, run the script and check your answers. Note that the SELECT INTO statement uses ANSI 1999 SQL
standard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard.

Create the following PL/SQL script:

-- ch05_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_total NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment e
 JOIN section s USING (section_id)
 WHERE s.course_no = 25
 AND s.section_no = 1;

 -- check if section 1 of course 25 is full
 IF v_total >= 15 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Section 1 of course 25 is full');
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('Section 1 of course 25 is not full');
 END IF;
 -- control resumes here
END;

Notice that the SELECT INTO statement uses an equijoin. The join condition is listed in the JOIN clause, indicating
columns that are part of the primary key and foreign key constraints. In this example, column SECTION_ID of the
ENROLLMENT table has a foreign key constraint defined on it. This constraint references column SECTION_ID of the
SECTION table, which, in turn, has a primary key constraint defined on it.

You will find detailed explanations and examples of the statements using new
ANSI 1999 SQL standard in Appendix E and in the Oracle help. Throughout this
book we try to provide you with examples illustrating both standards;
however, our main focus is on PL/SQL features rather than SQL.

In the previous versions of Oracle, this statement would look as follows:

SELECT COUNT(*)
 INTO v_total
 FROM enrollment e, section s
 WHERE e.section_id = s.section_id
 AND s.course_no = 25
 AND s.section_no = 1;

Try to answer the following questions first and then execute the script:

a) What DBMS_OUTPUT.PUT_LINE statement will be displayed if there are 15 students enrolled in section 1 of
course number 25?

b) What DBMS_OUTPUT.PUT_LINE statement will be displayed if there are 3 students enrolled in section 1 of
course number 25?

c) What DBMS_OUTPUT.PUT_LINE statement will be displayed if there is no section 1 for course number 25?

d) How would you change this script so that both course and section numbers are provided by a user?

e) How would you change this script so that if there are less than 15 students enrolled in section 1 of course
number 25, a message indicating how many students can still be enrolled is displayed?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 5.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

5.1.1 Answers

a) What output was printed on the screen (for both dates)?

A1: Answer: The first output produced for the date is 09-JAN-2002. The second output produced for the date
is 13-JAN-2002.

Enter value for sv_user_date: 09-JAN-2002
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('09-JAN-2002', 'DD-MON-YYYY');
Done...

PL/SQL procedure successfully completed.

When the value of 09-JAN-2002 is entered for v_date, the day of the week is determined for the variable v_day with the
help of the functions TO_CHAR and RTRIM. Next, the following condition is evaluated:

v_day IN ('SATURDAY', 'SUNDAY')

Because the value of v_day is 'WEDNESDAY,' the condition evaluates to FALSE. Then, control is passed to the first
executable statement after END IF. As a result, 'Done…' is displayed on the screen.

Enter value for sv_user_date: 13-JAN-2002
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('13-JAN-2002', 'DD-MON-YYYY');
13-JAN-02 falls on weekend
Done...

PL/SQL procedure successfully completed.

The value of v_day is derived from the value of v_date. Next, the condition of the IF-THEN statement is evaluated.
Because it evaluates to TRUE, the statement after the keyword THEN is executed. So, '13-JAN-2002 falls on weekend' is
displayed on the screen. Next, control is passed to the last DBMS_OUTPUT.PUT_LINE statement, and 'Done...' is
displayed on the screen.

b) Explain why the output produced for the two dates is different.

A2: Answer: The first date, 09-JAN-2002, is a Wednesday. As a result, the condition, v_day IN ('SATURDAY,'
'SUNDAY'), does not evaluate to TRUE. So, control is transferred to the statement after END IF, and
'Done...' is displayed on the screen.

The second date, 13-JAN-2002, is a Sunday. Because Sunday falls on a weekend, the condition evaluates
to TRUE, and the message '13-JAN-2002 falls on weekend' is displayed on the screen. Next, the last
DBMS_OUTPUT.PUT_LINE statement is executed, and 'Done...' is displayed on the screen.

Remove the RTRIM function from the assignment statement for v_day as follows:

v_day := TO_CHAR(v_date, 'DAY');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

v_day := TO_CHAR(v_date, 'DAY');

Run the script again, entering '13-JAN-2002' for v_date.

c) What output was printed on the screen? Why?

A1: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch05_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
 v_day VARCHAR2(15);
BEGIN
 v_day := TO_CHAR(v_date, 'DAY');

 IF v_day IN ('SATURDAY', 'SUNDAY') THEN
 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');
 END IF;

 --- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

This script produces the following output:

Enter value for sv_user_date: 13-JAN-2002
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('13-JAN-2002', 'DD-MON-YYYY');
Done...

PL/SQL procedure successfully completed.

In the original example, the variable v_day is calculated with the help of the statement, RTRIM(TO_CHAR(v_date,
'DAY')). First, the function TO_CHAR returns the day of the week padded with blanks. The size of the value retrieved by
the function TO_CHAR is always 9 bytes. Next, the RTRIM function removes trailing spaces.

In the statement

v_day := TO_CHAR(v_date, 'DAY')

the TO_CHAR function is used without the RTRIM function. Therefore, trailing blanks are not removed after the day of
the week has been derived. As a result, the condition of the IF-THEN statement evaluates to FALSE even though given
date falls on the weekend, and control is passed to the last DBMS_ OUTPUT.PUT_LINE statement.

d) Rewrite this script using the LIKE operator instead of the IN operator, so that it produces the same results
for the dates specified earlier.

A2: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch05_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
 v_day VARCHAR2(15);
BEGIN
 v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

 IF v_day LIKE 'S%' THEN
 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');
 END IF;

 --- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Both days, Saturday and Sunday, are the only days of the week that start with the letter 'S'. As a result, there is no
need to spell out the names of the days or specify any additional letters for the LIKE operator.

e) Rewrite this script using the IF-THEN-ELSE construct. If the date specified does not fall on the weekend,
display a message to the user saying so.

A3: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch05_1d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
 v_day VARCHAR2(15);
BEGIN
 v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

 IF v_day IN ('SATURDAY', 'SUNDAY') THEN
 DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_date||
 ' does not fall on the weekend');
 END IF;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE('Done...');
END;

In order to modify the script, the ELSE part was added to the IF statement. The rest of the script has not been changed.

5.1.2 Answers

a) What DBMS_OUTPUT.PUT_LINE statement will be displayed if there are 15 students enrolled in section 1
of course number 25?

A1: Answer: If there are 15 or more students enrolled in section 1 of course number 25, the first
DBMS_OUTPUT.PUT_LINE statement is displayed on the screen.

The condition

v_total >= 15

evaluates to TRUE, and as a result, the statement

DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is full');

is executed.

b) What DBMS_OUTPUT.PUT_LINE statement will be displayed if there are 3 students enrolled in section 1 of
course number 25?

A2: Answer: If there are 3 students enrolled in section 1 of course number 25, the second
DBMS_OUTPUT.PUT_LINE statement is displayed on the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The condition

v_total >= 15

evaluates to FALSE, and the ELSE part on the IF-THEN-ELSE statement is executed. As a result, the statement

DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is not full');

is executed.

c) What DBMS_OUTPUT.PUT_LINE statement will be displayed if there is no section 1 for course number 25?

A3: Answer: If there is no section 1 for course number 25, the ELSE part of the IF-THEN-ELSE statement will
be executed. So the second DBMS_OUTPUT.PUT_LINE statement will be displayed on the screen.

The COUNT function used in the SELECT statement

SELECT COUNT(*)
 INTO v_total
 FROM enrollment e
 JOIN section s USING (section_id)
 WHERE s.course_no = 25
 AND s.section_no = 1;

returns 0. The condition of the IF-THEN-ELSE statement evaluates to FALSE. Therefore, the ELSE part of the IF-THEN-
ELSE statement is executed, and the second DBMS_OUTPUT.PUT_LINE statement is displayed on the screen.

d) How would you change this script so that both course and section numbers are provided by a user?

A4: Answer: Two additional variables must be declared and initialized with the help of the substitution
variables as follows. Your script should look similar to this script. Changes are shown in bold letters.

-- ch05_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_total NUMBER;
 v_course_no CHAR(6) := '&sv_course_no';
 v_section_no NUMBER := &sv_section_no;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment e
 JOIN section s USING (section_id)
 WHERE s.course_no = v_course_no
 AND s.section_no = v_section_no;

 -- check if a specific section of a course is full
 IF v_total >= 15 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Section 1 of course 25 is full');
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('Section 1 of course 25 is not full');
 END IF;
 -- control resumes here
END;

e) How would you change this script so that if there are less than 15 students enrolled in section 1 of course
number 25, a message indicating how many students can still be enrolled is displayed?

A5: Answer: Your script should look similar to this script. Changes are shown in bold letters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A5: Answer: Your script should look similar to this script. Changes are shown in bold letters.

-- ch05_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_total NUMBER;
 v_students NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment e
 JOIN section s USING (section_id)
 WHERE s.course_no = 25
 AND s.section_no = 1;

 -- check if section 1 of course 25 is full
 IF v_total >= 15 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Section 1 of course 25 is full');
 ELSE
 v_students := 15 – v_total;
 DBMS_OUTPUT.PUT_LINE (v_students||
 ' students can still enroll into section 1 '||
 'of course 25');
 END IF;
 -- control resumes here
END;

Notice that if the IF-THEN-ELSE statement evaluates to FALSE, the statements associated with the ELSE part are
executed. In this case, the value of the variable v_total is subtracted from 15. The result of this operation indicates how
many more students can enroll in section 1 of course number 25.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) An IF construct is a control statement for which of the following?

a. _____ Sequence structure

b. _____ Iteration structure

c. _____ Selection structure

2) In order for the statements of an IF-THEN construct to be executed, the condition must evaluate to which of
the following?

a. _____ TRUE

b. _____ FALSE

c. _____ NULL

3) When a condition of the IF-THEN-ELSE construct is evaluated to NULL, control is passed to the first
executable statement after END IF.

a. _____ True

b. _____ False

4) How many actions can you specify in an IF-THEN-ELSE statement?

a. _____ One

b. _____ Two

c. _____ Four

d. _____ As many as you require

5) The IF-THEN-ELSE construct should be used to achieve which of the following?

a. _____ Three mutually exclusive actions

b. _____ Two mutually exclusive actions

c. _____ Two actions that are not mutually exclusive

Answers appear in Appendix A, Section 5.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.2 ELSIF Statements

Lab Objectives
After this Lab, you will be able to:

 Use the ELSIF Statement

An ELSIF statement has the following structure:

IF CONDITION 1 THEN
 STATEMENT 1;
ELSIF CONDITION 2 THEN
 STATEMENT 2;
ELSIF CONDITION 3 THEN
 STATEMENT 3;
...
ELSE
 STATEMENT N;
END IF;

The reserved word IF marks the beginning of an ELSIF construct. The words CONDITION 1 through CONDITION N are a
sequence of the conditions that evaluate to TRUE or FALSE. These conditions are mutually exclusive. In other words, if
CONDITION 1 evaluates to TRUE, STATEMENT 1 is executed, and control is passed to the first executable statement
after the reserved phrase END IF. The rest of the ELSIF construct is ignored. When CONDITION 1 evaluates to FALSE,
control is passed to the ELSIF part and CONDITION 2 is evaluated, and so forth. If none of the specified conditions yield
TRUE, control is passed to the ELSE part of the ELSIF construct. An ELSIF statement can contain any number of ELSIF
clauses. This flow of the logic is illustrated in Figure 5.3.

Figure 5.3. ESLIF Statement

Figure 5.3 shows that if condition 1 evaluates to TRUE, statement 1 is executed, and control is passed to the first

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.3 shows that if condition 1 evaluates to TRUE, statement 1 is executed, and control is passed to the first
statement after END IF. If condition 1 evaluates to FALSE, control is passed to condition 2. If condition 2 yields TRUE,
statement 2 is executed. Otherwise, control is passed to the statement following END IF, and so forth. Consider the
following example.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_num;
BEGIN
 IF v_num < 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is a negative number');
 ELSIF v_num = 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is equal to zero');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is a positive number');
 END IF;
END;

The value of v_num is provided at runtime and evaluated with the help of the ELSIF statement. If the value of v_num is
less that zero, the first DBMS_OUTPUT.PUT_LINE statement executes, and the ELSIF construct terminates. If the value
of v_num is greater than zero, both conditions

v_num < 0 and v_num = 0

evaluate to FALSE, and the ELSE part of the ELSIF construct executes.

Assume that the value of v_num equals 5 at runtime. This example produces the following output:

Enter value for sv_num: 5
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 5;
5 is a positive number

PL/SQL procedure successfully completed.

Remember the following information about an ELSIF statement:

Always match IF with an END IF.

There must be a space between END and IF. When the space is omitted, the
compiler produces the following error:

ERROR at line 22:
ORA-06550: line 22, column 4:
PLS-00103: Encountered the symbol ";" when expecting one of the following: if

As you can see, this error message is not very clear, and it can take you some time to
correct it, especially if you have not encountered it before.

There is no second "E" in "ELSIF".

Conditions of an ELSIF statement must be mutually exclusive. These
conditions are evaluated in sequential order, from the first to the last. Once a
condition evaluates to TRUE, the remaining conditions of the ELSIF statement
are not evaluated at all. Consider this example of an ELSIF construct:

IF v_num >= 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
ELSIF v_num =< 10 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is less than 10');
ELSE
 DBMS_OUTPUT.PUT_LINE
 ('v_num is less than ? or greater than ?');
END IF;

Assume that the value of v_num is equal to 5. Both conditions of the ELSIF statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assume that the value of v_num is equal to 5. Both conditions of the ELSIF statement
can evaluate to TRUE because 5 is greater than 0, and 5 is less than 10. However,
once the first condition, v_num >= 0, evaluates to TRUE, the rest of the ELSIF
construct is ignored.

For any value of v_num that is greater than or equal to 0 and less than or equal to 10,
these conditions are not mutually exclusive. Therefore, the DBMS_OUTPUT.PUT_LINE
statement associated with the ELSIF clause will not execute for any such value of
v_num. In order for the second condition, v_num <= 10, to yield TRUE, the value of
v_num must be less than 0.

How would you rewrite this ELSIF construct to capture any value of v_num between 0
and 10 and display it on the screen with a single condition?

When using an ELSIF construct, it is not necessary to specify what action should be taken if none of the conditions
evaluate to TRUE. In other words, an ELSE clause is not required in the ELSIF construct. Consider the following
example:

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_num;
BEGIN
 IF v_num < 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is a negative number');
 ELSIF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is a positive number');
 END IF;
 DBMS_OUTPUT.PUT_LINE ('Done...');
 END;

As you can see, there is no action specified when v_num is equal to zero. If the value of v_num is equal to zero, both
conditions will evaluate to FALSE, and the ELSIF statement will not execute at all. When a value of zero is specified for
v_num, this example produces the following output.

Enter value for sv_num: 0
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 0;
Done…

PL/SQL procedure successfully completed.

You probably noticed that for all IF statement examples, the reserved words
IF, ELSIF, ELSE, and END IF are entered on a separate line and aligned with
the word IF. In addition, all executable statements in the IF construct are
indented. The format of the IF construct makes no difference to the compiler.
However, the meaning of the formatted IF construct becomes obvious to us.

The IF-THEN-ELSE statement

IF x = y THEN v_text := 'YES'; ELSE v_text := 'NO'; END IF;

is equivalent to

IF x = y THEN
 v_text := 'YES';
ELSE
 v_text := 'NO';
END IF;

The formatted version of the IF construct is easier to read and understand.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.2 Exercises

5.2.1 Use the ELSIF Statement

In this exercise, you will use an ELSIF statement to display a letter grade for a student registered for a specific section
of course number 25.

Create the following PL/SQL script:

-- ch05_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 IF v_final_grade BETWEEN 90 AND 100 THEN
 v_letter_grade := 'A';
 ELSIF v_final_grade BETWEEN 80 AND 89 THEN
 v_letter_grade := 'B';
 ELSIF v_final_grade BETWEEN 70 AND 79 THEN
 v_letter_grade := 'C';
 ELSIF v_final_grade BETWEEN 60 AND 69 THEN
 v_letter_grade := 'D';
 ELSE
 v_letter_grade := 'F';
 END IF;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

Note, that you may need to change the values for the variables v_student_id and v_section_id as you see fit in order to
test some of your answers.

Try to answer the following questions first, and then execute the script:

a) What letter grade will be displayed on the screen:

i. if the value of v_final_grade is equal to 85?

ii. if the value of v_final_grade is NULL?

iii. if the value of v_final_grade is greater than 100?

b) How would you change this script so that a message 'v_final_grade is null' is displayed if v_final_grade is
NULL?

c) How would you change this script so that student ID and section ID are provided by a user?

d) How would you change the script to define a letter grade without specifying the upper limit of the final
grade? In the statement, v_final_grade BETWEEN 90 and 100, number 100 is the upper limit.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 5.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

5.2.1 Answers

a) What letter grade will be displayed on the screen:

i. if the value of v_final_grade is equal to 85?

ii. if the value of v_final_grade is NULL?

iii. if the value of v_final_grade is greater than 100?

A1: Answer: If the value of v_final_grade is equal to 85, the value "B" of the letter grade will be displayed on
the screen.

The conditions of the ELSIF statement are evaluated in sequential order. The first condition

v_final_grade BETWEEN 90 AND 100

evaluates to FALSE, and control is passed to the first ELSIF part of the ELSIF statement. Then, the second condition

v_final_grade BETWEEN 80 AND 89

evaluates to TRUE, and the letter "B" is assigned to the variable v_letter_grade. Control is then passed to first executable
statement after END IF, and message

Letter grade is: B

is displayed on the screen.

If the value of v_final_grade is NULL, value "F" of the letter grade will be displayed of the screen.

If the value of the v_final_grade is undefined or NULL, then all conditions of the ESLIF statement evaluate to NULL
(notice, they do not evaluate to FALSE). As a result, the ELSE part of the ELSIF statement is executed, and letter "F" is
assigned to the v_letter_grade.

If the value of v_final_grade is greater than 100, value "F" of the letter grade will be displayed of the
screen.

The conditions specified for the ELSIF statement cannot handle a value of v_final_grade greater than 100. So, for any
student whose letter grade should be A+, will result in a letter grade of "F." After the ELSIF statement has terminated,
"The letter grade is: F" is displayed on the screen.

b) How would you change this script so that a message 'v_final_grade is null' is displayed if v_final_grade is
NULL?

A2: Answer: Your script should look similar to this script. Changes are shown in bold letters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch05_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 IF v_final_grade IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('v_final_grade is null');
 ELSIF v_final_grade BETWEEN 90 AND 100 THEN
 v_letter_grade := 'A';
 ELSIF v_final_grade BETWEEN 80 AND 89 THEN
 v_letter_grade := 'B';
 ELSIF v_final_grade BETWEEN 70 AND 79 THEN
 v_letter_grade := 'C';
 ELSIF v_final_grade BETWEEN 60 AND 69 THEN
 v_letter_grade := 'D';
 ELSE
 v_letter_grade := 'F';
 END IF;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

One more condition has been added to the ELSIF statement. The condition

v_final_grade BETWEEN 90 AND 100

becomes the first ELSIF condition. Now, if the value of v_final_grade is NULL, the message "v_final_grade is null" is
displayed on the screen. However, there is no value assigned to the variable v_letter_grade. The message "Letter grade
is:" is displayed on the screen as well.

c) How would you change this script so that student ID and section ID are provided by a user?

A3: Answer: Your script should look similar to this script. Changes are shown in bold letters.

-- ch05_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_section_id NUMBER := &sv_section_id;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 IF v_final_grade BETWEEN 90 AND 100 THEN
 v_letter_grade := 'A';
 ELSIF v_final_grade BETWEEN 80 AND 89 THEN
 v_letter_grade := 'B';
 ELSIF v_final_grade BETWEEN 70 AND 79 THEN
 v_letter_grade := 'C';
 ELSIF v_final_grade BETWEEN 60 AND 69 THEN
 v_letter_grade := 'D';
 ELSE
 v_letter_grade := 'F';
 END IF;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

d) How would you change the script to define a letter grade without specifying the upper limit of the final
grade? In the statement, v_final_grade BETWEEN 90 and 100, number 100 is the upper limit.

A4: Answer: Your script should look similar to following. Changes are shown in bold letters.

-- ch05_3d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 IF v_final_grade >= 90 THEN
 v_letter_grade := 'A';
 ELSIF v_final_grade >= 80 THEN
 v_letter_grade := 'B';
 ELSIF v_final_grade >= 70 THEN
 v_letter_grade := 'C';
 ELSIF v_final_grade >= 60 THEN
 v_letter_grade := 'D';
 ELSE
 v_letter_grade := 'F';
 END IF;

 --- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

In this example, there is no upper limit specified for the variable v_final_grade because the BETWEEN operator has been
replaced with ">=" operator. Thus, this script is able to handle a value of v_final_grade that is greater than 100. Instead
of assigning letter "F" to v_letter_grade (in version 1.0 of the script), the letter "A" is assigned to the variable
v_letter_grade. As a result, this script produces more accurate results.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) An ELSIF construct can have only one ELSIF clause present.

a. _____ True

b. _____ False

2) There are multiple ELSE clauses present in an ELSIF construct.

a. _____ True

b. _____ False

3) What part of the ELSIF statement is executed when all of the conditions specified evaluate to NULL?

a. _____ IF part

b. _____ One of the ELSIF parts

c. _____ ELSE part

d. _____ ELSIF statement is not executed at all

4) When the conditions of the ELSIF statement are not mutually exclusive, which of the following occur?

a. _____ ELSIF statement causes an error.

b. _____ ELSIF statement is not executed at all.

c. _____ Statements associated with the first condition that evaluates to TRUE are executed.

d. _____ Statements associated with the last condition that evaluates to TRUE are executed.

5) An ELSIF statement without the ELSE part causes a syntax error.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 5.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.3 Nested IF Statements

Lab Objectives
After this Lab, you will be able to:

 Use Nested IF Statements

You have encountered different types of conditional controls: IF-THEN statement, IF-THEN-ELSE statement, and ELSIF
statement. These types of conditional controls can be nested inside of another—for example, an IF statement can be
nested inside an ELSIF and vice versa. Consider the following:

 FOR EXAMPLE

DECLARE
 v_num1 NUMBER := &sv_num1;
 v_num2 NUMBER := &sv_num2;
 v_total NUMBER;
BEGIN
 IF v_num1 > v_num2 THEN
 DBMS_OUTPUT.PUT_LINE ('IF part of the outer IF');
 v_total := v_num1 - v_num2;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('ELSE part of the outer IF');
 v_total := v_num1 + v_num2;

 IF v_total < 0 THEN
 DBMS_OUTPUT.PUT_LINE ('Inner IF');
 v_total := v_total * (-1);
 END IF;

 END IF;
 DBMS_OUTPUT.PUT_LINE ('v_total = '||v_total);
END;

The IF-THEN-ELSE statement is called an outer IF statement because it encompasses the IF-THEN statement (shown in
bold letters). The IF-THEN statement is called an inner IF statement because it is enclosed by the body of the IF-THEN-
ELSE statement.

Assume that the value for v_num1 and v_num2 are –4 and 3 respectively. First, the condition

v_num1 > v_num2

of the outer IF statement is evaluated. Since –4 is not greater than 3, the ELSE part of the outer IF statement is
executed. As a result, the message

ELSE part of the outer IF

is displayed, and the value of v_total is calculated. Next, the condition

v_total < 0

of the inner IF statement is evaluated. Since that value of v_total is equal –l, the condition yields TRUE, and message

Inner IF

is displayed. Next, the value of v_total is calculated again. This logic is demonstrated by the output produced by the
example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example:

Enter value for sv_num1: -4
old 2: v_num1 NUMBER := &sv_num1;
new 2: v_num1 NUMBER := -4;
Enter value for sv_num2: 3
old 3: v_num2 NUMBER := &sv_num2;
new 3: v_num2 NUMBER := 3;
ELSE part of the outer IF
Inner IF
v_total = 1

PL/SQL procedure successfully completed.

Logical Operators

So far in this chapter, you have seen examples of different IF statements. All of these examples used test operators,
such as >, <, and =, to test a condition. Logical operators can be used to evaluate a condition, as well. In addition,
they allow a programmer to combine multiple conditions into a single condition if there is such a need.

 FOR EXAMPLE

DECLARE
 v_letter CHAR(1) := '&sv_letter';
BEGIN
 IF (v_letter >= 'A' AND v_letter <= 'Z') OR
 (v_letter >= 'a' AND v_letter <= 'z')
 THEN
 DBMS_OUTPUT.PUT_LINE ('This is a letter');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('This is not a letter');

 IF v_letter BETWEEN '0' and '9' THEN
 DBMS_OUTPUT.PUT_LINE ('This is a number');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('This is not a number');
 END IF;

 END IF;
END;

In this example, the condition

(v_letter >= 'A' AND v_letter <= 'Z') OR
(v_letter >= 'a' AND v_letter <= 'z')

uses logical operators AND and OR. There are two conditions

(v_letter >= 'A' AND v_letter <= 'Z')

and

(v_letter >= 'a' AND v_letter <= 'z')

combined into one with the help of the OR operator. It is also important for you to realize the purpose of the
parentheses. In this example, they are used to improve readability only, because the operator AND takes precedence
over the operator OR.

When the symbol "?" is entered at runtime, this example produces the following output:

Enter value for sv_letter: ?
old 2: v_letter CHAR(1) := '&sv_letter';
new 2: v_letter CHAR(1) := '?';
This is not a letter
This is not a number

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.3 Exercises

5.3.1 Use Nested IF Statements

In this exercise, you will use nested IF statements. This script will convert the value of a temperature from one system
to another. If the temperature is supplied in Fahrenheit, it will be converted to Celsius, and vice versa.

Create the following PL/SQL script:

-- ch05_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_temp_in NUMBER := &sv_temp_in;
 v_scale_in CHAR := '&sv_scale_in';
 v_temp_out NUMBER;
 v_scale_out CHAR;
BEGIN
 IF v_scale_in != 'C' AND v_scale_in != 'F' THEN
 DBMS_OUTPUT.PUT_LINE ('This is not a valid scale');
 ELSE
 IF v_scale_in = 'C' THEN
 v_temp_out := ((9 * v_temp_in) / 5) + 32;
 v_scale_out := 'F';
 ELSE
 v_temp_out := ((v_temp_in – 32) * 5) / 9;
 v_scale_out := 'C';
 END IF;
 DBMS_OUTPUT.PUT_LINE ('New scale is: '||
 v_scale_out);
 DBMS_OUTPUT.PUT_LINE ('New temperature is: '||
 v_temp_out);
 END IF;
END;

Execute the script, and then answer the following questions:

a) What output is printed on the screen if the value of 100 is entered for the temperature, and the letter "C" is
entered for the scale?

b) Try to run this script without providing a value for the temperature. What message will be displayed on the
screen? Why?

c) Try to run this script providing an invalid letter for the temperature scale, for example, letter "V." What
message will be displayed on the screen? Why?

d) Rewrite this script so that if an invalid letter is entered for the scale, v_temp_out is initialized to zero and
v_scale_out is initialized to C.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 5.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

5.3.1 Answers

a) What output is printed on the screen if the value of 100 is entered for the temperature, and the letter "C"
is entered for the scale?

A1: Answer: Your output should look like the following:

Enter value for sv_temp_in: 100
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := 100;
Enter value for sv_scale_in: C
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'C';
New scale is: F
New temperature is: 212

PL/SQL procedure successfully completed.

Once the values for v_temp_in and v_scale_in have been entered, the condition

v_scale_in != 'C' AND v_scale_in != 'F'

of the outer IF statement evaluates to FALSE, and control is passed to the ELSE part of the outer IF statement. Next,
the condition

v_scale_in = 'C'

of the inner IF statement evaluates to TRUE, and the values of the variables v_temp_out and v_scale_out are calculated.
Control is then passed back to the outer IF statement, and the new value for the temperature and the scale are
displayed on the screen.

b) Try to run this script without providing a value for the temperature. What message will be displayed on the
screen? Why?

A2: Answer: If the value for the temperature is not entered, the script will not compile at all.

The compiler will try to assign a value to v_temp_in with the help of the substitution variable. Because the value for
v_temp_in has not been entered, the assignment statement will fail, and the following error message will be displayed.

Enter value for sv_temp_in:
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := ;
Enter value for sv_scale_in: C
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'C';
 v_temp_in NUMBER := ;
 *
ERROR at line 2:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ERROR at line 2:
ORA-06550: line 2, column 27:
PLS-00103: Encountered the symbol ";" when expecting one of the following:
(- + mod not null <an identifier>
<a double-quoted delimited-identifier> <a bind variable> avg
count current exists max min prior sql stddev sum variance
cast <a string literal with character set specification>
<a number> <a single-quoted SQL string>
The symbol "null" was substituted for ";" to continue.

You have probably noticed that even though the mistake seems small and insignificant, the error message is fairly long
and confusing.

c) Try to run this script providing an invalid letter for the temperature scale, for example, letter "V." What
message will be displayed on the screen? Why?

A3: Answer: If an invalid letter is entered for the scale, the message "This is not a valid scale" will be
displayed on the screen.

The condition of the outer IF statement will evaluate to TRUE. As a result, the inner IF statement will not be executed at
all, and the message "This is not a valid scale" will be displayed on the screen.

Assume that letter "V" was typed by mistake. This example will produce the following output:

Enter value for sv_temp_in: 45
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := 45;
Enter value for sv_scale_in: V
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'V';
This is not a valid scale

PL/SQL procedure successfully completed.

d) Rewrite this script so that if an invalid letter is entered for the scale, v_temp_out is initialized to zero and
v_scale_out is initialized to C.

A4: Answer: Your script should look similar to the following script. Changes are shown in bold letters. Notice
that the two last DBMS_OUTPUT.PUT_LINE statements have been moved from the body of the outer IF
statement.

-- ch05_4b.sql, version 2.0
DECLARE
 v_temp_in NUMBER := &sv_temp_in;
 v_scale_in CHAR := '&sv_scale_in';
 v_temp_out NUMBER;
 v_scale_out CHAR;
BEGIN
 IF v_scale_in != 'C' AND v_scale_in != 'F' THEN
 DBMS_OUTPUT.PUT_LINE ('This is not a valid scale');
 v_temp_out := 0;
 v_scale_out := 'C';
 ELSE
 IF v_scale_in = 'C' THEN
 v_temp_out := ((9 * v_temp_in) / 5) + 32;
 v_scale_out := 'F';
 ELSE
 v_temp_out := ((v_temp_in - 32) * 5) / 9;
 v_scale_out := 'C';
 END IF;
 END IF;
 DBMS_OUTPUT.PUT_LINE ('New scale is: '||v_scale_out);
 DBMS_OUTPUT.PUT_LINE ('New temperature is: '||
 v_temp_out);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding script produces the following output:

Enter value for sv_temp_in: 100
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := 100;
Enter value for sv_scale_in: V
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'V';
This is not a valid scale.
New scale is: C
New temperature is: 0

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 5.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) What types of IF statements can be nested one inside another?

a. _____ IF-THEN statement can only be nested inside ELSIF statement.

b. _____ IF-THEN-ELSE statement cannot be nested at all.

c. _____ Any IF statement can be nested inside another IF statement.

2) How many IF statements can be nested one inside another?

a. _____ One

b. _____ Two

c. _____ Any number

3) Only a single logical operator can be used with a condition of an IF statement.

a. _____ True

b. _____ False

4) When using nested IF statements, their conditions do not need to be mutually exclusive.

a. _____ True

b. _____ False

5) When the condition of the outer IF statement evaluates to FALSE, which of the following happens?

a. _____ Control is transferred to the inner IF statement.

b. _____ The error message is generated.

c. _____ Control is transferred to the first executable statement after the outer END IF statement.

Answers appear in Appendix A, Section 5.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5 Test Your Thinking

In this chapter you learned about different types of IF statements. You also learned that all of these
different IF statements can be nested one inside another. Here are some exercises that will help you test
the depth of your understanding.

1) Rewrite ch05_1a.sql. Instead of getting information from the user for the
variable v_date, define its value with the help of the function SYSDATE. After it
has been determined that a certain day falls on the weekend, check to see if
the time is before or after noon. Display the time of the day together with the
day.

2) Create a new script. For a given instructor, determine how many sections he
or she is teaching. If the number is greater than or equal to 3, display a
message saying that the instructor needs a vacation. Otherwise, display a
message saying how many sections this instructor is teaching.

3) Execute the two PL/SQL blocks below and explain why they produce different
output for the same value of the variable v_num. Remember to issue the SET
SERVEROUTPUT ON command before running this script.

-- Block 1
DECLARE
 v_num NUMBER := NULL;
BEGIN
 IF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('v_num is not greater than 0');
 END IF;
END;

-- Block 2
DECLARE
 v_num NUMBER := NULL;
BEGIN
 IF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
 END IF;
 IF NOT (v_num > 0) THEN
 DBMS_OUTPUT.PUT_LINE
 ('v_num is not greater than 0');
 END IF;
END;

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Conditional Control: CASE Statements
Chapter Objectives
In this Chapter, you will learn about:

 CASE Statements

 CASE Expressions

 NULLIF and COALESCE Functions

In the previous chapter, you explored the concept of conditional control via IF and ELSIF statements. In this chapter,
you will continue by examining different types of CASE statements and expressions. They are new PL/SQL features and
are not supported by PL/SQL in versions prior to Oracle 9i. You will also learn how to use NULLIF and COALESCE
functions that are considered an extension of CASE.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LAB 6.1 CASE Statements

Lab Objectives
After this Lab, you will be able to:

 Use CASE Statements

 Use Searched CASE Statements

A CASE statement has two forms: CASE and searched CASE. A CASE statement allows you to specify a selector that
determines which group of actions to take. A searched CASE statement does not have a selector; it has search
conditions that are evaluated in order to determine which group of actions to take.

CASE Statements

A CASE statement has the following structure:

CASE SELECTOR
 WHEN EXPRESSION 1 THEN STATEMENT 1;
 WHEN EXPRESSION 2 THEN STATEMENT 2;
 ...
 WHEN EXPRESSION N THEN STATEMENT N;
 ELSE STATEMENT N+1;
END CASE;

The reserved word CASE marks the beginning of the CASE statement. A selector is a value that determines which
WHEN clause should be executed. Each WHEN clause contains an EXPRESSION and one or more executable statements
associated with it. The ELSE clause is optional and works similar to the ELSE clause used in that IF-THEN-ELSE
statement. END CASE is a reserved phrase that indicates the end of the CASE statement. This flow of the logic from the
preceding structure of the CASE statement is illustrated in Figure 6.1.

Figure 6.1. CASE Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the selector is evaluated only once. The WHEN clauses are evaluated sequentially. The value of an expression
is compared to the value of the selector. If they are equal, the statement associated with a particular WHEN clause is
executed, and subsequent WHEN clauses are not evaluated. If no expression matches the value of the selector, the
ELSE clause is executed.

Recall the example of the IF-THEN-ELSE statement used in the previous chapter.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
BEGIN
 -- test if the number provided by the user is even
 IF MOD(v_num,2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END IF;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

Consider the new version of the same example with the CASE statement instead of the IF-THEN-ELSE statement.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
 v_num_flag NUMBER;
BEGIN
 v_num_flag := MOD(v_num,2);

 -- test if the number provided by the user is even
 CASE v_num_flag
 WHEN 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END CASE;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

In this example, a new variable, v_num_flag, is used as a selector for the CASE statement. If the MOD function returns
0, then the number is even; otherwise it is odd. If v_num is assigned the value of 7, this example produces the following
output:

Enter value for sv_user_num: 7
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 7;
7 is odd number
Done

PL/SQL procedure successfully completed.

Searched CASE Statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A searched CASE statement has search conditions that yield Boolean values: TRUE, FALSE, or NULL. When a particular
search condition evaluates to TRUE, the group of statements associated with this condition is executed. This is indicated
as follows:

CASE
 WHEN SEARCH CONDITION 1 THEN STATEMENT 1;
 WHEN SEARCH CONDITION 2 THEN STATEMENT 2;
 ...
 WHEN SEARCH CONDITION N THEN STATEMENT N;
 ELSE STATEMENT N+1;
END CASE;

When a search condition evaluates to TRUE, control is passed to the statement associated with it. If no search condition
yields TRUE, then statements associated with the ELSE clause are executed. This flow of logic from the preceding
structure of the searched CASE statement is illustrated in Figure 6.2.

Figure 6.2. Searched CASE Statement

Consider the modified version of the example that you have seen previously in this lab.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
BEGIN
 -- test if the number provided by the user is even
 CASE
 WHEN MOD(v_num,2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END CASE;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

Notice that this example is almost identical to the previous example.

In the previous example, the variable v_num_flag was used as a selector, and the result of the MOD function was
assigned to it. The value of the selector was then compared to the value of the expression. In this example, you are
using a searched CASE statement, so there is no selector present. The variable v_num is used as part of the search
conditions, so there is no need to declare variable v_num_flag. This example produces the same output when the same
value is provided for the v_num:

Enter value for sv_user_num: 7
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 7;
7 is odd number
Done

PL/SQL procedure successfully completed.

Differences Between CASE and Searched CASE Statements

It is important to note the differences between the CASE and searched CASE statements. You have seen that the
searched CASE statement does not have a selector. In addition, its WHEN clauses contain search conditions that yield a
Boolean value similar to the IF statement, not expressions that can yield a value of any type except a PL/SQL record,
an index-by-table, a nested table, a vararray, BLOB, BFILE, or an object type. You will encounter some of these types in
the future chapters. Consider the following two code fragments based on the examples you have seen earlier in this
chapter.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
 v_num_flag NUMBER;
BEGIN
 v_num_flag := MOD(v_num,2);

 -- test if the number provided by the user is even
 CASE v_num_flag
 WHEN 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
...

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
BEGIN
 -- test if the number provided by the user is even
 CASE
 WHEN MOD(v_num,2) = 0 THEN
...

In the first code fragment, v_num_flag is the selector. It is a PL/SQL variable that has been defined as NUMBER. Because
the value of the expression is compared to the value of the selector, the expression must return a similar datatype. The
expression '0' contains a number, so its datatype is also numeric. In the second code fragment, each searched
expression evaluates to TRUE or FALSE just like conditions of an IF statement.

Next, consider an example of the CASE statement that generates a syntax error because the datatype returned by the
expressions does not match the datatype assigned to the selector.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_num;
 v_num_flag NUMBER;
BEGIN
 CASE v_num_flag
 WHEN MOD(v_num,2) = 0 THEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHEN MOD(v_num,2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END CASE;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

In this example, the variable v_num_flag has been defined as a NUMBER. However, the result of each expression yields
Boolean datatype. As a result, this example produces the following syntax error:

Enter value for sv_num: 7
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 7;
 CASE v_num_flag
 *
ERROR at line 5:
ORA-06550: line 5, column 9:
PLS-00615: type mismatch found at 'V_NUM_FLAG' between
CASE operand and WHEN operands
ORA-06550: line 5, column 4:
PL/SQL: Statement ignored

Consider a modified version of this example where v_num_flag has been defined as a Boolean variable.

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_num;
 v_num_flag Boolean;
BEGIN
 CASE v_num_flag
 WHEN MOD(v_num,2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END CASE;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

If v_num is assigned the value of 7 again, this example produces the following output:

Enter value for sv_num: 7
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 7;
7 is odd number
Done

PL/SQL procedure successfully completed.

At first glance this seems to be the output that you would expect. However, consider the output produced by this
example when the value of 4 is assigned to the variable v_num:

Enter value for sv_num: 4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 4;
4 is odd number
Done

PL/SQL procedure successfully completed.

Notice that the second run of the example produced an incorrect output even though it did not generate any syntax
errors. When the value 4 is assigned to the variable v_num, the expression

MOD(v_num,2) = 0

yields TRUE, and it is compared to the selector v_num_flag. However, the v_num_flag has not been initialized to any
value, so it is NULL. Because NULL does not equal to TRUE, the statement associated with the ELSE clause is executed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.1 Exercises

6.1.1 Use the CASE Statement

In this exercise, you will use the CASE statement to display the name of a day on the screen based on the number of
the day in a week. In other words, if the number of a day of the week is 3, then it is Tuesday.

Create the following PL/SQL script:

-- ch06_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
 v_day VARCHAR2(1);
BEGIN
 v_day := TO_CHAR(v_date, 'D');
 CASE v_day
 WHEN '1' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');
 WHEN '2' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Monday');
 WHEN '3' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');
 WHEN '4' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');
 WHEN '5' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');
 WHEN '6' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Friday');
 WHEN '7' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');
 END CASE;
END;

Execute the script, and then answer the following questions:

a) If the value of v_date equals '15-JAN-2002', what output is printed on the screen?

b) How many times is the CASE selector v_day evaluated?

c) Rewrite this script using the ELSE clause in the CASE statement.

d) Rewrite this script using the searched CASE statement.

6.1.2 Use the Searched CASE Statement

In this exercise, you will modify the script ch05_3d.sql used in the previous chapter. The original script uses the ELSIF
statement to display a letter grade for a student registered for a specific section of course number 25. The new version
will use a searched CASE statement to achieve the same result. Try to answer the questions before you run the script.
Once you have answered the questions, run the script and check your answers. Note that you may need to change the
values for the variables v_student_id and v_section_id as you see fit in order to test some of your answers.

Create the following PL/SQL script:

-- ch06_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 CASE
 WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
 WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';
 WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
 WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
 ELSE v_letter_grade := 'F';
 END CASE;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

Try to answer the following questions first, and then execute the script:

a) What letter grade will be displayed on the screen:

i. if the value of v_final_grade is equal to 60?

ii. if the value of v_final_grade is greater than 60 and less than 70?

iii. if the value of v_final_grade is NULL?

b) How would you change this script so that a message "There is no final grade" is displayed if v_final_grade is
null? In addition, make sure that the message "Letter grade is: " is not displayed on the screen.

c) Rewrite this script, changing the order of the searched conditions as follows:

CASE
 WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
 WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
 WHEN v_final_grade >= 80 THEN ...
 WHEN v_final_grade >= 90 THEN ...
 ELSE ...

Execute the script and explain the output produced.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 6.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

6.1.1 Answers

a) If the value of v_date equals '15-JAN-2002', what output is printed on the screen?

A1: Answer: Your output should look like the following:

Enter value for sv_user_date: 15-JAN-2002
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('15-JAN-2002', 'DD-MON-YYYY');
Today is Tuesday

PL/SQL procedure successfully completed.

When the value of 15-JAN-2002 is entered for v_date, the number of the day of the week is determined for the variable
v_day with the help of the TO_CHAR function. Next, each expression of the CASE statement is compared sequentially to
the value of the selector. Because the value of the selector equals 3, the DBMS_OUTPUT.PUT_LINE statement
associated with the third WHEN clause is executed. As a result, the message 'Today is Tuesday' is displayed on the
screen. The rest of the expressions are not evaluated, and control is passed to the first executable statement after END
CASE.

b) How many times is the CASE selector v_day evaluated?

A2: Answer: The CASE selector v_day is evaluated only once. However, the WHEN clauses are checked
sequentially. When the value of the expression in the WHEN clause equals the value of the selector, the
statements associated with the WHEN clause are executed.

c) Rewrite this script using the ELSE clause in the CASE statement.

A3: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch06_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
 v_day VARCHAR2(1);
BEGIN
 v_day := TO_CHAR(v_date, 'D');
 CASE v_day
 WHEN '1' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');
 WHEN '2' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Monday');
 WHEN '3' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');
 WHEN '4' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');
 WHEN '5' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');
 WHEN '6' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Friday');
 ELSE DBMS_OUTPUT.PUT_LINE ('Today is Saturday');
 END CASE;
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the last WHEN clause has been replaced by the ELSE clause. If '19-JAN-2002' is provided at runtime, the
example produces the following output:

Enter value for sv_user_date: 19-JAN-2002
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('19-JAN-2002', 'DD-MON-YYYY');
Today is Saturday

PL/SQL procedure successfully completed.

None of the expressions listed in the WHEN clauses are equal to the value of the selector because the date '19-JAN-
2002' falls on Saturday, which is the seventh day of the week. As a result, the ELSE clause is executed, and the
message 'Today is Saturday' is displayed on the screen.

d) Rewrite this script using the searched CASE statement.

A4: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch06_1c.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
BEGIN
 CASE
 WHEN TO_CHAR(v_date, 'D') = '1' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Sunday');
 WHEN TO_CHAR(v_date, 'D') = '2' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Monday');
 WHEN TO_CHAR(v_date, 'D') = '3' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');
 WHEN TO_CHAR(v_date, 'D') = '4' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');
 WHEN TO_CHAR(v_date, 'D') = '5' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Thursday');
 WHEN TO_CHAR(v_date, 'D') = '6' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Friday');
 WHEN TO_CHAR(v_date, 'D') = '7' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is Saturday');
 END CASE;
END;

Notice that in the new version of the example there is no need to declare variable v_day because the searched CASE
statement does not need a selector. The expression that you used to assign a value to the variable v_day is now used as
part of the searched conditions. When run, this example produces output identical to the output produced by the
original version:

Enter value for sv_user_date: 15-JAN-2002
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('15-JAN-2002', 'DD-MON-YYYY');
Today is Tuesday

PL/SQL procedure successfully completed.

6.1.2 Answers

a) What letter grade will be displayed on the screen:

i. if the value of v_final_grade is equal to 60?

ii. if the value of v_final_grade is greater than 60 and less than 70?

iii. if the value of v_final_grade is NULL?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

iii. if the value of v_final_grade is NULL?

A1: Answer: If the value of v_final_grade is equal to 60, value "D" of the letter grade will be displayed on the
screen.

The searched conditions of the CASE statement are evaluated in sequential order. The searched condition

WHEN v_final_grade >= 60 THEN

yields TRUE, and as a result, letter "D" is assigned to the variable v_letter_grade. Control is then passed to the first
executable statement after END IF, and the message "Letter grade is: D" is displayed on the screen.

If the value of v_final_grade is greater than 60 and less than 70, value "D" of the letter grade will be
displayed on the screen.

If the value of the v_final_grade falls between 60 and 70, then the searched condition

WHEN v_final_grade >= 70 THEN

yields FALSE because the value of the variable v_final_grade is less that 70. However, the next searched condition

WHEN v_final_grade >= 60 THEN

of the CASE statement evaluates to TRUE, and letter "D" is assigned to the variable v_letter_grade.

If the value of v_final_grade is NULL, value "F" of the letter grade will be displayed on the screen.

All searched conditions of the CASE statement evaluate to FALSE because NULL cannot be compared to a value. Such a
comparison will always yield FALSE, and as a result, the ELSE clause is executed.

b) How would you change this script so that a message "There is no final grade" is displayed if v_final_grade is
null? In addition, make sure that the message "Letter grade is: " is not displayed on the screen.

A2: Answer: Your script should look similar to this script. Changes are shown in bold letters.

-- ch06_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 CASE -- outer CASE
 WHEN v_final_grade IS NULL THEN
 DBMS_OUTPUT.PUT_LINE ('There is no final grade.');
 ELSE
 CASE –- inner CASE
 WHEN v_final_grade >= 90
 THEN v_letter_grade := 'A';
 WHEN v_final_grade >= 80
 THEN v_letter_grade := 'B';
 WHEN v_final_grade >= 70
 THEN v_letter_grade := 'C';
 WHEN v_final_grade >= 60
 THEN v_letter_grade := 'D';
 ELSE v_letter_grade := 'F';
 END CASE;
 -- control resumes here after inner CASE terminates
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
 END CASE;
 -- control resumes here after outer CASE terminates
END;

In order to achieve the desired results, you are nesting CASE statements one inside the other just like IF statements in
the previous chapter. The outer CASE statement evaluates the value of the variable v_final_grade. If the value of
v_final_grade is NULL, then the message "There is no final grade." is displayed on the screen. If the value of v_final_grade
is not NULL, then the ELSE part of the outer CASE statement is executed.

Notice that in order to display the letter grade only when there is a final grade, you have associated the statement

DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

with the ELSE clause of the outer CASE statement. This guarantees that the message "Letter grade…" will be displayed
on the screen only when the variable v_final_grade is not NULL.

In order to test this script fully, you have also introduced a substitution variable. This enables you to run the script for
the different values of v_student_id. For the first run, enter value of 136, and for the second run enter the value of 102.

The first output displays the message "There is no final grade." and does not display the message "Letter grade…":

Enter value for sv_student_id: 136
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 136;
There is no final grade.

PL/SQL procedure successfully completed.

The second run produced output similar to the output produced by the original version:

Enter value for sv_student_id: 102
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 102;
Letter grade is: A

PL/SQL procedure successfully completed.

c) Rewrite this script, changing the order of the searched conditions as follows:

CASE
 WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
 WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
 WHEN v_final_grade >= 80 THEN ...
 WHEN v_final_grade >= 90 THEN ...
 ELSE ...

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch06_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 CASE
 WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
 WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
 WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';
 WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
 ELSE v_letter_grade := 'F';
 END CASE;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

This script produces the following output:

Letter grade is: D

PL/SQL procedure successfully completed.

The first searched condition of the CASE statement evaluates to TRUE, because the value
of v_final_grade equals 92, and it is greater than 60.

You learned earlier that the searched conditions are evaluated sequentially. Therefore, the statements associated with
the first condition that yields TRUE are executed, and the rest of the searched conditions are discarded. In this
example, the searched condition

WHEN v_final_grade >= 60 THEN

evaluates to TRUE, and the value of "D" is assigned to the variable v_letter_grade. Then control is passed to the first
executable statement after END CASE, and the message "Letter grade is: D" is displayed on the screen. In order for
this script to assign the letter grade correctly, the CASE statement may be modified as follows:

CASE
 WHEN v_final_grade < 60 THEN v_letter_grade := 'F';
 WHEN v_final_grade < 70 THEN v_letter_grade := 'D';
 WHEN v_final_grade < 80 THEN v_letter_grade := 'C';
 WHEN v_final_grade < 90 THEN v_letter_grade := 'B';
 WHEN v_final_grade < 100 THEN v_letter_grade := 'A';
END CASE;

However, there is a small problem with this CASE statement also. What do you think will happen when v_final_grade is
greater than 100?

With the CASE constructs, as with the IF constructs, a group of statements
that is executed will generally depend on the order in which its condition is
listed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A CASE construct is a control statement for which of the following?

a. _____ Sequence structure

b. _____ Iteration structure

c. _____ Selection structure

2) The ELSE clause is required part of a CASE construct.

a. _____ True

b. _____ False

3) A selector in a CASE statement

a. _____ is evaluated as many times as there are WHEN clauses.

b. _____ is evaluated once per CASE statement.

c. _____ is not evaluated at all.

4) When all conditions of the searched CASE construct evaluate to NULL

a. _____ Control is passed to the first executable statement after END CASE if there is no ELSE clause
present.

b. _____ Control is passed to the first executable statement after END CASE if there is an ELSE clause
present.

c. _____ CASE statement causes a syntax error if there is no ELSE clause present.

5) CASE statements cannot be nested one inside the other

a. _____ False

b. _____ True

Answers appear in Appendix A, Section 6.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.2 CASE Expressions

Lab Objectives
After this Lab, you will be able to:

 Use CASE Expressions

In Chapter 3, you encountered various PL/SQL expressions. You will recall that the result of an expression yields a
single value that is assigned to a variable. In a similar manner, a CASE expression evaluates to a single value that is
then assigned to a variable.

A CASE expression has a structure almost identical to a CASE statement. Thus, it also has two forms: CASE and
searched CASE. Consider an example of a CASE statement used in the previous lab of this chapter:

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
 v_num_flag NUMBER;
BEGIN
 v_num_flag := MOD(v_num,2);

 -- test if the number provided by the user is even
 CASE v_num_flag
 WHEN 0 THEN
 DBMS_OUTPUT.PUT_LINE (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
 END CASE;
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

Consider the new version of the same example, with the CASE expression instead of the CASE statement:

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
 v_num_flag NUMBER;
 v_result VARCHAR2(30);
BEGIN
 v_num_flag := MOD(v_num,2);

 v_result :=
 CASE v_num_flag
 WHEN 0 THEN v_num||' is even number'
 ELSE v_num||' is odd number'
 END;
 DBMS_OUTPUT.PUT_LINE (v_result);
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

In this example, a new variable, v_result, is used to hold the value returned by the CASE expression. If v_num is
assigned the value of 8, this example produces the following output:

Enter value for sv_user_num: 8
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 8;
8 is even number
Done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Done

PL/SQL procedure successfully completed.

It is important to note some syntax differences between a CASE statement and a CASE expression. Consider the
following code fragments:

Case Statement Case Expression

CASE v_num_flag
 WHEN 0 THEN
 DBMS_OUTPUT.PUT_LINE
 (v_num||' is even number');
 ELSE
 DBMS_OUTPUT.PUT_LINE
 (v_num||' is odd number');
END CASE;

CASE v_num_flag
 WHEN 0 THEN
 v_num||
 ' is even number'
 ELSE
 v_num||
 ' is odd number'
END;

In the CASE statement, the WHEN and ELSE clauses each contain a single executable statement. Each executable
statement is terminated by a semicolon. In the CASE expression, the WHEN and ELSE clauses each contain an
expression that is not terminated by a semicolon. There is one semicolon present after the reserved word END, which
terminates the CASE expression. Finally, the CASE statement is terminated by the reserved phrase END CASE.

Next, consider another version of the previous example, with the searched CASE expression:

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
 v_result VARCHAR2(30);
BEGIN
 v_result :=
 CASE
 WHEN MOD(v_num,2) = 0 THEN v_num||' is even number'
 ELSE v_num||' is odd number'
 END;
 DBMS_OUTPUT.PUT_LINE (v_result);
 DBMS_OUTPUT.PUT_LINE ('Done');
END;

In this example, there is no need to declare variable v_num_flag because the searched CASE expression does not need a
selector value, and the result of the MOD function is incorporated into the search condition. When run, this example
produces output identical to the previous version:

Enter value for sv_user_num: 8
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 8;
8 is even number
Done

PL/SQL procedure successfully completed.

You learned earlier that a CASE expression returns a single value that is then assigned to a variable. In the examples
that you saw earlier, this assignment operation was accomplished via the assignment operator, :=. You may recall that
there is another way to assign a value to a PL/SQL variable, via a SELECT INTO statement. Consider an example of the
CASE expression used in a SELECT INTO statement:

 FOR EXAMPLE

DECLARE
 v_course_no NUMBER;
 v_description VARCHAR2(50);
 v_prereq VARCHAR2(35);
BEGIN
 SELECT course_no, description,
 CASE
 WHEN prerequisite IS NULL THEN
 'No prerequisite course required'
 ELSE TO_CHAR(prerequisite)
 END prerequisite
 INTO v_course_no, v_description, v_prereq
 FROM course

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM course
 WHERE course_no = 20;

 DBMS_OUTPUT.PUT_LINE ('Course: '||v_course_no);
 DBMS_OUTPUT.PUT_LINE ('Description: '||v_description);
 DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||v_prereq);
END;

In this example, you are displaying course number, description, and the number of a prerequisite course on the screen.
Furthermore, if a given course does not have a prerequisite course, a message stating so is displayed on the screen. In
order to achieve the desired results, a CASE expression is used as one of the columns in the SELECT INTO statement.
Its value is assigned to the variable v_prereq. Notice that there is no semicolon after the reserved word END of the CASE
expression.

This example produces the following output:

Course: 20
Description: Intro to Computers
Prerequisite: No prerequisite course required

PL/SQL procedure successfully completed.

Course 20 does not have a prerequisite course. As a result, the searched condition

WHEN prerequisite IS NULL THEN

evaluates to TRUE, and the value "No prerequisite course required" is assigned to the variable v_prereq.

It is important to note why function TO_CHAR is used in the ELSE clause of the CASE expression:

CASE
 WHEN prerequisite IS NULL THEN 'No prerequisite course
 required'
 ELSE TO_CHAR(prerequisite)
END

A CASE expression returns a single value, thus, a single datatype. Therefore, it is important to ensure that regardless of
what part of a CASE expression is executed, it always returns the same datatype. In the preceding CASE expression,
the WHEN clause returns the VARCHAR2 datatype. The ELSE clause returns the value of the PREREQUISITE column of
the COURSE table. This column has been defined as NUMBER, so it is necessary to convert it to the string datatype.

When the TO_CHAR function is not used, the CASE expression causes the following syntax error:

 ELSE prerequisite
 *
ERROR at line 9:
ORA-06550: line 9, column 19:
PL/SQL: ORA-00932: inconsistent datatypes
ORA-06550: line 6, column 4:
PL/SQL: SQL Statement ignored

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.2 Exercises

6.2.1 Use the CASE Expression

In this exercise, you will modify the script ch06_2a.sql. Instead of using a searched CASE statement, you will use a
searched CASE expression to display a letter grade for a student registered for a specific section of course number 25.

Answer the following questions:

a) Modify the script ch06_2a.sql. Substitute the CASE statement with the searched CASE expression, and
assign the value returned by the expression to the variable v_letter_grade.

b) Run the script created in part a and explain the output produced.

c) Rewrite the script created in part a so that the result of the CASE expression is assigned to the v_letter_grade
variable via a SELECT INTO statement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 6.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

6.2.1 Answers

a) Modify the script ch06_2a.sql. Substitute the CASE statement with the searched CASE expression, and
assign the value returned by the expression to the variable v_letter_grade.

A1: Answer: Your script should look similar to the script below. Changes are shown in bold letters.

-- ch06_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_final_grade NUMBER;
 v_letter_grade CHAR(1);
BEGIN
 SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 v_letter_grade :=
 CASE
 WHEN v_final_grade >= 90 THEN 'A'
 WHEN v_final_grade >= 80 THEN 'B'
 WHEN v_final_grade >= 70 THEN 'C'
 WHEN v_final_grade >= 60 THEN 'D'
 ELSE 'F'
 END;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

In the original version of the script (ch06_2a.sql), you used a searched CASE statement in order to assign a value to
the variable v_letter_grade as follows:

CASE
 WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
 WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';
 WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
 WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
 ELSE v_letter_grade := 'F';
END CASE;

Notice that the variable v_letter_grade was used as part of the CASE statement. In the new version of the script, the
CASE expression

CASE
 WHEN v_final_grade >= 90 THEN 'A'
 WHEN v_final_grade >= 80 THEN 'B'
 WHEN v_final_grade >= 70 THEN 'C'
 WHEN v_final_grade >= 60 THEN 'D'
 ELSE 'F'
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

does not contain any references to the variable v_letter_grade. Each search condition is evaluated. As soon as a
particular condition evaluates to TRUE, its corresponding value is returned and then assigned to the variable
v_letter_grade.

b) Run the script created in part a and explain the output produced.

A2: Answer: Your output should look similar to the following:

Letter grade is: A

PL/SQL procedure successfully completed.

The SELECT INTO statement returns a value of 92 that is assigned to the variable v_final_grade. As a result,
the first searched condition of the CASE expression evaluates to TRUE and returns a value of 'A'. This
value is then assigned to the variable v_letter_grade and displayed on the screen via the
DBMS_OUTPUT.PUT_LINE statement.

c) Rewrite the script created in part a so that the result of the CASE expression is assigned to the
v_letter_grade variable via a SELECT INTO statement.

A3: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch06_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := 102;
 v_section_id NUMBER := 89;
 v_letter_grade CHAR(1);
BEGIN
 SELECT CASE
 WHEN final_grade >= 90 THEN 'A'
 WHEN final_grade >= 80 THEN 'B'
 WHEN final_grade >= 70 THEN 'C'
 WHEN final_grade >= 60 THEN 'D'
 ELSE 'F'
 END
 INTO v_letter_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||
 v_letter_grade);
END;

In the previous version of the script, the variable v_final_grade was used to hold the value of the numeric grade.

SELECT final_grade
 INTO v_final_grade
 FROM enrollment
 WHERE student_id = v_student_id
 AND section_id = v_section_id;

This value was used by the CASE expression to assign proper letter grade to the variable v_letter_grade.

CASE
 WHEN v_final_grade >= 90 THEN 'A'
 WHEN v_final_grade >= 80 THEN 'B'
 WHEN v_final_grade >= 70 THEN 'C'
 WHEN v_final_grade >= 60 THEN 'D'
 ELSE 'F'
END;

In the current version of the script, the CASE expression is used as part of the SELECT INTO statement. As a result, the
column FINAL_GRADE can be used by the CASE expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CASE
 WHEN final_grade >= 90 THEN 'A'
 WHEN final_grade >= 80 THEN 'B'
 WHEN final_grade >= 70 THEN 'C'
 WHEN final_grade >= 60 THEN 'D'
 ELSE 'F'
END

as part of the searched conditions in order to assign a value to the variable v_letter_grade.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A CASE expression

a. _____ returns a single value.

b. _____ returns multiple values.

c. _____ does not return values at all

2) A CASE expression is terminated by

a. _____ END CASE.

b. _____ CASE.

c. _____ END.

3) A CASE expression never has a selector.

a. _____ True

b. _____ False

4) When all conditions of a CASE expression evaluate to NULL, the expression

a. _____ returns NULL if there is no ELSE clause present.

b. _____ causes a syntax error if there is no ELSE clause present.

5) A CASE expression may return a single datatype only.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 6.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.3 NULLIF and COALESCE Functions

Lab Objectives
After this Lab, you will be able to:

 Use the NULLIF Function

 Use the COALESCE Function

The NULLIF and COALESCE functions are defined by the ANSI 1999 standard to be "CASE abbreviations." Both functions
can be used as a variety of the CASE expression.

NULLIF Function

The NULLIF function compares two expressions. If they are equal, then the function returns NULL; otherwise, it returns
the value of the first expression. The NULLIF has the following structure:

NULLIF (expression1, expression2)

If expression1 is equal to expression2, then NULLIF returns NULL. If expression1 does not equal expression2, NULLIF
returns expression1. Note that the NULLIF function does the opposite of the NVL function. If the first expression is
NULL, then NVL returns the second expression. If the first expression is not NULL, then NVL returns the first expression.

The NULLIF function is equivalent to the following CASE expression:

CASE
 WHEN expression1 = expression2 THEN NULL
 ELSE expression1
END

Consider the following example of NULLIF:

 FOR EXAMPLE

DECLARE
 v_num NUMBER := &sv_user_num;
 v_remainder NUMBER;
BEGIN
 -- calculate the remainder and if it is zero return a NULL
 v_remainder := NULLIF(MOD(v_num,2),0);
 DBMS_OUTPUT.PUT_LINE ('v_remainder: '||v_remainder);
END;

This is example is somewhat similar to an example that you have seen earlier in this chapter. A value is assigned to the
variable v_num at run-time. Next, this value is divided by 2, and its remainder is compared to 0 via the NULLIF function.
If the remainder equals 0, the NULLIF function returns NULL; otherwise it returns the remainder. The value returned by
the NULLIF function is stored in the variable v_remainder and displayed on the screen via the DBMS_OUTPUT.PUT_LINE
statement. When run, the example produces the output shown below. For the first run, 5 is assigned to the variable
v_num:

Enter value for sv_user_num: 5
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 5;
v_remainder: 1

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

For the second run, 4 is assigned to the variable v_num:

Enter value for sv_user_num: 4
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 4;
v_remainder:

PL/SQL procedure successfully completed.

In the first run, 5 is not divisible by 2, and the NULLIF function returns the value of the remainder. In the second run, 4
is divisible by 2, and the NULLIF function returns NULL as the value of the remainder.

The NULLIF function has a restriction: You cannot assign a literal NULL to expression1. You learned about literals in
Chapter 3. Consider another output produced by the preceding example. For this run, the variable v_num is assigned
NULL:

Enter value for sv_user_num: NULL
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := NULL;
v_remainder:

PL/SQL procedure successfully completed.

When NULL is assigned to the variable v_num, both the MOD and NULLIF functions return NULL. This example does not
produce any errors because the literal NULL is assigned to the variable v_num, and it is not used as the first expression
of the NULLIF function. Next, consider this modified version of the preceding example:

 FOR EXAMPLE

DECLARE
 v_remainder NUMBER;
BEGIN
 -- calculate the remainder and if it is zero return a NULL
 v_remainder := NULLIF(NULL,0);
 DBMS_OUTPUT.PUT_LINE ('v_remainder: '||v_remainder);
END;

In the previous version of this example, the MOD function is used as expression1. In this version, the literal NULL is
used in place of the MOD function, and as a result, this example produces the following syntax error:

 v_remainder := NULLIF(NULL,0);
 *
ERROR at line 5:
ORA-06550: line 5, column 26:
PLS-00619: the first operand in the NULLIF expression must
not be NULL
ORA-06550: line 5, column 4:
PL/SQL: Statement ignored

COALESCE Function

The COALESCE function compares each expression to NULL from the list of expressions and returns the value of the
first non-null expression. The COALESCE function has the following structure:

COALESCE (expression1, expression2, …, expressionN)

If expression1 evaluates to NULL, then expression2 is evaluated. If expression2 does not evaluate to NULL, then the
function returns expression2. If expression2 also evaluates to NULL, then the next expression is evaluated. If all
expressions evaluate to NULL, the function returns NULL.

Note that the COALESCE function is like a nested NVL function:

NVL(expression1, NVL(expression2, NVL(expression3,...)))

The COALESCE function can also be used as an alternative to a CASE expression. For example,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COALESCE function can also be used as an alternative to a CASE expression. For example,

COALESCE (expression1, expression2)

is equivalent to

CASE
 WHEN expression1 IS NOT NULL THEN expression1
 ELSE expression2
END

If there are more than two expressions to evaluate, then

COALESCE (expression1, expression2, …, expressionN)

is equivalent to

CASE
 WHEN expression1 IS NOT NULL THEN expression1
 ELSE COALESCE (expression2, ..., expressionN)
END

Consider the following example of the COALESCE function:

 FOR EXAMPLE

SELECT e.student_id, e.section_id, e.final_grade,
 g.numeric_grade,
 COALESCE(e.final_grade, g.numeric_grade, 0) grade
 FROM enrollment e, grade g
 WHERE e.student_id = g.student_id
 AND e.section_id = g.section_id
 AND e.student_id = 102
 AND g.grade_type_code = 'FI';

This SELECT statement returns the following output:

STUDENT_ID SECTION_ID FINAL_GRADE NUMERIC_GRADE GRADE
---------- ---------- ----------- ------------- ----------
 102 86 85 85
 102 89 92 92 92

The value of GRADE equals the value of the NUMERIC_GRADE in the first row. The COALESCE function compares the
value of the FINAL_GRADE to NULL. If it is NULL, then the value of the NUMERIC_GRADE is compared to NULL. Because
the value of the NUMERIC_GRADE is not NULL, the COALESCE function returns the value of the NUMERIC_GRADE. The
value of GRADE equals the value of FINAL_GRADE in the second row. The COALESCE function returns the value of
FINAL_GRADE because it is not NULL.

The COALESCE function shown in the previous example is equivalent to the following NVL statement and CASE
expression:

NVL(e.final_grade, NVL(g.numeric_grade, 0))

CASE
 WHEN e.final_grade IS NOT NULL THEN e.final_grade
 ELSE COALESCE(g.numeric_grade, 0)
END

The COALESCE function has the following restriction: At least one of its expressions must not contain a literal NULL.
Consider the following example and its output:

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT COALESCE(NULL, 3, 8)
 FROM DUAL;

COALESCE(NULL,3,8)

 3

Next, consider this modified version of the same SELECT statement and the syntax error it generates

 FOR EXAMPLE

SELECT COALESCE(NULL, NULL, NULL)
 FROM DUAL;

SELECT COALESCE(NULL, NULL, NULL)
 *
ERROR at line 1:
ORA-00938: not enough arguments for function

The SELECT statement causes a syntax error because all of the expressions in the COALESCE function contain the literal
NULL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.3 Exercises

6.3.1 Use the NULLIF Function

In this exercise, you will modify the following script. Instead of using the searched CASE expression, you will use the
NULLIF function. Note that the SELECT INTO statement uses ANSI 1999 SQL standard.

You will find detailed explanations and examples of the statements using new
ANSI 1999 SQL standard in Appendix E and in Oracle help. Throughout this
book we try to provide you with examples illustrating both standards; however
our main focus is on PL/SQL features rather than SQL.

-- ch06_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_final_grade NUMBER;
BEGIN
 SELECT CASE
 WHEN e.final_grade = g.numeric_grade THEN NULL
 ELSE g.numeric_grade
 END
 INTO v_final_grade
 FROM enrollment e
 JOIN grade g
 ON (e.student_id = g.student_id
 AND e.section_id = g.section_id)
 WHERE e.student_id = 102
 AND e.section_id = 86
 AND g.grade_type_code = 'FI';

 DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);
END;

In the preceding script, the value of the final grade is compared to the value of the numeric grade. If these values are
equal, the CASE expression returns NULL. In the opposite case, the CASE expression returns the numeric grade. The
result of the CASE expression is then displayed on the screen via the DBMS_OUTPUT.PUT_LINE statement.

Answer the following questions:

a) Modify script ch06_4a.sql. Substitute the CASE expression with the NULLIF function.

b) Run the modified version of the script and explain the output produced.

c) Change the order of columns in the NULLIF function. Run the modified version of the script and explain the
output produced.

6.3.2 Use the COALESCE Function

In this exercise, you will modify the following script. Instead of using the searched CASE expression, you will use the
COALESCE function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch06_5a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_num1 NUMBER := &sv_num1;
 v_num2 NUMBER := &sv_num2;
 v_num3 NUMBER := &sv_num3;
 v_result NUMBER;
BEGIN
 v_result := CASE
 WHEN v_num1 IS NOT NULL THEN v_num1
 ELSE
 CASE
 WHEN v_num2 IS NOT NULL THEN v_num2
 ELSE v_num3
 END
 END;
 DBMS_OUTPUT.PUT_LINE ('Result: '||v_result);
END;

In the preceding script, the list consisting of three numbers is evaluated as follows: If the value of the first number is
not NULL, then the outer CASE expression returns the value of the first number. Otherwise, control is passed to the
inner CASE expression, which evaluates the second number. If the value of the second number is not NULL, then the
inner CASE expression returns the value of the second number; in the opposite case, it returns the value of the third
number.

The preceding CASE expression is equivalent to the following two CASE expressions:

CASE
 WHEN v_num1 IS NOT NULL THEN v_num1
 WHEN v_num2 IS NOT NULL THEN v_num2
 ELSE v_num3
END

CASE
 WHEN v_num1 IS NOT NULL THEN v_num1
 ELSE COALESCE(v_num2, v_num3)
END

Answer the following questions:

a) Modify script ch06_5a.sql. Substitute the CASE expression with the COALESCE function.

b) Run the modified version of the script and explain the output produced. Use the following values for the list
of numbers: NULL, 1, 2.

c) What output will be produced by the modified version of the script if NULL is provided for all three numbers?
Try to explain your answer before you run the script.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 6.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

6.3.1 Answers

a) Modify script ch06_4a.sql. Substitute the CASE expression with the NULLIF function.

A1: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch06_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_final_grade NUMBER;
BEGIN
 SELECT NULLIF(g.numeric_grade, e.final_grade)
 INTO v_final_grade
 FROM enrollment e
 JOIN grade g
 ON (e.student_id = g.student_id
 AND e.section_id = g.section_id)
 WHERE e.student_id = 102
 AND e.section_id = 86
 AND g.grade_type_code = 'FI';

 DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);
END;

In the original version of the script, you used CASE expression in order to assign a value to the variable v_final_grade as
follows:

CASE
 WHEN e.final_grade = g.numeric_grade THEN NULL
 ELSE g.numeric_grade
END

The value stored in the column FINAL_GRADE is compared to the value stored in the column NUMERIC_GRADE. If these
values are equal, then NULL is assigned to the variable v_final_grade; otherwise, the value stored in the column
NUMERIC_GRADE is assigned to the variable v_letter_grade.

In the new version of the script you substitute the CASE expression with the NULLIF function as follows:

NULLIF(g.numeric_grade, e.final_grade)

It is important to note that the NUMERIC_GRADE column is referenced first in the NULLIF function. You will recall that
the NULLIF function compares expression1 to expression2. If expression1 equals expression2, the NULLIF functions
returns NULL. If expression1 does not equal expression2, the NULLIF function returns expression1. In order to return
the value stored in the column NUMERIC_GRADE, you must reference it first in the NULLIF function.

b) Run the modified version of the script and explain the output produced.

A2: Answer: Your output should look similar to the following:

Final grade: 85

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

The NULLIF function compares values stored in the columns NUMERIC_GRADE and FINAL_GRADE.
Because the column FINAL_GRADE is not populated, the NULLIF function returns the value stored in the
column NUMERIC_GRADE. This value is assigned to the variable v_final_grade and displayed on the screen
with the help of the DBMS_OUTPUT.PUT_LINE statement.

c) Change the order of columns in the NULLIF function. Run the modified version of the script and explain the
output produced.

A3: Answer: Your script should look similar to the following. Changes are shown in bold letters.

-- ch06_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_final_grade NUMBER;
BEGIN
 SELECT NULLIF(e.final_grade, g.numeric_grade)
 INTO v_final_grade
 FROM enrollment e
 JOIN grade g
 ON (e.student_id = g.student_id
 AND e.section_id = g.section_id)
 WHERE e.student_id = 102
 AND e.section_id = 86
 AND g.grade_type_code = 'FI';

 DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);
END;

The example produces the following output:

Final grade:

PL/SQL procedure successfully completed.

In this version of the script, the columns NUMERIC_GRADE and FINAL_GRADE are listed in the opposite order as
follows:

NULLIF(e.final_grade, g.numeric_grade)

The value stored in the column FINAL_GRADE is compared to the value stored in the column NUMERIC_GRADE.
Because these values are not equal, the NULLIF function returns the value of the column FINAL_GRADE. This column is
not populated, so NULL is assigned to the variable v_final_grade.

6.3.2 Answers

a) Modify script ch06_5a.sql. Substitute the CASE expression with the COALESCE function.

A1: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch06_5b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_num1 NUMBER := &sv_num1;
 v_num2 NUMBER := &sv_num2;
 v_num3 NUMBER := &sv_num3;
 v_result NUMBER;
BEGIN
 v_result := COALESCE(v_num1, v_num2, v_num3);
 DBMS_OUTPUT.PUT_LINE ('Result: '||v_result);
END;

In the original version of the script you used nested CASE expression in order to assign a value to the variable v_result

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the original version of the script you used nested CASE expression in order to assign a value to the variable v_result
as follows:

CASE
 WHEN v_num1 IS NOT NULL THEN v_num1
 ELSE
 CASE
 WHEN v_num2 IS NOT NULL THEN v_num2
 ELSE v_num3
 END
END;

In the new version of the script you substitute the CASE expression with the COALESCE function as follows:

COALESCE(v_num1, v_num2, v_num3)

Based on the values stored in the variables v_num1, v_num2, and v_num3, the COALESCE function returns the first non-
null variable.

b) Run the modified version of the script and explain the output produced. Use the following values for the
list of numbers: NULL, 1, 2.

A2: Answer: Your output should look similar to the following:

Enter value for sv_num1: null
old 2: v_num1 NUMBER := &sv_num1;
new 2: v_num1 NUMBER := null;
Enter value for sv_num2: 1
old 3: v_num2 NUMBER := &sv_num2;
new 3: v_num2 NUMBER := 1;
Enter value for sv_num3: 2
old 4: v_num3 NUMBER := &sv_num3;
new 4: v_num3 NUMBER := 2;
Result: 1

PL/SQL procedure successfully completed.

The COALESCE function evaluates its expressions in the sequential order. The variable v_num1 is evaluated
first. Because the variable v_num1 is NULL, the COALESCE function evaluates the variable v_num2 next.
Because the variable v_num2 is not NULL, the COALSECE function returns the value of the variable v_num2.
This value is assigned to the variable v_result and is displayed on the screen via DBMS_OUTPUT.PUT_LINE
statement.

c) What output will be produced by the modified version of the script if NULL is provided for all three
numbers? Try to explain your answer before you run the script.

A3: Answer: The variables v_num1, v_num2, and v_num3 are evaluated in the sequential order by the
COALESCE function. When NULL is assigned to these variables, none of the evaluations produce a non-null
result. So the COALESCE function returns NULL when all expressions evaluate to NULL.

Your output should look similar to the following:

Enter value for sv_num1: null
old 2: v_num1 NUMBER := &sv_num1;
new 2: v_num1 NUMBER := null;
Enter value for sv_num2: null
old 3: v_num2 NUMBER := &sv_num2;
new 3: v_num2 NUMBER := null;
Enter value for sv_num3: null
old 4: v_num3 NUMBER := &sv_num3;
new 4: v_num3 NUMBER := null;
Result:

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 6.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A NULLIF function returns NULL if

a. _____ expression1 equals expression2.

b. _____ expression1 does not equal expression2.

2) A NULLIF function is just like NVL function.

a. _____ True

b. _____ False

3) You can specify literal NULL in the first expression of the NULLIF function.

a. _____ True

b. _____ False

4) A COALESCE function returns

a. _____ first null expression.

b. _____ first non-null expression.

c. _____ first expression only.

5) You can never specify literal NULL as one of the expressions in the COALESCE function.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 6.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6 Test Your Thinking

In this chapter you learned about different types of CASE statements and expressions. You also learned
about NULLIF and COALESCE functions. Here are some exercises based on the scripts created in this
section in Chapter 5 that will help you test the depth of your understanding.

1) Create the following script. Modify the script created in this section in Chapter
5 (Question 1 of the Test Your Thinking section). You can use either the CASE
statement or the searched CASE statement. Your output should look similar to
the output produced by the example created in Chapter 5.

2) Create the following script. Modify the script created in this section in Chapter
5 (Question 2 of the Test Your Thinking section). You can use either the CASE
statement or the searched CASE statement. Your output should look similar to
the output produced by the example created in Chapter 5.

3) Execute the following two SELECT statements and explain why they produce
different output:

SELECT e.student_id, e.section_id, e.final_grade,
 g.numeric_grade,
 COALESCE(g.numeric_grade, e.final_grade) grade
 FROM enrollment e, grade g
 WHERE e.student_id = g.student_id
 AND e.section_id = g.section_id
 AND e.student_id = 102
 AND g.grade_type_code = 'FI';

SELECT e.student_id, e.section_id, e.final_grade,
 g.numeric_grade,
 NULLIF(g.numeric_grade, e.final_grade) grade
 FROM enrollment e, grade g
 WHERE e.student_id = g.student_id
 AND e.section_id = g.section_id
 AND e.student_id = 102
 AND g.grade_type_code = 'FI';

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Error Handling and Built-In Exceptions
Chapter Objectives
In this Chapter, you will learn about:

 Handling Errors

 Built-In Exceptions

In Chapter 2, you encountered two types of errors that can be found in a program: compilation errors and runtime
errors. You will recall that there is a special section in a PL/SQL block that handles runtime errors. This section is called
the exception-handling section, and in it, runtime errors are referred to as exceptions. The exception-handling section
allows programmers to specify what actions should be taken when a specific exception occurs.

In PL/SQL, there are two types of exceptions: built-in exceptions and user-defined exceptions. In this chapter, you will
learn how you can handle certain kinds of runtime errors with the help of built-in exceptions. User-defined exceptions
are discussed in Chapters 10 and 11.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.1 Handling Errors

Lab Objectives
After this Lab, you will be able to:

 Understand the Importance of Error Handling

The following example will help to illustrate some of the differences between compilation and runtime errors.

 FOR EXAMPLE

DECLARE
 v_num1 INTEGER := &sv_num1;
 v_num2 INTEGER := &sv_num2;
 v_result NUMBER;
BEGIN
 v_result = v_num1 / v_num2;
 DBMS_OUTPUT.PUT_LINE ('v_result: '||v_result);
END;

This example is a very simple program. There are two variables, v_num1 and v_num2. A user supplies values for these
variables. Next, v_num1 is divided by v_num2, and the result of this division is stored in the third variable, v_result.
Finally, the value of v_result is displayed on the screen.

Now, assume that a user supplies values of 3 and 5 for the variables, v_num1 and v_num2, respectively. As a result, the
example produces the following output:

Enter value for sv_num1: 3
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 3;
Enter value for sv_num2: 5
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 5;
 v_result = v_num1 / v_num2;
 *
ERROR at line 6:
ORA-06550: line 6, column 13:
PLS-00103: Encountered the symbol "=" when expecting one of the following:
:= . (@ % ;
ORA-06550: line 7, column 4:
PLS-00103: Encountered the symbol "DBMS_OUTPUT"
ORA-06550: line 7, column 49:
PLS-00103: Encountered the symbol ";" when expecting one of the following:
. (* % & - + / mod rem return RETURNING_ an exponent (**) and or ||

You have probably noticed that the example did not execute successfully. A syntax error has been encountered at line
6. Close inspection of the example shows that the statement

v_result = v_num1 / v_num2;

contains an equal sign operator where an assignment operator should be used. The statement should be rewritten as
follows:

v_result := v_num1 / v_num2;

Once the corrected example is run again, the following output is produced:

Enter value for sv_num1: 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter value for sv_num1: 3
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 3;
Enter value for sv_num2: 5
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 5;
v_result: .6

PL/SQL procedure successfully completed.

As you can see, the example now executes successfully because the syntax error has been corrected.

Next, if you change the values of variables v_num1 and v_num2 to 4 and 0, respectively, the following output is
produced:

Enter value for sv_num1: 4
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 4;
Enter value for sv_num2: 0
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 0;
DECLARE
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 6

Even though this example does not contain syntax errors, it was terminated prematurely because the value entered for
v_num2, the divisor, was 0. As you may recall, division by 0 is undefined, and thus leads to an error.

This example illustrates a runtime error that cannot be detected by the compiler. In other words, for some of the values
entered for the variables v_num1 and v_num2, this example executes successfully. For other values entered for the
variables v_num1 and v_num2, this example cannot execute. As a result, the runtime error occurs. You will recall that the
compiler cannot detect runtime errors. In this case, a runtime error occurs because the compiler does not know the
result of the division of v_num1 by v_num2. This result can be determined only at runtime. Hence, this error is referred
to as a runtime error.

In order to handle this type of error in the program, an exception handler must be added. The exception-handling
section has the following structure:

EXCEPTION
 WHEN EXCEPTION_NAME THEN
 ERROR-PROCESSING STATEMENTS;

The exception-handling section is placed after the executable section of the block. The preceeding example can be
rewritten in the following manner.

 FOR EXAMPLE

DECLARE
 v_num1 integer := &sv_num1;
 v_num2 integer := &sv_num2;
 v_result number;
BEGIN
 v_result := v_num1 / v_num2;
 DBMS_OUTPUT.PUT_LINE ('v_result: '||v_result);
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 DBMS_OUTPUT.PUT_LINE
 ('A number cannot be divided by zero.');
END;

The section of the example in bold letters shows the exception-handling section of the block. When this version of the
example is executed with the values of 4 and 0 for variables v_num1 and v_num2, respectively, the following output is
produced:

Enter value for sv_num1: 4
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 4;
Enter value for sv_num2: 0
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 0;
A number cannot be divided by zero.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A number cannot be divided by zero.

PL/SQL procedure successfully completed.

This output shows that once an attempt to divide v_num1 by v_num2 was made, the exception-handling section of the
block was executed. Therefore, the error message specified by the exception-handling section was displayed on the
screen.

This version of the output illustrates several advantages of using an exception-handling section. You have probably
noticed that the output looks cleaner compared to the previous version. Even though the error message is still displayed
on the screen, the output is more informative. In short, it is oriented more toward a user than a programmer.

It is important for you to realize that on many occasions, a user does not have
access to the code. Therefore, references to line numbers and keywords in a
program are not significant to most users.

An exception-handling section allows a program to execute to completion, instead of terminating prematurely. Another
advantage offered by the exception-handling section is isolation of error-handling routines. In other words, all error-
processing code for a specific block is located in a single section. As a result, the logic of the program becomes easier to
follow and understand. Finally, adding an exception-handling section enables event-driven processing of errors. As in
the example shown earlier, in the case of a specific exception event, such as division by 0, the exception-handling
section was executed, and the error message specified by the DBMS_OUTPUT.PUT_LINE statement was displayed on
the screen.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.1 Exercises

7.1.1 Understanding the Importance of Error Handling

In this exercise, you will calculate the value of the square root of a number and display it on the screen.

Create the following PL/SQL script:

-- ch07_1a.sql, version 1.0
SET SERVEROUTPUT ON;
DECLARE
 v_num NUMBER := &sv_num;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||
 ' is '||SQRT(v_num));
EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

In the preceding script, the exception VALUE_ERROR, is raised when conversion or type mismatch errors occur. This
exception is covered in greater detail in Lab 7.2 of this chapter. In order to test this script fully, execute it two times.
For the first run, enter a value of 4 for the variable v_num. For the second run, enter the value of -4 for the variable
v_num. Execute the script, and then answer the following questions:

a) What output was printed on the screen (for both runs)?

b) Why do you think an error message was generated when the script was run a second time?

c) Assume that you are not familiar with the exception VALUE_ERROR. How would you change this script to
avoid this runtime error?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 7.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

7.1.1 Answers

a) What output was printed on the screen (for both runs)?

A1: Answer: The first version of the output is produced when the value of v_num is equal to 4. Your output
should look like the following:

Enter value for sv_num: 4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 4;
Square root of 4 is 2

PL/SQL procedure successfully completed.

The second version of the output is produced when v_num is equal to -4. Your output should look like the
following:

Enter value for sv_num: -4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := -4;
An error has occurred

PL/SQL procedure successfully completed.

b) Why do you think an error message was generated when the script was run a second time?

A2: Answer: Error message "An error has occurred" was generated for the second run of example because a
runtime error has occurred. The built-in function SQRT is unable to accept a negative number as its
argument. Therefore, the exception VALUE_ERROR was raised, and the error message was displayed on
the screen.

c) Assume that you are not familiar with the exception VALUE_ERROR. How would you change this script to
avoid this runtime error?

A3: Answer: The new version of the program should look similar to the program below. All changes are shown
in bold letters.

-- ch07_1b.sql, version 2.0
SET SERVEROUTPUT ON;
DECLARE
 v_num NUMBER := &sv_num;
BEGIN
 IF v_num >= 0 THEN
 DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||
 ' is '||SQRT(v_num));
 ELSE
 DBMS_OUTPUT.PUT_LINE ('A number cannot be negative');
 END IF;
END;

Notice that before you calculate the square root of a number, you can check to see if the number is greater than or
equal to 0 with the help of the IF-THEN-ELSE statement. If the number is negative, the message "A number cannot be
negative" is displayed on the screen. When the value of -4 is entered for the variable v_num, this script produces the
following output:

Enter value for sv_num: -4
old 2: v_num NUMBER := &sv_num;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := -4;
A number cannot be negative

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A compiler can detect a runtime error.

a. _____ True

b. _____ False

2) Without an exception-handling section, a PL/SQL block cannot be compiled.

a. _____ True

b. _____ False

3) An exception is raised when which of the following occurs?

a. _____ A compilation error is encountered.

b. _____ A runtime error is encountered.

4) An exception-handling section of a PL/SQL block is placed

a. _____ after the reserved word END.

b. _____ before the reserved word END.

c. _____ before the reserved word BEGIN.

5) The exception ZERO_DIVIDE is raised when number 1 is divided by number 2 and

a. _____ number 1 is equal to 0.

b. _____ number 2 is equal to 0.

c. _____ both numbers are equal to 0.

Answers appear in Appendix A, Section 7.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.2 Built-In Exceptions

Lab Objectives
After this Lab, you will be able to:

 Use Built-In Exceptions

As mentioned earlier, a PL/SQL block has the following structure:

DECLARE
 ...
BEGIN
 EXECUTABLE STATEMENTS;
EXCEPTION
 WHEN EXCEPTION_NAME THEN
 ERROR-PROCESSING STATEMENTS;
END;

When an error occurs that raises a built-in exception, the exception is said to be raised implicitly. In other words, if a
program breaks an Oracle rule, control is passed to the exception-handling section of the block. At this point, the error-
processing statements are executed. It is important for you to realize that after the exception-handling section of the
block has executed, the block terminates. Control will not return to the executable section of the block. The following
example illustrates this point.

 FOR EXAMPLE

DECLARE
 v_student_name VARCHAR2(50);
BEGIN
 SELECT first_name||' '||last_name
 INTO v_student_name
 FROM student
 WHERE student_id = 101;

 DBMS_OUTPUT.PUT_LINE ('Student name is '||
 v_student_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

This example produces the following output:

There is no such student

PL/SQL procedure successfully completed.

Because there is no record in the STUDENT table with student ID 101, the SELECT INTO statement does not return any
rows. As a result, control passes to the exception-handling section of the block, and the error message "There is no
such student" is displayed on the screen. Even though there is a DBMS_OUTPUT.PUT_LINE statement right after the
SELECT statement, it will not be executed because control has been transferred to the exception-handling section.
Control will never return to the executable section of this block, which contains the first DBMS_OUTPUT.PUT_LINE
statement.

You have probably noticed that, while every Oracle runtime error has a number associated with it, it must be handled
by its name in the exception-handling section. One of the outputs from the example used in the previous lab of this
chapter has the following error message:

ORA-01476: divisor is equal to zero

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-01476: divisor is equal to zero

where ORA-01476 stands for the error number. This error number refers to the error named ZERO_DIVIDE. Some
common Oracle runtime errors are predefined in PL/SQL as exceptions.

The following list explains some commonly used predefined exceptions and how they are raised:

NO_DATA_FOUND— This exception is raised when a SELECT INTO statement that makes no calls to group
functions, such as SUM or COUNT, does not return any rows. For example, you issue a SELECT INTO statement
against the STUDENT table where student ID equals 101. If there is no record in the STUDENT table passing
this criteria (student ID equals 101), the NO_DATA_FOUND exception is raised.

When a SELECT INTO statement calls a group function, such as COUNT, the result set is never empty. When
used in a SELECT INTO statement against the STUDENT table, function COUNT will return 0 for the value of
student ID 123. Hence, a SELECT statement that calls a group function will never raise the NO_DATA_FOUND
exception.

TOO_MANY_ROWS— This exception is raised when a SELECT INTO statement returns more than one row. By
definition, a SELECT INTO can return only a single row. If a SELECT INTO statement returns more than one
row, the definition of the SELECT INTO statement is violated. This causes the TOO_MANY_ROWS exception to
be raised.

For example, you issue a SELECT INTO statement against the STUDENT table for a specific zipcode. There is a
big chance that this SELECT statement will return more than one row because many students can live in the
same zipcode area.

ZERO_DIVIDE— This exception is raised when a division operation is performed in the program and a divisor is
equal to zero. An example in the previous lab of this chapter illustrates how this exception is raised.

LOGIN_DENIED— This exception is raised when a user is trying to login to Oracle with an invalid username or
password.

PROGRAM_ERROR— This exception is raised when a PL/SQL program has an internal problem.

VALUE_ERROR— This exception is raised when a conversion or size mismatch error occurs. For example, you
select a student's last name into a variable that has been defined as VARCHAR2(5). If the student's last name
contains more than five characters, the VALUE_ERROR exception is raised.

DUP_VALUE_ON_INDEX— This exception is raised when a program tries to store a duplicate value in the column
or columns that have a unique index defined on them. For example, you are trying to insert a record into the
SECTION table for the course number "25," section 1. If a record for the given course and section number
already exists in the SECTION table, the DUP_VAL_ON_INDEX exception is raised because these columns have
a unique index defined on them.

So far, you have seen examples of programs able to handle a single exception only. For example, a PL/SQL block
contains an exception handler with a single exception ZERO_DIVIDE. However, many times you need to handle
different exceptions in the PL/SQL block. Moreover, often you need to specify different actions that must be taken when
a particular exception is raised, as the following illustrates.

 FOR EXAMPLE

DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_enrolled VARCHAR2(3) := 'NO';
BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Check if the student is enrolled');
 SELECT 'YES'
 INTO v_enrolled
 FROM enrollment
 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE
 ('The student is enrolled into one course');
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('The student is not enrolled');

 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE
 ('The student is enrolled in too many courses');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

Notice that this example contains two exceptions in a single exception-handling section. The first exception,
NO_DATA_FOUND, will be raised if there are no records in the ENROLLMENT table for a particular student. The second
exception, TOO_MANY_ROWS, will be raised if a particular student is enrolled in more than one course.

Consider what happens if you run this example for three different values of student ID: 102, 103, and 319.

The first run of the example (student ID is 102) produces the following output:

Enter value for sv_student_id: 102
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 102;
Check if the student is enrolled
Student is enrolled in too many courses

PL/SQL procedure successfully completed.

The first time, a user entered 102 for the value of student ID. Next, the first DBMS_ OUTPUT.PUT_LINE statement is
executed, and the message "Check if the ..." is displayed on the screen. Then the SELECT INTO statement is executed.
You have probably noticed that the DBMS_OUTPUT.PUT_LINE statement following the SELECT INTO statement was not
executed. When the SELECT INTO statement is executed for student ID 102, multiple rows are returned. Because the
SELECT INTO statement can return only a single row, control is passed to the exception-handling section of the block.
Next, the PL/SQL block raises the proper exception. As a result, the message "The student is enrolled into many
courses" is displayed on the screen, and this message is specified by the exception TOO_MANY_ROWS.

It is important for you to note that built-in exceptions are raised implicitly.
Therefore, you only need to specify what action must be taken in the case of a
particular exception.

A second run of the example (student ID is 103) produces the following output:

Enter value for sv_student_id: 103
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 103;
Check if the student is enrolled
The student is enrolled into one course

PL/SQL procedure successfully completed.

In this second run, a user entered 103 for the value of student ID. As a result, the first DBMS_OUTPUT.PUT_LINE
statement is executed, and the message "Check if the..." is displayed on the screen. Then the SELECT INTO statement
is executed. When the SELECT INTO statement is executed for student ID 103, a single row is returned. Next, the
DBMS_OUTPUT.PUT_LINE statement following the SELECT INTO statement is executed. As a result, the message "The
student is enrolled into one course" is displayed on the screen. Notice that for this value of the variable v_student_id, no
exception has been raised.

A third run of the example (student ID is 319) produces the following output:

Enter value for sv_student_id: 319
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 319;
Check if the student is enrolled
The student is not enrolled

PL/SQL procedure successfully completed.

This time, a user entered 319 for the value of student ID. The first DBMS_OUTPUT.PUT_LINE statement is executed,
and the message "Check if the . . ." is displayed on the screen. Then the SELECT INTO statement is executed. When the
SELECT INTO statement is executed for student ID 319, no rows are returned. As a result, control is passed to the
exception-handling section of the PL/SQL block, and the proper exception is raised. In this case, the NO_DATA_FOUND
exception is raised because the SELECT INTO statement failed to return a single row. Thus, the message "The student
is not enrolled" is displayed on the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is not enrolled" is displayed on the screen.

So far, you have seen examples of exception-handling sections that have particular exceptions, such as
NO_DATA_FOUND or ZERO_DIVIDE. However, you cannot always predict beforehand what exception might be raised
by your PL/SQL block. In cases like this, there is a special exception handler called OTHERS. All predefined Oracle errors
(exceptions) can be handled with the use of the OTHERS handler.

Consider the following:

 FOR EXAMPLE

DECLARE
 v_instructor_id NUMBER := &sv_instructor_id;
 v_instructor_name VARCHAR2(50);
BEGIN
 SELECT first_name||' '||last_name
 INTO v_instructor_name
 FROM instructor
 WHERE instructor_id = v_instructor_id;

 DBMS_OUTPUT.PUT_LINE ('Instructor name is '||
 v_instructor_name);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

When run, this example produces the following output:

Enter value for sv_instructor_id: 100
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 100;
An error has occurred

PL/SQL procedure successfully completed.

This demonstrates not only the use of the OTHERS exception handler, but also a bad programming practice. The
exception OTHERS has been raised because there is no record in the INSTRUCTOR table for instructor ID 100.

This is a simple example, where it is possible to guess what exception handlers should be used. However, in many
instances you may find a number of programs that have been written with a single exception handler, OTHERS. This is
a bad programming practice, because such use of this exception handler does not give you or your user good feedback.
You do not really know what error has occurred. Your user does not know whether he or she entered some information
incorrectly. There are special error-reporting functions, SQLCODE and SQLERRM, that are very useful when used with
the OTHERS handler. You will learn about them in Chapter 11.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.2 Exercises

7.2.1 Use Built-In Exceptions

In this exercise, you will learn more about some built-in exceptions discussed earlier in the chapter.

Create the following PL/SQL script:

-- ch07_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_exists NUMBER(1);
 v_total_students NUMBER(1);
 v_zip CHAR(5):= '&sv_zip';
BEGIN
 SELECT count(*)
 INTO v_exists
 FROM zipcode
 WHERE zip = v_zip;

 IF v_exists != 0 THEN
 SELECT COUNT(*)
 INTO v_total_students
 FROM student
 WHERE zip = v_zip;
 DBMS_OUTPUT.PUT_LINE
 ('There are '||v_total_students||' students');
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_zip||' is not a valid zip');
 END IF;

EXCEPTION
 WHEN VALUE_ERROR OR INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

This script contains two exceptions, VALUE_ERROR and INVALID_NUMBER. However, only one exception handler is
written for both exceptions. You can combine different exceptions in a single exception handler when you want to
handle both exceptions in a similar way. Often the exceptions VALUE_ERROR and INVALID_NUMBER are used in a
single exception handler because these Oracle errors refer to the conversion problems that may occur at runtime.

In order to test this script fully, execute it three times. For the first run, enter "07024," for the second run, enter
"00914," and for the third run, enter "12345" for the variable v_zip. Execute the script, and then answer the following
questions:

a) What output was printed on the screen (for all values of zip)?

b) Explain why no exception has been raised for these values of the variable v_zip.

c) Insert a record into the STUDENT table with a zip having the value of "07024."

INSERT INTO student (student_id, salutation, first_name,
 last_name, zip, registration_date, created_by,
 created_date, modified_by, modified_date)
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith',
 '07024', SYSDATE, 'STUDENT', SYSDATE, 'STUDENT',
 SYSDATE);

Run the script again for the same value of zip ("07024"). What output was printed on the screen? Why?

d) How would you change the script to display a student's first name and last name instead of displaying the
total number of students for any given value of a zip? Remember, only one record can be returned by a
SELECT INTO statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 7.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

7.2.1 Answers

a) What output was printed on the screen (for all values of zip)?

A1: Answer: The first version of the output is produced when the value of zip is 07024. The second version of
the output is produced when the value of zip is 00914. The third version of the output is produced when
the value of zip is 12345.

Your output should look like the following:

Enter value for sv_zip: 07024
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '07024';
There are 9 students

PL/SQL procedure successfully completed.

When "07024" is entered for the variable v_zip, the first SELECT INTO statement is executed. This SELECT INTO
statement checks whether the value of zip is valid, or, in other words, if a record exists in the ZIPCODE table for a
given value of zip. Next, the value of the variable v_exists is evaluated with the help of the IF statement. For this run of
the example, the IF statement evaluates to TRUE, and, as a result, the SELECT INTO statement against the STUDENT
table is evaluated. Next, the DBMS_OUTPUT.PUT_LINE following the SELECT INTO statement is executed, and the
message "There are 9 students" is displayed on the screen.

Your output should look like the following:

Enter value for sv_zip: 00914
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '00914';
There are 0 students

PL/SQL procedure successfully completed.

For the second run, the value 00914 is entered for the variable v_zip. The SELECT INTO statement against the STUDENT
table returns one record, and the message "There are 0 students" is displayed on the screen.

Because the SELECT INTO statement against the STUDENT table uses a group function, COUNT, there is no reason to
use the exception NO_DATA_FOUND, because the COUNT function will always return data.

Your output should look like the following:

Enter value for sv_zip: 12345
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '12345';
12345 is not a valid zip

PL/SQL procedure successfully completed.

For the third run, the value 12345 is entered for the variable v_zip. The SELECT INTO statement against the ZIPCODE
table is executed. Next, the variable v_exists is evaluated with the help of the IF statement. Because the value of v_exists
equals 0, the IF statement evaluates to FALSE. As a result, the ELSE part of the IF statement is executed. The message
"12345 is not a valid zip" is displayed on the screen.

b) Explain why no exception has been raised for these values of the variable v_zip.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A2: Answer: The exceptions VALUE_ERROR or INVALID_NUMBER have not been raised because there was no
conversion or type mismatch error. Both variables, v_exists and v_total_students, have been defined as
NUMBER(1).

The group function COUNT used in the SELECT INTO statement returns a NUMBER datatype. Moreover, on
both occasions, a single digit number is returned by the COUNT function. As a result, neither exception has
been raised.

c) Insert a record into the STUDENT table with a zip having the value of "07024."

INSERT INTO student (student_id, salutation, first_name,
 last_name, zip, registration_date, created_by,
 created_date, modified_by, modified_date)
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith',
 '07024', SYSDATE, 'STUDENT', SYSDATE, 'STUDENT',
 SYSDATE);

Run the script again for the same value of zip ("07024"). What output was printed on the screen? Why?

A3: Answer: After a student has been added, your output should look like the following:

Enter value for sv_zip: 07024
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '07024';
An error has occurred

PL/SQL procedure successfully completed.

Once the student has been inserted into the STUDENT table with a zip having a value of "07024," the total
number of students changes to 10 (remember, previously this number was 9). As a result, the SELECT
INTO statement against the STUDENT table causes an error, because the variable v_total_students has been
defined as NUMBER(1). This means that only a single-digit number can be stored in this variable. The
number 10 is a two-digit number, so the exception INVALID_NUMBER is raised. As a result, the message
"An error has occurred" is displayed on the screen.

d) How would you change the script to display a student's first name and last name instead of displaying the
total number of students for any given value of a zip? Remember, only one record can be returned by a
SELECT INTO statement.

A4: Answer: The new version of your program should look similar to this program. All changes are shown in
bold letters.

-- ch07_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_exists NUMBER(1);
 v_student_name VARCHAR2(30);
 v_zip CHAR(5):= '&sv_zip';
BEGIN
 SELECT count(*)
 INTO v_exists
 FROM zipcode
 WHERE zip = v_zip;

 IF v_exists != 0 THEN
 SELECT first_name||' '||last_name
 INTO v_student_name
 FROM student
 WHERE zip = v_zip
 AND rownum = 1;
 DBMS_OUTPUT.PUT_LINE ('Student name is '||
 v_student_name);
 ELSE
 DBMS_OUTPUT.PUT_LINE (v_zip||' is not a valid zip');
 END IF;

EXCEPTION
 WHEN VALUE_ERROR OR INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('There are no students for this value of '||
 'zip code');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This version of the program contains several changes. The variable v_total_students has been replaced by the variable
v_student_name. The SELECT INTO statement against the STUDENT table has been changed as well. Another condition
has been added to the WHERE clause:

rownum = 1

You have seen from the previous runs of this program that for any given value of zip there could be multiple records in
the STUDENT table. Because a SELECT INTO statement returns only a single row, the condition rownum = 1 has been
added to it. Another way to deal with multiple rows returned by the SELECT INTO statement is to add the exception
TOO_MANY_ROWS.

Finally, another exception has been added to the program. The SELECT INTO statement against the STUDENT table
does not contain any group functions. Therefore, for any given value of zip, the SELECT INTO statement may not return
any data, and it causes an error. As a result, the exception NO_DATA_FOUND will be raised.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 7.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) How does a built-in exception get raised?

a. _____ Implicitly

b. _____ Explicitly

2) An Oracle error, or exception, is referred to by its

a. _____ Number.

b. _____ Name.

c. _____ Both.

3) When a group function is used in the SELECT INTO statement, exception NO_DATA_FOUND is raised if there
are no rows returned.

a. _____ True

b. _____ False

4) When an exception is raised and executed, control is passed back to the PL/SQL block.

a. _____ True

b. _____ False

5) An exception-handling section of a PL/SQL block may contain a single exception handler only.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 7.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7 Test Your Thinking

In this chapter you learned about built-in exceptions. Here are some projects that will help you test the
depth of your understanding.

1) Create the following script: Check to see whether there is a record in the
STUDENT table for a given student ID. If there is no record for the given
student ID, insert a record into the STUDENT table for the given student ID.

2) Create the following script: For a given instructor ID, check to see whether it is
assigned to a valid instructor. Then check the number of sections that are
taught by this instructor and display this information on the screen.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at: http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Iterative Control
Chapter Objectives
In this Chapter, you will learn about:

 Simple Loops

 WHILE Loops

 Numeric FOR Loops

 Nested Loops

Generally, computer programs are written because certain tasks must be executed a number of times. For example,
many companies need to process transactions on a monthly basis. A program allows the completion of this task by
being executed at the end of each month.

Similarly, programs incorporate instructions that need to be executed repeatedly. For example, a program may need to
write a number of records to a table. By using a loop, the program is able to write the desired number of records to a
table. In other words, loops are programming facilities that allow a set of instructions to be executed repeatedly.

In PL/SQL, there are four types of loops: simple loops, WHILE loops, numeric FOR loops, and cursor FOR loops. In this
chapter, you will explore simple loops, WHILE loops, numeric FOR loops, and nested loops. Cursor FOR loops are
discussed later in the book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.1 Simple Loops

Lab Objectives
After this Lab, you will be able to:

 Use Simple Loops with EXIT Conditions

 Use Simple Loops with EXIT WHEN Conditions

A simple loop, as you can see from its name, is the most basic kind of loop and has the following structure:

LOOP
 STATEMENT 1;
 STATEMENT 2;
 ...
 STATEMENT N;
END LOOP;

The reserved word LOOP marks the beginning of the simple loop. Statements 1 through N are a sequence of statements
that is executed repeatedly. These statements consist of one or more of the standard programming structures. END
LOOP is a reserved phrase that indicates the end of the loop construct.

The flow of logic from this structure is illustrated in Figure 8.1.

Figure 8.1. Simple Loop

Every time the loop is iterated, a sequence of statements is executed, and then control is passed back to the top of the
loop. The sequence of statements will be executed an infinite number of times, because there is no statement
specifying when the loop must terminate. Hence, a simple loop is called an infinite loop because there is no means to
exit the loop. A properly constructed loop needs to have an exit condition that determines when the loop is complete.
This exit condition has two forms: EXIT and EXIT WHEN.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This exit condition has two forms: EXIT and EXIT WHEN.

EXIT

The EXIT statement causes a loop to terminate when the EXIT condition evaluates to TRUE. The EXIT condition is
evaluated with the help of an IF statement. When the EXIT condition is evaluated to TRUE, control is passed to the first
executable statement after the END LOOP statement. This is indicated by the following:

LOOP
 STATEMENT 1;
 STATEMENT 2;
 IF CONDITION THEN
 EXIT;
 END IF;
END LOOP;
STATEMENT 3;

In this example, you can see that after the EXIT condition evaluates to TRUE, control is passed to STATEMENT 3, which
is the first executable statement after the END LOOP statement.

The EXIT statement is valid only when placed inside of a loop. When placed
outside of a loop, it will cause a syntax error. To avoid this error, use the
RETURN statement to terminate a PL/SQL block before its normal end is
reached as follows:

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Line 1');
 RETURN;
 DBMS_OUTPUT.PUT_LINE ('Line 2');
END;

This example produces the output:

Line 1

PL/SQL procedure successfully completed.

Because the RETURN statement terminates the PL/SQL block, the second
DBMS_OUTPUT.PUT_LINE statement is never executed.

EXIT WHEN

The EXIT WHEN statement causes a loop to terminate only if the EXIT WHEN condition evaluates to TRUE. Control is
then passed to the first executable statement after the END LOOP statement. The structure of a loop using an EXIT
WHEN clause is as follows:

LOOP
 STATEMENT 1;
 STATEMENT 2;
 EXIT WHEN CONDITION;
END LOOP;
STATEMENT 3;

This flow of logic from the EXIT and EXIT WHEN statements is illustrated in Figure 8.2.

Figure 8.2. Simple Loop with the EXIT Condition

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.2. Simple Loop with the EXIT Condition

Figure 8.2 shows that during each iteration, the loop executes a sequence of statements. Control is then passed to the
EXIT condition of the loop. If the EXIT condition evaluates to FALSE, control is passed to the top of the loop. The
sequence of statements will be executed repeatedly until the EXIT condition evaluates to TRUE. When the EXIT
condition evaluates to TRUE, the loop is terminated, and control is passed to the next executable statement following
the loop.

Figure 8.2 also shows that the EXIT condition is included in the body of the loop. Therefore, the decision about loop
termination is made inside the body of the loop, and the body of the loop, or a part of it, will always be executed at
least once. However, the number of iterations of the loop depends on the evaluation of the EXIT condition and is not
known until the loop completes.

As mentioned earlier, Figure 8.2 illustrates that the flow of logic for the structure of EXIT and EXIT WHEN statements is
the same even though two different forms of EXIT condition are used. In other words,

IF CONDITION THEN
 EXIT;
END IF;

is equivalent to

EXIT WHEN CONDITION;

It is important to note that when the EXIT statement is used without an EXIT
condition, the simple loop will execute only once. Consider the following
example.

DECLARE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE
 v_counter NUMBER := 0;
BEGIN
 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 EXIT;
 END LOOP;
END;

This example produces the following output:

v_counter = 0

PL/SQL procedure successfully completed.

Because the EXIT statement is used without an EXIT condition, the loop is
terminated as soon as the EXIT statement is executed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.1 Exercises

8.1.1 Use Simple Loops with EXIT Conditions

In this exercise, you will use the EXIT condition to terminate a simple loop, and a special variable, v_counter, which
keeps count of the loop iterations. With each iteration of the loop, the value of v_counter will be incremented and
displayed on the screen.

Create the following PL/SQL script:

-- ch08_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_counter BINARY_INTEGER := 0;
BEGIN
 LOOP
 -- increment loop counter by one
 v_counter := v_counter + 1;
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

 -- if EXIT condition yields TRUE exit the loop
 IF v_counter = 5 THEN
 EXIT;
 END IF;

 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

The statement

v_counter := v_counter + 1

is used often when working with a loop. Variable v_counter is a loop counter
that tracks the number of times the statements in the body of the loop are
executed. You will notice that for each iteration of the loop, its value is
incremented by 1. However, it is very important to initialize the variable
v_counter for successful termination of the loop. If v_counter is not initialized, its
value is NULL. Then, the statement

v_counter := v_counter + 1

will never increment the value of v_counter by one, because NULL + 1
evaluates to NULL. As result, the EXIT condition will never yield TRUE, and the
loop will become infinite.

Execute the script, and then answer the following questions.

a) What output was printed on the screen?

b) How many times was the loop executed?

c) What is the EXIT condition for this loop?

d) How many times will the value of the variable v_counter be displayed if the DBMS_OUTPUT.PUT_LINE
statement is used after the END IF statement?

e) Why does the number of times the loop counter value is displayed on the screen differ when the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

e) Why does the number of times the loop counter value is displayed on the screen differ when the
DBMS_OUTPUT.PUT_ LINE statement is placed after the END IF statement?

f) Rewrite this script using the EXIT WHEN condition instead of the EXIT condition, so that it produces the
same result.

8.1.2 Use Simple Loops with EXIT WHEN Conditions

In this exercise, you will use the EXIT WHEN condition to terminate the loop. You will add a number of sections for a
given course number. Try to answer the questions before you run the script. Once you have answered the questions,
run the script and check your answers.

Create the following PL/SQL script:

-- ch08_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_course course.course_no%type := 430;
 v_instructor_id instructor.instructor_id%type := 102;
 v_sec_num section.section_no%type := 0;
BEGIN
 LOOP
 -- increment section number by one
 v_sec_num := v_sec_num + 1;
 INSERT INTO section
 (section_id, course_no, section_no,
 instructor_id, created_date, created_by,
 modified_date, modified_by)
 VALUES
 (section_id_seq.nextval, v_course, v_sec_num,
 v_instructor_id, SYSDATE, USER, SYSDATE,
 USER);

 -- if number of sections added is four exit the loop
 EXIT WHEN v_sec_num = 4;
 END LOOP;

 -- control resumes here
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

Notice that the INSERT statement contains an Oracle built-in function called USER. At first glance, this function looks
like a variable that has not been declared. This function returns the name of the current user. In other words, it will
return the login name that you use when connecting to Oracle.

Try to answer the following questions first, and then execute the script:

a) How many sections will be added for the specified course number?

b) How many times will the loop be executed if the course number is not valid?

c) How would you change this script to add 10 sections for the specified course number?

d) How would you change the script to add only even-numbered sections (maximum section number is 10) for
the specified course number?

e) How many times will the loop be executed in this case?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 8.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

8.1.1 Answers

a) What output was printed on the screen?

A1: Answer: Your output should look like the following:

v_counter = 1
v_counter = 2
v_counter = 3
v_counter = 4
v_counter = 5
Done...

PL/SQL procedure successfully completed.

Every time the loop is run, the statements in the body of the loop are executed. In this script, the value of v_counter is
incremented by 1 and displayed on the screen. The EXIT condition is evaluated for each value of v_counter. Once the
value of v_counter increases to 5, the loop is terminated. For the first iteration of the loop, the value of v_counter is equal
to 1, and it is displayed on the screen, and so forth. After the loop has terminated, "Done..." is displayed on the screen.

b) How many times was the loop executed?

A2: Answer: The loop was executed five times.

Once the value of v_counter increases to 5, the IF statement

IF v_counter = 5 THEN
 EXIT;
END IF;

evaluates to TRUE, and the loop is terminated.

The loop counter tracks the number of times the loop is executed. You will notice that in this exercise, the maximum
value of v_counter is equal to the number of times the loop is iterated.

c) What is the EXIT condition for this loop?

A3: Answer: The EXIT condition for this loop is v_counter = 5.

The EXIT condition is used as a part of an IF statement. The IF statement evaluates the EXIT condition to TRUE or
FALSE, based on the current value of v_counter.

d) How many times will the value of the variable v_counter be displayed if the DBMS_OUTPUT.PUT_LINE
statement is used after the END IF statement?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement is used after the END IF statement?

A4: Answer: The value of v_counter will be displayed four times.

LOOP
 v_counter := v_counter + 1;
 IF v_counter = 5 THEN
 EXIT;
 END IF;
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
END LOOP;

Assume that the loop has iterated four times already. Then the value of v_counter is incremented by 1, so v_counter is
equal to 5. Next, the IF statement evaluates the EXIT condition. The EXIT condition yields TRUE, and the loop is
terminated. The DBMS_OUTPUT.PUT_LINE statement is not executed for the fifth iteration of the loop because control is
passed to the next executable statement after the END LOOP statement. Thus, only four values of v_counter are
displayed on the screen.

e) Why does the number of times the loop counter value is displayed on the screen differ when the
DBMS_OUTPUT.PUT_ LINE statement is placed after the END IF statement?

A5: Answer: When the DBMS_OUTPUT.PUT_LINE statement is placed before the IF statement, the value of
v_counter is displayed on the screen first. Then it is evaluated by the IF statement. The fifth iteration of the
loop "v_counter = 5" is displayed first, then the EXIT condition yields TRUE and the loop is terminated.

When the DBMS_OUTPUT.PUT_LINE statement is placed after the END IF statement, the EXIT condition is
evaluated prior to the execution of the DBMS_OUTPUT.PUT_ LINE statement. Thus, for the fifth iteration of
the loop, the EXIT condition evaluates to TRUE before the value of v_counter is displayed on the screen by
the DBMS_OUTPUT.PUT_LINE statement.

f) Rewrite this script using the EXIT WHEN condition instead of the EXIT condition, so that it produces the
same result.

A6: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch08_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_counter BINARY_INTEGER := 0;
BEGIN
 LOOP
 -- increment loop counter by one
 v_counter := v_counter + 1;
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

 -- if EXIT WHEN condition yields TRUE exit the loop
 EXIT WHEN v_counter = 5;
 END LOOP;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Notice that the IF statement has been replaced by the EXIT WHEN statement. The rest of the statements in the body of
the loop do not need to be changed.

8.1.2 Answers

a) How many sections will be added for the specified course number?

A1: Answer: Four sections were added for the given course number.

b) How many times will the loop be executed if the course number is not valid?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A2: Answer: The loop will be executed one time.

If the course number is not valid, the INSERT statement

INSERT INTO section
 (section_id, course_no, section_no, instructor_id,
 created_date, created_by, modified_date, modified_by)
VALUES
 (section_id_seq.nextval, v_course, v_sec_num,
 v_instructor_id, SYSDATE, USER, SYSDATE, USER);

will cause an exception to be raised. As soon as an exception is raised, control is passed out of the loop to the exception
handler. Therefore, if the course number is not valid, the loop will be executed only once.

c) How would you change this script to add 10 sections for the specified course number?

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch08_2b.sql, version 2.0
DECLARE
 v_course course.course_no%type := 430;
 v_instructor_id instructor.instructor_id%type := 102;
 v_sec_num section.section_no%type := 0;
BEGIN
 LOOP
 -- increment section number by one
 v_sec_num := v_sec_num + 1;
 INSERT INTO section
 (section_id, course_no, section_no,
 instructor_id, created_date, created_by,
 modified_date, modified_by)
 VALUES
 (section_id_seq.nextval, v_course, v_sec_num,
 v_instructor_id, SYSDATE, USER, SYSDATE,
 USER);

 -- if number of sections added is ten exit the loop
 EXIT WHEN v_sec_num = 10;
 END LOOP;

 -- control resumes here
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

In order to add 10 sections for the given course number, the test value of v_sec_num in the EXIT condition is changed to
10.

Note that before you execute this version of the script you need to delete records from the SECTION table that were
added when you executed the original example. If you did not run the original script, you do not need to delete records
from the SECTION table.

The SECTION table has a unique constraint defined on the COURSE_NO and SECTION_NO columns. In other words, the
combination of course and section numbers allows you to uniquely identify each row of the table. When the original
script is executed, it creates four records in the SECTION table for course number 430, section numbers 1, 2, 3, and 4.
When the new version of this script is executed, the unique constraint defined on the SECTION table is violated because
there already are records corresponding to course number 430 and section numbers 1, 2, 3, and 4. Therefore, these
rows must be deleted from the SECTION table as follows:

DELETE FROM section
 WHERE course_no = 430
 AND section_no <= 4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND section_no <= 4;

Once these records are deleted from the SECTION table, you can execute the new version of the script.

d) How would you change the script to add only even-numbered sections (maximum section number is 10)
for the specified course number?

A4: Answer: Your script should look similar to the following script. Changes are shown in bold letters. In order
to run this script, you will need to delete records from the SECTION table that were added by the previous
version. With each iteration of the loop, the value of v_sec_num should be incremented by two, as shown:

-- ch08_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_course course.course_no%type := 430;
 v_instructor_id instructor.instructor_id%type := 102;
 v_sec_num section.section_no%type := 0;
BEGIN
 LOOP
 -- increment section number by two
 v_sec_num := v_sec_num + 2;
 INSERT INTO section
 (section_id, course_no, section_no,
 instructor_id, created_date, created_by,
 modified_date, modified_by)
 VALUES
 (section_id_seq.nextval, v_course, v_sec_num,
 v_instructor_id, SYSDATE, USER, SYSDATE,
 USER);

 -- if number of sections added is ten exit the loop
 EXIT WHEN v_sec_num = 10;
 END LOOP;

 -- control resumes here
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

e) How many times will the loop be executed in this case?

A5: Answer: The loop is executed five times when even-numbered sections are added for the given course
number.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) How many times is a simple loop executed if there is no EXIT condition specified?

a. _____ The loop does not execute at all.

b. _____ The loop executes once.

c. _____ The loop executes an infinite number of times.

2) How many times is a simple loop executed if the EXIT statement is used without an EXIT condition?

a. _____ The loop does not execute at all.

b. _____ The loop executes once.

c. _____ The loop executes an infinite number of times.

3) What value must the EXIT condition evaluate to in order for the loop to terminate?

a. _____ TRUE

b. _____ FALSE

c. _____ NULL

4) What statement must be executed before control can be passed from the body of the loop to the first
executable statement outside of the loop?

a. _____ LOOP statement

b. _____ END LOOP statement

c. _____ EXIT statement

d. _____ RETURN statement

5) A simple loop will execute a minimum of which of the following?

a. _____ Zero times

b. _____ One time

c. _____ Infinite number of times

Answers appear in Appendix A, Section 8.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.2 WHILE Loops

Lab Objectives
After this Lab, you will be able to:

 Use WHILE Loops

A WHILE loop has the following structure:

WHILE CONDITION LOOP
 STATEMENT 1;
 STATEMENT 2;
 ...
 STATEMENT N;
END LOOP;

The reserved word WHILE marks the beginning of a loop construct. The word CONDITION is the test condition of the
loop that evaluates to TRUE or FALSE. The result of this evaluation determines whether the loop is executed.
Statements 1 through N are a sequence of statements that is executed repeatedly. The END LOOP is a reserved phrase
that indicates the end of the loop construct.

This flow of the logic is illustrated in Figure 8.3.

Figure 8.3. WHILE Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.3 shows that the test condition is evaluated prior to each iteration of the loop. If the test condition evaluates to
TRUE, the sequence of statements is executed, and control is passed to the top of the loop for the next evaluation of
the test condition. If the test condition evaluates to FALSE, the loop is terminated, and control is passed to the next
executable statement following the loop.

As mentioned earlier, before the body of the loop can be executed, the test condition must be evaluated. The decision
as to whether to execute the statements in the body of the loop is made prior to entering the loop. As a result, the loop
will not be executed at all if the test condition yields FALSE.

 FOR EXAMPLE

DECLARE
 v_counter NUMBER := 5;
BEGIN
 WHILE v_counter < 5 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

 -- decrement the value of v_counter by one
 v_counter := v_counter - 1;
 END LOOP;
END;

In this example, the body of the loop is not executed at all because the test condition of the loop evaluates to FALSE.

While the test condition of the loop must evaluate to TRUE at least once for the statements in the loop to execute, it is
important to insure that the test condition will eventually evaluate to FALSE, as well. Otherwise, the WHILE loop will
execute continually.

 FOR EXAMPLE

DECLARE
 v_counter NUMBER := 1;
BEGIN
 WHILE v_counter < 5 LOOP
 DBMS_OUTPUT.PUT_LINE('v_counter = '||v_counter);

 -- decrement the value of v_counter by one
 v_counter := v_counter - 1;
 END LOOP;
END;

This is an example of an infinite WHILE loop. The test condition always evaluates to TRUE, because the value of
v_counter is decremented by 1 and is always less than 5.

It is important to note that Boolean expressions can also be used to determine
when the loop should terminate.

DECLARE
 v_test BOOLEAN := TRUE;
BEGIN
 WHILE v_test LOOP
 STATEMENTS;

 IF TEST_CONDITION THEN
 v_test := FALSE;
 END IF;

 END LOOP;
END;

When using a Boolean expression as a test condition of a loop, you must make
sure that a different value is eventually assigned to the Boolean variable in
order to exit the loop. Otherwise, the loop will become infinite.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Premature Termination of the Loop

The EXIT and EXIT WHEN statements can be used inside the body of a WHILE loop. If the EXIT condition evaluates to
TRUE before the test condition evaluates to FALSE, the loop is terminated prematurely. If the test condition yields
FALSE before the EXIT condition yields TRUE, there is no premature termination of the loop. This is indicated as follows:

WHILE TEST_CONDITION LOOP
 STATEMENT 1;
 STATEMENT 2;

 IF EXIT_CONDITION THEN
 EXIT;
 END IF;
END LOOP;
STATEMENT 3;

or

WHILE TEST_CONDITION LOOP
 STATEMENT 1;
 STATEMENT 2;
 EXIT WHEN EXIT_CONDITION;
END LOOP;
STATEMENT 3;

Consider the following example.

 FOR EXAMPLE

DECLARE
 v_counter NUMBER := 1;
BEGIN
 WHILE v_counter <= 5 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

 IF v_counter = 2 THEN
 EXIT;
 END IF;

 v_counter := v_counter + 1;
 END LOOP;
END;

Before the statements in the body of the WHILE loop are executed, the test condition

v_counter <= 5

must evaluate to TRUE. Then, the value of v_counter is displayed on the screen and incremented by one. Next, the EXIT
condition

v_counter = 2

is evaluated, and as soon as the value of v_counter reaches 2, the loop is terminated.

Notice that according to the test condition, the loop should execute five times. However, the loop is executed only
twice, because the EXIT condition is present inside the body of the loop. Therefore, the loop terminates prematurely.

Now you will try to reverse the test condition and EXIT condition.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE
 v_counter NUMBER := 1;
BEGIN
 WHILE v_counter <= 2 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 v_counter := v_counter + 1;

 IF v_counter = 5 THEN
 EXIT;
 END IF;
 END LOOP;
END;

In this example, the test condition is

v_counter <= 2

and the EXIT condition is

v_counter = 5

In this case, the loop is executed twice as well. However, it does not terminate prematurely, because the EXIT condition
never evaluates to TRUE. As soon as the value of v_counter reaches 3, the test condition evaluates to FALSE, and the
loop is terminated.

Both examples, when run, produce the following output:

v_counter = 1
v_counter = 2

PL/SQL procedure successfully completed.

These examples demonstrate not only the use of the EXIT statement inside the body of the WHILE loop, but also a bad
programming practice. In the first example, the test condition can be changed so that there is no need to use an EXIT
condition, because essentially they both are used to terminate the loop. In the second example, the EXIT condition is
useless, because its terminal value is never reached. You should never use unnecessary code in your program.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.2 Exercises

8.2.1 Use WHILE Loops

In this exercise, you will use a WHILE loop to calculate the sum of the integers between 1 and 10.

Create the following PL/SQL script:

-- ch08_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_counter BINARY_INTEGER := 1;
 v_sum NUMBER := 0;
BEGIN
 WHILE v_counter <= 10 LOOP
 v_sum := v_sum + v_counter;
 DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

 -- increment loop counter by one
 v_counter := v_counter + 1;
 END LOOP;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('The sum of integers between 1 '||
 'and 10 is: '||v_sum);
END;

Execute the script, and then answer the following questions:

a) What output was printed on the screen?

b) What is the test condition for this loop?

c) How many times was the loop executed?

d) How many times will the loop be executed

i. if v_counter is not initialized?

ii. if v_counter is initialized to 0?

iii. if v_counter is initialized to 10?

e) How will the value of v_sum change based on the initial value of v_counter from the previous question?

f) What will be the value of v_sum if it is not initialized?

g) How would you change the script to calculate the sum of the even integers between 1 and 100?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 8.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

8.2.1 Answers

a) What output was printed on the screen?

A1: Answer: Your output should look like the following:

Current sum is: 1
Current sum is: 3
Current sum is: 6
Current sum is: 10
Current sum is: 15
Current sum is: 21
Current sum is: 28
Current sum is: 36
Current sum is: 45
Current sum is: 55
The sum of integers between 1 and 10 is: 55

PL/SQL procedure successfully completed.

Every time the loop is run, the value of v_counter is checked in the test condition. While the value of v_counter is less
than or equal to 10, the statements inside the body of the loop are executed. In this script, the value of v_sum is
calculated and displayed on the screen. Next, the value of v_counter is incremented, and control is passed to the top of
the loop. Once the value of v_counter increases to 11, the loop is terminated.

For the first iteration of the loop, the value of v_sum is equal to 1, according to the statement

v_sum := v_sum + v_counter

After the value of v_sum is calculated, the value of v_counter is incremented by 1. Then, for the second iteration of the
loop, the value of v_sum is equal to 3, because 2 is added to the old value of v_sum.

After the loop has terminated, "The sum of integers..." and "Done ..." are displayed on the screen.

b) What is the test condition for this loop?

A2: Answer: The test condition for this loop is v_counter <= 10.

c) How many times was the loop executed?

A3: Answer: The loop was executed 10 times.

Once the value of v_counter reaches 11, the test condition

v_counter <= 10

evaluates to FALSE, and the loop is terminated.

As mentioned earlier, the loop counter tracks the number of times the loop is executed. You will notice that in this
exercise, the maximum value of v_counter is equal to the number of times the loop is iterated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exercise, the maximum value of v_counter is equal to the number of times the loop is iterated.

d) How many times will the loop be executed

i. if v_counter is not initialized?

ii. if v_counter is initialized to 0?

iii. if v_counter is initialized to 10?

A4: Answer: If the value of v_counter is not initialized to some value, the loop will not execute at all.

In order for the loop to execute at least once, the test condition must evaluate to TRUE at least once. If the value of
v_counter is only declared and not initialized, it is NULL. It is important to remember that null variables cannot be
compared to other variables or values. Therefore, the test condition

v_counter <= 10

never evaluates to TRUE, and the loop is not executed at all.

If v_counter is initialized to 0, the loop will execute 11 times instead of 10, since the minimum value of
v_counter has decreased by 1.

When v_counter is initialized to 0, the range of integers for which the test condition of the loop evaluates to TRUE
becomes 0 to 10. The given range of the integers has eleven numbers in it. As a result, the loop will iterate eleven
times.

If v_counter is initialized to 10, the loop will execute once.

When the initial value of v_counter is equal to 10, the test condition evaluates to TRUE for the first iteration of the loop.
Inside the body of the loop, the value of v_counter is incremented by one. As a result, for the second iteration of the
loop, the test condition evaluates to FALSE, since 11 is not less than or equal to 10, and control is passed to the next
executable statement after the loop.

e) How will the value of v_sum change based on the initial value of v_counter from the previous question?

A5: Answer: When v_counter is not initialized, the loop is not executed at all. Therefore, the value of v_sum
does not change from its initial value; it stays 0.

When v_counter is initialized to 0, the loop is executed 11 times. The value of v_sum is calculated 11 times,
as well. However, after the loop completes, the value of v_sum is 55, because 0 is added to v_sum during
first iteration of the loop.

When v_counter is initialized to 10, the loop is executed once. As a result, the value of v_sum is
incremented only once by 10. After the loop is complete, the value of v_sum is equal to 10.

f) What will be the value of v_sum if it is not initialized?

A6: Answer: The value of v_sum will be NULL if is not initialized to some value.

The value of v_sum in the statement

v_sum := v_sum + 1

will always be equal to NULL, because NULL + 1 is NULL. It was mentioned earlier that NULL variables cannot be
compared to other variable or values. Similarly, calculations cannot be performed on null variables.

g) How would you change the script to calculate the sum of the even integers between 1 and 100?

A7: Answer: Your answer should be similar to the following. Changes are shown in bold letters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A7: Answer: Your answer should be similar to the following. Changes are shown in bold letters.

Notice that the value of v_counter is initialized to 2, and with each iteration of the loop, the value of
v_counter is incremented by 2, as well.

-- ch08_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_counter BINARY_INTEGER := 2;
 v_sum NUMBER := 0;
BEGIN
 WHILE v_counter <= 100 LOOP
 v_sum := v_sum + v_counter;
 DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

 -- increment loop counter by two
 v_counter := v_counter + 2;
 END LOOP;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('The sum of even integers between
 '||'1 and 100 is: '||v_sum);
END;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) How many times is a WHILE loop executed if the test condition always evaluates to FALSE?

a. _____ The loop does not execute at all.

b. _____ The loop executes once.

c. _____ The loop executes an infinite number of times.

2) How many times is a WHILE loop executed if the test condition always evaluates to TRUE?

a. _____ The loop does not execute at all.

b. _____ The loop executes once.

c. _____ The loop executes an infinite number of times.

3) What value must the test condition evaluate to in order for the loop to terminate?

a. _____ TRUE

b. _____ FALSE

c. _____ NULL

4) What causes a WHILE loop to terminate prematurely?

a. _____ The EXIT condition evaluates to TRUE before the test condition evaluates to FALSE.

b. _____ The test condition evaluates to FALSE before the EXIT condition evaluates to TRUE.

c. _____ Both test and EXIT conditions evaluate to FALSE.

5) A WHILE loop will execute a minimum of

a. _____ zero times.

b. _____ one time.

c. _____ infinite number of times.

Answers appear in Appendix A, Section 8.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.3 Numeric FOR Loops

Lab Objectives
After this Lab, you will be able to:

 Use Numeric FOR Loops with the IN Option

 Use Numeric FOR Loops with the REVERSE Option

A numeric FOR loop is called numeric because it requires an integer as its terminating value. Its structure is as follows:

FOR loop_counter IN[REVERSE] lower_limit..upper_limit LOOP
 STATEMENT 1;
 STATEMENT 2;
 ...
 STATEMENT N;
END LOOP;

The reserved word FOR marks the beginning of a FOR loop construct. The variable, loop_counter, is an implicitly defined
index variable. There is no need to define the loop counter in the declaration section of the PL/SQL block. This variable
is defined by the loop construct. Lower_limit and upper_limit are two integer numbers that define the number of
iterations for the loop. The values of the lower_limit and upper_limit are evaluated once, for the first iteration of the
loop. At this point, it is determined how many times the loop will iterate. Statements 1 through N are a sequence of
statements that is executed repeatedly. END LOOP is a reserved phrase that marks the end of the loop construct.

The reserved word IN or IN REVERSE must be present when defining the loop. If the REVERSE keyword is used, the
loop counter will iterate from the upper limit to the lower limit. However, the syntax for the limit specification does not
change. The lower limit is always referenced first. The flow of this logic is illustrated in Figure 8.4.

Figure 8.4. Numeric FOR Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.4 shows that the loop counter is initialized to the lower limit for the first iteration of the loop only. However,
the value of the loop counter is tested for each iteration of the loop. As long as the value of v_counter ranges from the
lower limit to the upper limit, the statements inside the body of the loop are executed. When the value of the loop
counter does not satisfy the range specified by the lower limit and the upper limit, control is passed to the first
executable statement outside the loop.

 FOR EXAMPLE

BEGIN
 FOR v_counter IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END LOOP;
END;

In this example, there is no declaration section for the PL/SQL block because the only variable used, v_counter, is the
loop counter. Numbers 1..5 specify the range of the integer numbers for which this loop is executed.

Notice that there is no statement

v_counter := v_counter + 1

anywhere, inside or outside the body of the loop. The value of v_counter is incremented implicitly by the FOR loop itself.

This example produces the following output when run:

v_counter = 1
v_counter = 2
v_counter = 3
v_counter = 4
v_counter = 5

PL/SQL procedure successfully completed.

As a matter of fact, if you include the statement

v_counter := v_counter + 1

in the body of the loop, the PL/SQL script will compile with errors. Consider the following example.

 FOR EXAMPLE

BEGIN
 FOR v_counter IN 1..5 LOOP
 v_counter := v_counter + 1;
 DBMS_OUTPUT.PUT_LINE ('v_counter = '|| v_counter);
 END LOOP;
END;

When this example is run, the following error message is produced:

BEGIN
*
ERROR at line 1:
ORA-06550: line 3, column 7:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-06550: line 3, column 7:
PLS-00363: expression 'V_COUNTER' cannot be used as an
assignment target
ORA-06550: line 3, column 7:
PL/SQL: Statement ignored

It is important to remember that the loop counter is implicitly defined and
incremented when a numeric FOR loop is used. As a result, it cannot be
referenced outside the body of the FOR loop. Consider the following example:

BEGIN
 FOR v_counter IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('Counter outside the loop is '||
 v_counter);
END;

When this example is run, the following error message is produced:

DBMS_OUTPUT.PUT_LINE ('Counter outside the loop is '|| v_counter);
 *
ERROR at line 5:
ORA-06550: line 5, column 53:
PLS-00201: identifier 'V_COUNTER' must be declared
ORA-06550: line 5, column 4:
PL/SQL: Statement ignored

Because the loop counter is declared implicitly by the loop, the variable
v_counter cannot be referenced outside the loop. As soon as the loop
completes, the loop counter ceases to exist.

Using the REVERSE Option in the Loop

Earlier in this section, you encountered two options that are available when the value of the loop counter is evaluated,
IN and IN REVERSE. You have seen examples already that demonstrate the usage of the IN option for the loop. The
next example demonstrates the usage of the IN REVERSE option for the loop.

 FOR EXAMPLE

BEGIN
 FOR v_counter IN REVERSE 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END LOOP;
END;

When this example is run, the following output is produced:

v_counter = 5
v_counter = 4
v_counter = 3
v_counter = 2
v_counter = 1

PL/SQL procedure successfully completed.

As mentioned before, even though the REVERSE keyword is present, the lower limit of the loop is referenced first.
However, it is important to note that the loop counter is evaluated from the upper limit to the lower limit. For the first
iteration of the loop, v_counter (in our case it is a loop counter) is initialized to 5 (upper limit). Then its value is displayed
on the screen. For the second iteration of the loop, the value of v_counter is decreased by 1, and displayed on the
screen.

Notice that the number of times the body of the loop is executed is not affected by the option used, IN or IN REVERSE.
Only the values assigned to the lower limit and the upper limit determine how many times the body of the loop is
executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

executed.

Premature Termination of the Loop

The EXIT and EXIT WHEN statements can be used inside the body of a numeric FOR loop. If the EXIT condition
evaluates to TRUE before the loop counter reaches its terminal value, the FOR loop is terminated prematurely. If the
loop counter reaches its terminal value before the EXIT condition yields TRUE, there is no premature termination of the
FOR loop. Consider the following:

FOR LOOP_COUNTER IN LOWER_LIMIT..UPPER_LIMIT LOOP
 STATEMENT 1;
 STATEMENT 2;
 IF EXIT_CONDITION THEN
 EXIT;
 END IF;
END LOOP;
STATEMENT 3;

or

FOR LOOP_COUNTER IN LOWER_LIMIT..UPPER_LIMIT LOOP
 STATEMENT 1;
 STATEMENT 2;
 EXIT WHEN EXIT_CONDITION;
END LOOP;
STATEMENT 3;

Consider the following example of a FOR loop that uses the EXIT WHEN condition. This condition is causing the loop to
terminate prematurely.

 FOR EXAMPLE

BEGIN
 FOR v_counter IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 EXIT WHEN v_counter = 3;
 END LOOP;
END;

Notice that according to the range specified, the loop should execute five times. However, the loop is executed only
three times because the EXIT condition is present inside the body of the loop. Thus, the loop terminates prematurely.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.3 Exercises

8.3.1 Use Numeric FOR Loops with the IN Option

In this exercise, you will use a numeric FOR loop to calculate a factorial of 10 (10! = 1*2*3…*10).

Create the following PL/SQL script:

-- ch08_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_factorial NUMBER := 1;
BEGIN
 FOR v_counter IN 1..10 LOOP
 v_factorial := v_factorial * v_counter;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||
 v_factorial);
END;

Execute the script, and then answer the following questions:

a) What output was printed on the screen?

b) How many times was the loop executed?

c) What is the value of the loop counter before the loop?

d) What is the value of the loop counter after the loop?

e) How many times will the loop be executed if the value of v_counter is incremented by 5 inside the body of
the loop?

f) Rewrite this script using the REVERSE option. What will the value of v_factorial be after the loop is
completed?

8.3.2 Use Numeric FOR Loops with the REVERSE Option

In this exercise, you will use the REVERSE option to specify the range of numbers used by the loop to iterate. You will
display a list of even numbers starting from 10 going down to 0. Try to answer the questions before you run the script.
Once you have answered the questions, run the script and check your results.

Create the following PL/SQL script:

-- ch08_5a.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN
 FOR v_counter IN REVERSE 0..10 LOOP
 -- if v_counter is even, display its value on the
 -- screen
 IF MOD(v_counter, 2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END IF;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

As in the previous exercises, answer the following questions first, and then execute the script:

a) What output will be printed on the screen?

b) How many times will the body of the loop be executed?

c) How many times will the value of v_counter be displayed on the screen?

d) How would you change this script to start the list from 0 and go up to 10?

e) How would you change the script to display only odd numbers on the screen?

f) How many times will the loop be executed in this case?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 8.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

8.3.1 Answers

a) What output was printed on the screen?

A1: Answer: Your output should look like the following:

Factorial of ten is: 3628800
Done…

PL/SQL procedure successfully completed.

Every time the loop is run, the value of v_counter is incremented by 1 implicitly, and the current value of the factorial is
calculated. Once the value of v_counter increases to 10, the loop is run for the last time. At this point, the final value of
the factorial is calculated, and the loop is terminated. After the loop has terminated, control is passed to the first
statement outside of the loop—in this case, DBMS_OUTPUT.PUT_LINE.

b) How many times was the loop executed?

A2: Answer: The loop was executed ten times according to the range specified by the lower limit and the
upper limit of the loop. In this example, the lower limit is equal to 1, and upper limit is equal to 10.

c) What is the value of the loop counter before the loop?

A3: Answer: The loop counter is defined implicitly by the loop. Therefore, before the loop, the loop counter is
undefined and has no value.

d) What is the value of the loop counter after the loop?

A4: Answer: Similarly, after the loop has completed, the loop counter is undefined again and can hold no
value.

e) How many times will the loop be executed if the value of v_counter is incremented by 5 inside the body of
the loop?

A5: Answer: If the value of v_counter is incremented by 5 inside the body of the loop, the PL/SQL block will not
compile successfully. As a result, it will not execute at all.

In this example, variable v_counter is a loop counter. Therefore, its value can be incremented only implicitly by the loop.
Any executable statement that causes v_counter to change its current value leads to compilation errors.

f) Rewrite this script using the REVERSE option. What will the value of v_factorial be after the loop is
completed?

A6: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

The value of v_factorial will be equal to 3628800 after the loop is completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch08_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_factorial NUMBER := 1;
BEGIN
 FOR v_counter IN REVERSE 1..10 LOOP
 v_factorial := v_factorial * v_counter;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||
 v_factorial);
END;

The preceding script produces the following output:

Factorial of ten is: 3628800
Done…

PL/SQL procedure successfully completed.

The value of v_factorial computed by this loop is equal to the value of v_factorial computed by the original loop. You will
notice that in some cases it does not matter which option, IN or REVERSE, you are using to obtain the final result. You
will also notice that in other cases, the result produced by the loop can differ significantly.

8.3.2 Answers

a) What output will be printed on the screen?

A1: Answer: Your output should look like the following:

v_counter = 10
v_counter = 8
v_counter = 6
v_counter = 4
v_counter = 2
v_counter = 0
Done…

PL/SQL procedure successfully completed.

Notice that the values of v_counter are displayed in decreasing order from 10 to 0 because the REVERSE option is used.
Remember that regardless of the option used, the lower limit is referenced first.

b) How many times will the body of the loop be executed?

A2: Answer: The body of the loop will be executed eleven times, since the range of the integer numbers
specified varies from 0 to 10.

c) How many times will the value of v_counter be displayed on the screen?

A3: Answer: The value of v_counter will be displayed on the screen six times, since the IF statement will
evaluate to TRUE only for even integers.

d) How would you change this script to start the list from 0 and go up to 10?

A4: Answer: Your script should look similar to the script shown below. Changes are shown in bold letters.

To start the list of integers from 0 and go up to 10, the IN option needs to be used in the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch08_5b.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN
 FOR v_counter IN 0..10 LOOP
 -- if v_counter is even, display its value on the
 -- screen
 IF MOD(v_counter, 2) = 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END IF;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

This example produces the following output:

v_counter = 0
v_counter = 2
v_counter = 4
v_counter = 6
v_counter = 8
v_counter = 10
Done…

PL/SQL procedure successfully completed.

Notice that when the IN option is used, the value of v_counter is initialized to 0, and, with each iteration of the loop, it is
incremented by 1. When the REVERSE option is used, v_counter is initialized to 10, and its value is decremented by 1
with each iteration of the loop.

e) How would you change the script to display only odd numbers on the screen?

A5: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch08_5c.sql, version 3.0
SET SERVEROUTPUT ON
BEGIN
 FOR v_counter IN REVERSE 0..10 LOOP
 -- if v_counter is even, display its value on the
 -- screen
 IF MOD(v_counter, 2) != 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END IF;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Notice that only the test condition of the IF statement is changed in order to display the list of odd integers, and the
following output is produced:

v_counter = 9
v_counter = 7
v_counter = 5
v_counter = 3
v_counter = 1
Done…

PL/SQL procedure successfully completed.

f) How many times will the loop be executed in this case?

A6: Answer: In this case the loop will be executed eleven times.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A6: Answer: In this case the loop will be executed eleven times.

Based on the test condition used in the IF statement, even or odd integers are displayed on the screen. Depending on
the test condition, the number of times v_counter is displayed on the screen varies. However, the loop is executed
eleven times as long as the number range specified is 0 to 10.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) How many times is a numeric FOR loop executed if the value of the lower limit is equal to the value of the
upper limit?

a. _____ The loop does not execute at all.

b. _____ The loop executes once.

c. _____ The loop executes an infinite number of times.

2) How many times is the numeric FOR loop executed if the value of the lower limit is greater than the value of
the upper limit?

a. _____ The loop does not execute at all.

b. _____ The loop executes once.

c. _____ The loop executes an infinite number of times.

3) What is the value of the loop counter prior to entering the loop?

a. _____ 0

b. _____ 1

c. _____ Undefined

4) What is the value of the loop counter after termination of the loop?

a. _____ Same as upper limit

b. _____ Same as lower limit

c. _____ Undefined

5) When the REVERSE option is used, the value of the loop counter is initialized to which of the following?

a. _____ Lower limit

b. _____ Upper limit

c. _____ NULL

Answers appear in Appendix A, Section 8.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.4 Nested Loops

Lab Objectives
After this Lab, you will be able to:

 Use Nested Loops

You have explored three types of loops: simple loops, WHILE loops, and numeric FOR loops. Any of these three types of
loops can be nested inside one another. For example, a simple loop can be nested inside a WHILE loop and vice versa.
Consider the following example:

 FOR EXAMPLE

DECLARE
 v_counter1 INTEGER := 0;
 v_counter2 INTEGER;
BEGIN
 WHILE v_counter1 < 3 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter1: '||v_counter1);
 v_counter2 := 0;
 LOOP
 DBMS_OUTPUT.PUT_LINE ('v_counter2: '||v_counter2);
 v_counter2 := v_counter2 + 1;
 EXIT WHEN v_counter2 >= 2;
 END LOOP;
 v_counter1 := v_counter1 + 1;
 END LOOP;
END;

In this example, the WHILE loop is called an outer loop because it encompasses the simple loop. The simple loop is
called an inner loop because it is enclosed by the body of the WHILE loop.

The outer loop is controlled by the loop counter, v_counter1, and it will execute providing the value of v_counter1 is less
than 3. With each iteration of the loop, the value of v_counter1 is displayed on the screen. Next, the value of v_counter2
is initialized to 0. It is important to note that v_counter2 is not initialized at the time of the declaration. The simple loop
is placed inside the body of the WHILE loop, and the value of v_counter2 must be initialized every time before control is
passed to the simple loop.

Once control is passed to the inner loop, the value of v_counter2 is displayed on the screen and incremented by 1. Next,
the EXIT WHEN condition is evaluated. If the EXIT WHEN condition evaluates to FALSE, control is passed back to the top
of the simple loop. If the EXIT WHEN condition evaluates to TRUE, control is passed to the first executable statement
outside of the loop. In our case, control is passed back to the outer loop, and the value of v_counter1 is incremented by
1, and the test condition of the WHILE loop is evaluated again.

This logic is demonstrated by the output produced by the example:

v_counter1: 0
v_counter2: 0
v_counter2: 1
v_counter1: 1
v_counter2: 0
v_counter2: 1
v_counter1: 2
v_counter2: 0
v_counter2: 1

PL/SQL procedure successfully completed.

Notice that for each value of v_counter1, there are two values of v_counter2 displayed. For the first iteration of the outer
loop, the value of v_counter1 is equal to 0. Once control is passed to the inner loop, the value of v_counter2 is displayed
on the screen twice, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loop Labels

Earlier in the book, you read about labeling of PL/SQL blocks. Loops can be labeled in a similar manner, as follows:

<<label_name>>
FOR LOOP_COUNTER IN LOWER_LIMIT..UPPER_LIMIT LOOP
 STATEMENT 1;
 ...
 STATEMENT N;
END LOOP label_name;

The label must appear right before the beginning of the loop. This syntax example shows that the label can be
optionally used at the end of the loop statement. It is very helpful to label nested loops because labels improve
readability. Consider the following example.

 FOR EXAMPLE

BEGIN
 <<outer_loop>>
 FOR i IN 1..3 LOOP
 DBMS_OUTPUT.PUT_LINE ('i = '||i);
 <<inner_loop>>
 FOR j IN 1..2 LOOP
 DBMS_OUTPUT.PUT_LINE ('j = '||j);
 END LOOP inner_loop;
 END LOOP outer_loop;
END;

For both outer and inner loops, the statement END LOOP must be used. If the loop label is added to each END LOOP
statement, it becomes easier to understand which loop is being terminated.

Loop labels can also be used when referencing loop counters.

 FOR EXAMPLE

BEGIN
 <<outer>>
 FOR v_counter IN 1..3 LOOP
 <<inner>>
 FOR v_counter IN 1..2 LOOP
 DBMS_OUTPUT.PUT_LINE ('outer.v_counter '||
 outer.v_counter);
 DBMS_OUTPUT.PUT_LINE ('inner.v_counter '||
 inner.v_counter);
 END LOOP inner;
 END LOOP outer;
END;

In this example, both the inner and outer loops use the same loop counter, v_counter. In order to reference both the
outer and inner values of v_counter, loop labels are used. This example produces the following output:

outer.v_counter 1
inner.v_counter 1
outer.v_counter 1
inner.v_counter 2
outer.v_counter 2
inner.v_counter 1
outer.v_counter 2
inner.v_counter 2
outer.v_counter 3
inner.v_counter 1
outer.v_counter 3
inner.v_counter 2

PL/SQL procedure successfully completed.

Your program is able to differentiate between two variables having the same name because loop labels are used when
the variables are referenced. If no loop labels are used when v_counter is referenced, the output produced by this script
will change significantly. Basically, once control is passed to the inner loop, the value of v_counter from the outer loop is
unavailable. When control is passed back to the outer loop, the value of v_counter becomes available again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unavailable. When control is passed back to the outer loop, the value of v_counter becomes available again.

In this example, the same name for two different loop counters is used to demonstrate another use of loop labels.
However, it is not considered a good programming practice to use the same name for different variables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.4 Exercises

8.4.1 Use Nested Loops

In this exercise, you will use nested numeric FOR loops.

Create the following PL/SQL script:

-- ch08_6a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_test NUMBER := 0;
BEGIN
 <<outer_loop>>
 FOR i IN 1..3 LOOP
 DBMS_OUTPUT.PUT_LINE('Outer Loop');
 DBMS_OUTPUT.PUT_LINE('i = '||i);
 DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
 v_test := v_test + 1;

 <<inner_loop>>
 FOR j IN 1..2 LOOP
 DBMS_OUTPUT.PUT_LINE('Inner Loop');
 DBMS_OUTPUT.PUT_LINE('j = '||j);
 DBMS_OUTPUT.PUT_LINE('i = '||i);
 DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
 END LOOP inner_loop;
 END LOOP outer_loop;
END;

Execute the script, and then answer the following questions:

a) What output was printed on the screen?

b) How many times was the outer loop executed?

c) How many times was the inner loop executed?

d) What are the values of the loop counters, i and j, after both loops terminate?

e) Rewrite this script using the REVERSE option for both loops. How many times will each loop be executed in
this case?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.4 Exercise Answers
This section gives you some suggested answers to the questions in Lab 8.4, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

8.4.1 Answers

a) What output was printed on the screen?

A1: Answer: Your output should look like the following:

Outer Loop
i = 1
v_test = 0
Inner Loop
j = 1
i = 1
v_test = 1
Inner Loop
j = 2
i = 1
v_test = 1
Outer Loop
i = 2
v_test = 1
Inner Loop
j = 1
i = 2
v_test = 2
Inner Loop
j = 2
i = 2
v_test = 2
Outer Loop
i = 3
v_test = 2
Inner Loop
j = 1
i = 3
v_test = 3
Inner Loop
j = 2
i = 3
v_test = 3

PL/SQL procedure successfully completed.

Every time the outer loop is run, the value of the loop counter is incremented by 1 implicitly and displayed on the
screen. In addition, the value of v_test is displayed on the screen and is incremented by 1, as well. Next, control is
passed to the inner loop.

Every time the inner loop is run, the value of the inner loop counter is incremented by 1 and displayed on the screen,
along with the value of the outer loop counter and the variable v_test.

b) How many times was the outer loop executed?

A2: Answer: The outer loop was executed three times, according to the range specified by the lower limit and
the upper limit of the loop. In this example, the lower limit is equal to 1, and the upper limit is equal to 3.

c) How many times was the inner loop executed?

A3: Answer: The inner loop was executed six times.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A3: Answer: The inner loop was executed six times.

For each iteration of the outer loop, the inner loop was executed twice. However, the outer loop was executed three
times. Overall, the inner loop was executed six times.

d) What are the values of the loop counters, i and j, after both loops terminate?

A4: Answer: After both loops terminate, both loop counters are undefined again and can hold no values. As
mentioned earlier, the loop counter ceases to exist once the numeric FOR loop is terminated.

e) Rewrite this script using the REVERSE option for both loops. How many times will each loop be executed in
this case?

A5: Answer: Your script should be similar to the script below. Changes are shown in bold letters.

The outer loop will execute three times, and the inner loop will execute six times.

-- ch08_6b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_test NUMBER := 0;
BEGIN
 <<outer_loop>>
 FOR i IN REVERSE 1..3 LOOP
 DBMS_OUTPUT.PUT_LINE('Outer Loop');
 DBMS_OUTPUT.PUT_LINE('i = '||i);
 DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
 v_test := v_test + 1;

 <<inner_loop>>
 FOR j IN REVERSE 1..2 LOOP
 DBMS_OUTPUT.PUT_LINE('Inner Loop');
 DBMS_OUTPUT.PUT_LINE('j = '||j);
 DBMS_OUTPUT.PUT_LINE('i = '||i);
 DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
 END LOOP inner_loop;
 END LOOP outer_loop;
END;

This script produces the following output:

Outer Loop
i = 3
v_test = 0
Inner Loop
j = 2
i = 3
v_test = 1
Inner Loop
j = 1
i = 3
v_test = 1
Outer Loop
i = 2
v_test = 1
Inner Loop
j = 2
i = 2
v_test = 2
Inner Loop
j = 1
i = 2
v_test = 2
Outer Loop
i = 1
v_test = 2
Inner Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inner Loop
j = 2
i = 1
v_test = 3
Inner Loop
j = 1
i = 1
v_test = 3

PL/SQL procedure successfully completed.

Notice that the output produced by this example has changed significantly from the output in the previous example. The
values of the loop counters are decremented because the REVERSE option is used. However, the value of the variable
v_test was not affected by using the REVERSE option.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 8.4 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) What types of PL/SQL loop can be nested one inside another?

a. _____ A simple loop can only be nested inside WHILE loop.

b. _____ A WHILE loop can only be nested inside simple loop.

c. _____ Any loop can be nested inside another loop.

2) When nested loops are used, you must use loop labels.

a. _____ True

b. _____ False

3) When a loop label is defined, you must use it with an END LOOP statement.

a. _____ True

b. _____ False

4) When nested loops are used, it is recommended that you use the same name for the loop counters.

a. _____ True

b. _____ False

5) If the loop label is defined, you must use it when the loop counter is referenced.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 8.4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8 Test Your Thinking

In this chapter you learned about simple loops, WHILE loops, and numeric FOR loops. You also learned
that all these loops can be nested one inside another. Here are some projects that will help you test the
depth of your understanding:

1) Rewrite script ch08_1a.sql using a WHILE loop instead of a simple loop. Make
sure that the output produced by this script does not differ from the output
produced by the script ch08_1a.sql.

2) Rewrite script ch08_4a.sql using a simple loop instead of a numeric FOR loop.
Make sure that the output produced by this script does not differ from the
output produced by the script ch08_4a.sql.

3) Rewrite script ch08_6a.sql. A simple loop should be used as the outer loop,
and a WHILE loop should be used as the inner loop.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Introduction to Cursors
Chapter Objectives
In this Chapter, you will learn about:

 Cursor Manipulation

 Using Cursor FOR Loops and Nesting Cursors

Cursors are memory areas that allow you to allocate an area of memory and access the information retrieved from a
SQL statement. For example, you use a cursor to operate on all the rows of the STUDENT table for those students
taking a particular course (having associated entries in the ENROLLMENT table). In this chapter, you will learn to
declare an explicit cursor that enables a user to process many rows returned by a query and allows the user to write
code that will process each row one at a time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.1 Cursor Manipulation

Lab Objectives
After this Lab, you will be able to:

 Make Use of Record Types

 Process an Explicit Cursor

 Make Use of Cursor Attributes

 Put It All Together

In order for Oracle to process an SQL statement, it needs to create an area of memory known as the context area; this
will have the information needed to process the statement. This information includes the number of rows processed by
the statement, a pointer to the parsed representation of the statement (parsing an SQL statement is the process
whereby information is transferred to the server, at which point the SQL statement is evaluated as being valid). In a
query, the active set refers to the rows that will be returned.

A cursor is a handle, or pointer, to the context area. Through the cursor, a PL/SQL program can control the context
area and what happens to it as the statement is processed. Two important features about the cursor are as follows:

1. Cursors allow you to fetch and process rows returned by a SELECT statement, one row at a time.

2. A cursor is named so that it can be referenced.

Types of Cursors

There are two types of cursors:

1. An implicit cursor is automatically declared by Oracle every time an SQL statement is executed. The user will
not be aware of this happening and will not be able to control or process the information in an implicit cursor.

2. An explicit cursor is defined by the program for any query that returns more than one row of data. That means
the programmer has declared the cursor within the PL/SQL code block. This declaration allows for the
application to sequentially process each row of data as it is returned by the cursor.

Implicit Cursor

In order to better understand the capabilities of an explicit cursor, you first need to run through the process of an
implicit cursor. The process is as follows:

Any given PL/SQL block issues an implicit cursor whenever an SQL statement is executed, as long as an explicit
cursors does not exist for that SQL statement.

A cursor is automatically associated with every DML (Data Manipulation) statement (UPDATE, DELETE, INSERT).

All UPDATE and DELETE statements have cursors that identify the set of rows that will be affected by the
operation.

An INSERT statement needs a place to receive the data that is to be inserted in the database; the implicit
cursor fulfills this need.

The most recently opened cursor is called the 'SQL%' cursor.

The Processing of an Implicit Cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Processing of an Implicit Cursor

The implicit cursor is used to process INSERT, UPDATE, DELETE, and SELECT INTO statements. During the processing
of an implicit cursor, Oracle automatically performs the OPEN, FETCH, and CLOSE operations.

An implicit cursor cannot tell you how many rows were affected by an update.
SQL%ROWCOUNT returns numbers of rows updated. It can be used as follows:

SET SERVEROUTPUT ON
BEGIN
 UPDATE student
 SET first_name = 'B'
 WHERE first_name LIKE 'B%';
 DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT);
END;

Consider the following example of an implicit cursor.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;
 DBMS_OUTPUT.PUT_LINE ('Student name: '||
 v_first_name||' '||v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('There is no student with student ID 123');
END;

It is important to note that Oracle automatically associates an implicit cursor with the SELECT INTO statement and
fetches the values for the variables, v_first_name and v_last_name. Once the SELECT INTO statement completes, Oracle
closes the implicit cursor.

Unlike implicit cursor, explicit cursor is defined by the program for any query that returns more than one row of data.
So you need to process an explicit cursor as follows. First you declare a cursor. Next, you open earlier declared cursor.
Next, you fetch earlier declared and opened cursor. Finally, you close the cursor.

Explicit Cursor

The only means of generating an explicit cursor is for the cursor to be named in the DECLARE section of the PL/SQL
block.

The advantages of declaring an explicit cursor over the indirect implicit cursor are that the explicit cursor gives more
programmatic control to the programmer. Implicit cursors are less efficient than explicit cursors, and thus it is harder to
trap data errors.

The process of working with an explicit cursor consists of the following steps:

1. Declaring the cursor. This initializes the cursor into memory.

2. Opening the cursor. The previously declared cursor can now be opened; memory is allotted.

3. Fetching the cursor. Previously declared and opened cursor can now retrieve data; this is the process of
fetching the cursor.

4. Closing the cursor. Previously declared, opened, and fetched cursor must now be closed to release memory
allocation.

Declaring a Cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declaring a cursor defines the name of the cursor and associates it with a SELECT statement. The first step is to Declare
the Cursor with the following syntax:

CURSOR c_cursor_name IS select statement

The naming conventions that are used in the Oracle Interactive Series advise
you always to name a cursor as c_cursorname. By using a c_ in the beginning
of the name, it will always be clear to you that the name is referencing a
cursor.

It is not possible to make use of a cursor unless the complete cycle of (1) declaring, (2) opening, (3) fetching, and
finally (4) closing has been performed. In order to explain these four steps, the following examples will have code
fragments for each step and finally will show you the complete process.

 FOR EXAMPLE

This is a PL/SQL fragment that demonstrates the first step of declaring a cursor. A cursor named C_MyCursor is
declared as a select statement of all the rows in the zipcode table that have the item state equal to 'NY'.

DECLARE
 CURSOR C_MyCursor IS
 SELECT *
 FROM zipcode
 WHERE state = 'NY';
...
 <code would continue here with Opening, Fetching and closing of the cursor>

Cursor names follow the same rules of scope and visibility that apply to the
PL/SQL identifiers. Because the name of the cursor is a PL/SQL identifier, it
must be declared before it is referenced. Any valid select statement can be
used to define a cursor, including joins and statements with the UNION or
MINUS clause.

Record Types

A record is a composite data structure, which means that it is composed of more than one element. Records are very
much like a row of a database table, but each element of the record does not stand on its own. PL/SQL supports three
kinds of records: (1) table-based, (2) cursor-based, (3) programmer-defined.

A table-based record is one whose structure is drawn from the list of columns in the table. A cursor-based record is one
whose structure matches the elements of a predefined cursor. To create a table-based or cursor-based record, use the
%ROWTYPE attribute.

<record_name> <table_name or cursor_name>%ROWTYPE

 FOR EXAMPLE

-- ch09_1a.sql
SET SERVEROUTPUT ON
DECLARE
 vr_student student%ROWTYPE;
BEGIN
 SELECT *

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT *
 INTO vr_student
 FROM student
 WHERE student_id = 156;
 DBMS_OUTPUT.PUT_LINE (vr_student.first_name||' '
 ||vr_student.last_name||' has an ID of 156');
EXCEPTION
 WHEN no_data_found
 THEN
 RAISE_APPLICATION_ERROR(-2001,'The Student '||
 'is not in the database');
END;

The variable vr_student is a record type of the existing database table student. That is, it has the same components as a
row in the student table. A cursor-based record is much the same, except that it is drawn from the select list of an
explicitly declared cursors. When referencing elements of the record, you use the same syntax that you use with tables.

record_name.item_name

In order to define a variable that is based on a cursor record, the cursor must first be declared. In the following lab, you
will start by declaring a cursor and then proceed with the process of opening the cursor, fetching from the cursor, and
finally closing the cursor.

A table-based record is drawn from a particular table structure. Consider the following code fragment.

 FOR EXAMPLE

DECLARE
 vr_zip ZIPCODE%ROWTYPE;
 vr_instructor INSTRUCTOR%ROWTYPE;

Record vr_zip has structure similar to a row of the ZIPCODE table. Its elements are CITY, STATE, and ZIP. It is important
to note that if CITY column of the ZIPCODE table has been defined as VARCHAR2(15), the attribute CITY of the vr_zip
record will have the same datatype structure. Similarly, record vr_instructor is based on the row of the INSTRUCTOR table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.1 Exercises

9.1.1 Make Use of Record Types

Here is an example of a record type in an anonymous PL/SQL block.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 vr_zip ZIPCODE%ROWTYPE;
BEGIN
 SELECT *
 INTO vr_zip
 FROM zipcode
 WHERE rownum < 2;
 DBMS_OUTPUT.PUT_LINE('City: '||vr_zip.city);
 DBMS_OUTPUT.PUT_LINE('State: '||vr_zip.state);
 DBMS_OUTPUT.PUT_LINE('Zip: '||vr_zip.zip);
END;

a) What will happen when the preceding example is run in a SQL*Plus session?

A cursor-based record is based on the list of elements of a predefined cursor.

b) Explain how the record type vr_student_name is being used in the following example.

 FOR EXAMPLE

DECLARE
 CURSOR c_student_name IS
 SELECT first_name, last_name
 FROM student;
 vr_student_name c_student_name%ROWTYPE;

In the next Lab you will learn how to process an explicit cursor. Afterward you will address record types within that
process.

9.1.2 Process an Explicit Cursor

a) Write the declarative section of a PL/SQL block that defines a cursor named c_student, based on the
student table with the last_name and the first_name concatenated into one item called name and leaving
out the created_by and modified_by columns. Then declare a record based on this cursor.

Opening a Cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next step in controlling an explicit cursor is to open it. When the Open cursor statement is processed, the following
four actions will take place automatically:

1. The variables (including bind variables) in the WHERE clause are examined.

2. Based on the values of the variables, the active set is determined and the PL/SQL engine executes the query for
that cursor. Variables are examined at cursor open time only.

3. The PL/SQL engine identifies the active set of data—the rows from all involved tables that meet the WHERE
clause criteria.

4. The active set pointer is set to the first row.

The syntax for opening a cursor is

OPEN cursor_name;

A pointer into the active set is also established at the cursor open time. The
pointer determines which row is the next to be fetched by the cursor. More
than one cursor can be open at a time.

b) Add the necessary lines to the PL/SQL block that you just wrote to open the cursor.

Fetching Rows in a Cursor

After the cursor has been declared and opened, you can then retrieve data from the cursor. The process of getting the
data from the cursor is referred to as fetching the cursor. There are two methods of fetching a cursor, done with the
following command:

FETCH cursor_name INTO PL/SQL variables;

or

FETCH cursor_name INTO PL/SQL record;

When the cursor is fetched, the following occurs:

1. The fetch command is used to retrieve one row at a time from the active set. This is generally done inside a
loop. The values of each row in the active set can then be stored into the corresponding variables or PL/SQL
record one at a time, performing operations on each one successively.

2. After each FETCH, the active set pointer is moved forward to the next row. Thus, each fetch will return
successive rows of the active set, until the entire set is returned. The last FETCH will not assign values to the
output variables; they will still contain their prior values.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch09_2a.sql
SET SERVEROUTPUT ON
DECLARE
 CURSOR c_zip IS
 SELECT *
 FROM zipcode;
 vr_zip c_zip%ROWTYPE;
BEGIN
 OPEN c_zip;
 LOOP
 FETCH c_zip INTO vr_zip;
 EXIT WHEN c_zip%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(vr_zip.zip||
 ' '||vr_zip.city||' '||vr_zip.state);
 END LOOP;
END;

The lines in italics have not yet been covered but are essential for the code to run correctly. They will be explained later
in this chapter.

c) In Chapter 3 you learned how to construct a loop. For the PL/SQL block that you have been writing, add a
loop. Inside the loop FETCH the cursor into the record. Include a DBMS_OUTPUT line inside the loop so that
each time the loop iterates, all the information in the record is displayed in a SQL*Plus session.

Closing a Cursor

Once all of the rows in the cursor have been processed (retrieved), the cursor should be closed. This tells the PL/SQL
engine that the program is finished with the cursor, and the resources associated with it can be freed. The syntax for
closing the cursor is

CLOSE cursor_name;

Once a cursor is closed, it is no longer valid to fetch from it. Likewise, it is not
possible to close an already closed cursor (either one will result in an Oracle
error).

d) Continue with the code you have developed by adding a close statement to the cursor. Is your code
complete now?

Next, consider another example.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 CURSOR c_student_name IS
 SELECT first_name, last_name
 FROM student
 WHERE rownum <= 5;
 vr_student_name c_student_name%ROWTYPE;
BEGIN
 OPEN c_student_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OPEN c_student_name;
 LOOP
 FETCH c_student_name INTO vr_student_name;
 EXIT WHEN c_student_name%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Student name: '||
 vr_student_name.first_name||'
 '||vr_student_name.last_name);
 END LOOP;
 CLOSE c_student_name;
END;

e) Explain what is occurring in this PL/SQL block. What will be the output from the preceding example?

f) Next, consider the same example with single modification. Notice that the DBMS_OUTPUT.PUT_LINE
statement has been moved outside the loop (shown in bold letters). Execute this example, and try to
explain why this version of the script produces different output.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 CURSOR c_student_name IS
 SELECT first_name, last_name
 FROM student
 WHERE rownum <= 5;
 vr_student_name c_student_name%ROWTYPE;
BEGIN
 OPEN c_student_name;
 LOOP
 FETCH c_student_name INTO vr_student_name;
 EXIT WHEN c_student_name%NOTFOUND;
 END LOOP;
 CLOSE c_student_name;
 DBMS_OUTPUT.PUT_LINE('Student name: '||
 vr_student_name.first_name||'
 '||vr_student_name.last_name);
END;

A programmer-defined record is based on the record type defined by a programmer. First you declare a record type,
and next, you declare a record based on the record type defined in the previous step as follows:

type type_name IS RECORD
 (field_name 1 DATATYPE 1,
 field_name 2 DATATYPE 2,
 …
 field_name N DATATYPE N);

 record_name TYPE_NAME%ROWTYPE;

Consider the following code fragment.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 -- declare user-defined type
 TYPE instructor_info IS RECORD
 (instructor_id instructor.instructor_id%TYPE,
 first_name instructor.first_name%TYPE,
 last_name instructor.last_name%TYPE,
 sections NUMBER(1));
 -- declare a record based on the type defined above
 rv_instructor instructor_info;

In this code fragment, you define your own type, instructor_info. This type contains four attributes: instructor's ID, first
and last names, and number of sections taught by this instructor. Next, you declare a record based on the type just
described. As a result, this record has structure similar to the type, instructor_ info. Consider the following example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described. As a result, this record has structure similar to the type, instructor_ info. Consider the following example.

 FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
 TYPE instructor_info IS RECORD
 (first_name instructor.first_name%TYPE,
 last_name instructor.last_name%TYPE,
 sections NUMBER);
 rv_instructor instructor_info;
BEGIN
 SELECT RTRIM(i.first_name),
 RTRIM(i.last_name), COUNT(*)
 INTO rv_instructor
 FROM instructor i, section s
 WHERE i.instructor_id = s.instructor_id
 AND i.instructor_id = 102
 GROUP BY i.first_name, i.last_name;
 DBMS_OUTPUT.PUT_LINE('Instructor, '||
 rv_instructor.first_name||'
 '||rv_instructor.last_name||
 ', teaches '||rv_instructor.sections||'
 section(s)');
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('There is no such instructor');
END;

g) Explain what is declared in the previous example. Describe what is happening to the record and explain how
this results in the output.

9.1.3 Make Use of Cursor Attributes

Table 9.1 lists the attributes of a cursor, which are used to determine the result of a cursor operation when fetched or
opened.

a) Now that you know cursor attributes, you can use one of these to exit the loop within the code you
developed in the previous example. Are you able to make a fully executable block now? If not, explain why.

Cursor attributes can be used with implicit cursors by using the prefix SQL, for example, SQL%ROWCOUNT.

If you use a SELECT INTO syntax in your PL/SQL block, you will be creating an implicit cursor. You can then use these
attributes on the implicit cursor.

 FOR EXAMPLE

-- ch09_3a.sql
SET SERVEROUTPUT ON
DECLARE
 v_city zipcode.city%type;
BEGIN
 SELECT city
 INTO v_city
 FROM zipcode
 WHERE zip = 07002;
 IF SQL%ROWCOUNT = 1
 THEN
 DBMS_OUTPUT.PUT_LINE(v_city ||' has a '||
 'zipcode of 07002');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'zipcode of 07002');
 ELSIF SQL%ROWCOUNT = 0
 THEN
 DBMS_OUTPUT.PUT_LINE('The zipcode 07002 is '||
 ' not in the database');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Stop harassing me');
 END IF;
END;

Table 9.1. Explicit Cursor Attributes
Cursor

Attribute
Syntax Explanation

%NOTFOUND cursor_name%NOTFOUND A Boolean attribute that returns TRUE if the previous FETCH did not
return a row, and FALSE if it did.

%FOUND cursor_name%FOUND A Boolean attribute that returns TRUE if the previous FETCH returned a
row, and FALSE if it did not.

%ROWCOUNT cursor_name%ROWCOUNT # of records fetched from a cursor at that point in time.

%ISOPEN Cursor_name%ISOPEN A Boolean attribute that returns TRUE if cursor is open, FALSE if it is not.

b) What will happen if this code is run? Describe what is happening in each phase of the example.

c) Rerun this block, changing 07002 to 99999. What do you think will happen? Explain.

d) Now, try running this file. Did it run as you expected? Why or why not? What could be done to improve the
way it handles a possible error condition?

9.1.4 Put It All Together

Here is an example of the complete cycle of declaring, opening, fetching, and closing a cursor, including use of cursor
attributes.

-- ch09_4a.sql
1> DECLARE
2> v_sid student.student_id%TYPE;
3> CURSOR c_student IS
4> SELECT student_id
5> FROM student
6> WHERE student_id < 110;
7> BEGIN
8> OPEN c_student;
9> LOOP
10> FETCH c_student INTO v_sid;
11> EXIT WHEN c_student%NOTFOUND;
12> DBMS_OUTPUT.PUT_LINE('STUDENT ID : '||v_sid);
13> END LOOP;
14> CLOSE c_student;
15> EXCEPTION
16> WHEN OTHERS
17> THEN
18> IF c_student%ISOPEN
19> THEN
20> CLOSE c_student;
21> END IF;
22> END;

a) Describe what is happening in each phase of example ch09_4a.sql. Use the line numbers to reference the
example.

b) Modify the example to make use of the cursor attributes %FOUND and %ROWCOUNT.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) Fetch a cursor that has a data from the student table into a %ROWTYPE. Only select students with a
student_id under 110. The columns are the STUDENT_ID, LAST_NAME, FIRST_NAME, and a count of the
number of classes they are enrolled in (using the enrollment table). Fetch the cursor with a loop and then
output all the columns. You will have to use an alias for the enrollment count.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.1 Exercise Answers

9.1.1 Answers

a) What will happen when the preceding example is run in a SQL*Plus session?

A1: Answer: In this example, you select a single row for the ZIPCODE table into vr_zip record. Next, you
display each element of the record on the screen. Notice that in order to reference each attribute of the
record, dot notation is used. When run, the example produces the following output:

City: Santurce
State: PR
Zip: 00914
PL/SQL procedure successfully completed.

b) Explain how the record type vr_student_name is being used in the following example.

A1: Answer: Record vr_student_name has structure similar to a row returned by the SELECT statement defined
in the cursor. It contains two attributes, student's first and last names.

It is important to note that a cursor-based record can be declared
only after its corresponding cursor has been declared; otherwise, a
compilation error will occur.

9.1.2 Answers

a) Write the declarative section of a PL/SQL block that defines a cursor named c_student, based on the
student table with the last_name and the first_name concatenated into one item called name and leaving
out the created_by and modified_by columns. Then declare a record based on this cursor.

A1: Answer:

DECLARE
 CURSOR c_student is
 SELECT first_name||' '||Last_name name
 FROM student;
 vr_student c_student%ROWTYPE;

b) Add the necessary lines to the PL/SQL block that you just wrote to open the cursor.

A1: Answer: The following lines should be added to the lines in a).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A1: Answer: The following lines should be added to the lines in a).

BEGIN
 OPEN c_student;

c) In Chapter 3 you learned how to construct a loop. For the PL/SQL block that you have been writing, add a
loop. Inside the loop FETCH the cursor into the record. Include a DBMS_OUTPUT line inside the loop so
that each time the loop iterates, all the information in the record is displayed in a SQL*Plus session.

A1: Answer: The following lines should be added:

LOOP
 DBMS_OUTPUT.PUT_LINE(vr_student.name);
 FETCH c_student INTO vr_student;

d) Continue with the code you have developed by adding a close statement to the cursor. Is your code
complete now?

A1: Answer: The following lines should be added:

CLOSE c_student;

The code is not complete since there is not a proper way to exit the loop.

e) Explain what is occurring in this PL/SQL block. What will be the output from the preceding example?

A1: Answer: In this example, you declare a cursor that returns five student names. Next, you declare a
cursor-based record. In the body of the program you process explicit cursors via the cursor loop. In the
body of the loop, you assign each record returned by the cursor to the cursor-based record,
vr_student_name. Next, you display its contents on the screen. When run, the example produces the
following output:

Student name: George Eakheit
Student name: Leonard Millstein
Student name: Austin V. Cadet
Student name: Tamara Zapulla
Student name: Jenny Goldsmith
PL/SQL procedure successfully completed.

f) Next, consider the same example with single modification. Notice that the DBMS_OUTPUT.PUT_LINE
statement has been moved outside the loop (shown in bold letters). Execute this example, and try to
explain why this version of the script produces different output.

A2: Answer: The DBMS_OUTPUT.PUT_LINE has been moved outside the loop. First the loop will process the
five student records. The values for each record will be placed in the record vr_student_name, but each
time the loop iterates it will replace the value in the record with a new value. When the five iterations of
the loop are finished, it will exit because of the EXIT WHEN condition, leaving the vr_student_name record
with the last value that was in the cursor. This is the only value that will be displayed via the
DBMS_OUTPUT.PUT_LINE, which comes after the loop is closed.

g) Explain what is declared in the previous example. Describe what is happening to the record and explain
how this results in the output.

A1: Answer: In this example, you declare a record called vr_instructor. This record is based on the type you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A1: Answer: In this example, you declare a record called vr_instructor. This record is based on the type you
defined previously. In the body of the PL/SQL block, you initialize this record with the help of the SELECT
INTO statement, and display its value on the screen. It is important to note that the columns of the
SELECT INTO statement are listed in the same order the attributes are defined in instructor_info type. So
there is no need to use dot notation for this record initialization. When run, this example produces the
following output:

Instructor, Tom Wojick, teaches 9 section(s)
PL/SQL procedure successfully completed.

9.1.3 Answers

a) Now that you know cursor attributes, you can use one of these to exit the loop within the code you
developed in the previous example. Are you able to make a fully executable block now? If not, explain
why.

A1: Answer: You can make use of attribute %NOTFOUND to close the loop. It would also be a wise idea to add
an exception clause to the end of the block to close the cursor if it is still open. If you add the following
statements to the end of your block, it will be complete.

 EXIT WHEN c_student%NOTFOUND;
 END LOOP;
 CLOSE c_student;
EXCEPTION
 WHEN OTHERS
 THEN
 IF c_student%ISOPEN
 THEN
 CLOSE c_student;
 END IF;
END;

b) What will happen if this code is run? Describe what is happening in each phase of the example.

A1: Answer: The PL/SQL block ch09_3a would display the following output:

Bayonne has a zipcode of 07002
PL/SQL procedure successfully completed.

The declaration section declares a variable, v_city, anchored to the datatype of the city item in the zipcode
table. The SELECT statement causes an implicit cursor to be opened, fetched, and then closed. The IF
clause makes use of the attribute %ROWCOUNT to determine if the implicit cursor has a rowcount of 1 or
not. If it does have a row count of 1, then the first DBMS_OUTPUT line will be displayed. You should notice
that this example does not handle a situation where the rowcount is greater than 1. Since the zipcode
table's primary key is the zipcode, this could happen.

c) Rerun this block, changing 07002 to 99999. What do you think will happen? Explain.

A2: Answer: The PL/SQL block would display the following:

DECLARE
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 4

A select statement in a PL/SQL block that does not return any rows will raise a no data found exception.
Since there was no exception handler, the preceding error would be displayed.

d) Now, try running this file. Did it run as you expected? Why or why not? What could be done to improve the
way it handles a possible error condition?

A3: Answer: You may have expected the second and third condition of the IF statement to capture the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A3: Answer: You may have expected the second and third condition of the IF statement to capture the
instance of a %ROWCOUNT equal to 0. Now that you understand that a SELECT statement that returns no
rows will raise a NO_DATA_FOUND exception, it would be a good idea to handle this by adding a
<%WHEN NO_DATA_FOUND> exception to the existing block. You can add a %ROWCOUNT in the
exception, either to display the rowcount in a DBMS_OUTPUT or to put an IF statement to display various
possibilities.

9.1.4 Answers

a) Describe what is happening in each phase of example ch09_4a.sql. Use the line numbers to reference the
example.

A1: Answer: The example illustrates a cursor fetch loop, in which multiple rows of data are returned from the
query. The cursor is declared in the declaration section of the block (1–6) just like other identifiers. In the
executable section of the block (7–15), a cursor is opened using the OPEN (8) statement. Because the
cursor returns multiple rows, a loop is used to assign returned data to the variables with a FETCH
statement (10). Because the loop statement has no other means of termination, there must be an exit
condition specified. In this case, one of the attributes for the cursor is %NOTFOUND (12). The cursor is
then closed to free the memory allocation (14). Additionally, if the exception handler is called, there is a
check to see if the cursor is open (18) and if it is closed (20).

b) Modify the example to make use of the cursor attributes %FOUND and %ROWCOUNT.

A2: Answer: Your modification should look like this:

-- ch09_5a.sql
SET SERVEROUTPUT ON
DECLARE
 v_sid student.student_id%TYPE;
 CURSOR c_student IS
 SELECT student_id
 FROM student
 WHERE student_id < 110;
BEGIN
 OPEN c_student;
 LOOP
 FETCH c_student INTO v_sid;
 IF c_student%FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('Just FETCHED row '
 ||TO_CHAR(c_student%ROWCOUNT)||
 ' Student ID: '||v_sid);
 ELSE
 EXIT;
 END IF;
 END LOOP;
 CLOSE c_student;
EXCEPTION
 WHEN OTHERS
 THEN
 IF c_student%ISOPEN
 THEN
 CLOSE c_student;
 END IF;
END;

There has been a modification to the loop structure. Instead of having an exit condition, an IF statement is
being used. The IF statement is making use of the cursor attribute %FOUND. This attribute returns true
when a row has been "found" in the cursor and false when it has not. The next attribute %ROWCOUNT
returns a number, which is the current row number of the cursor.

c) Fetch a cursor that has a data from the student table into a %ROWTYPE. Only select students with a
student_id under 110. The columns are the STUDENT_ID, LAST_NAME, FIRST_NAME, and a count of the
number of classes they are enrolled in (using the enrollment table). Fetch the cursor with a loop and then
output all the columns. You will have to use an alias for the enrollment count.

A3: Answer: One method of doing this would be as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch09_6a.sql
SET SERVEROUTPUT ON
DECLARE
 CURSOR c_student_enroll IS
 SELECT s.student_id, first_name, last_name,
 COUNT(*) enroll,
 (CASE
 WHEN count(*) = 1 Then ' class.'
 WHEN count(*) is null then
 ' no classes.'
 ELSE ' classes.'
 END) class
 FROM student s, enrollment e
 WHERE s.student_id = e.student_id
 AND s.student_id <110
 GROUP BY s.student_id, first_name, last_name;
 r_student_enroll c_student_enroll%ROWTYPE;
BEGIN
 OPEN c_student_enroll;
 LOOP
 FETCH c_student_enroll INTO r_student_enroll;
 EXIT WHEN c_student_enroll%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Student INFO: ID '||
 r_student_enroll.student_id||' is '||
 r_student_enroll.first_name|| ' ' ||
 r_student_enroll.last_name||
 ' is enrolled in '||r_student_enroll.enroll||
 r_student_enroll.class);
 END LOOP;
 CLOSE c_student_enroll;
EXCEPTION
 WHEN OTHERS
 THEN
 IF c_student_enroll %ISOPEN
 THEN
 CLOSE c_student_enroll;
 END IF;
END;

Remember that the CASE syntax was introduced in Oracle 9i. This
means that the previous statement will not run in Oracle 8 or 8i.
You can change the CASE statement to a DECODE statement as
follows: DECODE(count(*), 1, ' class. ', null, ' no classes.', 'classes') class

In the declarative section, a cursor c_student_enroll is defined as well as a record, which is the type of a row
of the cursor. The cursor loop structure makes use of an exit condition with the %NOTFOUND cursor
attribute. When there are no more rows, the %NOTFOUND will be false and will cause the loop to exit.
While the cursor is open and loop is processing, it will fetch a row of the cursor in a record one at a time.
The DBMS output will cause each row to be displayed to the screen. Finally, the cursor is closed, and an
exception clause will also close the cursor if any error is raised.

Assorted Tips on Cursors
Cursor SELECT LIST

Match the Select list with PL/SQL variables or PL/SQL record components.

The number of variables must be equal to the number of columns or expressions in the Select list. The
number of the components of a record must match the columns or expressions in the Select list.

Cursor Scope

The scope of a cursor declared in the main block (or an enclosing block) extends to the sub-blocks.

Expressions in a Cursor SELECT List

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Expressions in a Cursor SELECT List

PL/SQL variables, expressions, and even functions can be included in the Cursor Select list.

Column Aliases in Cursors

An alternative name you provide to a column or expression in the Select list.

In an Explicit cursor column, aliases are required for calculated columns when

You FETCH into a record declared with %ROWTYPE declaration against that cursor

You want to reference the calculated column in the program

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) Implicit cursors are the only way to fetch and manage data from the database.

a. _____ True

b. _____ False

2) What are cursor attributes used for?

a. _____ Controlling cursors

b. _____ Populating cursors

c. _____ Ordering pizza

d. _____ Closing cursors

3) Number the following steps in processing a cursor.

a. _____ Fetch

b. _____ Declare

c. _____ Close

d. _____ Open

e. _____ Dance

4) What is the difference between an implicit and an explicit cursor?

a. _____ An implicit cursor is easier to manage.

b. _____ Cursor attributes can only be used on explicit cursors.

c. _____ It is easier to trap errors with implicit cursors.

d. _____ Explicit cursors give the programmer greater control.

5) What must be done to place a cursor in memory?

a. _____ It must be fetched.

b. _____ It must be pinned.

c. _____ It must be memorized verbatim.

d. _____ It must be declared.

Answers appear in Appendix A, Section 9.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.2 Using Cursor FOR Loops and Nesting Cursors

Lab Objectives
After this Lab, you will be able to:

 Use a Cursor FOR Loop

 Process Nested Cursors

There is an alternative method of handling cursors. It is called the cursor FOR loop because of the simplified syntax that
is used. When using the cursor FOR loop, the process of opening, fetching, and closing is handled implicitly. This makes
the blocks much simpler to code and easier to maintain.

The cursor FOR loop specifies a sequence of statements to be repeated once for each row returned by the cursor. Use
the cursor FOR loop if you need to FETCH and PROCESS each and every record from a cursor.

 FOR EXAMPLE

Assume the existence of a table called log with one column.

create table table_log
 (description VARCHAR2(250));
-- ch09_7a.sql
DECLARE
 CURSOR c_student IS
 SELECT student_id, last_name, first_name
 FROM student
 WHERE student_id < 110;
BEGIN
 FOR r_student IN c_student
 LOOP
 INSERT INTO table_log
 VALUES(r_student.last_name);
 END LOOP;
END;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.2 Exercises

9.2.1 Use a Cursor FOR Loop

a) Write a PL/SQL block that will reduce the cost of all courses by 5% for courses having an enrollment of
eight students or more. Use a cursor FOR loop that will update the course table.

9.2.2 Process Nested Cursors

Cursors can be nested inside each other. Although this may sound complex, it is really just a loop inside a loop, much
like nested loops, which were covered in the previous chapter. If you had one parent cursor and two child cursors, then
each time the parent cursor makes a single loop, it will loop through each child cursor once and then begin a second
round. In the following two examples, you will encounter a nested cursor with a single child cursor.

 FOR EXAMPLE

SET SERVEROUTPUT ON
-- ch09_8a.sql
 1 DECLARE
 2 v_zip zipcode.zip%TYPE;
 3 v_student_flag CHAR;
 4 CURSOR c_zip IS
 5 SELECT zip, city, state
 6 FROM zipcode
 7 WHERE state = 'CT';
 8 CURSOR c_student IS
 9 SELECT first_name, last_name
10 FROM student
11 WHERE zip = v_zip;
12 BEGIN
13 FOR r_zip IN c_zip
14 LOOP
15 v_student_flag := 'N';
16 v_zip := r_zip.zip;
17 DBMS_OUTPUT.PUT_LINE(CHR(10));
18 DBMS_OUTPUT.PUT_LINE('Students living in '||
19 r_zip.city);
20 FOR r_student in c_student
21 LOOP
22 DBMS_OUTPUT.PUT_LINE(
23 r_student.first_name||
24 ' '||r_student.last_name);
25 v_student_flag := 'Y';
26 END LOOP;
27 IF v_student_flag = 'N'
28 THEN
29 DBMS_OUTPUT.PUT_LINE
 ('No Students for this zipcode');
30 END IF;
31 END LOOP;
32 END;

There are two cursors in this example. The first is a cursor of the zipcodes, and the second cursor is a list of students.
The variable v_zip is initialized in line 16 to be the zipcode of the current record of the c_zip cursor. The c_ student cursor
ties in the c_zip cursor by means of this variable. Thus, when the cursor is processed in lines 20–26, it is retrieving
students who have the zipcode of the current record for the parent cursor. The parent cursor is processed from lines
13–31. Each iteration of the parent cursor will only execute the DBMS_OUTPUT in lines 16 and 17 once. The
DBMS_OUTPUT in line 22 will be executed once for each iteration of the child loop, producing a line of output for each
student. The DBMS statement in line 29 will only execute if the inner loop did not execute. This was accomplished by
setting a variable v_student_flag. The variable is set to N in the beginning of the parent loop. If the child loop executes at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setting a variable v_student_flag. The variable is set to N in the beginning of the parent loop. If the child loop executes at
least once, the variable will be set to Y. After the child loop has closed, a check is made with an IF statement to
determine the value of the variable. If it is still N, then it can be safely concluded that the inner loop did not process.
This will then allow the last DBMS statement to execute. Nested cursors are more often parameterized. You will see
parameters in cursors explained in depth in Lab 8.3, "Using Parameters in Cursors."

a) Write a PL/SQL block with two cursor FOR loops. The parent cursor will call the student_id, first_name, and
last_name from the student table for students with a student_id less than 110 and output one line with this
information. For each student, the child cursor will loop through all the courses that the student is enrolled
in, outputting the course_no and the description.

The following is an example of a nested cursor. Review the code.

 FOR EXAMPLE

SET SERVEROUTPUT ON
-- ch09_9a.sql
DECLARE
 v_amount course.cost%TYPE;
 v_instructor_id instructor.instructor_id%TYPE;
 CURSOR c_inst IS
 SELECT first_name, last_name, instructor_id
 FROM instructor;
 CURSOR c_cost IS
 SELECT c.cost
 FROM course c, section s, enrollment e
 WHERE s.instructor_id = v_instructor_id
 AND c.course_no = s.course_no
 AND s.section_id = e.section_id;
BEGIN
 FOR r_inst IN c_inst
 LOOP
 v_instructor_id := r_inst.instructor_id;
 v_amount := 0;
 DBMS_OUTPUT.PUT_LINE(
 'Amount generated by instructor '||
 r_inst.first_name||' '||r_inst.last_name
 ||' is');
 FOR r_cost IN c_cost
 LOOP
 v_amount := v_amount + NVL(r_cost.cost, 0);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE
 (' '||TO_CHAR(v_amount,'$999,999'));
 END LOOP;
END;

b) Before you run the preceding code, analyze what it is doing and determine what you think the result would
be. Explain what is happening in each phase of the PL/SQL block and what is happening to the variables as
control is passing through parent and child cursor.

c) Run the code and see what the result is. Is it what you expected? Explain the difference.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.2 Exercise Answers

9.2.1 Answers

a) Write a PL/SQL block that will reduce the cost of all courses by 5% for courses having an enrollment of
eight students or more. Use a cursor FOR loop that will update the course table.

A1: Answer: Your block should look like this:

-- ch09_10a.sql
DECLARE
 CURSOR c_group_discount IS
 SELECT DISTINCT s.course_no
 FROM section s, enrollment e
 WHERE s.section_id = e.section_id
 GROUP BY s.course_no, e.section_id, s.section_id
 HAVING COUNT(*)>=8;
BEGIN
 FOR r_group_discount IN c_group_discount LOOP
 UPDATE course
 SET cost = cost * .95
 WHERE course_no = r_group_discount.course_no;
 END LOOP;
 COMMIT;
END;

The cursor c_group_discount is declared in the declarative section. The proper SQL is used to generate the
select statement to answer the question given. The cursor is processed in a FOR loop—in each iteration of
the loop the SQL update statement will be executed. This means it does not have to be opened, fetched,
and closed. Also, it means that a cursor attribute does not have to be used to create an exit condition for
the loop that is processing the cursor.

9.2.2 Answers

a) Write a PL/SQL block with two cursor FOR loops. The parent cursor will call the student_id, first_name, and
last_name from the student table for students with a student_id less than 110 and output one line with this
information. For each student, the child cursor will loop through all the courses that the student is enrolled
in, outputting the course_no and the description.

A1: Answer: Your block should look be similar to this:

-- ch09_11a.sql
DECLARE
 v_sid student.student_id%TYPE;
 CURSOR c_student IS
 SELECT student_id, first_name, last_name
 FROM student
 WHERE student_id < 110;
 CURSOR c_course IS
 SELECT c.course_no, c.description
 FROM course c, section s, enrollment e
 WHERE c.course_no = s.course_no
 AND s.section_id = e.section_id
 AND e.student_id = v_sid;
BEGIN
 FOR r_student IN c_student
 LOOP
 v_sid := r_student.student_id;
 DBMS_OUTPUT.PUT_LINE(chr(10));
 DBMS_OUTPUT.PUT_LINE(' The Student '||
 r_student.student_id||' '||
 r_student.first_name||' '||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 r_student.first_name||' '||
 r_student.last_name);
 DBMS_OUTPUT.PUT_LINE(' is enrolled in the '||
 'following courses: ');
 FOR r_course IN c_course
 LOOP
 DBMS_OUTPUT.PUT_LINE(r_course.course_no||
 ' '||r_course.description);
 END LOOP;
 END LOOP;
END;

The select statements for the two cursors are defined in the declarative section of the PL/SQL block. A
variable to store the student_id from the parent cursor is also declared. The course cursor is the child
cursor, and, since it makes use of the variable v_sid, the variable must be declared first. Both cursors are
processed with a FOR loop, which eliminates the need for OPEN, FETCH, and CLOSE. When the parent
student loop is processed, the first step is to initialize the variable v_sid, and the value is then used when
the child loop is processed. DBMS_OUTPUT is used so that display is generated for each cursor loop. The
parent cursor will display the student name once, and the child cursor will display the name of each course
in which the student is enrolled.

b) Before you run the preceding code, analyze what it is doing and determine what you think the result would
be. Explain what is happening in each phase of the PL/SQL block and what is happening to the variables as
control is passing through parent and child cursor.

A1: Answer: The declaration section contains a declaration for two variables. The first is v_amount of the
datatype matching that of the cost in the course table; the second is the v_instructor_id of the datatype
matching the instructor_id in the instructor table. There are also two declarations for two cursors. The first
is for c_inst, which is comprised of the first_name, last_name, and instructor_id for an instructor from the
instructor table. The second cursor, c_cost, will produce a result set of the cost of the course taken for each
student enrolled in a course by the instructor that matches the variable v_instructor_id. These two cursors
will be run in nested fashion. First, the cursor c_inst is opened in a FOR loop. The value of the variable
v_instructor_id is initialized to match the instructor_id of the current row of the c_inst cursor. The variable
v_amount is initialized to 0. The second cursor is open within the loop for the first cursor. This means that
for each iteration of the cursor c_inst, the second cursor will be opened, fetched, and closed. The second
cursor will loop through all the cost generated by each student enrolled in a course for the instructor,
which is current of the c_inst cursor. Each time the nest loop iterates, it will increase the variable v_amount
by adding the current cost in the c_cost loop. Prior to opening the c_cost loop, there is a DBMS_OUTPUT to
display the instructor name. After the c_cost cursor loop is closed, it will display the total amount
generated by all the enrollments of the current instructor.

c) Run the code and see what the result is. Is it what you expected? Explain the difference.

A2: Answer: The result set would be as follows:

Generated by instructor Fernand Hanks
$16,915
Generated by instructor Tom Wojick
$18,504
Generated by instructor Nina Schorin
$30,137
Generated by instructor Gary Pertez
$24,044
Generated by instructor Anita Morris
$13,389
Generated by instructor Todd Smythe
$14,940
Generated by instructor Rick Chow
$0
Generated by instructor Charles Lowry
$12,175
Generated by instructor Marilyn Frantzen
$13,224
PL/SQL procedure successfully completed.

In this example, the nested cursor is tied to the current row of the outer cursor by means of the variable
v_instructor_id. A more common way of doing this is to pass a parameter to a cursor. You will learn more
about how to achieve this in Chapter 15, "Advanced Cursors."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 9.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) In a cursor FOR loop, cursor and loop handling is carried out implicitly.

a. _____ True

b. _____ False

2) In a cursor FOR loop, it is necessary to declare the rowtype for the cursor.

a. _____ True

b. _____ False

3) Is it necessary to open, fetch, and close a cursor in a cursor FOR loop?

a. _____ Yes

b. _____ No

4) The child loop in a nested cursor is passed through how many times for each cycle of the parent?

a. _____ Three

b. _____ One or more

c. _____ Two

d. _____ It depends on the individual code.

5) If the SELECT statement of the cursor makes use of a variable, when should the variable be declared?

a. _____ It is a bind variable and therefore does not need to be declared.

b. _____ In the declarative section.

c. _____ Before the cursor that is using it.

d. _____ It will be self-declared upon initialization.

Answers appear in Appendix A, Section 9.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9 Test Your Thinking

In this chapter, you learned how to process data with a cursor. Additionally, you learned how to simplify
the code by using a cursor FOR loop. You also encountered the more complex example of nesting cursors
within cursors.

1) Write a nested cursor where the parent cursor calls information about each
section of a course. The child cursor counts the enrollment. The only output is
one line for each course with the Course Name and Section Number and the
total enrollment.

2) Write an anonymous PL/SQL block that finds all the courses that have at least
one section that is at its maximum enrollment. If there are no courses that
meet that criterion, then pick two courses and create that situation for each.

a. For each of those courses, add another section. The instructor for the
new section should be taken from the existing records in the instruct
table. Use the instructor who is signed up to teach the least number of
courses. Handle the fact that, during the execution of your program,
the instructor teaching the most courses may change.

b. Use any exception-handling techniques you think are useful to capture
error conditions.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Exceptions
Chapter Objectives
In this Chapter, you will learn about:

 Exception Scope

 User-Defined Exceptions

 Exception Propagation

In Chapter 7, you explored the concept of error handling and built-in exceptions. In this chapter you will continue by
examining whether an exception can catch a runtime error occurring in the declaration, executable, or exception-
handling section of a PL/SQL block. You will also learn how to define your own exceptions and how to re-raise an
exception.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.1 Exception Scope

Lab Objective
After this Lab, you will be able to:

 Understand the Scope of an Exception

You are already familiar with the term scope—for example, the scope of a variable. Even though variables and
exceptions serve different purposes, the same scope rules apply to them. Now examine the scope of an exception by
means of an example.

 FOR EXAMPLE

DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_name VARCHAR2(30);
BEGIN
 SELECT RTRIM(first_name)||' '||RTRIM(last_name)
 INTO v_name
 FROM student
 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE ('Student name is '||v_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

In this example, you display the student's name on the screen. If there is no record in the STUDENT table
corresponding to the value of v_student_id provided by the user, the exception NO_DATA_FOUND is raised. Therefore,
you can say that the exception NO_DATA_FOUND covers this block, or this block is the scope of this exception. In other
words, the scope of an exception is the portion of the block that is covered by this exception.

Now, you can expand on that:

 FOR EXAMPLE

DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_name VARCHAR2(30);
 v_total NUMBER(1);

-- outer block
BEGIN
 SELECT RTRIM(first_name)||' '||RTRIM(last_name)
 INTO v_name
 FROM student
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('Student name is '||v_name);

 -- inner block
 BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('Student is registered for '||
 v_total||' course(s)');
 EXCEPTION
 WHEN VALUE_ERROR OR INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
 END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 END;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

The part of the example shown in bold letters has been added to the original version of the example. The new version
of the example has an inner block added to it. This block has a structure similar to the outer block. It has a SELECT
INTO statement and an exception section to handle errors. When a VALUE_ERROR or an INVALID_NUMBER error occurs
in the inner block, the exception is raised.

It is important that you realize that the exceptions VALUE_ERROR and INVALID_ NUMBER have been defined for the
inner block only. Therefore, they can be raised in the inner block only. If one of these errors occurs in the outer block,
this program will be unable to terminate successfully.

On the other hand, the exception NO_DATA_FOUND has been defined in the outer block; therefore, it is global to the
inner block. This version of the example will never raise the exception NO_DATA_FOUND in the inner block. Why do you
think this is the case?

It is important to note that if you define an exception in a block, it is local to
that block. However, it is global to any blocks enclosed by that block. In other
words, in the case of nested blocks, any exception defined in the outer block
becomes global to its inner blocks.

Note what happens when the example is changed so that the exception NO_DATA_FOUND can be raised by the inner
block.

 FOR EXAMPLE

DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_name VARCHAR2(30);
 v_registered CHAR;

-- outer block
BEGIN
 SELECT RTRIM(first_name)||' '||RTRIM(last_name)
 INTO v_name
 FROM student
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('Student name is '||v_name);

 -- inner block
 BEGIN
 SELECT 'Y'
 INTO v_registered
 FROM enrollment
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('Student is registered');
 EXCEPTION
 WHEN VALUE_ERROR OR INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
 END;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

The part of the example shown in bold letters has been added to the original version of the example. The new version
of the example has a different SELECT INTO statement. To answer the question posed earlier, the exception
NO_DATA_FOUND can be raised by the inner block because the SELECT INTO statement does not contain a group
function, COUNT(). This function always returns a result, so when no rows are returned by the SELECT INTO statement,
the value returned by the COUNT(*) equals zero.

Now, run this example with the value of 284 for student ID. As a result, the following output is produced:

Enter value for sv_student_id: 284

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter value for sv_student_id: 284
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 284;
Student name is Salewa Lindeman
There is no such student

PL/SQL procedure successfully completed.

You have probably noticed that this example produces only a partial output. Even though you are able to see the
student's name, the error message is displayed saying that this student does not exist. This error message is displayed
because the exception NO_DATA_FOUND is raised in the inner block.

The SELECT INTO statement of the outer block returns the student's name, and it is displayed on the screen by the
DBMS_OUTPUT.PUT_LINE statement. Next, control is passed to the inner block. The SELECT INTO statement of the
inner block does not return any rows. As a result, the error occurs.

Next, PL/SQL tries to find a handler for the exception NO_DATA_FOUND in the inner block. Because there is no such
handler in the inner block, control is transferred to the exception section of the outer block. The exception section of the
outer block contains the handler for the exception NO_DATA_FOUND. So this handler executes, and the message
"There is no such student" is displayed on the screen. The process is called exception propagation, and it will be
discussed in detail in Lab 10.3.

It is important to realize that this example has been shown for illustrative purposes only. In its current version, it is not
very useful. The SELECT INTO statement of the inner block is prone to another exception, TOO_MANY_ROWS, that is
not handled by this example. In addition, the error message "There is no such student" is not very descriptive when the
exception NO_DATA_FOUND is raised by the inner block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.1 Exercises

10.1.1 Understand the Scope of an Exception

In this exercise, you will display the number of students in each zipcode (you still use the first 50 zipcodes only). You will use nested PL/SQL blocks to
achieve the desired results. The original PL/SQL script will not contain any exception handlers. Therefore, you will be asked to identify possible errors
that may occur and define exception handlers for them.

Create the following PL/SQL script:

-- ch10_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT zip
 FROM zipcode
 WHERE rownum <= 50
 ORDER BY zip;
 v_total NUMBER(1);

-- outer block
BEGIN
 FOR zip_rec IN zip_cur LOOP

 -- inner block
 BEGIN
 SELECT count(*)
 INTO v_total
 FROM student
 WHERE zip = zip_rec.zip;

 IF v_total != 0 THEN
 DBMS_OUTPUT.PUT_LINE ('There is(are) '||
 v_total||' student(s) for zipcode '||
 zip_rec.zip);
 END IF;
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Execute the script, and then answer the following questions:

a) What output was printed on the screen?

b) The first run of this example was successful. The output produced by the example shows that there are 9 students for zipcode 07024. What
will happen if there are 10 students with a zip code 07024? What output will be produced? Note that in order to answer this question you will
need to add a record to the STUDENT table as follows:

INSERT INTO student
 (student_id, salutation, first_name, last_name, street_address, zip, phone, employer, registration_date, created_by, created_date, modified_by, modified_date)
VALUES
 (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith', '100 Main St.', '07024', '718-555-5555', 'ABC Co.', SYSDATE, USER, SYSDATE, USER, SYSDATE);

c) Based on the error message produced by the example in the previous question, what exception handler must be added to the script?

d) How would you change this script so that when an error occurs, the cursor loop does not terminate prematurely?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 10.1, with discussion related to how those answers resulted. The most important
thing to realize is whether your answer works. You should figure out the implications of the answers here and what the effects are from any different
answers you may come up with.

10.1.1 Answers

a) What output was printed on the screen?

A1: Answer: Your output should look like the following:

There is(are) 1 student(s) for zipcode 01247
There is(are) 1 student(s) for zipcode 02124
There is(are) 1 student(s) for zipcode 02155
There is(are) 1 student(s) for zipcode 02189
There is(are) 1 student(s) for zipcode 02563
There is(are) 1 student(s) for zipcode 06483
There is(are) 1 student(s) for zipcode 06605
There is(are) 1 student(s) for zipcode 06798
There is(are) 3 student(s) for zipcode 06820
There is(are) 3 student(s) for zipcode 06830
There is(are) 1 student(s) for zipcode 06850
There is(are) 1 student(s) for zipcode 06851
There is(are) 1 student(s) for zipcode 06853
There is(are) 1 student(s) for zipcode 06870
There is(are) 1 student(s) for zipcode 06877
There is(are) 2 student(s) for zipcode 06880
There is(are) 1 student(s) for zipcode 06902
There is(are) 2 student(s) for zipcode 06903
There is(are) 1 student(s) for zipcode 06905
There is(are) 1 student(s) for zipcode 06907
There is(are) 2 student(s) for zipcode 07003
There is(are) 1 student(s) for zipcode 07008
There is(are) 6 student(s) for zipcode 07010
There is(are) 2 student(s) for zipcode 07011
There is(are) 2 student(s) for zipcode 07012
There is(are) 2 student(s) for zipcode 07016
There is(are) 1 student(s) for zipcode 07023
There is(are) 9 student(s) for zipcode 07024
There is(are) 1 student(s) for zipcode 07029
There is(are) 2 student(s) for zipcode 07036
There is(are) 1 student(s) for zipcode 07040
There is(are) 5 student(s) for zipcode 07042
There is(are) 1 student(s) for zipcode 07044
There is(are) 5 student(s) for zipcode 07047
Done…

PL/SQL procedure successfully completed.

b) The first run of this example was successful. The output produced by the example shows that there are 9 students for zipcode 07024. What
will happen if there are 10 students with a zip code 07024? What output will be produced? Note that in order to answer this question you will
need to add a record to the STUDENT table as follows:

INSERT INTO student
 (student_id, salutation, first_name, last_name, street_address, zip, phone, employer, registration_date, created_by, created_date, modified_by, modified_date)
VALUES
 (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith', '100 Main St.', '07024', '718-555-5555', 'ABC Co.', SYSDATE, USER, SYSDATE, USER, SYSDATE);

A2: Answer: The example will produce a partial output only. When the total number of students is calculated for zipcode 07024, the error occurs.

The SELECT INTO statement returns a value of 10. However, the variable v_total has been defined so that it is able to hold only single digit numbers.
Because 10 is a two-digit number, the error occurs during the execution of the SELECT INTO statement. As a result, an error message is displayed on the
screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

screen.

The following output contains only a portion of the output produced by the example:

There is(are) 1 student(s) for zipcode 01247
…
There is(are) 1 student(s) for zipcode 07023
DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: number
precision too large
ORA-06512: at line 13

Notice that as soon as the error occurs, the example terminates because there is no exception handler for this error.

c) Based on the error message produced by the example in the previous question, what exception handler must be added to the script?

A3: Answer: The error message produced by the example in the previous question referred to a numeric or value error. Therefore, an exception
VALUE_ERROR or INVALID_NUMBER must be added to the script.

Your script should look similar to the following script. Changes are shown in bold letters.

-- ch10_1b.sql, version 2.0
DECLARE
 CURSOR zip_cur IS
 SELECT zip
 FROM zipcode
 WHERE rownum <= 50
 ORDER BY zip;
 v_total NUMBER(1);

-- outer block
BEGIN
 FOR zip_rec IN zip_cur LOOP

 -- inner block
 BEGIN
 SELECT count(*)
 INTO v_total
 FROM student
 WHERE zip = zip_rec.zip;

 IF v_total != 0 THEN
 DBMS_OUTPUT.PUT_LINE ('There is(are) '||
 v_total||' student(s) for zipcode '||
 zip_rec.zip);
 END IF;
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('Done...');
EXCEPTION
 WHEN VALUE_ERROR OR INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

When run, this version of the example produces the following output (only a portion of the output is shown):

There is(are) 1 student(s) for zipcode 01247
…
There is(are) 1 student(s) for zipcode 07023
An error has occurred

PL/SQL procedure successfully completed.

Notice that because an exception handler has been added to the script, it was able to terminate successfully.

d) How would you change this script so that when an error occurs, the cursor loop does not terminate prematurely?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d) How would you change this script so that when an error occurs, the cursor loop does not terminate prematurely?

A4: Answer: Your script should look similar to the script shown. All changes are shown in bold letters.

-- ch10_1c.sql, version 3.0
DECLARE
 CURSOR zip_cur IS
 SELECT zip
 FROM zipcode
 WHERE rownum <= 50
 ORDER BY zip;
 v_total NUMBER(1);

-- outer block
BEGIN
 FOR zip_rec IN zip_cur LOOP

 -- inner block
 BEGIN
 SELECT count(*)
 INTO v_total
 FROM student
 WHERE zip = zip_rec.zip;

 IF v_total != 0 THEN
 DBMS_OUTPUT.PUT_LINE ('There is(are) '||
 v_total||' student(s) for zipcode '||
 zip_rec.zip);
 END IF;
 EXCEPTION
 WHEN VALUE_ERROR OR INVALID_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE
 ('An error has occurred');
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

In order for the cursor loop to be able to execute after an exception has occurred, the exception handler must be moved inside the loop in the inner block.
In this case, once an exception has occurred, control is transferred to the exception handler of the block. Once the exception is raised, control is passed to
the next executable statement of the outer block. That statement is END LOOP. If the end of the loop has not been reached and there are more records to
process, control is passed to the top of the loop, and the inner block is executed again. As a result, this version of the script produces the following output
(again, only a portion of the output is shown):

There is(are) 1 student(s) for zipcode 01247
…
There is(are) 1 student(s) for zipcode 07023
An error has occurred
There is(are) 1 student(s) for zipcode 07029
There is(are) 2 student(s) for zipcode 07036
There is(are) 1 student(s) for zipcode 07040
There is(are) 5 student(s) for zipcode 07042
There is(are) 1 student(s) for zipcode 07044
There is(are) 5 student(s) for zipcode 07047
Done...

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) An exception defined in the inner block can be raised in

a. _____ both inner and outer blocks.

b. _____ the outer block only.

c. _____ the inner block only.

2) If an exception has been raised in the inner block and has been handled in the outer block, control is
transferred back to inner block for further execution of the script.

a. _____ True

b. _____ False

3) If an exception has been raised in the outer block, and its handler is defined in the inner block, which of the
following will occur?

a. _____ Control will be passed to the inner block to handle the raised exception.

b. _____ The script will terminate due to an exception that is not handled.

4) An exception defined inside the body of the loop

a. _____ terminates this loop after it has been raised.

b. _____ allows the loop to proceed with next iteration.

c. _____ causes an error.

5) A WHEN clause of the exception-handling section of a PL/SQL block can reference a single exception only.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 10.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.2 User-Defined Exceptions

Lab Objective
After this Lab, you will be able to:

 Use User-Defined Exceptions

Often in your programs you may need to handle problems that are specific to the program you write. For example, your
program asks a user to enter a value for student_id. This value is then assigned to the variable v_student_id that is used
later in the program. Generally, you want a positive number for an id. By mistake, the user enters a negative number.
However, no error has occurred because student_id has been defined as a number, and the user has supplied a
legitimate numeric value. Therefore, you may want to implement your own exception to handle this situation.

This type of an exception is called a user-defined exception because it is defined by the programmer. As a result, before
the exception can be used, it must be declared. A user-defined exception is declared in the declarative part of a PL/SQL
block as shown:

DECLARE
 exception_name EXCEPTION;

Notice that this declaration looks similar to a variable declaration. You specify an exception name followed by the
keyword EXCEPTION. Consider the following code fragment.

 FOR EXAMPLE

DECLARE
 e_invalid_id EXCEPTION;

In the example, the name of the exception is prefixed by the letter "e." This is not a required syntax; rather, it allows
you to differentiate between variable names and exception names.

Once an exception has been declared, the executable statements associated with this exception are specified in the
exception-handling section of the block. The format of the exception-handling section is the same as for built-in
exceptions. Consider the following code fragment.

 FOR EXAMPLE

DECLARE
 e_invalid_id EXCEPTION;
BEGIN
 ...
EXCEPTION
 WHEN e_invalid_id THEN
 DBMS_OUTPUT.PUT_LINE ('An id cannot be negative');
END;

You already know that built-in exceptions are raised implicitly. In other words, when a certain error occurs, a built-in
exception associated with this error is raised. Of course, you are assuming that you have included this exception in the
exception-handling section of your program. For example, a TOO_MANY_ROWS exception is raised when a SELECT
INTO statement returns multiple rows. Next, you will explore how a user-defined exception is raised.

A user-defined exception must be raised explicitly. In other words, you need to specify in your program under which
circumstances an exception must be raised, as shown:

DECLARE
 exception_name EXCEPTION;
BEGIN
 ...
 IF CONDITION THEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IF CONDITION THEN
 RAISE exception_name;
 ELSE
 ...
 END IF;
EXCEPTION
 WHEN exception_name THEN
 ERROR-PROCESSING STATEMENTS;
END;

In the structure just shown, the circumstances under which a user-defined exception must be raised are determined
with the help of the IF-THEN-ELSE statement. If CONDITION evaluates to TRUE, a user-defined exception is raised. If
CONDITION evaluates to FALSE, the program proceeds with its normal execution. In other words, the statements
associated with the ELSE part of the IF-THEN-ELSE statement are executed. Any form of the IF statement can be used
to check when a user-defined exception must be raised.

In the next modified version of the earlier example used in this lab, you will see that the exception e_invalid_id is raised
when a negative number is entered for the variable v_student_id.

 FOR EXAMPLE

DECLARE
 v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
 v_total_courses NUMBER;
 e_invalid_id EXCEPTION;
BEGIN
 IF v_student_id < 0 THEN
 RAISE e_invalid_id;
 ELSE
 SELECT COUNT(*)
 INTO v_total_courses
 FROM enrollment
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('The student is registered for
 '||v_total_courses||' courses');
 END IF;
 DBMS_OUTPUT.PUT_LINE ('No exception has been raised');
EXCEPTION
 WHEN e_invalid_id THEN
 DBMS_OUTPUT.PUT_LINE ('An id cannot be negative');
END;

In this example, the exception e_invalid_id is raised with the help of IF-THEN-ELSE statement. Once a user supplies a
value for the v_student_id, the sign of this numeric value is checked. If the value is less than zero, the IF-THEN-ELSE
statement evaluates to TRUE, and the exception e_invalid_id is raised. Therefore, the control transfers to the exception-
handling section of the block. Next, statements associated with this exception are executed. In this case, the message
"An id cannot be negative" is displayed on the screen. If the value entered for the v_student_id is positive, the IF-THEN-
ELSE statement yields FALSE, and the ELSE part of the IF-THEN-ELSE statement is executed.

Run this example for two values of v_student_id: 102 and –102.

A first run of the example (student ID is 102) produces the output shown:

Enter value for sv_student_id: 102
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := 102;
The student is registered for 2 courses
No exception has been raised

PL/SQL procedure successfully completed.

For this run, you entered a positive value for the variable v_student_id. As a result, the IF-THEN-ELSE statement
evaluates to FALSE, and the ELSE part of the statement executes. The SELECT INTO statement determines how many
records are in the ENROLLMENT table for a given student_id. Next, the message "The student is registered for 2
courses" statement is displayed on the screen. At this point, the IF-THEN-ELSE statement is complete. So the control is
transferred to the DBMS_OUTPUT.PUT_LINE statement that follows END IF. As a result, another message is displayed
on the screen.

A second run of the example (student ID is -102) produces the following output:

Enter value for sv_student_id: -102
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := -102;
An id cannot be negative

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An id cannot be negative

PL/SQL procedure successfully completed.

For the second run, a negative value was entered for the variable v_student_id. The IF-THEN-ELSE statement evaluates
to TRUE, and the exception e_invalid_id is raised. As a result, control is transferred to the exception-handling section of
the block, and the error message "An id cannot be negative" is displayed on the screen.

It is important for you to note that the RAISE statement must be used in
conjunction with an IF statement. Otherwise, control of the execution will be
transferred to the exception-handling section of the block for every single
execution. Consider the following example:

DECLARE
 e_test_exception EXCEPTION;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Exception has not been raised');
 RAISE e_test_exception;
 DBMS_OUTPUT.PUT_LINE ('Exception has been raised');
EXCEPTION
 WHEN e_test_exception THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

Every time this example is run, the following output is produced:

Exception has not been raised
An error has occurred

PL/SQL procedure successfully completed.

Even though no error has occurred, control is transferred to the exception-
handling section. It is important for you to check to see if the error has
occurred before raising the exception associated with that error.

Just like for built-in exceptions, the same scope rules apply to user-defined exceptions. An exception declared in the
inner block must be raised in the inner block and defined in the exception-handling section of the inner block. Consider
the following example.

 FOR EXAMPLE

-- outer block
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Outer block');

 -- inner block
 DECLARE
 e_my_exception EXCEPTION;
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('Inner block');
 EXCEPTION
 WHEN e_my_exception THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
 END;

 IF 10 > &sv_number THEN
 RAISE e_my_exception;
 END IF;
END;

In this example, the exception, e_my_exception, has been declared in the inner block. However, you are trying to raise
this exception in the outer block. This example causes a syntax error because the exception declared in the inner block
ceases to exists once the inner block terminates. As a result, this example produces the following output:

Enter value for sv_number: 11
old 12: IF 10 > &sv_number THEN
new 12: IF 10 > 11 THEN
 RAISE e_my_exception;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RAISE e_my_exception;
 *
ERROR at line 13:
ORA-06550: line 13, column 13:
PLS-00201: identifier 'E_MY_EXCEPTION' must be declared
ORA-06550: line 13, column 7:
PL/SQL: Statement ignored

Notice that the error message

PLS-00201: identifier 'E_MY_EXCEPTION' must be declared

is the same error message you get when trying to use a variable that has not been declared.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.2 Exercises

10.2.1 Use User-Defined Exceptions

In this exercise, you will define an exception that will allow you to raise an error if an instructor teaches ten or more
sections.

Create the following PL/SQL script:

-- ch10_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR instruct_cur IS
 SELECT instructor_id, COUNT(*) tot_sec
 FROM section
 GROUP BY instructor_id;

 v_name VARCHAR2(30);
 e_too_many_sections EXCEPTION;
BEGIN
 FOR instruct_rec IN instruct_cur LOOP
 IF instruct_rec.tot_sec >= 10 THEN
 RAISE e_too_many_sections;
 ELSE
 SELECT RTRIM(first_name)||' '||RTRIM(last_name)
 INTO v_name
 FROM instructor
 WHERE instructor_id = instruct_rec.instructor_id;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
 ', teaches '|| instruct_rec.tot_sec||
 ' sections');
 END IF;
 END LOOP;
EXCEPTION
 WHEN e_too_many_sections THEN
 DBMS_OUTPUT.PUT_LINE
 ('This instructor teaches too much');
END;

Execute the script, and then answer the following questions:

a) What output was printed on the screen?

b) What is the condition that causes the user-defined exception to be raised?

c) How would you change the script so that the cursor FOR loop processes all records returned by the cursor?
In other words, once an exception is raised, the cursor FOR loop should not terminate.

d) How would you change the script to display an instructor's name in the error message as well?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 10.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

10.2.1 Answers

a) What output was printed on the screen?

A1: Answer: Your output should look like the following:

Instructor, Fernand Hanks, teaches 9 sections
This instructor teaches too much

PL/SQL procedure successfully completed.

b) What is the condition that causes the user-defined exception to be raised?

A2: Answer: The user-defined exception is raised if the condition

instruct_rec.tot_sec >= 10

evaluates to TRUE. In other words, if an instructor teaches ten or more sections, the exception
e_too_many_sections is raised.

c) How would you change the script so that the cursor FOR loop processes all records returned by the cursor?
In other words, once an exception is raised, the cursor FOR loop should not terminate.

A3: Answer: Your script should look similar to the script shown. All changes are shown in bold letters.

-- ch10_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR instruct_cur IS
 SELECT instructor_id, COUNT(*) tot_sec
 FROM section
 GROUP BY instructor_id;

 v_name VARCHAR2(30);
 e_too_many_sections EXCEPTION;
BEGIN
 FOR instruct_rec IN instruct_cur LOOP
 -- inner block
 BEGIN
 IF instruct_rec.tot_sec >= 10 THEN
 RAISE e_too_many_sections;
 ELSE
 SELECT RTRIM(first_name)||' '||RTRIM(last_name)
 INTO v_name
 FROM instructor
 WHERE instructor_id = instruct_rec.
 instructor_id;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
 ', teaches '||instruct_rec.tot_sec||
 ' sections');
 END IF;
 EXCEPTION
 WHEN e_too_many_sections THEN
 DBMS_OUTPUT.PUT_LINE
 ('This instructor teaches too much');
 END; -- end inner block
 END LOOP;
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are several changes in the new version of this script. First, the inner block has been created inside the body of
the cursor FOR loop. Next, the exception-handling section has been moved from the outer block to the inner block.

In this script, the exception has been declared in the outer block, but it is raised in the inner block. This does not cause
any errors because the exception, e_too_many_sections, is global to the inner block. Hence, it can be raised anywhere in
the inner block.

The new version of this script produces the output shown:

Instructor, Fernand Hanks, teaches 9 sections
This instructor teaches too much
This instructor teaches too much
This instructor teaches too much
This instructor teaches too much
This instructor teaches too much
This instructor teaches too much
Instructor, Charles Lowry, teaches 9 sections

PL/SQL procedure successfully completed.

d) How would you change the script to display an instructor's name in the error message as well?

A4: Answer: Your script should look similar to the script shown. All changes are shown in bold letters.

-- ch10_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR instruct_cur IS
 SELECT instructor_id, COUNT(*) tot_sec
 FROM section
 GROUP BY instructor_id;

 v_name VARCHAR2(30);
 e_too_many_sections EXCEPTION;
BEGIN
 FOR instruct_rec IN instruct_cur LOOP
 BEGIN
 SELECT RTRIM(first_name)||' '||RTRIM(last_name)
 INTO v_name
 FROM instructor
 WHERE instructor_id = instruct_rec.instructor_id;

 IF instruct_rec.tot_sec >= 10 THEN
 RAISE e_too_many_sections;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
 ', teaches '||instruct_rec.tot_sec||
 ' sections');
 END IF;
 EXCEPTION
 WHEN e_too_many_sections THEN
 DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
 ', teaches too much');
 END;
 END LOOP;
END;

In order to achieve the desired result, the SELECT INTO statement has been moved outside the IF-THEN-ELSE
statement. This change allows you to get an instructor's name regardless of the number of sections he or she teaches.
As a result, you are able to include an instructor's name in the error message, thus improving the error message itself.

The new version of the output is shown:

Instructor, Fernand Hanks, teaches 9 sections
Instructor, Tom Wojick, teaches too much

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Instructor, Tom Wojick, teaches too much
Instructor, Nina Schorin, teaches too much
Instructor, Gary Pertez, teaches too much
Instructor, Anita Morris, teaches too much
Instructor, Todd Smythe, teaches too much
Instructor, Marilyn Frantzen, teaches too much
Instructor, Charles Lowry, teaches 9 sections

PL/SQL procedure successfully completed.

This version of the output is oriented more toward a user than the previous versions because it displays the name of
the instructor in every message. The previous versions of the output were confusing because it was not clear which
instructor caused this error. For example, consider the output produced by the first version of this script:

Instructor, Fernand Hanks, teaches 9 sections
This instructor teaches too much

It is not clear to a user whether the message "This instructor teaches too much" is caused by the fact that Fernand
Hanks teaches nine sections, or whether another instructor teaches more than nine sections.

Remember, you have created this script, and you know the exception that you have defined. However, as mentioned
earlier, most of the time, a user does not have access to your program. Therefore, it is important for you to provide
clear error messages in your programs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) In order to use a user-defined exception, it must be

a. _____ declared.

b. _____ declared and raised.

2) How does any user-defined exception get raised?

a. _____ Implicitly

b. _____ Explicitly

3) If a user-defined exception has been declared in the inner block, it can be raised in the outer block.

a. _____ True

b. _____ False

4) When a user-defined exception is raised and executed, control is passed back to the PL/SQL block.

a. _____ True

b. _____ False

5) A user-defined exception is raised with the help of which of the following?

a. _____ IF-THEN and RAISE statements

b. _____ IF-THEN statement only

c. _____ RAISE statement only

Answers appear in Appendix A, Section 10.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.3 Exception Propagation

Lab Objectives
After this Lab, you will be able to:

 Understand How Exceptions Propagate

 Re-raise Exceptions

You already have seen how different types of exceptions are raised when a runtime error occurs in the executable
portion of the PL/SQL block. However, a runtime error may occur in the declaration section of the block or in the
exception-handling section of the block. The rules that govern how exceptions are raised in these situations are referred
to as exception propagation.

Consider the first case: A runtime error occurred in the executable section of the PL/SQL block. This case should be
treated as a review because the examples that you have seen earlier in this chapter show how an exception is raised
when an error occurs in the executable section of the block.

If there is an exception specified associated with a particular error, control is passed to the exception-handling section
of the block. Once the statements associated with the exception are executed, control is passed to the host
environment or to the enclosing block. If there is no exception handler for this error, the exception is propagated to the
enclosing block (outer block). Then the steps just described are repeated again. If no exception handler is found, the
execution of the program halts, and control is transferred to the host environment.

Next, take a look at a second case: A runtime error occurred in the declaration section of the block. If there is no outer
block, the execution of the program halts, and control is passed to the host environment. Consider the following script.

 FOR EXAMPLE

DECLARE
 v_test_var CHAR(3):= 'ABCDE';
BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is a test');
EXCEPTION
 WHEN INVALID_NUMBER OR VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

When executed, this example produces the output shown:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

As you can see, the assignment statement in the declaration section of the block causes an error. Even though there is
an exception handler for this error, the block is not able to execute successfully. Based on this example you may
conclude that when a runtime error occurs in the declaration section of the PL/SQL block, the exception-handling
section of this block is not able to catch the error.

Next, consider an example with nested PL/SQL blocks.

 FOR EXAMPLE

--outer block
BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEGIN
 -- inner block
 DECLARE
 v_test_var CHAR(3):= 'ABCDE';
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is a test');
 EXCEPTION
 WHEN INVALID_NUMBER OR VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||
 'the inner block');
 END;
EXCEPTION
 WHEN INVALID_NUMBER OR VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred in the '||
 'program');
END;

When executed, this example produces the output shown:

An error has occurred in the program

PL/SQL procedure successfully completed.

In this example, the PL/SQL block is enclosed by another block, and the program is able to complete. This is possible
because the exception defined in the outer block is raised when the error occurs in the declaration section of the inner
block. Therefore, you can conclude that when a runtime error occurs in the declaration section of the inner block, the
exception immediately propagates to the enclosing (outer) block.

Finally, consider a third case: A runtime error occurred in the exception-handling section of the block. Just like in the
previous case, if there is no outer block, the execution of the program halts, and control is passed to the host
environment. Consider the following script.

 FOR EXAMPLE

DECLARE
 v_test_var CHAR(3) := 'ABC';
BEGIN
 v_test_var := '1234';
 DBMS_OUTPUT.PUT_LINE ('v_test_var: '||v_test_var);
EXCEPTION
 WHEN INVALID_NUMBER OR VALUE_ERROR THEN
 v_test_var := 'ABCD';
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

When executed, this example produces the output shown:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 8
ORA-06502: PL/SQL: numeric or value error: character string buffer too small

As you can see, the assignment statement in the executable section of the block causes an error. Therefore, control is
transferred to the exception-handling section of the block. However, the assignment statement in the exception-
handling section of the block raises the same error. As a result, the output of this example contains the same error
message twice. The first message is generated by the assignment statement in the executable section of the block, and
the second message is generated by the assignment statement of the exception-handling section of this block. Based
on this example, you may conclude that when a runtime error occurs in the exception-handling section of the PL/SQL
block, the exception-handling section of this block is not able to prevent the error.

Next, consider an example with nested PL/SQL blocks.

 FOR EXAMPLE

--outer block
BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEGIN
 -- inner block
 DECLARE
 v_test_var CHAR(3) := 'ABC';
 BEGIN
 v_test_var := '1234';
 DBMS_OUTPUT.PUT_LINE ('v_test_var: '||v_test_var);
 EXCEPTION
 WHEN INVALID_NUMBER OR VALUE_ERROR THEN
 v_test_var := 'ABCD';
 DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||
 'the inner block');
 END;
EXCEPTION
 WHEN INVALID_NUMBER OR VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred in the '||
 'program');
END;

When executed, this example produces the output shown:

An error has occurred in the program

PL/SQL procedure successfully completed.

In this example, the PL/SQL block is enclosed by another block, and the program is able to complete. This is possible
because the exception defined in the outer block is raised when the error occurs in the exception-handling section of
the inner block. Therefore, you can conclude that when a runtime error occurs in the exception-handling section of the
inner block, the exception immediately propagates to the enclosing block.

In the previous two examples, an exception is raised implicitly by a runtime error in the exception-handling section of
the block. However, an exception can be raised in the exception-handling section of the block explicitly by the RAISE
statement. Consider the following example.

 FOR EXAMPLE

--outer block
DECLARE
 e_exception1 EXCEPTION;
 e_exception2 EXCEPTION;
BEGIN
 -- inner block
 BEGIN
 RAISE e_exception1;
 EXCEPTION
 WHEN e_exception1 THEN
 RAISE e_exception2;
 WHEN e_exception2 THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||
 'the inner block');
 END;
EXCEPTION
 WHEN e_exception2 THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||
 'the program');
END;

This example produces the output shown:

An error has occurred in the program

PL/SQL procedure successfully completed.

Here two exceptions are declared: e_exception1 and e_exception2. Exception e_exception1 is raised in the inner block via
the statement RAISE. In the exception-handling section of the block, exception e_exception1 tries to raise e_exception2.
Even though there is an exception handler for the exception e_exception2 in the inner block, control is transferred to the
outer block. This happens because only one exception can be raised in the exception-handling section of the block. Only
after one exception has been handled can another be raised, but two or more exceptions cannot be raised
simultaneously.

When a PL/SQL block is not enclosed by another block, control is transferred to the host environment, and the program
is not able to complete successfully. Then the following error message is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at line 10
ORA-06510: PL/SQL: unhandled user-defined exception

Re-Raising an Exception

On some occasions you may want to be able to stop your program if a certain type of error occurs. In other words, you
may want to handle an exception in the inner block and then pass it to the outer block. This process is called re-raising
an exception. The following example helps to illustrate this point.

 FOR EXAMPLE

-- outer block
DECLARE
 e_exception EXCEPTION;
BEGIN
 -- inner block
 BEGIN
 RAISE e_exception;
 EXCEPTION
 WHEN e_exception THEN
 RAISE;
 END;
EXCEPTION
 WHEN e_exception THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

In this example, the exception e_exception is declared in the outer block. Then it is raised in the inner block. As a result,
control is transferred to the exception-handling section of the inner block. The statement RAISE in the exception-
handling section of the block causes the exception to propagate to the exception-handling section of the outer block.
Notice that when the RAISE statement is used in the exception-handling section of the inner block, it is not followed by
the exception name.

When run, this example produces the output shown:

The error has occurred

PL/SQL procedure successfully completed.

It is important to note that when an exception is re-raised in the block that is
not enclosed by any other block, the program is unable to complete
successfully. Consider the following example:

DECLARE
 e_exception EXCEPTION;
BEGIN
 RAISE e_exception;
EXCEPTION
 WHEN e_exception THEN
 RAISE;
END;

When run, this example produces the following output:

DECLARE
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at line 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.3 Exercises

10.3.1 Understand How Exceptions Propagate

In this exercise, you will use nested PL/SQL blocks to practice exception propagation. You will be asked to experiment
with the script via exceptions. Try to answer the questions before you run the script. Once you have answered the
questions, run the script and check your answers.

Create the following PL/SQL script:

-- ch10_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 v_my_name VARCHAR2(15) := 'ELENA SILVESTROVA';
BEGIN
 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE
 v_your_name VARCHAR2(15);
 BEGIN
 v_your_name := '&sv_your_name';
 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);
 EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the inner block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
 END;

EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
END;

Answer the following questions first, and then execute the script:

a) What exception is raised by the assignment statement in the declaration section of the outer block?

b) Once this exception (based on the previous question) is raised, will the program terminate successfully? You
should explain your answer.

c) How would you change this script so that the exception is able to handle an error caused by the assignment
statement in the declaration section of the outer block?

d) Change the value of the variable from "Elena Silvestrova" to "Elena." Then change the script so that if there
is an error caused by the assignment statement of the inner block, it is handled by the exception-handling
section of the outer block.

10.3.2 Re-raise Exceptions

In this exercise, you will check the number of sections for each course. If a course does not have a section associated
with it, you will raise an exception, e_no_sections. Again, try to answer the questions before you run the script. Once you
have answered the questions, run the script and check your answers.

Create the following PL/SQL script:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch10_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT course_no
 FROM course;

 v_total NUMBER;
 e_no_sections EXCEPTION;
BEGIN
 FOR course_rec in course_cur LOOP
 BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE course_no = course_rec.course_no;

 IF v_total = 0 THEN
 RAISE e_no_sections;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Course, '||
 course_rec.course_no||' has '||
 v_total||' sections');
 END IF;
 EXCEPTION
 WHEN e_no_sections THEN
 DBMS_OUTPUT.PUT_LINE ('There are no sections '||
 'for course '||course_rec.course_no);
 END;
 END LOOP;
END;

Answer the following questions first, and then execute the script:

a) What exception will be raised if there are no sections for a given course number?

b) If the exception e_no_sections is raised, will the cursor FOR loop terminate? Explain your answer.

c) Change this script so that the exception e_no_sections is re-raised in the outer block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 10.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

10.3.1 Answers

a) What exception is raised by the assignment statement in the declaration section of the outer block?

A1: Answer: The exception VALUE_ERROR is raised by the assignment statement of the outer block.

The variable v_my_name is declared as VARCHAR2(15). However, the value that is assigned to this variable contains
seventeen letters. As a result, the assignment statement causes a runtime error.

b) Once this exception (based on the previous question) is raised, will the program terminate successfully?
You should explain your answer.

A2: Answer: When that exception VALUE_ERROR is raised, the script is not able to complete successfully
because the error occurred in the declaration section of the outer block. Since the outer block is not
enclosed by any other block, control is transferred to the host environment. As a result, an error message
will be generated when this example is run.

c) How would you change this script so that the exception is able to handle an error caused by the
assignment statement in the declaration section of the outer block?

A3: Answer: In order for the exception to handle the error generated by the assignment statement in the
declaration section of the outer block, the assignment statement must be moved to the executable section
of this block. All changes are shown in bold letters.

-- ch10_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 v_my_name VARCHAR2(15);
BEGIN
 v_my_name := 'ELENA SILVESTROVA';
 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE
 v_your_name VARCHAR2(15);
 BEGIN
 v_your_name := '&sv_your_name';
 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);
 EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the inner block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
 END;

EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
END;

The new version of this script produces the following output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter value for sv_your_name: TEST A NAME
old 9: v_your_name := '&sv_your_name';
new 9: v_your_name := 'TEST A NAME';
Error in the outer block
This name is too long

PL/SQL procedure successfully completed.

d) Change the value of the variable from "Elena Silvestrova" to "Elena." Then change the script so that if
there is an error caused by the assignment statement of the inner block, it is handled by the exception-
handling section of the outer block.

A4: Answer: Note that when the value of the variable used in the outer block is changed from "Elena
Silvestrova" to "Elena", it allows the script to pass control of the execution to the inner block. In the
previous versions of this example, the inner block was never executed because the VALUE_ERROR
exception was always encountered in the outer block.

Your script should look similar to the script below. All changes are shown in bold letters.

-- ch10_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 v_my_name VARCHAR2(15) := 'ELENA';
BEGIN
 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE
 v_your_name VARCHAR2(15) := '&sv_your_name';
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);
 EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the inner block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
 END;

EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
END;

In this version of the example, the assignment statement was moved from the executable section of the inner block to
the declaration section of this block. As a result, if an exception is raised by the assignment statement of the inner
block, control is transferred to the exception section of the outer block.

You can modify this example in a different manner that allows you to achieve the same result.

-- ch10_3d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE
 v_my_name VARCHAR2(15) := 'ELENA';
BEGIN
 DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

 DECLARE
 v_your_name VARCHAR2(15);
 BEGIN
 v_your_name := '&sv_your_name';
 DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);
 EXCEPTION
 WHEN VALUE_ERROR THEN
 RAISE;
 END;

EXCEPTION
 WHEN VALUE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
 DBMS_OUTPUT.PUT_LINE ('This name is too long');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

In this version of the example, the RAISE statement was used in the exception-handling section of the inner block. As a
result, the exception is re-raised in the outer block.

Both versions of this example produce very similar output. The first output is generated by the third version of the
example, and the second output is generated by the fourth version of the example.

Enter value for sv_your_name: THIS NAME MUST BE REALLY LONG
old 6: v_your_name VARCHAR2(15) := '&sv_your_name';
new 6: v_your_name VARCHAR2(15) := 'THIS NAME MUST BE REALLY LONG';
My name is ELENA
Error in the outer block
This name is too long

PL/SQL procedure successfully completed.

Enter value for sv_your_name: THIS NAME MUST BE REALLY LONG
old 8: v_your_name := '&sv_your_name';
new 8: v_your_name := 'THIS NAME MUST BE REALLY LONG';
My name is ELENA
Error in the outer block
This name is too long

PL/SQL procedure successfully completed.

Notice that the only difference between the two versions of the output is the line number of the bind variable. In the
first version of the output, the assignment statement takes place in the declaration section of the inner block. In the
second version of the output, the assignment statement occurs in the executable section of the inner block. However,
all messages displayed on the screen are identical in both versions of the output.

10.3.2 Answers

a) What exception will be raised if there are no sections for a given course number?

A1: Answer: If there are no sections for a given course number, the exception e_no_sections is raised.

b) If the exception e_no_sections is raised, will the cursor FOR loop terminate? Explain your answer.

A2: Answer: If the exception e_no_sections is raised, the cursor FOR loop will continue its normal execution.
This is possible because the inner block, in which this exception is raised and handled, is located inside the
body of the loop. As a result, the example produces the following output:

Course, 10 has 1 sections
Course, 20 has 4 sections
Course, 25 has 9 sections
There are no sections for course 80
Course, 100 has 5 sections
Course, 120 has 6 sections
Course, 122 has 5 sections
Course, 124 has 4 sections
Course, 125 has 5 sections
Course, 130 has 4 sections
Course, 132 has 2 sections
Course, 134 has 3 sections
Course, 135 has 4 sections
Course, 140 has 3 sections
Course, 142 has 3 sections
Course, 144 has 1 sections
Course, 145 has 2 sections
Course, 146 has 2 sections
Course, 147 has 1 sections
Course, 204 has 1 sections
Course, 210 has 1 sections
Course, 220 has 1 sections
Course, 230 has 2 sections
Course, 240 has 2 sections
Course, 310 has 1 sections
Course, 330 has 1 sections
Course, 350 has 3 sections
Course, 420 has 1 sections
Course, 430 has 2 sections
Course, 450 has 1 sections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Course, 450 has 1 sections

PL/SQL procedure successfully completed.

c) Change this script so that the exception e_no_sections is re-raised in the outer block.

A3: Answer: Your script should look similar to the script shown. All changes are shown in bold letters.

-- ch10_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT course_no
 FROM course;

 v_total NUMBER;
 e_no_sections EXCEPTION;
BEGIN
 FOR course_rec in course_cur LOOP
 BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE course_no = course_rec.course_no;

 IF v_total = 0 THEN
 RAISE e_no_sections;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Course, '||
 course_rec.course_no||' has '||
 v_total||' sections');
 END IF;
 EXCEPTION
 WHEN e_no_sections THEN
 RAISE;
 END;
 END LOOP;
EXCEPTION
 WHEN e_no_sections THEN
 DBMS_OUTPUT.PUT_LINE ('There are no sections for '||
 'the course');
END;

In this version of the example, the exception-handling section of the inner block was modified. The
DBMS_OUTPUT.PUT_LINE statement has been replaced by the RAISE statement. In addition, the exception-handling
section was included in the outer block.

Notice that the error message has been modified as well. There is no course number displayed by the error message.
This change is necessary because the exception-handling section of the outer block is located outside of the cursor FOR
loop. Therefore, the course number is not visible by the exception. When run, this version produces the following
output:

Course, 10 has 1 sections
Course, 20 has 4 sections
Course, 25 has 9 sections
There are no sections for the course

PL/SQL procedure successfully completed.

In order to produce the error message that contains the course number, the script should be modified as follows:

-- ch10_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT course_no
 FROM course;

 v_total NUMBER;
 v_course_no NUMBER;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 v_course_no NUMBER;
 e_no_sections EXCEPTION;
BEGIN
 FOR course_rec in course_cur LOOP
 v_course_no := course_rec.course_no;
 BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE course_no = course_rec.course_no;

 IF v_total = 0 THEN
 RAISE e_no_sections;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Course, '||
 course_rec.course_no||' has '||v_total||
 ' sections');
 END IF;
 EXCEPTION
 WHEN e_no_sections THEN
 RAISE;
 END;
 END LOOP;
EXCEPTION
 WHEN e_no_sections THEN
 DBMS_OUTPUT.PUT_LINE ('There are no sections for '||
 'the course '||v_course_no);
END;

In this version of the example, there is a new variable, v_course_no, that holds the current course number. Notice that
the assignment statement for this variable is the first executable statement of the cursor FOR loop. This arrangement
guarantees that the variable will have a value assigned to it before the e_no_sections exception is raised. When run, the
example produces the following output:

Course, 10 has 1 sections
Course, 20 has 4 sections
Course, 25 has 9 sections
There are no sections for the course 80

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 10.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) When an exception is raised in the declaration section of the inner block, it propagates to the

a. _____ exception-handling section of this block.

b. _____ exception-handling section of the enclosing (outer) block.

c. _____ host environment and causes a syntax error.

2) When an exception is raised in the declaration section of the outer block, it propagates to the

a. _____ exception-handling section of this block.

b. _____ host environment and causes a syntax error.

3) When an exception is raised in the executable section of the inner block, it propagates to the

a. _____ exception-handling section of this block.

b. _____ exception-handling section of the enclosing block.

c. _____ host environment and causes a syntax error.

4) When an exception is re-raised in the inner block, control is transferred to the

a. _____ exception-handling section of this block.

b. _____ exception-handling section of the enclosing block.

5) To re-raise an exception, one must issue which of the following statements?

a. _____ RAISE exception_name

b. _____ RAISE

c. _____ There is no need to issue any statements.

Answers appear in Appendix A, Section 10.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10 Test Your Thinking

In this chapter you learned about built-in exceptions. Here are some projects that will help you test the
depth of your understanding.

1) Create the following script. For each section determine the number of students
registered. If this number is equal to or greater than 15, raise the user-defined
exception e_too_many_students and display the error message. Otherwise,
display how many students are in a section. Make sure that your program is
able to process all sections.

2) Modify the script you created in the previous exercise. Once the exception
e_too_many_students has been raised in the inner block, re-raise it in the outer
block.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. Exceptions: Advanced Concepts
Chapter Objectives
In this Chapter, you will learn about:

 RAISE_APPLICATION_ERROR

 EXCEPTION_INIT Pragma

 SQLCODE and SQLERRM

In Chapters 7 and 10, you encountered the concept of error handling, built-in exceptions, and user-defined exceptions.
You also learned about the scope of an exception, and how to re-raise an exception.

In this chapter you will conclude your exploration of error handling and exceptions with a study of advanced topics.
After working through this chapter, you will be able to associate an error number with an error message. You also will
be able to trap a runtime error having an Oracle error number but no name by which it can be referenced.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.1 RAISE_APPLICATION_ERROR

Lab Objective
After this Lab, you will be able to:

 Use RAISE_APPLICATION_ERROR

RAISE_APPLICATION_ERROR is a special built-in procedure provided by Oracle. This procedure allows programmers to
create meaningful error messages for a specific application. The RAISE_APLICATION_ERROR procedure works with
user-defined exceptions. The syntax of the RAISE_APPLICATION_ERROR is

RAISE_APPLICATION_ERROR(error_number, error_message);

or

RAISE_APPLICATION_ERROR(error_number, error_message,
 keep_errors);

As you can see, there are two forms of the RAISE_APPLICATION_ERROR procedure. The first form contains only two
parameters: error_number and error_message. The error_number is a number of the error that a programmer
associates with a specific error message, and can be any number between -20,999 and -20,000. The error_message is
the text of the error, and it can contain up to 512 characters.

The second form of RAISE_APPLICATION_ERROR contains one additional parameter: keep_errors. Keep_errors is an
optional Boolean parameter. If keep_errors is set to TRUE, the new error will be added to the list of errors that has
been raised already. If keep_errors is set to FALSE, the new error replaces the list of errors that has been raised
already. The default value for the parameter keep_errors is FALSE.

It is important for you to note that the RAISE_APPLICATION_ERROR procedure works with unnamed user-defined
exceptions. It associates the number of the error with the text of the error. Therefore, the user-defined exception does
not have a name associated with it.

Consider the following example used in Chapter 10. This example illustrates the use of the named user-defined
exception and the RAISE statement. Within the example you will be able to compare a modified version using the
unnamed user-defined exception and the RAISE_APPLICATION_ERROR procedure.

 FOR EXAMPLE

First, view the original example from Chapter 10. Notice that the named user-defined exception and the RAISE
statement are shown in bold letters.

DECLARE
 v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
 v_total_courses NUMBER;
 e_invalid_id EXCEPTION;
BEGIN
 IF v_student_id < 0 THEN
 RAISE e_invalid_id;
 ELSE
 SELECT COUNT(*)
 INTO v_total_courses
 FROM enrollment
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('The student is registered for
 '||v_total_courses||' courses');
 END IF;
 DBMS_OUTPUT.PUT_LINE ('No exception has been raised');
EXCEPTION
 WHEN e_invalid_id THEN
 DBMS_OUTPUT.PUT_LINE ('An id cannot be negative');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

Now, compare the modified example as follows (changes are shown in bold letters):

DECLARE
 v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
 v_total_courses NUMBER;
BEGIN
 IF v_student_id < 0 THEN
 RAISE_APPLICATION_ERROR
 (-20000, 'An id cannot be negative');
 ELSE
 SELECT COUNT(*)
 INTO v_total_courses
 FROM enrollment
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE ('The student is registered for
 '||v_total_courses||' courses');
 END IF;
END;

The second version of the example does not contain the name of the exception, the RAISE statement, nor the error-
handling section of the PL/SQL block. Instead, it has a single RAISE_APPLICATION_ERROR statement.

Even though the RAISE_APPLICATION_ERROR is a built-in procedure, it can be
referred to as a statement when used in the PL/SQL block.

Both versions of the example achieve the same result: The processing stops if a negative number is provided for
v_student_id. However, the second version of this example produces the output that has the look and feel of an error
message. Now, run both versions of the example with the value of -4 for the variable v_student_id.

The first version of the example produces the following output:

Enter value for sv_student_id: -4
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := -4;
An id cannot be negative

PL/SQL procedure successfully completed.

The second version of the example produces the following output:

Enter value for sv_student_id: -4
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := -4;
DECLARE
*
ERROR at line 1:
ORA-20000: An id cannot be negative
ORA-06512: at line 6

The output produced by the first version of the example contains the error message "An id cannot be negative" and the
message "PL/SQL completed...". The error message "An id cannot..." in the output generated by the second version of
the example looks like the error message generated by the system, because the error number ORA-20000 precedes the
error message.

The RAISE_APPLICATION_ERROR procedure can work with built-in exceptions as well. Consider the following example:

 FOR EXAMPLE

DECLARE
 v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
 v_name VARCHAR2(50);
BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEGIN
 SELECT first_name||' '||last_name
 INTO v_name
 FROM student
 WHERE student_id = v_student_id;
 DBMS_OUTPUT.PUT_LINE (v_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001, 'This ID is invalid');
END;

When the value of 100 is entered for the student ID, the example produces the output shown:

Enter value for sv_student_id: 100
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := 100;
DECLARE
*
ERROR at line 1:
ORA-20001: This ID is invalid
ORA-06512: at line 12

The built-in exception NO_DATA_FOUND is raised because there is no record in the STUDENT table corresponding to
this value of the student ID. However, the number of the error message does not refer to the exception
NO_DATA_FOUND. It refers to the error message "This ID is invalid."

The RAISE_APPLICATION_ERROR procedure allows programmers to return error messages in a manner that is
consistent with Oracle errors. However, it is important for you to note that it is up to a programmer to maintain the
relationship between the error numbers and the error messages. For example, you have designed an application to
maintain the enrollment information on students. In this application you have associated the error text "This ID is
invalid" with the error number ORA-20001. This error message can be used by your application for any invalid ID. Once
you have associated the error number (ORA-20001) with a specific error message (This ID is invalid), you should not
assign this error number to another error message. If you do not maintain the relationship between error numbers and
error messages, the error-handling interface of your application might become very confusing to the users and to
yourself.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.1 Exercises

11.1.1 Use RAISE_APPLICATION_ERROR

In this exercise, you calculate how many students are registered for each course. You then display a message on the
screen that contains the course number and the number of students registered for it. The original PL/SQL script will not
contain any exception handlers, so you will be asked to add the RAISE_APPLICATION_ERROR statement.

Create the following PL/SQL script:

-- ch11_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT course_no, section_id
 FROM section
 ORDER BY course_no, section_id;
 v_cur_course SECTION.COURSE_NO%TYPE := 0;
 v_students NUMBER(3) := 0;
 v_total NUMBER(3) := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 IF v_cur_course = 0 THEN
 v_cur_course := course_rec.course_no;
 END IF;

 SELECT COUNT(*)
 INTO v_students
 FROM enrollment
 WHERE section_id = course_rec.section_id;

 IF v_cur_course = course_rec.course_no THEN
 v_total := v_total + v_students;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Course '||v_cur_course||
 ' has '||v_total||' student(s)');
 v_cur_course := course_rec.course_no;
 v_total := 0;
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Take a closer look this script. As you learned earlier, this script determines the number of students registered for each
course. It then displays the course number and the number of students on the screen. In order to achieve these results,
the cursor needs to be defined on the SECTION table. This cursor retrieves the course numbers and section IDs. It also
now defines three variables: v_cur_course, v_students, and v_total.

The variable v_cur_course holds the number of the current course. There are duplicate course numbers in the SECTION
table, because a course can have multiple sections. In order to display the number of students for each course rather
than each section, you need to store the number of the current course. For example, course 10 has three sections: 1,
2, and 3. Section 1 has 3 students, section 2 has 5 students, and section 3 has 10 students. Therefore, course 10 has
18 students. Once this number is calculated, the message "10 has 18 student(s)" can be displayed on the screen. As a
result, you need to compare the variable v_cur_course to the course number returned by the cursor.

The variable v_students holds the number of students registered for a specific section of a course. As long as the value of
the variable v_cur_course equals the value of the course_rec.course_no, the variable v_students is added to the current
value of the variable v_total, which holds the total number of students registered for a given course.

Notice that in the body of the cursor FOR loop, there are two IF statements. The first IF statement

IF v_cur_course = 0 THEN
 v_cur_course := course_rec.course_no;
END IF;

is executed only once, for the first iteration of the cursor FOR loop. This IF statement guarantees that the value of
course_rec.course_no is assigned to the variable v_cur_course before any further processing.

The second IF statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second IF statement

IF v_cur_course = course_rec.course_no THEN
 v_total := v_total + v_students;
ELSE
 DBMS_OUTPUT.PUT_LINE ('Course '||v_cur_course||' has '||
 v_total||' student(s)');
 v_cur_course := course_rec.course_no;
 v_total := 0;
END IF;

compares the value of v_cur_course to the value of the course_rec.course_no. For the first iteration of the cursor FOR loop,
this condition of the IF statement evaluates to TRUE, and the value of v_students is added to the current value of v_total.
For the next iteration of the cursor FOR loop, the IF statement evaluates to TRUE if the course number has not
changed. However, if the course number has changed, this IF statement evaluates to FALSE, and the ELSE part of the
IF statement is executed. Therefore, the DBMS_OUTPUT.PUT_LINE statement displays the course information on the
screen, the value of the course_rec.course_no is assigned to the variable v_cur_course, and the value of the variable v_total
is set to 0 again. Why do you think the variable v_total must be set to 0?

Execute the script, and then answer the following questions:

a) What output was printed on the screen?

b) Modify this script so that if a course has more than 20 students enrolled in it, an error message is displayed
indicating that this course has too many students enrolled.

c) Execute the new version of the script. What output was printed on the screen?

d) Generally, when an exception is raised and handled inside a loop, the loop does not terminate prematurely.
Why do you think the cursor FOR loop terminates as soon as RAISE_APPLICATION_ERROR executes?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 11.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

11.1.1 Answers

a) What output was printed on the screen?

A1: Answer:

Course 10 has 1 student(s)
Course 20 has 6 student(s)
Course 25 has 40 student(s)
Course 100 has 7 student(s)
Course 120 has 19 student(s)
Course 122 has 20 student(s)
Course 124 has 3 student(s)
Course 125 has 6 student(s)
Course 130 has 6 student(s)
Course 132 has 0 student(s)
Course 134 has 2 student(s)
Course 135 has 2 student(s)
Course 140 has 7 student(s)
Course 142 has 3 student(s)
Course 144 has 0 student(s)
Course 145 has 0 student(s)
Course 146 has 1 student(s)
Course 147 has 0 student(s)
Course 204 has 0 student(s)
Course 210 has 0 student(s)
Course 220 has 0 student(s)
Course 230 has 2 student(s)
Course 240 has 1 student(s)
Course 310 has 0 student(s)
Course 330 has 0 student(s)
Course 350 has 9 student(s)
Course 420 has 0 student(s)
Course 430 has 0 student(s)
Done…

PL/SQL procedure successfully completed.

Notice that each course number is displayed a single time only.

b) Modify this script so that if a course has more than 20 students enrolled in it, an error message is
displayed indicating that this course has too many students enrolled.

A2: Answer: Your script should look similar to the script shown. All changes are shown in bold letters.

-- ch11_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT course_no, section_id
 FROM section
 ORDER BY course_no, section_id;
 v_cur_course SECTION.COURSE_NO%TYPE := 0;
 v_students NUMBER(3) := 0;
 v_total NUMBER(3) := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 IF v_cur_course = 0 THEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IF v_cur_course = 0 THEN
 v_cur_course := course_rec.course_no;
 END IF;

 SELECT COUNT(*)
 INTO v_students
 FROM enrollment
 WHERE section_id = course_rec.section_id;

 IF v_cur_course = course_rec.course_no THEN
 v_total := v_total + v_students;
 IF v_total > 20 THEN
 RAISE_APPLICATION_ERROR (-20002, 'Course '||
 v_cur_course||' has too many students');
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Course '||v_cur_course||
 'has '||v_total||' student(s)');
 v_cur_course := course_rec.course_no;
 v_total := 0;
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Consider the result if you were to add another IF statement to this script, one in which the IF statement checks whether
the value of the variable exceeds 20. If the value of the variable does exceed 20, the RAISE_APPLICATION_ERROR
statement executes, and the error message is displayed on the screen.

c) Execute the new version of the script. What output was printed on the screen?

A3: Answer: Your output should look similar to the following:

Course 10 has 1 student(s)
Course 20 has 6 student(s)
DECLARE
*
ERROR at line 1:
ORA-20002: Course 25 has too many students
ORA-06512: at line 21

Course 25 has 40 students enrolled. As a result, the IF statement

IF v_total > 20 THEN
 RAISE_APPLICATION_ERROR (-20002, 'Course '||
 v_cur_course||' has too many students');
END IF;

evaluates to TRUE, and the unnamed user-defined error is displayed on the screen.

d) Generally, when an exception is raised and handled inside a loop, the loop does not terminate
prematurely. Why do you think the cursor FOR loop terminates as soon as RAISE_APPLICATION_ERROR
executes?

A4: Answer: When the RAISE_APPLICATION_ERROR procedure is used to handle a user-defined exception,
control is passed to the host environment as soon as the error is handled. Therefore, the cursor FOR loop
terminates prematurely. In this case, it terminates as soon as the course that has more than 20 students
registered for it is encountered.

When a user-defined exception is used with the RAISE statement, the exception propagates from the inner block to the
outer block. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outer block. For example:

-- outer block
BEGIN
 FOR record IN cursor LOOP
 -- inner block
 BEGIN
 RAISE my_exception;
 EXCEPTION
 WHEN my_exception THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
 END;
 END LOOP;
END;

In this example, the exception my_exception is raised and handled in the inner block. Control of the execution is passed
to the outer block once the exception my_exception is raised. As a result, the cursor FOR loop will not terminate
prematurely.

When the RAISE_APPLICATION_ERROR procedure is used, control is always passed to the host environment. The
exception does not propagate from the inner block to the outer block. Therefore, any loop defined in the outer block will
terminate prematurely if an error has been raised in the inner block, with the help of the RAISE_APPLICATION_ERROR
procedure.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The RAISE_APPLICATION_ERROR works with which of the following?

a. _____ Named user-defined exceptions only

b. _____ Unnamed user-defined exceptions only

c. _____ Built-in and unnamed user-defined exceptions

2) The RAISE_APPLICATION_ERROR procedure requires which of the following parameters?

a. _____ error_number, error_text, keep_error

b. _____ error_text, keep_error

c. _____ error_number, error_text

3) The error number used in the RAISE_APPLICATION_ERROR must be which of the following?

a. _____ A number between -20,000 and -20,999

b. _____ A number between 20,000 and 20,999

4) The RAISE_APLICATION_ERROR halts the execution of the program.

a. _____ True

b. _____ False

5) When the parameter keep_error is set to TRUE, which of the following occurs?

a. _____ An error message is displayed on the screen.

b. _____ An error number is displayed on the screen.

c. _____ A new error message is added to the list of raised error messages.

Answers appear in Appendix A, Section 11.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.2 EXCEPTION_INIT Pragma

Lab Objective
After this Lab, you will be able to:

 Use EXCEPTION_INIT Pragma

Often your programs need to handle an Oracle error having a particular number associated with it, but no name by
which it can be referenced. As a result, you are unable to write a handler to trap this error. In a case like this, you can
use a construct called pragma. A pragma is a special instruction to the PL/SQL compiler. It is important to note that
pragmas are processed at the time of the compilation. The EXCEPTION_INIT pragma allows you to associate an Oracle
error number with a name of a user-defined error. Once you associate an error name with an Oracle error number, you
can reference the error and write a handler for it.

The EXCEPTION_INIT pragma appears in the declaration section of a block as shown:

DECLARE
 exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT(exception_name, error_code);

Notice that the declaration of the user-defined exception appears before the EXCEPTION_INIT pragma where it is used.
The EXCEPTION_INIT pragma has two parameters: exception_name and error_code. The exception_name is the name
of your exception, and the error_code is the number of the Oracle error you want to associate with your exception.
Consider the following:

 FOR EXAMPLE

DECLARE
 v_zip ZIPCODE.ZIP%TYPE := '&sv_zip';
BEGIN
 DELETE FROM zipcode
 WHERE zip = v_zip;
 DBMS_OUTPUT.PUT_LINE ('Zip '||v_zip||
 ' has been deleted');
 COMMIT;
END;

In this example, the record corresponding to the value of zipcode provided by a user is deleted from the ZIPCODE
table. Next, the message that a specific zipcode has been deleted is displayed on the screen.

Compare the results running this example entering 06870 for the value of v_zip. The example produces the following
output:

Enter value for sv_zip: 06870
old 2: v_zip ZIPCODE.ZIP%TYPE := '&sv_zip';
new 2: v_zip ZIPCODE.ZIP%TYPE := '06870';
DECLARE
*
ERROR at line 1:
ORA-02292: integrity constraint (STUDENT.STU_ZIP_FK)
violated - child record found
ORA-06512: at line 4

The error message generated by this example occurs because you are trying to delete a record from the ZIPCODE table
while its child records exist in the STUDENT table, thus violating the referential integrity constraint STU_ZIP_FK. In
other words, there is a record with a foreign key (STU_ZIP_FK) in the STUDENT table (child table) that references a
record in the ZIPCODE table (parent table).

Notice that this error has Oracle error number ORA-02292 assigned to it, but it does not have a name. As a result, you
need to associate this error number with a user-defined exception, so you can handle this error in the script.

Contrast the example if you modify it as follows (all changes are shown in bold letters):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contrast the example if you modify it as follows (all changes are shown in bold letters):

 FOR EXAMPLE

DECLARE
 v_zip ZIPCODE.ZIP%TYPE := '&sv_zip';
 e_child_exists EXCEPTION;
 PRAGMA EXCEPTION_INIT(e_child_exists, -2292);
BEGIN
 DELETE FROM zipcode
 WHERE zip = v_zip;
 DBMS_OUTPUT.PUT_LINE ('Zip '||v_zip||
 ' has been deleted');
 COMMIT;
EXCEPTION
 WHEN e_child_exists THEN
 DBMS_OUTPUT.PUT_LINE ('Delete students for this '||
 ' zipcode first');
END;

In this example, you declare the exception e_child_exists. Then you associate the exception with the error number -
2292. It is important to note you do not use ORA-02292 in the EXCEPTION_INIT pragma. Next, you add the exception-
handling section to the PL/SQL block, so you trap this error. Notice that even though the exception e_child_exists is user-
defined, you do not use the RAISE statement, as you saw in Chapter 10. Why do you think you don't use the RAISE
statement?

When you run this example using the same value of zipcode, the following output is produced:

Enter value for sv_zip: 06870
old 2: v_zip ZIPCODE.ZIP%TYPE := '&sv_zip';
new 2: v_zip ZIPCODE.ZIP%TYPE := '06870';
Delete students for this zipcode first

PL/SQL procedure successfully completed.

Notice that this output contains a new error message displayed by the DBMS_OUTPUT.PUT_LINE statement. This
version of the output is more descriptive than the previous version. Remember that the user of the program probably
does not know about the referential integrity constraints existing in the database. Therefore, the EXCEPTION_INIT
pragma improves the readability of your error-handling interface. If the need arises, you can use multiple
EXCEPTION_INIT pragmas in your program.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.2 Exercises

11.2.1 Use EXCEPTION_INIT Pragma

In this exercise, you insert a record in the COURSE table. The original PL/SQL script does not contain any exception
handlers, so you are asked to define an exception and add the EXCEPTION_INIT pragma.

Create the following PL/SQL script:

-- ch11_2a.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN
 INSERT INTO course
 (course_no, description, created_by, created_date)
 VALUES
 (COURSE_NO_SEQ.NEXTVAL, 'TEST COURSE', USER, SYSDATE);
 COMMIT;
 DBMS_OUTPUT.PUT_LINE ('One course has been added');
END;

Execute the script, and then answer the following questions:

a) What output is printed on the screen?

b) Explain why the script does not execute successfully.

c) Add a user-defined exception to the script, so that the error generated by the INSERT statement is handled.

d) Run the new version of the script. Explain the output produced by the new version of the script.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 11.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

11.2.1 Answers

a) What output is printed on the screen?

A1: Answer: Your output should look like the following:

BEGIN
*
ERROR at line 1:
ORA-02290: check constraint (STUDENT.CRSE_MODIFIED_DATE_NNULL) violated
ORA-06512: at line 2

b) Explain why the script does not execute successfully.

A2: Answer: The script does not execute successfully because a NULL is inserted for the MODIFIED_BY and
MODIFIED_DATE columns.

The MODIFED_BY and MODIFIED_DATE columns have check constraints defined on them. These constraints can be
viewed by querying one of the data dictionary tables. The data dictionary comprises tables owned by the user SYS.
These tables provide the database with information that it uses to manage itself.

Consider the following SELECT statement against one of Oracle's data dictionary tables, USER_CONSTRAINTS. This
table contains information on various constraints defined on each table of the STUDENT schema.

SELECT constraint_name, search_condition
FROM user_constraints
WHERE table_name = 'COURSE';

CONSTRAINT_NAME SEARCH_CONDITION
------------------------ ---------------------------
CRSE_CREATED_DATE_NNULL "CREATED_DATE" IS NOT NULL
CRSE_MODIFIED_BY_NNULL "MODIFIED_BY" IS NOT NULL
CRSE_MODIFIED_DATE_NNULL "MODIFIED_DATE" IS NOT NULL
CRSE_DESCRIPTION_NNULL "DESCRIPTION" IS NOT NULL
CRSE_COURSE_NO_NNULL "COURSE_NO" IS NOT NULL
CRSE_CREATED_BY_NNULL "CREATED_BY" IS NOT NULL
CRSE_PK
CRSE_CRSE_FK

8 rows selected.

Notice that the last two rows refer to the primary and foreign key constraints, so there are no search conditions
specified.

Based on the results produced by the preceding SELECT statement, there are six columns having a NOT NULL
constraint. However, the INSERT statement

INSERT INTO course
 (course_no, description, created_by, created_date)
VALUES
 (COURSE_NO_SEQ.NEXTVAL, 'TEST COURSE',USER, SYSDATE);

has only four columns having NOT NULL constraints. The columns MODIFIED_BY and MODIFIED_DATE are not included
in the INSERT statement. Any column of a table not listed in the INSERT statement has NULL assigned to it when a new
record is added to the table. If a column has a NOT NULL constraint and is not listed in the INSERT statement, the
INSERT statement fails and causes an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT statement fails and causes an error.

c) Add a user-defined exception to the script, so that the error generated by the INSERT statement is
handled.

A3: Answer: Your script should look similar to the script shown. All changes are shown in bold letters.

-- ch11_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 e_constraint_violation EXCEPTION;
 PRAGMA EXCEPTION_INIT(e_constraint_violation, -2290);
BEGIN
 INSERT INTO course
 (course_no, description, created_by, created_date)
 VALUES
 (COURSE_NO_SEQ.NEXTVAL, 'TEST COURSE', USER, SYSDATE);
 COMMIT;
 DBMS_OUTPUT.PUT_LINE ('One course has been added');
EXCEPTION
 WHEN e_constraint_violation THEN
 DBMS_OUTPUT.PUT_LINE ('INSERT statement is '||
 'violating a constraint');
END;

In this script, you declared the e_constraint_violation exception. Then, using the EXCEPTION_INIT pragma to associate the
exception with the Oracle error number ORA-02290, the handler is written for the new exception e_constraint_violation.

d) Run the new version of the script. Explain the output produced by the new version of the script.

A4: Answer: Your output should look similar to the following:

INSERT statement is violating a constraint

PL/SQL procedure successfully completed.

Once you define an exception and associate an Oracle error number with it, you can write an exception handler for it.
As a result, as soon as the INSERT statement causes an error, control of the execution is transferred to the exception-
handling section of the block. Then, the message "INSERT statement..." is displayed on the screen. Notice that once an
exception is raised, the execution of the program does not halt. The script completes successfully.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A pragma is

a. _____ a special procedure provided by Oracle.

b. _____ a special instruction to the compiler.

2) A pragma is processed during

a. _____ runtime.

b. _____ compile time.

3) The EXCEPTION_INIT pragma associates a

a. _____ built-in exception with a user-defined error number.

b. _____ user-defined exception with a user-defined error number.

c. _____ user-defined exception with an Oracle error number.

4) The EXCEPTION_INIT pragma needs which of the following parameters?

a. _____ error_number only

b. _____ error_name only

c. _____ error_name and error_number

5) Which of the following is a valid error_number parameter?

a. _____ ORA-02292

b. _____ 2292

c. _____ -2292

Answers appear in Appendix A, Section 11.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.3 SQLCODE and SQLERRM

Lab Objective
After this Lab, you will be able to:

 Use SQLCODE and SQLERRM

In Chapter 7, you learned about the Oracle exception OTHERS. You will recall that all Oracle errors can be trapped with
the help of the OTHERS exception handler. Consider the following example.

 FOR EXAMPLE

DECLARE
 v_zip VARCHAR2(5) := '&sv_zip';
 v_city VARCHAR2(15);
 v_state CHAR(2);
BEGIN
 SELECT city, state
 INTO v_city, v_state
 FROM zipcode
 WHERE zip = v_zip;
 DBMS_OUTPUT.PUT_LINE (v_city||', '||v_state);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

When "07458" is entered for the value of zipcode, this example produces the following output:

Enter value for sv_zip: 07458
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07458';
An error has occurred

PL/SQL procedure successfully completed.

This output informs you that an error has occurred at runtime. However, you do not know what the error is and what
caused it. Maybe there is no record in the ZIPCODE table corresponding to the value provided at runtime, or maybe
there is a datatype mismatch caused by the SELECT INTO statement. As you can see, even though this is a simple
example, there are a number of possible runtime errors that can occur.

Of course, you cannot always know all of the possible runtime errors that may occur when a program is running.
Therefore, it is a good practice to have the OTHERS exception handler in your script. To improve the error-handling
interface of your program, Oracle provides you with two built-in functions, SQLCODE and SQLERRM, used with the
OTHERS exception handler. The SQLCODE function returns the Oracle error number, and the SQLERRM function returns
the error message. The maximum length of a message returned by the SQLERRM function is 512 bytes.

Consider what happens if you modify the preceding by adding the SQLCODE and SQLERRM functions as follows (all
changes are shown in bold letters):

 FOR EXAMPLE

DECLARE
 v_zip VARCHAR2(5) := '&sv_zip';
 v_city VARCHAR2(15);
 v_state CHAR(2);
 v_err_code NUMBER;
 v_err_msg VARCHAR2(200);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 v_err_msg VARCHAR2(200);
BEGIN
 SELECT city, state
 INTO v_city, v_state
 FROM zipcode
 WHERE zip = v_zip;
 DBMS_OUTPUT.PUT_LINE (v_city||', '||v_state);
EXCEPTION
 WHEN OTHERS THEN
 v_err_code := SQLCODE;
 v_err_msg := SUBSTR(SQLERRM, 1, 200);
 DBMS_OUTPUT.PUT_LINE ('Error code: '||v_err_code);
 DBMS_OUTPUT.PUT_LINE ('Error message: '||v_err_msg);
END;

When executed, this example produces the output shown:

Enter value for sv_zip: 07458
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07458';
Error code: -6502
Error message: ORA-06502: PL/SQL: numeric or value error

PL/SQL procedure successfully completed.

In this example, you declare two variables: v_err_code and v_err_msg. Then, in the exception-handling section of the
block, you assign SQLCODE to the variable v_err_code, and SQLERRM to the variable v_err_msg. Next, you use the
DBMS_OUTPUT.PUT_LINE statements to display the error number and the error message on the screen.

Notice that this output is more informative than the output produced by the previous version of the example because it
displays the error message. Once you know which runtime error has occurred in your program, you can take steps to
prevent this error's recurrence.

Generally, the SQLCODE function returns a negative number for an error number. However, there are a few exceptions:

When SQLCODE is referenced outside the exception section, it returns 0 for the error code. The value of 0
means successful completion.

When SQLCODE is used with the user-defined exception, it returns +1 for the error code.

SQLCODE returns a value of 100 when the NO_DATA_FOUND exception is raised.

The SQLERRM function accepts an error number as a parameter, and it returns an error message corresponding to the
error number. Usually, it works with the value returned by SQLCODE. However, you can provide the error number
yourself if such a need arises. Consider the following example:

 FOR EXAMPLE

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Error code: '||SQLCODE);
 DBMS_OUTPUT.PUT_LINE ('Error message1: '||
 SQLERRM(SQLCODE));
 DBMS_OUTPUT.PUT_LINE ('Error message2: '||SQLERRM(100));
 DBMS_OUTPUT.PUT_LINE ('Error message3: '||SQLERRM(200));
 DBMS_OUTPUT.PUT_LINE ('Error message4: '||
 SQLERRM(-20000));
END;

In this example, SQLCODE and SQLERRM are used in the executable section of the PL/SQL block. The SQLERRM
function accepts the value of the SQLCODE in the second DBMS_OUTPUT.PUT_LINE statement. In the following DBMS_
OUPUT.PUT_LINE statements, the SQLERRM accepts the values of 100, 200, and -20,000 respectively. When executed,
this example produces the output shown:

Error code: 0
Error message1: ORA-0000: normal, successful completion
Error message2: ORA-01403: no data found
Error message3: -200: non-ORACLE exception
Error message4: ORA-20000:

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

The first DBMS_OUTPUT.PUT_LINE statement displays the value of the SQLCODE function. Since there is no exception
raised, it returns 0. Next, the value returned by the SQLCODE function is accepted as a parameter by SQLERRM. This
function returns the message "ORA-0000: normal,...." Next, SQLERRM accepts 100 as its parameter and returns "ORA-
01402: no data...." Notice that when the SQLERRM accepts 200 as its parameter, it is not able to find an Oracle
exception that corresponds to the error number 200. Finally, when the SQLERRM accepts -20,000 as its parameter, no
error message is returned. Remember that -20,000 is an error number that can be associated with a named user-
defined exception.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.3 Exercises

11.3.1 Use SQLCODE and SQLERRM

In this exercise, you add a new record to the ZIPCODE table. The original PL/SQL script does not contain any exception
handlers. You are asked to add an exception-handling section to this script.

Create the following PL/SQL script:

-- ch11_3a.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN
 INSERT INTO ZIPCODE
 (zip, city, state, created_by, created_date, modified_by, modified_date)
 VALUES (
 '10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);
 COMMIT;
END;

Execute the script and answer the following questions:

a) What output is printed on the screen?

b) Modify the script so that the script completes successfully, and the error number and message are displayed
on the screen.

c) Run the new version of the script. Explain the output produced by the new version of the script.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 11.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

11.3.1 Answers

a) What output is printed on the screen?

A1: Answer: Your output should look like the following:

BEGIN
*
ERROR at line 1:
ORA-00001: unique constraint (STUDENT.ZIP_PK) violated
ORA-06512: at line 2

The INSERT statement

INSERT INTO ZIPCODE (zip, city, state, created_by,
 created_date, modified_by, modified_date)
VALUES ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);

causes an error because a record with zipcode 10027 already exists in the ZIPCODE table. Column ZIP of the ZIPCODE
table has a primary key constraint defined on it. Therefore, when you try to insert another record with the value of ZIP
already existing in the ZIPCODE table, the error message "ORA-00001: unique constraint..." is generated.

b) Modify the script so that the script completes successfully, and the error number and message are
displayed on the screen.

A2: Answer: Your script should resemble the script shown. All changes are shown in bold letters.

-- ch11_3b.sql, version 2.0
SET SERVEROUTPUT ON
BEGIN
 INSERT INTO ZIPCODE (zip, city, state, created_by, created_date, modified_by, modified_date)
 VALUES ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER,
 SYSDATE);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 v_err_code NUMBER := SQLCODE;
 v_err_msg VARCHAR2(100) := SUBSTR(SQLERRM, 1, 100);
 BEGIN
 DBMS_OUTPUT.PUT_LINE ('Error code: '||v_err_code);
 DBMS_OUTPUT.PUT_LINE ('Error message: '||
 v_err_msg);
 END;
END;

In this script, you add an exception-handling section with the OTHERS exception handler. Notice that two variables
v_err_code and v_err_msg, are declared, in the exception-handling section of the block, adding an inner PL/SQL block.

c) Run the new version of the script. Explain the output produced by the new version of the script.

A3: Answer: Your output should look similar to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A3: Answer: Your output should look similar to the following:

Error code: -1
Error message: ORA-00001: unique constraint (STUDENT.ZIP_PK) violated

PL/SQL procedure successfully completed.

Because the INSERT statement causes an error, control is transferred to the OTHERS exception handler. The SQLCODE
function returns -1, and the SQLERRM function returns the text of the error corresponding to the error code -1. Once
the exception-handling section completes its execution, control is passed to the host environment.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 11.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The SQLCODE function returns an Oracle error number.

a. _____ True

b. _____ False

2) The SQLERRM function returns the error text corresponding to a specific error number.

a. _____ True

b. _____ False

3) When the SQLERRM function cannot return an error message corresponding to a particular error number,
which of the following occurs?

a. _____ SQLERRM causes an error.

b. _____ SQLERRM does not return anything.

c. _____ SQLERRM returns "non-ORACLE exception" message.

4) What is the maximum length of the error text returned by the SQLERRM function?

a. _____ 450 bytes

b. _____ 550 bytes

c. _____ 512 bytes

5) The SQLCODE function always returns a negative number.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 11.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11 Test Your Thinking

In this chapter you learned about advanced concepts of exception-handling techniques. Here are some
projects that will help you test the depth of your understanding.

1) Create the following script. Modify the script created in this section in Chapter
10 (Question 1 of the Test Your Thinking section). Raise a user-defined
exception with the RAISE_APPLICATION_ERROR statement. Otherwise, display
how many students there are in a section. Make sure your program is able to
process all sections.

2) Create the following script. Try to add a record to the INSTRUCTOR table
without providing values for the columns MODIFIED_BY and MODIFIED_DATE.
Define an exception and associate it with the Oracle error number, so that the
error generated by the INSERT statement is handled.

3) Modify the script created in the previous exercise. Instead of declaring a user-
defined exception, add the OTHERS exception handler to the exception-
handling section of the block. Then display the error number and the error
message on the screen.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Procedures
Chapter Objectives
In this Chapter, you will learn about:

 Creating Procedures

 Passing Parameters In and Out of Procedures

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PL/SQL Stored Code
All the PL/SQL that you have written up to this point has been anonymous blocks that were run as scripts and compiled
by the database server at runtime. Now you will begin to use modular code. Modular code is a methodology to build a
program from distinct parts (modules), each of which performs a specific function or task toward the final objective of
the program. Once modular code is stored on the database server, it becomes a database object, or subprogram, that
is available to other program units for repeated execution. In order to save code into the database, the source code
needs to be sent to the server so that it can be compiled into p-code and stored in the database. In the first lab, you
will learn more about stored code and how to write one type of stored code known as procedures. In the second lab,
you will learn about passing parameters into and out of procedures.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.1 Creating Procedures

Lab Objectives
After this Lab, you will be able to:

 Create Procedures

 Query the Data Dictionary for Information on Procedures

Benefits of Modular Code

A PL/SQL module is any complete logical unit of work. There are four types of PL/SQL modules: (1) anonymous blocks
that are run with a text script (this is the type you have used until now), (2) procedures, (3) functions, and (4)
packages.

There are two main benefits to using modular code: (1) It is more reusable and (2) it is more manageable.

You create a procedure either in SQL*Plus or in one of the many tools for creating and debugging stored PL/SQL code.
If you are using SQL*Plus, you will need to write your code in a text editor and then run it at the SQL*Plus prompt.

Block Structure

The block structure is common for all the module types. The block begins with a header (for named blocks only), which
consists of (1) the name of the module, and (2) a parameter list (if used).

The Declaration section consists of variable, cursors, and subblocks that will be needed in the next section.

The main part of the module is the Execution section, where all the calculations and processing is performed. This will
contain executable code such as IF-THEN-ELSE, LOOPS, calls to other PL/SQL modules, and so on.

The last section of the module is an optional exception handler, which is where the code to handle exceptions is placed.

Anonymous Block

Until this chapter, you have only been writing anonymous blocks. Anonymous blocks are very much the same as
modules, which were just introduced (except anonymous blocks do not have headers). There are important distinctions,
though. As the name implies, anonymous blocks have no name and thus cannot be called by another block. They are
not stored in the database and must be compiled and then run each time the script is loaded.

The PL/SQL block in a subprogram is a named block that can accept parameters and can be invoked from an application
that can communicate with the Oracle database server. A subprogram can be compiled and stored in the database. This
allows the programmer to reuse the program. It also provides for easier maintenance of code. Subprograms are either
procedures or functions.

Procedures

A procedure is a module performing one or more actions; it does not need to return any values. The syntax for creating
a procedure is as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE PROCEDURE name
 [(parameter[, parameter, ...])]
AS
 [local declarations]
BEGIN
 executable statements
[EXCEPTION
 exception handlers]
END [name];

A procedure may have 0 to many parameters. This will be covered in the next lab. Every procedure has two parts: (1)
the header portion, which comes before AS (sometimes you will see IS—they are interchangeable), keyword (this
contains the procedure name and the parameter list), and (2) the body, which is everything after the IS keyword. The
word REPLACE is optional. When the word REPLACE is not used in the header of the procedure, in order to change the
code in the procedure, the procedure must be dropped first and then re-created. Since it is very common to change the
code of the procedure, especially when it is under development, it is strongly recommended to use the OR REPLACE
option.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.1 Exercises

12.1.1 Create Procedures

In this exercise, you will run a script that creates a procedure. Using a text editor such as Notepad, create a file with
the following script.

-- ch12_01a.sql
CREATE OR REPLACE PROCEDURE Discount
AS
 CURSOR c_group_discount
 IS
 SELECT distinct s.course_no, c.description
 FROM section s, enrollment e, course c
 WHERE s.section_id = e.section_id
 AND c.course_no = s.course_no
 GROUP BY s.course_no, c.description,
 e.section_id, s.section_id
 HAVING COUNT(*) >=8;
BEGIN
 FOR r_group_discount IN c_group_discount
 LOOP
 UPDATE course
 SET cost = cost * .95
 WHERE course_no = r_group_discount.course_no;
 DBMS_OUTPUT.PUT_LINE
 ('A 5% discount has been given to'||
 r_group_discount.course_no||' '||
 r_group_discount.description
);
 END LOOP;
END;

At the SQL*Plus session, run the script.

a) What did you see on your screen? Explain what happened.

In order to execute in SQL*Plus use the following syntax:

EXECUTE Procedure_name

b) Execute the Discount procedure. How did you accomplish this? What are the results that you see in your
SQL*Plus screen?

c) The script did not contain a COMMIT. Discuss the issues involved with placing a COMMIT in the procedure
and indicate where the COMMIT could be placed.

12.1.2 Query the Data Dictionary for Information on Procedures

There are two main views in the data dictionary that provide information on stored code. They are the USER_OBJECTS
view, to give information about the objects, and the USER_SOURCE, to give the text of the source code. Remember,
the data dictionary also has an ALL_ and DBA_ version of these views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the data dictionary also has an ALL_ and DBA_ version of these views.

a) Write the select statement to get pertinent information from the USER_OBJECTS view about the Discount
procedure you just wrote. Run the query and describe the results.

b) Write the SELECT statement to display the source code from the USER_SOURCE view for the Discount
procedure.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.1 Exercise Answers

12.1.1 Answers

a) What did you see on your screen? Explain what happened.

A1: Answer: Procedure created. The procedure named Discount was compiled into p-code and stored in the
database for later execution. Note if you saw an error—this is due to a typing mistake. Recheck the code
against the example in the book and recompile.

b) Execute the Discount procedure. How did you accomplish this? What are the results that you see in your
SQL*Plus screen?

A1: Answer:

SQL> EXECUTE Discount

5% discount has been given to 25 Adv. Word Perfect
.... (through each course with an enrollment over 8)
PL/SQL procedure successfully completed.

c) The script did not contain a COMMIT. Discuss the issues involved with placing a COMMIT in the procedure
and indicate where the COMMIT could be placed.

A2: Answer: There is no COMMIT in this procedure, which means the procedure will not update the database.
A COMMIT needs to be issued after the procedure is run, if you want the changes to be made.
Alternatively, you can enter a COMMIT either before or after the END LOOP. If you put the COMMIT before
the END LOOP, then you are committing changes after every loop. If you put the COMMIT after the END
LOOP, then the changes will not be committed until after the procedure is near completion. It is wiser to
take the second option. This way you are better prepared for handling errors.

If you receive an error, then type the command:

Show error

You can also add to the command:

L start_line_number end_line_number

to see a portion of the code in order to isolate errors.

12.1.2 Answers

a) Write the select statement to get pertinent information from the USER_OBJECTS view about the Discount
procedure you just wrote. Run the query and describe the results.

A1: Answer:

SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_name = 'DISCOUNT';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE object_name = 'DISCOUNT';

The result is:

OBJECT_NAME OBJECT_TYPE STATUS
-------------------- --------------- ------
DISCOUNT PROCEDURE VALID

The status indicates where the procedure was complied successfully. An invalid procedure cannot be
executed.

b) Write the SELECT statement to display the source code from the USER_SOURCE view for the Discount
procedure.

A2: Answer:

SQL> column text format a70
 SELECT TO_CHAR(line, 99)||'>', text
 FROM user_source
 WHERE name = 'DISCOUNT'

A procedure can become invalid if the table it is based on is
deleted or changed. You can recompile an invalid procedure with
the command

alter procedure procedure_name compile

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.2 Passing Parameters In and Out of Procedures

Lab Objective
After this Lab, you will be able to:

 Use IN and OUT Parameters with Procedures

Parameters

Parameters are the means to pass values to and from the calling environment to the server. These are the values that
will be processed or returned via the execution of the procedure. There are three types of parameters: IN, OUT, and IN
OUT.

Modes

Modes specify whether the parameter passed is read in or a receptacle for what comes out.

Figure 12.1 illustrates the relationship between the parameters when they are in the procedure header versus when the
procedure is executed.

Figure 12.1. Matching Procedure Call to Procedure Header

Formal and Actual Parameters

Formal parameters are the names specified within parentheses as part of the header of a module. Actual parameters
are the values—expressions specified within parentheses as a parameter list—when a call is made to the module. The
formal parameter and the related actual parameter must be of the same or compatible datatypes. Table 12.1 explains
the three types of parameters.

Passing of Constraints (Datatype) with Parameter Values

Formal parameters do not require constraints in datatype—for example, instead of specifying a constraint such as
VARCHAR2(60), you just say VARCHAR2 against the parameter name in the formal parameter list. The constraint is
passed with the value when a call is made.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Matching Actual and Formal Parameters

Two methods can be used to match actual and formal parameters: positional notation and named notation. Positional
notation is simply association by position: The order of the parameters used when executing the procedure matches the
order in the procedure's header exactly. Named notation is explicit association using the symbol =>.

Table 12.1. Three Types of Parameters
Mode Description Usage

IN Passes a value into the program Read only value

Constants, literals, expressions

Cannot be changed within program Default Mode

OUT Passes a value back from the program Write only value

Cannot assign default values

Has to be a variable

Value assigned only if the program is successful

IN OUT Passes values in and also sends values back Has to be a variable

Values will be read and then written

Syntax: formal_parameter_name => argument_value

In named notation, the order does not matter. If you mix notation, list positional notation before named notation.

Default values can be used if a call to the program does not include a value in the parameter list. Note that it makes no
difference which style is used; they will both function similarly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.2 Exercises

12.2.1 Use IN and OUT Parameters with Procedures

Create the following text file in a text editor. Run the script at a SQL*Plus session.

-- ch12_02a.sql
CREATE OR REPLACE PROCEDURE find_sname
 (i_student_id IN NUMBER,
 o_first_name OUT VARCHAR2,
 o_last_name OUT VARCHAR2
)
AS
BEGIN
 SELECT first_name, last_name
 INTO o_first_name, o_last_name
 FROM student
 WHERE student_id = i_student_id;
EXCEPTION
 WHEN OTHERS
 THEN
 DBMS_OUTPUT.PUT_LINE('Error in finding student_id:
 '||i_student_id);
END find_sname;

a) Explain what is happening in the find_sname procedure. What parameters are being passed into and out of
the procedure? How would you call the procedure?

Call the find_sname script with the following anonymous block:

-- ch12_03a.sql
DECLARE
 v_local_first_name student.first_name%TYPE;
 v_local_last_name student.last_name%TYPE;
BEGIN
 find_sname
 (145, v_local_first_name, v_local_last_name);
 DBMS_OUTPUT.PUT_LINE
 ('Student 145 is: '||v_local_first_name||
 ' '|| v_local_last_name||'.'
);
END;

b) Explain the relationship between the parameters that are in the procedures header definition versus the
parameters that are passed IN and OUT of the procedure.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.2 Exercise Answers

12.2.1 Answers

a) Explain what is happening in the find_sname procedure. What parameters are being passed into and out of
the procedure? How would you call the procedure?

A1: Answer: The procedure takes in a student_id via the parameter named i_student_id. It passes out the
parameters o_first_name and o_last_name. The procedure is a simple SELECT statement retrieving the
first_name and last_name from the Student table where the student_id matches the value of the i_student_id,
which is the only in parameter that exists in the procedure. To call the procedure, a value must be passed
in for the i_student_id parameter.

b) Explain the relationship between the parameters that are in the procedures header definition versus the
parameters that are passed IN and OUT of the procedure.

A1: Answer: When calling the procedure find_sname, a valid student_id should be passed in for the i_student_id.
If it is not a valid student_id, the exception will be raised. Two variables must also be listed when calling the
procedure. These variables, v_local_first_name and v_local_last_name, are used to hold the values of the
parameters that are being passed out. After the procedure has been executed, the local variables will have
value and can then be displayed with a DBMS_OUTPUT.PUT _LINE.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 12.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The benefits of module code are that it (check all that apply)

a. _____ takes IN and OUT parameters.

b. _____ can be called by many types of calling environments.

c. _____ is stored in the database.

d. _____ is always valid.

2) All module code contains the following components (check all that apply):

a. _____ Header

b. _____ Footer

c. _____ Declaration

d. _____ Exception

e. _____ Execution

3) If a procedure has an IN parameter, then it must have an OUT parameter.

a. _____ True

b. _____ False

4) Which are valid parameter definitions in the header of a parameter? (check all that apply)

a. _____ P_LAST_NAME IN OUT VARCHAR2(20)

b. _____ P_STUDID OUT IN NUMBER

c. _____ P_ZIPCODE NUMBER

d. _____ P_COURSE_COST IN NUMBER := 1095

5) The view USER_SOURCE only contains the code of valid procedures.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 12.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12 Test Your Thinking

In this chapter, we have learned about creating procedures, with and without the use of parameters.
Additionally, you learned about where information and source code for these procedures can be found.

1) Write a procedure with no parameters. The procedure will let you know if the
current day is a weekend or a weekday. Additionally, it will let you know the
user name and current time. It will also let you know how many valid and
invalid procedures are in the database.

2) Write a procedure that takes in a zipcode, city, and state and inserts the
values into the zipcode table. There should be a check to see if the zipcode is
already in the database. If it is, an exception will be raised and an error
message will be displayed. Write an anonymous block that uses the procedure
and inserts your zipcode.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Functions
Chapter Objectives
In this Chapter, you will learn about:

 Creating and Using Functions

A function that is stored in the database is much like a procedure in that it is a named PL/SQL block that can take
parameters and be invoked. There are key differences both in the way it is created and how it is used. In this chapter,
you will cover the basics of how to create, make use of, and drop a function.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 13.1 Creating and Using Functions

Lab Objectives
After this Lab, you will be able to:

 Create Stored Functions

 Make Use of Functions

 Invoke Functions in SQL Statements

 Write Complex Functions

Function Basics

Functions are another type of stored code and are very similar to procedures. The significant difference is that a
function is a PL/SQL block that returns a single value. Functions can accept one, many, or no parameters, but a function
must have a return clause in the executable section of the function. The datatype of the return value must be declared
in the header of the function. A function is not a stand-alone executable in the way that a procedure is: It must be used
in some context. You can think of it as a sentence fragment. A function has output that needs to be assigned to a
variable, or it can be used in a SELECT statement.

Function Syntax

The syntax for creating a function is as follows:

CREATE [OR REPLACE] FUNCTION function_name
 (parameter list)
 RETURN datatype
IS
BEGIN
 <body>
 RETURN (return_value);
END;

The function does not necessarily have any parameters, but it must have a RETURN value declared in the header, and it
must return values for all the varying possible execution streams. The RETURN statement does not have to appear as
the last line of the main execution section, and there may be more than one RETURN statement (there should be a
RETURN statement for each exception). A function may have IN, OUT, or IN OUT parameters, but you rarely see
anything except IN parameters since it is bad programming practice to do otherwise.

 FOR EXAMPLE

-- ch13_01a.sql ver 1.0
CREATE OR REPLACE FUNCTION show_description
 (i_course_no course.course_no%TYPE)
RETURN varchar2
AS
 v_description varchar2(50);
BEGIN
 SELECT description
 INTO v_description
 FROM course
 WHERE course_no = i_course_no;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE course_no = i_course_no;
 RETURN v_description;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 RETURN('The Course is not in the database');
 WHEN OTHERS
 THEN
 RETURN('Error in running show_description');
END;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 13.1 Exercises

13.1.1 Create Stored Functions

a) Put the create script for the function in the preceding example into a text file. Open SQL*Plus, log into the
student schema, and run the script from the preceding example. What do you expect to see? Explain the
function line by line.

b) Create another function using the following script. Explain what is happening in this function. Pay close
attention to the method of creating the Boolean return.

-- ch13_01b.sql, version 1.0
CREATE OR REPLACE FUNCTION id_is_good
 (i_student_id IN NUMBER)
 RETURN BOOLEAN
AS
 v_id_cnt NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_id_cnt
 FROM student
 WHERE student_id = i_student_id;
 RETURN 1 = v_id_cnt;
EXCEPTION
 WHEN OTHERS
 THEN
 RETURN FALSE;
END id_is_good;

13.1.2 Make Use of Functions

In this exercise, you will learn how to make use of the stored functions that you created in Exercise 13.1.1.

a) Use the following anonymous block to run the function. When prompted, enter 350. Then try other
numbers. What is produced?

SET SERVEROUTPUT ON
DECLARE
 v_description VARCHAR2(50);
BEGIN
 v_description := show_description(&sv_cnumber);
 DBMS_OUTPUT.PUT_LINE(v_description);
 END;

b) Now create a similar anonymous block to make use of the function id_is_good. Try running it for a number of
different IDs.

13.1.3 Invoke Functions in SQL Statements

a) Now you will try another method of using a stored function. Before you type the following SELECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a) Now you will try another method of using a stored function. Before you type the following SELECT
statement, think about what the function show_description is doing. Will this statement produce an error? If
not, then what will be displayed?

SELECT course_no, show_description(course_no)
 FROM course;

13.1.4 Write Complex Functions

a) Create the function with the following script. Before you execute the function, analyze this script and
explain line by line what the function will perform. When could you use this function?

-- ch13_01c.sql, version 1.0
CREATE OR REPLACE FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE
AS
 v_new_instid instructor.instructor_id%TYPE;
BEGIN
 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
 INTO v_new_instid
 FROM dual;
 RETURN v_new_instid;
EXCEPTION
 WHEN OTHERS
 THEN
 DECLARE
 v_sqlerrm VARCHAR2(250)
 := SUBSTR(SQLERRM,1,250);
 BEGIN
 RAISE_APPLICATION_ERROR(-20003,
 'Error in instructor_id: '||v_sqlerrm);
 END;
END new_instructor_id;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 13.1 Exercise Answers

13.1.1 Answers

a) Put the create script for the function in the preceding example into a text file. Open SQL*Plus, log into the
student schema, and run the script from the preceding example. What do you expect to see? Explain the
function line by line.

A1: Answer: When a function has been compiled without errors, the SQL*Plus session will return

Function created.

which indicates that the function was successfully compiled. The script is for the function show_description.
The function heading indicates that the function takes in a parameter of the number datatype and returns
a VARCHAR2. The function makes use of a VARCHAR2(5) variable called v_description. The function gives
the variable the value of the description of the course, whose number is passed into the function. The
return value is then the variable. There are two exceptions. The first is the WHEN NO_DATA_FOUND
exception, the one most likely to occur. The second exception is the WHEN OTHERS exception, which is
being used as a catchall for any other error that may occur. It is important for you to note that the
RETURN clause is one of the last statements in the function. The reason is that the program focus will
return to the calling environment once the RETURN clause is issued.

b) Create another function using the following script. Explain what is happening in this function. Pay close
attention to the method of creating the Boolean return.

-- ch13_01b.sql, version 1.0
CREATE OR REPLACE FUNCTION id_is_good
 (i_student_id IN NUMBER)
 RETURN BOOLEAN
AS
 v_id_cnt NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_id_cnt
 FROM student
 WHERE student_id = i_student_id;
 RETURN 1 = v_id_cnt;
EXCEPTION
 WHEN OTHERS
 THEN
 RETURN FALSE;
END id_is_good;

A2: Answer: The function id_is_good is a check to see if the ID passed in exists in the database. The function
takes in a number (which is assumed to be a student ID) and returns a BOOLEAN value. The function uses
the variable v_id_cnt as a means to process the data. The SELECT statement determines a count of the
number of students with the numeric value that was passed in. If the student is in the database, because
the student_id is the primary key, the value of v_id_cnt will be 1. If the student is not in the database, the
SELECT statement will throw the focus down to the exception section, where the function returns a value
of FALSE. The function makes use of a very interesting method to return TRUE. If the student is in the
database, then v_id_cnt will equal 1, thus the code RETURN 1 = v_id_cnt will actually return a value of TRUE
when v_id_cnt equals 1.

13.1.2 Answers

a) Use the following anonymous block to run the function. When prompted, enter 350. Then try other
numbers. What is produced?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET SERVEROUTPUT ON
DECLARE
 v_description VARCHAR2(50);
BEGIN
 v_description := show_description(&sv_cnumber);
 DBMS_OUTPUT.PUT_LINE(v_description);
 END;

A1: Answer: Since there is a lexical parameter of &cnumber in the PL/SQL block, the user will be prompted as
follows:

Enter value for cnumber:

If you enter "350," you will see the following:

old 4: v_descript := show_description(&sv_cnumber);
new 4: v_descript := show_description(350);
Intro to SQL
PL/SQL procedure successfully completed.

This means that the value for &sv_cnumber has been replaced with 350. The function show_description
returns a VARCHAR2 value, which is the course description for the course number that is passed in. The
PL/SQL block initializes the v_description value with the return from the show_description function. This value
is then displayed with the DBMS_OUTPUT package.

b) Now create a similar anonymous block to make use of the function id_is_good. Try running it for a number
of different IDs.

A2: Answer: The following is one method of testing the id_is_good function:

DECLARE
 V_id number;
BEGIN
 V_id := &id;
 IF id_is_good(v_id)
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Student ID: '||v_id||' is a valid.');
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('Student ID: '||v_id||' is not valid.');
 END IF;
END;

This PL/SQL block evaluates the return from the function and then determines which output to project.
Since the function id_is_good returns a Boolean, the easiest way to make use of this function is to run it
and use the result (which will be either true or false) in an IF statement. Remember that when testing a
Boolean function id_is_good the line 'IF id_is_good(v_id)' means if the function id_is_good for the variable
will result in a return of 'true' then do the following. The ELSE will then cover if the function returns 'false'.

13.1.3 Answers

a) Now you will try another method of using a stored function. Before you type the following SELECT
statement, think about what the function show_description is doing. Will this statement produce an error? If
not, then what will be displayed?

SELECT course_no, show_description(course_no)
 FROM course;

A1: Answer: This SELECT statement will be identical to the SELECT statement that follows:

SELECT course_no, description
 FROM course.

Functions can be used in a SQL statement. In fact, you have been using them all along and may not have
realized it. As a simple example, imagine using the function UPPER in a select statement.

SELECT UPPER('bill') FROM DUAL;

The Oracle-supplied function UPPER is a function that returns the upper case value of the parameter that
was passed in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

was passed in.

Note that for a user-defined function to be called in a SQL expression it must be a ROW function, not a
GROUP function, and the datatypes must be SQL datatypes. The datatypes cannot be PL/SQL datatypes
like Boolean, table, or record. Additionally, the function is not allowed to have any DML (insert, update,
delete).

Note that in order to use a function in a SQL select statement, the
function must have a certain level of purity. This is accomplished
with the PRAGMA RESTRICT_REFERENCES clause. This will be
discussed in detail in the next chapter in the context of functions
within packages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 13.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) What are the distinguishing characteristics that make functions different from procedures? (check all that
apply)

a. _____ Functions require a PRAGMA RESTRICT clause.

b. _____ Functions only take IN parameters.

c. _____ Functions are stored in the database.

d. _____ Functions require a return value.

2) The parameters of a function must be labeled IN or the function will not compile successfully.

a. _____ True

b. _____ False

3) Which statement(s) will cause control to return to the calling environment in a function? (check all that
apply)

a. _____ The raising of an exception

b. _____ The initialization of an OUT parameter

c. _____ Writing to a database table

d. _____ The RETURN statement

4) IN OUT parameters are permissible in functions.

a. _____ True

b. _____ False

c. _____ The function will compile with an IN OUT parameter, but it is not advisable to use them.

5) If a function declares a user-defined exception but never explicitly raises the exception, which of the
following will be true?

a. _____ The function will not be able to compile.

b. _____ The function will fail a purity level check.

c. _____ The exception will never be raised.

d. _____ As long as the exception has a RETURN clause, there is no error in having a user-defined
exception and not calling it.

Answers appear in Appendix A, Section 13.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13 Test Your Thinking

In this chapter, you have learned about functions. Here are some projects that will help you test the depth
of your understanding.

1) Write a stored function called new_student_id that takes in no parameters and
returns a student.student_id%TYPE. The value returned will be used when
inserting a new student into the CTA application. It will be derived by using the
formula: student_id_seq.NEXTVAL.

2) Write a stored function called zip_does_not_exist that takes in a zipcode.zip%TYPE
and returns a Boolean. The function will return TRUE if the zipcode passed into
it does not exist. It will return a FALSE if the zipcode exists. Hint: An example
of how it might be used is as follows:

DECLARE
 cons_zip CONSTANT zipcode.zip%TYPE := '&sv_zipcode';
 e_zipcode_is_not_valid EXCEPTION;
BEGIN
 IF zipcode_does_not_exist(cons_zip);
 THEN
 RAISE e_zipcode_is_not_valid;
 ELSE
 -- An insert of an instructor's record which
 -- makes use of the checked zipcode might go here.
 NULL;
 END IF;
EXCEPTION
 WHEN e_zipcode_is_not_valid THEN
 RAISE_APPLICATION_ERROR
 (-20003, 'Could not find zipcode '||
 cons_zip||'.');
END;

3) Create a new function. For a given instructor, determine how many sections he
or she is teaching. If the number is greater or equal to 3, return a message
saying the instructor needs a vacation. Otherwise, return a message saying
how many sections this instructor is teaching.

The answers to Test Your Thinking can be found in Appendix D and on the Web site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Packages
Chapter Objectives
In this Chapter, you will learn about:

 The Benefits of Utilizing Packages

A package is a collection of PL/SQL objects grouped together under one package name. Packages include procedures,
functions, cursors, declarations, types, and variables. There are numerous benefits in collecting objects into a package.
In this chapter, you learn what these benefits are and how to use them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 14.1 The Benefits of Utilizing Packages

Lab Objectives
After this Lab, you will be able to:

 Create Package Specifications

 Create Package Bodies

 Call Stored Packages

 Create Private Objects

 Create Package Variables and Cursors

There are numerous benefits of using packages as a method to bundle your functions and procedures, the first being
that a well-designed package is a logical grouping of objects—such as functions, procedures, global variables, and
cursors. All of the code (parse tree and pseudocode [p-code]) is loaded on the first call of the package. This means that
the first call to the package is very expensive (involves a lot of processing on the server), but all subsequent calls will
result in an improved performance. Packages are therefore often used in applications where procedures and functions
are used repeatedly.

There is also an additional level of security using packages. When a user executes a procedure in a package (or stored
procedures and functions), the procedure operates with the same permissions as its owner. Packages also allow the
creation of private functions and procedures, which can only be called from other functions and procedures in the
package. This enforces information hiding. The structure of the package also encourages top-down design.

The Package Specification

The package specification contains information about the contents of the package, but not the code for the procedures
and functions. It also contains declarations of global/public variables. Anything placed in the declarative section of a
PL/SQL block may be coded in a package specification. All objects placed in the package specification are called public
objects. Any function or procedure not in the package specification but coded in a package body is called a private
function or procedure.

The Package Body

The package body contains the actual executable code for the objects described in the package specification. The
package body contains code for all procedures and functions described in the specification and may additionally contain
code for objects not declared in the specification; the latter type of packaged object is invisible outside the package and
is referred to as hidden. When creating stored packages, the package specification and body can be compiled
separately.

Rules for the Package Body

There are a number of rules that must be followed in package body code: (1) There must be an exact match between
the cursor and module headers and their definitions in package specification; (2) do not repeat declaration of variables,
exceptions, type, or constants in the specification again in the body; and (3) any element declared in the specification
can be referenced in the body.

Referencing Package Elements

Use the following notation when calling packaged elements from outside of the package: package_name.element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the following notation when calling packaged elements from outside of the package: package_name.element.

You do not need to qualify elements when declared and referenced inside the body of the package or when declared in
a specification and referenced inside the body of the same package.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 14.1 Exercises

14.1.1 Create Package Specifications

In this exercise, you will learn more about table-based and cursor-based records discussed earlier in the chapter.

Create the following PL/SQL script:

 FOR EXAMPLE

-- ch14_1a.sql
 1 CREATE OR REPLACE PACKAGE manage_students
 2 AS
 3 PROCEDURE find_sname
 4 (i_student_id IN student.student_id%TYPE,
 5 o_first_name OUT student.first_name%TYPE,
 6 o_last_name OUT student.last_name%TYPE
 7);
 8 FUNCTION id_is_good
 9 (i_student_id IN student.student_id%TYPE)
 10 RETURN BOOLEAN;
 11 END manage_students;

Answer the following questions:

a) Type the preceding code into a text file. Then run the script in a SQL*Plus session. Explain what happened.

b) If the following script was run from a SQL*PLUS session, what would the result be and why?

-- ch14_2a.sql
SET SERVEROUTPUT ON
DECLARE
 v_first_name student.first_name%TYPE;
 v_last_name student.last_name%TYPE;
BEGIN
 manage_students.find_sname
 (125, v_first_name, v_last_name);
 DBMS_OUTPUT.PUT_LINE(v_first_name||' '||v_last_name);
END;

c) Create a package specification for a package named student_ta_api. The package contains the procedure
discount from Chapter 12 and the function new_instructor_id from Chapter 13.

14.1.2 Create Package Bodies

Now we will create the body of the manage_students package, which was specified in the previous section.

 FOR EXAMPLE

-- ch14_3a.sql
 1 CREATE OR REPLACE PACKAGE BODY manage_students
 2 AS
 3 PROCEDURE find_sname
 4 (i_student_id IN student.student_id%TYPE,
 5 o_first_name OUT student.first_name%TYPE,
 6 o_last_name OUT student.last_name%TYPE
 7)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 7)
 8 IS
 9 v_student_id student.student_id%TYPE;
10 BEGIN
11 SELECT first_name, last_name
12 INTO o_first_name, o_last_name
13 FROM student
14 WHERE student_id = i_student_id;
15 EXCEPTION
16 WHEN OTHERS
17 THEN
18 DBMS_OUTPUT.PUT_LINE
19 ('Error in finding student_id: '||v_student_id);
20 END find_sname;
21 FUNCTION id_is_good
22 (i_student_id IN student.student_id%TYPE)
23 RETURN BOOLEAN
24 IS
25 v_id_cnt number;
26 BEGIN
27 SELECT COUNT(*)
28 INTO v_id_cnt
29 FROM student
30 WHERE student_id = i_student_id;
31 RETURN 1 = v_id_cnt;
32 EXCEPTION
33 WHEN OTHERS
34 THEN
35 RETURN FALSE;
36 END id_is_good;
37 END manage_students;

a) Type the preceding code into a text file. Then run the script in a SQL*Plus session. Explain what happens.

b) Create a package body for the package named cta_api that you just created.

14.1.3 Call Stored Packages

Now we will use elements of the manage_student package in another code block.

 FOR EXAMPLE

-- ch14_4a.sql
DECLARE
 v_first_name student.first_name%TYPE;
 v_last_name student.last_name%TYPE;
BEGIN
 IF manage_students.id_is_good(&v_id)
 THEN
 manage_students.find_sname(&&v_id, v_first_name,
 v_last_name);
 DBMS_OUTPUT.PUT_LINE('Student No. '||&&v_id||' is '
 ||v_last_name||', '||v_first_name);
ELSE
 DBMS_OUTPUT.PUT_LINE
 ('Student ID: '||&&v_id||' is not in the database.');
END IF;
END;

a) The previous example displays how a procedure within a package is executed. What results do you expect if
you run this PL/SQL block?

b) Run the script and see the results. How does this compare with what you expected? Explain what the script
is accomplishing line by line.

c) Create a script testing the cta_api package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) Create a script testing the cta_api package.

14.1.4 Create Private Objects

Public and Private Package Elements

Public elements are elements defined in the package specification. If an object is defined only in the package body, then
it is private.

Private elements cannot be accessed directly by any programs outside of the package.

You can think of the package specification as being a "menu" of packaged items that are available to users; there may
be other objects working behind the scenes, but they aren't accessible. They cannot be called or utilized in any way;
they are available as part of the internal "menu" of the package and can only be called by other elements of the
package.

a) Replace the last lines of the manage_students package specification with the following and recompile the
package specification:

11 PROCEDURE display_student_count;
12 END manage_students;

Replace the end of the body with the following and recompile the package body:

37 FUNCTION student_count_priv
38 RETURN NUMBER
39 IS
40 v_count NUMBER;
41 BEGIN
42 select count(*)
43 into v_count
44 from student;
45 return v_count;
46 EXCEPTION
47 WHEN OTHERS
48 THEN
49 return(0);
50 END student_count_priv;
51 PROCEDURE display_student_count
52 is
53 v_count NUMBER;
54 BEGIN
55 v_count := student_count_priv;
56 DBMS_OUTPUT.PUT_LINE
57 ('There are '||v_count||' students.');
58 END display_student_count;
59 END manage_students;

What have you added to the manage_student package?

b) If you run the following from your SQL*PLUS session, what are the results?

DECLARE
 V_count NUMBER;
BEGIN
 V_count := Manage_students.student_count_priv;
 DBMS_OUTPUT.PUT_LINE(v_count);
END;

c) If you were to run the following, what do you expect to see?

SET SERVEROUTPUT ON
Execute manage_students.display_student_count;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Execute manage_students.display_student_count;

d) Add a private function to the school_api called get_course_descript_private. It accepts a
course.course_no%TYPE and returns a course.description%TYPE. It searches for and returns the course
description for the course number passed to it. If the course does not exist or if an error occurs, it returns a
NULL.

14.1.5 Create Package Variables and Cursors

The first time a package is called within a user session, the code in the initialization section of the package will be
executed if it exists. This is only done once and is not repeated if other procedures or functions for that package are
called by the user.

Variables, cursors, and user-defined datatypes used by numerous procedures and functions can be declared once at the
beginning of the package and can then be used by the functions and procedures within the package without having to
declare them again.

a) Add a package wide variable called v_current_date to cta_api; additionally, add an initialization section that
assigns the current sysdate to the variable v_current_date.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 14.1 Exercise Answers

14.1.1 Answers

a) Type the preceding code into a text file. Then run the script in a SQL*Plus session. Explain what
happened.

A1: Answer: The specification for the package manage_students has been compiled into the database. The
specification for the package now indicates that there is one procedure and one function. The procedure
find_sname requires one IN parameter, which is the student ID, and it returns two OUT parameters, one
being the student's first name and the other being the student's last name. The function id_is_good takes
in a single parameter of a student ID and returns a Boolean (true or false). Although the body has not yet
been entered into the database, the package is still available for other applications. For example, if you
included a call to one of these procedures in another stored procedure, that procedure would compile (but
would not execute).

b) If the following script was run from a SQL*PLUS session, what would the result be and why?

-- ch14_2a.sql
SET SERVEROUTPUT ON
DECLARE
 v_first_name student.first_name%TYPE;
 v_last_name student.last_name%TYPE;
BEGIN
 manage_students.find_sname
 (125, v_first_name, v_last_name);
 DBMS_OUTPUT.PUT_LINE(v_first_name||' '||v_last_name);
END;

A2: Answer: The procedure cannot run because only the specification for the procedure exists in the database,
not the body. The SQL*Plus session returns the following:

ERROR at line 1:
ORA-04068: existing state of packages has been discarded
ORA-04067: not executed, package body
 "STUDENT.MANAGE_STUDENTS" does not exist
ORA-06508: PL/SQL: could not find program
 unit being called
ORA-06512: at line 5

c) Create a package specification for a package named student_ta_api. The package contains the procedure
discount from Chapter 12 and the function new_instructor_id from Chapter 13.

A3: Answer:

1 CREATE OR REPLACE PACKAGE school_api as
2 PROCEDURE discount_cost;
3 FUNCTION new_instructor_id
4 RETURN instructor.instructor_id%TYPE;
5 END school_api;

14.1.2 Answers

a) Type the preceding code into a text file. Then run the script in a SQL*Plus session. Explain what happens.

A1: Answer: The package body manage_students is compiled into the database. The package contains the
procedure manage_students.find_sname, which accepts the parameter student_id and returns the
student's last_name and first_name from the Student table.

b) Create a package body for the package named cta_api that you just created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

b) Create a package body for the package named cta_api that you just created.

A2: Answer:

-- ch14_5a.sql
 1 CREATE OR REPLACE PACKAGE BODY school_api AS
 2 PROCEDURE discount_cost
 3 IS
 4 CURSOR c_group_discount
 5 IS
 6 SELECT distinct s.course_no, c.description
 7 FROM section s, enrollment e, course c
 8 WHERE s.section_id = e.section_id
 9 GROUP BY s.course_no, c.description,
10 e.section_id, s.section_id
11 HAVING COUNT(*) >=8;
12 BEGIN
14 FOR r_group_discount IN c_group_discount
14 LOOP
15 UPDATE course
16 SET cost = cost * .95
17 WHERE course_no = r_group_discount.course_no;
18 DBMS_OUTPUT.PUT_LINE
19 ('A 5% discount has been given to'
20 ||r_group_discount.course_no||'
21 '||r_group_discount.description);
22 END LOOP;
23 END discount_cost;
24 FUNCTION new_instructor_id
25 RETURN instructor.instructor_id%TYPE
26 IS
27 v_new_instid instructor.instructor_id%TYPE;
28 BEGIN
29 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
30 INTO v_new_instid
31 FROM dual;
32 RETURN v_new_instid;
33 EXCEPTION
34 WHEN OTHERS
35 THEN
36 DECLARE
37 v_sqlerrm VARCHAR2(250) :=
 SUBSTR(SQLERRM,1,250);
38 BEGIN
39 RAISE_APPLICATION_ERROR(-20003,
40 'Error in instructor_id: '||v_sqlerrm);
41 END;
42 END new_instructor_id;
43 END school_api;

14.1.3 Answers

a) The previous example displays how a procedure within a package is executed. What results do you expect
if you run this PL/SQL block?

A1: Answer: This is a correct PL/SQL block for running the function and the procedure in the package
manage_students. If an existing student_id is entered, then the name of the student is displayed. If the id is
not valid, then the error message is displayed.

b) Run the script and see the results. How does this compare with what you expected? Explain what the
script is accomplishing line by line.

A2: Answer: Initially the following appears:

Enter value for v_id:
If you enter "145," then you see:
old 5: IF manage_students.id_is_good(&v_id)
new 5: IF manage_students.id_is_good(145)
old 7: manage_students.find_sname(&&v_id, v_first_name,
new 7: manage_students.find_sname(145, v_first_name,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new 7: manage_students.find_sname(145, v_first_name,
old 9: DBMS_OUTPUT.PUT_LINE('Student No. '||&&v_id||
 ' is '
new 9: DBMS_OUTPUT.PUT_LINE('Student No. '||145||' is '
old 14: ('Student ID: '||&&v_id||' is not in the
 database.');
new 14: ('Student ID: '||145||' is not in the
 database.');
Student No. 145 is Lefkowitz, Paul
PL/SQL procedure successfully completed.

The function id_is_good returns TRUE for an existing student_id such as 145. The control then flows to the first part of the
IF statement and the procedure manage_students.find_sname finds the first and last name for student_id 145, which
happens to be Lefkowitz, Paul.

c) Create a script testing the cta_api package.

A3: Answer:

SET SERVEROUTPUT ON
DECLARE
 V_instructor_id instructor.instructor_id%TYPE;
BEGIN
 cta_api.Discount;
 v_instructor_id := cta_api.new_instructor_id;
 DBMS_OUTPUT.PUT_LINE
 ('The new id is: '||v_instructor_id);
END;

14.1.4 Answers

a) Replace the last lines of the manage_students package specification with the following and recompile the
package specification:

11 PROCEDURE display_student_count;
12 END manage_students;

Replace the end of the body with the following and recompile the package body:

37 FUNCTION student_count_priv
38 RETURN NUMBER
39 IS
40 v_count NUMBER;
41 BEGIN
42 select count(*)
43 into v_count
44 from student;
45 return v_count;
46 EXCEPTION
47 WHEN OTHERS
48 THEN
49 return(0);
50 END student_count_priv;
51 PROCEDURE display_student_count
52 is
53 v_count NUMBER;
54 BEGIN
55 v_count := student_count_priv;
56 DBMS_OUTPUT.PUT_LINE
57 ('There are '||v_count||' students.');
58 END display_student_count;
59 END manage_students;

What have you added to the manage_student package?

A1: Answer: A private function, student_count_privs, and a public procedure, display_student_count, calling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A1: Answer: A private function, student_count_privs, and a public procedure, display_student_count, calling
the private function.

b) If you run the following from your SQL*PLUS session, what are the results?

DECLARE
 V_count NUMBER;
BEGIN
 V_count := Manage_students.student_count_priv;
 DBMS_OUTPUT.PUT_LINE(v_count);
END;

A2: Answer: Since the private function, student_count_privs, cannot be called from outside the package, you
receive an error message as follows:

ERROR at line 1:
ORA-06550: line 4, column 31:
PLS-00302: component 'STUDENT_COUNT_PRIV'
 must be declared
ORA-06550: line 4, column 3:
PL/SQL: Statement ignored

It appears as if the private function does not exist. This is important to keep in mind. You can see this can be useful
when you are writing PL/SQL packages used by other developers. In order to simplify the package for them, they only
need to see the package specification. This way they know what is being passed into the procedures and functions and
what is being returned. They do not need to see the inner workings. If a number of procedures make use of the same
logic, it may make more sense to put them into a private function called by the procedures.

c) If you were to run the following, what do you expect to see?

SET SERVEROUTPUT ON
Execute manage_students.display_student_count;

A3: Answer: This is a valid method of running a procedure. A line is displayed indicating the number of
students in the database. Note that the procedure in the package manage_ students is using the private
function student_count_priv to retrieve the student count.

Note that if you forget to include a procedure or function in a
package specification, it becomes private. On the other hand, if
you declare a procedure or function in the package specification,
and then you do not define it when you create the body, you
receive the following error message:

PLS-00323: subprogram or cursor 'procedure_name' is
declared in a package specification and must be
defined in the package body

d) Add a private function to the school_api called get_course_descript_private. It accepts a
course.course_no%TYPE and returns a course.description%TYPE. It searches for and returns the course
description for the course number passed to it. If the course does not exist or if an error occurs, it returns
a NULL.

A4: Answer: Add the following lines to the package body: There is nothing that needs to be added to the
package specification, since you are only adding a private object.

43 FUNCTION get_course_descript_private
44 (i_course_no course.course_no%TYPE)
45 RETURN course.description%TYPE
46 IS
47 v_course_descript course.description%TYPE;
48 BEGIN
49 SELECT description
50 INTO v_course_descript
51 FROM course
52 WHERE course_no = i_course_no;
53 RETURN v_course_descript;
54 EXCEPTION
55 WHEN OTHERS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

55 WHEN OTHERS
56 THEN
57 RETURN NULL;
58 END get_course_descript_private;
59 END school_api;

14.1.5 Answers

a) Add a package wide variable called v_current_date to cta_api; additionally, add an initialization section
that assigns the current sysdate to the variable v_current_date.

A1: Answer: Add the following line to the beginning of the package specification:

1 CREATE OR REPLACE PACKAGE school_api as
2 v_current_date DATE;
3 PROCEDURE Discount;
4 FUNCTION new_instructor_id
5 RETURN instructor.instructor_id%TYPE;
6 END school_api;

Add the following to the end of the package body:

59 BEGIN
60 SELECT trunc(sysdate, 'DD')
61 INTO v_current_date
62 FROM dual;
63 END school_api;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 14.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The main advantages to grouping procedures and functions into packages are (check all that apply):

a. _____ It follows the trendy object method of programming.

b. _____ It is a more efficient way of utilizing the processor memory.

c. _____ It makes greater use of the security privileges of various users.

d. _____ It is a more efficient method to maximize tablespace storage.

e. _____ It keeps you on good terms with the DBA.

2) If user Tashi has SELECT privilege on the student table and user Sonam does not, then Sonam can make
use of a procedure created by Tashi to get access to the student table if he has execute privileges on
Tashi's procedure.

a. _____ True

b. _____ False

3) All procedures and functions in a package body must be declared in the package specification.

a. _____ True

b. _____ False

4) The initialization section of a package refers to

a. _____ another term for the package header.

b. _____ the first part of the package.

c. _____ the executable code at the end of the package.

d. _____ the evolutionary rudiments in code that are left over from programming methods of
cavemen.

5) The package specification is merely a formality for other programmers to let them know what parameters
are being passed in and out of the procedures and functions. It hides the program logic but in actuality it is
not necessary and is incorporated into the package body.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 14.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14 Test Your Thinking

In this chapter, you have learned about packages. Here are some projects that will help you test the depth
of your understanding.

1) Add a procedure to the student_api package called remove_student. This
procedure accepts a student_id and returns nothing. Based on the student id
passed in, it removes the student from the database. If the student does not
exist or there is a problem removing the student (such as a foreign key
constraint violation), then let the calling program handle it.

2) Alter remove_student in the student_api package body to accept an additional
parameter. This new parameter is a VARCHAR2 and is called p_ri. Make p_ri
default to "R." The new parameter may contain a value of "R" or "C." If "R" is
received, it represents DELETE RESTRICT and the procedure acts as it does
now. If there are enrollments for the student, the delete is disallowed. If a "C"
is received, it represents DELETE CASCADE. This functionally means that the
remove_student procedure locates all records for the student in all of the CTA
tables and removes them from the database before attempting to remove the
student from the student table. Decide how to handle the situation where the
user passes in a code other than "C" or "R."

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Advanced Cursors
Chapter Objectives
In this Chapter, you will learn about:

 Using Parameters with Cursors and FOR UPDATE Cursors

 Cursor Variables

In the previous chapter you mastered the basic concepts of cursors. In this chapter you will learn how to dynamically
alter the WHERE clause of a cursor by passing parameters to when you call the cursor. You will also learn about cursor
variables. Cursor variables are like C pointers; they hold the address or memory location of an object of some type.
Cursor variables are very useful for passing query result sets between PL/SQL stored subprograms and various clients.
Neither PL/SQL nor any of its clients owns a result set. They simply share a pointer to the query work area that
identifies the result set.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.1 Using Parameters with Cursors and FOR UPDATE Cursors

Lab Objectives
After this Lab, you will be able to:

 Use Parameters in a Cursor

 Use a FOR UPDATE Cursor

 Use the WHERE CURRENT OF Clause

Cursors with Parameters

A cursor can be declared with parameters. This enables a cursor to generate a specific result set, which is, on the one
hand, narrow, but, on the other hand, reusable. A cursor of all the data from the ZIPCODE table may be very useful,
but it would be more useful for certain data processing if it held information for only one state. At this point, you know
how to create such a cursor. But wouldn't it be more useful if you could create a cursor that could accept a parameter
of a state and then run through only the city and zip for that state?

 FOR EXAMPLE

CURSOR c_zip (p_state IN zipcode.state%TYPE) IS
 SELECT zip, city, state
 FROM zipcode
 WHERE state = p_state;

The main points to keep in mind for parameters in cursors are as follows:

Cursor parameters make the cursor more reusable.

Cursor parameters can be assigned default values.

The scope of the cursor parameters is local to the cursor.

The mode of the parameters can only be IN.

When a cursor has been declared as taking a parameter, it must be called with a value for that parameter. The c_zip
cursor that was just declared is called as follows:

OPEN c_zip (parameter_value)

The same cursor could be opened with a FOR CURSOR loop as follows:

FOR r_zip IN c_zip('NY')
LOOP ...
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.1 Exercises

15.1.1 Use Parameters in a Cursor

a) Complete the code for the parameter cursor that was begun in the preceding example. Include a
DBMS_OUTPUT line that displays the zipcode, city, and state. This is identical to the process you have
already used in a FOR CURSOR loop, only now, when you open the cursor, you pass a parameter.

b) The following PL/SQL code is complex. It involves all of the topics covered so far in this chapter. There is a
nested cursor with three levels, meaning a grandparent cursor, a parent cursor, and a child cursor. Before
running this script, review the code and identify the levels of nesting in the code. When you describe each
level of the code, explain what parameters are being passed into the cursor and why. What do you think the
result will be from running this statement?

-- ch15_1a.sql
SET SERVEROUTPUT ON
 1 DECLARE
 2 CURSOR c_student IS
 3 SELECT first_name, last_name, student_id
 4 FROM student
 5 WHERE last_name LIKE 'J%';
 6 CURSOR c_course
 7 (i_student_id IN
 student.student_id%TYPE)
 8 IS
 9 SELECT c.description, s.section_id sec_id
 10 FROM course c, section s, enrollment e
 11 WHERE e.student_id = i_student_id
 12 AND c.course_no = s.course_no
 13 AND s.section_id = e.section_id;
 14 CURSOR c_grade(i_section_id IN
 section.section_id%TYPE,
 15 i_student_id IN
 student.student_id%TYPE)
 16 IS
 17 SELECT gt.description grd_desc,
 18 TO_CHAR
 19 (AVG(g.numeric_grade), '999.99')
 num_grd
 20 FROM enrollment e,
 21 grade g, grade_type gt
 22 WHERE e.section_id = i_section_id
 23 AND e.student_id = g.student_id
 24 AND e.student_id = i_student_id
 25 AND e.section_id = g.section_id
 26 AND g.grade_type_code =
 gt.grade_type_code
 27 GROUP BY gt.description ;
 28 BEGIN
 29 FOR r_student IN c_student
 30 LOOP
 31 DBMS_OUTPUT.PUT_LINE(CHR(10));
 32 DBMS_OUTPUT.PUT_LINE(r_student.first_name||
 33 ' '||r_student.last_name);
 34 FOR r_course IN
 c_course(r_student.student_id)
 35 LOOP
 36 DBMS_OUTPUT.PUT_LINE
 ('Grades for course :'||
 37 r_course.description);
 38 FOR r_grade IN c_grade(r_course.sec_id,
 39 r_student.student_id)
 40 LOOP
 41 DBMS_OUTPUT.PUT_LINE(r_grade.num_grd||
 42 ' '||r_grade.grd_desc);
 43 END LOOP;
 44 END LOOP;
 45 END LOOP;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 45 END LOOP;
 46 END;

c) Now run the code and see if you were correct. Analyze the code line by line and explain what is being
processed and then displayed for each line.

15.1.2 Use a FOR UPDATE Cursor

The cursor FOR UPDATE clause is only used with a cursor when you want to update tables in the database. Generally,
when you execute a SELECT statement, you are not locking any rows. The purpose of using the FOR UPDATE clause is
to lock the rows of the tables that you want to update, so that another user cannot perform an update until you perform
your update and release the lock. The next COMMIT or ROLLBACK statement releases the lock. The FOR UPDATE clause
will change the manner in which the cursor operates in only a few respects. When you open a cursor, all rows that meet
the restriction criteria are identified as part of the active set. Using the FOR UPDATE clause will lock these rows that
have been identified in the active set. If the FOR UPDATE clause is used, then rows may not be fetched from the cursor
until a COMMIT has been issued. It is important for you to consider where to place the COMMIT. Be careful to consider
issues covered in the transaction management topic in Chapter 4.

The syntax is simply to add FOR UPDATE to the end of the cursor definition. If there are multiple items being selected,
but you only want to lock one of them, then end the cursor definition with the following syntax:

FOR UPDATE OF <item_name>

 FOR EXAMPLE

-- ch15_2a.sql
DECLARE
 CURSOR c_course IS
 SELECT course_no, cost
 FROM course FOR UPDATE;
BEGIN
 FOR r_course IN c_course
 LOOP
 IF r_course.cost < 2500
 THEN
 UPDATE course
 SET cost = r_course.cost + 10
 WHERE course_no = r_course.course_no;
 END IF;
 END LOOP;
END;

This example shows how to update the cost of all courses with a cost under $2500. It will increment them by 10.

a) In the example just given, where should the COMMIT be placed? What are the issues involved in deciding
where to place a COMMIT in this example?

 FOR EXAMPLE

-- ch15_3a.sql
DECLARE
 CURSOR c_grade(
 i_student_id IN enrollment.student_id%TYPE,
 i_section_id IN enrollment.section_id%TYPE)
 IS
 SELECT final_grade
 FROM enrollment
 WHERE student_id = i_student_id
 AND section_id = i_section_id
 FOR UPDATE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR UPDATE;
 CURSOR c_enrollment IS
 SELECT e.student_id, e.section_id
 FROM enrollment e, section s
 WHERE s.course_no = 135
 AND e.section_id = s.section_id;
BEGIN
 FOR r_enroll IN c_enrollment
 LOOP
 FOR r_grade IN c_grade(r_enroll.student_id,
 r_enroll.section_id)
 LOOP
 UPDATE enrollment
 SET final_grade = 90
 WHERE student_id = r_enroll.student_id
 AND section_id = r_enroll.section_id;
 END LOOP;
 END LOOP;
END;

b) What do you think will happen if you run the code in this example? After making your analysis, run the
code, and then perform a SELECT statement to determine if your guess is correct.

c) Where should the COMMIT go in the preceding example? Explain the considerations.

FOR UPDATE OF can be used when creating a cursor for update that is based on multiple tables. FOR UPDATE OF locks
the rows of a stable that both contain one of the specified columns and are members of the active set. In other words,
it is the means of specifying which table you want to lock. If the FOR UPDATE OF clause is used, then rows may not be
fetched from the cursor until a COMMIT has been issued.

 FOR EXAMPLE

-- ch15_4a.sql
DECLARE
 CURSOR c_stud_zip IS
 SELECT s.student_id, z.city
 FROM student s, zipcode z
 WHERE z.city = 'Brooklyn'
 AND s.zip = z.zip
 FOR UPDATE OF phone;
BEGIN
 FOR r_stud_zip IN c_stud_zip
 LOOP
 UPDATE student
 SET phone = '718'||SUBSTR(phone,4)
 WHERE student_id = r_stud_zip.student_id;
 END LOOP;
END;

d) What changes to the database will take place if the preceding example is run? Explain specifically what is
being locked as well as when it is locked and when it is released.

15.1.3 Use the WHERE CURRENT OF Clause

Use WHERE CURRENT OF when you want to update the most recently fetched row. WHERE CURRENT OF can only be
used with a FOR UPDATE OF cursor. The advantage of the WHERE CURRENT OF clause is that it enables you to
eliminate the WHERE clause in the UPDATE statement.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch15_5a.sql
DECLARE
 CURSOR c_stud_zip IS
 SELECT s.student_id, z.city
 FROM student s, zipcode z
 WHERE z.city = 'Brooklyn'
 AND s.zip = z.zip
 FOR UPDATE OF phone;
BEGIN
 FOR r_stud_zip IN c_stud_zip
 LOOP
 DBMS_OUTPUT.PUT_LINE(r_stud_zip.student_id);
 UPDATE student
 SET phone = '718'||SUBSTR(phone,4)
 WHERE CURRENT OF c_stud_zip;
 END LOOP;
END;

a) Compare the last two examples. Explain their similarities and differences. What has been altered by using
the WHERE CURRENT OF clause? What is the advantage of doing this?

The FOR UPDATE and WHERE CURRENT OF syntax can be used with cursors
that are performing a delete as well as an update.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.1 Exercise Answers

15.1.1 Answers

a) Complete the code for the parameter cursor that was begun in the preceding example. Include a
DBMS_OUTPUT line that displays the zipcode, city, and state. This is identical to the process you have
already used in a FOR CURSOR loop, only now, when you open the cursor, you pass a parameter.

A1: Answer: Your block should look like this:

-- ch15_17a.sql
DECLARE
 CURSOR c_zip (p_state IN zipcode.state%TYPE) IS
 SELECT zip, city, state
 FROM zipcode
 WHERE state = p_state
BEGIN
 FOR r_zip IN c_zip('NJ')
 LOOP ...
 DBMS_OUTPUT.PUT_LINE(r_zip.city||
 ' '||r_zip.zip');
 END LOOP;
END;

To complete the block, the cursor declaration must be surrounded by DECLARE and BEGIN. The cursor is
opened by passing the parameter "NJ," and then, for each iteration of the cursor loop, the zipcode and the
city are displayed by using the built-in package DBMS_OUTPUT.

b) The following PL/SQL code is complex. It involves all of the topics covered so far in this chapter. There is a
nested cursor with three levels, meaning a grandparent cursor, a parent cursor, and a child cursor. Before
running this script, review the code and identify the levels of nesting in the code. When you describe each
level of the code, explain what parameters are being passed into the cursor and why. What do you think
the result will be from running this statement?

-- ch15_1a.sql
SET SERVEROUTPUT ON
 1 DECLARE
 2 CURSOR c_student IS
 3 SELECT first_name, last_name, student_id
 4 FROM student
 5 WHERE last_name LIKE 'J%';
 6 CURSOR c_course
 7 (i_student_id IN
 student.student_id%TYPE)
 8 IS
 9 SELECT c.description, s.section_id sec_id
 10 FROM course c, section s, enrollment e
 11 WHERE e.student_id = i_student_id
 12 AND c.course_no = s.course_no
 13 AND s.section_id = e.section_id;
 14 CURSOR c_grade(i_section_id IN
 section.section_id%TYPE,
 15 i_student_id IN
 student.student_id%TYPE)
 16 IS
 17 SELECT gt.description grd_desc,
 18 TO_CHAR
 19 (AVG(g.numeric_grade), '999.99')
 num_grd
 20 FROM enrollment e,
 21 grade g, grade_type gt
 22 WHERE e.section_id = i_section_id
 23 AND e.student_id = g.student_id
 24 AND e.student_id = i_student_id
 25 AND e.section_id = g.section_id
 26 AND g.grade_type_code =
 gt.grade_type_code
 27 GROUP BY gt.description ;
 28 BEGIN
 29 FOR r_student IN c_student

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 29 FOR r_student IN c_student
 30 LOOP
 31 DBMS_OUTPUT.PUT_LINE(CHR(10));
 32 DBMS_OUTPUT.PUT_LINE(r_student.first_name||
 33 ' '||r_student.last_name);
 34 FOR r_course IN
 c_course(r_student.student_id)
 35 LOOP
 36 DBMS_OUTPUT.PUT_LINE
 ('Grades for course :'||
 37 r_course.description);
 38 FOR r_grade IN c_grade(r_course.sec_id,
 39 r_student.student_id)
 40 LOOP
 41 DBMS_OUTPUT.PUT_LINE(r_grade.num_grd||
 42 ' '||r_grade.grd_desc);
 43 END LOOP;
 44 END LOOP;
 45 END LOOP;
 46 END;

A2: Answer: The grandparent cursor, c_student, is declared in lines 2–5. It takes no parameters and is a
collection of students with a last name beginning with J. The parent cursor is declared in lines 6–13. The
parent cursor, c_course, takes in the parameter of the student_ID to generate a list of courses taken by that
student. The child cursor, c_grade, is declared in lines 14–27. It takes in two parameters, both the
section_id and the student_id. In this way it can generate an average of the different grade types for that
student for that course. The grandparent cursor loop begins on line 29, and only the student name is
displayed with DBMS_OUTPUT. The parent cursor loop begins on line 35. It takes the parameter of the
student_id from the grandparent cursor. Only the description of the course is displayed. The child cursor
loop begins on line 40. It takes in the parameter of the section_id from the parent cursor and the student_id
from the grandparent cursor. The grades are then displayed. The grandparent cursor loop ends on line 45,
the parent cursor on line 44, and, finally, the child on line 43.

c) Now run the code and see if you were correct. Analyze the code line by line and explain what is being
processed and then displayed for each line.

A3: Answer: The output will be a student name, followed by the courses he or she is taking and the average
grade he or she has earned for each grade type. If you did not get the correct answer, try commenting out
different sections of the block and see what happens. This will help you to understand what is happening
in each step.

15.1.2 Answers

a) In the example just given, where should the COMMIT be placed? What are the issues involved in deciding
where to place a COMMIT in this example?

A1: Answer: Placing a COMMIT after each update can be costly. But if there are a lot of updates and the
COMMIT comes after the block loop, then there is a risk of a rollback segment not being large enough.
Normally, the COMMIT would go after the loop, except when the transaction count is high, and then you
might want to code something that does a COMMIT for each 10,000 records. If this were part of a large
procedure, you may want to put a SAVEPOINT after the loop. Then, if you need to rollback this update at a
later point, it would be an easy task.

b) What do you think will happen if you run the code in this example? After making your analysis, run the
code, and then perform a SELECT statement to determine if your guess is correct.

A1: Answer: The final_grade for all students enrolled in course 135 will be updated to 90. There are two cursors
here. One cursor captures the students who are enrolled in course 135 into the active set. The other
cursor takes the student_id and the section_id from this active set and selects the corresponding final_grade
from the enrollment table and locks the entire enrollment table. The enrollment cursor loop is begun first,
and then it passes the student_id and the section_id as an IN parameters for the second cursor loop of the
c_grade cursor, which performs the update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) Where should the COMMIT go in the preceding example? Explain the considerations.

A2: Answer: The COMMIT should go immediately after the update to ensure that each update is committed
into the database.

d) What changes to the database will take place if the preceding example is run? Explain specifically what is
being locked as well as when it is locked and when it is released.

A1: Answer: The phone numbers of students living in Brooklyn are being updated to change the area code to
718. The cursor declaration is only locking the phone column of the student table. The lock is never
released because there is no COMMIT or ROLLBACK statement.

15.1.3 Answers

a) Compare the last two examples. Explain their similarities and differences. What has been altered by using
the WHERE CURRENT OF clause? What is the advantage of doing this?

A1: Answer: These two statements perform the same update. The WHERE CURRENT OF clause allows you to
eliminate a match in the UPDATE statement, because the update is being performed for the current record
of the cursor only.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.2 Cursor Variables

Lab Objective
After this Lab, you will be able to:

 Make Use of Cursor Variables

Up to this point in this book you have seen cursors used to gather specific data from a single SELECT statement. In
Chapter 14, "Packages," you learned how to bring a number of procedures into a large program called a package. A
package may have one cursor that is used by a few procedures. In this case, each of the procedures that use the same
cursor would have to declare, open, fetch, and close the cursor. In the current version of PL/SQL, cursors can be
declared and manipulated like any other PL/SQL variable. This type of variable is called a cursor variable or a REF
CURSOR. A cursor variable is just a reference or a handle to a static cursor. It permits a programmer to pass this
reference to the same cursor among all the program's units that need access to the cursor. A cursor variable binds the
cursor's SELECT statement dynamically at runtime.

Explicit cursors are used to name a work area that holds the information of a multirow query. A cursor variable may be
used to point to the area in memory where the result of a multirow query is stored. The cursor always refers to the
same information in a work area, while a cursor variable can point to different work areas. Cursors are static, and
cursor variables can be seen as dynamic because they are not tied to any one specific query. Cursor variables give you
easy access to centralized data retrieval.

You can use a cursor variable to pass the result set of a query between stored procedures and various clients. A query
work area remains accessible as long as a cursor variable points to it. So you can freely pass a cursor variable from one
scope to another. There are two types of cursor variables; one is called strong and the other is called weak.

To execute a multirow query, the Oracle server opens a work area called a cursor to store processing information. To
access the information, you either name the work area, or you use a cursor variable that points to the work area. A
cursor always refers to the same work area, and a cursor variable can refer to different work areas. Hence, cursors and
cursor variables are not interoperable. An explicit cursor is static and is associated with one SQL statement. A cursor
variable can be associated with different statements at runtime. Primarily you use a cursor variable to pass a pointer to
query results sets between PL/SQL stored subprograms and various clients, such as a client Oracle Developer Forms
application. None of them owns the result set; they simply share a pointer to the query work area that stores the result
set. You can declare a cursor variable on the client side, open and fetch from it on the server side, and then continue to
fetch from it on the client side.

Cursor variables differ from cursors the way constants differ from variables. A cursor is static; a cursor variable is
dynamic. In PL/SQL a cursor variable has a REF CURSOR data type, where REF stands for reference and CURSOR
stands for the class of the object. You will now learn the syntax for declaring and using a cursor variable.

To create a cursor variable, you first need to define a REF CURSOR type and then declare a variable of that type.

Before you declare the REF CURSOR of a strong type, you must first declare a record that has the data types of the
result set of the SELECT statement that you plan to use (note that this is not necessary for a weak REF CURSOR).

 FOR EXAMPLE

TYPE inst_city_type IS RECORD
(first_name instructor.first_name%TYPE;
 last_name instructor.last_name%TYPE;
 city zipcode.city%TYPE;
 state zipcode.state%TYPE)

Second, you must declare a composite data type for the cursor variable that is of the type REF CURSOR. The syntax is
as follows:

TYPE ref_type_name is REF CURSOR [RETURN return_type];

The ref_type_name is a type specified in subsequent declarations. The return type represents a record type for a strong
cursor; a weak cursor does not have a specific return type but can handle any combination of data items in a SELECT
statement. The REF CURSOR keyword indicates that the new type will be a pointer to the defined type. The return_type
indicates the types of SELECT list that are eventually returned by the cursor variable. The return type must be a record
type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type.

 FOR EXAMPLE

TYPE inst_city_cur IS REF CURSOR RETURN inst_city_type;

A cursor variable can be strong (restrictive) or weak (nonrestrictive). A strong cursor variable is a REF CURSOR type
definition that specifies a return_type; a weak definition does not. PL/SQL enables you to associate a strong type with
type-comparable queries only, while a weak type can be associated with any query. This makes a strong cursor variable
less error prone but weak REF CURSORS types more flexible.

These are the key steps for handling a cursor variable:

1. Define and declare the cursor variable.

Open the cursor variable. Associate a cursor variable with a multirow SELECT statement, execute the query,
and identify the result set. An OPEN FOR statement can open the same cursor variable for different queries. You
do not need to close a cursor variable before reopening it. Keep in mind that when you reopen a cursor variable
for a different query, the previous query is lost.

2. Fetch rows from the result set.

Retrieve rows from the result set one at a time. Note that the return type of the cursor variable must be
compatible with the variable named in the INTO clause of the FETCH statement.

The FETCH statement retrieves rows from the result set one at a time. PL/SQL verifies that the return type of
the cursor variable is compatible with the INTO clause of the FETCH statement. For each query column value
returned, there must be a type type-comparable variable in the INTO clause. Also, the number of query column
values must equal the number of variables. In case of a mismatch in number or type, the error occurs at
compiletime for strongly typed cursor variables and at runtime for weakly typed cursor variables.

3. Close the cursor variable.

The next example is a complete example showing the use of a cursor variable in a package.

 FOR EXAMPLE

-- csh15_18a.sql
CREATE OR REPLACE PACKAGE course_pkg AS
 TYPE course_rec_typ IS RECORD
 (first_name student.first_name%TYPE,
 last_name student.last_name%TYPE,
 course_no course.course_no%TYPE,
 description course.description%TYPE,
 section_no section.section_no%TYPE
);
 TYPE course_cur IS REF CURSOR RETURN course_rec_typ;
 PROCEDURE get_course_list
 (p_student_id NUMBER ,
 p_instructor_id NUMBER ,
 course_list_cv IN OUT course_cur);
END course_pkg;

CREATE OR REPLACE PACKAGE BODY course_pkg AS
 PROCEDURE get_course_list
 (p_student_id NUMBER ,
 p_instructor_id NUMBER ,
 course_list_cv IN OUT course_cur)
 IS
 BEGIN
 IF p_student_id IS NULL AND p_instructor_id
 IS NULL THEN
 OPEN course_list_cv FOR
 SELECT 'Please choose a student-' First_name,
 'instructor combination' Last_name,
 NULL course_no,
 NULL description,
 NULL section_no
 FROM dual;
 ELSIF p_student_id IS NULL THEN
 OPEN course_list_cv FOR
 SELECT s.first_name first_name,
 s.last_name last_name,
 c.course_no course_no,
 c.description description,
 se.section_no section_no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 se.section_no section_no
 FROM instructor i, student s,
 section se, course c, enrollment e
 WHERE i.instructor_id = p_instructor_id
 AND i.instructor_id = se.instructor_id
 AND se.course_no = c.course_no
 AND e.student_id = s.student_id
 AND e.section_id = se.section_id
 ORDER BY c.course_no, se.section_no;
 ELSIF p_instructor_id IS NULL THEN
 OPEN course_list_cv FOR
 SELECT i.first_name first_name,
 i.last_name last_name,
 c.course_no course_no,
 c.description description,
 se.section_no section_no
 FROM instructor i, student s,
 section se, course c, enrollment e
 WHERE s.student_id = p_student_id
 AND i.instructor_id = se.instructor_id
 AND se.course_no = c.course_no
 AND e.student_id = s.student_id
 AND e.section_id = se.section_id
 ORDER BY c.course_no, se.section_no;
 END IF;
 END get_course_list;

END course_pkg;

You can pass query results sets between PL/SQL stored subprograms and various clients. This works because PL/SQL
and its clients share a pointer to the query work area identifying the result set. This can be done in a client program like
SQL*Plus by defining a host variable with a data type of REFCURSOR to hold the query result generated from a REF
CURSOR in a stored program. In order to see what is being stored in the SQL*Plus variable, use the SQL*Plus PRINT
command. Optionally you can have the SQL*Plus command SET AUTOPRINT ON to display the query results
automatically.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.2 Exercises

15.2.1 Make Use of Cursor Variables

a) Take a look at the previous example and explain why the package has two different TYPE declarations. Also
explain how the procedure get_course_list is making use of the cursor variable.

b) Create a SQL*Plus variable that is a cursor variable type.

c) Execute the procedure course_pkg.get_course_list, with three different types of variable combinations to
show the three possible results sets. After you execute the procedure, display the values of the SQL*Plus
variable you declared in question (a).

d) Create another package called student_info_pkg that has a single procedure called get_student_info. The
get_student_info package will have three parameters. The first one is the student_id and the second is a
number called p_choice; the last is a weak cursor variable. The p_choice indicates what information will be
delivered about the student. The p_choice indicates what information will deliver about the student. If it is
1, then return the information about the student from the STUDENT table. If it is 2, then list all the courses
the student is enrolled in with the student names of the fellow students enrolled in the same section as the
student with the student_id that was passed in. If it is 3, then return the instructor name for that student,
with the information about the courses that the student is enrolled in.

e) Run the get_student_info procedure in SQL*Plus and display the results.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.2 Exercise Answers

15.2.1 Answers

a) Take a look at the previous example and explain why the package has two different TYPE declarations.
Also explain how the procedure get_course_list is making use of the cursor variable.

A1: Answer: In script ch15_18a there are two declarations of a TYPE in the package header. The first is for the
record type course_rec_type. This record type is declared to define the result set of the SELECT
statements that will be used for the cursor variable. When data items in a record do not match a single
table, it is necessary to create a record type. The second TYPE declaration is for the cursor variable also
known as REF CURSOR. The variable has the name, course_cur, and it is declared as a strong cursor,
meaning that it can only be used for a single record type. The record type is, course_rec_type. The
procedure get_course_list in the course_pkg is made so that it can return a cursor variable that holds
three different result sets. Each of the result sets is of the same record type. The first type is for when
both IN parameters of student ID and instructor ID are null. This will produce a result set that is a
message, 'Please choose a student-instructor combination.' The next way the procedure runs is if the
instructor_id is passed in but the student_id is null (note that the logic of the procedure is a reverse
negative; saying in the second clause of the IF statement p_student_id IS NULL, means when the
instructor_id is passed in). This will run a SELECT statement to populate the cursor variable that holds a
list of all the courses this instructor teaches and the students enrolled in these classes. The last way this
can run is for a student_id and no instructor_id. This will produce a result set of all the courses the student
is enrolled in and the instructors for each section. Also note that while the cursor variable is opened it is
never closed.

b) Create a SQL*Plus variable that is a cursor variable type.

A2: Answer:

SQL> VARIABLE course_cv REFCURSOR

c) Execute the procedure course_pkg.get_course_list, with three different types of variable combinations to
show the three possible results sets. After you execute the procedure, display the values of the SQL*Plus
variable you declared in question (a).

A3: Answer: There are three ways to execute this procedure. The first way would be to pass a student ID and
not an instructor ID.

SQL> exec course_pkg.get_course_list(102,
 NULL, :course_cv);

PL/SQL procedure successfully completed.

SQL> print course_cv

FIRST_NAME LAST_NAME COURSE_NO DESCRIPTION SECTION_NO
---------- ---------- ---------- ---------------------- ----------
Charles Lowry 25 Intro to Programming 2
Nina Schorin 25 Intro to Programming 5

The next method would be to pass an instructor ID and not a student ID.

SQL> exec course_pkg.get_course_list(NULL, 102,
 :course_cv);

PL/SQL procedure successfully completed.

SQL> print course_cv

FIRST_NAME LAST_NAME COURSE_NO DESCRIPTION SECTION_NO
------------ ------------ --------- ------------------------ ----------
Jeff Runyan 10 DP Overview 2
Dawn Dennis 25 Intro to Programming 4
May Jodoin 25 Intro to Programming 4
Jim Joas 25 Intro to Programming 4
Arun Griffen 25 Intro to Programming 4
Alfred Hutheesing 25 Intro to Programming 4
Lula Oates 100 Hands-On Windows 1
Regina Bose 100 Hands-On Windows 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Regina Bose 100 Hands-On Windows 1
Jenny Goldsmith 100 Hands-On Windows 1
Roger Snow 100 Hands-On Windows 1
Rommel Frost 100 Hands-On Windows 1
Debra Boyce 100 Hands-On Windows 1
Janet Jung 120 Intro to Java Programming 4
John Smith 124 Advanced Java Programming 1
Charles Caro 124 Advanced Java Programming 1
Sharon Thompson 124 Advanced Java Programming 1
Evan Fielding 124 Advanced Java Programming 1
Ronald Tangaribuan 124 Advanced Java Programming 1
N Kuehn 146 Java for C/C++ Programmers 2
Derrick Baltazar 146 Java for C/C++ Programmers 2
Angela Torres 240 Intro to the Basic Language 2

The last method would be not to pass either the student ID or the instructor ID.

SQL> exec course_pkg.get_course_list(NULL, NULL,
 :course_cv);

PL/SQL procedure successfully completed.

SQL> print course_cv

FIRST_NAME LAST_NAME C DESCRIPTION S
----------------------- ------------------------- - ---------------
Please choose a student- instructor combination

d) Create another package called student_info_pkg that has a single procedure called get_student_info. The
get_student_info package will have three parameters. The first one is the student_id and the second is a
number called p_choice; the last is a weak cursor variable. The p_choice indicates what information will be
delivered about the student. The p_choice indicates what information will deliver about the student. If it is
1, then return the information about the student from the STUDENT table. If it is 2, then list all the
courses the student is enrolled in with the student names of the fellow students enrolled in the same
section as the student with the student_id that was passed in. If it is 3, then return the instructor name for
that student, with the information about the courses that the student is enrolled in.

A4: Answer:

CREATE OR REPLACE PACKAGE student_info_pkg AS

 TYPE student_details IS REF CURSOR;

 PROCEDURE get_student_info
 (p_student_id NUMBER ,
 p_choice NUMBER ,
 details_cv IN OUT student_details);
END student_info_pkg;

CREATE OR REPLACE PACKAGE BODY student_info_pkg AS
 PROCEDURE get_student_info
 (p_student_id NUMBER ,
 p_choice NUMBER ,
 details_cv IN OUT student_details)
 IS
 BEGIN
 IF p_choice = 1 THEN
 OPEN details_cv FOR
 SELECT s.first_name first_name,
 s.last_name last_name,
 s.street_address address,
 z.city city,
 z.state state,
 z.zip zip
 FROM student s, zipcode z
 WHERE s.student_id = p_student_id
 AND z.zip = s.zip;
 ELSIF p_choice = 2 THEN
 OPEN details_cv FOR
 SELECT c.course_no course_no,
 c.description description,
 se.section_no section_no,
 s.first_name first_name,
 s.last_name last_name
 FROM student s, section se,
 course c, enrollment e
 WHERE se.course_no = c.course_no
 AND e.student_id = s.student_id
 AND e.section_id = se.section_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND e.section_id = se.section_id
 AND se.section_id in (SELECT e.section_id
 FROM student s,
 enrollment e
 WHERE s.student_id =
 p_student_id
 AND s.student_id =
 e.student_id)
 ORDER BY c.course_no;
 ELSIF p_choice = 3 THEN
 OPEN details_cv FOR
 SELECT i.first_name first_name,
 i.last_name last_name,
 c.course_no course_no,
 c.description description,
 se.section_no section_no
 FROM instructor i, student s,
 section se, course c, enrollment e
 WHERE s.student_id = p_student_id
 AND i.instructor_id = se.instructor_id
 AND se.course_no = c.course_no
 AND e.student_id = s.student_id
 AND e.section_id = se.section_id
 ORDER BY c.course_no, se.section_no;
 END IF;
 END get_student_info;

END student_info_pkg;

e) Run the get_student_info procedure in SQL*Plus and display the results.

A5: Answer:

SQL> VARIABLE student_cv REFCURSOR
SQL> execute student_info_pkg.GET_STUDENT_INFO
 (102, 1, :student_cv);
PL/SQL procedure successfully completed.

SQL> print student_cv
FIRST_ LAST_NAM ADDRESS CITY ST ZIP
------ -------- ------------------ --------------- -- -----
Fred Crocitto 101-09 120th St. Richmond Hill NY 11419

SQL> execute student_info_pkg.GET_STUDENT_INFO
 (102, 2, :student_cv);
PL/SQL procedure successfully completed.

SQL> print student_cv
COURSE_NO DESCRIPTION SECTION_NO FIRST_NAME LAST_NAME
---------- ------------------ ---------- ---------- -----------
 25 Intro to Programming 2 Fred Crocitto
 25 Intro to Programming 2 Judy Sethi
 25 Intro to Programming 2 Jenny Goldsmith
 25 Intro to Programming 2 Barbara Robichaud
 25 Intro to Programming 2 Jeffrey Citron
 25 Intro to Programming 2 George Kocka
 25 Intro to Programming 5 Fred Crocitto
 25 Intro to Programming 5 Hazel Lasseter
 25 Intro to Programming 5 James Miller
 25 Intro to Programming 5 Regina Gates
 25 Intro to Programming 5 Arlyne Sheppard
 25 Intro to Programming 5 Thomas Edwards
 25 Intro to Programming 5 Sylvia Perrin
 25 Intro to Programming 5 M. Diokno
 25 Intro to Programming 5 Edgar Moffat
 25 Intro to Programming 5 Bessie Heedles
 25 Intro to Programming 5 Walter Boremmann
 25 Intro to Programming 5 Lorrane Velasco

SQL> execute student_info_pkg.GET_STUDENT_INFO
 (214, 3, :student_cv);
PL/SQL procedure successfully completed.

SQL> print student_cv
FIRST_NAME LAST_NAME COURSE_NO DESCRIPTION SECTION_NO
---------- ------------ ---------- ---------------------------
Marilyn Frantzen 120 Intro to Java Programming 1
Fernand Hanks 122 Intermediate Java Programming 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fernand Hanks 122 Intermediate Java Programming 5
Gary Pertez 130 Intro to Unix 2
Marilyn Frantzen 145 Internet Protocols 1

Rules for Using Cursor Variables

You cannot use cursor variables with remote subprograms on another server.

Do not use FOR UPDATE with OPEN FOR in processing a cursor variable.

You cannot use comparison operators to test cursor variables.

A cursor variable cannot be assigned a null value.

A REF CURSOR types cannot be used in a CREATE TABLE or VIEW statements.

A stored procedure that uses a cursor variable can only be used as a query block data source; it
cannot be used for a DML block data source. Using a ref cursor is ideal for queries that are
dependent only on variations in SQL statements and not PL/SQL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 15.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The main benefit of using parameters with cursors is that it makes the cursor reusable.

a. _____ True

b. _____ False

2) Which of the following are acceptable types of parameters to be used with cursors?

a. _____ IN

b. _____ OUT

c. _____ %ROWTYPE

d. _____ IN OUT

3) By adding the keywords FOR UPDATE at the end of a cursor, you are

a. _____ simply alerting the DBA that you are updating a table.

b. _____ freeing up rollback segments for the update.

c. _____ locking the indicated rows for an update.

d. _____ creating a bind variable.

4) Adding the keywords WHERE CURRENT OF to a FOR UPDATE cursor causes which of the following to take
place?

a. _____ The DBA gets annoyed.

b. _____ Rows are locked and unlocked one at a time.

c. _____ The update occurs for the current record in the cursor.

d. _____ The scope of the cursor is increased.

5) The principal difference between a FOR UPDATE cursor without a WHERE CURRENT OF clause and one with
a WHERE CURRENT OF clause is that

a. _____ without the clause the update needs to have a WHERE clause.

b. _____ rows are only locked with the extra clause present.

c. _____ only the items specified in the WHERE CURRENT OF clause are locked.

d. _____ processing will only occur for the current row of the cursor.

Answers appear in Appendix A, Section 15.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. Stored Code
Chapter Objectives
In this Chapter, you will learn about:

 Gathering Stored Code Information

In Chapter 11 you learned about procedures, in Chapter 12 you learned about functions, and in Chapter 13 you learned
about the process of grouping functions and procedures into a package. Now you will learn more about what it means
to have code bundled into a package. There are numerous data dictionary views that can be accessed to gather
information about the objects in a package.

Functions in packages are also required to meet additional restrictions in order to be used in a SELECT statement. In
this chapter, you learn what they are and how to enforce them. You will also learn an advanced technique to overload a
function or procedure so that it executes different code, depending on the type of the parameter passed in.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 16.1 Gathering Stored Code Information

Lab Objectives
After this Lab, you will be able to:

 Get Stored Code Information from the Data Dictionary

 Enforce Purity Level with RESTRICT_REFERENCES Pragma

 Overload Modules

Stored programs are stored in compiled form in the database. Information about the stored programs is accessible
through various data dictionary views. In Chapter 11 you learned about the two data dictionary views USER_OBJECTS
and USER_SOURCE. Additionally, you learned about the USER_TRIGGERS view in Chapter 8. There are a few more data
dictionary views that are useful for obtaining information about stored code. In this lab, you will learn how to take
advantage of these.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 16.1 Exercises

16.1.1 Get Stored Code Information from the Data Dictionary

Answer the following questions:

a) Query the data dictionary to determine all the stored procedures, functions, and packages in the current
schema of the database. Also include the current status of the stored code. Write the SELECT statement.

b) Type the following script into a text file and run the script in SQL*Plus. It creates the function scode_at_line.
Explain what the purpose of this function is. What is accomplished by running it? When does a developer
find it useful?

 FOR EXAMPLE

-- ch16_1a.sql
CREATE OR REPLACE FUNCTION scode_at_line
 (i_name_in IN VARCHAR2,
 i_line_in IN INTEGER := 1,
 i_type_in IN VARCHAR2 := NULL)
RETURN VARCHAR2
IS
 CURSOR scode_cur IS
 SELECT text
 FROM user_source
 WHERE name = UPPER (i_name_in)
 AND (type = UPPER (i_type_in)
 OR i_type_in IS NULL)
 AND line = i_line_in;
 scode_rec scode_cur%ROWTYPE;
BEGIN
 OPEN scode_cur;
 FETCH scode_cur INTO scode_rec;
 IF scode_cur%NOTFOUND
 THEN
 CLOSE scode_cur;
 RETURN NULL;
 ELSE
 CLOSE scode_cur;
 RETURN scode_rec.text;
 END IF;
END;

c) Type DESC USER_ERRORS. What do you see? In what way do you think this view is useful for you?

d) Type the following script to force an error.

CREATE OR REPLACE PROCEDURE FORCE_ERROR
as
BEGIN
 SELECT course_no
 INTO v_temp
 FROM course;
END;

Now type:

SHO ERR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHO ERR

What do you see?

e) How can you retrieve information from the USER_ERRORS view?

f) Type DESC USER_DEPENDENCIES. What do you see? How can you make use of this view?

g) Type the following:

SELECT referenced_name
FROM user_dependencies
WHERE name = 'SCHOOL_API';

Analyze what you see and explain how it is useful.

h) Type DESC school_api. What do you see?

i) Explain what you are seeing. How is this different from the USER_DEPENDENCIES view?

16.1.2 Enforce Purity Level with RESTRICT_REFERENCES Pragma

Answer the following questions:

a) Add the following function to the school_api package specification that you created in Chapter 13:

6 FUNCTION total_cost_for_student
7 (i_student_id IN student.student_id%TYPE)
8 RETURN course.cost%TYPE;
9 END school_api;

Append to the body:

60 FUNCTION total_cost_for_student
61 (i_student_id IN student.student_id%TYPE)
62 RETURN course.cost%TYPE
63 IS
64 v_cost course.cost%TYPE;
65 BEGIN
66 SELECT sum(cost)
67 INTO v_cost
68 FROM course c, section s, enrollment e
69 WHERE c.course_no = s.course_no
70 AND e.section_id = s.section_id
71 AND e.student_id = i_student_id;
72 RETURN v_cost;
73 EXCEPTION
74 WHEN OTHERS THEN
75 RETURN NULL;
76 END total_cost_for_student;
77 BEGIN
78 SELECT trunc(sysdate, 'DD')
79 INTO v_current_date
80 FROM dual;
81 END school_api;

If you performed the following SELECT statement, what would you expect to see?

SELECT school_api.total_cost_for_student(student_id),
 student_id
FROM student;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM student;

A pragma is a special directive to the PL/SQL compiler. You use the RESTRICT_REFERENCES pragma to tell
the compiler about the purity level of a packaged function.

To assert the purity level, use the syntax:

PRAGMA RESTRICT_REFERENCES
 (function_name, WNDS [,WNPS], [,RNDS] [,RNPS])

b) Alter the package specification for school_api as follows:

 6 FUNCTION total_cost_for_student
 7 (i_student_id IN student.student_id%TYPE)
 8 RETURN course.cost%TYPE;
 9 PRAGMA RESTRICT_REFERENCES
10 (total_cost_for_student, WNDS, WNPS, RNPS);
11 END school_api;

Now run the SELECT statement from question (a). What do you expect to see?

c) What is the "purity level" of the function school_api. total_cost_for_student?

d) If you add the following three lines, will the package compile without error?

81 UPDATE STUDENT
82 SET employer = 'Prenctice Hall'
83 WHERE employer is null;
84 END school_api;

16.1.3 Overload Modules

When you overload modules, you give two or more modules the same name. The parameter lists of the modules must
differ in a manner significant enough for the compiler (and runtime engine) to distinguish between the different
versions.

You can overload modules in three contexts:

1. In a local module in the same PL/SQL block

2. In a package specification

3. In a package body

a) Add the following lines to the package specification of school_api. Then recompile the package specification.
Explain what you have created.

11 PROCEDURE get_student_info
12 (i_student_id IN student.student_id%TYPE,
13 o_last_name OUT student.last_name%TYPE,
14 o_first_name OUT student.first_name%TYPE,
15 o_zip OUT student.zip%TYPE,
16 o_return_code OUT NUMBER);
17 PROCEDURE get_student_info
18 (i_last_name IN student.last_name%TYPE,
19 i_first_name IN student.first_name%TYPE,
20 o_student_id OUT student.student_id%TYPE,
21 o_zip OUT student.zip%TYPE,
22 o_return_code OUT NUMBER);
23 END school_api;

b) Add the following code to the body of the package school_api. Explain what has been accomplished.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 77 PROCEDURE get_student_info
 78 (i_student_id IN student.student_id%TYPE,
 79 o_last_name OUT student.last_name%TYPE,
 80 o_first_name OUT student.first_name%TYPE,
 81 o_zip OUT student.zip%TYPE,
 82 o_return_code OUT NUMBER)
 83 IS
 84 BEGIN
 85 SELECT last_name, first_name, zip
 86 INTO o_last_name, o_first_name, o_zip
 87 FROM student
 88 WHERE student.student_id = i_student_id;
 89 o_return_code := 0;
 90 EXCEPTION
 91 WHEN NO_DATA_FOUND
 92 THEN
 93 DBMS_OUTPUT.PUT_LINE
 ('Student ID is not valid.');
 94 o_return_code := -100;
 95 o_last_name := NULL;
 96 o_first_name := NULL;
 97 o_zip := NULL;
 98 WHEN OTHERS
 99 THEN
100 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
101 END get_student_info;
102 PROCEDURE get_student_info
103 (i_last_name IN student.last_name%TYPE,
104 i_first_name IN student.first_name%TYPE,
105 o_student_id OUT student.student_id%TYPE,
106 o_zip OUT student.zip%TYPE,
107 o_return_code OUT NUMBER)
108 IS
109 BEGIN
110 SELECT student_id, zip
111 INTO o_student_id, o_zip
112 FROM student
113 WHERE UPPER(last_name) = UPPER(i_last_name)
114 AND UPPER(first_name) = UPPER(i_first_name);
115 o_return_code := 0;
116 EXCEPTION
117 WHEN NO_DATA_FOUND
118 THEN
119 DBMS_OUTPUT.PUT_LINE
 ('Student name is not valid.');
120 o_return_code := -100;
121 o_student_id := NULL;
122 o_zip := NULL;
123 WHEN OTHERS
124 THEN
125 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
126 END get_student_info;
127 BEGIN
128 SELECT TRUNC(sysdate, 'DD')
129 INTO v_current_date
130 FROM dual;
131 END school_api;

c) Write a PL/SQL block using the overloaded function you just created.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 16.1 Exercise Answers

16.1.1 Answers

a) Query the data dictionary to determine all the stored procedures, functions, and packages in the current
schema of the database. Also include the current status of the stored code. Write the SELECT statement.

A1: Answer: You can use the USER_OBJECTS view you learned about in Chapter 11. This view has information
about all database objects in the schema of the current user. Remember, if you want to see all the objects
in other schemas that the current user has access to, then use the ALL_OBJECTS view. There is also a
DBA_OBJECTS view for a list of all objects in the database regardless of privilege. The STATUS will either
be VALID or INVALID. An object can change status from VALID to INVALID if an underlying table is altered
or privileges on a referenced object have been revoked from the creator of the function, procedure, or
package. The following SELECT statement produces the answer you are looking for.

SELECT OBJECT_TYPE, OBJECT_NAME, STATUS
FROM USER_OBJECTS
WHERE OBJECT_TYPE IN
 ('FUNCTION', 'PROCEDURE', 'PACKAGE',
 'PACKAGE_BODY')
ORDER BY OBJECT_TYPE;

b) Type the following script into a text file and run the script in SQL*Plus. It creates the function scode_at_line.
Explain what the purpose of this function is. What is accomplished by running it? When does a developer
find it useful?

A2: Answer: The scode_at_line function provides an easy mechanism for retrieving the text from a stored
program for a specified line number. This is useful if a developer receives a compilation error message
referring to a particular line number in an object. The developer can then make use of this function to find
out the text that is in error.

The procedure uses three parameters:

name_in The name of the stored object.
line_in The line number of the line you wish to retrieve. The default value is 1.
type_in The type of object you want to view. The default for type_in is NULL.

The default values are designed to make this function as easy as possible to use.

The output from a call to SHOW ERRORS in SQL*Plus displays the
line number in which an error occurred, but the line number
doesn't correspond to the line in your text file. Instead, it relates
directly to the line number stored with the source code in the
USER_SOURCE view.

c) Type DESC USER_ERRORS. What do you see? In what way do you think this view is useful for you?

A1: Answer: The view stores current errors on the user's stored objects. The text file contains the text of the
error. This is useful in determining the details of a compilation error. The next exercise walks you through
using this view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Name Null? Type
-------------------- -------- -----------
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
SEQUENCE NOT NULL NUMBER
LINE NOT NULL NUMBER
POSITION NOT NULL NUMBER
TEXT NOT NULL VARCHAR2(2000) ---

d) Type the following script to force an error.

CREATE OR REPLACE PROCEDURE FORCE_ERROR
as
BEGIN
 SELECT course_no
 INTO v_temp
 FROM course;
END;

Now type:

SHO ERR

What do you see?

A2: Answer:

Errors for PROCEDURE FORCE_ERROR:
LINE/COL ERROR
-------- --
4/4 PL/SQL: SQL Statement ignored
5/9 PLS-00201: identifier 'V_TEMP' must be declared

e) How can you retrieve information from the USER_ERRORS view?

A3: Answer:

SELECT line||'/'||position "LINE/COL", TEXT "ERROR"
FROM user_errors
WHERE name = 'FORCE_ERROR'

It is important for you to know how to retrieve this information from the USER_ERRORS view since the
SHO ERR command only shows you the most recent errors. If you run a script creating a number of
objects, then you have to rely on the USER_ERRORS view.

f) Type DESC USER_DEPENDENCIES. What do you see? How can you make use of this view?

A4: Answer: The DEPENDENCIES view is useful for analyzing the impact that may occur from table changes or
changes to other stored procedures. If tables are about to be redesigned, an impact assessment can be
made from the information in USER_DEPENDENCIES. ALL_DEPENDENCIES and DBA_DEPENDENCIES show
all dependencies for procedures, functions, package specifications, and package bodies.

Name Null? Type
------------------------------- -------- ----
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
REFERENCED_OWNER VARCHAR2(30)
REFERENCED_NAME NOT NULL VARCHAR2(30)
REFERENCED_TYPE VARCHAR2(12)
REFERENCED_LINK_NAME VARCHAR2(30)

g) Type the following:

SELECT referenced_name
FROM user_dependencies
WHERE name = 'SCHOOL_API';

Analyze what you see and explain how it is useful.

A5: Answer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REFERENCED_NAME

DUAL
DUAL
STANDARD
STANDARD
DBMS_STANDARD
DBMS_OUTPUT
DBMS_OUTPUT
INSTRUCTOR_ID_SEQ
COURSE
COURSE
ENROLLMENT
INSTRUCTOR
INSTRUCTOR
SECTION
STUDENT
STUDENT
DBMS_OUTPUT
DUAL
SCHOOL_API

This list of dependencies for the school_api package lists all objects referenced in the package. This
includes tables, sequences, and procedures (even Oracle-supplied packages). This information is very
useful when you are planning a change to the database structure. You can easily pinpoint what the
ramifications are for any database changes.

h) Type DESC school_api. What do you see?

A6: Answer:

PROCEDURE DISCOUNT
FUNCTION NEW_INSTRUCTOR_ID RETURNS NUMBER(8)
FUNCTION TOTAL_COST_FOR_STUDENT RETURNS NUMBER(9,2)
Argument Name Type In/Out Default?
------------------------------- ---------------------
I_STUDENT_ID NUMBER(8) IN

DEPTREE
There is also an Oracle-supplied utility called DEPTREE that shows you, for a given object, which other
objects are dependent upon it. There are three pieces to this utility. You need to have DBA access to the
database in order to use this utility.

utldtree.sql script
DEPTREE_FILL(type, schema, object_name) procedure
ideptree view

First, run utldtree.sql in your schema. This creates the necessary objects to map the dependencies. The
location of utldtree.sql is dependent on your particular installation, so ask your DBA.
(c:\orant\rdbms80\admin\utldtree.sql)

($ORACLE_HOME/rdbms/admin/utldtree.sql)

Second, fill the deptree e_temptab table by running DEPTREE_FILL.

Example: SQL> exec DEPTREE_FILL('TABLE', USER, 'MESSAGE_LOG')

Third, look at the deptree information in the ideptree view.

Example: SQL> SELECT * FROM ideptree;

The result contains the following kind of information:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEPENDENCIES

TABLE CTA.MESSAGE_LOG
PACKAGE BODY CTA.API
TRIGGER CTA.COURSE_AFTER_I
PACKAGE CTA.API
PACKAGE BODY CTA.API

i) Explain what you are seeing. How is this different from the USER_DEPENDENCIES view?

A7: Answer: The DESC command you have been using to describe the columns in a table is also used for
procedures, packages, and functions. The DESC command shows all the parameters with their default
values and an indication of whether they are IN or OUT. If the object is a function, then the return
datatype is displayed. This is very different from the USER_DEPENDENCIES view, which has information
on all the objects that are referenced in a package, function, or procedure.

16.1.2 Answers

a) Add the following function to the school_api package specification that you created in Chapter 13:

6 FUNCTION total_cost_for_student
7 (i_student_id IN student.student_id%TYPE)
8 RETURN course.cost%TYPE;
9 END school_api;

Append to the body:

60 FUNCTION total_cost_for_student
61 (i_student_id IN student.student_id%TYPE)
62 RETURN course.cost%TYPE
63 IS
64 v_cost course.cost%TYPE;
65 BEGIN
66 SELECT sum(cost)
67 INTO v_cost
68 FROM course c, section s, enrollment e
69 WHERE c.course_no = s.course_no
70 AND e.section_id = s.section_id
71 AND e.student_id = i_student_id;
72 RETURN v_cost;
73 EXCEPTION
74 WHEN OTHERS THEN
75 RETURN NULL;
76 END total_cost_for_student;
77 BEGIN
78 SELECT trunc(sysdate, 'DD')
79 INTO v_current_date
80 FROM dual;
81 END school_api;

If you performed the following SELECT statement, what would you expect to see?

SELECT school_api.total_cost_for_student(student_id),
 student_id
FROM student;

A pragma is a special directive to the PL/SQL compiler. You use the RESTRICT_REFERENCES pragma to
tell the compiler about the purity level of a packaged function.

To assert the purity level, use the syntax:

PRAGMA RESTRICT_REFERENCES
 (function_name, WNDS [,WNPS], [,RNDS] [,RNPS])

A1: Answer: At first glance you may have thought you would see a list of student_ids with the total cost for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A1: Answer: At first glance you may have thought you would see a list of student_ids with the total cost for the
courses they took. But instead you see the following error:

ERROR at line 1:
ORA-06571: Function TOTAL_COST_FOR_STUDENT
does not guarantee not to update database

Although functions can be used in a SELECT statement, if a function is in a package, it requires some
additional definitions to enforce its purity.

Requirements for Stored Functions in SQL
Need a hand with this? I used this command from my shell prompt:

1. The function must be stored in the database (not in the library of an
Oracle tool).

2. The function must be a row-specific function and not a column or group
function.

3. As for all functions (whether to be used in SQL statements or not),
parameters must be the IN mode.

4. Datatypes of the function parameters and the function RETURN clause
must be recognized within the Oracle server. (Not, as of yet, BOOLEAN,
BINARY_ INTEGER, PL/SQL tables, PL/SQL records, and programmer-
defined subtypes. Maybe in the future—keep your fingers crossed).

There are numerous function side effects that must be considered. Modification of database tables in
stored functions may have ripple effects on queries using the function. Modification of package variables
can have an impact on other stored functions or procedures, or in turn the SQL statement using the stored
function. Stored functions in the WHERE clause may subvert the query optimization process. A SQL
statement may use a stand-alone function or package function as an operator on one or more columns,
provided the function returns a valid Oracle database type.

A user-defined function may select from database tables or call other procedures or functions, whether
stand-alone or packaged. When a function is used in a SELECT statement, it may not modify data in any
database table with an INSERT, UPDATE, or DELETE statement, or read or write package variables across
user sessions.

The Oracle server automatically enforces the rules for stand-alone functions, but not with a stored function
in a package. The purity level (the extent to which the function is free of side effects) of a function in a
package must be stated explicitly. This is done via a pragma.

The reason the error message was received is because the pragma was not used. You will now learn how
to make use of a pragma.

b) Alter the package specification for school_api as follows:

 6 FUNCTION total_cost_for_student
 7 (i_student_id IN student.student_id%TYPE)
 8 RETURN course.cost%TYPE;
 9 PRAGMA RESTRICT_REFERENCES
10 (total_cost_for_student, WNDS, WNPS, RNPS);
11 END school_api;

Now run the SELECT statement from question (a). What do you expect to see?

A2: Answer: The pragma restriction is added to the package specification and ensures that the function
total_cost_for_student has met the required purity restriction for a function to be in a SELECT statement. The
SELECT statement now functions properly and projects a list of the total cost for each student and the
student's ID.

Rules for Using Pragma Restrictions
Only the WNDS level is mandatory.

You need a separate pragma statement for each packaged function used in an
SQL statement.

The pragma must come after the function declaration in the package
specification.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) What is the "purity level" of the function school_api. total_cost_for_student?

A3: Answer: The extent to which a function is free of side effects is called the purity level of the function. The
function is now very pure. It has the following levels of purity: (1) WNDS means write no database state;
that is, it does not make any changes to database tables. (2) WNPS means the function writes no package
state; that is, the function does not alter the values of any package variables. (3) RNPS means it reads no
package state; that is, no package variables are read in order to calculate the return for the function.
There is also a RNDS pragma, which means no database tables are read. If this is added, the function is
too pure for the needs here and cannot be used in a SELECT statement.

Table 16.1 shows a summary of the codes and their meanings.

Table 16.1. Pragma Restricitons
Purity Level Code Description Assertion

WNDS Writes No Database State No modification of any database table.

WNPS Writes No Package State No modification of any packaged variable.

RNDS Reads No Database State No reading of any database table.

RNPS Reads No Package State No reading of any package variables.

d) If you add the following three lines, will the package compile without error?

81 UPDATE STUDENT
82 SET employer = 'Prenctice Hall'
83 WHERE employer is null;
84 END school_api;

A4: Answer: No. You added an update statement and violated the purity level of the pragma restriction WNDS
—writes no database state. You receive the following error message when you try to compile the new
package:

Errors for PACKAGE BODY SCHOOL_API:
LINE/COL ERROR
-------- --
0/0 PL/SQL: Compilation unit analysis terminated
60/2 PLS-00452: Subprogram 'TOTAL_COST_FOR_STUDENT'
 violates its associated pragma

16.1.3 Answers

a) Add the following lines to the package specification of school_api. Then recompile the package specification.
Explain what you have created.

11 PROCEDURE get_student_info
12 (i_student_id IN student.student_id%TYPE,
13 o_last_name OUT student.last_name%TYPE,
14 o_first_name OUT student.first_name%TYPE,
15 o_zip OUT student.zip%TYPE,
16 o_return_code OUT NUMBER);
17 PROCEDURE get_student_info
18 (i_last_name IN student.last_name%TYPE,
19 i_first_name IN student.first_name%TYPE,
20 o_student_id OUT student.student_id%TYPE,
21 o_zip OUT student.zip%TYPE,
22 o_return_code OUT NUMBER);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22 o_return_code OUT NUMBER);
23 END school_api;

A1: Answer: No, you have not created Frankenstein, it's just an overloaded procedure. The specification has
two procedures with the same name and different IN parameters both in number and in datatype. The
OUT parameters are also different in number and datatype. This overloaded function accepts either of the
two sets of IN parameters and performs the version of the function corresponding to the datatype passed
in.

b) Add the following code to the body of the package school_api. Explain what has been accomplished.

 77 PROCEDURE get_student_info
 78 (i_student_id IN student.student_id%TYPE,
 79 o_last_name OUT student.last_name%TYPE,
 80 o_first_name OUT student.first_name%TYPE,
 81 o_zip OUT student.zip%TYPE,
 82 o_return_code OUT NUMBER)
 83 IS
 84 BEGIN
 85 SELECT last_name, first_name, zip
 86 INTO o_last_name, o_first_name, o_zip
 87 FROM student
 88 WHERE student.student_id = i_student_id;
 89 o_return_code := 0;
 90 EXCEPTION
 91 WHEN NO_DATA_FOUND
 92 THEN
 93 DBMS_OUTPUT.PUT_LINE
 ('Student ID is not valid.');
 94 o_return_code := -100;
 95 o_last_name := NULL;
 96 o_first_name := NULL;
 97 o_zip := NULL;
 98 WHEN OTHERS
 99 THEN
100 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
101 END get_student_info;
102 PROCEDURE get_student_info
103 (i_last_name IN student.last_name%TYPE,
104 i_first_name IN student.first_name%TYPE,
105 o_student_id OUT student.student_id%TYPE,
106 o_zip OUT student.zip%TYPE,
107 o_return_code OUT NUMBER)
108 IS
109 BEGIN
110 SELECT student_id, zip
111 INTO o_student_id, o_zip
112 FROM student
113 WHERE UPPER(last_name) = UPPER(i_last_name)
114 AND UPPER(first_name) = UPPER(i_first_name);
115 o_return_code := 0;
116 EXCEPTION
117 WHEN NO_DATA_FOUND
118 THEN
119 DBMS_OUTPUT.PUT_LINE
 ('Student name is not valid.');
120 o_return_code := -100;
121 o_student_id := NULL;
122 o_zip := NULL;
123 WHEN OTHERS
124 THEN
125 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
126 END get_student_info;
127 BEGIN
128 SELECT TRUNC(sysdate, 'DD')
129 INTO v_current_date
130 FROM dual;
131 END school_api;

A2: Answer: A single function name, get_student_info, accepts either a single IN parameter of student_id or two
parameters consisting of a student's last_name and first_name. If a number is passed in, then the procedure
looks for the name and zipcode of the student. If it finds them, they are returned as well as a return code
of 0. If they cannot be found, then null values are returned and a return code of -100. If two VARCHAR2
parameters are passed in, then the procedure searches for the student_id corresponding to the names
passed in. As with the other version of this procedure, if a match is found the procedure returns a
student_id, the student's zipcode, and a return code of 0. If a match is not found, then the values returned

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

student_id, the student's zipcode, and a return code of 0. If a match is not found, then the values returned
are null as well as an exit code of -100.

PL/SQL uses overloading in many common functions and built-in packages. For example, TO_CHAR
converts both numbers and dates to strings. Overloading makes it easy for other programmers to use your
code in an API.

The main benefits of overloading are as follows: (1) Overloading simplifies the call interface of packages
and reduces many program names to one. (2) Modules are easier to use and hence more likely to be
used. The software determines the context. (3) The volume of code is reduced because code required for
different datatypes is often the same.

The rules for overloading are as follows: (1) The compiler must be
able to distinguish between the two calls at runtime. Distinguishing
between the uses of the overloaded module is what is important
and not solely the spec or header. (2) The formal parameters must
differ in number, order, or datatype family. (3) You cannot
overload the names of stand-alone modules. (4) Functions differing
only in RETURN datatypes cannot be overloaded.

c) Write a PL/SQL block using the overloaded function you just created.

A3: Answer: A suitable bride for Frankenstein is as follows:

SET SERVEROUTPUT ON
PROMPT ENTER A student_id
ACCEPT p_id
PROMPT ENTER a differnt student's first name surrounded
PROMPT by quotes
ACCEPT p_first_name
PROMPT Now enter the last name surrounded by quotes
ACCEPT p_last_name
DECLARE
 v_student_ID student.student_id%TYPE;
 v_last_name student.last_name%TYPE;
 v_first_name student.first_name%TYPE;
 v_zip student.zip%TYPE;
 v_return_code NUMBER;
BEGIN
 school_api.get_student_info
 (&&p_id, v_last_name, v_first_name,
 v_zip,v_return_code);
 IF v_return_code = 0
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Student with ID '||&&p_id||' is '||v_first_name
 ||' '||v_last_name
);
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('The ID '||&&p_id||'is not in the database'
);
 END IF;
 school_api.get_student_info
 (&&p_last_name , &&p_first_name, v_student_id,
 v_zip , v_return_code);
 IF v_return_code = 0
 THEN
 DBMS_OUTPUT.PUT_LINE
 (&&p_first_name||' '|| &&p_last_name||
 ' has an ID of '||v_student_id
);
 ELSE
 DBMS_OUTPUT.PUT_LINE
 (&&p_first_name||' '|| &&p_last_name||
 'is not in the database'
);
 END IF;
END;

It is important for you to realize the benefits of using a && variable. The value for the variable need only
be entered once, but if you run the code a second time, you will not be prompted to enter the value again
since it is now in memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

since it is now in memory.

Here are a few things to keep in mind when you overload functions
or procedures. These two procedures cannot be overloaded:

PROCEDURE calc_total (reg_in IN CHAR);
PROCEDURE calc_total (reg_in IN VARCHAR2).

In these two versions of calc_total the two different IN variables
cannot be distinguished from each other. In the following example,
an anchored type (%TYPE) is relied on to establish the datatype of
the second calc's parameter.

DECLARE
PROCEDURE calc (comp_id_IN IN NUMBER)
 IS
BEGIN ... END;
PROCEDURE calc
(comp_id_IN IN company.comp_id%TYPE)
 IS
BEGIN ... END;

PL/SQL does not find a conflict at compile time with overloading
even though comp_id is a numeric column. Instead, you get the
following message at runtime:

PLS-00307: too many declarations of '<program>' match this call

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 16.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) What is the purpose of the USER_ERRORS view?

a. _____ It prevents you from having to make use of the SHO ERR command.

b. _____ It has the details on database objects in an invalid state.

c. _____ It is a record of all compilation errors you have ever made.

d. _____ It has no purpose but to take up database space.

2) The DESC command behaves like an overloaded procedure.

a. _____ True

b. _____ False

3) All functions require a pragma restriction to be used in an SQL statement.

a. _____ True

b. _____ False

4) What does the purity level of a pragma restriction mean?

a. _____ It refers to whether it is kosher or not.

b. _____ It tells you if the function can be used in a SELECT statement.

c. _____ It shows the effect executing the function will have on other objects in the database or the
package.

d. _____ It tells you if the function is overloaded.

5) What is the principal benefit of an overloaded function?

a. _____ An overloaded function is able to bypass any pragma restriction.

b. _____ An overloaded function behaves differently depending on the type of data passed in when it
is called.

c. _____ It is just a lot of hype—overloaded functions have no benefit.

d. _____ An overloaded function is like a ghost function.

Answers appear in Appendix A, Section 16.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16 Test Your Thinking

In this chapter you learned about stored code. Here are some projects to help you test the depth of your
understanding. Add the following to the school_api.

1) Add a function in school_api package specification called get_course_descript.
The caller takes a course.cnumber%TYPE parameter and it returns a
course.description%TYPE.

2) Create a function in the school_api package body called
get_course_description. A caller passes in a course number and it returns the
course description. Instead of searching for the description itself, it makes a
call to get_course_descript_private. It passes its course number to
get_course_descript_private. It passes back to the caller the description it gets
back from get_course_descript_private.

3) Add a PRAGMA RESTRICT_REFERENCES for get_course_description specifying
the following: writes no database state, writes no package state, and reads no
package state.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17. Triggers
Chapter Objectives
In this Chapter, you will learn about:

 What Triggers Are

 Types of Triggers

 Mutating Table Issues

In Chapters 12 through 16, you explored the concepts of stored code and different types of named PL/SQL blocks, such
as procedures, functions, and packages. In this chapter, you will learn about another type of named PL/SQL block called
a database trigger. You will also learn about different characteristics of triggers and their usage in the database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.1 What Triggers Are

Lab Objectives
After this Lab, you will be able to:

 Understand What a Trigger Is

 Use BEFORE and AFTER Triggers

A database trigger is a named PL/SQL block stored in a database and executed implicitly when a triggering event
occurs. An act of executing a trigger is referred to as firing a trigger. A triggering event is a DML (INSERT, UPDATE, or
DELETE) statement executed against a database table. A trigger can fire before or after a triggering event. For
example, if you have defined a trigger to fire before an INSERT statement on the STUDENT table, this trigger fires each
time before you insert a row in the STUDENT table.

The general syntax for creating a trigger is as follows (the reserved words and phrases surrounded by brackets are
optional):

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE|AFTER} triggering_event ON table_name
[FOR EACH ROW]
[WHEN condition]
DECLARE
 Declaration statements
BEGIN
 Executable statements
EXCEPTION
 Exception-handling statements
END;

The reserved word CREATE specifies that you are creating a new trigger. The reserved word REPLACE specifies that you
are modifying an existing trigger. REPLACE is optional. However, note that both CREATE and REPLACE are present most
of the time. Consider the following situation. You create a trigger as follows:

CREATE TRIGGER trigger_name
...

In a few days you decide to modify this trigger. If you do not include the reserved word REPLACE in the CREATE clause
of the trigger, an error message will be generated when you compile the trigger. The error message states that the
name of your trigger is already used by another object. Once REPLACE is included in the CREATE clause of the trigger,
there is less of a chance for an error because, if it is a new trigger, it is created, and if it is an old trigger, it is replaced.

The trigger_name references the name of the trigger. BEFORE or AFTER specifies when the trigger fires (before or after
the triggering event). The triggering_event references a DML statement issued against the table. The table_name is the
name of the table associated with the trigger. The clause FOR EACH ROW specifies that a trigger is a row trigger and
fires once for each row either inserted, updated, or deleted. You will encounter row and statement triggers in the next
lab of this chapter. A WHEN clause specifies a condition that must evaluate to TRUE for the trigger to fire. For example,
this condition may specify a certain restriction on the column of a table. Next, the trigger body is defined. It is
important for you to realize that if you drop a table, the table's database triggers are dropped as well.

You should be careful when using the reserved word REPLACE for a number of reasons. First, if you happen to use
REPLACE and the name of an existing stored function, procedure, or package, it will be replaced by the trigger. Second,
when you use the reserved word REPLACE and decide to associate a different table with your trigger, an error message
is generated. For example, assume you created a trigger STUDENT_BI on the STUDENT table. Next, you decide to
modify this trigger and associate it with the ENROLLMENT table. As a result, the following error message is generated:

ERROR at line 1:
ORA-04095: trigger 'STUDENT_BI' already exists on another table, cannot replace it

Triggers are used for different purposes. Some uses for triggers are as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Triggers are used for different purposes. Some uses for triggers are as follows:

Enforcing complex business rules that cannot be defined by using integrity constraints

Maintaining complex security rules

Automatically generating values for derived columns

Collecting statistical information on table accesses

Preventing invalid transactions

Providing value auditing

The body of a trigger is a PL/SQL block. However, there are several restrictions that you need to know to create a
trigger:

A trigger may not issue a transactional control statement such as COMMIT, SAVEPOINT, or ROLLBACK. When
the trigger fires, all operations performed become part of a transaction. When this transaction is committed or
rolled back, the operations performed by the trigger are committed or rolled back as well.

Any function or procedure called by a trigger may not issue a transactional control statement.

It is not permissible to declare LONG or LONG RAW variables in the body of a trigger.

Before Triggers

Consider the following example of a trigger on the STUDENT table mentioned earlier in this chapter. This trigger fires
before the INSERT statement on the STUDENT table and populates STUDENT_ID, CREATED_DATE, MODIFIED_DATE,
CREATED_BY, and MODIFIED_BY columns. Column STUDENT_ID is populated with the number generated by the
STUDENT_ID_SEQ sequence, and columns CREATED_DATE, MODIFIED_DATE, CREATED_USER, and MODIFIED_USER
are populated with the current date and the current user name information, respectively.

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER student_bi
BEFORE INSERT ON student
FOR EACH ROW
DECLARE
 v_student_id STUDENT.STUDENT_ID%TYPE;
BEGIN
 SELECT STUDENT_ID_SEQ.NEXTVAL
 INTO v_student_id
 FROM dual;
 :NEW.student_id := v_student_id;
 :NEW.created_by := USER;
 :NEW.created_date := SYSDATE;
 :NEW.modified_by := USER;
 :NEW.modified_date := SYSDATE;
END;

This trigger fires before each INSERT statement on the STUDENT table. Notice that the name of the trigger is
STUDENT_BI, where STUDENT references the name of the table on which the trigger is defined, and the letters BI
mean BEFORE INSERT. There is no specific requirement for naming triggers; however, this approach to naming a
trigger is descriptive because the name of the trigger contains the name of the table affected by the triggering event,
the time of the triggering event (before or after), and the triggering event itself.

In the body of the trigger, there is a pseudorecord, :NEW, allowing you to access a row currently being processed. In
other words, a row is being inserted into the STUDENT table. The :NEW pseudorecord is of a type TRIGGERING_
TABLE%TYPE, so, in this case, it is of the STUDENT%TYPE type. In order to access individual members of the
pseudorecord :NEW, dot notation is used. In other words, :NEW.CREATED_BY refers to the member, CREATED_BY, of
the :NEW pseudorecord, and the name of the record is separated by the dot from the name of its member.

Before you create this trigger, consider the following INSERT statement on the STUDENT table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO student (student_id, first_name, last_name,
 zip, registration_date, created_by, created_date,
 modified_by, modified_date)
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '00914',
 SYSDATE, USER, SYSDATE, USER, SYSDATE);

This INSERT statement contains values for the columns STUDENT_ID, CREATED_BY, CREATED_DATE, MODIFIED_BY,
and MODIFIED_DATE. It is important to note that for every row you insert into the STUDENT table, the values for these
columns must be provided, and they are always derived in the same fashion. Why do you think the values for these
columns must be provided when inserting a record into the STUDENT table?

Once the trigger shown earlier is created, there is no need to include these columns in the INSERT statement, because
the trigger will populate them with the required information. Therefore, the INSERT statement can be modified as
follows:

INSERT INTO student (first_name, last_name, zip,
 registration_date)
VALUES ('John', 'Smith', '00914', SYSDATE);

Notice that this version of the INSERT statement looks significantly shorter than the previous version. The columns
STUDENT_ID, CREATED_BY, CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE are not present. However, their
values are provided by the trigger. As a result, there is no need to include them in the INSERT statement, and there is
less of a chance for a transaction error.

You should use BEFORE triggers in the following situations:

When a trigger provides values for derived columns before an INSERT or UPDATE statement is completed. For
example, the column FINAL_GRADE in the ENROLLMENT table holds the value of the student's final grade for a
specific course. This value is calculated based on the student performance for the duration of the course.

When a trigger determines whether an INSERT, UPDATE, or DELETE statement should be allowed to complete.
For example, when you insert a record into the INSTRUCTOR table, a trigger can verify whether the value
provided for the column ZIP is valid, or, in other words, if there is a record in the ZIPCODE table corresponding
to the value of zip that you provided.

After Triggers

Assume there is a table called STATISTICS having the following structure:

Name Null? Type
------------------------------- -------- ----
TABLE_NAME VARCHAR2(30)
TRANSACTION_NAME VARCHAR2(10)
TRANSACTION_USER VARCHAR2(30)
TRANSACTION_DATE DATE

This table is used to collect statistical information on different tables of the database. For example, you can record who
deleted records from the INSTRUCTOR table and when they were deleted.

Consider the following example of a trigger on the INSTRUCTOR table. This trigger fires after an UPDATE or DELETE
statement is issued on the INSTRUCTOR table.

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_aud
AFTER UPDATE OR DELETE ON INSTRUCTOR
DECLARE
 v_type VARCHAR2(10);
BEGIN
 IF UPDATING THEN
 v_type := 'UPDATE';
 ELSIF DELETING THEN
 v_type := 'DELETE';
 END IF;
 UPDATE statistics
 SET transaction_user = USER,
 transaction_date = SYSDATE
 WHERE table_name = 'INSTRUCTOR'
 AND transaction_name = v_type;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND transaction_name = v_type;

 IF SQL%NOTFOUND THEN
 INSERT INTO statistics
 VALUES ('INSTRUCTOR', v_type, USER, SYSDATE);
 END IF;
END;

This trigger fires after an UPDATE or DELETE statement on the INSTRUCTOR table. In the body of the trigger, there are
two Boolean functions, UPDATING and DELETING. The function UPDATING evaluates to TRUE if an UPDATE statement is
issued on the table, and the function DELETING evaluates to TRUE if a DELETE statement is issued on the table. There
is another Boolean function called INSERTING. As you have probably guessed, this function evaluates to TRUE when an
INSERT statement is issued against the table.

This trigger updates a record or inserts a new record into the STATISTICS table when an UPDATE or DELETE operation
is issued against the INSTRUCTOR table. First, the trigger determines the type of the DML statement issued against the
INSTRUCTOR table. The type of the DML statement is determined with the help of the UPDATING and DELETING
functions.

Next, the trigger tries to update a record in the STATISTICS table where TABLE_NAME is equal to INSTRUCTOR and
TRANSACTION_NAME is equal to the current transaction (UPDATE or DELETE). Then the status of the UPDATE
statement is checked with the help of SQL%NOTFOUND constructor. The SQL%NOTFOUND constructor evaluates to
TRUE if the update statement does not update any rows and FALSE otherwise. So if SQL%NOTFOUND evaluates to
TRUE, a new record is added to the STATISTICS table.

Once this trigger is created on the INSTRUCTOR table, any UPDATE or DELETE operation causes modification of old
records or creation of new records in the STATISTICS table. Furthermore, you can enhance this trigger by calculating
how many rows are updated or deleted from the INSTRUCTOR table.

You should use AFTER triggers in the following situations:

When a trigger should fire after a DML statement is executed.

When a trigger performs actions not specified in a BEFORE trigger.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.1 Exercises

17.1.1 Understand What a Trigger Is

In this exercise, you need to determine the trigger firing event, its type, and so on, based on the CREATE clause of the
trigger.

Consider the following CREATE clause:

CREATE TRIGGER student_au
AFTER UPDATE ON STUDENT
FOR EACH ROW
WHEN (NVL(NEW.ZIP, ' ') <> OLD.ZIP)
 Trigger Body…

In the WHEN statement of the CREATE clause, there is a pseudorecord, :OLD, allowing you to access a row currently
being processed. It is important for you to note that neither :NEW nor :OLD are prefixed by the colon (:) when they are
used in the condition of the WHEN statement.

You are already familiar with the pseudorecord :NEW. The :OLD pseudorecord allows you to access the current
information of the record being updated. In other words, it is information currently present in the STUDENT table for a
specified record. The :NEW pseudorecord allows you to access the new information for the current record. In other
words, :NEW indicates the updated values. For example, consider the following UPDATE statement:

UPDATE student
 SET zip = '01247'
 WHERE zip = '02189';

The value "01247" of the ZIP column is a new value, and the trigger references it as :NEW.ZIP. The value "02189" in
the ZIP column is the previous value and is referenced as :OLD.ZIP.

It is important for you to note that :OLD is undefined for INSERT statements
and :NEW is undefined for DELETE statements. However, the PL/SQL compiler
does not generate syntax errors when :OLD or :NEW is used in triggers where
the triggering event is an INSERT or DELETE operation. In this case, the field
values are set to NULL for :OLD and :NEW pseudorecords.

Answer the following questions:

a) Assume a trigger named STUDENT_AU already exists in the database. If you use the CREATE clause to
modify the existing trigger, what error message is generated? Explain your answer.

b) If an update statement is issued on the STUDENT table, how many times does this trigger fire?

c) How many times does this trigger fire if an update statement is issued against the STUDENT table, but the
ZIP column is not changed?

d) Why do you think there is a NVL function present in the WHEN statement of the CREATE clause?

17.1.2 Use BEFORE and AFTER Triggers

In this exercise, you create a trigger on the INSTRUCTOR table firing before an INSERT statement is issued against the
table. The trigger determines the values for the columns CREATED_BY, MODIFIED_BY, CREATED_DATE, and
MODIFIED_DATE. In addition, it determines if the value of zip provided by an INSERT statement is valid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MODIFIED_DATE. In addition, it determines if the value of zip provided by an INSERT statement is valid.

Create the following trigger:

-- ch17_1a.sql, version 1.0
CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE
 v_work_zip CHAR(1);
BEGIN
 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;

 SELECT 'Y'
 INTO v_work_zip
 FROM zipcode
 WHERE zip = :NEW.ZIP;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20001, 'Zip code is not valid!');
END;

Answer the following questions:

a) If an INSERT statement issued against the INSTRUCTOR table is missing a value for the column ZIP, does
the trigger raise an exception? Explain your answer.

b) Modify this trigger so that another error message is displayed when an INSERT statement is missing a value
for the column ZIP.

c) Modify this trigger so there is no need to supply the value for the instructor's ID at the time of the INSERT
statement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 17.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

17.1.1 Answers

a) Assume a trigger named STUDENT_AU already exists in the database. If you use the CREATE clause to
modify the existing trigger, what error message is generated? Explain your answer.

A1: Answer: An error message stating STUDENT_AU name is already used by another object is displayed on
the screen. The CREATE clause has the ability to create new objects in the database, but it is unable to
handle modifications. In order to modify the existing trigger, the REPLACE statement must be added to the
CREATE clause. In this case, the old version of the trigger is dropped without warning, and the new
version of the trigger is created.

b) If an update statement is issued on the STUDENT table, how many times does this trigger fire?

A2: Answer: The trigger fires as many times as there are rows affected by the triggering event, because the
FOR EACH ROW statement is present in the CREATE trigger clause.

When the FOR EACH ROW statement is not present in the CREATE trigger clause, the trigger fires once for
the triggering event. In this case, if the following UPDATE statement

UPDATE student
 SET zip = '01247'
 WHERE zip = '02189';

is issued against the STUDENT table, it updates 10 records and the trigger fires only once instead of 10
times.

c) How many times does this trigger fire if an update statement is issued against the STUDENT table, but the
ZIP column is not changed?

A3: Answer: The trigger does not fire, because the condition of the WHEN statement evaluates to FALSE.

The condition

(NVL(NEW.ZIP, ' ') <> OLD.ZIP)

of the WHEN statement compares the new value of zipcode to the old value of zipcode. If the value of the
zipcode is not changed, this condition evaluates to FALSE. As a result, this trigger does not fire if an
UPDATE statement does not modify the value of zipcode for a specified record.

d) Why do you think there is a NVL function present in the WHEN statement of the CREATE clause?

A4: Answer: If an UPDATE statement does not modify the column ZIP, the value of the field NEW.ZIP is
undefined. In other words, it is NULL. A NULL value of ZIP cannot be compared with a non-NULL value of
ZIP. Therefore, the NVL function is present in the WHEN condition.

Because the column ZIP has a NOT NULL constraint defined, there is no need to use the NVL function for
the OLD.ZIP field. For an UPDATE statement issued against the STUDENT table, there is always a value of
ZIP currently present in the table.

17.1.2 Answers

a) If an INSERT statement issued against the INSTRUCTOR table is missing a value for the column ZIP, does
the trigger raise an exception? Explain your answer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A1: Answer: Yes, the trigger raises an exception. When an INSERT statement does not provide a value for the
column ZIP, the value of the :NEW.ZIP is NULL. This value is used in the WHERE clause of the SELECT
INTO statement. As a result, the SELECT INTO statement is unable to return data. Therefore, the
exception NO_DATA_FOUND is raised by the trigger.

b) Modify this trigger so that another error message is displayed when an INSERT statement is missing a
value for the column ZIP.

A2: Answer: Your script should look similar to the following script. All changes are shown in bold letters.

-- ch17_1b.sql, version 2.0
CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE
 v_work_zip CHAR(1);
BEGIN
 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;

 IF :NEW.ZIP IS NULL THEN
 RAISE_APPLICATION_ERROR
 (-20002, 'Zip code is missing!');
 ELSE
 SELECT 'Y'
 INTO v_work_zip
 FROM zipcode
 WHERE zip = :NEW.ZIP;
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20001, 'Zip code is not valid!');
END;

Notice that an IF-ELSE statement is added to the body of the trigger. This IF-ELSE statement evaluates the value of
:NEW.ZIP. If the value of :NEW.ZIP is NULL, the IF-ELSE statement evaluates to TRUE, and another error message is
displayed stating that the value of ZIP is missing. If the IF-ELSE statement evaluates to FALSE, the control is passed to
the ELSE part of the statement, and the SELECT INTO statement is executed.

c) Modify this trigger so there is no need to supply the value for the instructor's ID at the time of the INSERT
statement.

A3: Answer: Your version of the trigger should look similar to the one shown. All changes are shown in bold
letters.

-- ch17_1c.sql, version 3.0
CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE
 v_work_zip CHAR(1);
 v_instructor_id INSTRUCTOR.INSTRUCTOR_ID%TYPE;
BEGIN
 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;

 SELECT 'Y'
 INTO v_work_zip
 FROM zipcode
 WHERE zip = :NEW.ZIP;

 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
 INTO v_instructor_id
 FROM dual;

 :NEW.INSTRUCTOR_ID := v_instructor_id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 :NEW.INSTRUCTOR_ID := v_instructor_id;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20001, 'Zip code is not valid!');
END;

The original version of this trigger does not derive a value for the instructor's ID. Therefore, an INSERT statement
issued against the INSTRUCTOR table has to populate the INSTRUCTOR_ID column as well. The new version of the
trigger populates the value of the INSTRUCTOR_ID column, so that the INSERT statement does not have to do it.

Generally, it is a good idea to populate columns holding IDs in the trigger because when a user issues an INSERT
statement, he or she might not know that an ID must be populated at the time of the insert. Furthermore, a user may
not know—and more than likely does not know—how to operate sequences to populate the ID.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A trigger can fire for which of the following?

a. _____ Before a triggering event

b. _____ After a triggering event

c. _____ Before or after a triggering event

2) How is a trigger executed?

a. _____ Explicitly when a triggering event occurs

b. _____ Implicitly when a triggering event occurs

3) In order for a trigger to fire, the WHEN condition must evaluate to which of the following?

a. _____ True

b. _____ False

4) A BEFORE INSERT trigger fires for which of the following?

a. _____ Before an UPDATE is issued against the triggering table

b. _____ After an INSERT is issued against the triggering table

c. _____ Before an INSERT is issued against the triggering table

5) When a SELECT statement is issued against the triggering table, which of the following triggers fire?

a. _____ BEFORE trigger

b. _____ AFTER trigger

c. _____ BEFORE trigger and AFTER trigger

d. _____ Triggers are not fired at all.

Answers appear in Appendix A, Section 17.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.2 Types of Triggers

Lab Objectives
After this Lab, you will be able to:

 Use Row and Statement Triggers

 Use INSTEAD OF Triggers

In the previous lab of this chapter, you encountered the term row trigger. A row trigger is fired as many times as there
are rows affected by the triggering statement. When the statement FOR EACH ROW is present in the CREATE TRIGGER
clause, the trigger is a row trigger. Consider the following code:

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER course_au
AFTER UPDATE ON COURSE
FOR EACH ROW
...

In this code fragment, the statement FOR EACH ROW is present in the CREATE TRIGGER clause. Therefore, this trigger
is a row trigger. If an UPDATE statement causes 20 records in the COURSE table to be modified, this trigger fires 20
times.

A statement trigger is fired once for the triggering statement. In other words, a statement trigger fires once, regardless
of the number of rows affected by the triggering statement. To create a statement trigger, you omit the FOR EACH
ROW in the CREATE TRIGGER clause. Consider the following code fragment:

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER enrollment_ad
AFTER DELETE ON ENROLLMENT
...

This trigger fires once after a DELETE statement is issued against the ENROLLMENT table. Whether the DELETE
statement removes one row or five rows from the ENROLLMENT table, this trigger fires only once.

Statement triggers should be used when the operations performed by the trigger do not depend on the data in the
individual records. For example, if you want to limit access to a table to business hours only, a statement trigger is
used. Consider the following example.

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_biud
BEFORE INSERT OR UPDATE OR DELETE ON INSTRUCTOR
DECLARE
 v_day VARCHAR2(10);
BEGIN
 v_day := RTRIM(TO_CHAR(SYSDATE, 'DAY'));
 IF v_day LIKE ('S%') THEN
 RAISE_APPLICATION_ERROR (-20000, 'A table cannot be '||
 'modified during off hours');
 END IF;
END;

This is a statement trigger on the INSTRUCTOR table, and it fires before an INSERT, UPDATE, or DELETE statement is
issued. First, the trigger determines the day of the week. If the day happens to be Saturday or Sunday, an error
message is generated. When the following UPDATE statement on the INSTRUCTOR table is issued on Saturday or
Sunday

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sunday

UPDATE instructor
 SET zip = 10025
 WHERE zip = 10015;

the trigger generates the error message shown below:

update INSTRUCTOR
 *
ERROR at line 1:
ORA-20000: A table cannot be modified during off hours
ORA-06512: at "STUDENT.INSTRUCTOR_BIUD", line 6
ORA-04088: error during execution of trigger
'STUDENT.INSTRUCTOR_BIUD'

Notice that this trigger checks for a specific day of the week. However, it does not check the time of day. You can
create a more sophisticated trigger that checks what day of the week it is and if the current time is between 9:00 A.M.
and 5:00 P.M. If the day falls on the business week and the time of the day is not between 9:00 A.M. and 5:00 P.M., the
error is generated.

Instead of Triggers

So far you have seen triggers that are defined on the database tables. PL/SQL provides another kind of trigger that is
defined on database views. A view is a custom representation of data and can be referred to as a "stored query."
Consider the following example of the view created against the COURSE table.

 FOR EXAMPLE

CREATE VIEW course_cost AS
 SELECT course_no, description, cost
 FROM course;

It is important to note that once a view is created, it does not contain or store any data. The data is derived from the
SELECT statement associated with the view. Based on the preceding example, the COURSE_COST view contains three
columns that are selected from the COURSE table.

Similar to tables, views can be manipulated via INSERT, UPDATE, or DELETE statements, with some restrictions.
However, it is important to note that when any of these statements are issued against a view, the corresponding data
are modified in the underlying tables. For example, consider an UPDATE statement against the COURSE_COST view.

 FOR EXAMPLE

UPDATE course_cost
 SET cost = 2000
 WHERE course_no = 450;

Once the UPDATE statement is executed, both SELECT statements against the COURSE_COST view and the COURSE
table return the same value of the cost for course number 450.

SELECT *
 FROM course_cost
 WHERE course_no = 450;

COURSE_NO DESCRIPTION COST
---------- ------------------------ ----------
 450 DB Programming in Java 2000
SELECT course_no, cost
 FROM course
 WHERE course_no = 450;

COURSE_NO COST
---------- ----------
 450 2000

As mentioned earlier, there are restrictions placed on some views as to whether they can be modified by INSERT,
UPDATE, or DELETE statements. Specifically, these restrictions apply to the underlying SELECT statement that is also
referred to as a "view query." Thus, if a view query performs any of the operations or contains any of the following
constructs, a view cannot be modified by an UPDATE, INSERT, or DELETE statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constructs, a view cannot be modified by an UPDATE, INSERT, or DELETE statement:

Set operations such as UNION, UNION ALL, INTERSECT, MINUS

Group functions such as AVG, COUNT, MAX, MIN, SUM

GROUP BY or HAVING clauses

CONNECT BY or START WITH clauses

The DISTINCT operator

ROWNUM pseudocolumn

 FOR EXAMPLE

Consider the following view created on the INSTRUCTOR and SECTION tables:

CREATE VIEW instructor_summary AS
 SELECT i.instructor_id, COUNT(s.section_id) total_courses
 FROM instructor i
 LEFT OUTER JOIN section s
 ON (i.instructor_id = s.instructor_id)
 GROUP BY i.instructor_id;

Note that the SELECT statement is written in the ANSI 1999 SQL standard. It uses the outer join between the
INSTRUCTOR and SECTION tables. The LEFT OUTER JOIN indicates that an instructor record in the INSTRUCTOR table
that does not have a corresponding record in the SECTION table is included in the result set with TOTAL_COURSES
equal to zero.

You will find detailed explanations and examples of the statements using the
new ANSI 1999 SQL standard in Appendix E and in the Oracle help.
Throughout this book we try to provide you with examples illustrating both
standards; however, our main focus is on PL/SQL features rather than SQL.

In the previous versions of Oracle, this statement would look as follows:

SELECT i.instructor_id, COUNT(s.section_id) total_courses
 FROM instructor i, section s
 WHERE i.instructor_id = s.instructor_id (+)
GROUP BY i.instructor_id;

This view is not updatable because it contains the group function, COUNT(). As a result, the following DELETE statement

DELETE FROM instructor_summary
 WHERE instructor_id = 109;

causes the error shown:

DELETE FROM instructor_summary
 *
ERROR at line 1:
ORA-01732: data manipulation operation not legal on this view

You will recall that PL/SQL provides a special kind of trigger that can be defined on database views. This trigger is called
an INSTEAD OF trigger and is created as a row trigger. An INSTEAD OF trigger fires instead of the triggering statement
(INSERT, UPDATE, DELETE) that has been issued against a view and directly modifies the underlying tables.

Consider an INSTEAD OF trigger defined on the INSTRUCTOR_SUMMARY view created earlier. This trigger deletes a
record from the INSTRUCTOR table for the corresponding value of the instructor's ID.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_summary_del
INSTEAD OF DELETE ON instructor_summary
FOR EACH ROW
BEGIN
 DELETE FROM instructor
 WHERE instructor_id = :OLD.INSTRUCTOR_ID;
END;

Once the trigger is created, the DELETE statement against the INSTRUCTOR_ SUMMARY view does not generate any
errors.

DELETE FROM instructor_summary
 WHERE instructor_id = 109;

1 row deleted.

When the DELETE statement is issued, the trigger deletes a record from the INSTRUCTOR table corresponding to the
specified value of INSTRUCTOR_ID. Consider the same DELETE statement with a different instructor ID:

DELETE FROM instructor_summary
 WHERE instructor_id = 101;

When this DELETE statement is issued, it causes the error shown:

DELETE FROM instructor_summary
*
ERROR at line 1:
ORA-02292: integrity constraint (STUDENT.SECT_INST_FK)
violated - child record found
ORA-06512: at "STUDENT.INSTRUCTOR_SUMMARY_DEL", line 2
ORA-04088: error during execution of trigger
'STUDENT.INSTRUCTOR_SUMMARY_DEL'

The INSTRUCTOR_SUMMARY view joins the INSTRUCTOR and SECTION tables based on the INSTRUCTOR_ID column
that is present in both tables. The INSTRUCTOR_ID column in the INSTRUCTOR table has is a primary key constraint
defined on it. The INSTRUCTOR_ID column in the SECTION table has a foreign key constraint that references the
INSTRUCTOR_ID column of the INSTRUCTOR table. Thus, the SECTION table is considered a child table of the
INSTRUCTOR table.

The original DELETE statement does not cause any errors because there is no record in the SECTION table
corresponding to the instructor ID of 109. In other words, the instructor with the ID of 109 does not teach any courses.

The second DELETE statement causes an error because the INSTEAD OF trigger tries to delete a record from the
INSTRUCTOR table, the parent table. However, there is a corresponding record in the SECTION table, the child table,
with the instructor ID of 101. This causes an integrity constraint violation error. It may seem that one more DELETE
statement should be added to the INSTEAD OF trigger, as shown below.

CREATE OR REPLACE TRIGGER instructor_summary_del
INSTEAD OF DELETE ON instructor_summary
FOR EACH ROW
BEGIN
 DELETE FROM section
 WHERE instructor_id = :OLD.INSTRUCTOR_ID;
 DELETE FROM instructor
 WHERE instructor_id = :OLD.INSTRUCTOR_ID;
END;

Notice that the new DELETE statement removes records from the SECTION table before the INSTRUCTOR table because
the SECTION table contains child records of the INSTRUCTOR table. However, the DELETE statement against the
INSTRUCTOR_SUMMARY view causes another error:

DELETE FROM instructor_summary
 WHERE instructor_id = 101;

DELETE FROM instructor_summary
 *
ERROR at line 1:
ORA-02292: integrity constraint (STUDENT.GRTW_SECT_FK)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-02292: integrity constraint (STUDENT.GRTW_SECT_FK)
violated - child record found
ORA-06512: at "STUDENT.INSTRUCTOR_SUMMARY_DEL", line 2
ORA-04088: error during execution of trigger
'STUDENT.INSTRUCTOR_SUMMARY_DEL'

This time, the error refers to a different foreign key constraint that specifies the relationship between the SECTION and
the GRADE_TYPE_WEIGHT tables. In this case, the child records are found in the GRADE_TYPE_WEIGHT table. This
means that before deleting records from the SECTION table, the trigger must delete all corresponding records from the
GRADE_TYPE_WEIGHT table. However, the GRADE_TYPE_WEIGHT table has child records in the GRADE table, so the
trigger must delete records from the GRADE table first.

This example illustrates the complexity of designing an INSTEAD OF trigger. To design such a trigger, you must be
aware of two important factors: the relationship among tables in the database, and the ripple effect that a particular
design may introduce. This example suggests deleting records from four underlying tables. However, it is important to
realize that those tables contain information that relates not only to the instructors and the sections they teach, but
also to the students and the sections they are enrolled in.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.2 Exercises

17.2.1 Use ROW and STATEMENT Triggers

In this exercise, you create a trigger that fires before an INSERT statement is issued against the COURSE table.

Create the following trigger:

-- ch17_2a.sql, version 1.0
CREATE OR REPLACE TRIGGER course_bi
BEFORE INSERT ON COURSE
FOR EACH ROW
DECLARE
 v_course_no COURSE.COURSE_NO%TYPE;
BEGIN
 SELECT COURSE_NO_SEQ.NEXTVAL
 INTO v_course_no
 FROM DUAL;
 :NEW.COURSE_NO := v_course_no;
 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;
END;

Answer the following questions:

a) What type of trigger is created on the COURSE table (row or statement)? Explain your answer.

b) Based on the answer you provided for question (a), explain why this particular type is chosen for the trigger.

c) When an INSERT statement is issued against the COURSE table, which actions are performed by the trigger?

d) Modify this trigger so that if there is a prerequisite course supplied at the time of the insert, its value is checked
against the existing courses in the COURSE table.

17.2.2 Use INSTEAD OF Triggers

In this exercise, you create a view STUDENT_ADDRESS and an INSTEAD OF trigger that fires instead of an INSERT statement
issued against the view.

Create the following view:

CREATE VIEW student_address AS
 SELECT s.student_id, s.first_name, s.last_name, s.street_address, z.city, z.state, z.zip
 FROM student s
 JOIN zipcode z
 ON (s.zip = z.zip);

Note that the SELECT statement is written in the ANSI 1999 SQL standard.

You will find detailed explanations and examples of the statements using new ANSI 1999
SQL standard in Appendix E and in the Oracle help. Throughout this book we try to
provide you with examples illustrating both standards; however, our main focus is on
PL/SQL features rather than SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create the following INSTEAD OF trigger:

-- ch17_3a.sql, version 1.0
CREATE OR REPLACE TRIGGER student_address_ins
INSTEAD OF INSERT ON student_address
FOR EACH ROW
BEGIN
 INSERT INTO STUDENT
 (student_id, first_name, last_name, street_address, zip, registration_date, created_by, created_date, modified_by, modified_date)
 VALUES
 (:NEW.STUDENT_ID, :NEW.FIRST_NAME, :NEW.LAST_NAME, :NEW.STREET_ADDRESS, :NEW.ZIP, SYSDATE, USER, SYSDATE, USER, SYSDATE);
END;

Issue the following INSERT statements:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York', 'NY', '10019');

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York', 'NY', '12345');

Answer the following questions:

a) What output is produced after each INSERT statement is issued?

b) Explain why the second INSERT statement causes an error.

c) Modify the trigger so that it checks the value of the zipcode provided by the INSERT statement against the ZIPCODE
table and raises an error if there is no such value.

d) Modify the trigger so that it checks the value of the zipcode provided by the INSERT statement against the ZIPCODE
table. If there is no corresponding record in the ZIPCODE table, the trigger should create a new record for the given
value of zip before adding a new record to the STUDENT table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 17.2, with discussion related to how those answers resulted. The most
important thing to realize is whether your answer works. You should figure out the implications of the answers here and what the effects are
from any different answers you may come up with.

17.2.1 Answers

a) What type of trigger is created on the COURSE table (row or statement)? Explain your answer.

A1: Answer: The trigger created on the COURSE table is a row trigger because the CREATE TRIGGER clause contains the statement
FOR EACH ROW. It means this trigger fires every time a record is added to the COURSE table.

b) Based on the answer you provided for question (a), explain why this particular type is chosen for the trigger.

A2: Answer: This trigger is a row trigger because its operations depend on the data in the individual records. For example, for every
record inserted into the COURSE table, the trigger calculates the value for the column COURSE_NO. All values in this column must
be unique, because it is defined as a primary key. A row trigger guarantees every record added to the COURSE table has a unique
number assigned to the COURSE_NO column.

c) When an INSERT statement is issued against the COURSE table, which actions are performed by the trigger?

A3: Answer: First, the trigger assigns a number derived from the sequence COURSE_ NO_SEQ to the variable v_course_no
SELECT INTO statement. Second, the variable v_course_no is assigned to the field COURSE_NO of the :NEW pseudorecord. Finally,
the values containing the current user's name and date are assigned to the fields CREATED_BY, MODIFIED_BY, CREATED_DATE,
and MODIFIED_DATE of the :NEW pseudorecord.

d) Modify this trigger so that if there is a prerequisite course supplied at the time of the insert, its value is checked against the
existing courses in the COURSE table.

A4: Answer: The trigger you created should look similar to the following trigger. All changes are shown in bold letters.

-- ch17_2b.sql, version 2.0
CREATE OR REPLACE TRIGGER course_bi
BEFORE INSERT ON COURSE
FOR EACH ROW
DECLARE
 v_course_no COURSE.COURSE_NO%TYPE;
 v_prerequisite COURSE.COURSE_NO%TYPE;
BEGIN
 IF :NEW.PREREQUISITE IS NOT NULL THEN
 SELECT course_no
 INTO v_prerequisite
 FROM course
 WHERE course_no = :NEW.PREREQUISITE;
 END IF;
 SELECT COURSE_NO_SEQ.NEXTVAL
 INTO v_course_no
 FROM DUAL;
 :NEW.COURSE_NO := v_course_no;
 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20002, 'Prerequisite is not valid!');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that because the PREREQUISITE is not a required column, or, in other words, there is no NOT NULL constraint defined against it, the IF
statement validates the existence of the incoming value. Next, the SELECT INTO statement validates that the prerequisite already exists in the
COURSE table. If there is no record corresponding to the prerequisite course, the NO_DATA_FOUND exception is raised and the error message
"Prerequisite is not valid!" is displayed on the screen.

Once this version of the trigger is created, the INSERT statement

INSERT INTO COURSE (description, cost, prerequisite)
VALUES ('Test Course', 0, 999);

causes the following error:

INSERT INTO COURSE (description, cost, prerequisite)
*
ERROR at line 1:
ORA-20002: Prerequisite is not valid!
ORA-06512: at "STUDENT.COURSE_BI", line 21
ORA-04088: error during execution of trigger 'STUDENT.COURSE_BI'

17.2.2 Answers

a) What output is produced after each INSERT statement is issued?

A1: Answer: Your output should look similar to the following:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', New York', 'NY', '10019');

1 row created.

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York', 'NY', '12345');
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York',
 *
ERROR at line 2:
ORA-02291: integrity constraint (STUDENT.STU_ZIP_FK)
violated - parent key not found
ORA-06512: at "STUDENT.STUDENT_ADDRESS_INS", line 2
ORA-04088: error during execution of trigger 'STUDENT.
STUDENT_ADDRESS_INS'

b) Explain why the second INSERT statement causes an error.

A2: Answer: The second INSERT statement causes an error because it violates the foreign key constraint on the STUDENT table. The
value of the zipcode provided at the time of an insert does not have a corresponding record in the ZIPCODE table.

The ZIP column of the STUDENT table has a foreign key constraint STU_ZIP_FK defined on it. It means that each time a record is inserted into
the STUDENT table, the incoming value of zipcode is checked by the system in the ZIPCODE table. If there is a corresponding record, the
INSERT statement against the STUDENT table does not cause errors. For example, the first INSERT statement is successful because the
ZIPCODE table contains a record corresponding to the value of zip '10019'. The second insert statement causes an error because there is no
record in the ZIPCODE table corresponding to the value of zip '12345'.

c) Modify the trigger so that it checks the value of the zipcode provided by the INSERT statement against the ZIPCODE table and
raises an error if there is no such value.

A3: Answer: Your trigger should look similar to the following trigger. All changes are shown in bold letters.

-- ch17_3b.sql, version 2.0
CREATE OR REPLACE TRIGGER student_address_ins
INSTEAD OF INSERT ON student_address
FOR EACH ROW
DECLARE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE
 v_zip VARCHAR2(5);
BEGIN
 SELECT zip
 INTO v_zip
 FROM zipcode
 WHERE zip = :NEW.ZIP;

 INSERT INTO STUDENT
 (student_id, first_name, last_name, street_address, zip, registration_date, created_by, created_date, modified_by, modified_date)
 VALUES
 (:NEW.STUDENT_ID, :NEW.FIRST_NAME, :NEW.LAST_NAME, :NEW.STREET_ADDRESS, :NEW.ZIP, SYSDATE, USER, SYSDATE, USER, SYSDATE);

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20002, 'Zip code is not valid!');
END;

In this version of the trigger, the incoming value of zipcode is checked against the ZIPCODE table via the SELECT INTO statement. If the
SELECT INTO statement does not return any rows, the NO_DATA_FOUND exception is raised and the error message stating 'Zip code is not
valid!' is displayed on the screen.

Once this trigger is created, the second INSERT statement produces the following output:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York', 'NY', '12345');
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York',
 *
ERROR at line 2:
ORA-20002: Zip code is not valid!
ORA-06512: at "STUDENT.STUDENT_ADDRESS_INS", line 18
ORA-04088: error during execution of trigger
'STUDENT.STUDENT_ADDRESS_INS'

d) Modify the trigger so that it checks the value of the zipcode provided by the INSERT statement against the ZIPCODE table. If there
is no corresponding record in the ZIPCODE table, the trigger should create a new record for the given value of zip before adding a
new record to the STUDENT table.

A4: Answer: Your trigger should look similar to the following trigger. All changes are shown in bold letters.

-- ch17_3c.sql, version 3.0
CREATE OR REPLACE TRIGGER student_address_ins
INSTEAD OF INSERT ON student_address
FOR EACH ROW
DECLARE
 v_zip VARCHAR2(5);
BEGIN
 BEGIN
 SELECT zip
 INTO v_zip
 FROM zipcode
 WHERE zip = :NEW.ZIP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO ZIPCODE
 (zip, city, state, created_by, created_date, modified_by,modified_date)
 VALUES
 (:NEW.ZIP, :NEW.CITY, :NEW.STATE, USER,
 SYSDATE, USER, SYSDATE);
 END;
 INSERT INTO STUDENT
 (student_id, first_name, last_name, street_address, zip, registration_date, created_by, created_date, modified_by, modified_date)
 VALUES
 (:NEW.STUDENT_ID, :NEW.FIRST_NAME, :NEW.LAST_NAME, :NEW.STREET_ADDRESS, :NEW.ZIP, SYSDATE, USER,
 SYSDATE, USER, SYSDATE);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just like in the previous version, the existence of the incoming value of zipcode is checked against the ZIPCODE table via the SELECT INTO
statement. When a new value of zipcode is provided by the INSERT statement, the SELECT INTO statement does not return any rows. As a
result, the NO_DATA_FOUND exception is raised and the INSERT statement against the ZIPCODE table is executed. Next, control is passed to
the INSERT statement against the STUDENT table.

It is important to realize that the SELECT INTO statement and the exception-handling section have been placed in the inner block. This
placement ensures that once the exception NO_DATA_FOUND is raised the trigger does not terminate but proceeds with its normal execution.

Once this trigger is created, the second INSERT statement completes successfully:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith',
 '123 Main Street', 'New York', 'NY', '12345');

1 row created.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) How many times does a row trigger fire if a DML (INSERT, UPDATE, or DELETE) operation is issued against
a table?

a. _____ As many times as there are rows affected by the DML operation

b. _____ Once per DML operation

2) How many times does a statement trigger fire if a DML (INSERT, UPDATE, or DELETE) operation is issued
against a table?

a. _____ As many times as there are rows affected by the DML operation

b. _____ Once per DML operation

3) What does the statement FOR EACH ROW mean?

a. _____ A trigger is a statement trigger.

b. _____ A trigger is a row trigger.

4) INSTEAD OF triggers are defined on which of the following?

a. _____ Table

b. _____ View

c. _____ None of the above

5) INSTEAD OF triggers must always be which of the following?

a. _____ Statement trigger

b. _____ Row trigger

Answers appear in Appendix A, Section 17.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.3 Mutating Table Issues

Lab Objective
After this Lab, you will be able to:

 Understand Mutating Tables

A table having a DML statement issued against it is called mutating table. For a trigger, it is the table on which this
trigger is defined. If a trigger tries to read or modify such a table, it causes a mutating table error. As a result, a SQL
statement issued in the body of the trigger may not read or modify a mutating table.

Note that prior to Oracle 8i, there was another restriction on the SQL statement issued in the body of a trigger that
caused a different type of error called a constraining table error. A table read from for a referential integrity constraint
is called a constraining table. So an SQL statement issued in the body of a trigger could not modify the columns of a
constraining table having primary, foreign, or unique constraints defined of them. However, staring with Oracle 8i, there
is no such restriction.

Consider the following example of a trigger causing a mutating table error. It is important for you to note that a
mutating table error is a runtime error.

 FOR EXAMPLE

CREATE OR REPLACE TRIGGER section_biu
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW
DECLARE
 v_total NUMBER;
 v_name VARCHAR2(30);
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section -- SECTION is MUTATING
 WHERE instructor_id = :NEW.INSTRUCTOR_ID;

 -- check if the current instructor is overbooked
 IF v_total >= 10 THEN
 SELECT first_name||' '||last_name
 INTO v_name
 FROM instructor
 WHERE instructor_id = :NEW.instructor_id;

 RAISE_APPLICATION_ERROR (-20000, 'Instructor, '||
 v_name||', is overbooked');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001,
 'This is not a valid instructor');
END;

This trigger fires before an INSERT or UPDATE statement is issued on the SECTION table. The trigger checks whether
the specified instructor is teaching too many sections. If the number of sections taught by an instructor is equal to or
greater than 10, the trigger issues an error message stating that this instructor teaches too much.

Now, consider the following UPDATE statement issued against the SECTION table:

UPDATE section
 SET instructor_id = 101
 WHERE section_id = 80;

When this UPDATE statement is issued against the SECTION table, the following error message is displayed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE section
*
ERROR at line 1:
ORA-04091: table STUDENT.SECTION is mutating, trigger/function may not see it
ORA-06512: at "STUDENT.SECTION_BIU", line 5
ORA-04088: error during execution of trigger
'STUDENT.SECTION_BIU'

Notice that the error message is stating that the SECTION table is mutating and the trigger may not see it. This error
message is generated because there is a SELECT INTO statement,

SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE instructor_id = :NEW.INSTRUCTOR_ID;

issued against the SECTION table that is being modified and is therefore mutating.

In order to correct this problem, the following steps must be accomplished:

1. An existing trigger must be modified so that it records the instructor's ID, queries the INSTRUCTOR table, and
records the instructor's name.

2. In order to record the instructor's ID and name as described in the preceding step, two global variables must be
declared with the help of a package.

3. A new trigger must be created on the SECTION table. This trigger should be a statement-level trigger that fires
after the INSERT or UPDATE statement has been issued. It will check the number of courses that are taught by
a particular instructor and will raise an error if the number is equal to or greater than 10.

Consider the following package:

CREATE OR REPLACE PACKAGE instructor_adm AS
 v_instructor_id instructor.instructor_id%TYPE;
 v_instructor_name varchar2(50);
END;

Notice that this package does not have a package body and is used to declare two global variables only, v_instructor_id
and v_instructor_name.

Next, the existing trigger SECTION_BIU is modified as follows:

CREATE OR REPLACE TRIGGER section_biu
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW
BEGIN
 IF :NEW.INSTRUCTOR_ID IS NOT NULL THEN
 BEGIN
 instructor_adm.v_instructor_id :=
 :NEW.INSTRUCTOR_ID;
 SELECT first_name||' '||last_name
 INTO instructor_adm.v_instructor_name
 FROM instructor
 WHERE instructor_id =
 instructor_adm.v_instructor_id;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20001, 'This is not a valid instructor');
 END;
 END IF;
END;

In this version of the trigger, the global variables v_instructor_id and v_instructor_name are initialized if the incoming value
of the instructor's ID is not null. Notice that the variable names are prefixed by the package name. This type of notation
is called dot notation.

Finally, a new trigger is created on the SECTION table as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE TRIGGER section_aiu
AFTER INSERT OR UPDATE ON section
DECLARE
 v_total INTEGER;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE instructor_id = instructor_adm.v_instructor_id;

 -- check if the current instructor is overbooked
 IF v_total >= 10 THEN
 RAISE_APPLICATION_ERROR (-20000, 'Instructor, '||
 instructor_adm.v_instructor_name||
 ', is overbooked');
 END IF;
END;

This trigger checks the number of courses that are taught by a particular instructor and raises an error if the number is
equal to or greater than 10. This is accomplished with the help of two global variables, v_instructor_id and
v_instructor_name. As mentioned earlier, these variables are populated by the SECTION_BIU trigger that fires before the
UPDATE statement is issued against the SECTION table.

As a result, the UPDATE statement used earlier

UPDATE section
 SET instructor_id = 101
 WHERE section_id = 80;

causes a different error

UPDATE section
 *
ERROR at line 1:
ORA-20000: Instructor, Fernand Hanks, is overbooked
ORA-06512: at "STUDENT.SECTION_AIU", line 11
ORA-04088: error during execution of trigger 'STUDENT.SECTION_AIU'

Notice that this error has been generated by the trigger SECTION_AIU and does not contain any message about a
mutating table. Next, consider a similar UPDATE statement for a different instructor ID that does not cause any errors:

UPDATE section
 SET instructor_id = 109
 WHERE section_id = 80;

1 row updated.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.3 Exercises

17.3.1 Understand Mutating Tables

In this exercise, you modify a trigger that causes a mutating table error when an INSERT statement is issued against
the ENROLLMENT table.

Create the following trigger:

-- ch17_4a.sql, version 1.0
CREATE OR REPLACE TRIGGER enrollment_biu
BEFORE INSERT OR UPDATE ON enrollment
FOR EACH ROW
DECLARE
 v_total NUMBER;
 v_name VARCHAR2(30);
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE student_id = :NEW.STUDENT_ID;

 -- check if the current student is enrolled into too
 -- many courses
 IF v_total >= 3 THEN
 SELECT first_name||' '||last_name
 INTO v_name
 FROM student
 WHERE student_id = :NEW.STUDENT_ID;

 RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_name||
 ', is registered for 3 courses already');
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20001, 'This is not a valid student');
END;

Issue the following INSERT and UPDATE statements:

INSERT INTO ENROLLMENT
 (student_id, section_id, enroll_date, created_by, created_date, modified_by, modified_date)
VALUES
 (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

INSERT INTO ENROLLMENT
 (student_id, section_id, enroll_date, created_by, created_date, modified_by, modified_date)
VALUES
 (407, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

UPDATE ENROLLMENT
 SET student_id = 404
 WHERE student_id = 407;

Answer the following questions:

a) What output is produced after the INSERT and UPDATE statements are issued?

b) Explain why two of the statements did not succeed.

c) Modify the trigger so that it does not cause a mutating table error when an UPDATE statement is issued
against the ENROLLMENT table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 17.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

17.3 Answers

a) What output is produced after the INSERT and UPDATE statements are issued?

A1: Answer: Your output should look as follows:

INSERT INTO ENROLLMENT
 (student_id, section_id, enroll_date, created_by, created_date, modified_by, modified_date)
VALUES
 (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);
INSERT INTO ENROLLMENT
 *
ERROR at line 1:
ORA-20000: Student, Salewa Zuckerberg, is registered for 3 courses already
ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 17
ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BIU'
INSERT INTO ENROLLMENT
 (student_id, section_id, enroll_date, created_by, created_date, modified_by, modified_date)
VALUES
 (407, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

1 row created.

UPDATE enrollment
SET student_id = 404
WHERE student_id = 407;

UPDATE enrollment
*
ERROR at line 1:
ORA-04091: table STUDENT.ENROLLMENT is mutating, trigger/function may not see it
ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 5
ORA-04088: error during execution of trigger 'STUDENT.
ENROLLMENT_BIU'

b) Explain why two of the statements did not succeed.

A2: Answer: The INSERT statement does not succeed because it tries to create a record in the ENROLLMENT
table for a student that is already registered for three courses.

The IF statement

-- check if the current student is enrolled into too many
-- courses
IF v_total >= 3 THEN
 SELECT first_name||' '||last_name
 INTO v_name
 FROM student
 WHERE student_id = :NEW.STUDENT_ID;

 RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_name||
 ', is registered for 3 courses already');
END IF;

in the body of the trigger evaluates to TRUE, and as a result the RAISE_APPLICATION_ERROR statement raises a user-
defined exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The UPDATE statement does not succeed, because a trigger tries to read data from the mutating table.

The SELECT INTO

SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE student_id = :NEW.STUDENT_ID;

statement is issued against the ENROLLMENT table that is being modified and therefore is mutating.

c) Modify the trigger so that it does not cause a mutating table error when an UPDATE statement is issued
against the ENROLLMENT table.

A3: Answer: First, create a package to hold the student's ID and name as follows:

CREATE OR REPLACE PACKAGE student_adm AS
 v_student_id student.student_id%TYPE;
 v_student_name varchar2(50);
END;

Next, the existing trigger, SECTION_BIU, is modified as follows:

CREATE OR REPLACE TRIGGER enrollment_biu
BEFORE INSERT OR UPDATE ON enrollment
FOR EACH ROW
BEGIN
 IF :NEW.STUDENT_ID IS NOT NULL THEN
 BEGIN
 student_adm.v_student_id := :NEW.STUDENT_ID;

 SELECT first_name||' '||last_name
 INTO student_adm.v_student_name
 FROM student
 WHERE student_id = student_adm.v_student_id;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR
 (-20001, 'This is not a valid student');
 END;
 END IF;
END;

Finally, create a new statement-level trigger on the ENROLLMENT table as follows:

CREATE OR REPLACE TRIGGER enrollment_aiu
AFTER INSERT OR UPDATE ON enrollment
DECLARE
 v_total INTEGER;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE student_id = student_adm.v_student_id;
 -- check if the current student is enrolled into too
 -- many courses
 IF v_total >= 3 THEN
 RAISE_APPLICATION_ERROR (-20000, 'Student, '||
 student_adm.v_student_name||
 ', is registered for 3 courses already ');
 END IF;
END;

Once the package and two triggers are created, the UPDATE statement does not cause a mutating table
error.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 17.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) You are allowed to issue any SQL statement in the body of a trigger.

a. _____ True

b. _____ False

2) It is always permissible to issue a SELECT statement in the body of a trigger. However, it is not always
permissible to issue an INSERT, UPDATE, or DELETE statement.

a. _____ True

b. _____ False

3) Which of the following is an SQL statement restriction?

a. _____ No SQL statement may be issued against any table in the body of a trigger.

b. _____ No SQL statement may be issued against the mutating table in the body of a trigger.

c. _____ A SQL statement can be issued only against the mutating table in the body of a trigger.

4) Which of the following is a mutating table?

a. _____ A table having a SELECT statement issued against it

b. _____ A table having a trigger defined on it

c. _____ A table being modified by a DML statement

5) Which of the following is a constraining table?

a. _____ A table having a SELECT statement issued against it

b. _____ A table having a trigger defined on it

c. _____ A table needing to be read from for a referential integrity constraint

Answers appear in Appendix A, Section 17.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17 Test Your Thinking

In this chapter you learned about triggers. Here are some projects that will help you test the depth of your
understanding:

1) Create the following trigger: Create or modify a trigger on the ENROLLMENT
table that fires before an INSERT statement. Make sure all columns that have
NOT NULL and foreign key constraints defined on them are populated with
their proper values.

2) Create the following trigger: Create or modify a trigger on the SECTION table
that fires before an UPDATE statement. Make sure that the trigger validates
incoming values so that there are no constraint violation errors.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18. Collections
Chapter Objectives
In this Chapter, you will learn about:

 PL/SQL Tables

 Varrays

 Multilevel Collections

Throughout this book you have explored different types of PL/SQL identifiers or variables that represent individual
elements (for example, a variable that represents a grade of a particular student). However, often in your programs
you want to have the ability to represent a group of elements (for example, the grades for a class of students). In order
to support this technique, PL/SQL provides collection datatypes that work just like arrays available in other third-
generation programming languages.

A collection is a group of elements of the same datatype. Each element is identified by a unique subscript that
represents its position in the collection. In this chapter you will learn about two collection datatypes: table and varray.
In addition, you will learn about multilevel collections that have been introduced in Oracle 9i and are not supported by
the previous releases.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.1 PL/SQL Tables

Lab Objectives
After this Lab, you will be able to:

 Use Index-By Tables

 Use Nested Tables

A PL/SQL table is similar to one-column database table. The rows of a PL/SQL table are not stored in any predefined
order, yet when they are retrieved in a variable each row is assigned a consecutive subscript starting at 1, as shown in
the in Figure 18.1.

Figure 18.1. PL/SQL Table

Figure 18.1 shows a PL/SQL table consisting of integer numbers. Each number is assigned a unique subscript that
corresponds to its position in the table. For example, number 3 has subscript 5 assigned to it because it is stored in the
fifth row of the PL/SQL table.

There are two types of PL/SQL tables: index-by tables and nested tables. They have the same structure, and their rows
are accessed in the same way via subscript notation as shown in Figure 18.1. The main difference between these two
types is that nested tables can be stored in a database column, and the index-by tables cannot.

Index-By Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The general syntax for creating an index-by table is as follows (the reserved words and phrases surrounded by brackets
are optional):

TYPE type_name IS TABLE OF element_type [NOT NULL]
 INDEX BY BINARY_INTEGER;
table_name TYPE_NAME;

Notice that there are two steps in the declaration of an index-by table. First, a table structure is defined using the TYPE
statement, where TYPE_NAME is the name of the type that is used in the second step to declare an actual table. An
ELEMENT_TYPE is any PL/SQL datatype, such as NUMBER, VARCHAR2, or DATE, with some restrictions. The majority of
restricted datatypes are beyond the scope of this book and are not mentioned in this chapter. However, you can find
the complete list in Oracle help available online. Second, the actual table is declared based on the type specified in the
previous step. Consider the following code fragment.

 FOR EXAMPLE

DECLARE
 TYPE last_name_type IS TABLE OF student.last_name%TYPE
 INDEX BY BINARY_INTEGER;
 last_name_tab last_name_type;

In this example, type last_name_type is declared based on the column LAST_NAME of the STUDENT table. Next, the
actual index-by table last_name_tab is declared as LAST_NAME_TYPE.

As mentioned earlier, the individual elements of a PL/SQL table are referenced via subscript notation as follows:

table_name(subscript)

This technique is demonstrated in the following example.

 FOR EXAMPLE

DECLARE
 CURSOR name_cur IS
 SELECT last_name
 FROM student
 WHERE rownum <= 10;

 TYPE last_name_type IS TABLE OF student.last_name%TYPE
 INDEX BY BINARY_INTEGER;
 last_name_tab last_name_type;

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 last_name_tab(v_counter) := name_rec.last_name;
 DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||
 last_name_tab(v_counter));
 END LOOP;
END;

In this example, the index-by table last_name_tab is populated with last names from the STUDENT table. Notice that the
variable v_counter is used as a subscript to reference individual table elements. This example produces the following
output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

It is important to note that referencing a nonexistent row raises the
NO_DATA_FOUND exception as follows:

DECLARE
 CURSOR name_cur IS
 SELECT last_name
 FROM student
 WHERE rownum <= 10;

 TYPE last_name_type IS TABLE OF student.last_name%TYPE
 INDEX BY BINARY_INTEGER;
 last_name_tab last_name_type;

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 last_name_tab(v_counter) := name_rec.last_name;
 DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||
 '): '||last_name_tab(v_counter));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('last_name(11): '||last_name_tab(11));
END;

This example produces the output shown below:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 19

Notice that the DBMS_OUTPUT.PUT_LINE statement shown in bold letters
raises the NO_DATA_FOUND exception because it references the eleventh row
of the table, even though the table contains only ten rows.

Nested Tables

The general syntax for creating a nested table is as follows (the reserved words and phrases surrounded by brackets
are optional):

TYPE type_name IS TABLE OF element_type [NOT NULL];
table_name TYPE_NAME;

Notice that this declaration is very similar to the declaration of an index-by table except that there is no

INDEX BY BINARY_INTEGER

clause. Just like in the case of an index-by table, there are restrictions that apply to an ELEMENT_TYPE of a nested
table. These restrictions are listed in Oracle help available online.

It is important to note that a nested table must be initialized before its individual elements can be referenced. Consider
the modified version of the example used earlier in this lab. Notice that the last_name_type is defined as a nested table
(there is no INDEX BY clause).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(there is no INDEX BY clause).

 FOR EXAMPLE

DECLARE
 CURSOR name_cur IS
 SELECT last_name
 FROM student
 WHERE rownum <= 10;

 TYPE last_name_type IS TABLE OF student.last_name%TYPE;
 last_name_tab last_name_type;

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 last_name_tab(v_counter) := name_rec.last_name;
 DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||
 last_name_tab(v_counter));
 END LOOP;
END;

This example causes the following error:

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 14

The example causes an error because a nested table is automatically NULL when it is declared. In other words, there
are no individual elements yet because the nested table itself is NULL. In order to reference the individual elements of
the nested table, it must be initialized with the help of a system-defined function called constructor. The constructor has
the same name as the nested table type. For example,

last_name_tab := last_name_type('Rosenzweig', 'Silvestrova');

This statement initializes the last_name_tab table to two elements. Note that most of the time, it is not known in advance
what values should constitute a particular nested table. So, the following statement produces an empty but non-null
nested table.

last_name_tab := last_name_type();

Notice that there are no arguments passed to a constructor.

Consider a modified version of the example shown previously.

 FOR EXAMPLE

DECLARE
 CURSOR name_cur IS
 SELECT last_name
 FROM student
 WHERE rownum <= 10;

 TYPE last_name_type IS TABLE OF student.last_name%TYPE;
 last_name_tab last_name_type := last_name_type();

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 last_name_tab.EXTEND;
 last_name_tab(v_counter) := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||
 last_name_tab(v_counter));
 END LOOP;
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

In this version, the nested table is initialized at the time of the declaration. This means that it is empty, but non-null. In
the cursor loop, there is a statement with one of the collection methods, EXTEND. This method allows you to increase
the size of the collection. Note that the EXTEND method cannot be used with index-by tables. You will see detailed
explanation of various collection methods later in this chapter.

Next, the nested table is assigned values just like the index-by table in the original version of the example. When run,
the script produces the following output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello

PL/SQL procedure successfully completed.

It is important to note the difference between NULL collection and empty
collection. If a collection has not been initialized, referencing its individual
elements causes the following error:

DECLARE
 TYPE integer_type IS TABLE OF INTEGER;
 integer_tab integer_type;

 v_counter integer := 1;
BEGIN
 DBMS_OUTPUT.PUT_LINE (integer_tab(v_counter));
END;

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 7

If a collection has been initialized so that it is empty, referencing its individual
elements causes a different error:

DECLARE
 TYPE integer_type IS TABLE OF INTEGER;
 integer_tab integer_type := integer_type();

 v_counter integer := 1;
BEGIN
 DBMS_OUTPUT.PUT_LINE (integer_tab(v_counter));
END;

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 7

Collection Methods

In the previous examples, you have seen one of the collection methods, EXTEND. A collection method is a built-in
function that is called using a dot notation as follows:

collection_name.method_date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

collection_name.method_date

The following list explains collection methods that allow you to manipulate or gain information about a particular
collection:

EXISTS— Returns TRUE if a specified element exists in a collection. This method can be used to avoid raising
SUBSCRIPT_OUTSIDE_ LIMIT exceptions.

COUNT— Returns the total number of elements in a collection.

EXTEND— Increases the size of a collection.

DELETE— Deletes either all elements, elements in the specified range, or a particular element from a collection.
Note that PL/SQL keeps placeholders of the deleted elements.

FIRST and LAST— Return subscripts of the first and last elements of a collection. Note that if first elements of a
nested table are deleted, the FIRST method returns a value greater than one. If elements have been deleted
from the middle of a nested table, the LAST method returns a value greater than the COUNT method.

PRIOR and NEXT— Return subscripts that precede and succeed a specified collection subscript.

TRIM— Removes either one or a specified number of elements from the end of a collection. Note that PL/SQL
does not keep placeholders for the trimmed elements.

Note that DELETE and TRIM methods cannot be used with index-by tables.

Consider the following example, which illustrates the use of various collection methods.

 FOR EXAMPLE

DECLARE
 TYPE index_by_type IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;
 index_by_table index_by_type;

 TYPE nested_type IS TABLE OF NUMBER;
 nested_table nested_type := nested_type(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

BEGIN
 -- Populate index by table
 FOR i IN 1..10 LOOP
 index_by_table(i) := i;
 END LOOP;

 IF index_by_table.EXISTS(3) THEN
 DBMS_OUTPUT.PUT_LINE ('index_by_table(3) = '||index_by_table(3));
 END IF;

 -- delete 10th element from a collection
 nested_table.DELETE(10);
 -- delete elements 1 through 3 from a collection
 nested_table.DELETE(1,3);
 index_by_table.DELETE(10);

 DBMS_OUTPUT.PUT_LINE ('nested_table.COUNT = '||nested_table.COUNT);
 DBMS_OUTPUT.PUT_LINE ('index_by_table.COUNT = '||index_by_table.COUNT);

 DBMS_OUTPUT.PUT_LINE ('nested_table.FIRST = '||nested_table.FIRST);
 DBMS_OUTPUT.PUT_LINE ('nested_table.LAST = '||nested_table.LAST);
 DBMS_OUTPUT.PUT_LINE ('index_by_table.FIRST = '||index_by_table.FIRST);
 DBMS_OUTPUT.PUT_LINE ('index_by_table.LAST = '||index_by_table.LAST);

 DBMS_OUTPUT.PUT_LINE ('nested_table.PRIOR(2) = '||nested_table. PRIOR(2));
 DBMS_OUTPUT.PUT_LINE ('nested_table.NEXT(2) = '||nested_table.NEXT(2));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DBMS_OUTPUT.PUT_LINE ('nested_table.NEXT(2) = '||nested_table.NEXT(2));
 DBMS_OUTPUT.PUT_LINE ('index_by_table.PRIOR(2) = '||index_by_table.PRIOR(2));
 DBMS_OUTPUT.PUT_LINE ('index_by_table.NEXT(2) = '||index_by_table.NEXT(2));

 -- Trim last two elements
 nested_table.TRIM(2);
 -- Trim last element
 nested_table.TRIM;

 DBMS_OUTPUT.PUT_LINE('nested_table.LAST = '||nested_table.LAST);
END;

Consider the output returned by the example:

index_by_table(3) = 3
nested_table.COUNT = 6
index_by_table.COUNT = 9
nested_table.FIRST = 4
nested_table.LAST = 9
index_by_table.FIRST = 1
index_by_table.LAST = 9
nested_table.PRIOR(2) =
nested_table.NEXT(2) = 4
index_by_table.PRIOR(2) = 1
index_by_table.NEXT(2) = 3
nested_table.LAST = 7

PL/SQL procedure successfully completed.

The first line of the output

index_by_table(3) = 3

is produced because the EXISTS method returns TRUE, and as a result, the IF statement

IF index_by_table.EXISTS(3) THEN
 DBMS_OUTPUT.PUT_LINE ('index_by_table(3) = '||
 index_by_table(3));
END IF;

evaluates to TRUE as well.

The second and third lines of the output

nested_table.COUNT = 6
index_by_table.COUNT = 9

show the results of method COUNT after some elements were deleted from the index-by and nested tables.

Next, lines four through seven of the output

nested_table.FIRST = 4
nested_table.LAST = 9
index_by_table.FIRST = 1
index_by_table.LAST = 9

show the results of FIRST and LAST methods. Notice that the FIRST method applied to the nested table returns 4
because the first three elements were deleted earlier.

Next, lines eight through eleven of the output

nested_table.PRIOR(2) =
nested_table.NEXT(2) = 4
index_by_table.PRIOR(2) = 1
index_by_table.NEXT(2) = 3

show the results of PRIOR and NEXT methods. Notice that the PRIOR method applied to the nested table returns NULL
because the first element was deleted earlier.

Finally, the last line of the output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the last line of the output

nested_table.LAST = 7

shows the value of the last subscript after the last three elements were removed. As mentioned earlier, once the
DELETE method is issued, the PL/SQL keeps placeholders of the deleted elements. Therefore, the first call of the TRIM
method removed ninth and tenth elements from the nested table, and the second call of the TRIM method removed
eighth element of the nested table. As a result, the LAST method returned value 7 as the last subscript of the nested
table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.1 Exercises

18.1.1 Use Index-By Tables

In this exercise, you will learn more about index-by tables discussed earlier in the chapter.

Create the following PL/SQL script:

-- ch18_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE
 INDEX BY BINARY_INTEGER;
 course_tab course_type;

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab(v_counter) := course_rec.description;
 END LOOP;
END;

Answer the following questions:

a) Explain the script ch18_1a.sql.

b) Modify the script so that rows of the index-by table are displayed on the screen.

c) Modify the script so that only first and last rows of the index-by table are displayed on the screen.

d) Modify the script by adding the following statements and explain the output produced:

i. Display the total number of elements in the index-by table after it has been populated on the
screen.

ii. Delete the last element, and display the total number of elements of the index-by table again.

iii. Delete the fifth element, and display the total number of elements and the subscript of the last
element of the index-by table again.

18.1.2 Use Nested Tables

In this exercise, you will learn more about nested tables discussed earlier in this chapter.

Answer the following questions:

a) Modify the script 18_1a.sql used in Exercise 18.1.1. Instead of using an index-by table, use a nested table.

b) Modify the script by adding the following statements and explain the output produced:

i. Delete the last element of the nested table, and then reassign a new value to it. Execute the script.

ii. Trim the last element of the nested table, and then reassign a new value to it. Execute the script.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) How would you modify the script created, so that there is no error generated when a new value is assigned
to the trimmed element?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 18.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

18.1.1 Answers

a) Explain the script ch18_1a.sql.

A1: Answer: The declaration section of the script contains definition of the index-by table type, course_type.
This type is based on the column DESCRIPTION of the table COURSE. Next, the actual index-by table is
declared as course_tab.

The executable section of the script populates the course_tab table in the cursor FOR loop. Each element of
the index-by table is referenced by its subscript, v_counter. For each iteration of the loop, the value of
v_counter is incremented by 1 so that each new description value is stored in the new row of the index-by
table.

b) Modify the script so that rows of the index-by table are displayed on the screen.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE
 INDEX BY BINARY_INTEGER;
 course_tab course_type;

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab(v_counter):= course_rec.description;
 DBMS_OUTPUT.PUT_LINE('course('||v_counter||'): '||course_tab(v_counter));
 END LOOP;
END;

Consider another version of the same script.

-- ch18_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE
 INDEX BY BINARY_INTEGER;
 course_tab course_type;

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab(v_counter):= course_rec.description;
 END LOOP;

 FOR i IN 1..v_counter LOOP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR i IN 1..v_counter LOOP
 DBMS_OUTPUT.PUT_LINE('course('||i||'): '||course_tab(i));
 END LOOP;
END;

When run, both versions produce the same output:

course(1): DP Overview
course(2): Intro to Computers
course(3): Intro to Programming
course(4): Structured Programming Techniques
course(5): Hands-On Windows
course(6): Intro to Java Programming
course(7): Intermediate Java Programming
course(8): Advanced Java Programming
course(9): JDeveloper
course(10): Intro to Unix
course(11): Basics of Unix Admin
course(12): Advanced Unix Admin
course(13): Unix Tips and Techniques
course(14): Structured Analysis
course(15): Project Management
course(16): Database Design
course(17): Internet Protocols
course(18): Java for C/C++ Programmers
course(19): GUI Programming
course(20): Intro to SQL
course(21): Oracle Tools
course(22): PL/SQL Programming
course(23): Intro to Internet
course(24): Intro to the Basic Language
course(25): Operating Systems
course(26): Network Administration
course(27): JDeveloper Lab
course(28): Database System Principles
course(29): JDeveloper Techniques
course(30): DB Programming in Java

PL/SQL procedure successfully completed.

c) Modify the script so that only first and last rows of the index-by table are displayed on the screen.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_1d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE
 INDEX BY BINARY_INTEGER;
 course_tab course_type;

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab(v_counter) := course_rec.description;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('course('||course_tab.FIRST||'): '||
 course_tab(course_tab.FIRST));
 DBMS_OUTPUT.PUT_LINE('course('||course_tab.LAST||'): '||
 course_tab(course_tab.LAST));
END;

Consider the statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

course_tab(course_tab.FIRST) and course_tab(course_tab.LAST)

used in this example. While these statements look somewhat different from the statements that you have seen so far,
they produce the same effect as

course_tab(1) and course_tab(30)

statements because, as mentioned earlier, the FIRST and LAST methods return the subscripts of the first and last
elements of a collection, respectively. In this example, the index-by table contains 30 elements, where the first element
has subscript of 1, and the last element has subscript of 30.

This version of the script produces the following output:

course(1): DP Overview
course(30): DB Programming in Java

PL/SQL procedure successfully completed.

d) Modify the script by adding the following statements and explain the output produced:

i. Display the total number of elements in the index-by table after it has been populated on the
screen.

ii. Delete the last element, and display the total number of elements of the index-by table again.

iii. Delete the fifth element, and display the total number of elements and the subscript of the last
element of the index-by table again.

A4: Answer: Your script should look similar to the following script. All changes are shown in bold letters.

-- ch18_1e.sql, version 5.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE
 INDEX BY BINARY_INTEGER;
 course_tab course_type;

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab(v_counter) := course_rec.description;
 END LOOP;

 -- Display the total number of elements in the index-by
 -- table
 DBMS_OUTPUT.PUT_LINE ('1. Total number of elements: '||course_tab.COUNT);

 -- Delete the last element of the index-by table
 -- Display the total number of elements in the index-by
 -- table
 course_tab.DELETE(course_tab.LAST);
 DBMS_OUTPUT.PUT_LINE ('2. Total number of elements: '||course_tab.COUNT);

 -- Delete the fifth element of the index-by table
 -- Display the total number of elements in the index-by
 -- table
 -- Display the subscript of the last element of the
 -- index-by table
 course_tab.DELETE(5);
 DBMS_OUTPUT.PUT_LINE ('3. Total number of elements: '||course_tab.COUNT);
 DBMS_OUTPUT.PUT_LINE ('3. The subscript of the last '||'element: '||course_tab.LAST);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When run, this example produces the following output:

1. Total number of elements: 30
2. Total number of elements: 29
3. Total number of elements: 28
3. The subscript of the last element: 29

PL/SQL procedure successfully completed.

First, the total number of the elements in the index-by table is calculated via the COUNT method and displayed on the
screen. Second, the last element is deleted via DELETE and LAST methods, and the total number of the elements in the
index-by table is displayed on the screen again. Third, the fifth element is deleted, and the total number of the
elements in the index-by table and the subscript of the last element are displayed on the screen.

Consider the last two lines on the output. After the fifth element of the index-by table is deleted, the COUNT method
returns value 28, and the LAST method returns the value 29. Usually, the values returned by the COUNT and LAST
methods are equal. However, when an element is deleted from the middle of the index-by table, the value returned by
the LAST method is greater than the value returned by the COUNT method because the COUNT method ignores deleted
elements.

18.1.2 Answers

a) Modify the script 18_1a.sql used in Exercise 18.1.1. Instead of using an index-by table, use a nested table.

A1: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;
 course_tab course_type := course_type();

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab.EXTEND;
 course_tab(v_counter) := course_rec.description;
 END LOOP;
END;

b) Modify the script by adding the following statements and explain the output produced:

i. Delete the last element of the nested table, and then reassign a new value to it. Execute the
script.

ii. Trim the last element of the nested table, and then reassign a new value to it. Execute the script.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;
 course_tab course_type := course_type();

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab.EXTEND;
 course_tab(v_counter) := course_rec.description;
 END LOOP;

 course_tab.DELETE(30);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 course_tab.DELETE(30);
 course_tab(30) := 'New Course';
END;

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;
 course_tab course_type := course_type();

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab.EXTEND;
 course_tab(v_counter) := course_rec.description;
 END LOOP;

 course_tab.TRIM;
 course_tab(30) := 'New Course';
END;

When run, this version of the script produces the following error:

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 18

In the previous version of the script, the last element of the nested table is removed via the DELETE method. As
mentioned earlier, when the DELETE method is used, the PL/SQL keeps a placeholder of the deleted element.
Therefore, the statement

course_tab(30) := 'New Course';

does not cause any errors.

In the current version of the script, the last element of the nested table is removed via the TRIM method. In this case,
the PL/SQL does not keep placeholder of the trimmed element because the TRIM method manipulates the internal size
of a collection. As a result, the reference to the trimmed elements causes 'Subscript beyond count' error.

c) How would you modify the script created, so that there is no error generated when a new value is
assigned to the trimmed element?

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_2d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR course_cur IS
 SELECT description
 FROM course;

 TYPE course_type IS TABLE OF course.description%TYPE;
 course_tab course_type := course_type();

 v_counter INTEGER := 0;
BEGIN
 FOR course_rec IN course_cur LOOP
 v_counter := v_counter + 1;
 course_tab.EXTEND;
 course_tab(v_counter) := course_rec.description;
 END LOOP;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 END LOOP;

 course_tab.TRIM;
 course_tab.EXTEND;
 course_tab(30) := 'New Course';
END;

In order to reference the trimmed element, the EXTEND method is use to increase the size on the collection. As a
result, the assignment statement

course_tab(30) := 'New Course';

does not cause any errors.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The main difference between the index-by and nested tables is that

a. _____ nested tables can be stored in a database column, and index-by tables cannot.

b. _____ index-by tables can be stored in a database column, and nested tables cannot.

2) An index-by table is indexed by what datatype?

a. _____ NUMBER

b. _____ INTEGER

c. _____ BINARY_INTEGER

d. _____ PLS_INTEGER

3) A nested table must be initialized prior to its use.

a. _____ True

b. _____ False

4) If a PL/SQL table contains one element

a. _____ the FIRST method returns value of one, and the LAST method returns NULL.

b. _____ the FIRST method returns NULL, and the LAST method returns value of one.

c. _____ the FIRST and LAST methods return a value of one.

d. _____ referring to these methods causes an error.

5) If a PL/SQL table has eight elements, the DELETE (3, 7) method deletes

a. _____ the third and seventh elements of the collection.

b. _____ the third element and ignores the seventh element of the collection.

c. _____ elements three to seven.

Answers appear in Appendix A, Section 18.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.2 Varrays

Lab Objective
After this Lab, you will be able to:

Use Varrays

As mentioned earlier, a varray is another collection type, and it stands for variable-size arrays. Similar to PL/SQL tables,
each element of a varray is assigned a consecutive subscript starting at 1, as shown in Figure 18.2.

Figure 18.2. Varray

Figure 18.2 shows a varray consisting of five integer numbers. Each number is assigned a unique subscript that
corresponds to its position in the varray.

It is important to note that a varray has a maximum size. In other words, a subscript of a varray has a fixed lower
bound equal to 1, and an upper bound that is extensible if such a need arises. In Figure 18.2, the upper bound of a
varray is 5, but it can be extended to 6, 7, 8, and so on up to 10. Therefore, a varray can contain a number of
elements, varying from zero (empty array) to its maximum size. You will recall that PL/SQL tables do not have a
maximum size that must be specified explicitly.

The general syntax for creating a varray is as follows (the reserved words and phrases surrounded by brackets are
optional):

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit) OF element_type [NOT NULL];
varray_name TYPE_NAME;

First, a varray structure is defined using the TYPE statement, where TYPE_NAME is the name of the type that is used in
the second step to declare an actual varray. Notice that there are two variations of the type, VARRAY and VARYING
ARRAY. A SIZE_LIMIT is a positive integer literal that specifies the upper bound of a varray. Just like in the case of
PL/SQL tables, there are restrictions that apply to an ELEMENT_TYPE of a varray. These restrictions are listed in Oracle
help available online. Second, the actual varray is declared based on the type specified in the first step.

Consider the following code fragment:

 FOR EXAMPLE

DECLARE
 TYPE last_name_type IS VARRAY(10) OF student.
 last_name%TYPE;
 last_name_varray last_name_type;

In this example, type last_name_type is declared as a varray of ten elements based on the column LAST_NAME of the
STUDENT table. Next, the actual varray last_name_varray is declared based on the LAST_NAME_TYPE.

Similar to nested tables, a varray is automatically NULL when it is declared and must be initialized before its individual
elements can be referenced. So consider a modified version of the example used in the previous lab. Instead of using
nested table, this version uses varray (changes are highlighted in bold).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nested table, this version uses varray (changes are highlighted in bold).

 FOR EXAMPLE

DECLARE
 CURSOR name_cur IS
 SELECT last_name
 FROM student
 WHERE rownum <= 10;

 TYPE last_name_type IS VARRAY(10) OF student.
 last_name%TYPE;
 last_name_varray last_name_type := last_name_type();

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 last_name_varray.EXTEND;
 last_name_varray(v_counter) := name_rec.last_name;
 DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||
 last_name_varray(v_counter));
 END LOOP;
END;

This example produces the following output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello

PL/SQL procedure successfully completed.

Based on the preceding example, you may realize that collection methods seen in the previous lab can be used with
varrays as well. Consider the following example, which illustrates the use of various collection methods when applied to
a varray.

 FOR EXAMPLE

DECLARE
 TYPE varray_type IS VARRAY(10) OF NUMBER;
 varray varray_type := varray_type(1, 2, 3, 4, 5, 6);

BEGIN
 DBMS_OUTPUT.PUT_LINE ('varray.COUNT = '||varray.COUNT);
 DBMS_OUTPUT.PUT_LINE ('varray.LIMIT = '||varray.LIMIT);

 DBMS_OUTPUT.PUT_LINE ('varray.FIRST = '||varray.FIRST);
 DBMS_OUTPUT.PUT_LINE ('varray.LAST = '||varray.LAST);

 varray.EXTEND(2, 4);
 DBMS_OUTPUT.PUT_LINE ('varray.LAST = '||varray.LAST);
 DBMS_OUTPUT.PUT_LINE ('varray('||varray.LAST||') = '||varray(varray.LAST));

 -- Trim last two elements
 varray.TRIM(2);
 DBMS_OUTPUT.PUT_LINE('varray.LAST = '||varray.LAST);
END;

Consider the output returned by the example:

varray.COUNT = 6
varray.LIMIT = 10
varray.FIRST = 1
varray.LAST = 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

varray.LAST = 6
varray.LAST = 8
varray(8) = 4
varray.LAST = 6

PL/SQL procedure successfully completed.

The first two lines of output

varray.COUNT = 6
varray.LIMIT = 10

show the results of the COUNT and LIMIT methods, respectively. You will recall that the COUNT method returns the
number of elements that a collection contains. The collection has been initialized to six elements, so the COUNT method
returns a value of 6.

The next line of output corresponds to another collection method, LIMIT. This method returns the maximum number of
elements that a collection can contain and is usually used with varrays only because varrays have an upper bound
specified at the time of declaration. The collection VARRAY has an upper bound of ten, so the LIMIT method returns a
value of 10. When used with nested tables, the LIMIT method returns NULL because nested tables do not have a
maximum size.

The third and fourth lines of the output

varray.FIRST = 1
varray.LAST = 6

show the results of the FIRST and LAST methods.

The fifth and six lines of the output

varray.LAST = 8
varray(8) = 4

show the results of LAST method and the value of the eighth element of the collection after the EXTEND method
increased the size of the collection. Notice that the EXTEND method

varray.EXTEND(2, 4);

appends two copies on the fourth element to the collection. As a result, the seventh and eighth elements both contain a
value of 4.

Next, the last line of output

varray.LAST = 6

shows the value of the last subscript after the last two elements were removed via the TRIM method.

It is important to note that you cannot use the DELETE method with a varray
to remove its elements. Unlike PL/SQL tables, varrays are dense, and using the
DELETE method causes an error, as illustrated in the following example:

DECLARE
 TYPE varray_type IS VARRAY(3) OF CHAR(1);
 varray varray_type := varray_type('A', 'B', 'C');

BEGIN
 varray.DELETE(3);
END;

 varray.DELETE(3);
 *
ERROR at line 6:
ORA-06550: line 6, column 4:
PLS-00306: wrong number or types of arguments in call to 'DELETE'
ORA-06550: line 6, column 4:
PL/SQL: Statement ignored

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.2 Exercises

18.2.1 Use Varrays

In this exercise, you will learn more about varrays. You will need to debug the following script, which populates
city_varray with 10 cities selected from the ZIPCODE table and displays its individual elements on the screen.

Create the following PL/SQL script:

-- ch18_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR city_cur IS
 SELECT city
 FROM zipcode
 WHERE rownum <= 10;

 TYPE city_type IS VARRAY(10) OF zipcode.city%TYPE;
 city_varray city_type;

 v_counter INTEGER := 0;
BEGIN
 FOR city_rec IN city_cur LOOP
 v_counter := v_counter + 1;
 city_varray(v_counter) := city_rec.city;
 DBMS_OUTPUT.PUT_LINE('city_varray('||v_counter||'): '||city_varray(v_counter));
 END LOOP;
END;

Execute the script, and then answer the following questions:

a) What output was printed on the screen? Explain it.

b) Modify the script so that no errors are returned at runtime.

c) Modify the script as follows: Double the size of the varray and populate the last ten elements with the first
ten elements. In other words, the value of the eleventh element should be equal to the value of the first
element; the value of the twelfth element should be equal to the value of the second element; and so forth.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 18.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

18.2.1 Answers

a) What output was printed on the screen? Explain it.

A1: Answer: Your output should look similar to the following:

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 14

You will recall that when a varray is declared, it is automatically NULL. In other words, the collection itself
is NULL, not its individual elements. Therefore, before it can be used, it must be initialized via the
constructor function with the same name as the varray type. Furthermore, once the collection is initialized,
the EXTEND method must be used before its individual elements can be referenced in the script.

b) Modify the script so that no errors are returned at runtime.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR city_cur IS
 SELECT city
 FROM zipcode
 WHERE rownum <= 10;

 TYPE city_type IS VARRAY(10) OF zipcode.city%TYPE;
 city_varray city_type := city_type();

 v_counter INTEGER := 0;
BEGIN
 FOR city_rec IN city_cur LOOP
 v_counter := v_counter + 1;
 city_varray.EXTEND;
 city_varray(v_counter) := city_rec.city;
 DBMS_OUTPUT.PUT_LINE('city_varray('||v_counter|| '): '||city_varray(v_counter));
 END LOOP;
END;

When run, this script produces the following output:

city_varray(1): Santurce
city_varray(2): North Adams
city_varray(3): Dorchester
city_varray(4): Tufts Univ. Bedford
city_varray(5): Weymouth
city_varray(6): Sandwich
city_varray(7): Ansonia
city_varray(8): Middlefield
city_varray(9): Oxford
city_varray(10): New Haven

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

c) Modify the script as follows: Double the size of the varray and populate the last ten elements with the first
ten elements. In other words, the value of the eleventh element should be equal to the value of the first
element; the value of the twelfth element should be equal to the value of the second element; and so
forth.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR city_cur IS
 SELECT city
 FROM zipcode
 WHERE rownum <= 10;

 TYPE city_type IS VARRAY(20) OF zipcode.city%TYPE;
 city_varray city_type := city_type();

 v_counter INTEGER := 0;
BEGIN
 FOR city_rec IN city_cur LOOP
 v_counter := v_counter + 1;
 city_varray.EXTEND;
 city_varray(v_counter) := city_rec.city;
 END LOOP;

 FOR i IN 1..v_counter LOOP
 -- extend the size of varray by 1 and copy the
 -- current element to the last element
 city_varray.EXTEND(1, i);
 END LOOP;

 FOR i IN 1..20 LOOP
 DBMS_OUTPUT.PUT_LINE('city_varray('||i||'): '||city_varray(i));
 END LOOP;
END;

In the preceding script, you increase the maximum size of the varray to 20 at the time of city_type declaration. After the
first 10 elements of the varray are populated, the last ten elements are populated via numeric FOR loop and the
EXTEND method as follows:

FOR i IN 1..v_counter LOOP
 -- extend the size of varray by 1 and copy the current
 -- element to the last element
 city_varray.EXTEND(1, i);
END LOOP;

In this loop, the loop counter is implicitly incremented by one. So for the first iteration of the loop, the size of the varray
is increased by one and the first element of the varray is copied to the eleventh element. In the same manner, the
second element of the varray is copied to the twelfth element, and so forth.

In order to display all elements of the varray, the DBMS_OUTPUT.PUT_LINE statement has been moved to its own
numeric FOR loop that iterates 20 times.

When run, this script produces the following output:

city_varray(1): Santurce
city_varray(2): North Adams
city_varray(3): Dorchester
city_varray(4): Tufts Univ. Bedford
city_varray(5): Weymouth
city_varray(6): Sandwich
city_varray(7): Ansonia
city_varray(8): Middlefield
city_varray(9): Oxford
city_varray(10): New Haven
city_varray(11): Santurce
city_varray(12): North Adams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

city_varray(12): North Adams
city_varray(13): Dorchester
city_varray(14): Tufts Univ. Bedford
city_varray(15): Weymouth
city_varray(16): Sandwich
city_varray(17): Ansonia
city_varray(18): Middlefield
city_varray(19): Oxford
city_varray(20): New Haven

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) One of the differences between the nested tables and varrays is that

a. _____ nested tables can be sparse, and varrays cannot.

b. _____ varrays can be sparse, and nested tables cannot.

2) A varray has an upper bound that

a. _____ can be extended without any limits.

b. _____ can be extended to its maximum size.

c. _____ is fixed and cannot be extended to all.

3) A varray must be initialized prior to its use.

a. _____ True

b. _____ False

4) If a varray has maximum size of 5 and contains 2 elements

a. _____ the LIMIT and COUNT methods return the same value of 5.

b. _____ the LIMIT and COUNT methods return the same value of 2.

c. _____ the LIMIT method returns the value of 5, and the COUNT method returns the value of 2.

5) If a varray has eight elements, the DELETE (3, 7) method

a. _____ deletes the third and seventh elements of the collection.

b. _____ deletes the third element and ignores the seventh element of the collection.

c. _____ deletes the elements three to seven.

d. _____ causes an error.

Answers appear in Appendix A, Section 18.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.3 Multilevel Collections

Lab Objective
After this Lab, you will be able to:

 Use Multilevel Collections

So far you have seen various examples of collections with the element type based on a scalar type, such as NUMBER
and VARCHAR2. Starting with Oracle 9i, PL/SQL provides you with the ability to create collections whose element type is
based on a collection type. Such collections are called multilevel collections. You will recall that multilevel collections is a
relatively new feature that was introduced in Oracle 9i.

Consider a varrray of varrays shown in Figure 18.3.

Figure 18.3. A Varray of Varrays

Figure 18.3 shows a varray of varrays or nested varray. A varray of varrays consists of three elements, where each
individual element is a varray consisting of four integer numbers. As a result, in order to reference an individual
element of a varray of varrays, you use the following notation:

varray_name(subscript of the outer varray)(subscript of the inner varray)

For example, the varray(1)(3) in Figure 18.3 equals 6; similarly, varray(2)(1) equals 1.

Consider an example based on Figure 18.3.

 FOR EXAMPLE

DECLARE
 TYPE varray_type1 IS VARRAY(4) OF INTEGER;
 TYPE varray_type2 IS VARRAY(3) OF varray_type1;

 varray1 varray_type1 := varray_type1(2, 4, 6, 8);
 varray2 varray_type2 := varray_type2(varray1);
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Varray of integers');
 FOR i IN 1..4 LOOP
 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));
 END LOOP;

 varray2.EXTEND;
 varray2(2) := varray_type1(1, 3, 5, 7);

 DBMS_OUTPUT.PUT_LINE (chr(10)||'Varray of varrays of integers');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DBMS_OUTPUT.PUT_LINE (chr(10)||'Varray of varrays of integers');
 FOR i IN 1..2 LOOP
 FOR j IN 1..4 LOOP
 DBMS_OUTPUT.PUT_LINE
 ('varray2('||i||')('||j||'): '||varray2(i)(j));
 END LOOP;
 END LOOP;
END;

In this declaration portion of the example, you define two varray types. The first type, varray_type1, is based on the
INTEGER datatype and can contain up to four elements. The second type, varray_type2, is based on the varray_type1 and
can contain up to six elements. Next, you declare two varrays based on the types just described. The first varray,
varray1, is declared as varray_type1 and initialized so that its four elements are populated with the first four even
numbers. The second varray, varray2, is declared as varray_type2, so that each individual element is a varray consisting
of four integer numbers, and initialized so that it first varray element is populated.

In the executable portion of the example, you display the values of the varray1 on the screen. Next, you extend the
upper bound of the varray2 by one, and populate its second element as follows:

varray2(2) := varray_type1(1, 3, 5, 7);

Notice that you are using a constructor corresponding to the varray_type1 because each element of the varray2 is based
on the varray1 collection. In other words, the same result could be achieved via the following two statements:

varray1 := varray_type1(1, 3, 5, 7);
varray2 := varray_type2(varray1);

Once the second element of the varray2 is populated, you display results on the screen via nested numeric FOR loops.

This example produces the following output:

Varray of integers
varray1(1): 2
varray1(2): 4
varray1(3): 6
varray1(4): 8

Varray of varrays of integers
varray2(1)(1): 2
varray2(1)(2): 4
varray2(1)(3): 6
varray2(1)(4): 8
varray2(2)(1): 1
varray2(2)(2): 3
varray2(2)(3): 5
varray2(2)(4): 7

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.3 Exercises

18.3.1 Use Multilevel Collections

In this exercise, you will learn more about multilevel collections.

Create the following PL/SQL script:

-- ch18_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 TYPE table_type1 IS TABLE OF integer INDEX BY BINARY_INTEGER;
 TYPE table_type2 IS TABLE OF table_type1 INDEX BY BINARY_INTEGER;

 table_tab1 table_type1;
 table_tab2 table_type2;

BEGIN
 FOR i IN 1..2 LOOP
 FOR j IN 1..3 LOOP
 IF i = 1 THEN
 table_tab1(j) := j;
 ELSE
 table_tab1(j) := 4 - j;
 END IF;
 table_tab2(i)(j) := table_tab1(j);
 DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||table_tab2(i)(j));
 END LOOP;
 END LOOP;
END;

Execute the script, and then answer the following questions:

a) Execute the script ch18_4a.sql and explain the output produced.

b) Modify the script so that instead of using multilevel index-by tables it uses a nested table of index-by tables.

c) Modify the script so that instead of using multilevel index-by tables it uses a nested table of varrays.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 18.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

18.3.1 Answers

a) Execute the script ch18_4a.sql and explain the output produced.

A1: Answer: Your output should look similar to the following:

table_tab2(1)(1): 1
table_tab2(1)(2): 2
table_tab2(1)(3): 3
table_tab2(2)(1): 3
table_tab2(2)(2): 2
table_tab2(2)(3): 1

PL/SQL procedure successfully completed.

The script ch18_4a.sql uses multilevel index-by tables or an index-by table of index-by tables. The
declaration portion of the script defines a multilevel index-by table table_tab2. Each row of this table is an
index-by table consisting of three rows. The executable portion of the script populates the multilevel table
via nested numeric FOR loops. In the first iteration of the outer loop, the inner loop populates the index-by
table table_tab1 with values 1, 2, 3, and the first row of the multilevel table table_tab2. In the second
iteration of the outer loop, the inner loop populates the index-by table table_tab1 with values 3, 2, 1, and
the second row of the multilevel table table_tab2.

b) Modify the script so that instead of using multilevel index-by tables it uses a nested table of index-by
tables.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 TYPE table_type1 IS TABLE OF integer INDEX BY BINARY_INTEGER;
 TYPE table_type2 IS TABLE OF table_type1;

 table_tab1 table_type1;
 table_tab2 table_type2 := table_type2();

BEGIN
 FOR i IN 1..2 LOOP
 table_tab2.EXTEND;
 FOR j IN 1..3 LOOP
 IF i = 1 THEN
 table_tab1(j) := j;
 ELSE
 table_tab1(j) := 4 - j;
 END IF;
 table_tab2(i)(j) := table_tab1(j);
 DBMS_OUTPUT.PUT_LINE ('table_tab2('||
 i||')('||j||'): '||table_tab2(i)(j));
 END LOOP;
 END LOOP;
END;

In this version of the script, the table_type2 is declared as a nested table of index-by tables. Next, table_tab2 is initialized
prior to its use, and its size is extended before a new element is assigned a value.

c) Modify the script so that instead of using multilevel index-by tables it uses a nested table of varrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) Modify the script so that instead of using multilevel index-by tables it uses a nested table of varrays.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch18_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 TYPE table_type1 IS VARRAY(3) OF integer;
 TYPE table_type2 IS TABLE OF table_type1;

 table_tab1 table_type1 := table_type1();
 table_tab2 table_type2 := table_type2(table_tab1);

BEGIN
 FOR i IN 1..2 LOOP
 table_tab2.EXTEND;
 table_tab2(i) := table_type1();
 FOR j IN 1..3 LOOP
 IF i = 1 THEN
 table_tab1.EXTEND;
 table_tab1(j) := j;
 ELSE
 table_tab1(j) := 4 - j;
 END IF;
 table_tab2(i).EXTEND;
 table_tab2(i)(j):= table_tab1(j);
 DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||table_tab2(i)(j));
 END LOOP;
 END LOOP;
END;

In this declaration section of the script, the table_type1 is defined as a varray with three integer elements, and the
table_type2 is declared as a nested table of varrays. Next, table_tab1 and table_tab2 are initialized prior to their uses.

In the executable portion of the script, the size of the table_tab2 is incremented via the EXTEND method and its
individual elements are initialized as follows:

table_tab2(i) := table_type1();

Notice that that each element is initialized via the constructor associated with the varray type table_type1. Furthermore,
in order to populate a nested table, a new varray element must be added to the each nested table element as shown:

table_tab2(i).EXTEND;

In other words, for the first iteration of the outer loop, there are three varray elements added to the first element of the
nested table. Without this statement, the script causes the following error:

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 20

When run, this script produces output identical to the original example:

table_tab2(1)(1): 1
table_tab2(1)(2): 2
table_tab2(1)(3): 3
table_tab2(2)(1): 3
table_tab2(2)(2): 2
table_tab2(2)(3): 1

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 18.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) Multilevel collections are not supported by Oracle 8i.

a. _____ True

b. _____ False

2) A varray of varrays has an upper bound

a. _____ that is fixed and cannot be extended to all.

b. _____ that can be extended to its maximum size.

c. _____ that can be extended without any limits.

3) There is no need to initialize a nested table of index-by tables prior to its use.

a. _____ True

b. _____ False

Consider the following script for the next two questions:

DECLARE
 TYPE varray_type1 IS VARRAY(3) OF INTEGER;
 TYPE varray_type2 IS VARRAY(10) OF varray_type1;

 varray1 varray_type1 := varray_type1(1, 2, 3);
 varray2 varray_type2 := varray_type2(varray1, varray_type1(4, 5, 6));

 var1 INTEGER;
BEGIN
 var1 := varray2(2)(3);
 varray2.EXTEND;
 varray2(3) := varray_type1(0);
 varray2(3).EXTEND;
END;

4) Based on the preceding script, what is the value of the variable VAR1?

a. _____ There is no value because the script generates an error.

b. _____ 2

c. _____ 6

5) The statement varray2(3).EXTEND

a. _____ adds a third element to the third element of VARRAY2.

b. _____ adds a second element to the third element of VARRAY2.

c. _____ causes a 'Subscript beyond count' error.

Answers appear in Appendix A, Section 18.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18 Test Your Thinking

In this chapter, you learned about collections and multilevel collections. Here are some projects that will
help you test the depth of your understanding.

1) Create the following script. Create an index-by table and populate it with the
instructor's full name. In other words, each row of the index-by table should
contain first name, middle initial, and last name. Display this information on
the screen.

2) Modify the script created in 1). Instead of using an index-by table, use a
varray.

3) Modify the script created in 2). Create an additional varray and populate it with
unique course numbers that each instructor teaches. Display instructor's name
and the list of courses he or she teaches.

4) Find and explain errors in the following script:

DECLARE
 TYPE varray_type1 IS VARRAY(7) OF INTEGER;
 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY BINARY_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);
 table2 table_type2 := table_type2(varray1, varray_type1(8, 9, 0));

BEGIN
 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

FOR i IN 1..10 LOOP
 varray1.EXTEND;
 varray1(i) := i;
 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '|| varray1(i));
 END LOOP;
END;

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19. Records
Chapter Objectives
In this Chapter, you will learn about:

 Records

 Nested Records

 Collections of Records

In Chapter 9, you were briefly introduced to the concept of a record type. You have learned that a record is a composite
data structure that allows you to combine various yet related data into a logical unit. You have also learned that PL/SQL
supports three kinds of record types: table based, cursor based, and user defined. In this chapter, you will revisit table-
based and cursor-based record types and learn about user-defined record type. In addition, you will learn about records
that contain collections and other records (called nested records) and collections of records.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.1 Records

Lab Objectives
After this Lab, you will be able to:

 Use Table-Based and Cursor-Based Records

 Use User-Defined Records

A record structure is somewhat similar to a row of a database table. Each data item is stored in a field with its own
name and datatype. For example, suppose you have various data about a company, such as name, address, and
number of employees. A record containing a field for each of these items allows you to treat a company as a logical
unit, thus making it easier to organize and represent company's information.

Table-Based and Cursor-Based Records

The %ROWTYPE attribute enables you to create table-based and cursor-based records. It is similar to the %TYPE
attribute that is used to define scalar variables. Consider the following example of a table-based record.

 FOR EXAMPLE

DECLARE
 course_rec course%ROWTYPE;
BEGIN
 SELECT *
 INTO course_rec
 FROM course
 WHERE course_no = 25;

 DBMS_OUTPUT.PUT_LINE ('Course No: '||
 course_rec.course_no);
 DBMS_OUTPUT.PUT_LINE ('Course Description: '||
 course_rec.description);
 DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||
 course_rec.prerequisite);
END;

The course_rec record has the same structure as a row from the COURSE table. As a result, there is no need to reference
individual record fields when the SELECT INTO statement populates the course_rec record. However, note that a record
does not have a value of its own; rather, each individual field holds a value. Therefore, to display record information on
the screen, individual fields are referenced using the dot notation, as shown in the DBMS_OUTPUT.PUT_LINE
statements.

When run, this example produces the following output:

Course No: 25
Course Description: Intro to Programming
Prerequisite: 140

PL/SQL procedure successfully completed.

As mentioned previously, a record does not have a value of its own. For this
reason, you cannot test records for nullity, equality, or inequality. In other
words, the statements

IF course_rec IS NULL THEN …
IF course_rec1 = course_rec2 THEN …

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF course_rec1 = course_rec2 THEN …

are illegal and will cause syntax errors.

Next, consider an example of a cursor-based record.

 FOR EXAMPLE

DECLARE
 CURSOR student_cur IS
 SELECT first_name, last_name, registration_date
 FROM student
 WHERE rownum <= 4;

 student_rec student_cur%ROWTYPE;
BEGIN
 OPEN student_cur;
 LOOP
 FETCH student_cur INTO student_rec;
 EXIT WHEN student_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Name: '||
 student_rec.first_name||' '||
 student_rec.last_name);
 DBMS_OUTPUT.PUT_LINE ('Registration Date: '||
 student_rec.registration_date);
 END LOOP;
END;

The student_rec record has the same structure as the rows returned by the STUDENT_CUR cursor. As a result, similar to
the previous example, there is no need to reference individual fields when data is fetched from the cursor to the record.

When run, this example produces the following output:

Name: Fred Crocitto
Registration Date: 22-JAN-99
Name: J. Landry
Registration Date: 22-JAN-99
Name: Laetia Enison
Registration Date: 22-JAN-99
Name: Angel Moskowitz
Registration Date: 22-JAN-99

PL/SQL procedure successfully completed.

Note that because a cursor-based record is defined based on the rows returned by a select statement of a cursor, its
declaration must be proceeded by a cursor declaration. In other words, a cursor-based record is dependent on a
particular cursor and cannot be declared prior to its cursor. Consider a modified version of the previous example. The
cursor-based record variable is declared before the cursor, and as a result, when run, this example causes a syntax
error.

 FOR EXAMPLE

DECLARE
 student_rec student_cur%ROWTYPE;

 CURSOR student_cur IS
 SELECT first_name, last_name, registration_date
 FROM student
 WHERE rownum <= 4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE rownum <= 4;

BEGIN
 OPEN student_cur;
 LOOP
 FETCH student_cur INTO student_rec;
 EXIT WHEN student_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Name: '||
 student_rec.first_name||' '||
 student_rec.last_name);
 DBMS_OUTPUT.PUT_LINE ('Registration Date: '||
 student_rec.registration_date);
 END LOOP;
END;

student_rec student_cur%ROWTYPE;
 *
ERROR at line 2:
ORA-06550: line 2, column 16:
PLS-00320: the declaration of the type of this expression is incomplete or malformed
ORA-06550: line 2, column 16:
PL/SQL: Item ignored
ORA-06550: line 12, column 30:
PLS-00320: the declaration of the type of this expression is incomplete or malformed
ORA-06550: line 12, column 7:
PL/SQL: SQL Statement ignored
ORA-06550: line 16, column 10:
PLS-00320: the declaration of the type of this expression is incomplete or malformed
ORA-06550: line 15, column 7:
PL/SQL: Statement ignored
ORA-06550: line 17, column 52:
PLS-00320: the declaration of the type of this expression is incomplete or malformed
ORA-06550: line 17, column 7:
PL/SQL: Statement ignored

User-Defined Records

So far, you have seen how to create records based on a table or a cursor. However, you may need to create a record
that is not based on any table or any one cursor. For such situations, PL/SQL provides a user-defined record type that
allows you to have complete control over the record structure.

The general syntax for creating a user-defined record is as follows (the reserved words and phrases surrounded by
brackets are optional):

TYPE type_name IS RECORD
 (field_name1 datatype1 [NOT NULL] [:= DEFAULT
 EXPRESSION],
 field_name2 datatype2 [NOT NULL] [:= DEFAULT
 EXPRESSION],
 ...
 field_nameN datatypeN [NOT NULL] [:= DEFAULT
 EXPRESSION]);

record_name TYPE_NAME;

First, a record structure is defined using the TYPE statement, where TYPE_NAME is the name of the record type that is
used in the second step to declare the actual record. Enclosed in the parentheses are declarations of each record field
with its name and datatype. You may also specify a NOT NULL constraint and/or assign a default value. Second, the
actual record is declared based on the type specified in the previous step. Consider the following example.

 FOR EXAMPLE

DECLARE
 TYPE time_rec_type IS RECORD
 (curr_date DATE,
 curr_day VARCHAR2(12),
 curr_time VARCHAR2(8) := '00:00:00');

 time_rec TIME_REC_TYPE;
BEGIN
 SELECT sysdate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT sysdate
 INTO time_rec.curr_date
 FROM dual;

 time_rec.curr_day := TO_CHAR(time_rec.curr_date, 'DAY');
 time_rec.curr_time :=
 TO_CHAR(time_rec.curr_date, 'HH24:MI:SS');

 DBMS_OUTPUT.PUT_LINE ('Date: '||time_rec.curr_date);
 DBMS_OUTPUT.PUT_LINE ('Day: '||time_rec.curr_day);
 DBMS_OUTPUT.PUT_LINE ('Time: '||time_rec.curr_time);
END;

In this example, the time_rec_type is a user-defined record type that contains three fields. Notice that the last field,
curr_time, has been initialized to a particular value. The time_rec is a user-defined record based on the time_rec_type.
Notice that, different from the previous examples, each record field is assigned a value individually. When run, the
script produces the following output:

Date: 30-MAR-02
Day: SATURDAY
Time: 18:12:59

PL/SQL procedure successfully completed.

As mentioned earlier, when declaring a record type you may specify a NOT NULL constraint for individual fields. It is
important to note that such fields must be initialized. Consider an example that causes a syntax error because a record
field has not been initialized after a NOT NULL constraint has been defined on it.

 FOR EXAMPLE

DECLARE
 TYPE sample_type IS RECORD
 (field1 NUMBER(3),
 field2 VARCHAR2(3) NOT NULL);

 sample_rec sample_type;

BEGIN
 sample_rec.field1 := 10;
 sample_rec.field2 := 'ABC';

 DBMS_OUTPUT.PUT_LINE ('sample_rec.field1 = '||
 sample_rec.field1);
 DBMS_OUTPUT.PUT_LINE ('sample_rec.field2 = '||
 sample_rec.field2);
END;

 field2 VARCHAR2(3) NOT NULL);
 *
ERROR at line 4:
ORA-06550: line 4, column 8:
PLS-00218: a variable declared NOT NULL must have an
initialization assignment

Next, consider the correct version of the preceding example and its output.

 FOR EXAMPLE

DECLARE
 TYPE sample_type IS RECORD
 (field1 NUMBER(3),
 field2 VARCHAR2(3) NOT NULL := 'ABC');
 -- initialize a NOT NULL field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- initialize a NOT NULL field

 sample_rec sample_type;

BEGIN
 sample_rec.field1 := 10;

 DBMS_OUTPUT.PUT_LINE ('sample_rec.field1 = '||
 sample_rec.field1);
 DBMS_OUTPUT.PUT_LINE ('sample_rec.field2 = '||
 sample_rec.field2);
END;

sample_rec.field1 = 10
sample_rec.field2 = ABC

PL/SQL procedure successfully completed.

Record Compatibility

You have seen that a record is defined by its name, structure, and type. However, it is important to realize that two
records may have the same structure yet be of a different type. As a result, there are certain restrictions that apply to
the operations between different record types. Consider the following example.

 FOR EXAMPLE

DECLARE
 TYPE name_type1 IS RECORD
 (first_name VARCHAR2(15),
 last_name VARCHAR2(30));

 TYPE name_type2 IS RECORD
 (first_name VARCHAR2(15),
 last_name VARCHAR2(30));

 name_rec1 name_type1;
 name_rec2 name_type2;
BEGIN
 name_rec1.first_name := 'John';
 name_rec1.last_name := 'Smith';
 name_rec2 := name_rec1; -- illegal assignment
END;

In this example, both records have the same structure; however, each record is of a different type. As a result, these
records are not compatible with each other on the record level. In other words, an aggregate assignment statement will
cause an error as follows:

 name_rec2 := name_rec1; -- illegal assignment
 *
ERROR at line 15:
ORA-06550: line 15, column 17:
PLS-00382: expression is of wrong type
ORA-06550: line 15, column 4:
PL/SQL: Statement ignored

In order to assign name_rec1 to name_rec2, you can assign each field of name_rec1 to the corresponding field of
name_rec2, or you can declare name_rec2 so that it has the same datatype as name_rec1, as follows:

 FOR EXAMPLE

DECLARE
 TYPE name_type1 IS RECORD
 (first_name VARCHAR2(15),
 last_name VARCHAR2(30));

 name_rec1 name_type1;
 name_rec2 name_type1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name_rec2 name_type1;
BEGIN
 name_rec1.first_name := 'John';
 name_rec1.last_name := 'Smith';
 name_rec2 := name_rec1; -- no longer illegal assignment
END;

It is important to note that the assignment restriction just mentioned applies to the user-defined records. In other
words, you can assign a table-based or a cursor-based record to a user-defined record as long as they have the same
structure. Consider the following example.

 FOR EXAMPLE

DECLARE
 CURSOR course_cur IS
 SELECT *
 FROM course
 WHERE rownum <= 4;

 TYPE course_type IS RECORD
 (course_no NUMBER(38),
 description VARCHAR2(50),
 cost NUMBER(9,2),
 prerequisite NUMBER(8),
 created_by VARCHAR2(30),
 created_date DATE,
 modified_by VARCHAR2(30),
 modified_date DATE);

 course_rec1 course%ROWTYPE; -- table-based record
 course_rec2 course_cur%ROWTYPE; -- cursor-based record
 course_rec3 course_type; -- user-defined record
BEGIN
 -- Populate table-based record
 SELECT *
 INTO course_rec1
 FROM course
 WHERE course_no = 10;

 -- Populate cursor-based record
 OPEN course_cur;
 LOOP
 FETCH course_cur INTO course_rec2;
 EXIT WHEN course_cur%NOTFOUND;
 END LOOP;

 course_rec1 := course_rec2;
 course_rec3 := course_rec2;
END;

In this example, each record is a different type; however, they are compatible with each other because all records have
the same structure. As a result, this example does not cause any syntax errors.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.1 Exercises

19.1.1 Use Table-Based and Cursor-Based Records

In this exercise, you will learn more about table-based and cursor-based records.

Create the following PL/SQL script:

-- ch19_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 zip_rec zipcode%ROWTYPE;

BEGIN
 SELECT *
 INTO zip_rec
 FROM zipcode
 WHERE rownum < 2;
END;

Answer the following questions:

a) Explain the script ch19_1a.sql.

b) Modify the script so that zip_rec data is displayed on the screen.

c) Modify the script created in the previous exercise (ch19_1b.sql) so that zip_rec is defined as a cursor-based
record.

d) Modify the script created in the previous exercise (ch19_1c.sql). Change the structure of the zip_rec record
so that it contains total number of students in a given city, state, and zipcode. Do not include audit columns
such as CREATED_BY and CREATED_DATE in the record structure.

19.1.2 Use User-Defined Records

In this exercise, you will learn more about user-defined records.

Create the following PL/SQL script:

-- ch19_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT zip, COUNT(*) students
 FROM student
 GROUP BY zip;

 TYPE zip_info_type IS RECORD
 (zip_code VARCHAR2(5),
 students INTEGER);

 zip_info_rec zip_info_type;
BEGIN
 FOR zip_rec IN zip_cur LOOP
 zip_info_rec.zip_code := zip_rec.zip;
 zip_info_rec.students := zip_rec.students;
 END LOOP;
END;

Answer the following questions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Answer the following questions:

a) Explain the script ch19_2a.sql.

b) Modify the script so that zip_info_rec data is displayed on the screen only for the first five records returned
by the ZIP_CUR cursor.

c) Modify the script created in the previous exercise (ch19_2b.sql). Change the structure of the zip_info_rec
record so that it also contains total number of instructors for a given zipcode. Populate this new record and
display its data on the screen for the first five records returned by the ZIP_CUR cursor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 19.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

19.1.1 Answers

a) Explain the script ch19_1a.sql.

A1: Answer: The declaration portion of the script contains a declaration of the table-based record, zip_rec, that
has the same structure as a row from the ZIPCODE table. The executable portion of the script populates
the zip_rec record via the SELECT INTO statement with a row from the ZIPCODE table. Notice that a
restriction applied to the ROWNUM enforces the SELECT INTO statement always returns a random single
row. As mentioned earlier, there is no need to reference individual record fields when the SELECT INTO
statement populates the zip_rec record because zip_rec has a structure identical to a row of the ZIPCODE
table.

b) Modify the script so that zip_rec data is displayed on the screen.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 zip_rec zipcode%ROWTYPE;

BEGIN
 SELECT *
 INTO zip_rec
 FROM zipcode
 WHERE rownum < 2;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||
 zip_rec.zip);
 DBMS_OUTPUT.PUT_LINE ('City: '||
 zip_rec.city);
 DBMS_OUTPUT.PUT_LINE ('State: '||
 zip_rec.state);
 DBMS_OUTPUT.PUT_LINE ('Created By: '||
 zip_rec.created_by);
 DBMS_OUTPUT.PUT_LINE ('Created Date: '||
 zip_rec.created_date);
 DBMS_OUTPUT.PUT_LINE ('Modified By: '||
 zip_rec.modified_by);
 DBMS_OUTPUT.PUT_LINE ('Modified Date: '||
 zip_rec.modified_date);
END;

When run, both versions produce the same output:

Zip: 00914
City: Santurce
State: PR
Created By: AMORRISO
Created Date: 03-AUG-99
Modified By: ARISCHER
Modified Date: 24-NOV-99

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c) Modify the script created in the previous exercise (ch19_1b.sql) so that zip_rec is defined as a cursor-based
record.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT *
 FROM zipcode
 WHERE rownum < 4;

 zip_rec zip_cur%ROWTYPE;
BEGIN
 OPEN zip_cur;
 LOOP
 FETCH zip_cur INTO zip_rec;
 EXIT WHEN zip_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||
 zip_rec.zip);
 DBMS_OUTPUT.PUT_LINE ('City: '||
 zip_rec.city);
 DBMS_OUTPUT.PUT_LINE ('State: '||
 zip_rec.state);
 DBMS_OUTPUT.PUT_LINE ('Created By: '||
 zip_rec.created_by);
 DBMS_OUTPUT.PUT_LINE ('Created Date: '||
 zip_rec.created_date);
 DBMS_OUTPUT.PUT_LINE ('Modified By: '||
 zip_rec.modified_by);
 DBMS_OUTPUT.PUT_LINE ('Modified Date: '||
 zip_rec.modified_date);
 END LOOP;
END;

The declaration portion of the script contains a definition of the ZIP_CUR cursor that returns four records from the
ZIPCODE table. In this case, the number of records returned by the cursor has been chosen for one reason only, so that
the cursor loop iterates more than once. Next, it contains the definition of the cursor-based record, zip_rec.

The executable portion of the script populates the zip_rec record and displays its data on the screen via the simple
cursor loop.

This version of the script produces the following output:

Zip: 00914
City: Santurce
State: PR
Created By: AMORRISO
Created Date: 03-AUG-99
Modified By: ARISCHER
Modified Date: 24-NOV-99
Zip: 01247
City: North Adams
State: MA
Created By: AMORRISO
Created Date: 03-AUG-99
Modified By: ARISCHER
Modified Date: 24-NOV-99
Zip: 02124
City: Dorchester
State: MA
Created By: AMORRISO
Created Date: 03-AUG-99
Modified By: ARISCHER
Modified Date: 24-NOV-99

PL/SQL procedure successfully completed.

d) Modify the script created in the previous exercise (ch19_1c.sql). Change the structure of the zip_rec record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d) Modify the script created in the previous exercise (ch19_1c.sql). Change the structure of the zip_rec record
so that it contains total number of students in a given city, state, and zipcode. Do not include audit
columns such as CREATED_BY and CREATED_DATE in the record structure.

A4: Answer: Your script should look similar to the following script. All changes are shown in bold letters.

-- ch19_1d.sql, version 4.0
SET SERVEROUTPUT ON SIZE 40000
DECLARE
 CURSOR zip_cur IS
 SELECT city, state, z.zip, COUNT(*) students
 FROM zipcode z, student s
 WHERE z.zip = s.zip
 GROUP BY city, state, z.zip;

 zip_rec zip_cur%ROWTYPE;
BEGIN
 OPEN zip_cur;
 LOOP
 FETCH zip_cur INTO zip_rec;
 EXIT WHEN zip_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);
 DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);
 DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);
 DBMS_OUTPUT.PUT_LINE ('Students: '||
 zip_rec.students);
 END LOOP;
END;

In this example, the cursor SELECT statement has been modified so that it returns total number of students for a given
city, state, and zipcode. Notice that the ROWNUM restriction has been removed so that the total number of students is
calculated correctly. As a result, the buffer size has been changed from 2000 to 40,000 so that the script does not
cause a buffer overflow error.

Consider the partial output retuned by this example:

Zip: 07401
City: Allendale
State: NJ
Students: 1
Zip: 11373
City: Amherst
State: NY
Students: 6
Zip: 48104
City: Ann Arbor
State: MI
Students: 1
Zip: 11102
City: Astoria
State: NY
Students: 1
Zip: 11105
City: Astoria
State: NY
Students: 2
Zip: 11510
City: Baldwin
State: NY
Students: 1
Zip: 11360
City: Bayside
State: NY
Students: 1
...

PL/SQL procedure successfully completed.

Next, assume that just like in the previous version of the script (ch19_1c.sql), you would like to display only four
records on the screen. This can be achieved as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch19_1e.sql, version 5.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT city, state, z.zip, COUNT(*) students
 FROM zipcode z, student s
 WHERE z.zip = s.zip
 GROUP BY city, state, z.zip;

 zip_rec zip_cur%ROWTYPE;
 v_counter INTEGER := 0;
BEGIN
 OPEN zip_cur;
 LOOP
 FETCH zip_cur INTO zip_rec;
 EXIT WHEN zip_cur%NOTFOUND;

 v_counter := v_counter + 1;

 IF v_counter <= 4 THEN
 DBMS_OUTPUT.PUT_LINE ('Zip: '||
 zip_rec.zip);
 DBMS_OUTPUT.PUT_LINE ('City: '||
 zip_rec.city);
 DBMS_OUTPUT.PUT_LINE ('State: '||
 zip_rec.state);
 DBMS_OUTPUT.PUT_LINE ('Students: '||
 zip_rec.students);
 END IF;
 END LOOP;
END;

The SELECT statement defined in the cursor is supported by multiple versions of Oracle. As mentioned previously,
Oracle 9i also supports the new ANSI 1999 SQL standard, and the SELECT statement can be modified as follows
according to this new standard:

SELECT city, state, z.zip, COUNT(*) students
 FROM zipcode z
 JOIN student s
 ON s.zip = z.zip
GROUP BY city, state, z.zip;

The preceding SELECT statement uses the ON syntax to specify the join condition between two tables. This type of join
becomes especially useful when the columns participating in the join do not have the same name.

You will find detailed explanations and examples of the statements using new
ANSI 1999 SQL standard in Appendix E and Oracle help.

19.1.2 Answers

a) Explain the script ch19_2a.sql.

A1: Answer: The declaration portion of the script contains ZIP_CUR cursor, which returns total number of
students corresponding to a particular zipcode. Next, it contains the declaration of the user-defined record
type, zip_info_type, which has two fields, and the actual user-defined record, zip_info_rec. The executable
portion of the script populates the zip_info_rec record via the cursor FOR loop. As mentioned earlier,
because zip_info_rec is a user-defined record, each record field is assigned a value individually.

b) Modify the script so that zip_info_rec data is displayed on the screen only for the first five records returned
by the ZIP_CUR cursor.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT zip, COUNT(*) students
 FROM student
 GROUP BY zip;

 TYPE zip_info_type IS RECORD
 (zip_code VARCHAR2(5),
 students INTEGER);

 zip_info_rec zip_info_type;
 v_counter INTEGER := 0;
BEGIN
 FOR zip_rec IN zip_cur LOOP
 zip_info_rec.zip_code := zip_rec.zip;
 zip_info_rec.students := zip_rec.students;

 v_counter := v_counter + 1;
 IF v_counter <= 5 THEN
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||
 zip_info_rec.zip_code);
 DBMS_OUTPUT.PUT_LINE ('Students: '||
 zip_info_rec.students);
 DBMS_OUTPUT.PUT_LINE ('--------------------');
 END IF;
 END LOOP;
END;

In order to display information for the first five records returned by the ZIP_CUR cursor, a new variable, v_counter, is
declared. For each iteration of the loop, the value of this variable is incremented by one. As long as the value of
v_counter is less than or equal to five, the data of the zip_info_rec record is displayed on the screen.

When run, this script produces the following output:

Zip Code: 01247
Students: 1

Zip Code: 02124
Students: 1

Zip Code: 02155
Students: 1

Zip Code: 02189
Students: 1

Zip Code: 02563
Students: 1

PL/SQL procedure successfully completed.

c) Modify the script created in the previous exercise (ch19_2b.sql). Change the structure of the zip_info_rec
record so that it also contains total number of instructors for a given zipcode. Populate this new record and
display its data on the screen for the first five records returned by the ZIP_CUR cursor.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT zip
 FROM zipcode
 WHERE ROWNUM <= 5;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE ROWNUM <= 5;

 TYPE zip_info_type IS RECORD
 (zip_code VARCHAR2(5),
 students INTEGER,
 instructors INTEGER);

 zip_info_rec zip_info_type;
BEGIN
 FOR zip_rec IN zip_cur LOOP
 zip_info_rec.zip_code := zip_rec.zip;

 SELECT COUNT(*)
 INTO zip_info_rec.students
 FROM student
 WHERE zip = zip_info_rec.zip_code;

 SELECT COUNT(*)
 INTO zip_info_rec.instructors
 FROM instructor
 WHERE zip = zip_info_rec.zip_code;

 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||
 zip_info_rec.zip_code);
 DBMS_OUTPUT.PUT_LINE ('Students: '||
 zip_info_rec.students);
 DBMS_OUTPUT.PUT_LINE ('Instructors: '||
 zip_info_rec.instructors);
 DBMS_OUTPUT.PUT_LINE ('--------------------');
 END LOOP;
END;

Consider the changes applied to this version of the script. In the declaration portion of the script, the cursor SELECT
statement has changed so that records are retrieved from the ZIPCODE table rather than the STUDENT table. This
change allows you to see accurately the total number of students and instructors in a particular zipcode. In addition,
because the cursor SELECT statement does not have group function, the ROWNUM restriction is listed in the WHERE
clause so that only the first five records are returned. The structure of the user-defined record type, zip_info_type, has
changed so that total number of instructors for a given zipcode is stored in the instructors field.

In the executable portion of the script, there are two SELECT INTO statements that populate zip_info_rec.students and
zip_info_rec.instructors fields, respectively.

When run, this example produces the following output:

Zip Code: 00914
Students: 0
Instructors: 0

Zip Code: 01247
Students: 1
Instructors: 0

Zip Code: 02124
Students: 1
Instructors: 0

Zip Code: 02155
Students: 1
Instructors: 0

Zip Code: 02189
Students: 1
Instructors: 0

PL/SQL procedure successfully completed.

Consider another version of the same script. Here, instead of using two SELECT INTO statements to calculate the total
number of students and instructors in a particular zip code, the cursor SELECT statement contains outer joins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch19_2d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR zip_cur IS
 SELECT z.zip, COUNT(student_id) students,
 COUNT(instructor_id) instructors
 FROM zipcode z, student s, instructor i
 WHERE z.zip = s.zip (+)
 AND z.zip = i.zip (+)
 GROUP BY z.zip;

 TYPE zip_info_type IS RECORD
 (zip_code VARCHAR2(5),
 students INTEGER,
 instructors INTEGER);

 zip_info_rec zip_info_type;
 v_counter INTEGER := 0;
BEGIN
 FOR zip_rec IN zip_cur LOOP
 zip_info_rec.zip_code := zip_rec.zip;
 zip_info_rec.students := zip_rec.students;
 zip_info_rec.instructors := zip_rec.instructors;

 v_counter := v_counter + 1;
 IF v_counter <= 5 THEN
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||
 zip_info_rec.zip_code);
 DBMS_OUTPUT.PUT_LINE ('Students: '||
 zip_info_rec.students);
 DBMS_OUTPUT.PUT_LINE ('Instructors: '||
 zip_info_rec.instructors);
 DBMS_OUTPUT.PUT_LINE ('--------------------');
 END IF;
 END LOOP;
END;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The %ROWTYPE attribute allows you to specify

a. _____ table-based records only.

b. _____ cursor-based records only.

c. _____ table-based and cursor-based records.

2) When creating a user-defined record, you must

a. _____ initialize all of its fields.

b. _____ initialize at least one of its fields.

c. _____ initialize a field only if there is a NOT NULL constraint defined in it.

3) An aggregate assignment statement will cause an error if table-based and cursor-based records have the
same structure.

a. _____ True

b. _____ False

4) An aggregate assignment statement will cause an error if two user-defined records have the same structure
yet different types.

a. _____ True

b. _____ False

5) An aggregate assignment statement will cause an error if table-based and user-defined records have the
same structure.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 19.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.2 Nested Records

Lab Objective
After this Lab, you will be able to:

 Use Nested Records

As mentioned in the introduction to this chapter, PL/SQL allows you to define nested records. These are records that
contain other records and collections. The record that contains a nested record or collection is called an enclosing
record.

Consider the following code fragment.

 FOR EXAMPLE

DECLARE
 TYPE name_type IS RECORD
 (first_name VARCHAR2(15),
 last_name VARCHAR2(30));

 TYPE person_type IS
 (name name_type,
 street VARCHAR2(50),
 city VARCHAR2(25),
 state VARCHAR2(2),
 zip VARCHAR2(5));

 person_rec person_type;

This code fragment contains two user-defined record types. The second user-defined record type, person_type, is a
nested record type because its field name is a record of the name_type type.

Next, consider the complete version of the preceding example.

 FOR EXAMPLE

DECLARE
 TYPE name_type IS RECORD
 (first_name VARCHAR2(15),
 last_name VARCHAR2(30));

 TYPE person_type IS RECORD
 (name name_type,
 street VARCHAR2(50),
 city VARCHAR2(25),
 state VARCHAR2(2),
 zip VARCHAR2(5));

 person_rec person_type;

BEGIN
 SELECT first_name, last_name, street_address, city, state, zip
 INTO person_rec.name.first_name, person_rec.name.last_name, person_rec.street,
 person_rec.city, person_rec.state, person_rec.zip
 FROM student
 JOIN zipcode USING (zip)
 WHERE rownum < 2;

 DBMS_OUTPUT.PUT_LINE ('Name: '||
 person_rec.name.first_name||' '||
 person_rec.name.last_name);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 person_rec.name.last_name);
 DBMS_OUTPUT.PUT_LINE ('Street: '||
 person_rec.street);
 DBMS_OUTPUT.PUT_LINE ('City: '||
 person_rec.city);
 DBMS_OUTPUT.PUT_LINE ('State: '||
 person_rec.state);
 DBMS_OUTPUT.PUT_LINE ('Zip: '||
 person_rec.zip);
END;

In this example, the person_rec record is a user-defined nested record. As a result, in order to reference its field name
that is a record with two fields, the following syntax is used:

enclosing_record.(nested_record or
nested_collection).field_name

In this case, the person_rec is enclosing record because it contains the name record as one of its fields while the name
record is nested in the person_rec record.

This example produces the following output:

Name: James E. Norman
Street: PO Box 809 Curran Hwy
City: North Adams
State: MA
Zip: 01247

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.2 Exercises

19.2.1 Use Nested Records

In this exercise, you will learn more about nested records.

Create the following PL/SQL script:

-- ch19_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 TYPE last_name_type IS TABLE OF student.last_name%TYPE
 INDEX BY BINARY_INTEGER;

 TYPE zip_info_type IS RECORD
 (zip VARCHAR2(5),
 last_name_tab last_name_type);

 CURSOR name_cur (p_zip VARCHAR2) IS
 SELECT last_name
 FROM student
 WHERE zip = p_zip;

 zip_info_rec zip_info_type;
 v_zip VARCHAR2(5) := '&sv_zip';
 v_counter INTEGER := 0;
BEGIN
 zip_info_rec.zip := v_zip;

 FOR name_rec IN name_cur (v_zip) LOOP
 v_counter := v_counter + 1;
 zip_info_rec.last_name_tab(v_counter) :=
 name_rec.last_name;
 END LOOP;
END;

Answer the following questions:

a) Explain the script ch19_3a.sql.

b) Modify the script so that zip_info_rec data is displayed on the screen. Make sure that a value of the zipcode is
displayed only once. Provide the value of '11368' when running the script.

c) Modify the script created in the previous exercise (ch19_3b.sql). Instead of providing a value for a zipcode
at runtime, populate via the cursor FOR loop. The SELECT statement associated with the new cursor should
return zipcodes that have more than one student in them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 19.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

19.2.1 Answers

a) Explain the script ch19_3a.sql.

A1: Answer: The declaration portion of the script contains index-by table type, last_name_type, record type,
zip_info_type, and nested-user-defined record, zip_info_rec, declarations. The field, last_name_tab, of the
zip_info_rec is an index-by table that is populated with the help of the cursor, NAME_CUR. In addition, the
declaration portion also contains two variables, v_zip and v_counter. The variable v_zip is used to store
incoming value of the zipcode provided at runtime. The variable v_counter is used to populate the index-by
table, last_name_tab. The executable portion of the script assigns values to the individual record fields, zip
and last_name_tab. As mentioned previously, the last_name_tab is an index-by table, and it is populated via
cursor FOR loop.

b) Modify the script so that zip_info_rec data is displayed on the screen. Make sure that a value of the zipcode
is displayed only once. Provide the value of '11368' when running the script.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 TYPE last_name_type IS TABLE OF student.last_name%TYPE
 INDEX BY BINARY_INTEGER;

 TYPE zip_info_type IS RECORD
 (zip VARCHAR2(5),
 last_name_tab last_name_type);

 CURSOR name_cur (p_zip VARCHAR2) IS
 SELECT last_name
 FROM student
 WHERE zip = p_zip;

 zip_info_rec zip_info_type;
 v_zip VARCHAR2(5) := '&sv_zip';
 v_counter INTEGER := 0;
BEGIN
 zip_info_rec.zip := v_zip;
 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

 FOR name_rec IN name_cur (v_zip) LOOP
 v_counter := v_counter + 1;
 zip_info_rec.last_name_tab(v_counter) :=
 name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE ('Names('||v_counter||'): '||
 zip_info_rec.last_name_tab(v_counter));
 END LOOP;
END;

In order to display the value of the zipcode only once, the DBMS_OUTPUT. PUT_LINE statement

DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

is placed outside the loop.

When run, this script produces the following output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When run, this script produces the following output:

Enter value for sv_zip: 11368
old 15: v_zip VARCHAR2(5) := '&sv_zip';
new 15: v_zip VARCHAR2(5) := '11368';
Zip: 11368
Names(1): Lasseter
Names(2): Miller
Names(3): Boyd
Names(4): Griffen
Names(5): Hutheesing
Names(6): Chatman

PL/SQL procedure successfully completed.

c) Modify the script created in the previous exercise (ch19_3b.sql). Instead of providing a value for a zipcode
at runtime, populate via the cursor FOR loop. The SELECT statement associated with the new cursor
should return zipcodes that have more than one student in them.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_3c.sql, version 3.0
SET SERVEROUTPUT ON SIZE 20000
DECLARE
 TYPE last_name_type IS TABLE OF student.last_name%TYPE
 INDEX BY BINARY_INTEGER;

 TYPE zip_info_type IS RECORD
 (zip VARCHAR2(5),
 last_name_tab last_name_type);

 CURSOR zip_cur IS
 SELECT zip, COUNT(*)
 FROM student
 GROUP BY zip
 HAVING COUNT(*) > 1;

 CURSOR name_cur (p_zip VARCHAR2) IS
 SELECT last_name
 FROM student
 WHERE zip = p_zip;

 zip_info_rec zip_info_type;
 v_counter INTEGER;
BEGIN
 FOR zip_rec IN zip_cur LOOP
 zip_info_rec.zip := zip_rec.zip;
 DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

 v_counter := 0;
 FOR name_rec IN name_cur (zip_info_rec.zip) LOOP
 v_counter := v_counter + 1;
 zip_info_rec.last_name_tab(v_counter) :=
 name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE ('Names('||v_counter||'): '||
 zip_info_rec.last_name_tab(v_counter));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('----------');
 END LOOP;
END;

In the preceding script, you declared a new cursor called zip_cur. This cursor returns zipcodes that have more than one
student in them. Next, in the body of the script, you use nested cursors to populate the last_name_tab index-by table for
each value of zipcode. First, the outer cursor FOR loop populates the zip field of the zip_info_rec and displays its value on
the screen. Then it passes the zip field as a parameter to the inner cursor FOR loop that populates last_name_tab table
with last names of corresponding students.

Consider the partial output of the preceding example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Zip: 06820
Names(1): Scrittorale
Names(2): Padel
Names(3): Kiraly

Zip: 06830
Names(1): Dennis
Names(2): Meshaj
Names(3): Dalvi

Zip: 06880
Names(1): Miller
Names(2): Cheevens

Zip: 06903
Names(1): Segall
Names(2): Annina

Zip: 07003
Names(1): Wicelinski
Names(2): Intal

Zip: 07010
Names(1): Lopez
Names(2): Mulroy
Names(3): Velasco
Names(4): Kelly
Names(5): Tucker
Names(6): Mithane

…

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A record is called a nested record if it contains

a. _____ other records.

b. _____ collections.

c. _____ all of the above

d. _____ none of the above

2) When creating a nested record, you are allowed to nest only a single record or a single collection.

a. _____ True

b. _____ False

3) When creating a nested record, you must initialize

a. _____ all of the fields of the enclosing record.

b. _____ at least one of the fields of the enclosing record.

c. _____ a field of the enclosing record only if there is a NOT NULL constraint defined in it.

4) It is illegal to declare a record field as an index-by table.

a. _____ True

b. _____ False

5) It is illegal to declare a record field as a varray.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 19.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.3 Collections of Records

Lab Objective
After this Lab, you will be able to:

 Use Collections of Records

In the previous lab you have seen an example of the nested record where one of the record fields was defined as an
index-by table. PL/SQL also gives you ability to define a collection of records (for example, an index-by table where its
element type is a cursor-based record, as shown in the following example).

 FOR EXAMPLE

DECLARE
 CURSOR name_cur IS
 SELECT first_name, last_name
 FROM student
 WHERE ROWNUM <= 4;

 TYPE name_type IS TABLE OF name_cur%ROWTYPE
 INDEX BY BINARY_INTEGER;

 name_tab name_type;
 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;

 name_tab(v_counter).first_name := name_rec.first_name;
 name_tab(v_counter).last_name := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||
 name_tab(v_counter).first_name);
 DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||
 name_tab(v_counter).last_name);
 END LOOP;
END;

In this declaration portion of the example, you define the name_cur cursor, which returns the first and last names of the
first four students. Next, you define an index-by table type with its element type based on the cursor defined previously
via the %ROWTYPE attribute. Then you define an index-by table variable and the counter that is used later to reference
individual rows of the index-by table.

In the executable portion of the example, you populate the index-by table and display its records on the screen.
Consider the notation used in the example when referencing individual elements of the index-by table:

name_tab(v_counter).first_name
and name_tab(v_counter).last_name

Notice that to reference each row of the index-by table, you use the counter variable just like in all previous examples.
However, because each row of this table is a record, you must also reference individual fields of the underlying record.

This example produces the following output:

First Name(1): Fred
Last Name(1): Crocitto
First Name(2): J.
Last Name(2): Landry
First Name(3): Laetia
Last Name(3): Enison
First Name(4): Angel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First Name(4): Angel
Last Name(4): Moskowitz

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.3 Exercises

19.3.1 Use Collections of Records

In this exercise, you will learn more about collections of records.

Answer the following questions:

a) Modify the script used earlier in this lab. Instead of using index-by table, use nested table.

b) Modify the script used earlier in this lab. Instead of using index-by table, use a varray.

c) Modify the script used earlier in this lab. Instead of using a cursor-based record, use a user-defined record.
The new record should have three fields: first_name, last_name, enrollments. The last field will contain total
number of courses in which a student is currently enrolled.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.3 Exercise Answers
This section gives you some suggested answers to the questions in Lab 19.3, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

19.3.1 Answers

a) Modify the script used earlier in this lab. Instead of using index-by table, use nested table.

A1: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR name_cur IS
 SELECT first_name, last_name
 FROM student
 WHERE ROWNUM <= 4;

 TYPE name_type IS TABLE OF name_cur%ROWTYPE;

 name_tab name_type := name_type();
 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 name_tab.EXTEND;

 name_tab(v_counter).first_name := name_rec.first_name;
 name_tab(v_counter).last_name := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||
 name_tab(v_counter).first_name);
 DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||
 name_tab(v_counter).last_name);
 END LOOP;
END;

In the preceding script, the name_tab is declared as a nested table. As a result, at the time of its declaration it is
initialized. In other words, the name_tab is empty but non-null. Furthermore, once the name_tab table is initialized, its
size must be increased before it can be populated with the next record.

b) Modify the script used earlier in this lab. Instead of using index-by table, use a varray.

A2: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR name_cur IS
 SELECT first_name, last_name
 FROM student
 WHERE ROWNUM <= 4;

 TYPE name_type IS VARRAY(4) OF name_cur%ROWTYPE;

 name_tab name_type := name_type();
 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 name_tab.EXTEND;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name_tab.EXTEND;

 name_tab(v_counter).first_name := name_rec.first_name;
 name_tab(v_counter).last_name := name_rec.last_name;

 DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||
 name_tab(v_counter).first_name);
 DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||
 name_tab(v_counter).last_name);
 END LOOP;
END;

In this version of the script, the name_tab is declared as a varray with four elements. Just like in the previous version,
the collection is initialized and its size is incremented before it is populated with the new record.

Both scripts, ch19_4a.sql and ch19_4b.sql, produce the output identical to the original example:

First Name(1): Fred
Last Name(1): Crocitto
First Name(2): J.
Last Name(2): Landry
First Name(3): Laetia
Last Name(3): Enison
First Name(4): Angel
Last Name(4): Moskowitz

PL/SQL procedure successfully completed.

c) Modify the script used earlier in this lab. Instead of using a cursor-based record, use a user-defined
record. The new record should have three fields: first_name, last_name, enrollments. The last field will contain
total number of courses in which a student is currently enrolled.

A3: Answer: Your script should look similar to the following script. Changes are shown in bold letters.

-- ch19_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 CURSOR name_cur IS
 SELECT first_name, last_name, COUNT(*) total
 FROM student
 JOIN enrollment USING (student_id)
 GROUP BY first_name, last_name;

 TYPE student_rec_type IS RECORD
 (first_name VARCHAR2(15),
 last_name VARCHAR2(30),
 enrollments INTEGER);

 TYPE name_type IS TABLE OF student_rec_type
 INDEX BY BINARY_INTEGER;

 name_tab name_type;
 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;

 name_tab(v_counter).first_name := name_rec.first_name;
 name_tab(v_counter).last_name := name_rec.last_name;
 name_tab(v_counter).enrollments := name_rec.total;

 IF v_counter <= 4 THEN
 DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||
 '): '||name_tab(v_counter).first_name);
 DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||
 '): '||name_tab(v_counter).last_name);
 DBMS_OUTPUT.PUT_LINE('Enrollments('||
 v_counter||'): '||name_tab(v_counter).
 enrollments);
 DBMS_OUTPUT.PUT_LINE ('--------------------');
 END IF;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 END IF;
 END LOOP;
END;

In the declaration portion of the script, the cursor SELECT statement has been modified so that for each student it
returns total number of enrollments. Next, the user-defined record type, student_rec_type, is declared so that it can be
used as the element type for the index-by table type, name_type.

In the executable portion of the script, the index-by table, name_tab, is populated via the cursor FOR loop. Next, the
index counter variable, v_counter, is evaluated via the IF-THEN statement so that only first four records of the index-by
table are displayed on the screen.

When run, this script produces the following output:

First Name(1): A.
Last Name(1): Tucker
Enrollments(1): 1

First Name(2): Adele
Last Name(2): Rothstein
Enrollments(2): 1

First Name(3): Adrienne
Last Name(3): Lopez
Enrollments(3): 1

First Name(4): Al
Last Name(4): Jamerncy
Enrollments(4): 1

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 19.3 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) Collections of records are not supported by Oracle 9i.

a. _____ True

b. _____ False

2) A varray of records has an upper bound

a. _____ that is fixed and cannot be extended to all.

b. _____ that can be extended to its maximum size.

c. _____ that can be extended without any limits.

3) There is no need to initialize a nested table of records prior to its use.

a. _____ True

b. _____ False

4) There is no need to increase the size of a nested table of records before it is populated with a new record.

a. _____ True

b. _____ False

5) It is illegal to use a user-defined record as an element type when creating a collection of records.

a. _____ True

b. _____ False

Answers appear in Appendix A, Section 19.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19 Test Your Thinking

In this chapter, you learned about various types of records, nested records, and collections of records.
Here are some projects that will help you test the depth of your understanding.

1) Create the following script. Create an index-by table with the element type of
a user-defined record. This record should contain first name, last name, and
the total number of courses that a particular instructor teaches. Display the
records of the index-by table on the screen.

2) Modify the script created in project (1). Instead of using an index-by table, use
a nested table.

3) Modify the script created in project (2). Instead of using a nested table, use a
varray.

4) Create the following script. Create a user-defined record with three fields:
course_no, description, cost, and prerequisite_rec. The last field, prerequisite_rec,
should be a user-defined record with three fields: prereq_no, prereq_desc, and
prereq_cost. For any ten courses that have a prerequisite course, populate the
user-defined record with all corresponding data and display its information on
the screen.

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found in Appendix D and at the companion
Web site to this book, located at http://authors.phptr.com/rosezweig3e. Visit the Web site periodically to
share and discuss your answers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20. Native Dynamic SQL
Chapter Objectives
In this Chapter, you will learn about:

 EXECUTE IMMEDIATE Statements

 OPEN-FOR, FETCH, and CLOSE Statements

Generally, PL/SQL applications perform a specific task and manipulate a static set of tables. For example, a stored
procedure might accept a student ID and return the student's first and last names. In such a procedure, a SELECT
statement is known in advance and is compiled as part of the procedure. Such SELECT statements are called static
because they do not change from execution to execution.

Now, consider a different type of PL/SQL application where SQL statements are built on the fly, based on a set of
parameters specified at run-time. For example, an application might need to build various reports based on SQL
statements where table and column names are not known in advance, or sorting and grouping of data is specified by a
user requesting a report. Similarly, another application might need to create or drop tables or other database objects
based on the action specified by a user at run-time. Because these SQL statements are generated on the fly and might
change from time to time, they are called dynamic.

PL/SQL has a feature called native dynamic SQL (dynamic SQL for short) that helps you build applications similar to
those described above. The use of dynamic SQL makes such applications flexible, versatile, and concise because it
eliminates the need for complicated programming approaches. In this chapter you will learn how to create and use
dynamic SQL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.1 EXECUTE IMMEDIATE Statements

Lab Objective
After this Lab, you will be able to:

 Use the EXECUTE IMMEDIATE Statement

Generally, dynamic SQL statements are built by your program and stored as character strings based on the parameters
specified at run-time. It is important to note that these strings must contain valid SQL statements or PL/SQL code.
Consider the following example of dynamic SQL statement shown below.

 FOR EXAMPLE

'SELECT first_name, last_name FROM student WHERE student_id = :student_id'

The SELECT statement above returns a student's first and last name for a given student ID. The value of the student ID
is not known in advance and is specified with the help of a bind argument, :student_id. The bind argument is a
placeholder for an undeclared identifier, and its name must be prefixed by a colon. As a result, PL/SQL does not
differentiate between the following statements:

'SELECT first_name, last_name FROM student WHERE student_id = :student_id'
'SELECT first_name, last_name FROM student WHERE student_id = :id'

To process dynamic SQL statements, you will use EXECUTE IMMEDIATE or OPEN-FOR, FETCH, and CLOSE statements.

To improve performance of dynamic SQL statements you can also use BULK
EXECUTE IMMEDIATE, BULK FETCH, FORALL, and COLLECT INTO statements.
However, these statements are outside the scope of this book and are not
covered. You can find detailed explanations and examples of their usage in
Oracle Help available on-line.

The EXECUTE IMMEDIATE Statement

The EXECUTE IMMDEDIATE statement parses a dynamic statement or a PL/SQL block for immediate execution and has
the structure shown below (the reserved words and phrases surrounded by brackets are optional):

EXECUTE IMMEDIATE dynamic_SQL_string
[INTO defined_variable1, defined_variable2, ...]
[USING [IN | OUT | IN OUT] bind_argument1, bind_argument2, ...]
[RETURNING INTO | RETURN bind_argument1, bind_argument2, ...]

The dynamic_SQL_string is a string that contains a valid SQL statement or a PL/SQL block. The INTO clause contains
the list of predefined variables that hold values returned by the SELECT statement. This clause is used when a dynamic
SQL statement returns a single row similar to a static SELECT INTO statement. Next, the USING clause contains a list of
bind arguments whose values are passed to the dynamic SQL statement or PL/SQL block. The IN, OUT, and IN OUT are
modes for bind arguments. If no mode is specified, all bind arguments listed in the USING clause are in the IN mode.
Finally, the RETURNING INTO or RETURN clause contains a list of bind arguments that store values returned by the
dynamic SQL statement or PL/SQL block. Similar to the USING clause, the RETURNING INTO clause may also contain
various argument modes; however, if no mode is specified, all bind arguments are in the OUT mode.

Note that when an EXECUTE IMMEDIATE statement contains both USING and
RETURNING INTO clauses, the USING clause may specify only IN arguments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RETURNING INTO clauses, the USING clause may specify only IN arguments.

 FOR EXAMPLE

DECLARE
 sql_stmt VARCHAR2(100);
 plsql_block VARCHAR2(300);
 v_zip VARCHAR2(5) := '11106';
 v_total_students NUMBER;
 v_new_zip VARCHAR2(5);
 v_student_id NUMBER := 151;
BEGIN
 -- Create table MY_STUDENT
 sql_stmt := 'CREATE TABLE my_student '||
 'AS SELECT * FROM student WHERE zip = '||v_zip;
 EXECUTE IMMEDIATE sql_stmt;

 -- Select total number of records from MY_STUDENT table
 -- and display results on the screen
 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM my_student'
 INTO v_total_students;
 DBMS_OUTPUT.PUT_LINE ('Students added: '||v_total_students);

 -- Select current date and display it on the screen
 plsql_block := 'DECLARE ' ||
 ' v_date DATE; ' ||
 'BEGIN ' ||
 ' SELECT SYSDATE INTO v_date FROM DUAL; ' ||
 ' DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_date, ''DD-MON- YYYY''));'||
 'END;';
 EXECUTE IMMEDIATE plsql_block;

 -- Update record in MY_STUDENT table
 sql_stmt := 'UPDATE my_student SET zip = 11105 WHERE student_id = :1 '||
 'RETURNING zip INTO :2';
 EXECUTE IMMEDIATE sql_stmt USING v_student_id RETURNING INTO v_new_zip;
 DBMS_OUTPUT.PUT_LINE ('New zip code: '||v_new_zip);
END;

The script above contains several examples of dynamic SQL.

First, you create the table MY_STUDENT and populate it with records for a specified value of zip code. It is important to
note that the variable v_zip is concatenated with the CREATE statement instead of being passed in as a bind argument.
This point is illustrated in the next example.

Second, you select the total number of students added to the MY_STUDENT table and display it on the screen. You use
the INTO option with the EXECUTE IMMEDIATE statement because the SELECT statement returns a single row.

Third, you create a simple PL/SQL block where you select the current date and display it on the screen. Because the
PL/SQL block does not contain any bind arguments, the EXECUTE IMMEDIATE statement is used in its simplest form.

Finally, you update MY_STUDENT table for a given student ID and return a new value of zip code via the RETURNING
statement. So, the EXECUTE IMMEDIATE command contains both USING and RETURNING INTO options. The USING
option allows you to pass a value of student ID to the UPDATE statement at run-time, and the RETURNING INTO option
allows you to pass a new value of zip code from the UPDATE statement into your program.

When run, this example produces the output shown below:

Students added: 4
22-JUN-2003
New zip code: 11105

PL/SQL procedure successfully completed.

Next, consider the simplified yet incorrect version of the example above. Changes are shown in bold letters.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR EXAMPLE

DECLARE
 sql_stmt VARCHAR2(100);
 v_zip VARCHAR2(5) := '11106';
 v_total_students NUMBER;
BEGIN
 -- Drop table MY_STUDENT
 EXECUTE IMMEDIATE 'DROP TABLE my_student';

 -- Create table MY_STUDENT
 sql_stmt := 'CREATE TABLE my_student '||
 'AS SELECT * FROM student '||
 'WHERE zip = :zip';
 EXECUTE IMMEDIATE sql_stmt USING v_zip;

 -- Select total number of records from MY_STUDENT table
 -- and display results on the screen
 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM my_student'
 INTO v_total_students;
 DBMS_OUTPUT.PUT_LINE ('Students added: '||
 v_total_students);
END;

First, you drop the table MY_STUDENT created in the previous version of the example. Next, you recreate the
MY_STUDENT table, but, in this case, you use a bind argument to pass a value of zip code to the CREATE statement at
run-time.

When run, this example produces the following error:

DECLARE
*
ERROR at line 1:
ORA-01027: bind variables not allowed for data definition operations
ORA-06512: at line 12

A CREATE TABLE statement is a data definition statement, and as a result, it
cannot accept any bind arguments.

Next, consider another simplified version of the same example that causes a syntax error as well. In this version, you
pass table name as a bind argument to the SELECT statement. Changes are shown in bold letters.

 FOR EXAMPLE

DECLARE
 sql_stmt VARCHAR2(100);
 v_zip VARCHAR2(5) := '11106';
 v_total_students NUMBER;
BEGIN
 -- Create table MY_STUDENT
 sql_stmt := 'CREATE TABLE my_student '||
 'AS SELECT * FROM student '||
 'WHERE zip = v_zip;
 EXECUTE IMMEDIATE sql_stmt;

 -- Select total number of records from MY_STUDENT table
 -- and display results on the screen
 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM :my_table'
 INTO v_total_students
 USING 'my_student';
 DBMS_OUTPUT.PUT_LINE ('Students added: '||
 v_total_students);
END;

When run, this example causes the following error:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When run, this example causes the following error:

DECLARE
*
ERROR at line 1:
ORA-00903: invalid table name
ORA-06512: at line 13

This example causes an error because you cannot pass names of schema objects to the dynamic SQL statements as
bind arguments. In order to provide table name at the run time, you need to concatenate it with the SELECT statement
as shown below:

EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM '||my_table
 INTO v_total_students;

As mentioned earlier, a dynamic SQL string can contain any SQL statement or PL/SQL block. However, unlike static SQL
statements, a dynamic SQL statement should not be terminated by the semicolon (;). Similarly, a dynamic PL/SQL
block should not be terminated by the forward slash (/). Consider a different version of the same example where the
SELECT statement is terminated by the semicolon. Changes are shown in bold letters. Note that if you have created the
MY_STUDENT table based on the corrected version of the script above, you need to drop it prior to running the script
below. Otherwise, the error message generated by the example will differ from the error message shown below.

 FOR EXAMPLE

DECLARE
 sql_stmt VARCHAR2(100);
 v_zip VARCHAR2(5) := '11106';
 v_total_students NUMBER;
BEGIN
 -- Create table MY_STUDENT
 sql_stmt := 'CREATE TABLE my_student '||
 'AS SELECT * FROM student '||
 'WHERE zip = v_zip;
 EXECUTE IMMEDIATE sql_stmt;

 -- Select total number of records from MY_STUDENT table
 -- and display results on the screen
 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM my_student;'
 INTO v_total_students;
 DBMS_OUTPUT.PUT_LINE ('Students added: '||
 v_total_students);
END;

When run, this example produces the following error:

DECLARE
*
ERROR at line 1:
ORA-00911: invalid character
ORA-06512: at line 13

The semicolon added to the SELECT statement is treated as an invalid character when the statement is created
dynamically. A somewhat similar error is generated when a PL/SQL block is terminated by a forward slash as
demonstrated below. Changes are shown in bold letters.

 FOR EXAMPLE

DECLARE
 plsql_block VARCHAR2(300);
BEGIN
 -- Select current date and display it on the screen
 plsql_block := 'DECLARE ' ||
 ' v_date DATE; ' ||
 'BEGIN ' ||
 ' SELECT SYSDATE INTO v_date FROM DUAL; ' ||
 ' DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_date, ''DD-MON-YYYY''));'||
 'END;' ||
 '/';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '/';
 EXECUTE IMMEDIATE plsql_block;
END;

DECLARE
*
ERROR at line 1:
ORA-06550: line 1, column 133:
PLS-00103: Encountered the symbol "/" The symbol "/" was ignored.
ORA-06512: at line 12

Passing NULLs

In some cases you may need to pass a NULL value to a dynamic SQL statement as a value for a bind argument. For
example, you need to update the COURSE table so that the PREREQUISITE column is set to NULL. You can accomplish
this with the following dynamic SQL and the EXECUTE IMMEDIATE statement.

 FOR EXAMPLE

DECLARE
 sql_stmt VARCHAR2(100);
BEGIN
 sql_stmt := 'UPDATE course'||
 ' SET prerequisite = :some_value';
 EXECUTE IMMEDIATE sql_stmt
 USING NULL;
END;

However, when run, this script causes the following error

 USING NULL;
 *
ERROR at line 7:
ORA-06550: line 7, column 10:
PLS-00457: expressions have to be of SQL types
ORA-06550: line 6, column 4:
PL/SQL: Statement ignored

This error is generated because the literal NULL in the USING clause is not recognized as one of the SQL types. In order
to pass a NULL value to the dynamic SQL statement, this example should be modified as follows (changes are shown in
bold letters).

 FOR EXAMPLE

DECLARE
 sql_stmt VARCHAR2(100);
 v_null VARCHAR2(1);
BEGIN
 sql_stmt := 'UPDATE course'||
 ' SET prerequisite = :some_value';
 EXECUTE IMMEDIATE sql_stmt
 USING v_null;
END;

To correct the script, you add an initialized variable v_null and replace the literal NULL in the USING clause with this
variable. Because the variable v_null has not been initialized, its value remains NULL, and it is passed to the dynamic
UPDATE statement at run-time. As a result, this version of the script completes without any errors.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.1 Exercises

20.1.1 Use the EXECUTE IMMEDIATE Statement

Create the following PL/SQL script:

-- ch20_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 sql_stmt VARCHAR2(200);
 v_student_id NUMBER := &sv_student_id;
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
BEGIN
 sql_stmt := 'SELECT first_name, last_name'||
 ' FROM student' ||
 ' WHERE student_id = :1';
 EXECUTE IMMEDIATE sql_stmt
 INTO v_first_name, v_last_name
 USING v_student_id;

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
END;

Execute the script, then complete the following exercises:

a) Explain the script ch20_1a.sql shown above.

b) Modify the script so that the student's address (street, city, state, and zip code) is displayed on the screen
as well.

c) Modify the script created in the previous exercise (ch20_1b.sql) so that the SELECT statement can be run
against either the STUDENT or INSTRUCTOR table. In other words, a user can specify table name used in
the SELECT statement at run-time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.1 Exercise Answers
This section gives you some suggested answers to the questions in Lab 20.1, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

20.1.1 Answers

a) Explain the script ch20_1a.sql shown above.

A1: Answer: The declaration portion of the script contains a declaration of the string that contains the dynamic
SQL statement, and three variables to hold student's ID, first, and last names respectively. The executable
portion of the script contains a dynamic SQL statement with one bind argument that is used to pass the
value of student ID to the SELECT statement at run-time. The dynamic SQL statement is executed via the
EXECUTE IMMEDIATE statement with two options, INTO and USING. The INTO clause contains two
variables, v_first_name and v_last_name. These variables contain results returned by the SELECT statement.
The USING clause contains the variable v_student_id that is used to pass a value to the SELECT statement
at run-time. Finally, two DBMS_OUTPUT.PUT_LINE statements are used to display the results of the
SELECT statement on the screen.

When run, the script produces the following output:

Enter value for sv_student_id: 105
old 3: v_student_id NUMBER := &sv_student_id;
new 3: v_student_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz

PL/SQL procedure successfully completed.

b) Modify the script so that the student's address (street, city, state, and zip code) is displayed on the screen
as well.

A2: Answer: Your script should look similar to the script shown below. Changes are shown in bold letters.

-- ch20_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 sql_stmt VARCHAR2(200);
 v_student_id NUMBER := &sv_student_id;
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
 v_street VARCHAR2(50);
 v_city VARCHAR2(25);
 v_state VARCHAR2(2);
 v_zip VARCHAR2(5);
BEGIN
 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM student a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND student_id = :1';
 EXECUTE IMMEDIATE sql_stmt
 INTO v_first_name, v_last_name, v_street, v_city, v_state, v_zip
 USING v_student_id;

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
 DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
 DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
 DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the script above, you declare four new variables, v_street, v_city, v_state, and v_zip. Next, you modify the dynamic SQL
statement so that it can return the student's address. As a result, you modify the INTO clause by adding the new
variables to it. Next, you add DBMS_OUTPUT.PUT_LINE statements to display the student's address on the screen.

When run, the script produces the output shown below:

Enter value for sv_student_id: 105
old 3: v_student_id NUMBER := &sv_student_id;
new 3: v_student_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

It is important to remember that the order of variables listed in the INTO clause must follow the order of columns listed
in the SELECT statement. In other words, if the INTO clause listed variables so that v_zip and v_state were misplaced
while the SELECT statement remains unchanged, the scripts would generate an error as demonstrated below.

SET SERVEROUTPUT ON
DECLARE
 sql_stmt VARCHAR2(200);
 v_student_id NUMBER := &sv_student_id;
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
 v_street VARCHAR2(50);
 v_city VARCHAR2(25);
 v_state VARCHAR2(2);
 v_zip VARCHAR2(5);
BEGIN
 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM student a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND student_id = :1';
 EXECUTE IMMEDIATE sql_stmt
 -- variables v_state and v_zip are misplaced
 INTO v_first_name, v_last_name, v_street, v_city, v_zip, v_state
 USING v_student_id;

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
 DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
 DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
 DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

Enter value for sv_student_id: 105
old 3: v_student_id NUMBER := &sv_student_id;
new 3: v_student_id NUMBER := 105;
DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 16

This error is generated because variable v_state can hold up to two characters. However, you are trying to store in it a
value of zip code that contains 5 characters.

c) Modify the script created in the previous exercise (ch20_1b.sql) so that the SELECT statement can be run
against either the STUDENT or INSTRUCTOR table. In other words, a user can specify table name used in
the SELECT statement at run-time.

A3: Answer: Your script should look similar to the script shown below. Changes are shown in bold letters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- ch20_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE
 sql_stmt VARCHAR2(200);
 v_table_name VARCHAR2(20) := '&sv_table_name';
 v_id NUMBER := &sv_id;
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
 v_street VARCHAR2(50);
 v_city VARCHAR2(25);
 v_state VARCHAR2(2);
 v_zip VARCHAR2(5);
BEGIN
 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM '||v_table_name||' a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND '||v_table_name||'_id = :1';
 EXECUTE IMMEDIATE sql_stmt
 INTO v_first_name, v_last_name, v_street, v_city, v_state, v_zip
 USING v_id;

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
 DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
 DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
 DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

The declaration portion of the script contains a new variable, v_table_name that holds the name of a table provided at
run-time by a user. In addition, the variable v_student_id has been replaced by the variable v_id since it is not known in
advance what table, STUDENT or INSTRCTOR, will be accessed at run-time.

The executable portion of the script contains a modified dynamic SQL statement. Notice that the statement does not
contain any information specific to the STUDENT or INSTRCUTOR tables. In other words, the dynamic SQL statement
used by the previous version (ch20_1b.sql)

sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM student a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND student_id = :1';

has been replaced by

sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM '||v_table_name||' a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND '||v_table_name||'_id = :1';

The table name (student) has been replaced by the variable v_table_name in the FROM and the WHERE clauses.

Note that for the last two versions of the script you have used generic table
aliases, 'a' and 'b', instead of 's' and 'z' or 'i' and 'z', that are more descriptive.
This technique allows you to create generic SQL statements that are not based
on a specific table since you do not always know it in advance.

This version of the script produces output shown below. First run is against the STUDENT table, and second run is
against the INSTRUCTOR table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter value for sv_table_name: student
old 3: v_table_name VARCHAR2(20) := '&sv_table_name';
new 3: v_table_name VARCHAR2(20) := 'student';
Enter value for sv_id: 105
old 4: v_id NUMBER := &sv_id;
new 4: v_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 3: v_table_name VARCHAR2(20) := '&sv_table_name';
new 3: v_table_name VARCHAR2(20) := 'instructor';
Enter value for sv_id: 105
old 4: v_id NUMBER := &sv_id;
new 4: v_id NUMBER := 105;
First Name: Anita
Last Name: Morris
Street: 34 Maiden Lane
City: New York
State: NY
Zip Code: 10015

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.1 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) A dynamic SQL string may contain

a. _____ SQL statements only

b. _____ PL/SQL blocks only

c. _____ SQL statements and PL/SQL blocks

2) An INTO option of the EXECUTE IMMEDIATE statement is used for

a. _____ single-row queries

b. _____ multi-row queries

3) In a dynamic SQL statement, a table name can be specified via a bind argument.

a. _____ TRUE

b. _____ FALSE

4) A dynamic SQL statement may be terminated by the semicolon (;)

a. _____ TRUE

b. _____ FALSE

5) A dynamic PL/SQL block may be terminated by the forward slash (/)

a. _____ TRUE

b. _____ FALSE

Answers appear in Appendix A, Section 20.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.2 OPEN-FOR, FETCH, and CLOSE STATEMENTS

Lab Objective
After this lab, you will be able to:

 Use OPEN-FOR, FETCH, and CLOSE Statements

The OPEN-FOR, FETCH, and CLOSE statements are used for multi-row queries or cursors. This concept is very similar to
static cursor processing that you encountered in Chapter 9. Just as in the case of static cursors, first you associate a
cursor variable with a query. Next, you open the cursor variable so that it points to the first row of the result set. Next,
you fetch one row at a time from the result set. Finally, when all rows have been processed, you close the cursor
(cursor variable).

Opening Cursor

In the case of a dynamic SQL, the OPEN-FOR statement has an optional USING clause that allows you to pass values to
the bind arguments at run-time. The general syntax for an OPEN-FOR statement is as follows (the reserved words and
phrases surrounded by brackets are optional):

OPEN cursor_variable FOR dynamic_SQL_string
[USING bind_argument1, bind_argument2, ...]

The cursor_variable is a variable of a weak REF CURSOR type, and dynamic_SQL_string is a string that contains a
multi-row query.

 FOR EXAMPLE

DECLARE
 TYPE student_cur_type IS REF CURSOR;
 student_cur student_cur_type;
 v_zip VARCHAR2(5) := '&sv_zip';
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
BEGIN
 OPEN student_cur FOR
 'SELECT first_name, last_name FROM student '||
 'WHERE zip = :1'
 USING v_zip;
...

In this code fragment, you defined a weak cursor type, student_cur_type. Next, you defined a cursor variable student_cur
based on the REF CURSOR type specified in the previous step. At run-time, the student_cur variable is associated with
the SELECT statement that returns the first and last names of students for a given value of zip.

Fetching from Cursor

As mentioned earlier, the FETCH statement returns a single row from the result set into a list of variables defined in a
PL/SQL block and moves cursor to the next row. If there are no more rows to fetch, the EXIT WHEN statement
evaluates to TRUE, and the control of the execution is passed outside the cursor loop. The general syntax for a FETCH
statement is as follows:

FETCH cursor_variable
 INTO defined_variable1, defined_variable2, ...
EXIT WHEN cursor_variable%NOTFOUND;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXIT WHEN cursor_variable%NOTFOUND;

Adding the previous example, you fetch the student's first and last names into variables specified in the declaration
section of the PL/SQL block. Next, you evaluate if there are more records to process via EXIT WHEN statement. As long
as there are more records to process, the student's first and last names are displayed on the screen. Once the last row
is fetched, the cursor loop terminates. Changes are shown in bold letters.

 FOR EXAMPLE

DECLARE
 TYPE student_cur_type IS REF CURSOR;
 student_cur student_cur_type;

 v_zip VARCHAR2(5) := '&sv_zip';
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
BEGIN
 OPEN student_cur FOR
 'SELECT first_name, last_name FROM student '||
 'WHERE zip = :1'
 USING v_zip;

 LOOP
 FETCH student_cur INTO v_first_name, v_last_name;
 EXIT WHEN student_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
 END LOOP;
...

It is important to note that the number of variables listed in the INTO clause must correspond to the number of columns
returned by the cursor. Furthermore, the variables in the INTO clause must be type-compatible with the cursor
columns.

Closing Cursor

The CLOSE statement disassociates the cursor variable with the multi-row query. As a result, after the CLOSE
statement executes, the result set becomes undefined. The general syntax for a CLOSE statement is as follows:

CLOSE cursor_variable

Now consider the completed version of the example shown previously. Changes are shown in bold letters.

 FOR EXAMPLE

DECLARE
 TYPE student_cur_type IS REF CURSOR;
 student_cur student_cur_type;

 v_zip VARCHAR2(5) := '&sv_zip';
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
BEGIN
 OPEN student_cur FOR
 'SELECT first_name, last_name FROM student '||
 'WHERE zip = :1'
 USING v_zip;

 LOOP
 FETCH student_cur INTO v_first_name, v_last_name;
 EXIT WHEN student_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
 END LOOP;
 CLOSE student_cur;

EXCEPTION
 WHEN OTHERS THEN
 IF student_cur%ISOPEN THEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IF student_cur%ISOPEN THEN
 CLOSE student_cur;
 END IF;

 DBMS_OUTPUT.PUT_LINE ('ERROR: '||
 SUBSTR(SQLERRM, 1, 200));
END;

The IF statement in the exception-handling section evaluates to TRUE if an exception is encountered before the cursor
processing is completed. In such case, it is considered a good practice to check if a cursor is still open and close it, so
that all resources associated with it are freed before the program terminates.

When run, this example produces the output shown below:

Enter value for sv_zip: 11236
old 5: v_zip VARCHAR2(5) := '&sv_zip';
new 5: v_zip VARCHAR2(5) := '11236';
First Name: Derrick
Last Name: Baltazar
First Name: Michael
Last Name: Lefbowitz
First Name: Bridget
Last Name: Hagel

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.2 Exercises

20.2.1 Use OPEN-FOR, FETCH, and CLOSE Statements

Create the following PL/SQL script:

-- ch20_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE
 TYPE zip_cur_type IS REF CURSOR;
 zip_cur zip_cur_type;

 sql_stmt VARCHAR2(500);
 v_zip VARCHAR2(5);
 v_total NUMBER;
 v_count NUMBER;
BEGIN
 sql_stmt := 'SELECT zip, COUNT(*) total'||
 ' FROM student ' ||
 'GROUP BY zip';

 v_count := 0;
 OPEN zip_cur FOR sql_stmt;
 LOOP
 FETCH zip_cur INTO v_zip, v_total;
 EXIT WHEN zip_cur%NOTFOUND;

 -- Limit the number of lines printed on the
 -- screen to 10
 v_count := v_count + 1;
 IF v_count <= 10 THEN
 DBMS_OUTPUT.PUT_LINE ('Zip code: '||v_zip||
 ' Total: '||v_total);
 END IF;
 END LOOP;
 CLOSE zip_cur;

EXCEPTION
 WHEN OTHERS THEN
 IF zip_cur%ISOPEN THEN
 CLOSE zip_cur;
 END IF;

 DBMS_OUTPUT.PUT_LINE ('ERROR: '||
 SUBSTR(SQLERRM, 1, 200));
END;

Consider the use of spaces in the SQL statements generated dynamically. In the script above, the string that holds the
dynamic SQL statement consists of three strings concatenated together where each string is written on a separate line.

sql_stmt := 'SELECT zip, COUNT(*) total'||
 ' FROM student ' ||
 'GROUP BY zip';

This format of the dynamic SELECT statement is very similar to the format of any static SELECT statement that you
have seen throughout this book. However, there is a settled difference. In one instance, extra spaces have been added
for formatting reasons. For example, the FROM keyword is prefixed by two spaces so that it is aligned with the SELECT
keyword. Yet, in another instance, a space has been added to separate out a reserved phrase. In this case, a space has
been added after the STUDENT table to separate out GROUP BY clause. This step is necessary because once the strings
are concatenated the resulting SELECT statement looks as follows:

SELECT zip, COUNT(*) total FROM student GROUP BY zip

If no space is added after the STUDENT table, the resulting SELECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT zip, COUNT(*) total FROM studentGROUP BY zip

causes error shown below

ERROR: ORA-00933: SQL command not properly ended

PL/SQL procedure successfully completed.

Execute the script, then complete the following exercises:

a) Explain the script ch20_2a.sql shown above.

b) Modify the script created in the previous exercise (ch20_2a.sql) so that the SELECT statement can be run
against either STUDENT or INSTRUCTOR table. In other words, a user can specify table name used in the
SELECT statement at the run time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.2 Exercise Answers
This section gives you some suggested answers to the questions in Lab 20.2, with discussion related to how those
answers resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers here and what the effects are from any different answers you may come up with.

20.2.1 Answers

a) Explain the script ch20_2a.sql shown above.

A1: Answer: In the declaration portion of the script, you define a weak cursor type, zip_cur_type, and a cursor
variable zip_cur of the zip_cur_type type. Next, you define string variable to hold dynamic SQL statement,
and two variables v_zip and v_total to hold data returned by the cursor. Finally, you define a counter
variable so that only the first ten rows returned by the cursor are displayed on the screen.

In the executable portion of the script, you generate a dynamic SQL statement, associate it with the
cursor variable, zip_cur, and open the cursor. Next, for each row returned by the cursor, you fetch values
of zip code and total number of students into variables v_zip and v_total respectively. Then, you check if
there are more rows to fetch from the cursor. If there are more rows to process, you increment the value
of the counter variable by one. As long as the value of the counter is less than or equal to ten, you display
the row returned by the cursor on the screen. If there are no more rows to fetch, you close the cursor.

In the exception-handling section of the script, you check if the cursor is open. If it is, you then close the
cursor and display an error message on the screen before terminating the script.

When run, the script should produce output similar to the output shown below:

Zip code: 01247 Total: 1
Zip code: 02124 Total: 1
Zip code: 02155 Total: 1
Zip code: 02189 Total: 1
Zip code: 02563 Total: 1
Zip code: 06483 Total: 1
Zip code: 06605 Total: 1
Zip code: 06798 Total: 1
Zip code: 06820 Total: 3
Zip code: 06830 Total: 3

PL/SQL procedure successfully completed.

b) Modify the script created in the previous exercise (ch20_2a.sql) so that the SELECT statement can be run
against either STUDENT or INSTRUCTOR table. In other words, a user can specify table name used in the
SELECT statement at the run time.

A2: Answer: Your script should look similar to the script shown below. Changes are shown in bold letters.

-- ch20_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE
 TYPE zip_cur_type IS REF CURSOR;
 zip_cur zip_cur_type;

 v_table_name VARCHAR2(20) := '&sv_table_name';
 sql_stmt VARCHAR2(500);
 v_zip VARCHAR2(5);
 v_total NUMBER;

 v_count NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Totals from '||v_table_name||
 ' table');

 sql_stmt := 'SELECT zip, COUNT(*) total'||
 ' FROM '||v_table_name||' '||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' FROM '||v_table_name||' '||
 'GROUP BY zip';

 v_count := 0;
 OPEN zip_cur FOR sql_stmt;
 LOOP
 FETCH zip_cur INTO v_zip, v_total;
 EXIT WHEN zip_cur%NOTFOUND;

 -- Limit the number of lines printed on the
 -- screen to 10
 v_count := v_count + 1;
 IF v_count <= 10 THEN
 DBMS_OUTPUT.PUT_LINE ('Zip code: '||v_zip||
 ' Total: '||v_total);
 END IF;
 END LOOP;
 CLOSE zip_cur;

EXCEPTION
 WHEN OTHERS THEN
 IF zip_cur%ISOPEN THEN
 CLOSE zip_cur;
 END IF;

 DBMS_OUTPUT.PUT_LINE ('ERROR: '||
 SUBSTR(SQLERRM, 1, 200));
END;

In this version of the script, you have added a variable, v_table_name, to hold the name of a table provided at the run-
time. You also added a DBMS_OUTPUT.PUT_LINE table to display a message stating what table the total numbers are
coming from. Next, you modified the dynamic SQL statement as follows

sql_stmt := 'SELECT zip, COUNT(*) total'||
 ' FROM '||v_table_name||' '||
 'GROUP BY zip';

The variable v_table_name has been inserted in place of the actual table name (STUDENT). Note that you concatenated a
space to the variable v_table_name, so that the SELECT statement does not cause any errors.

When run, this script produces the output shown below. The first run is based on the STUDENT table, and the second
run is based on the INSTRUCTOR table.

Enter value for sv_table_name: student
old 5: v_table_name VARCHAR2(20) := '&sv_table_name';
new 5: v_table_name VARCHAR2(20) := 'student';
Totals from student table
Zip code: 01247 Total: 1
Zip code: 02124 Total: 1
Zip code: 02155 Total: 1
Zip code: 02189 Total: 1
Zip code: 02563 Total: 1
Zip code: 06483 Total: 1
Zip code: 06605 Total: 1
Zip code: 06798 Total: 1
Zip code: 06820 Total: 3
Zip code: 06830 Total: 3

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 5: v_table_name VARCHAR2(20) := '&sv_table_name';
new 5: v_table_name VARCHAR2(20) := 'instructor';
Totals from instructor table
Zip code: 10005 Total: 1
Zip code: 10015 Total: 3
Zip code: 10025 Total: 4
Zip code: 10035 Total: 1

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

So far you have seen that values returned by the dynamic SQL statements are stored in individual variables such as
v_last_name or v_first_name. In such cases, you list variables in the order of the corresponding columns returned by the
SELECT statement. This approach becomes somewhat cumbersome when a dynamic SQL statement returns more than
a few columns. As a result, PL/SQL allows you to store values returned by the dynamic SELECT statements in the
variables of the record type.

Consider the modified version of the script used in this lab. In this version, instead of creating separate variables, you
create a user-defined record. This record is then used to fetch data from the cursor and display it on the screen.
Changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 TYPE zip_cur_type IS REF CURSOR;
 zip_cur zip_cur_type;

 TYPE zip_rec_type IS RECORD
 (zip VARCHAR2(5),
 total NUMBER);
 zip_rec zip_rec_type;

 v_table_name VARCHAR2(20) := '&sv_table_name';
 sql_stmt VARCHAR2(500);
 v_count NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Totals from '||v_table_name||
 ' table');

 sql_stmt := 'SELECT zip, COUNT(*) total'||
 ' FROM '||v_table_name||' '||
 'GROUP BY zip';

 v_count := 0;
 OPEN zip_cur FOR sql_stmt;
 LOOP
 FETCH zip_cur INTO zip_rec;
 EXIT WHEN zip_cur%NOTFOUND;

 -- Limit the number of lines printed on the
 -- screen to 10
 v_count := v_count + 1;
 IF v_count <= 10 THEN
 DBMS_OUTPUT.PUT_LINE ('Zip code: '||zip_rec.zip||
 ' Total: '||zip_rec.total);
 END IF;
 END LOOP;
 CLOSE zip_cur;

EXCEPTION
 WHEN OTHERS THEN
 IF zip_cur%ISOPEN THEN
 CLOSE zip_cur;
 END IF;

 DBMS_OUTPUT.PUT_LINE ('ERROR: '||
 SUBSTR(SQLERRM, 1, 200));
END;

Enter value for sv_table_name: student
old 10: v_table_name VARCHAR2(20) := '&sv_table_name';
new 10: v_table_name VARCHAR2(20) := 'student';
Totals from student table
Zip code: 01247 Total: 1
Zip code: 02124 Total: 1
Zip code: 02155 Total: 1
Zip code: 02189 Total: 1
Zip code: 02563 Total: 1
Zip code: 06483 Total: 1
Zip code: 06605 Total: 1
Zip code: 06798 Total: 1
Zip code: 06820 Total: 3
Zip code: 06830 Total: 3

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 10: v_table_name VARCHAR2(20) := '&sv_table_name';
new 10: v_table_name VARCHAR2(20) := 'instructor';
Totals from instructor table
Zip code: 10005 Total: 1
Zip code: 10015 Total: 3
Zip code: 10025 Total: 4
Zip code: 10035 Total: 1

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 20.2 Self-Review Questions
In order to test your progress, you should be able to answer the following questions.

1) The OPEN-FOR, FETCH, and CLOSE statements are used only for single-row queries.

a. _____ TRUE

b. _____ FALSE

2) The OPEN-FOR statement has an optional USING clause.

a. _____ TRUE

b. _____ FALSE

3) For a multi-column result set, the FETCH statement

a. _____ always causes an error.

b. _____ returns a single column into one variable at a time.

c. _____ returns a single row into a list of variables

4) After the CLOSE statement executes,

a. _____ the result set becomes undefined.

b. _____ the result set is still available for further processing.

5) It is illegal to fetch data returned by a cursor into a user-defined record variable.

a. _____ TRUE

b. _____ FALSE

Answers appear in Appendix A, Section 20.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20 Test Your Thinking

The projects in this section are meant to have you utilize all of the skills that you have acquired
throughout this chapter. The answers to these projects can be found at the companion Web site to this
book, located at http://authors.phptr.com/rosenzweig3e. Visit the Web site periodically to share and
discuss your answers.

In this chapter, you learned about native dynamic SQL. Here are some projects that will help you test the
depth of your understanding.

1) Create a stored procedure based on the script ch20_1c.sql (version 3), created
in the first lab of this chapter. The procedure should accept two parameters to
hold a table name and an ID, and should return six parameters with first
name, last name, street, city, state, and zip information.

2) Modify procedure created in the previous exercise. Instead of using six
parameters to hold name and address information, the procedure should
return a user-defined record that contains six fields that hold name and
address information. Note: You may want to create a package where you
define record type. This record may be used later, for example, when the
procedure is invoked in a PL/SQL block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 21. Oracle Supplied Packages
Chapter Objectives
In this Chapter, you will learn to:

 Make Use of Oracle Supplied Packages Page

Oracle has built into the Database over 130 packages that extend what you can achieve with PL/SQL. Usually, each new
version of the database comes with new supplied packages. Oracle introduced about 17 new packages in each upgrade
to versions 9.2 and 10.0. These packages offer functionality that you would not be able to achieve with PL/SQL alone.
The reason is that the Oracle Supplied Packages make use of the C programming language; this is not something that
you can do with ordinary PL/SQL packages. This means that Oracle Supplied packages have full access to the operating
system and other aspects of the Oracle Server that are not available to ordinary PL/SQL packages. You are already
familiar with the DBMS_OUTPUT package's procedure PUT_LINE, which is used to gather debugging information into the
buffer for output. This chapter serves as an introduction to a few key Oracle Supplied Packages; you will learn their
basic features and how to make use of them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 21.1 Make Use of Oracle Supplied Packages

Lab Objectives
After this Lab, you will be able to:

 Access Files with UTL_FILE

 Schedule Jobs with DBMS_JOB

 Generate an Explain Plan with DBMS_XPLAN

 Create an HTML Page with the Oracle Web Toolkit

Accessing Files within PL/SQL with UTL_FILE

The UTL_FILE package provides text file input and output capabilities within PL/SQL. Oracle introduced the UTL_FILE
package with the database version 7.3. This means that you can either read input from the operating system files or
write to operating system files. This could be useful if you have data from another system that you want to load into the
database. For instance, if you have logs from a web server that you want to place in your data warehouse, the
UTL_FILE package would allow you to read the text file logs and then parse them to load the data in the correct tables
and columns in the data warehouse. The package also allows you to write data out to a file. This is useful if you want to
produce logs or capture current information about the database and store it in a text file, or extract data into a text file
that another application can process.

It is important to note that this is a server side text file access, binary files cannot be read by the UTL_FILE; for that
use the DBMS_LOB package. The files that you access must be mapped to a drive on the server. The security on what
directories you can access is controlled by a setting in the INIT.ORA file; set the drives that can be accessed with the
UTL_FILE_DIR initialization parameter.

 FOR EXAMPLE

UTL_FILE_DIR = 'C:\WORKING'

You can also bypass all server side security and allow ALL files to be accessed with the UTL_FILE package with the
following setting:

UTL_FILE_DIR = *

If you do not have access to the INIT.ORA file on the database server, you can query the Data Dictionary to find the
value that has been set in your database with the following SQL:

SELECT name, value
FROM V$SYSTEM_PARAMETER
WHERE name = 'utl_file_dir'

It is not advisable to allow UTL_FILE access to all files in a production
environment. This means that all files, including important files that manage
the operation of the database are accessible. This allows developers to write a
procedure that corrupts the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The method for using the UTL_FILE file package is to open the text file, process the file by writing to the file and getting
lines from the file, and close the file. If you do not close the file your operating system will think that the file is in use
and will not allow you to write to the file until it is closed. A list of the major functions, procedures, and datatypes in the
UTL_FILE packages are listed in Table 21.1. A list of exceptions in this package are listed in Table 21.2.

The following example demonstrates a procedure that writes to a log file the date, time and number of users that are
currently logged on. In the exercises you will create a more involved procedure that makes use of UTL_FILE.

 FOR EXAMPLE

-- ch21_1a.sql
CREATE OR REPLACE PROCEDURE LOG_USER_COUNT
 (PI_DIRECTORY IN VARCHAR2,
 PI_FILE_NAME IN VARCHAR2)
AS
 V_File_handle UTL_FILE.FILE_TYPE;
 V_user_count number;
BEGIN
 SELECT count(*)
 INTO V_user_count
 FROM v$session
 WHERE username is not null;
 V_File_handle :=
 UTL_FILE.FOPEN(PI_DIRECTORY, PI_FILE_NAME, 'A');
 UTL_FILE.NEW_LINE(V_File_handle);
 UTL_FILE.PUT_LINE(V_File_handle , '---- User log -----');
 UTL_FILE.NEW_LINE(V_File_handle);
 UTL_FILE.PUT_LINE(V_File_handle , 'on '||
 TO_CHAR(SYSDATE, 'MM/DD/YY HH24:MI'));
 UTL_FILE.PUT_LINE(V_File_handle ,
 'Number of users logged on: '|| V_user_count);
 UTL_FILE.PUT_LINE(V_File_handle , '---- End log -----');
 UTL_FILE.NEW_LINE(V_File_handle);
 UTL_FILE.FCLOSE(V_File_handle);

EXCEPTION
 WHEN UTL_FILE.INVALID_FILENAME THEN
 DBMS_OUTPUT.PUT_LINE('File is invalid');
 WHEN UTL_FILE.WRITE_ERROR THEN
 DBMS_OUTPUT.PUT_LINE('Oracle is not able to write to file');
END;

Table 21.1. UTL_FILE Functions, Procedures and Data Types
Function,

Procedure or
Datatype Description

FILE_TYPE Datatype for a file handle.

IS_OPEN This function has a return data type of BOOLEAN, it returns true if the file is open and false if
the file is closed.

FOPEN This function is used to open a file for input or output, the function return value is the form
handle in the FILE_TYPE data type.

The modes to open a file are:

'R' – Read Mode

'W' – Write Mode

'A' – Append Mode

FCLOSE This procedure closes a file that is open.

FCLOSE_ALL This procedure closes all files that are open in the current session. (It is a good idea to place
this procedure in your exception to make sure you don't leave any files locked.)

FFLUSH This procedure takes all the data buffered in memory and writes it to a file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GET_LINE This procedure gets one line of text from the opened file and places the text into the OUT
parameter of the procedure.

PUT_LINE This procedure writes a string of text from the IN parameter to the opened file. Afterwards a line
terminator is placed into the text file.

PUT This procedure is the same as PUT_LINE but no line terminator is placed in the open file.

PUTF This procedure puts formatted text into the opened file.

NEW_LINE This procedure inserts a new line terminator in the opened text file.

Table 21.2. UTL_FILE Exceptions
Exception Name Description

INVALID_PATH The file location or the filename is not valid.

INVALID_MODE This exception is for FOPEN only, the mode for the OPEN_MODE parameter is not valid.

INVALID_FILEHANDLE The file handle is not valid.

INVALID_OPERATION The file could not be opened or operated on in the manner requested.

READ_ERROR There is an operating system error that prevented the read file from occurring.

WRITE_ERROR There is an operating system error that prevented the write file operation from occurring.

INTERNAL_ERROR An unspecified PL/SQL error occurred.

The LOG_USER_COUNT procedure can be executed to log the number of users into the file c:\working\user.log.

 FOR EXAMPLE

SQL> exec LOG_USER_COUNT('D:\WORKING', 'USER.LOG');

PL/SQL procedure successfully completed.

USER.LOG contents:
---- User log -----

on 07/05/03 13:09
Number of users logged on: 1
---- End log -----

Job Scheduling with DBMS_JOB

The Oracle Supplied Package DBMS_JOB allows you to schedule the execution of a PL/SQL procedure. It was first
introduced in PL/SQL version 2.2. DBMS_JOB is an Oracle PL/SQL package provided to users. A job is submitted to a
job queue and runs at the specified time. The user can also input a parameter that specifies how often the job should
run. A job can consist of any PL/SQL code. The DBMS_JOB package has procedures for submitting jobs for scheduled
execution, executing a job that has been submitted outside of its schedule, changing the execution parameters of a
previously submitted job, suspending a job, and finally, removing jobs from the schedule (Table 21.3). The primary
reason you would want to use this feature would be to run a batch program during off times when there are low
numbers of users, or to maintain a log.

The Job queue is governed by the SNP process that runs in the background. This process is used to implement data
snapshots as well as job queues. If the process fails the database will attempt to restart the process. The database
initialization parameter (set in the INIT.ORA file and viewable in the DBA view V$SYSTEM_PARAMETER)
JOB_QUEUE_PROCESSES determines how many processes can start. It must be set to a number greater than 0 (note
the default is 0).

SNP background processes will not execute jobs if the system has been started
in restricted mode. It is expected behavior for jobs not to be executed while
the database is in restricted mode. However, you can use the ALTER SYSTEM
command to turn this behavior on and off as follows:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

ALTER SYSTEM DISABLE RESTRICTED SESSION;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 21.3. The Main Procedures in the DBMS_JOB Package
Procedure

Name Description

SUBMIT This procedure enters a PL/SQL procedure as a job into the job queue.

REMOVE This procedure removes a previously submitted PL/SQL procedure from the job queue.

CHANGE This procedure changes the parameters that have been set for a previously submitted job
(description, next run time or interval).

BROKEN This procedure disables a job in the job queue.

INTERVAL This procedure is used to alter the interval set for an existing job in the job queue.

NEXT_DATE This procedure is used to change the next time an existing job is set to run.

RUN This procedure forces the run of a job in the job queue regardless of the schedule for the job.

Submitting Jobs

An important first step when submitting jobs to the queue is to be sure that your PL/SQL procedure is valid and
executes the way you expect it to run. Prior to submitting a PL/SQL procedure, make sure you have thoroughly tested
the functionality. Job submission assumes your job is valid. The SUBMIT procedure will take four in parameters and
return one out parameter (Table 21.4), The out parameter is the job number of the job you have submitted. This job
number will also be visible in the DBA_JOBS view.

The following example will submit the LOG_USER_COUNT procedure (created with ch21_1a.sql) to run every 6 hours.

 FOR EXAMPLE

DECLARE
 V_JOB_NO NUMBER;
 BEGIN
 DBMS_JOB.SUBMIT(JOB => v_job_no,
 WHAT => 'LOG_USER_COUNT
 (''D:\WORKING'',
 ''USER.LOG'');',
 NEXT_DATE => SYSDATE,
 INTERVAL => 'SYSDATE + 1/4 ');
 Commit;
 DBMS_OUTPUT.PUT_LINE(v_job_no);
 END;

In order to see the job in the queue, query the DBA_JOB view.

Table 21.4. Parameters for the DBMS_JOB.SUBMIT Procedure
Parameter

Name
Mode Description

JOB OUT The unique number that identifies the job in the job queue

WHAT IN The PL/SQL procedure and parameters that will execute as part of this job

NEXT_DATE IN The next execution date for the job

INTERVAL IN The calculation to compute the next date of the job (This can make use of SYSDATE
and any date function.)

NO_PARSE IN DEFAULT:
FALSE

A Boolean indicator as to whether to run the job at job submission

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT JOB, NEXT_DATE, NEXT_SEC, BROKEN, WHAT
FROM DBA_JOBS;

JOB NEXT_DATE NEXT_SEC B WHAT
---- --------- -------- - --
 1 05-JUL-03 16:56:30 N LOG_USER_COUNT('D:\WORKING', 'USER.LOG');

In order to force job number 1 to run or to change, use the RUN or CHANGE procedure; to remove job number 1 from
the job queue, use the REMOVE procedure.

 FOR EXAMPLE

-- execute job number 1
exec dbms_job.run(1);

-- remove job number 1 from the job queue
exec dbms_job.remove(1);

-- change job #1 to run immediately and then every hour of
-- the day
exec DBMS_JOB.CHANGE(1, null, SYSDATE, 'SYSDATE + 1/24 ');

Once the job has failed, it will be marked as broken in the job queue. Broken jobs do not run. You can also force a job
to be flagged as broken. You may want to do this if you have entered all the parameters correctly yet you don't want
the job to run its normal cycle while you work on altering one of its dependencies. You can then comment the job again
by forcing the broken flag off.

 FOR EXAMPLE

-- set job 1 to be broken
exec dbms_job.BROKEN(1, TRUE);

-- set job 1 not to be broken
exec dbms_job.BROKEN(1, FALSE);

When jobs are running you will see their activity in the view DBA_JOBS_RUNNING; once the run has completed it will
no longer be visible in this view.

Explain Plan with DBMS_XPLAN

The DBMS_XPLAN package became available in Oracle version 9.2. This package helps to display the execution plan of
an SQL statement that is displayed as the output of the explain plan command. This package displays the output in an
easier manner than was possible in prior versions of Oracle. The SQL execution plan and runtime statistics are stored in
the VSQL_PLAN, VSQL and PLAN_STATISTICS are displayed with the DBMS_XPLAN package. The SQL command for
creating an explain plan takes this information and populates the PLAN_TABLE. There is a great deal to know about
query optimization in order to make use of an explain plan.

For details on the SQL optimization and on how to use the results in an explain
plan, see Chapter 16: "SQL Optimization" in Oracle SQL by Example by Alice
Rishert (available December 2003).

The DBMS_XPLAN depends on a table called the PLAN_TABLE. This table holds the results from running an explain plan
on a SELECT statement. The DDL to create the PLAN_TABLE is as follows:

-- ch21_1a.sql
create table PLAN_TABLE (
 statement_id varchar2(30),
 timestamp date,
 remarks varchar2(80),
 operation varchar2(30),
 options varchar2(255),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 options varchar2(255),
 object_node varchar2(128),
 object_owner varchar2(30),
 object_name varchar2(30),
 object_instance numeric,
 object_type varchar2(30),
 optimizer varchar2(255),
 search_columns number,
 id numeric,
 parent_id numeric,
 position numeric,
 cost numeric,
 cardinality numeric,
 bytes numeric,
 other_tag varchar2(255),
 partition_start varchar2(255),
 partition_stop varchar2(255),
 partition_id numeric,
 other long,
 distribution varchar2(30),
 cpu_cost numeric,
 io_cost numeric,
 temp_space numeric,
 access_predicates varchar2(4000),
 filter_predicates varchar2(4000),
 projection varchar2(4000),
 time numeric);

By default, if several plans in the plan table match the statement_id parameter passed to the display table function
(default value is NULL), only the plan corresponding to the last EXPLAIN PLAN command is displayed. Hence, there is no
need to purge the plan table after each EXPLAIN PLAN. However, you should purge the plan table regularly (for example,
by using the TRUNCATE TABLE command) to ensure good performance in the execution of the DISPLAY table function.

In prior versions of Oracle there were a number of options available. You could use the SQL*Plus command SET
AUTOTRACE TRACE EXPLAIN ON to generate an immediate explain plan.

 FOR EXAMPLE

 SQL> SET AUTOTRACE TRACE EXPLAIN ON

 1 SELECT s.course_no,
 2 c.description,
 3 i.first_name,
 4 i.last_name,
 5 s.section_no,
 6 TO_CHAR(s.start_date_time, 'Mon-DD-YYYY HH:MIAM'),
 7 s.location
 8 FROM section s,
 9 course c,
 10 instructor i
 11 WHERE s.course_no = c.course_no
 12* AND s.instructor_id= i.instructor_id

Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=9 Card=78 Bytes=4368)
 1 0 HASH JOIN (Cost=9 Card=78 Bytes=4368)
 2 1 HASH JOIN (Cost=6 Card=78 Bytes=2574)
 3 2 TABLE ACCESS (FULL) OF 'INSTRUCTOR' (Cost=3 Card=10 Bytes=140)
 4 2 TABLE ACCESS (FULL) OF 'SECTION' (Cost=3 Card=78 Bytes=1482)
 5 1 TABLE ACCESS (FULL) OF 'COURSE' (Cost=3 Card=30 Bytes=690)

You can also generate an explain plan that would be stored in the PLAN_TABLE and then query the results of an explain
plan.

 FOR EXAMPLE

SQL> explain plan for
 2 SELECT s.course_no,
 3 c.description,
 4 i.first_name,
 5 i.last_name,
 6 s.section_no,
 7 TO_CHAR(s.start_date_time,'Mon-DD-YYYY HH:MIAM'),
 8 s.location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8 s.location
 9 FROM section s,
 10 course c,
 11 instructor i
 12 WHERE s.course_no = c.course_no
 13 AND s.instructor_id= i.instructor_id;

Explained.

-- ch21_1b.sql
select rtrim (lpad (' ', 2*level) ||
 rtrim (operation) || ' ' ||
 rtrim (options) || ' ' ||
 object_name || ' ' ||
 partition_start || ' ' ||
 partition_stop || ' ' ||
 to_char (partition_id)
) the_query_plan
 from plan_table
 connect by prior id = parent_id
 start with id = 0;

THE_QUERY_PLAN

 SELECT STATEMENT
 HASH JOIN
 HASH JOIN
 TABLE ACCESS FULL INSTRUCTOR
 TABLE ACCESS FULL SECTION
 TABLE ACCESS FULL COURSE

To make use of the DBMS_XPLAN procedure use the SELECT * FROM TABLE(DBMS_XPLAN>DISPLAY) command to
generate the explain plan.

 FOR EXAMPLE

SQL> explain plan for
 2 SELECT s.course_no,
 3 c.description,
 4 i.first_name,
 5 i.last_name,
 6 s.section_no,
 7 TO_CHAR(s.start_date_time,'Mon-DD-YYYY HH:MIAM'),
 8 s.location
 9 FROM section s,
 10 course c,
 11 instructor i
 12 WHERE s.course_no = c.course_no
 13 AND s.instructor_id= i.instructor_id;

Explained.
SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT
--

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		78	4368	9 (34)	00:00:01
* 1	HASH JOIN		78	4368	9 (34)	00:00:01
* 2	HASH JOIN		78	2574	6 (34)	00:00:01
3	TABLE ACCESS FULL	INSTRUCTOR	10	140	3 (34)	00:00:01
4	TABLE ACCESS FULL	SECTION	78	1482	3 (34)	00:00:01
5	TABLE ACCESS FULL	COURSE	30	690	3 (34)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("S"."COURSE_NO"="C"."COURSE_NO")
 2 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")

17 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17 rows selected.

Creating Web Pages with the Oracle Web Toolkit

Oracle Application Server 10g integrates many technologies required to build and deliver an e-business Web site. Oracle
Application Server 10g generates dynamic Web content from PL/SQL procedures and delivers it to a client's Web
browser. Oracle Application Server 10g provides the middleware component of the Oracle Internet Platform and delivers
and manages applicat0..ions and data requested by client browsers. The two other components of the Oracle Internet
Platform are the Oracle Database 10g and the Oracle Internet Developer Suite.

In June of 2000 Oracle released a revamped version of their Application Server called Oracle 9i Application Server. The
earlier version had less features and was called the Oracle (Web) Application Server [OAS]. The first release of OAS
came out in 1995. The last production version of the OAS was released as version 4.0.8.2 in 1999. OAS was de-
supported by Oracle in October 2002 because the new Oracle 9i Application Server had become the standard. The basic
functionality of OAS and the current version of the Oracle Application Server 10g are similar but the back end
architecture and configuration is considerably different. Oracle Application Server 10g has a much larger array of
technologies and languages it can support. You can generate web pages using the PL/SQL Web Toolkit with the OAS but
you cannot make use of PL/SQL Server Pages (PSPs).

In Oracle's multi-tier architecture, Oracle Application Server 10g is the middleware. It incorporates both a web server
and an application server. Oracle Application Server 10g resides between the client and the back-end database, moving
application logic from the client. It is the central, middle tier in shared enterprise applications, providing such services
as security, message brokering, database connectivity, transaction management, and process isolation.

Oracle Application Server 10g enables users to deploy applications on the web. Web browsers are "thin" clients that do
not need any additional software installation because they are accessing the middle tier via HTTP protocol. The only
thing the user needs is a URL (Uniform Resource Locator) to launch the application. A server tier houses the original
database so that transaction processing can be optimized on the database. This multi-tiered model offers great savings
in administration and maintenance costs when deploying applications.

The HTTP entry point to Oracle Application Server 10g is the Oracle HTTP Server powered by the Apache Web server.
Oracle Application Server 10g functions both as a simple web server and as an application server. The function of a web
server is to translate a URL into a filename on the server and send that file back to the client's web browser over the
Internet or an intranet. The function of an application server is to run a program or a component and to generate
dynamic content. This dynamic content results in an HTML file being sent back to the client's browser. The output is the
result of running a program or a script.

The Oracle HTTP Server functions as an HTTP listener and request dispatcher. Based on the Apache Server, the Oracle
HTTP Server is mostly C code that runs on top of the operating system. The Oracle HTTP Server receives HTTP requests
from clients and is able to serve static files from the file system. It routes those requests that are not static to other
services through modules (for example, mod_plsql). These modules, often referred to as simply mods, are plug-ins to
the HTTP Server. A plug-in is a program that extends the functionality of another program, and could be considered a
subprogram. The mods are plug-ins that offer native services (e.g. mod_ssl which handles a secure socket layer) or
serve as a dispatcher for requests requiring external processes (e.g. mod_jserv which dispatches requests to the
Apache JServ). In addition to the compiled Apache mods provided with Oracle HTTP Server, Oracle has enhanced
several of the standard mods and has added Oracle-specific mods such as mod_plsql.

The server is able to determine to which module to hand the request based on the URL. The first section of the URL is
the name of the server and the next section is the name of the module. For example, a request for mod_plsql will have
a URL beginning as follows: http://ServerName/pls/…The PLS portion indicates to the Oracle HTTP Server that this is a
request for the module mod_plsql.

The Oracle Application Server 10g Communication Services are responsible for handling requests from the different
clients. The Oracle HTTP Server may directly process a portion of the client requests while other requests may be
routed to other components of Oracle Application Server 10g for processing. Oracle Application Server 10g can be used
to support wireless technologies as well, although this book focuses predominantly on the HTTP services of Oracle
Application Server 10g.

Oracle Application Server 10g provides multiple features and capabilities that are commonly supplied via separate
products. An example of a recent impressive addition to the array of components is Oracle Application Server 10g
Unified Messaging, which gives access to e-mail, voice mail, and fax messages from any device, including computers,
telephones, personal digital assistants and pagers. Oracle Application Server 10g is under constant development and
you will see many additional services being added and modified in the coming years.

The Client Tier

Clients access PL/SQL Web Applications through a browser using the Web protocol HTTP. Oracle Application Server 10g
application components generate HTML, which is returned to the browser and displayed as Web pages. Since web
browsers behave in a similar manner across platforms and they all read HTML and JavaScript, it does not matter what
type of operating system a client's web browser is operating on.

The Database Tier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Database Tier

PL/SQL Web Applications are developed as PL/SQL packages and procedures and stored in an Oracle database. You can
access database tables through these packages and present the data as dynamic information in your generated Web
pages. First introduced with the Oracle Application Server available with Oracle 8i, Oracle Application Server 10g
provides a collection of PL/SQL packages called the PL/SQL Web Toolkit. These packages are also stored in the database
and are used in web-based application packages to generate Web page components and other related functionality.

The Application Server Tier: The PL/SQL Gateway

The PL/SQL Gateway enables you to call PL/SQL programs from a web browser. The PL/SQL programs run on the server
and return HTML to the browser. Application Server 10g acts as the intermediary between the database and the
browser.

Oracle HTTP Server Modules (MODS)

In addition to the compiled Apache modules (referred to here as simply mods) provided with Oracle HTTP Server, which
support current Internet application technologies to deliver dynamic Web pages, Oracle has enhanced several of the
standard Apache mods and has added Oracle-specific mods. For more information, refer to
http://www.apache.org/docs/mod/index.html. The mod that makes use of the Oracle Web Toolkit is the MOD_PLSQL.
This module is an HTTP Server plug-in that dispatches requests for PL/SQL and Java stored procedures to an Oracle
database. MOD_PLSQL is the most efficient SQL interface for generating HTML. The HTTP Server identifies the request
as belonging to this module based on the URL from the client HTTP requests that are identified are handed from the
HTTP Server to mod_plsql. These requests are then mapped to database stored procedures. The module maintains
database connections specified by database access descriptors (DAD).

For information on how to configure Oracle 9iAS, instruction in HTML and
JavaScript, and detailed instructions on how to use the Oracle Web Toolkit
(with hundreds of pages of examples), see Oracle Web Application
Programming for PL/SQL Developers by Susan Boardman, Melanie Caffrey,
Solomon Morse, and Benjamin Rosenzweig.

Generate HTML from Web Toolikit without Oracle Application ServeR 10G

The Oracle Web Toolkit Packages are intended to generate HTML pages over an Internet or intranet with Oracle
Application Server 10g acting as the Web server. In testing mode you can generate the HTML as text files using
SQL*Plus. For the purposes of this book the exercises will be done in the testing mode; this way you do not have to
address all the set up issues involved with Oracle Application Server 10g.

Web Toolkit Packages

Table 21.5 is a list of all the Web Toolkit packages and a brief description of each.

Overview HTP Procedures

The HTP package is the principal package used to generate HTML. The P or PRN procedure generates HTML in much the
same manner as the DBMS_OUTPUT.PUT_LINE procedure takes its IN parameter and generates display in SQL*Plus. All
text in the IN parameter of HTP.P will transform into HTML. Additionally there are many other procedures to generate
more complex HTML structures.

Table 21.6 is a list of some of the commonly used HTP procedures and output. For a comprehensive list of HTP
procedures please check Oracle's online documentation.

A simple web page can be generated by making use of the procedure in the HTP package.

Table 21.5. Web Toolkit Packages
Package Name Description

HTP Generates HTML through procedures

HTF Generates HTML through functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OWA_CACHE Caches Web pages for improved performance using the PL/SQL Gateway cache

OWA_COOKIE Sends cookies, retrieve cookies

OWA_IMAGE Creates an image map

OWA_OPT_LOCK Handles optimistic locking of data

OWA_PATTERN Searches for/replace values in text strings, "Pattern Matching"

OWA_SEC Security subprograms

OWA_TEXT Other types of string manipulation

OWA_UTIL Retrieves environment variables; redirects users to another site; other utilities like printing query
results directly in a table

 FOR EXAMPLE

CREATE OR REPLACE PROCEDURE my_first_page
 AS
BEGIN
 htp.htmlOpen;
 htp.headOpen;
 htp.title('My First Page');
 htp.headClose;
 htp.bodyOpen;
 htp.p('Hello world.
');
 htp.bodyClose;
 htp.htmlClose;
EXCEPTION
 WHEN OTHERS THEN
 htp.p('An error occurred on this page.
 Please try again later.');
END;
-- This will generate the following HTML:
<HTML>
<HEAD>
<TITLE>My First Page</TITLE>
</HEAD>
<BODY>
Hello world.

</BODY>
</HTML>

Table 21.6. HTP Procedures
HTP Procedure Output

htp.p('<P> text goes here </P>'); <P> text goes here </P>

htp.htmlOpen; <HTML>

htp.headOpen; <HEAD>

htp.title('My Title'); <TITLE> My Title<TITLE>

htp.headClose; </HEAD>

htp.bodyOpen; <BODY>

htp.header(1, 'My Heading'); <H1> My Heading</H1>

htp.anchor('url''Anchor Name') 'Click Here'; Click Here

htp.line; <HR>

htp.bold;

htp.paragraph; <P>

htp.tableOpen; <TABLE>

htp.tableCaption; <CAPTION></CAPTION>

htp.tableRowOpen; <TR>

htp.tableHeader('Emp ID'); <TH>Emp ID</TH>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

htp.tableData('data'); <TD>data</TD>

htp.tableRowClose; </TR>

htp.tableClose; </TABLE>

htp.bodyClose; </BODY>

htp.htmlClose; </HTML>

htp.script('alert("This is an alert!");','JavaScript'); <SCRIPT LANGUAGE="JavaScript">

alert("This is an alert!");

</SCRIPT>

In testing, the procedure can be executed from SQL*Plus to generate an HTML file by making use of the utility in the
OWA_UTIL package. The procedure SHOWPAGE will be used to display the HTML.

 FOR EXAMPLE

SQL> set serveroutput on
SQL> spool mypage.htm
SQL> execute my_first_page;

PL/SQL procedure successfully completed.
SQL> execute owa_util.showpage;
<HTML>
<HEAD>
<TITLE>My First Page</TITLE>
</HEAD>
<BODY>
Hello world.

</BODY>
</HTML>

PL/SQL procedure successfully completed.

Some procedures such as HTP.HEADER take more than one parameter in order to generate varieties of similar HTML
codes (multiple levels of headers). Other procedures such as HTP.TABLEDATA enclose the IN parameter with all the
HTML codes required for a table row in HTML. The next example shows first the HTML page that needs to be generated
from the database (a list of instructor names), and then the PL/SQL code that is used to generate the web page.

 FOR EXAMPLE

<HTML>
<HEAD>
<TITLE>Instructor List</TITLE>
</HEAD>
<BODY>
<H1>List of Instructors</H1>
The time is 11:36
<TABLE BORDER=1
BORDERCOLOR="teal" CELLPADDING=5>
<TR>
<TH>First Name</TH>
<TH>Last Name</TH>
</TR>
<TR>
<TD>Rick</TD>
<TD>Chow</TD>
</TR>
<TR>
<TD>Marilyn</TD>
<TD>Frantzen</TD>
</TR>
<TR>
<TD>Fernand</TD>
<TD>Hanks</TD>
</TR>
<TR>
<TD>Charles</TD>
<TD>Lowry</TD>
</TR>
<TR>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<TR>
<TD>Anita</TD>
<TD>Morris</TD>
</TR>
<TR>
<TD>Gary</TD>
<TD>Pertez</TD>
</TR>
<TR>
<TD>Nina</TD>
<TD>Schorin</TD>
</TR>
<TR>
<TD>Todd</TD>
<TD>Smythe</TD>
</TR>
<TR>
<TD>Irene</TD>
<TD>Willig</TD>
</TR>
<TR>
<TD>Tom</TD>
<TD>Wojick</TD>
</TR>
</TABLE>
</BODY>
</HTML>

 FOR EXAMPLE

CREATE OR REPLACE PROCEDURE instructor_list IS
 v_string VARCHAR2(100);
 cursor c_instruct is
 SELECT first_name, last_name
 FROM instructor
 ORDER by 2;
 BEGIN
 htp.htmlOpen;
 htp.headOpen;
 htp.title('Instructor List');
 htp.headClose;
 HTP.bodyOpen;
 htp.header(1,'List of Instructors');
 HTP.P('The time is '||to_char(sysdate, 'HH:MI'));
 -- Open Table.
 htp.tableOpen('BORDER=1 BORDERCOLOR="teal" CELLPADDING=5');
 htp.tableRowOpen;
 htp.tableHeader('First Name');
 htp.tableHeader('Last Name');
 htp.tableRowClose;
 FOR rec in c_instruct LOOP
 htp.tableRowOpen;
 htp.tableData(rec.first_name);
 htp.tableData(rec.last_name);
 htp.tableRowClose;
 END LOOP;
 htp.tableClose;
 htp.bodyClose;
 htp.htmlClose;
 EXCEPTION
 WHEN OTHERS THEN
 HTP.P('An error occurred: '||SQLERRM||'. Please try again later.');
 END;

HTP vs. HTF

For every HTP procedure that generates HTML tags, there is a corresponding HTF function with identical parameters.
The function versions do not directly generate output in your web page. Instead, they pass their output as return values
to the statements that invoked them. Use these functions when you need to nest calls. To learn more about HTF
functions just look up the corresponding HTP procedures in your Oracle Software Documentation. They respond in
similar ways.

 FOR EXAMPLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR EXAMPLE

htp.tableData (htf.formOpen('pr_update_class')||
 htf.formSubmit()||htf.formClose);

will generate:

<TD><FORM ACTION="pr_update_class" METHOD="POST">
<INPUT TYPE="submit" VALUE="Submit"></FORM></TD>

Web Toolkit Frameset Procedures

Oracle provides procedures specifically for generating framesets in the HTP package.

Table 21.7 is a list of some of the commonly used frame-related procedures and output. For a comprehensive list of
HTP procedures please check Oracle's online documentation.

Table 21.7. Additional HTP Procedures for Frames and Framesets
HTP Procedure HTML Output

htp.frame('instructors_left_nav', 'instructors_left'); <FRAME SRC="instructors_left_nav" NAME="instructors_left">

htp.frame('instructors_left_nav', 'instructors_left', <FRAME SRC="instructors_left_nav" NAME="instructors_left"

'0', MARGINWIDTH="0"

'0', MARGINHEIGHT="0"

'AUTO', SCROLLING="AUTO"

'Y'); NORESIZE>

htp.framesetOpen(NULL, '125,*'); <FRAMESET COLS="125, *">

htp.framesetOpen('*,65%', NULL); <FRAMESET ROWS="*,65%">

htp.framesetOpen('*,65%'); <FRAMESET ROWS="*,65%">

htp.framesetClose; </FRAMESET>

htp.noframesOpen; <NOFRAMES>

htp.noframesClose; </NOFRAMES>

These frame-related Web Toolkit procedures and the HTP procedures covered in Chapter 10, "Web Toolkit I: HTML and
JavaScript with PL/SQL," can be used to rewrite the above procedure, instructors_frame:

Web Toolkit Form Procedures

Oracle has supplied a number of procedures for creating form elements. You can use HTP.P with the HTML as you see in
the above example or you can use the HTP procedures listed in Table 21.8. The resulting HTML will be the same and the
performance will not be affected by which one you choose. As with the frameset procedures listed above, it is a matter
of style which you use.

HTML Forms as a Container for Sending Data

HTML Forms are containers for collecting data. The most common tag used in forms, <INPUT>, points to the purpose of
form elements: to collect user input and send it off for processing. As described in Chapter 5, "Introduction to HTML:
Basic Tags, Tables, Frames," of the companion book Oracle Web Application Programming for PL/SQL Developers by
Susan Boardman, Melanie Caffrey, Solomon Morse, and Benjamin Rosenzweig, the HTML form's ACTION attribute
indicates where the form data will be sent, and therefore how it will be acted upon. Without a value for the ACTION
attribute, a form will do nothing. Similarly, a completed paper job application for an employment agency will accomplish
nothing sitting on one's own desk; it must be sent to the agency, who can act upon the data collected in the form. The
data collected in an HTML form needs a destination in order for meaningful action to take place. It is important to
consider where form data should be sent, and what the consequences will be.

Table 21.8. Additional HTP Procedures for Forms and Form Elements
HTP Procedure Output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

htp.formOpen('show_zipcode'); <FORM ACTION="show_zipcode" METHOD="POST">

htp.formOpen('show_zipcode','GET',
'main_window',null,'NAME="my_form"');

<FORM ACTION="show_zipcode" METHOD="GET"
TARGET="main_window" NAME="my_form">

htp.formText('p_name','20'); <INPUT TYPE="text" NAME="p_name" SIZE="20">

htp.formHidden('p_id','101'); <INPUT TYPE="hidden" NAME="p_id" VALUE="101">

htp.formCheckbox('cname', 'cvalue'); <INPUT TYPE="checkbox" NAME="cname" VALUE="cvalue">

htp.formCheckbox('cname', 'cvalue', 'CHECKED'); <INPUT TYPE="checkbox" NAME="cname" VALUE="cvalue"
CHECKED>

htp.formRadio('p_salutation','Mr.');

htp.p('Mr.');

<INPUT TYPE="radio" NAME="p_salutation" VALUE="Mr.">

Mr.

htp.formRadio('p_salutation','Mrs.', 'CHECKED');

htp.p('Mrs.');

<INPUT TYPE="radio" NAME="p_salutation" VALUE="Mrs."
CHECKED>

Mrs.

htp.formSelectOpen('p_salary','Select a
Salutation:','1');

Select a Salutation:<SELECT NAME="p_salary" SIZE="1">

htp.formSelectOption('Less than 5000', cattributes =>
'VALUE="low"'); <OPTION VALUE="low">Less than 5000

htp.formSelectOption('5001 to 20000', cattributes =>
'VALUE="medium" SELECTED'); <OPTION VALUE="medium" SELECTED>5001 to 20000

htp.FormSelectOption('Greater than 20000',
cattributes => 'VALUE="high"');

<OPTION VALUE="high">Greater than 20000

htp.formSelectClose; </SELECT>

htp.FormSubmit(null, 'Save', 'cattributes'); <INPUT TYPE="submit" VALUE="Save" cattributes>

htp.formReset('Reset the Form', 'cattributes'); <INPUT TYPE="reset" VALUE="Reset the Form" cattributes>

htp.FormClose; </FORM>

The values that are collected in HTML form elements must be passed to a program that can handle them. This could be
a CGI (Common Gateway Interface) script, Perl script, ASP, or JSP. In the example used here, where all HTML files are
being generated by PL/SQL stored procedures by means of Oracle Application Server 10G, it is another PL/SQL
procedure that is the ACTION of the HTML form and receives the form's data. PL/SQL can read these incoming values
and use them to update a database or to help build the next screen the user sees.

The reason why it is so important to name your HTML form elements, is that only named form elements are sent to the
form handler procedure. If an HTML form element is not given a name, then it will not be sent to the form handler.

The HTML form handler procedure must have an IN parameter that corresponds to each named form element. These IN
parameters must have exactly the same names as the form elements. If a form element is named p_first_name, then
the form handler procedure must have an IN parameter called p_first_name. The IN parameters must have datatypes
that correspond to the type of data being passed in.

Web Toolkit Image Procedures

The Oracle Web Toolkit has a number of procedures to handle HTML image tags. Images that have clickable areas with
hyperlinks are handled with HTML image maps. The Oracle Web Toolkit has procedures to handle both Server Side
HTML Image maps and Client Side HTML Image maps.

For information on how to handle HTML Images (with extensive examples and
exercises) see Chapter 13 of Oracle Web Application Programming for PL/SQL
Developers by Susan Boardman, Melanie Caffrey, Solomon Morse, and
Benjamin Rosenzweig.

Server-Side HTML Image MapS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In a server-side HTML image map the image displayed on the client (the HTML file) is a form input of the type IMAGE.
This means that when the user clicks on the image the form is submitted.The x and y coordinates where the user
clicked are received as IN parameters by the form handler procedure. Note that you do not need a submit button for
this type of form. The <INPUT> tag with TYPE="image" is the only required input element in the form. This input type
creates an image field on which the user can click and cause the form to be submitted immediately. The coordinates of
the selected point are measured in pixels and returned (along with other contents of the form) in two named value
pairs. The x coordinate is submitted under the name of the field with ".x" appended, and the y coordinate with ".y"
appended. Any VALUE attribute is ignored. The image input HTML syntax is as follows:

<INPUT TYPE="image" NAME="p_image" SRC="/images/picture1.jpg">

The type here is "image". The name is required as this will be the name of the parameter that is being sent to the
action of the form.

There are a number of elements of the OWA_IMAGE package for generating this HTML. The example above can be
generated by the use of the Oracle-supplied HTP.formImage procedure. The syntax for this procedure is as follows:

htp.formImage (cname in varchar2
 csrc in varchar2
 calign in varchar2 DEFAULT NULL
 cattributes in varchar2 DEFAULT NULL);

The parameters for this procedure are detailed in Table 21.9. Here is an example (only the first two parameters are
passed in here):

htp.formImage('v_image','/images/location.gif');

generates the following HTML:

<INPUT TYPE="image" NAME="p_image" SRC="/images/location.gif">

An HTML form needs a form handler procedure that can be used as the action of the form. This procedure must be able
to accept what is sent by the image-input item. The IN parameter for the image supplied to the form handler procedure
must have the same name as the image input, and a datatype of OWA_IMAGE.POINT, which is supplied by Oracle. This
data type contains both the X and Y values of a coordinate, so there will only be one IN parameter for the image.

There are two more functions in the OWA_IMAGE package that can extract the X or Y coordinate from an
OWA_IMAGE.POINT data type. These are the functions, OWA_IMAGE.GET_X, for the X coordinate, and
OWA_IMAGE.GET_Y, for the Y coordinate.

Table 21.9. Parameters for the htp.formImage Procedure
Parameter Usage

CNAME The VALUE for the NAME attribute, the name of the parameter to be submitted

CSRC The value for the SRC attribute, which specifies the image file

CALIGN The value for the ALIGN attribute, this is optional

CATTRIBUTES Any other attributes to be included as-is in the tag

Using the OWA_IMAGE.GET_X and OWA_IMAGE.GET_Y functions, the form handler procedure will be able to access the
coordinates the user clicked, and be able to work with these numbers.

In the following example, when the user clicks anywhere on the image, a new page displays, showing the X and Y
coordinates where the user clicked. There are two procedures in the sample package below called find_coords. The first
one is display_image. It makes use of the procedure htp.formImage to create the image input. The next procedure,
show_cords, is the action of the display_image procedure. This means that the IN parameter named for the image must
be of OWA_IMAGE.POINT data type. The show_coords procedure uses the functions OWA_IMAGE.GET_X and
OWA_IMAGE.GET_Y to determine the X and Y coordinates, and then displays them on a new Web page.

 FOR EXAMPLE

CREATE OR REPLACE Package find_coords
AS
 PROCEDURE display_image;
 PROCEDURE show_coords (p_image IN owa_image.Point);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PROCEDURE show_coords (p_image IN owa_image.Point);
END find_coords;
/
CREATE OR REPLACE PACKAGE BODY find_coords AS
PROCEDURE display_image IS
BEGIN
 htp.headOpen;
 htp.title('Display the Image');
 htp.headClose;
 htp.p('<BODY bgcolor="khaki">');
 htp.header(1,'Find the Coordinates');
 htp.p('Click on the image and you will see the x,y
 coordinates on the next page');
 htp.formOpen('find_coords.show_coords');
 htp.formImage('p_image','/images/location.gif');
 htp.formClose;
 htp.p('</BODY>');
 htp.p('</HTML>');
EXCEPTION
 WHEN OTHERS THEN
 htp.p('An error occurred: '||SQLERRM||'. Please try again later.');
END display_image;
Procedure show_coords
 (p_image IN owa_image.Point)
IS
 x_in NUMBER(4) := owa_image.Get_X(v_image);
 y_in NUMBER(4) := owa_image.Get_Y(v_image);
BEGIN
 htp.headOpen;
 htp.title('Find Your coordinates');
 htp.headClose;
 htp.p('<BODY bgcolor="khaki">');
 htp.header(1,'These are the Coordinates you clicked on:');
 htp.p('<P>
 You have selected '||x_in||' as your X coordinate </p>');
 htp.p('<P>
 You have selected '||Y_in||' as your Y coordinate </p>');
 htp.p('</BODY>');
 htp.p('</HTML>');
EXCEPTION
 WHEN OTHERS THEN
 htp.p('An error occurred: '||SQLERRM||'. Please try again later.');
END ;
END find_coords;

The display_image procedure creates an HTML file as follows:

<HTML>
<HEAD>
<TITLE>Display the Image</TITLE>
</HEAD>
<BODY bgcolor="khaki">
<H1>Find the Coordinates</H1>
Click on the image and you will see the x,y
coordinates on the next page
<FORM ACTION="find_coords.show_coords" METHOD="POST">
<INPUT TYPE="image" NAME="p_image" SRC="/images/location.gif">
</BODY>
</HTML>

Client-Side Image Maps

There are two steps involved in creating a client side image map in HTML.

1. Set up an image map

2. Show an image and use the image map

You can think of the initial image map as being similar to a JavaScript function that is defined in the beginning of an
HTML file, then used later.

Create the Image Map

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create the Image Map

The first tag in an image map is the <MAP> tag. This tag must have a name attribute or it cannot be referenced later
on in the file. The image map contains a number of areas that are each a hyperlink. Each area uses an <AREA> tag.
Each <AREA> tag must have a SHAPE attribute to indicate the shape of the area and an HREF attribute to indicate the
hyperlink to where clicking on the map will direct the user. The various types of shapes have different sets of
coordinates used to define the shape. The coordinates used to define an image map's shape are supplied in the value
for the COORDS attribute. The following HTML would create an image map for a square with four inner squares, each
one hyperlinking to a different web page. The shape that is called "default" indicates the hyperlink for any area of the
image that is not covered by one of the shapes. The coordinates used here are meaningless and just used to complete
the example.

<map name="MyMap">
<area shape="rect" href="first.htm" coords="20,20,70,60">
<area shape="rect" href="second.htm" coords="90,20,140,60">
<area shape="rect" href="third.htm" coords="20,80,70,120">
<area shape="rect" href="fourth.htm" coords="90,80,140,120">
<area shape="default" href="default.htm">
</map>

Image Maps in PL/SQL

The method to generate this in PL/SQL, using the supplied Oracle packages within the Oracle Web Toolkit, is to take the
following steps:

1. Name the map

2. Divide it into clickable areas

3. Specify the Image to be used

Using PL/SQL, you make use of the HTP.mapOpen and HTP.mapClose procedures to open and close the map definition.
You use the HTP.AREA procedure to define the areas within the map. Then, when you display the image, you make use
of the HTP.IMG2 procedure to create the HTML tag with the corresponding imagemap (Table 21.10).

The IS MAP that is generated in the IMG tag indicates that this image is going to use an image map, the USEMAP=
determines the name of the image map to be used. The image map must have been previously defined in the HTML for
the page or the image map will not function.

At run-time:

1. Click on the image

2. The browser processes the coordinates

Table 21.10. Parameters for the htp.formImage Procedure
Procedure Resulting HTML Purpose

htp.mapOpen('map1'); <MAP NAME="map1" > Name the map

htp.area ('0,0,50,50', rect,
'www.prenhall.com');

<AREA SHAPE="rect" COORDS="0,0,50,50"
HREF="www.prenhall.com">

Specify the regions

htp.mapClose; </MAP> Close the map

htp.img2('MyImage.gif', cismap=>'1',
cusemap=>'#map1');

<IMG SRC="MyImage.gif" ISMAP
USEMAP="#map1">

Specify the image and
link to the region

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 21.1 Exercises

21.1.1 Access Files with UTL_FILE

Complete the following exercises:

a) Create a companion procedure to the example procedure LOG_USER_COUNT, name your proceudre
READ_LOG. This procedure will read a text file and display each line via DBMS_OUTPUT.PUT_LINE.

b) Run the procedure LOG_USER_COUNT and then run the procedure READ_LOG for the same file.

21.1.2 Schedule Jobs with DBMS_JOB

Complete the following exercises:

a) Create a procedure DELETE_ENROLL that will delete all student enrollments if there are no grades in the
GRADE table for that student's enrollment and the start date of the section is already one month past.

b) Submit the procedure DELETE_ENROLL to execute one a month.

21.1.3 Generate an Explain Plan with DBMS_XPLAN

Complete the following exercises:

a) Find out if your schema has a table named PLAN_TABLE that matches the DDL in the Plan table script
ch21_1a.sql. If it does not, then use the above script to create the PLAN_TABLE.

b) Compute statistics on all tables in your schema using a single SQL statement to generate the command.

c) The following SQL statement generates a list of the open sections in courses that the student with the ID of
214 is not enrolled in. There are many different SQL statements that would produce the same result. Since
various in-line views are required, it is important to examine the execution plan to determine which plan will
produce the result with the least COST to the database. Run the SQL as follows to generate an SQL plan.

-- ch21_1b.sql
EXPLAIN PLAN FOR
 SELECT c.course_no course_no,
 c.description description,
 b.section_no section_no,
 s.section_id section_id,
 i.first_name first_name,
 i.last_name last_name
 FROM course c,
 instructor i,
 section s,
 (SELECT
 a.course_no course_no,
 MIN(a.section_no) section_no
 FROM (SELECT count(*) enrolled,
 se.CAPACITY capacity,
 se.course_no course_no,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 se.course_no course_no,
 se.section_no section_no,
 e.section_id section_id
 FROM section se,
 enrollment e
 WHERE se.section_id = e.section_id
 AND e.student_id <> 214
 GROUP BY
 se.CAPACITY,
 se.course_no,
 e.section_id,
 se.section_no
 HAVING count(*) < se.CAPACITY) a
 GROUP BY
 a.course_no) b
 WHERE c.course_no = b.course_no
 AND b.course_no = s.course_no
 AND s.section_no = b.section_no
 AND s.instructor_id = i.instructor_id;

d) Use the DBMS_XPLAN package as a means to see the execution plan of the SQL statement.

e) Generate an alternative SQL that will produce the same results and then examine the explain plan.

21.1.4 Create an HTML Page with the Oracle Web Toolkit

Complete the following exercises:

a) Create a PL/SQL procedure that will generate the following HTML page.

<HTML>
<HEAD>
<TITLE>Section Location Update Form</TITLE>
</HEAD>
<BODY>
<H1>Change Section Location</H1>
<FORM ACTION="update_section"
METHOD="GET">
Section ID:
<INPUT TYPE="text" NAME="p_section" SIZE="8" MAXLENGTH="8" VALUE="150">
Course No:
<INPUT TYPE="text" NAME="" SIZE="8" VALUE="120">
<SELECT NAME="p_location" SIZE="10">
<OPTION VALUE=H310>H310
<OPTION VALUE=L206>L206
<OPTION SELECTED VALUE=L210>L210
<OPTION VALUE=L211>L211
<OPTION VALUE=L214>L214
<OPTION VALUE=L500>L500
<OPTION VALUE=L507>L507
<OPTION VALUE=L509>L509
<OPTION VALUE=L511>L511
<OPTION VALUE=M200>M200
<OPTION VALUE=M311>M311
<OPTION VALUE=M500>M500
</SELECT>
<INPUT TYPE="submit" VALUE="Change the location">
</FORM>
</BODY>
</HTML>

b) Generate an update page for the form action in the last HTML page. This update will be the form handler for
the SUBMIT button, it will commit the changes to the database and then refresh the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lab 21.1 Exercise Answers

21.1.1 Answers

a) Create a companion procedure to the example procedure LOG_USER_COUNT, name your proceudre
READ_LOG. This procedure will read a text file and display each line via DBMS_OUTPUT.PUT_LINE.

A1: Answer: The following PL/SQL will create a procedure to read a file and display the contents. Note that the
exception WHEN NO_DATA_FOUND will be raised when the last line of the file has been read and there are
no more lines to read.

CREATE OR REPLACE PROCEDURE READ_FILE
 (PI_DIRECTORY IN VARCHAR2,
 PI_FILE_NAME IN VARCHAR2)
AS
 V_File_handle UTL_FILE.FILE_TYPE;
 V_FILE_Line VARCHAR2(1024);
BEGIN
 V_File_handle :=
 UTL_FILE.FOPEN(PI_DIRECTORY, PI_FILE_NAME, 'R');
 LOOP
 UTL_FILE.GET_LINE(V_File_handle , v_file_line);
 DBMS_OUTPUT.PUT_LINE(v_file_line);
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN UTL_FILE.FCLOSE(V_File_handle);
END;

b) Run the procedure LOG_USER_COUNT and then run the procedure READ_LOG for the same file.

A2: Answer: Before the procedures are executed it is important to submit the SQL*Plus command SET
SERVEROUTPUT ON.

SQL> EXEC LOG_USER_COUNT('C:\working', 'User.Log');
SQL> EXEC READ_LOG('C:\working', 'User.Log');

21.1.2 Answers

a) Create a procedure DELETE_ENROLL that will delete all student enrollments if there are no grades in the
GRADE table for that student's enrollment and the start date of the section is already one month past.

A1: Answer:

CREATE or REPLACE procedure DELETE_ENROLL
AS
 CURSOR C_NO_GRADES is

 SELECT st.student_id, se.section_id
 FROM student st,
 enrollment e,
 section se
 WHERE st.student_id = e.student_id
 AND e.section_id = se.section_id
 AND se.start_date_time < ADD_MONTHS(SYSDATE, -1)
 AND NOT EXISTS (SELECT g.student_id, g.section_id
 FROM grade g
 WHERE g.student_id = st.student_id
 AND g.section_id = se.section_id);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND g.section_id = se.section_id);

BEGIN
 FOR R in C_NO_GRADES LOOP
 DELETE enrollment
 WHERE section_id = r.section_id
 AND student_id = r.student_id;
 END LOOP;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;

b) Submit the procedure DELETE_ENROLL to execute one a month.

A2: Answer:

SQL> VARIABLE V_JOB NUMBER
SQL> SQL> EXEC DBMS_JOB.SUBMIT(:v_job, 'DELETE_ENROLL;',SYSDATE,
 'ADD_MONTHS(SYSDATE, 1)');

PL/SQL procedure successfully completed.

SQL> commit;

Commit complete.

SQL> print v_job

 V_JOB

 2

21.1.3 Answers

a) Find out if your schema has a table named PLAN_TABLE that matches the DDL in the Plan table script
ch21_1a.sql. If it does not, then use the above script to create the PLAN_TABLE.

A1: Answer: Describe PLAN_TABLE. If this does not match the values in CH21_1a.sql, run the script.

b) Compute statistics on all tables in your schema using a single SQL statement to generate the command.

A2: Answer:

SQL> Spool compute.sql
SQL> set pagesize 500
SQL> select 'Analyze table '||table_name||' compute statistics;'
 from user_tables;
SQL> Spool off
SQL> @compute.sql

c) The following SQL statement generates a list of the open sections in courses that the student with the ID
of 214 is not enrolled in. There are many different SQL statements that would produce the same result.
Since various in-line views are required, it is important to examine the execution plan to determine which
plan will produce the result with the least COST to the database. Run the SQL as follows to generate an
SQL plan.

-- ch21_1b.sql
EXPLAIN PLAN FOR
 SELECT c.course_no course_no,
 c.description description,
 b.section_no section_no,
 s.section_id section_id,
 i.first_name first_name,
 i.last_name last_name
 FROM course c,
 instructor i,
 section s,
 (SELECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (SELECT
 a.course_no course_no,
 MIN(a.section_no) section_no
 FROM (SELECT count(*) enrolled,
 se.CAPACITY capacity,
 se.course_no course_no,
 se.section_no section_no,
 e.section_id section_id
 FROM section se,
 enrollment e
 WHERE se.section_id = e.section_id
 AND e.student_id <> 214
 GROUP BY
 se.CAPACITY,
 se.course_no,
 e.section_id,
 se.section_no
 HAVING count(*) < se.CAPACITY) a
 GROUP BY
 a.course_no) b
 WHERE c.course_no = b.course_no
 AND b.course_no = s.course_no
 AND s.section_no = b.section_no
 AND s.instructor_id = i.instructor_id;

A3: Answer: When executed properly, the SQL*Plus session will just display the word EXPLAINED. If you have
another error, the PLAN_TABLE most likely is incorrect.

d) Use the DBMS_XPLAN package as a means to see the execution plan of the SQL statement.

A4: Answer:

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT
--

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		12	888	15 (40)	00:00:01
* 1	HASH JOIN		12	888	15 (40)	00:00:01
* 2	HASH JOIN		12	612	12 (42)	00:00:01
* 3	HASH JOIN		78	1950	6 (34)	00:00:01
4	TABLE ACCESS FULL	INSTRUCTOR	10	140	3 (34)	00:00:01
5	TABLE ACCESS FULL	SECTION	78	858	3 (34)	00:00:01
6	VIEW		12	312	6 (100)	00:00:01
7	SORT GROUP BY		12	192	6 (50)	00:00:01
8	VIEW		12	192	6 (100)	00:00:01
* 9	FILTER					
10	SORT GROUP BY		12	192	6 (50)	00:00:01
* 11	HASH JOIN		225	3600	5 (40)	00:00:01
12	TABLE ACCESS FULL	SECTION	78	780	3 (34)	00:00:01
* 13	INDEX FULL SCAN	ENR_PK	225	1350	2 (50)	00:00:01
14	TABLE ACCESS FULL	COURSE	30	690	3 (34)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("C"."COURSE_NO"="B"."COURSE_NO")
 2 - access("B"."COURSE_NO"="S"."COURSE_NO" AND
 "S"."SECTION_NO"="B"."SECTION_NO")
 3 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")
 9 - filter("SE"."CAPACITY">COUNT(*))
 11 - access("SE"."SECTION_ID"="E"."SECTION_ID")
 13 - filter("E"."STUDENT_ID"<>214)

31 rows selected.

e) Generate an alternative SQL that will produce the same results and then examine the explain plan.

A5: Answer: Note that in some cases the explain plan is not what you expect to see; this may be because the
SQL was adjusted by having a QUERY RE-WRITE setting turned on. The resulting explain plan is for the
SQL that the database re-wrote, which is why table alias names may be unfamiliar. Also note that if you
have unnamed views inside the SQL, they will be given system names, and that is what will be referred to
in the explain plan.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 EXPLAIN PLAN FOR
 2 SELECT s.course_no, description, s.section_no,
 s.section_id, i.first_name, i.last_name
 3 FROM section s, course c, instructor i
 4 WHERE c.course_no = s.course_no
 5 AND s.instructor_id = i.instructor_id
 6 AND section_id IN
 7 (SELECT MIN(section_id)
 8 FROM section s
 9 WHERE section_id IN
 10 (SELECT section_id
 11 from enrollment e
 12 GROUP BY section_id
 13 HAVING COUNT(*) <
 14 (SELECT capacity
 15 FROM section
 16 WHERE e.section_id = section_id))
 17 GROUP BY course_no)
 18 AND s.course_no NOT IN
 19 (SELECT s.course_no
 20 FROM section s, enrollment e
 21 WHERE s.section_id = e.section_id
 22 AND student_id = 214)
 23* ORDER BY s.course_no

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	61	15 (40)	00:00:01
1	SORT ORDER BY		1	61	12 (42)	00:00:01
* 2	FILTER					
3	NESTED LOOPS		1	61	11 (37)	00:00:01
4	NESTED LOOPS		1	38	10 (40)	00:00:01
* 5	HASH JOIN SEMI		1	24	9 (45)	00:00:01
6	TABLE ACCESS FULL	SECTION	4	44	3 (34)	00:00:01
7	VIEW	VW_NSO_2	4	52	6 (100)	00:00:01
8	SORT GROUP BY		4	36	6 (50)	00:00:01
* 9	HASH JOIN		4	36	5 (40)	00:00:01
10	VIEW	VW_NSO_1	4	12	2 (100)	00:00:01
* 11	FILTER					
12	SORT GROUP BY		4	12	2 (50)	00:00:01
13	INDEX FULL SCAN	ENR_SECT_FK_I	226	678	2 (50)	00:00:01
14	TABLE ACCESS BY INDEX ROWID	SECTION	1	5	2 (50)	00:00:01
* 15	INDEX UNIQUE SCAN	SECT_PK	1		1 (100)	00:00:01
16	TABLE ACCESS FULL	SECTION	78	468	3 (34)	00:00:01
17	TABLE ACCESS BY INDEX ROWID	INSTRUCTOR	10	140	2 (50)	00:00:01
* 18	INDEX UNIQUE SCAN	INST_PK	1		1 (100)	00:00:01
19	TABLE ACCESS BY INDEX ROWID	COURSE	30	690	2 (50)	00:00:01
* 20	INDEX UNIQUE SCAN	CRSE_PK	1		1 (100)	00:00:01
21	NESTED LOOPS		1	12	3 (34)	00:00:01
* 22	INDEX RANGE SCAN	ENR_PK	1	6	2 (50)	00:00:01
* 23	TABLE ACCESS BY INDEX ROWID	SECTION	1	6	2 (50)	00:00:01
* 24	INDEX UNIQUE SCAN	SECT_PK	1		1 (100)	00:00:01

Predicate Information (identified by operation id):

 2 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "ENROLLMENT" "E","SECTION" "S" WHERE
 "S"."SECTION_ID"="E"."SECTION_ID" AND LNNVL("S"."COURSE_NO"<>:B1) AND "STUDENT_ID"=214))
 5 - access("SECTION_ID"="$nso_col_1")
 9 - access("SECTION_ID"="$nso_col_1")
 11 - filter(COUNT(*)< (SELECT "CAPACITY" FROM "SECTION" "SECTION" WHERE "SECTION_ID"=:B1))
 15 - access("SECTION_ID"=:B1)
 18 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")
 20 - access("C"."COURSE_NO"="S"."COURSE_NO")
 22 - access("STUDENT_ID"=214)
 23 - filter(LNNVL("S"."COURSE_NO"<>:B1))
 24 - access("S"."SECTION_ID"="E"."SECTION_ID")

45 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

45 rows selected.

- another alternative SQL would be

 1 EXPLAIN PLAN FOR
 2 SELECT * FROM
 3 (
 4 SELECT s.course_no course,
 5 description,
 6 e.section_id sec_id,
 7 section_no,
 8 i.first_name || ' ' || i.last_name i_full_name,
 9 Rank() over (PARTITION BY s.course_no
 10 order by count(e.student_id) ASC,
 11 min(section_no) ASC) as RANK_WINTHIN_SEC
 12 FROM section s, enrollment e, course c, instructor i
 13 WHERE s.section_id = e.section_id and
 14 s.instructor_id = i.instructor_id and
 15 c.course_no = s.course_no and
 16 s.course_no not in (SELECT ss.course_no
 17 FROM section ss, enrollment ee
 18 WHERE ss.section_id = ee.section_id and
 19 ee.student_id = 214)
 20 GROUP BY s.course_no,
 21 description,
 22 e.section_id,
 23 section_no,
 24 i.first_name || ' ' || i.last_name
 25)
 26* WHERE RANK_WITHIN_SEC = 1

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		14	1484	32 (38)	00:00:01
* 1	VIEW		14	1484	32 (100)	00:00:01
* 2	WINDOW SORT PUSHED RANK		14	714	11 (46)	00:00:01
3	SORT GROUP BY		14	714	11 (46)	00:00:01
* 4	FILTER					
* 5	HASH JOIN		14	714	9 (34)	00:00:01
6	NESTED LOOPS		14	392	6 (34)	00:00:01
* 7	HASH JOIN		4	100	6 (34)	00:00:01
8	TABLE ACCESS FULL	SECTION	4	44	3 (34)	00:00:01
9	TABLE ACCESS FULL	INSTRUCTOR	10	140	3 (34)	00:00:01
* 10	INDEX RANGE SCAN	ENR_SECT_FK_I	226	678	1 (100)	00:00:01
11	TABLE ACCESS FULL	COURSE	30	690	3 (34)	00:00:01
12	NESTED LOOPS		1	12	3 (34)	00:00:01
* 13	INDEX RANGE SCAN	ENR_PK	1	6	2 (50)	00:00:01
* 14	TABLE ACCESS BY INDEX ROWID	SECTION	1	6	2 (50)	00:00:01
* 15	INDEX UNIQUE SCAN	SECT_PK	1		1 (100)	00:00:01
--

Predicate Information (identified by operation id):

 1 - filter("RANK_WITHIN_SEC"=1)
 2 - filter(RANK() OVER (PARTITION BY "S"."COURSE_NO" ORDER BY
 COUNT(*),MIN("SECTION_NO"))<=1)
 4 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "ENROLLMENT" "EE","SECTION" "SS" WHERE
 "SS"."SECTION_ID"="EE"."SECTION_ID" AND LNNVL("SS"."COURSE_NO"<>:B1) AND
 "EE"."STUDENT_ID"=214))
 5 - access("C"."COURSE_NO"="S"."COURSE_NO")
 7 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")
 10 - access("S"."SECTION_ID"="E"."SECTION_ID")
 13 - access("EE"."STUDENT_ID"=214)
 14 - filter(LNNVL("SS"."COURSE_NO"<>:B1))
 15 - access("SS"."SECTION_ID"="EE"."SECTION_ID")

37 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.1.4 Answers

a) Create a PL/SQL procedure that will generate the following HTML page.

<HTML>
<HEAD>
<TITLE>Section Location Update Form</TITLE>
</HEAD>
<BODY>
<H1>Change Section Location</H1>
<FORM ACTION="update_section"
METHOD="GET">
Section ID:
<INPUT TYPE="text" NAME="p_section" SIZE="8" MAXLENGTH="8" VALUE="150">
Course No:
<INPUT TYPE="text" NAME="" SIZE="8" VALUE="120">
<SELECT NAME="p_location" SIZE="10">
<OPTION VALUE=H310>H310
<OPTION VALUE=L206>L206
<OPTION SELECTED VALUE=L210>L210
<OPTION VALUE=L211>L211
<OPTION VALUE=L214>L214
<OPTION VALUE=L500>L500
<OPTION VALUE=L507>L507
<OPTION VALUE=L509>L509
<OPTION VALUE=L511>L511
<OPTION VALUE=M200>M200
<OPTION VALUE=M311>M311
<OPTION VALUE=M500>M500
</SELECT>
<INPUT TYPE="submit" VALUE="Change the location">
</FORM>
</BODY>
</HTML>

A1: Answer:

CREATE OR REPLACE PROCEDURE instructor_list IS
 v_string VARCHAR2(100);
CREATE OR REPLACE PROCEDURE section_form IS
 v_string VARCHAR2(100);
 v_section_id SECTION.section_id%TYPE;
 v_location SECTION.location%TYPE; -- Use %TYPE whenever possible.
 v_course_no SECTION.course_no%TYPE;
 cursor c_location is
 select distinct location from section
 order by location;
BEGIN
 SELECT section_id, location, course_no
 INTO v_section_id, v_location, v_course_no
 FROM section
 WHERE section_id=150;
 htp.htmlOpen;
 htp.headOpen;
 htp.title('Section Location Update Form');
 htp.headClose;
 htp.bodyOpen;
 htp.header(1,'Change Section Location');
 htp.FormOpen('update_section', 'GET');
 htp.p('Section ID:');
 htp.formText('p_section', 8, 8,v_section_id);
 htp.p('Course No: ');
 htp.formText(cname=>null, csize=>8,cvalue=> v_course_no);
 htp.FormSelectOpen(cname=>'p_location', nsize=>10);
 FOR rec in c_location LOOP
 IF rec.location = v_location THEN
 htp.FormSelectOption(rec.location,'SELECTED',
 cattributes=>'VALUE='||rec.location);
 ELSE
 htp.FormSelectOption(rec.location,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 htp.FormSelectOption(rec.location,
 cattributes=>'VALUE='||rec.location);
 END IF;
 END LOOP;
 htp.FormSelectClose;
 htp.FormSubmit(cvalue=>'Change the location');
 htp.FormClose;
 htp.bodyClose;
 htp.htmlClose;
 EXCEPTION
 WHEN OTHERS THEN
 HTP.P('An error occurred: '||SQLERRM||'. Please try again later.');
 END;

b) Generate an update page for the form action in the last HTML page. This update will be the form handler
for the SUBMIT button, it will commit the changes to the database and then refresh the page.

A2: Answer:

CREATE OR REPLACE PROCEDURE update_section
 (p_section IN SECTION.section_id%TYPE,
 p_location IN SECTION.location%TYPE)
IS
BEGIN
 UPDATE section
 SET location = p_location
 WHERE section_id = p_section;
 COMMIT;
 section_form;
 htp.p('The section '||p_section||' is moved to '||p_location||'.');
EXCEPTION
 WHEN OTHERS THEN
 HTP.P('An error occurred: '||SQLERRM||'. Please try again later.');
END;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Answers to Self-Review Questions

Chapter 1 Programming Concepts

Chapter 2 PL/SQL Concepts

Chapter 3 General Programming Language Fundamentals

Chapter 4 SQL in PL/SQL

Chapter 5 Conditional Control: IF Statements

Chapter 6 Conditional Control: CASE Statements

Chapter 7 Error Handling and Built-In Exceptions

Chapter 8 Iterative Control

Chapter 9 Introduction to Cursors

Chapter 10 Exceptions

Chapter 11 Exceptions: Advanced Concepts

Chapter 12 Procedures

Chapter 13 Functions

Chapter 14 Packages

Chapter 15 Advanced Cursors

Chapter 16 Stored Code

Chapter 17 Triggers

Chapter 18 Collections

Chapter 19 Records

Chapter 20 Native Dynamic SQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1 Programming Concepts

Lab 1.1 Self-Review Answers

A5: Questions Answers Comments

1) A Machine language is the native language of a particular computer; hence, it is
easiest for a computer to understand.

2) B Machine language is defined by the hardware of a computer; thus, it is
machine-specific.

3) B The interpreter translates each statement in the program into machine
language and executes it immediately before the next statement is examined.

4) B A program must be compiled in order to create an executable that can then run
as many times as needed.

5) A Because a computer cannot understand statements written in the assembly
language, they must be translated into machine language with the help of an
assembler.

Lab 1.2 Self-Review Answers

A5: Questions Answers Comments

1) C

2) B Structured programming allows you to organize your program into subroutines
so each one focuses on a particular part of the overall problem. The control is
then transferred between these subroutines.

3) B Linear execution of code assumes that statements are executed in the order
they appear.

4) A If the test condition does not evaluate to TRUE, the selection statements are not
executed.

5) B A SELECT statement may be formatted perfectly and still produce incorrect
results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

results.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2 PL/SQL Concepts

Lab 2.1 Self-Review Answers

A5: Questions Answers Comments

1) B When the SELECT statements are combined into a PL/SQL program, they are
sent to the server as a single unit thus reducing network traffic.

2) B Executable section is the only mandatory section for a PL/SQL block. As a
result,

BEGIN
 NULL; -- null statement
END;

is a valid PL/SQL block.

3) B When a runtime error occurs in the PL/SQL block, control is passed to the
exception-handling section of the block, where the error is evaluated and a
specific exception is raised or executed.

4) A A PL/SQL compiler is able to detect only syntax errors. It cannot detect any
runtime errors because they do not occur prior to the execution of the program.

5) B For named PL/SQL blocks, p-code is generated and stored in the database at
the time of compilation. When named PL/SQL block is executed, its p-code is
retrieved from the database and executed. For anonymous PL/SQL blocks, p-
code is not stored in the database and is generated every time the PL/SQL block
is executed.

Lab 2.2 Self-Review Answers

A5: Questions Answers Comments

1) B A semicolon is a terminating symbol of an individual statement in the PL/SQL
block.

2) A Substitution variables are used for input values only. They cannot be used to
output values because no memory is allocated for them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

output values because no memory is allocated for them.

3) A The statement DBMS_OUTPUT.PUT_LINE uses dot notation as follows:

package_name.procedure_name

where package_name is the name of the package and procedure_name is the
name of the procedure defined in the package.

4) A When a program completes, the information from the buffer is displayed on the
screen.

5) C When the SET SERVEROUPUT ON command is used without specifying the size if
the buffer, it enables the DBMS_OUTPUT.PUT_LINE statement and the default
buffer size is used. The SIZE option changes the default buffer size to the
specified size.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3 General Programming Language Fundamentals

Lab 3.1 Self-Review Answers

A5: Questions Answers Comments

1) A

2) B

3) A, B, C, E

4) D

5) A

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4 SQL in PL/SQL

Lab 4.1 Self-Review Answers

A4: Questions Answers Comments

1) B, D

2) A, D You cannot create a table or sequence within a PL/SQL block.

3) C

4) A, B, D A sequence will generate unique numbers, but you cannot count it as a method
to generate contiguous number.

Lab 4.2 Self-Review Answers

A4: Questions Answers Comments

1) B When you issue a ROLLBACK it only applies to the current session of the user
you are logged in as. It has no effect on other sessions.

2) A, C

3) D

4) B

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5 Conditional Control: IF Statements

Lab 5.1 Self-Review Answers

A5: Questions Answers Comments

1) C The statements in an IF construct are not executed sequentially. Rather, one
group of statements or another will be selected to execute depending on how a
test condition is evaluated.

2) A Only when the condition evaluates to TRUE, the statement of an IF-THEN
construct are executed. When the condition evaluates to FALSE or NULL, the
control is passed to the first executable statement after the IF-THEN construct.
As a result, its statements are not executed at all.

3) B When a condition of the IF-THEN-ELSE construct is evaluated to NULL, the
statements specified after keyword ELSE will be executed. In other words, the
IF-THEN-ELSE construct behaves as if the condition evaluated to FALSE.

4) B You can specify only two actions in an IF-THEN-ELSE statement. Furthermore,
these actions should be mutually exclusive.

5) B The condition of the IF-THEN-ELSE construct can evaluate to TRUE, FALSE, or
NULL. When the condition evaluates to TRUE, one group of statements is
executed. When the condition evaluates to FALSE or NULL, another group of
statement is executed. Hence, the IF-THEN-ELSE construct enables you to
specify two and only two mutually exclusive groups of statements.

Lab 5.2 Self-Review Answers

A5: Questions Answers Comments

1) B An ELSIF construct can have multiple ELSIF clauses, but only one ELSE clause.

2) B

3) C The ELSE part is executed when none of the conditions evaluate to TRUE.

4) C As soon as the first condition evaluates to TRUE, statements associated with it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4) C As soon as the first condition evaluates to TRUE, statements associated with it
are executed. The rest of the ELSIF statement is ignored.

5) B ELSE is an optional part of an ELSIF statement.

Lab 5.3 Self-Review Answers

A5: Questions Answers Comments

1) C There are no restrictions on how various types of IF statements can be nested
one inside another.

2) C

3) B You can use different logical operators when writing complex conditions. While
there are no restrictions on the number of the logical operators present in a
condition, you should be aware of precedence rules. For example,

x >= 3 OR x <= 5 AND y > 7

may produce a result different from

(x >= 3 OR x <= 5) AND x > 7

for the same values of x and y.

4) A There is no need for the conditions of nested IF statements to be mutually
exclusive. For example,

IF v_num > 0 THEN
 IF v_num < 0 THEN
 ...
 END IF;
END IF;

When v_num is greater than 0, the condition of the inner IF statement will
evaluate to FALSE. When v_num is less than or equal to 0, the condition of the
outer IF statement will evaluate to FALSE. Thus, the inner IF statement will
never execute regardless of the value of v_num.

5) C The behavior of an IF statement does not change based on its placement in the
block. In other words, if a condition of any IF statement (outer or inner)
evaluates to FALSE, the control is always passed to the first executable
statement after END IF. It is important to remember that this behavior does not
apply to IF-THEN-ELSE and ELSIF.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6 Conditional Control: CASE Statements

Lab 6.1 Self-Review Answers

A5: Questions Answers Comments

1) C The statements in a CASE construct are not executed sequentially. Rather, one
group of statements or another will be selected to execute depending on how
test conditions are evaluated.

2) B

3) B The selector is evaluated only once, and the value of each expression is
compared to the value of the selector sequentially.

4) A The behavior of a searched CASE construct is similar to the behavior of an IF
statement. In other words, if all conditions of the CASE construct evaluate to
NULL and there is no ELSE clause present, the control will be passed to the first
executable statement after END CASE.

5) A

Lab 6.2 Self-Review Answers

A5: Questions Answers Comments

1) A A keyword here is expression. You will recall that an expression returns a single
value.

2) C

3) B Similar to CASE statements, there are CASE and searched CASE expressions.

4) A The behavior of a CASE expression is similar to the behavior of a CASE
statement. In other words, if all conditions of the CASE expression evaluate to
NULL and there is no ELSE clause present, the expression returns NULL.

5) A As mentioned earlier, the keyword here is expression. Because an expression
returns a single value, it must return a single datatype.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lab 6.3 Self-Review Answers

A5: Questions Answers Comments

1) A

2) B The NULLIF function does the opposite of the NVL function. If the first
expression is NULL, then NVL returns the second expression. If the first
expression is not NULL, then NVL returns the first expression.

3) B When the literal NULL is used in the first expression of the NULLIF function, it
causes a syntax error.

4) A

5) B As long as one of the expressions in the COALESCE function does not contain
NULL, the COALESCE function executes successfully. For example,

COALESCE(NULL, 5)

returns the value of 5. On the other hand,

COALESCE(NULL, NULL)

causes a syntax error.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7 Error Handling and Built-In Exceptions

Lab 7.1 Self-Review Answers

A5: Questions Answers Comments

1) B A compiler is able to detect only syntax errors. It cannot detect any runtime
errors because they do not occur prior to the execution of the program.
Furthermore, a runtime error generally occurs only on some occasions, and not
the others.

2) B An exception-handling section is an optional section of a PL/SQL block. You will
recall that only executable section is a required section of a PL/SQL block.

3) B

4) B

5) B, C Both options are correct. However, you should remember that the value of
number 1 is not important. It is number 2 that causes an exception to be raised
when its value is equal to zero.

Lab 7.2 Self-Review Answers

A5: Questions Answers Comments

1) A You will recall that a built-in exception is raised when a program breaks an
Oracle rule. In other words, you do not need to specify how to raise a built-in
exception, rather, what actions must be taken when a particular built-in
exception is raised. A built-in exception will be raised by Oracle implicitly.

2) B

3) B When a group function is used in the SELECT INTO statement, there is at least
one row returned. As a result, exception NO_DATA_FOUND is not raised.

4) B Once an exception has been raised in a PL/SQL block, the execution of the block
terminates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5) B An exception-handling section may contain multiple exception handlers. For
example, NO_DATA_FOUND and OTHERS.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8 Iterative Control

Lab 8.1 Self-Review Answers

A5: Questions Answers Comments

1) C If there is no EXIT condition specified, a simple loop becomes an infinite loop. In
other words, a sequence of statements will be executed an infinite number of
times because there is no statement specifying when the loop must terminate.

2) B As soon as the EXIT statement is encountered, the loop is terminated.

3) A As long as the EXIT condition does not evaluate to TRUE, the control is never
transferred to the EXIT statement. This will prevent a loop from terminating. For
example,

IF x > 5 THEN
 EXIT;
END IF;

In this case, the EXIT condition is a test condition of the IF statement. When the
test condition of the IF statement evaluates to FALSE or NULL, the control is
passed to the first executable statement after END IF.

4) C Once EXIT statement is executed, the control is transferred to the first
executable statement after END LOOP.

5) B An EXIT condition of a simple loop is located inside the body of the loop.
Therefore, the loop will always execute partly before the EXIT condition is
evaluated.

Lab 8.2 Self-Review Answers

A5: Questions Answers Comments

1) A Before a WHILE loop is executed, its test condition is evaluated. If the test
condition yields FALSE, the WHILE loop is unable to execute.

2) C If a test condition always evaluates to TRUE, the WHILE loop is unable to
terminate. As a result, it executes infinite number of times.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

terminate. As a result, it executes infinite number of times.

3) B, C

4) A You will recall that a test condition must evaluate to FALSE or NULL for a WHILE
loop to terminate. On the other hand, the EXIT condition must evaluate to
TRUE. Thus, if the EXIT condition evaluates to TRUE before the test condition
evaluates to FALSE, the WHILE loop terminates prematurely.

5) A If a test condition of a WHILE loop never evaluates to TRUE, the loop does not
execute at all.

Lab 8.3 Self-Review Answers

A5: Questions Answers Comments

1) B For the first iteration of the loop, the value of the loop counter is equal to the
lower limit. For the second iteration of the loop, the value of the loop counter is
implicitly incremented by 1. At this point, the value of the loop counter does not
satisfy the range specified by the lower limit and the upper limit, so the loop
terminates. For example,

BEGIN
 FOR i IN 1..1 LOOP
 DBMS_OUTPUT.PUT_LINE ('i = '||i);
 END LOOP;
END;
/
i = 1

PL/SQL procedure successfully completed.

2) A The loop counter is unable to satisfy the range specified by the lower and upper
limits.

3) C The loop counter is implicitly defined by the loop construct. As a result, it does
not exist anywhere outside the loop.

4) C

5) B The loop counter is initialized to the upper limit, and it is decremented by 1 for
each iteration of the loop.

Lab 8.4 Self-Review Answers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A5: Questions Answers Comments

1) C

2) B Loop labels are optional feature and are used to improve readability.

3) B

4) B It is considered bad programming practice to use the same name for different
variables. When the same name is used for the loop counters, you are unable to
reference the outer loop counter in the body of the inner loop. In order to
differentiate between two variables having the same name, you must use loop
labels when the variables are referenced.

5) B You must use loop labels only when outer and inner loop counters have the
same name and you want to reference the outer loop counter in the inner loop.
In other cases, it is not necessary to use a loop label when referencing the loop
counter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9 Introduction to Cursors

Lab 9.1 Self-Review Answers

A5: Questions Answers Comments

1) B

2) None Cursor attributes are used for getting information about cursors.
They cannot be used to control or close cursors.

3) 1-B Declare, 2-E Open,
3-A Fetch, 4-C Close

4) D Cursor attributes can be use with both implicit and explicit
cursors.

5) D

Lab 9.2 Self-Review Answers

A5: Questions Answers Comments

1) A

2) B

3) B

4) B A child cursor in a nested cursor loop will open, loop, and then close for each
iteration of the parent loop.

5) C

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10 Exceptions

Lab 10.1 Self-Review Answers

A5: Questions Answers Comments

1) C If an exception is defined in the inner block, it can be raised in the inner block
only. The outer block is not included in the scope of such an exception.

2) B Once an exception has been raised in the inner block and handled in the outer
block, the control is passed to the enclosing environment.

3) B Once an exception occurs in the outer block, PL/SQL tries to find its handler in
the outer block. PL/SQL will never search the inner block for the exception
handler when the exception occurs in the outer block.

4) B In order to define an exception inside the body of the loop, you must define the
PL/SQL block inside the body of the loop. Therefore, when an exception is
raised, it will terminate the block, and the control will be transferred to the first
executable statement after END. For example,

FOR i IN 1..3 LOOP
 BEGIN
 SELECT first_name
 INTO v_first_name
 FROM student
 WHERE student_id = 123;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('Error');
 END;
END LOOP;

In this case, if there is no student corresponding to student ID 123, the
exception NO_DATA_FOUND is raised. This causes the PL/SQL block to
terminate. However, as long as the value of the loop counter ranges between
lower and upper limits, the PL/SQL block will be executed repeatedly.

5) B When you want to specify the same action for various exceptions, you can
combine these exceptions in the single WHEN clause. The exceptions are
included in the WHEN clause with the help of the OR operator.

Lab 10.2 Self-Review Answers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A5: Questions Answers Comments

1) B A user-defined exception is declared and raised. The exception must be
declared because it is defined by a programmer and is not provided by the
system. The exception must be raised explicitly because it handles violation of
application rules, not Oracle rules. For example, a negative value provided by a
user for the student ID violates the application rule because an ID cannot be
negative, yet it does not violate Oracle rules because a number can be
negative.

2) B

3) B If a user-defined exception has been declared in the inner block, it can be raised
in the inner block. However, it ceases to exist once the control is transferred to
the outer block, and, as a result, it cannot be raised in the outer block. Any
reference to such exception in the outer block will cause a syntax error.

4) B A user-defined exception behaves similarly to an Oracle built-in exception.

5) A The IF-THEN statement evaluates a condition that causes an application error.
Once this condition yields TRUE, the RAISE statement raises a user-defined
error associated with the application error. The IF-THEN statement by itself will
not raise an exception. On the other hand, the RAISE statement by itself will
always raise an exception.

Lab 10.3 Self-Review Answers

A5: Questions Answers Comments

1) B Once an exception is raised in the declaration section of a block, the control is
always transferred to the enclosing environment. In the case of an inner block,
the control is transferred to the exception-handling section of the outer block.

2) B An exception encountered in the declaration section of any block causes the
control to be transferred outside the block. When such a block is not enclosed
by another PL/SQL block, the control is transferred to the host environment.
This causes a syntax error.

3) A

4) B Re-raising an exception causes the control to transfer outside the block. In case
of an inner block, the control is transferred to the exception-handling section of
the outer block.

5) B

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11 Exceptions: Advanced Concepts

Lab 11.1 Self-Review Answers

A5: Questions Answers Comments

1) C RAISE_APPLICATION_ERROR associates an error number with an error text.
Therefore, when working with the RAISE_APPLICATION_ERROR there is no
need to create an exception name.

2) C RAISE_APPLICTION_ERROR has two required parameters, error_number and
error_text. The keep_error is an optional parameter that is usually omitted.

3) A Generally, Oracle associates negative numbers with runtime errors. For user-
defined exceptions, the range of such numbers is from –20,000 to –20,999.

4) A When the RAISE_APPLICATION_ERROR procedure is used, control is always
passed to the host environment. For example, if an exception is raised in an
inner block, it never propagates to the outer block.

5) C

Lab 11.2 Self-Review Answers

A5: Questions Answers Comments

1) B EXCEPTION_INIT pragma is a special instruction to the compiler. It allows
handling of unnamed internal exceptions. Such exceptions can also be handled
with the help of OTHERS.

2) B Because pragma is a special instruction to the compiler, it is processed during
compilation time.

3) C Some Oracle errors do not have names, and as a result they cannot be
referenced in a program. The EXCEPTION_INIT pragma allows you to associate
an Oracle error number with a user-defined error.

4) C In order to associate an Oracle error with a user-defined exception, the
EXCEPTION_INIT pragma requires both error number and name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5) C Error_number is a numeric parameter and should contain any valid Oracle error
number; 'ORA' is not a part of an error number.

Lab 11.3 Self-Review Answers

A5: Questions Answers Comments

1) A

2) A

3) C

4) C

5) B When no exception is raised, the SQLCODE function returns 0. When there is a
NO_DATA_FOUND exception, SQLCODE function returns 100.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12 Procedures

Lab 12.2 Self-Review Answers

A5: Questions Answers Comments

1) C

2) A, C, D,
E

There is no foot section in stored code. The specification can be called the
header, but the body is never called footer.

3) B An OUT parameter is not a required component of a procedure.

4) A, B, D C is a valid definition for the declarative section; all header definitions refer to
IN, OUT, or IN/OUT parameters.

5) B The USER_SOURCE view shows the text for code in valid and invalid objects.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13 Functions

Lab 13.1 Self-Review Answers

A5: Questions Answers Comments

1) D

2) B A function can have IN, OUT, and IN OUT parameters, but it is considered bad
style to have anything but IN parameters in a function.

3) D

4) C

5) C, D

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14 Packages

Lab 14.1 Self-Review Answers

A5: Questions Answers Comments

1) B When a package is first called, all the procedures and functions in that package
are brought into memory and will run quickly when they are used in the same
session.

2) A

3) B Procedures and functions that are not declared in the package specification will
be private.

4) C

5) B A package specification is a database object and must be compiled prior to
compiling the package body. This can be done in one or two scripts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15 Advanced Cursors

Lab 15.1 Self-Review Answers

A5: Questions Answers Comments

1) True

2) A, B, D %ROWTYPE is only used with declaration of variables.

3) C

4) C

5) A The WHERE CURRENT clause in a FOR UPDATE cursor allows you to update a
row without having to match the row in the WHERE clause.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16 Stored Code

Lab 16.1 Self-Review Answers

A5: Questions Answers Comments

1) B The USER_ERRORS view only has details on code that is currently in an invalid
state. Once the code becomes valid, it will no longer be present in the
USER_ERRORS view.

2) A The DESC command can be used on tables and packages. It will give different
results for tables and packages.

3) B Only functions within packages require pragma restrictions used in SQL
statements.

4) C

5) B

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17 Triggers

Lab 17.1 Self-Review Answers

A5: Questions Answers Comments

1) C

2) B Once a trigger has been defined on a particular table, it fires implicitly when a
triggering event occurs. By default, when a trigger is created it is also enabled.
Once you disable a trigger, it will not fire when a triggering event occurs.

3) A The WHEN condition controls when a trigger should fire. If such a condition does
not evaluate to TRUE, the trigger will not fire.

4) C

5) D A trigger fires before or after a triggering event: INSERT, UPDATE, or DELETE. A
SELECT operation is not a triggering event. It reads information from a
triggering table without modifying it.

Lab 17.2 Self-Review Answers

A5: Questions Answers Comments

1) A

2) B A statement trigger fires once per DML statement issued. In other word, if there
is a statement trigger that fires before an UPDATE statement is issued against a
triggering table, it will fire once regardless of number of rows affected by the
UPDATE statement.

3) B

4) B It is important to remember that even though an INSTEAD OF trigger is defined
on a view, it manipulates underlying database tables.

5) B An INSTEAD OF trigger can never be a statement trigger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lab 17.3 Self-Review Answers

A5: Questions Answers Comments

1) B You cannot issue an SQL statement against the triggering table in the body of
the trigger.

2) B Any SQL statement (INSERT, UPDATE, DELETE, and SELECT) against the
triggering table inside the body of the trigger will cause a mutating table error.

3) B You are able to issue SQL statements against any table but the triggering table
in the body of a trigger. In other words, it there is a trigger defined on the
STUDENT table, you can issue a SELECT statement against the ZIPCODE table
in the body of the trigger. This will not cause any error. However, if you issue a
SELECT statement against the STUDENT table, you will get a mutating table
error when the trigger fires. You will recall that a mutating table error is a
runtime error and is not be detected by the PL/SQL compiler.

4) C

5) C You will recall that a constraining table restriction is applicable to Oracle
versions prior to 8i.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18 Collections

Lab 18.1 Self-Review Answers

A5: Questions Answers Comments

1) A

2) C You will recall that a following is always used in an index-by table declaration

INDEX BY BINARY_INTEGER;

3) A A nested table is automatically NULL when it is declared. As a result, it must be
initialized prior to its use.

4) C If a PL/SQL table contains only one element, it is its first and last element. As a
result, the FIRST method returns the subscript of the first element, 1, and the
LAST method returns the subscript of the last element, 1.

5) C It is important to remember that a PL/SQL table in this case is a nested table.
You will recall that the DELETE method cannot be used with a nested table.

Lab 18.2 Self-Review Answers

A5: Questions Answers Comments

1) A You will recall that using a DELETE method on varrays causes a syntax error
because varrays are dense.

2) B A varray can contain a number of elements, varying from zero (empty array) to
its maximum size. In other words, an upper bond of the array can be extended
to its maximum size.

3) A

4) C The COUNT method returns the current number of varray elements, and the
LIMIT method returns the maximum number of elements that a varray can
contain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5) D Because varrays cannot be sparse, a DELETE method causes a syntax error
when it is issued against a varray.

Lab 18.3 Self-Review Answers

A5: Questions Answers Comments

1) A

2) B Regardless of its element type, an upper bound of a varray can be extended to
its maximum size.

3) B A nested table must be initialized prior to its use regardless its element data
type.

4) C Consider the statement

varray2(2)(3)

In this statement you are referencing the second element of varray2 and third
element of varray1. Each element of varray2 is a varray of three integers defined
as varray1. Recall the following declaration statement:

varray2 varray_type2 :=
 varray_type2(varray1, varray_type1
 (4, 5, 6));

where varray_type1(4, 5, 6) is the second element of the varray2. Notice that the
third element of varray1 is 6. As a result, the variable var1 is assigned a value of
6.

5) B You will recall that the PL/SQL block contains the following statements:

varray2.EXTEND;
varray2(3) := varray_type1(0);
varray2(3).EXTEND;

The first statement increases the size of the varray2. In other words, this
statement adds the third element to the collection. The second statement
initializes the third element of the varray2 via constructor associated with the
varray type varray_type1. This is done because each element of the varray2 is a
varray of three integers. This adds one element to the varray1. The third
statement increases the size of the varray1 by adding a placeholder for the
second element. In other words, it adds the second element to the third
element of varray2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19 Records

Lab 19.1 Self-Review Answers

A5: Questions Answers Comments

1) C %ROWTYPE means "based on a row." This row may be based on a database
table row or on a row returned by a cursor.

2) C When a field with a NOT NULL constraint is not initialized, a user-defined record
causes an error.

3) B You are able to assign a table-based record to a cursor-based record and vice
versa. This restriction applies to user-defined records that have the same
structure yet different data types.

4) A An aggregate assignment statement between two user-defined records causes
an error where the records are not based on the same type.

5) B A table-based record can be assigned to a user-defined record as long as they
have the same structure. This restriction applies to user-defined records that
have the same structure yet different data types.

Lab 19.2 Self-Review Answers

A5: Questions Answers Comments

1) C

2) B

3) C You must initialize each field that has a NOT NULL constraint specified on it
regardless of the record type.

4) B A nested record may contain any collection as one of its fields.

5) B

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lab 19.3 Self-Review Answers

A5: Questions Answers Comments

1) B

2) B A varray has an upper bound that can be extended to its maximum size. The
data type of its individual elements has no effect on how the upper bound is
extended.

3) B You must always initialize a nested table regardless of its element type.

4) B You must always increase the size of a nested table before populating it with a
new record regardless of its element type.

5) B You can use user-defined, table-based, or cursor-based records when creating a
collection of records.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20 Native Dynamic SQL

Lab 20.1 Self-Review Answers

A5: Questions Answers Comments

1) C A dynamic SQL statement may contain either a SQL statement or a PL/SQL
block.

2) A An INTO option of the EXECUTE IMMEDIATE statement is very similar to the
INTO clause of a SELECT INTO statement. Recall that a static SELECT INTO
statement is used only for single-row queries, and it generates a
TOO_MANY_ROWS exception when there are multiple rows in the result set.

3) B Recall that you cannot pass names of schema objects to the dynamic SQL
statements via bind arguments.

4) B

5) B

Lab 20.2 Self-Review Answers

A5: Questions Answers Comments

1) B While the OPEN-FOR, FETCH, and CLOSE statements can be used for single-row
queries, they are generally used for multi-row queries.

2) A The optional USING clause allows you to pass values to the dynamic SQL
statement associated with the cursor at the run time.

3) C

4) B

5) B Data returned by the cursor can be fetched into a user-defined record as long
as the structure of the record is similar to the structure of the result set. In
other words, if a cursor returns first and last names, the user-defined record
should contain at least two fields that can store character data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

should contain at least two fields that can store character data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. PL/SQL Formatting Guide
PL/SQL Code Naming Conventions and Formatting Guidelines

Other Suggestions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

PL/SQL Code Naming Conventions and Formatting Guidelines

Case

PL/SQL, like SQL, is case insensitive. The general guidelines here are as follows:

Use uppercase for keywords (BEGIN, EXCEPTION, END, IF THEN ELSE, LOOP, END LOOP, etc.), datatypes
(VARCHAR2, NUMBER), built-in functions (LEAST, SUBSTR, etc.), and user-defined subroutines (procedures,
functions, packages).

Use lowercase for variable names as well as column and table names in SQL.

White Space

White space (extra lines and spaces) is as important in PL/SQL as it is in SQL. It is a main factor in providing
readability. In other words, you can reveal the logical structure of the program by using indentation in your code. Here
are some suggestions:

Put spaces on both sides of an equality sign or comparison operator.

Line up structure words on the left (DECLARE, BEGIN, EXCEPTION, and END, IF and END IF, LOOP and END
LOOP, etc.). In addition, indent three spaces (use the spacebar, not the tab key) for structures within
structures.

Put blank lines between major sections to separate them from each other.

Put different logical parts of the same structure on a separate lines even if the structure is short. For example,
IF and THEN are placed on one line, while ELSE and END IF are placed on separate lines.

Naming Conventions

To ensure against conflicts with keywords and column/table names, it is helpful to use the following prefixes:

v_variable_name

con_constant_name

i_in_parameter_name, o_out_parameter_name, io_in_out_parameter_name

c_cursor_name or name_cur

rc_reference_cursor_name

r_record_name or name_rec

FOR r_stud IN c_stud LOOP...

FOR stud_rec IN stud_cur LOOP

type_name, name_type (for user-defined types)

t_table, name_tab (for PL/SQL tables)

rec_record_name, name_rec (for record variables)

e_exception_name (for user-defined exceptions)

The name of a package should be the name of the larger context of the actions performed by the procedures and
functions contained within the package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functions contained within the package.

The name of a procedure should be the action description that is performed by the procedure. The name of a function
should be the description of the return variable.

 FOR EXAMPLE

PACKAGE student_admin
 -- admin suffix may be used for administration.

 PROCEDURE remove_student
 (i_student_id IN student.studid%TYPE);

 FUNCTION student_enroll_count
 (i_student_id student.studid%TYPE)
 RETURN INTEGER;

Comments

Comments in PL/SQL are as important as in SQL. They should explain the main sections of the program and any major
nontrivial logic steps.

Use single-line comments "--" instead of the multiline "/*" comments. While PL/SQL treats these comments in the same
way, it will be easier for you to debug the code once it is completed because you cannot embed multiline comments
within multiline comments. In other words, you are able to comment out portions of code that contain single-line
comments, and you are unable to comment out portions of code that contain multiline comments.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Other Suggestions

For SQL statements embedded in PL/SQL, use the same formatting guidelines to determine how the statements
should appear in a block.

Provide a comment header that explains the intent of the block, lists the creation date and author's name, and
have a line for each revision with the author's name, date, and the description of the revision.

 FOR EXAMPLE

The following example shows the aforementioned suggestions. Notice that it also uses a monospaced font (Courier) that
makes the formatting easier. Proportional spaced fonts can hide spaces and make lining up clauses difficult. Most text
and programming editors by default use a monospace font.

REM **
REM * filename: coursediscount01.sql version: 1
REM * purpose: To give discounts to courses that have at
REM * least one section with an enrollment of more
REM * than 10 students.
REM * args: none
REM *
REM * created by: s.tashi date: January 1, 2000
REM * modified by: y.sonam date: February 1, 2000
REM * description: Fixed cursor, added indentation and
REM * comments.
REM **
DECLARE
 -- C_DISCOUNT_COURSE finds a list of courses that have
 -- at least one section with an enrollment of at least 10
 -- students.
 CURSOR c_discount_course IS
 SELECT DISTINCT course_no
 FROM section sect
 WHERE 10 <= (SELECT COUNT(*)
 FROM enrollment enr
 WHERE enr.section_id = sect.section_id
);

 -- discount rate for courses that cost more than $2000.00
 con_discount_2000 CONSTANT NUMBER := .90;

 -- discount rate for courses that cost between $1001.00
 -- and $2000.00
 con_discount_other CONSTANT NUMBER := .95;

 v_current_course_cost course.cost%TYPE;
 v_discount_all NUMBER;
 e_update_is_problematic EXCEPTION;
BEGIN
 -- For courses to be discounted, determine the current
 -- and new cost values
 FOR r_discount_course in c_discount_course LOOP
 SELECT cost
 INTO v_current_course_cost
 FROM course
 WHERE course_no = r_discount_course.course_no;

 IF v_current_course_cost > 2000 THEN
 v_discount_all := con_discount_2000;
 ELSE
 IF v_current_course_cost > 1000 THEN
 v_discount_all := con_discount_other;
 ELSE
 v_discount_all := 1;
 END IF;
 END IF;

 BEGIN
 UPDATE course

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UPDATE course
 SET cost = cost * v_discount_all
 WHERE course_no = r_discount_course.course_no;
 EXCEPTION
 WHEN OTHERS THEN
 RAISE e_update_is_problematic;
 END; -- end of sub-block to update record
 END LOOP; -- end of main LOOP

 COMMIT;

EXCEPTION
 WHEN e_update_is_problematic THEN
 -- Undo all transactions in this run of the program
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE
 ('There was a problem updating a course cost.');
 WHEN OTHERS THEN
 NULL;
END;
/
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. Student Database Schema
Table and Column Descriptions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Table and Column Descriptions

COURSE: Information for a course
Column Name Null Type Comments

COURSE_NO NOT
NULL

NUMBER(8, 0) The unique course number

DESCRIPTION NULL VARCHAR2(50) The full name for this course

COST NULL NUMBER(9,2) The dollar amount charged for enrollment in this course

PREREQUISITE NULL NUMBER(8, 0) The ID number of the course that must be taken as a prerequisite to
this course

CREATED_BY NOT
NULL

VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT
NULL

DATE Audit column— indicates date of insert

MODIFIED_BY NOT
NULL

VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT
NULL

DATE Audit column— date of last update

SECTION: Information for an individual section (class) of a particular course
Column Name Null Type Comments

SECTION_ID NOT NULL NUMBER(8,0) The unique ID for a section

COURSE_NO NOT NULL NUMBER(8,0) The course number for which this is a section

SECTION_NO NOT NULL NUMBER(3) The individual section number within this course

START_DATE_TIME NULL DATE The date and time on which this section meets

LOCATION NULL VARCHAR2(50) The meeting room for the section

INSTRUCTOR_ID NOT NULL NUMBER(8,0) The ID number of the instructor who teaches this section

CAPACITY NULL NUMBER(3,0) The maximum number of students allowed in this section

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

STUDENT: Profile information for a student
Column Name Null Type Comments

STUDENT_ID NOT NULL NUMBER(8,0) The unique ID for a student

SALUTATION NULL VARCHAR2(5) This student's title (Ms., Mr., Dr., etc.)

FIRST_NAME NULL VARCHAR2(25) This student's first name

LAST_NAME NOT NULL VARCHAR2(25) This student's last name

STREET_ADDRESS NULL VARCHAR2(50) This student's street address

ZIP NOT NULL VARCHAR2(5) The postal zipcode for this student

PHONE NULL VARCHAR2(15) The phone number for this student, including area code

EMPLOYER NULL VARCHAR2(50) The name of the company where this student is employed

REGISTRATION_DATE NOT NULL DATE The date this student registered in the program

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

ENROLLMENT: Information for a student registered for a particular section of a
particular course (class)

Column Name Null Type Comments

STUDENT_ID NOT NULL NUMBER(8,0) The ID for a student

SECTION_ID NOT NULL NUMBER(8,0) The ID for a section

ENROLL_DATE NOT NULL DATE The date this student registered for this section

FINAL_GRADE NULL NUMBER(3,0) The final grade given to this student for all work in this section (class)

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

INSTRUCTOR: Profile information for an instructor
Column Name Null Type Comments

INSTRUCTOR_ID NOT NULL NUMBER(8) The unique ID for an instructor

SALUTATION NULL VARCHAR2(5) This instructor's title (Mr., Ms., Dr., Rev., etc.)

FIRST_NAME NULL VARCHAR2(25) This instructor's first name

LAST_NAME NULL VARCHAR2(25) This instructor's last name

STREET_ADDRESS NULL VARCHAR2(50) This instructor's street address

ZIP NULL VARCHAR2(5) The postal zipcode for this instructor

PHONE NULL VARCHAR2(15) The phone number for this instructor, including area code

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

ZIPCODE: City, state, and zipcode information
Column Name Null Type Comments

ZIP NOT NULL VARCHAR2(5) The zipcode number, unique for a city and state

CITY NULL VARCHAR2(25) The city name for this zipcode

STATE NULL VARCHAR2(2) The postal abbreviation for the U.S. state

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

GRADE_TYPE: Lookup table of a grade type (code) and its description
Column Name Null Type Comments

GRADE_TYPE_CODE NOT NULL CHAR(2) The unique code that identifies a category of grade (e.g., MT, HW)

DESCRIPTION NOT NULL VARCHAR2(50) The description for this code (e.g., Midterm, Homework)

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

GRADE_TYPE_WEIGHT: Information on how the final grade for a particular section
is computed; for example, the midterm constitutes 50%, the quiz 10%, and the

final examination 40% of the final grade
Column Name Null Type Comments

SECTION_ID NOT
NULL

NUMBER(8) The ID for a section

GRADE_TYPE_CODE NOT
NULL

CHAR(2) The code which identifies a category of grade

NUMBER_PER_SECTION NOT
NULL

NUMBER(3) How many of these grade types can be used in this section
(i.e., there may be three quizzes)

PERCENT_OF_FINAL_GRADE NOT
NULL

NUMBER(3) The percentage this category of grade contributes to the final
grade

DROP_LOWEST NOT
NULL

CHAR(1) Is the lowest grade in this type removed when determining
the final grade? (Y/N)

CREATED_BY NOT
NULL

VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT
NULL

DATE Audit column— indicates date of insert

MODIFIED_BY NOT
NULL

VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT
NULL

DATE Audit column— date of last update

GRADE: The individual grades a student received for a particular section (class)
Column Name Null Type Comments

STUDENT_ID NOT
NULL

NUMBER(8) The ID for a student

SECTION_ID NOT
NULL

NUMBER(8) The ID for a section

GRADE_TYPE_CODE NOT
NULL

CHAR(2) The code that identifies a category of grade

GRADE_CODE_OCCURRENCE NOT
NULL

NUMBER(38) The sequence number of one grade type for one section.
For example, there could be multiple assignments
numbered 1, 2, 3, etc.

NUMERIC_GRADE NOT
NULL

NUMBER(3) Numeric grade value (e.g., 70, 75)

COMMENTS NULL VARCHAR2(2000) Instructor's comments on this grade

CREATED_BY NOT
NULL

VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT
NULL

DATE Audit column— indicates date of insert

MODIFIED_BY NOT
NULL

VARCHAR2(30) Audit column— indicates who made last update

MODIFIED_DATE NOT
NULL

DATE Audit column— date of last update

GRADE_CONVERSION: Converts a number grade to a letter grade
Column Name Null Type Comments

LETTER_GRADE NOT NULL VARCHAR(2) The unique grade as a letter (A, A-, B, B+, etc.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GRADE_POINT NOT NULL NUMBER(3,2) The number grade on a scale from 0 (F) to 4 (A)

MAX_GRADE NOT NULL NUMBER(3) The highest grade number that corresponds to this letter grade

MIN_GRADE NOT NULL NUMBER(3) The lowest grade number that corresponds to this letter grade

CREATED_BY NOT NULL VARCHAR2(30) Audit column— indicates user who inserted data

CREATED_DATE NOT NULL DATE Audit column— indicates date of insert

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column— indicates who last made update

MODIFIED_DATE NOT NULL DATE Audit column— date of last update

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix D. Answers to Test Your Thinking
Sections

Chapter 1 Programming Concepts

Chapter 2 PL/SQL Concepts

Chapter 3 General Programming Language Fundamentals

Chapter 4 SQL in PLSQL

Chapter 5 Conditional Control: IF Statements

Chapter 6 Conditional Control: CASE Statements

Chapter 7 Error Handling and Built-In Exceptions

Chapter 8 Iterative Control

Chapter 9 Introduction to Cursors

Chapter 10 Exceptions

Chapter 11 Exceptions: Advanced Concepts

Chapter 12 Procedures

Chapter 13 Functions

Chapter 14 Packages

Chapter 16 Stored Code

Chapter 17 Triggers

Chapter 18 Collections

Chapter 19 Records

Chapter 20 Native Dynamic SQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1 Programming Concepts

1) Create the following structure: Based on the value of a number, determine if it is even or odd. Hint:
Before you decide how to define even and odd numbers, you should decide what structure must be used
to achieve the desired results.

A1: Answer: Your answer should look similar to the following:

IF MOD(NUMBER, 2) = 0
 DISPLAY 'THIS NUMBER IS EVEN'
IF MOD(NUMBER, 2) != 0
 DISPLAY 'THIS NUMBER IS ODD'

In this example, you are using the selection structure because a decision whether a number is even or odd must be
made. This decision can be made with the help of the built-in function MOD. This function returns the remainder of the
NUMBER divided by 2. If a number is divisible by 2 (in other words, there is no remainder), then it is an even number.
Otherwise, a number is an odd number.

Assume that the number is equal to 16. The value returned by the MOD(16,2) is equal to 0. So the selection structure
displays a message 'THIS NUMBER IS EVEN'. Next, assume that the number is equal to 7. The value returned by
MOD(7,2) is equal to 1. So the select structure displays a message 'THIS NUMBER IS ODD'.

2) Create the following structure: The structure you created in the previous exercise is designed to work with
a single number. Modify it so that it can work with a list of numbers.

A2: Answer: Your answer should look similar to the following:

WHILE THERE ARE MORE NUMBERS
 IF MOD(NUMBER, 2) = 0
 DISPLAY 'THIS NUMBER IS EVEN'
 IF MOD(NUMBER, 2) != 0
 DISPLAY 'THIS NUMBER IS ODD'
GO TO THE NEXT NUMBER

This structure is a combination of two structures: iteration and selection. The iteration structure repeats its steps for
each number in the list. The selection structure makes a decision based on a particular number.

Assume that you have three numbers in your list: 10, 25, and 36. You start with the first number, 10. There are two
more numbers left in the list. Next, the control of the flow is passed to the selection structure. Because the current
number equals 10, the value returned by the MOD function is equal to 0. As a result, the message 'THIS NUMBER IS
EVEN' is displayed. Then the control of the flow passed back to the iteration structure, and you are ready to move to
the next number. The next number is equal to 25, and the value retuned by the MOD function is equal to 1. As a result,
the message 'THIS NUMBER IS ODD' is displayed. Next, the control of the flow is passed back to the iteration structure
to process the last number in the list, 36. This is an even number, so the selection structure displays the message 'THIS
NUMBER IS EVEN'.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2 PL/SQL Concepts

1) In order to calculate the area of a circle, the circle's radius must be squared and then multiplied by p.
Write a program that calculates the area of a circle. The value for the radius should by provided with the
help of a substitution variable. Use 3.14 for the value of p. Once the area of the circle is calculated, display
it on the screen.

A1: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 v_radius NUMBER := &sv_radius;
 v_area NUMBER;
BEGIN
 v_area := POWER(v_radius, 2) * 3.14;
 DBMS_OUTPUT.PUT_LINE
 ('The area of the circle is: '||v_area);
END;

In this exercise, you declare two variables, v_radius and v_area, to store the values for the radius of the circle and its
area, respectively. Next, you compute the value for the variable v_area with the help of the built-in function POWER and
the value of the v_radius. Finally, you display the value of the v_area on the screen.

Assume that number 5 has been entered for the value of the variable v_radius. Then the script produces the following
output:

Enter value for sv_radius: 5
old 2: v_radius NUMBER := &sv_radius;
new 2: v_radius NUMBER := 5;
The area of the circle is: 78.5

PLSQL procedure successfully completed.

2) Rewrite the script ch02_2b.sql, version 2.0. In the output produced by the script, extra spaces appear
after the day of the week. The new script must remove the extra spaces after the day of the week.

The current output:

Today is Friday , 23:09

The new output should have the format as shown:

Today is Friday, 23:09

A2: Answer: Your answer should look similar to the following. All changes are shown in bold letters:

SET SERVEROUTPUT ON
DECLARE
 v_day VARCHAR2(20);
BEGIN
 v_day := TO_CHAR(SYSDATE, 'fmDay, HH24:MI');
 DBMS_OUTPUT.PUT_LINE ('Today is '|| v_day);
END;

In this script, you modify the format in which you would like to display the date. Notice that the word 'Day' is now
prefixed by the letters 'fm'. These letters guarantee that extra spaces will be removed from the name of the day. When
run, this exercise produces the following output:

Today is Tuesday, 18:54

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Today is Tuesday, 18:54

PLSQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3 General Programming Language Fundamentals

1) Write a PL/SQL block

a. That includes declarations for the following variables:

A VARCHAR2 data type that can contain the string 'Introduction to Oracle PL/SQL'

A NUMBER that can be assigned 987654.55, but not 987654.567 or 9876543.55

A CONSTANT (you choose the correct data type) that is auto-initialized to the
value '603D'

A BOOLEAN

A DATE data type autoinitialized to one week from today

b. In the body of the PL/SQL block, put a DBMS_OUTPUT.PUT_LINE message for each of the
variables that received an autoinitialization value.

c. In a comment at the bottom of the PL/SQL block, state the value of your NUMBER data type.

A1: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 -- A VARCHAR2 datatype that can contain the string
 -- 'Introduction to Oracle PL/SQL'
 v_descript VARCHAR2(35);

 -- A NUMBER that allows for the conditions: can be
 -- assigned 987654.55 but not 987654.567
 -- or 9876543.55
 v_number_test NUMBER(8,2);

 -- [a variable] auto initialized to the value '603D'
 v_location CONSTANT VARCHAR2(4) := '603D';

 -- A BOOLEAN
 v_boolean_test BOOLEAN;

 -- A DATE datatype auto initialized to one week from
 -- today
 v_start_date DATE := TRUNC(SYSDATE) + 7;

BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('The location is: '||v_location||'.');
 DBMS_OUTPUT.PUT_LINE
 ('The starting date is: '||v_start_date||'.');
END;

2) Alter the PL/SQL block you created in Project 1 to conform to the following specs:

a. Remove the DBMS_OUTPUT.PUT_LINE messages.

b. In the body of the PL/SQL block, write a selection test (IF) that does the following (use a nested IF
statement where appropriate):

i. Check whether the VARCHAR2 you created contains the course named 'Introduction to
Underwater Basketweaving'.

ii. If it does, then put a DBMS_OUTPUT.PUT_LINE message on the screen that says so.

iii. If it does not, then test to see if the CONSTANT you created contains the room number
603D.

iv. If it does, then put a DBMS_OUTPUT.PUT_LINE message on the screen that states the
course name and the room number that you've reached in this logic.

v. If it does not, then put a DBMS_OUTPUT.PUT_LINE Message on the screen that states that
the course and location could not be determined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c. Add a WHEN OTHERS EXCEPTION that puts a DBMS_OUTPUT.PUT_LINE message on the screen
that says that an error occurred.

A2: Answer: Your answer should look similar to the following:

SET SERVEROUT ON
DECLARE
 -- A VARCHAR2 datatype that can contain the string
 --'Introduction to Oracle PL/SQL'
 v_descript VARCHAR2(35);

 -- A NUMBER that allows for the conditions: can be
 -- assigned 987654.55 but not 987654.567 or
 -- 9876543.55
 v_number_test NUMBER(8,2);

 -- [a variable] auto initialized to the value '603D'
 v_location CONSTANT VARCHAR2(4) := '603D';

 -- A BOOLEAN
 v_boolean_test BOOLEAN;

 -- A DATE datatype auto initialized to one week from today
 v_start_date DATE := TRUNC(SYSDATE) + 7;
BEGIN
 IF v_descript =
 'Introduction to Underwater Basketweaving'
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('This course is '||v_descript||'.');

 ELSIF v_location = '603D' THEN

 -- No value has been assigned to v_descript
 IF v_descript IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE ('The course is '||v_descript
 ||'.'||' The location is '||v_location||'.');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('The course is unknown.'||
 ' The location is '||v_location||'.');
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('The course and location '||
 'could not be determined.');
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error occurred.');
END;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4 SQL in PLSQL

1) Create a table called CHAP4 with two columns; one is ID (a number) and the second is NAME, which is a
varchar2(20).

A1: Answer: Your answer should look similar to the following:

PROMPT Creating Table 'CHAP4'
 CREATE TABLE chap4
 (id NUMBER,
 name VARCHAR2(20));

2) Create a sequence called CHAP4_SEQ that increments by units of 5.

A2: Answer: Your answer should look similar to the following:

PROMPT Creating Sequence 'CHAP4_SEQ'
 CREATE SEQUENCE chap4_seq
 NOMAXVALUE
 NOMINVALUE
 NOCYCLE
 NOCACHE;

3) Write a PL/SQL block that performs the following in this order:

a. Declares 2 variables, one for the v_name and one for v_id. The v_name variable can be used
throughout the block for holding the name that will be inserted; realize that the value will change
in the course of the block.

b. The block then inserts into the table the name of the student that is enrolled in the most classes
and uses a sequence for the ID; afterward there is SAVEPOINT A.

c. Then the student with the least enrollments is inserted; afterward there is SAVEPOINT B.

d. Then the instructor who is teaching the maximum number of courses is inserted in the same way.
Afterward there is SAVEPOINT C.

e. Using a SELECT INTO statement, hold the value of the instructor in the variable v_id.

f. Undo the instructor insert by use of rollback.

g. Insert the instructor teaching the least amount of courses but do not use the sequence to generate
the ID; instead use the value from the first instructor whom you have since undone.

h. Now insert the instructor teaching the most number of courses and use the sequence to populate
his ID.

Add DBMS_OUTPUT throughout the block to display the values of the variables as they change. (This is
good practice for debugging.)

A3: Answer: Your answer should look similar to the following:

DECLARE
 v_name student.last_name%TYPE;
 v_id student.student_id%TYPE;
BEGIN
 BEGIN
 -- A second block is used to capture the possibility of
 -- multiple students meeting this requirement.
 -- The exception section will handles this situation
 SELECT s.last_name
 INTO v_name
 FROM student s, enrollment e
 WHERE s.student_id = e.student_id
 HAVING COUNT(*) = (SELECT MAX(COUNT(*))
 FROM student s, enrollment e
 WHERE s.student_id = e.student_id
 GROUP BY s.student_id)
 GROUP BY s.last_name;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 v_name := 'Multiple Names';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 v_name := 'Multiple Names';
 END;

 INSERT INTO CHAP4
 VALUES (CHAP4_SEQ.NEXTVAL, v_name);
 SAVEPOINT A;

 BEGIN
 SELECT s.last_name
 INTO v_name
 FROM student s, enrollment e
 WHERE s.student_id = e.student_id
 HAVING COUNT(*) = (SELECT MIN(COUNT(*))
 FROM student s, enrollment e
 WHERE s.student_id = e.student_id
 GROUP BY s.student_id)
 GROUP BY s.last_name;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 v_name := 'Multiple Names';
 END;

 INSERT INTO CHAP4
 VALUES (CHAP4_SEQ.NEXTVAL, v_name);
 SAVEPOINT B;

 BEGIN
 SELECT i.last_name
 INTO v_name
 FROM instructor i, section s
 WHERE s.instructor_id = i.instructor_id
 HAVING COUNT(*) = (SELECT MAX(COUNT(*))
 FROM instructor i, section s
 WHERE s.instructor_id =
 i.instructor_id
 GROUP BY i.instructor_id)
 GROUP BY i.last_name;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 v_name := 'Multiple Names';
 END;

 SAVEPOINT C;

 BEGIN
 SELECT instructor_id
 INTO v_id
 FROM instructor
 WHERE last_name = v_name;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 v_id := 999;
 END;

 INSERT INTO CHAP4
 VALUES (v_id, v_name);
 ROLLBACK TO SAVEPOINT B;

 BEGIN
 SELECT i.last_name
 INTO v_name
 FROM instructor i, section s
 WHERE s.instructor_id = i.instructor_id
 HAVING COUNT(*) = (SELECT MIN(COUNT(*))
 FROM instructor i, section s
 WHERE s.instructor_id =
 i.instructor_id
 GROUP BY i.instructor_id)
 GROUP BY i.last_name;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 v_name := 'Multiple Names';
 END;

 INSERT INTO CHAP4
 VALUES (v_id, v_name);

 BEGIN
 SELECT i.last_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT i.last_name
 INTO v_name
 FROM instructor i, section s
 WHERE s.instructor_id = i.instructor_id
 HAVING COUNT(*) = (SELECT MAX(COUNT(*))
 FROM instructor i, section s
 WHERE s.instructor_id =
 i.instructor_id
 GROUP BY i.instructor_id)
 GROUP BY i.last_name;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 v_name := 'Multiple Names';
 END;

 INSERT INTO CHAP4
 VALUES (CHAP4_SEQ.NEXTVAL, v_name);
END;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5 Conditional Control: IF Statements

1) Rewrite ch05_1a.sql. Instead of getting information from the user for the variable v_date, define its value
with the help of the function SYSDATE. After it has been determined that a certain day falls on the
weekend, check to see if the time is before or after noon. Display the time of the day together with the
day.

A1: Answer: Your answer should look similar to the following. All changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 v_day VARCHAR2(15);
 v_time VARCHAR(8);
BEGIN
 v_day := TO_CHAR(SYSDATE, 'fmDAY');
 v_time := TO_CHAR(SYSDATE, 'HH24:MI');

 IF v_day IN ('SATURDAY', 'SUNDAY') THEN
 DBMS_OUTPUT.PUT_LINE (v_day||', '||v_time);
 IF v_time BETWEEN '12:01' AND '24:00' THEN
 DBMS_OUTPUT.PUT_LINE ('It''s afternoon');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('It''s morning');
 END IF;
 END IF;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE('Done...');
END;

In this exercise, you remove variable v_date that was used to store date provided by a user. Instead, you add variable
v_time to store the time of the day. You also modify the statement

v_day := TO_CHAR(SYSDATE, 'fmDAY');

so that 'DAY' is prefixed by letters 'fm'. This guarantees that extra spaces will be removed from the name of the day.
Then you add another statement that determines current time of the day and stores it in the variable v_time. Finally,
you add an IF-THEN-ELSE statement that checks the time of the day and displays the appropriate message.

Notice that two single quotes are used in the second and third DBMS_OUTPUT. PUT_LINE statements. This allows you
to use an apostrophe in your message.

When run, this exercise produces the following output:

SUNDAY, 16:19
It's afternoon
Done…

PLSQL procedure successfully completed.

2) Create a new script. For a given instructor, determine how many sections he or she is teaching. If the
number is greater than or equal to 3, display a message saying that the instructor needs a vacation.
Otherwise, display a message saying how many sections this instructor is teaching.

A2: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 v_instructor_id NUMBER := &sv_instructor_id;
 v_total NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_total

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO v_total
 FROM section
 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections
 IF v_total >= 3 THEN
 DBMS_OUTPUT.PUT_LINE ('This instructor needs '||
 a vacation');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||
 v_total||' sections');
 END IF;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

This script accepts a value for instructor's ID from a user. Next, it checks the number of sections taught by given
instructor. This is accomplished with the help of the SELECT INTO statement. Next, it determines what message should
be displayed on the screen with the help of IF-THEN-ELSE statement. If a particular instructor teaches three or more
sections, the condition of the IF-THEN-ELSE statement evaluates to TRUE, and the message 'This instructor needs a
vacation' is displayed to the user. In the opposite case, the message stating how many sections instructor is teaching is
displayed. Assume that value 101 was provided at the runtime. Then the script produces the following output:

Enter value for sv_instructor_id: 101
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 101;
This instructor needs a vacation

PLSQL procedure successfully completed.

3) Execute the two PL/SQL blocks below and explain why they produce different output for the same value of
the variable v_num. Remember to issue the SET SERVEROUTPUT ON command before running this script.

-- Block 1
DECLARE
 v_num NUMBER := NULL;
BEGIN
 IF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('v_num is not greater than 0');
 END IF;
END;

-- Block 2
DECLARE
 v_num NUMBER := NULL;
BEGIN
 IF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
 END IF;
 IF NOT (v_num > 0) THEN
 DBMS_OUTPUT.PUT_LINE
 ('v_num is not greater than 0');
 END IF;
END;

A3: Answer: Consider outputs produced by the preceding scripts:

-- Block1
v_num is not greater than 0

PLSQL procedure successfully completed.

-- Block 2
PLSQL procedure successfully completed.

The outputs produced by Block 1 and Block 2 are different, even though in both examples variable v_num
has been defined as NULL.

First, take a closer look at the IF-THEN-ELSE statement used in Block 1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First, take a closer look at the IF-THEN-ELSE statement used in Block 1:

IF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
ELSE
 DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');
END IF;

The condition v_num > 0 evaluates to FALSE because NULL has been assigned to the variable v_num. As a
result, the control is transferred to the ELSE part of the IF-THEN-ELSE statement. So the message 'v_num
is not greater than 0' is displayed on the screen.

Second, take a closer look at the IF-THEN statements used in Block 2:

IF v_num > 0 THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');
END IF;
IF NOT (v_num > 0) THEN
 DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');
END IF;

For both IF-THEN statements their conditions evaluate to FALSE, and as a result none of the messages are
displayed on the screen.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6 Conditional Control: CASE Statements

1) Create the following script. Modify the script created in this section in Chapter 5 (Question 1 of the Test
Your Thinking section). You can use either the CASE statement or the searched CASE statement. Your
output should look similar to the output produced by the example created in Chapter 5.

A1: Answer: Consider the script created in the section in Chapter 5:

SET SERVEROUTPUT ON
DECLARE
 v_day VARCHAR2(15);
 v_time VARCHAR(8);
BEGIN
 v_day := TO_CHAR(SYSDATE, 'fmDAY');
 v_time := TO_CHAR(SYSDATE, 'HH24:MI');

 IF v_day IN ('SATURDAY', 'SUNDAY') THEN
 DBMS_OUTPUT.PUT_LINE (v_day||', '||v_time);

 IF v_time BETWEEN '12:01' AND '24:00' THEN
 DBMS_OUTPUT.PUT_LINE ('It''s afternoon');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('It''s morning');
 END IF;

 END IF;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Next, consider the modified version of the script with nested CASE statements. For illustrative purposes,
this script uses both CASE and searched CASE statements. All changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 v_day VARCHAR2(15);
 v_time VARCHAR(8);
BEGIN
 v_day := TO_CHAR(SYSDATE, 'fmDay');
 v_time := TO_CHAR(SYSDATE, 'HH24:MI');

 -- CASE statement
 CASE SUBSTR(v_day, 1, 1)
 WHEN 'S' THEN
 DBMS_OUTPUT.PUT_LINE (v_day||', '||v_time);

 -- searched CASE statement
 CASE
 WHEN v_time BETWEEN '12:01' AND '24:00' THEN
 DBMS_OUTPUT.PUT_LINE ('It''s afternoon');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('It''s morning');
 END CASE;
 END CASE;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE('Done...');
END;

In this exercise, you substitute nested IF statements with nested CASE statements. Consider the outer CASE statement.
It uses a selector expression

SUBSTR(v_day, 1, 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SUBSTR(v_day, 1, 1)

to check if a current day falls on the weekend. Notice that it derives only the first letter of the day. This is a good
solution when using a CASE statement because only Saturday and Sunday start with letter 'S'. Furthermore, without
using the SUBSTR function, you would need to use a searched CASE statement. You will recall that the value of the
WHEN expression is compared to the value of the selector. As a result, the WHEN expression must return a similar
datatype. In this example, the selector the expression returns a string datatype, so the WHEN expression must also
return a string datatype.

Next, you use a searched CASE to validate the time of the day. You will recall that, similar to the IF statement, the
WHEN conditions of the searched CASE statement yield Boolean values.

When run, this exercise produces the following output:

Saturday, 19:49
It's afternoon
Done…

PLSQL procedure successfully completed.

2) Create the following script. Modify the script created in this section in Chapter 5 (Question 2 of the Test
Your Thinking section). You can use either the CASE statement or the searched CASE statement. Your
output should look similar to the output produced by the example created in Chapter 5.

A2: Answer: Consider the script created in the section in Chapter 5:

SET SERVEROUTPUT ON
DECLARE
 v_instructor_id NUMBER := &sv_instructor_id;
 v_total NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections
 IF v_total >= 3 THEN
 DBMS_OUTPUT.PUT_LINE ('This instructor needs '||
 a vacation');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||
 v_total||' sections');
 END IF;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Next, consider modified version of the script with the searched CASE statement instead of the IF-THEN-
ELSE statement. All changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 v_instructor_id NUMBER := &sv_instructor_id;
 v_total NUMBER;
BEGIN
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE instructor_id = v_instructor_id;

 -- check if instructor teaches 3 or more sections
 CASE
 WHEN v_total >= 3 THEN
 DBMS_OUTPUT.PUT_LINE ('This instructor needs '||
 a vacation');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||
 v_total||' sections');
 END CASE;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assume that value 109 was provided at runtime. Then the script produces the following output:

Enter value for sv_instructor_id: 109
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 109;
This instructor teaches 1 sections
Done…

PLSQL procedure successfully completed.

In order to use the CASE statement, the searched CASE statement could be modified as follows:

CASE SIGN(v_total – 3)
 WHEN -1 THEN
 DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||
 v_total||' sections');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('This instructor needs '||
 a vacation');
END CASE;

Notice that the SIGN function is used to determine if an instructor teaches three or more sections. You will recall that
the SIGN function returns –1 if v_total is less than 3, 0 if v_total equals to 3, and 1 if v_total is greater than 3. In this
case, as long as the SIGN function returns –1, the message 'This instructor teaches…' is displayed on the screen. In all
other cases, the message 'This instructor needs a vacation' is displayed on the screen.

3) Execute the following two SELECT statements and explain why they produce different output:

SELECT e.student_id, e.section_id, e.final_grade,
 g.numeric_grade,
 COALESCE(g.numeric_grade, e.final_grade) grade
 FROM enrollment e, grade g
 WHERE e.student_id = g.student_id
 AND e.section_id = g.section_id
 AND e.student_id = 102
 AND g.grade_type_code = 'FI';

SELECT e.student_id, e.section_id, e.final_grade,
 g.numeric_grade,
 NULLIF(g.numeric_grade, e.final_grade) grade
 FROM enrollment e, grade g
 WHERE e.student_id = g.student_id
 AND e.section_id = g.section_id
 AND e.student_id = 102
 AND g.grade_type_code = 'FI';

A3: Answer: Consider outputs produced by the following SELECT statements:

STUDENT_ID SECTION_ID FINAL_GRADE NUMERIC_GRADE GRADE
---------- ---------- ----------- ------------- ----------
 102 86 85 85
 102 89 92 92 92

STUDENT_ID SECTION_ID FINAL_GRADE NUMERIC_GRADE GRADE
---------- ---------- ----------- ------------- ----------
 102 86 85 85
 102 89 92 92

Consider the output returned by the first SELECT statement. This statement uses the COALESCE function
to derive the value of GRADE. It equals the value of the NUMERIC_GRADE in the first row and the value of
FINAL_GRADE in the second row.

The COALESCE function compares the value of the FINAL_GRADE to NULL. If it is NULL, then the value of
the NUMERIC_GRADE is compared to NULL. Because the value of the NUMERIC_GRADE is not NULL, the
COALESCE function returns the value of the NUMERIC_GRADE in the first row. In the second row, the
COALESCE function returns the value of FINAL_GRADE because it is not NULL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COALESCE function returns the value of FINAL_GRADE because it is not NULL.

Next, consider the output returned by the second SELECT statement. This statement uses the NULLIF
function to derive the value of GRADE. It equals the value of the NUMERIC_GRADE in the first row, and it
is NULL in the second row.

The NULLIF function compares NUMERIC_GRADE value to the FINAL_GRADE value. If these values are
equal, the NULLIF function returns NULL. In the opposite case, it returns the value of the
NUMERIC_GRADE.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7 Error Handling and Built-In Exceptions

1) Create the following script: Check to see whether there is a record in the STUDENT table for a given
student ID. If there is no record for the given student ID, insert a record into the STUDENT table for the
given student ID.

A1: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_first_name VARCHAR2(30) := '&sv_first_name';
 v_last_name VARCHAR2(30) := '&sv_last_name';
 v_zip CHAR(5) := '&sv_zip';
 v_name VARCHAR2(50);
BEGIN
 SELECT first_name||' '||last_name
 INTO v_name
 FROM student
 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE ('Student '||v_name||
 ' is a valid student');
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('This student does not exist, and will be '||
 'added to the STUDENT table');

 INSERT INTO student
 (student_id, first_name, last_name, zip,
 registration_date, created_by, created_date,
 modified_by, modified_date)
 VALUES
 (v_student_id, v_first_name, v_last_name, v_zip, SYSDATE, USER, SYSDATE, USER, SYSDATE);
 COMMIT;
END;

This script accepts a value for student's ID from a user. For a given student ID, it determines the student's name via
the SELECT INTO statement and displays it on the screen. If the value provided by the user is not a valid student ID,
the control of execution is passed to the exception-handling section of the block, where the NO_DATA_FOUND
exception is raised. As a result, the message 'This student does not exist…' is displayed on the screen, and a new record
is inserted in the STUDENT table.

To test this script fully, consider running it for two values of student ID. Only one value should correspond to an
existing student ID. It is important to note that a valid zipcode should be provided for both runs. Why do you think this
is necessary?

When 319 is provided for the student ID (it is a valid student ID), this exercise produces the following output:

Enter value for sv_student_id: 319
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 319;
Enter value for sv_first_name: John
old 3: v_first_name VARCHAR2(30) := '&sv_first_name';
new 3: v_first_name VARCHAR2(30) := 'John';
Enter value for sv_last_name: Smith
old 4: v_last_name VARCHAR2(30) := '&sv_last_name';
new 4: v_last_name VARCHAR2(30) := 'Smith';
Enter value for sv_zip: 07421
old 5: v_zip CHAR(5) := '&sv_zip';
new 5: v_zip CHAR(5) := '07421';
Student George Eakheit is a valid student

PLSQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PLSQL procedure successfully completed.

Notice that the name displayed by the script does not correspond to the name entered at runtime. Why do you think
this occurs?

When 555 is provided for the student ID (it is not a valid student ID), this exercise produces the following output:

Enter value for sv_student_id: 555
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 555;
Enter value for sv_first_name: John
old 3: v_first_name VARCHAR2(30) := '&sv_first_name';
new 3: v_first_name VARCHAR2(30) := 'John';
Enter value for sv_last_name: Smith
old 4: v_last_name VARCHAR2(30) := '&sv_last_name';
new 4: v_last_name VARCHAR2(30) := 'Smith';
Enter value for sv_zip: 07421
old 5: v_zip CHAR(5) := '&sv_zip';
new 5: v_zip CHAR(5) := '07421';
This student does not exist, and will be added to the STUDENT table

PLSQL procedure successfully completed.

Next, you can select this new record from the STUDENT table as follows:

SELECT student_id, first_name, last_name
 FROM student
 WHERE student_id = 555;

STUDENT_ID FIRST_NAME LAST_NAME
---------- ------------------------- ----------------
 555 John Smith

2) Create the following script: For a given instructor ID, check to see whether it is assigned to a valid
instructor. Then check the number of sections that are taught by this instructor and display this
information on the screen.

A2: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 v_instructor_id NUMBER := &sv_instructor_id;
 v_name VARCHAR2(50);
 v_total NUMBER;
 BEGIN
 SELECT first_name||' '||last_name
 INTO v_name
 FROM instructor
 WHERE instructor_id = v_instructor_id;

 -- check how many sections are taught by this instructor
 SELECT COUNT(*)
 INTO v_total
 FROM section
 WHERE instructor_id = v_instructor_id;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
 ', teaches '||v_total||' section(s)');
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('This is not a valid instructor');
END;

This script accepts a value for instructor's ID from a user. For a given instructor ID, it determines the instructor's name
via the SELECT INTO statement. This SELECT INTO statement checks if the ID provided by the user is a valid instructor
ID. If this value is not valid, the control of the execution is passed to the exception-handling section of the block, where
the NO_DATA_FOUND exception is raised. As a result, the message 'This is not a valid instructor' is displayed on the
screen. On the other hand, if the value provided by the user is a valid instructor ID, the second SELECT INTO statement
calculates how many sections are taught by this instructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calculates how many sections are taught by this instructor.

To test this script fully, consider running it for two values of instructor ID. When 105 is provided for the instructor ID (it
is a valid instructor ID), this exercise produces the following output:

Enter value for sv_instructor_id: 105
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 105;
Instructor, Anita Morris, teaches 10 section(s)

PLSQL procedure successfully completed.

When 123 is provided for the instructor ID (it is not a valid student ID), this exercise produces the following output:

Enter value for sv_instructor_id: 123
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 123;
This is not a valid instructor

PLSQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8 Iterative Control

1) Rewrite script ch08_1a.sql using a WHILE loop instead of a simple loop. Make sure that the output
produced by this script does not differ from the output produced by the script ch08_1a.sql.

A1: Answer: Consider the script ch08_1a.sql:

SET SERVEROUTPUT ON
DECLARE
 v_counter BINARY_INTEGER := 0;
BEGIN
 LOOP
 -- increment loop counter by one
 v_counter := v_counter + 1;
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

 -- if EXIT condition yields TRUE exit the loop
 IF v_counter = 5 THEN
 EXIT;
 END IF;

 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Done...');
END;

Next, consider a new version of the script that uses a WHILE loop. All changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 v_counter BINARY_INTEGER := 0;
BEGIN
 WHILE v_counter < 5 LOOP
 -- increment loop counter by one
 v_counter := v_counter + 1;
 DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
 END LOOP;

 -- control resumes here
 DBMS_OUTPUT.PUT_LINE('Done...');
END;

In this version of the script, you replace a simple loop by a WHILE loop. It is important to remember that a simple loop
executes at least once because the EXIT condition is placed in the body of the loop. On the other hand, a WHILE loop
may not execute at all because a condition is tested outside the body of the loop. So, in order to achieve the same
results using the WHILE loop, the EXIT condition

v_counter = 5

used in the original version is replaced by the test condition

v_counter < 5

When run, this example produces the following output:

v_counter = 1
v_counter = 2
v_counter = 3
v_counter = 4
v_counter = 5
Done…

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

2) Rewrite script ch08_4a.sql using a simple loop instead of a numeric FOR loop. Make sure that the output
produced by this script does not differ from the output produced by the script ch08_4a.sql.

A2: Answer: Recall the script ch08_4a.sql:

SET SERVEROUTPUT ON
DECLARE
 v_factorial NUMBER := 1;
BEGIN
 FOR v_counter IN 1..10 LOOP
 v_factorial := v_factorial * v_counter;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||
 v_factorial);
END;

Next, consider a new version of the script that uses a simple loop. All changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 v_counter NUMBER := 1;
 v_factorial NUMBER := 1;
BEGIN
 LOOP
 v_factorial := v_factorial * v_counter;
 v_counter := v_counter + 1;
 EXIT WHEN v_counter = 10;
 END LOOP;
 -- control resumes here
 DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||
 v_factorial);
END;

In this version of the script, you replace a numeric FOR loop with a simple loop. As a result, there are three important
changes that you should make. First, you need to declare and initialize the loop counter, v_counter. This counter is
implicitly defined and initialized by the FOR loop. Second, you need to increment the value of the loop counter. This is
very important because if you forget to include the statement

v_counter := v_counter + 1;

in the body of the simple loop, you will end up with an infinite loop. The step is not necessary when using numeric FOR
loop because it is done by the loop itself.

Third, you need to specify the EXIT condition for the simple loop. Because you are computing a factorial of 10, the
following EXIT condition is specified:

EXIT WHEN v_counter = 10;

Notice that you could specify this EXIT condition using IF-THEN statement as well:

IF v_counter = 10 THEN
 EXIT;
END IF;

When run, this example shows the following output:

Factorial of ten is: 362880

PL/SQL procedure successfully completed.

3) Rewrite script ch08_6a.sql. A simple loop should be used as the outer loop, and a WHILE loop should be
used as the inner loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used as the inner loop.

A3: Answer: Consider the script ch08_6a.sql:

SET SERVEROUTPUT ON
DECLARE
 v_test NUMBER := 0;
BEGIN
 <<outer_loop>>
 FOR i IN 1..3 LOOP
 DBMS_OUTPUT.PUT_LINE ('Outer Loop');
 DBMS_OUTPUT.PUT_LINE ('i = '||i);
 DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);
 v_test := v_test + 1;

 <<inner_loop>>
 FOR j IN 1..2 LOOP
 DBMS_OUTPUT.PUT_LINE ('Inner Loop');
 DBMS_OUTPUT.PUT_LINE ('j = '||j);
 DBMS_OUTPUT.PUT_LINE ('i = '||i);
 DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);
 END LOOP inner_loop;
 END LOOP outer_loop;
END;

Next, consider a modified version of the script that uses simple and WHILE loops. All changes are shown in
bold letters.

SET SERVEROUTPUT ON
DECLARE
 i INTEGER := 1;
 j INTEGER := 1;
 v_test NUMBER := 0;
BEGIN
 <<outer_loop>>
 LOOP
 DBMS_OUTPUT.PUT_LINE ('Outer Loop');
 DBMS_OUTPUT.PUT_LINE ('i = '||i);
 DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);
 v_test := v_test + 1;
 -- reset inner loop counter
 j := 1;

 <<inner_loop>>
 WHILE j <= 2 LOOP
 DBMS_OUTPUT.PUT_LINE ('Inner Loop');
 DBMS_OUTPUT.PUT_LINE ('j = '||j);
 DBMS_OUTPUT.PUT_LINE ('i = '||i);
 DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);
 j := j + 1;
 END LOOP inner_loop;

 i := i + 1;
 -- EXIT condition of the outer loop
 EXIT WHEN i > 3;
 END LOOP outer_loop;
END;

Just like in the previous exercise, there are some changes that are important due to the nature of the loops that are
used.

First, both counters, for outer and inner loops, must be declared and initialized. Moreover, the counter for the inner loop
must be initialized to 1 prior to the execution of the inner loop, and not in the declaration section of this script. In other
words, the inner loop executes three times. It is important not to confuse the term execution of the loop with the term
iteration. Each execution of the WHILE loop causes the statements inside this loop to iterate twice. Before each
execution, the loop counter j must reset to 1 again. This step is necessary because the WHILE loop does not initialize its
counter implicitly like numeric FOR loop. As a result, after the first execution of the WHILE loop is complete, the value
of counter j is equal to 3. If this value is not reset to 1 again, the loop will not execute second time.

Second, both loop counters must be incremented. Third, the EXIT condition must be specified for the outer loop, and
the test condition must be specified for the inner loop.

When run, the exercise produces the following output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outer Loop
i = 1
v_test = 0
Inner Loop
j = 1
i = 1
v_test = 1
Inner Loop
j = 2
i = 1
v_test = 1
Outer Loop
i = 2
v_test = 1
Inner Loop
j = 1
i = 2
v_test = 2
Inner Loop
j = 2
i = 2
v_test = 2
Outer Loop
i = 3
v_test = 2
Inner Loop
j = 1
i = 3
v_test = 3
Inner Loop
j = 2
i = 3
v_test = 3

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9 Introduction to Cursors

1) Write a nested cursor where the parent cursor calls information about each section of a course. The child
cursor counts the enrollment. The only output is one line for each course with the Course Name and
Section Number and the total enrollment.

A1: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 CURSOR c_course IS
 SELECT course_no, description
 FROM course
 WHERE course_no < 120;

 CURSOR c_enrollment(p_course_no IN course.course_no%TYPE)
 IS
 SELECT s.section_no section_no, count(*) count
 FROM section s, enrollment e
 WHERE s.course_no = p_course_no
 AND s.section_id = e.section_id
 GROUP BY s.section_no;
BEGIN
 FOR r_course IN c_course LOOP
 DBMS_OUTPUT.PUT_LINE
 (r_course.course_no||' '|| r_course.description);

 FOR r_enroll IN c_enrollment(r_course.course_no) LOOP
 DBMS_OUTPUT.PUT_LINE
 (Chr(9)||'Section: '||r_enroll.section_no||
 ' has an enrollment of: '||r_enroll.count);
 END LOOP;

 END LOOP;
END;

2) Write an anonymous PL/SQL block that finds all the courses that have at least one section that is at its
maximum enrollment. If there are no courses that meet that criterion, then pick two courses and create
that situation for each.

a. For each of those courses, add another section. The instructor for the new section should be taken
from the existing records in the instruct table. Use the instructor who is signed up to teach the
least number of courses. Handle the fact that, during the execution of your program, the instructor
teaching the most courses may change.

b. Use any exception-handling techniques you think are useful to capture error conditions.

A2: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 v_instid_min instructor.instructor_id%TYPE;
 v_section_id_new section.section_id%TYPE;
 v_snumber_recent section.section_no%TYPE := 0;

 -- This cursor determines the courses that have at least
 -- one section filled to capacity.
 CURSOR c_filled IS
 SELECT DISTINCT s.course_no
 FROM section s
 WHERE s.capacity = (SELECT COUNT(section_id)
 FROM enrollment e
 WHERE e.section_id =
 s.section_id);
BEGIN
 FOR r_filled IN c_filled LOOP
 -- For each course in this list, add another section.
 -- First, determine the instructor who is teaching
 -- the least number of courses. If there are more
 -- than one instructor teaching the same number of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- than one instructor teaching the same number of
 -- minimum courses (e.g. if there are three
 -- instructors teaching 1 course) use any of those
 -- instructors.
 SELECT instructor_id
 INTO v_instid_min
 FROM instructor
 WHERE EXISTS (SELECT NULL
 FROM section
 WHERE section.instructor_id =
 instructor.instructor_id
 GROUP BY instructor_id
 HAVING COUNT(*) =
 (SELECT MIN(COUNT(*))
 FROM section
 WHERE instructor_id IS NOT NULL
 GROUP BY instructor_id)
)
 AND ROWNUM = 1;

 -- Determine the section_id for the new section
 -- Note that this method would not work in a multi-user
 -- environment. A sequence should be used instead.
 SELECT MAX(section_id) + 1
 INTO v_section_id_new
 FROM section;

 -- Determine the section number for the new section
 -- This only needs to be done in the real world if
 -- thesystem specification calls for a sequence in
 -- a parent. The sequence in parent here refers to
 -- the section_no incrementing within the course_no,
 -- and not the section_no incrementing within
 -- the section_id.
 DECLARE
 CURSOR c_snumber_in_parent IS
 SELECT section_no
 FROM section
 WHERE course_no = r_filled.course_no
 ORDER BY section_no;
 BEGIN
 -- Go from the lowest to the highest section_no
 -- and find any gaps. If there are no gaps make
 -- the new section_no equal to the highest
 -- current section_no + 1.

 FOR r_snumber_in_parent IN c_snumber_in_parent LOOP
 EXIT WHEN r_snumber_in_parent.section_no > v_snumber_recent + 1;
 v_snumber_recent := r_snumber_in_parent.
 section_no + 1;
 END LOOP;

 -- At this point, v_snumber_recent will be equal
 -- either to the value preceeding the gap or to
 -- the highest section_no for that course.
 END;
 -- Do the insert.
 INSERT INTO section
 (section_id, course_no, section_no, instructor_id)
 VALUES
 (v_section_id_new, r_filled.course_no, v_snumber_recent, v_instid_min);
 -- COMMIT;
 END LOOP;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10 Exceptions

1) Create the following script. For each section determine the number of students registered. If this number
is equal to or greater than 15, raise the user-defined exception e_too_many_students and display the error
message. Otherwise, display how many students are in a section. Make sure that your program is able to
process all sections.

A1: Answer: Your answer should look similar to the following:

SET SERVEROUTPUT ON SIZE 5000
DECLARE
 CURSOR section_cur IS
 SELECT section_id
 FROM section;

 v_total NUMBER;
 e_too_many_students EXCEPTION;
BEGIN
 FOR section_rec in section_cur LOOP
 BEGIN
 -- calculate number of students enrolled
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE section_id = section_rec.section_id;

 IF v_total >= 15 THEN
 RAISE e_too_many_students;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
 ' students for section ID '||
 section_rec.section_id);
 END IF;
 EXCEPTION
 WHEN e_too_many_students THEN
 DBMS_OUTPUT.PUT_LINE ('There are too many '||
 students for '||section_rec.section_id);
 END;
 END LOOP;
END;

In this script, you declare a cursor on the SECTION table. Next, for each section ID returned by the cursor, the number
of students enrolled in a given section is computed. If this number equals to or greater than 15, the user-defined
exception E_TOO_MANY_STUDENTS is raised. Otherwise, the message specifying how many students are enrolled in a
given section is displayed.

When run, this exercise produces the following output (due to the size of the output, only a part of it is shown here):

There are 0 students for section ID 79
There are 1 students for section ID 80
There are 3 students for section ID 81
There are 2 students for section ID 82
There are 2 students for section ID 83
There are 2 students for section ID 84
There are 5 students for section ID 85
There are 6 students for section ID 86
There are 7 students for section ID 87
There are 5 students for section ID 88
There are 12 students for section ID 89
…
There are 5 students for section ID 155
There are 8 students for section ID 156

PL/SQL procedure successfully completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PL/SQL procedure successfully completed.

2) Modify the script you created in the previous exercise. Once the exception e_too_many_students has been
raised in the inner block, re-raise it in the outer block.

A2: Answer: Your answer should look similar to the following. All changes are shown in bold letters.

SET SERVEROUTPUT ON SIZE 5000
DECLARE
 CURSOR section_cur IS
 SELECT section_id
 FROM section;

 v_total NUMBER;
 e_too_many_students EXCEPTION;
BEGIN
 FOR section_rec in section_cur LOOP
 BEGIN
 -- calculate number of students enrolled
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE section_id = section_rec.section_id;

 IF v_total >= 15 THEN
 RAISE e_too_many_students;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
 ' students for '||section ID '||
 section_rec.section_id);
 END IF;
 EXCEPTION
 WHEN e_too_many_students THEN
 RAISE;
 END;
 END LOOP;
EXCEPTION
 WHEN e_too_many_students THEN
 DBMS_OUTPUT.PUT_LINE ('There are too many students.');
END;

In this exercise, the exception section of the inner has been modified. A DBMS_OUTPUT.PUT_LINE statement has been
substituted with the RAISE statement. In addition, an exception section has been added to the outer block. As a result,
when an exception is raised in the inner block, it propagates to the outer block, and the cursor loop terminates.

It is important to note that an error message displayed by the DBMS_OUTPUT.PUT_LINE statement must be changed
when a E_TOO_MANY_STUDENTS exception is raised in the outer block. In the previous version of this exercise the
error message

('There are too many students for '||section_rec.section_id);

was placed inside the body of the cursor FOR loop. If the same error message is placed outside the body of the cursor
FOR loop, the following error is generated at runtime:

 section_rec.section_id);
 *
ERROR at line 31:
ORA-06550: line 31, column 10:
PLS-00201: identifier 'SECTION_REC.SECTION_ID' must be declared
ORA-06550: line 30, column 7:
PL/SQL: Statement ignored

Why do you think this error is generated?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11 Exceptions: Advanced Concepts

1) Create the following script. Modify the script created in this section in Chapter 10 (Question 1 of the Test
Your Thinking section). Raise a user-defined exception with the RAISE_APPLICATION_ERROR statement.
Otherwise, display how many students there are in a section. Make sure your program is able to process
all sections.

A1: Answer: Recall the script created in Chapter 10:

SET SERVEROUTPUT ON SIZE 5000
DECLARE
 CURSOR section_cur IS
 SELECT section_id
 FROM section;

 v_total NUMBER;
 e_too_many_students EXCEPTION;
BEGIN
 FOR section_rec in section_cur LOOP
 BEGIN
 -- calculate number of students enrolled
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE section_id = section_rec.section_id;

 IF v_total >= 15 THEN
 RAISE e_too_many_students;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
 ' students for section ID '||
 section_rec.section_id);
 END IF;
 EXCEPTION
 WHEN e_too_many_students THEN
 DBMS_OUTPUT.PUT_LINE ('There are too many '||
 'students for '||section_rec.section_id);
 END;
 END LOOP;
END;

Next, consider a modified version of this script. All changes are shown in bold letters:

SET SERVEROUTPUT ON SIZE 5000
DECLARE
 CURSOR section_cur IS
 SELECT section_id
 FROM section;

 v_total NUMBER;
BEGIN
 FOR section_rec in section_cur LOOP
 BEGIN
 -- calculate number of students enrolled
 SELECT COUNT(*)
 INTO v_total
 FROM enrollment
 WHERE section_id = section_rec.section_id;

 IF v_total >= 15 THEN
 RAISE_APPLICATION_ERROR (-20000,
 'A section cannot have 15 '||
 'or more students enrolled');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
 ' students for '||section ID '||
 section_rec.section_id);
 END IF;
 END;
 END LOOP;
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

In this version of the script, you are using the RAISE_APPLICATON_ERROR statement to handle the following error
condition: If the number of students enrolled for a particular section is equal to or greater than 15, the error is raised.
It is important to remember that RAISE_APPLICATION_ERROR statement works with the unnamed user-defined
exceptions. Therefore, notice that there is no reference to the exception E_TOO_MANY_STUDENTS anywhere in this
script. On the other hand, an error number has been associated with the error message.

When run, this exercise produces the following output (due to the size of the output, only a part of it is shown):

There are 0 students for section ID 79
There are 1 students for section ID 80
There are 3 students for section ID 81
There are 2 students for section ID 82
There are 2 students for section ID 83
There are 2 students for section ID 84
There are 5 students for section ID 85
There are 6 students for section ID 86
There are 7 students for section ID 87
There are 5 students for section ID 88
There are 12 students for section ID 89
…
There are 5 students for section ID 155
There are 8 students for section ID 156

PL/SQL procedure successfully completed.

2) Create the following script. Try to add a record to the INSTRUCTOR table without providing values for the
columns MODIFIED_BY and MODIFIED_DATE. Define an exception and associate it with the Oracle error
number, so that the error generated by the INSERT statement is handled.

A2: Answer: Consider the following script. Notice that there are no exception handlers in this script:

DECLARE
 v_first_name INSTRUCTOR.FIRST_NAME%TYPE :=
 '&sv_first_name';
 v_last_name INSTRUCTOR.LAST_NAME%TYPE := '&sv_last_name';
BEGIN
 INSERT INTO INSTRUCTOR
 (instructor_id, first_name, last_name)
 VALUES (INSTRUCTOR_ID_SEQ.NEXTVAL, v_first_name,
 v_last_name);
 COMMIT;
END;

In this version of the script, you are trying to add a new record to the INSTRUCTOR table. The INSERT statement has
only three columns: INSTRUCTOR_ID, FIRST_NAME, and LAST_NAME. The value for the column INSTRUCTOR_ID is
determined from the sequence INSTRUCTOR_ID_SEQ, and the values for the columns FIRST_NAME and LAST_NAME
are provided by the user.

When run, this script produces the following error message:

Enter value for sv_first_name: John
old 2: '&sv_first_name';
new 2: 'John';
Enter value for sv_last_name: Smith
old 3: '&sv_last_name';
new 3: 'Smith';
DECLARE
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("STUDENT"."INSTRUCTOR"."CREATED_BY")
ORA-06512: at line 5

This error message states that a NULL value cannot be inserted in to the column CREATED_BY of the INSTRUCTOR
table. Therefore, you need to add an exception handler to the script, as follows. All changes are shown in bold letters:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table. Therefore, you need to add an exception handler to the script, as follows. All changes are shown in bold letters:

SET SERVEROUTPUT ON
DECLARE
 v_first_name INSTRUCTOR.FIRST_NAME%TYPE :=
 '&sv_first_name';
 v_last_name INSTRUCTOR.LAST_NAME%TYPE := '&sv_last_name';
 e_non_null_value EXCEPTION;
 PRAGMA EXCEPTION_INIT(e_non_null_value, -1400);
BEGIN
 INSERT INTO INSTRUCTOR
 (instructor_id, first_name, last_name)
 VALUES
 (INSTRUCTOR_ID_SEQ.NEXTVAL, v_first_name, v_last_name);
 COMMIT;
EXCEPTION
 WHEN e_non_null_value THEN
 DBMS_OUTPUT.PUT_LINE ('A NULL value cannot be '||
 inserted. Check constraints on the
 INSTRUCTOR table.');
END;

In this version of the script, you declare a new exception called E_NON_NULL_VALUE. Next, you associate an Oracle
error number with this exception. As a result, you are able to add an exception-handling section to trap the error
generated by Oracle.

When run, the new version produces the following output:

Enter value for sv_first_name: John
old 2: '&sv_first_name';
new 2: 'John';
Enter value for sv_last_name: Smith
old 3: '&sv_last_name';
new 3: 'Smith';
A NULL value cannot be inserted. Check constraints on the INSTRUCTOR table.

PL/SQL procedure successfully completed.

3) Modify the script created in the previous exercise. Instead of declaring a user-defined exception, add the
OTHERS exception handler to the exception-handling section of the block. Then display the error number
and the error message on the screen.

A3: Answer: Your script should look similar to the following. All changes are shown in bold letters.

SET SERVEROUTPUT ON
DECLARE
 v_first_name INSTRUCTOR.FIRST_NAME%TYPE :=
 '&sv_first_name';
 v_last_name INSTRUCTOR.LAST_NAME%TYPE := '&sv_last_name';
BEGIN
 INSERT INTO INSTRUCTOR
 (instructor_id, first_name, last_name)
 VALUES
 (INSTRUCTOR_ID_SEQ.NEXTVAL, v_first_name, v_last_name);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('Error code: '||SQLCODE);
 DBMS_OUTPUT.PUT_LINE ('Error message: '||
 SUBSTR(SQLERRM, 1, 200));
END;

Notice that as long as the OTHERS exception handler is used, there is no need associate an Oracle error number with a
user-defined exception. When run, this exercise produces the following output:

Enter value for sv_first_name: John
old 2: '&sv_first_name';
new 2: 'John';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new 2: 'John';
Enter value for sv_last_name: Smith
old 3: '&sv_last_name';
new 3: 'Smith';
Error code: -1400
Error message: ORA-01400: cannot insert NULL into
("STUDENT"."INSTRUCTOR"."CREATED_BY")

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12 Procedures

1) Write a procedure with no parameters. The procedure will let you know if the current day is a weekend or
a weekday. Additionally, it will let you know the user name and current time. It will also let you know how
many valid and invalid procedures are in the database.

A1: Answer: Your answer should look similar to the following:

CREATE OR REPLACE PROCEDURE current_status
AS
 v_day_type CHAR(1);
 v_user VARCHAR2(30);
 v_valid NUMBER;
 v_invalid NUMBER;
BEGIN
 SELECT SUBSTR(TO_CHAR(sysdate, 'DAY'), 0, 1)
 INTO v_day_type
 FROM dual;
 IF v_day_type = 'S' THEN
 DBMS_OUTPUT.PUT_LINE ('Today is a weekend.');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Today is a weekday.');
 END IF;
 --
 DBMS_OUTPUT.PUT_LINE('The time is: '||
 TO_CHAR(sysdate, 'HH:MI AM'));
 --
 SELECT user
 INTO v_user
 FROM dual;
 DBMS_OUTPUT.PUT_LINE ('The current user is '||v_user);
 --
 SELECT NVL(COUNT(*), 0)
 INTO v_valid
 FROM user_objects
 WHERE status = 'VALID'
 AND object_type = 'PROCEDURE';
 DBMS_OUTPUT.PUT_LINE
 ('There are '||v_valid||' valid procedures.');
 --
 SELECT NVL(COUNT(*), 0)
 INTO v_invalid
 FROM user_objects
 WHERE status = 'INVALID'
 AND object_type = 'PROCEDURE';
 DBMS_OUTPUT.PUT_LINE
 ('There are '||v_invalid||' invalid procedures.');
 END;

 SET SERVEROUTPUT ON
 EXEC current_status;

2) Write a procedure that takes in a zipcode, city, and state and inserts the values into the zipcode table.
There should be a check to see if the zipcode is already in the database. If it is, an exception will be raised
and an error message will be displayed. Write an anonymous block that uses the procedure and inserts
your zipcode.

A2: Answer: Your answer should look similar to the following:

CREATE OR REPLACE PROCEDURE insert_zip
 (I_ZIPCODE IN zipcode.zip%TYPE,
 I_CITY IN zipcode.city%TYPE,
 I_STATE IN zipcode.state%TYPE)
AS
 v_zipcode zipcode.zip%TYPE;
 v_city zipcode.city%TYPE;
 v_state zipcode.state%TYPE;
 v_dummy zipcode.zip%TYPE;
BEGIN
 v_zipcode := i_zipcode;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 v_zipcode := i_zipcode;
 v_city := i_city;
 v_state := i_state;
--
 SELECT zip
 INTO v_dummy
 FROM zipcode
 WHERE zip = v_zipcode;
--
 DBMS_OUTPUT.PUT_LINE('The zipcode '||v_zipcode||
 ' is already in the database and cannot be'||
 ' reinserted.');
--
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO ZIPCODE
 VALUES (v_zipcode, v_city, v_state, user, sysdate,
 user, sysdate);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('There was an unknown error '||
 'in insert_zip.');
END;

SET SERVEROUTPUT ON
BEGIN
 insert_zip (10035, 'No Where', 'ZZ');
END;

BEGIN
 insert_zip (99999, 'No Where', 'ZZ');
END;

ROLLBACK;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13 Functions

1) Write a stored function called new_student_id that takes in no parameters and returns a
student.student_id%TYPE. The value returned will be used when inserting a new student into the CTA
application. It will be derived by using the formula: student_id_seq.NEXTVAL.

A1: Answer: Your answer should look similar to the following:

CREATE OR REPLACE FUNCTION new_student_id
 RETURN student.student_id%TYPE
AS
 v_student_id student.student_id%TYPE;
BEGIN
 SELECT student_id_seq.NEXTVAL
 INTO v_student_id
 FROM dual;
 RETURN(v_student_id);
END;

2) Write a stored function called zip_does_not_exist that takes in a zipcode.zip%TYPE and returns a Boolean. The
function will return TRUE if the zipcode passed into it does not exist. It will return a FALSE if the zipcode
exists. Hint: An example of how it might be used is as follows:

DECLARE
 cons_zip CONSTANT zipcode.zip%TYPE := '&sv_zipcode';
 e_zipcode_is_not_valid EXCEPTION;
BEGIN
 IF zipcode_does_not_exist(cons_zip);
 THEN
 RAISE e_zipcode_is_not_valid;
 ELSE
 -- An insert of an instructor's record which
 -- makes use of the checked zipcode might go here.
 NULL;
 END IF;
EXCEPTION
 WHEN e_zipcode_is_not_valid THEN
 RAISE_APPLICATION_ERROR
 (-20003, 'Could not find zipcode '||
 cons_zip||'.');
END;

A2: Answer: Your answer should look similar to the following:

CREATE OR REPLACE FUNCTION zipcode_does_not_exist
 (i_zipcode IN zipcode.zip%TYPE)
 RETURN BOOLEAN
AS
 v_dummy char(1);
BEGIN
 SELECT NULL
 INTO v_dummy
 FROM zipcode
 WHERE zip = i_zipcode;

 -- meaning the zipcode does exits
 RETURN FALSE;
EXCEPTION
 WHEN OTHERS THEN
 -- the select statement above will cause an exception
 -- to be raised if the zipcode is not in the database.
 RETURN TRUE;
END zipcode_does_not_exist;

3) Create a new function. For a given instructor, determine how many sections he or she is teaching. If the
number is greater or equal to 3, return a message saying the instructor needs a vacation. Otherwise,
return a message saying how many sections this instructor is teaching.

A3: Answer: Your answer should look similar to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE FUNCTION instructor_status
 (i_first_name IN instructor.first_name%TYPE,
 i_last_name IN instructor.last_name%TYPE)
 RETURN VARCHAR2
AS
 v_instructor_id instructor.instructor_id%TYPE;
 v_section_count NUMBER;
 v_status VARCHAR2(100);
BEGIN
 SELECT instructor_id
 INTO v_instructor_id
 FROM instructor
 WHERE first_name = i_first_name
 AND last_name = i_last_name;

 SELECT COUNT(*)
 INTO v_section_count
 FROM section
 WHERE instructor_id = v_instructor_id;

 IF v_section_count >= 3 THEN
 v_status :=
 'The instructor '||i_first_name||' '||
 i_last_name||' is teaching '||v_section_count||
 ' and needs a vaction.';
 ELSE
 v_status :=
 'The instructor '||i_first_name||' '||
 i_last_name||' is teaching '||v_section_count||
 ' courses.';
 END IF;
 RETURN v_status;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- note that either of the SELECT statements can raise
 -- this exception
 v_status :=
 'The instructor '||i_first_name||' '||
 i_last_name||' is not shown to be teaching'||
 ' any courses.';
 RETURN v_status;
 WHEN OTHERS THEN
 v_status :=
 'There has been in an error in the function.';
 RETURN v_status;
END;

Test the function as follows:

SELECT instructor_status(first_name, last_name)
 FROM instructor;
\

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14 Packages

1) Add a procedure to the student_api package called remove_student. This procedure accepts a student_id
and returns nothing. Based on the student id passed in, it removes the student from the database. If the
student does not exist or there is a problem removing the student (such as a foreign key constraint
violation), then let the calling program handle it.

A1: Answer:

CREATE OR REPLACE PACKAGE student_api AS
 v_current_date DATE;
 PROCEDURE discount;
 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE;
 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE;
 PRAGMA RESTRICT_REFERENCES
 (total_cost_for_student, WNDS, WNPS, RNPS);
 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE remove_student
 (p_studid IN student.student_id%TYPE);
END student_api;

CREATE OR REPLACE PACKAGE BODY student_api AS
 PROCEDURE discount IS
 CURSOR c_group_discount IS
 SELECT distinct s.course_no, c.description
 FROM section s, enrollment e, course c
 WHERE s.section_id = e.section_id
 GROUP BY s.course_no, c.description,
 e.section_id, s.section_id
 HAVING COUNT(*) >=8;
 BEGIN
 FOR r_group_discount IN c_group_discount LOOP
 UPDATE course
 SET cost = cost * .95
 WHERE course_no = r_group_discount.course_no;

 DBMS_OUTPUT.PUT_LINE
 ('A 5% discount has been given to'||
 r_group_discount.course_no||' '||
 r_group_discount.description);
 END LOOP;
 END discount;

 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE
 IS
 v_new_instid instructor.instructor_id%TYPE;
 BEGIN
 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
 INTO v_new_instid
 FROM dual;
 RETURN v_new_instid;
 EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 v_sqlerrm VARCHAR2(250) :=
 SUBSTR(SQLERRM,1,250);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SUBSTR(SQLERRM,1,250);
 BEGIN
 RAISE_APPLICATION_ERROR
 (-20003, 'Error in instructor_id: '||
 v_sqlerrm);
 END;
 END new_instructor_id;

 FUNCTION get_course_descript_private
 (p_course_no course.course_no%TYPE)
 RETURN course.description%TYPE
 IS
 v_course_descript course.description%TYPE;
 BEGIN
 SELECT description
 INTO v_course_descript
 FROM course
 WHERE course_no = p_course_no;
 RETURN v_course_descript;
 EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
 END get_course_descript_private;

 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE
 AS
 v_cost course.cost%TYPE;
 BEGIN
 SELECT sum(cost)
 INTO v_cost
 FROM course c, section s, enrollment e
 WHERE c.course_no = c.course_no
 AND e.section_id = s.section_id
 AND e.student_id = p_student_id;
 RETURN v_cost;
 EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
 END total_cost_for_student;

 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER)
 IS
 BEGIN
 SELECT last_name, first_name, zip
 INTO p_last_name, p_first_name, p_zip
 FROM student
 WHERE student.student_id = p_student_id;
 p_return_code := 0;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('Student ID is not valid.');
 p_return_code := -100;
 p_last_name := NULL;
 p_first_name := NULL;
 p_zip := NULL;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
 END get_student_info;

 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER)
 IS
 BEGIN
 SELECT student_id, zip
 INTO p_student_id, p_zip
 FROM student

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM student
 WHERE UPPER(last_name) = UPPER(p_last_name)
 AND UPPER(first_name) = UPPER(p_first_name);
 p_return_code := 0;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('Student name is not valid.');
 p_return_code := -100;
 p_student_id := NULL;
 p_zip := NULL;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
 END get_student_info;

 PROCEDURE remove_student
 (p_studid IN student.student_id%TYPE)
 IS
 BEGIN
 DELETE
 FROM STUDENT
 WHERE student_id = p_studid;
 END;

BEGIN
 SELECT trunc(sysdate, 'DD')
 INTO v_current_date
 FROM dual;
END student_api;

2) Alter remove_student in the student_api package body to accept an additional parameter. This new
parameter is a VARCHAR2 and is called p_ri. Make p_ri default to "R." The new parameter may contain a
value of "R" or "C." If "R" is received, it represents DELETE RESTRICT and the procedure acts as it does
now. If there are enrollments for the student, the delete is disallowed. If a "C" is received, it represents
DELETE CASCADE. This functionally means that the remove_student procedure locates all records for the
student in all of the CTA tables and removes them from the database before attempting to remove the
student from the student table. Decide how to handle the situation where the user passes in a code other
than "C" or "R."

A2: Answer: Your answer should look similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
 v_current_date DATE;
 PROCEDURE discount;
 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE;
 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE;
 PRAGMA RESTRICT_REFERENCES
 (total_cost_for_student, WNDS, WNPS, RNPS);
 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE remove_student
 (p_studid IN student.student_id%TYPE,
 p_ri IN VARCHAR2 DEFAULT 'R');
END student_api;

CREATE OR REPLACE PACKAGE BODY student_api AS
 PROCEDURE discount IS
 CURSOR c_group_discount IS
 SELECT distinct s.course_no, c.description
 FROM section s, enrollment e, course c
 WHERE s.section_id = e.section_id
 GROUP BY s.course_no, c.description,
 e.section_id, s.section_id
 HAVING COUNT(*) >=8;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HAVING COUNT(*) >=8;
 BEGIN
 FOR r_group_discount IN c_group_discount LOOP
 UPDATE course
 SET cost = cost * .95
 WHERE course_no = r_group_discount.course_no;

 DBMS_OUTPUT.PUT_LINE
 ('A 5% discount has been given to'||
 r_group_discount.course_no||' '||
 r_group_discount.description);
 END LOOP;
 END discount;

 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE
 IS
 v_new_instid instructor.instructor_id%TYPE;
 BEGIN
 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
 INTO v_new_instid
 FROM dual;
 RETURN v_new_instid;
 EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 v_sqlerrm VARCHAR2(250) :=
 SUBSTR(SQLERRM,1,250);
 BEGIN
 RAISE_APPLICATION_ERROR
 (-20003, 'Error in instructor_id: '||
 v_sqlerrm);
 END;
 END new_instructor_id;

 FUNCTION get_course_descript_private
 (p_course_no course.course_no%TYPE)
 RETURN course.description%TYPE
 IS
 v_course_descript course.description%TYPE;
 BEGIN
 SELECT description
 INTO v_course_descript
 FROM course
 WHERE course_no = p_course_no;
 RETURN v_course_descript;
 EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
 END get_course_descript_private;

 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE
 IS
 v_cost course.cost%TYPE;
 BEGIN
 SELECT sum(cost)
 INTO v_cost
 FROM course c, section s, enrollment e
 WHERE c.course_no = c.course_no
 AND e.section_id = s.section_id
 AND e.student_id = p_student_id;
 RETURN v_cost;
 EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
 END total_cost_for_student;

 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER)
 IS
 BEGIN
 SELECT last_name, first_name, zip
 INTO p_last_name, p_first_name, p_zip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO p_last_name, p_first_name, p_zip
 FROM student
 WHERE student.student_id = p_student_id;
 p_return_code := 0;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('Student ID is not valid.');
 p_return_code := -100;
 p_last_name := NULL;
 p_first_name := NULL;
 p_zip := NULL;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
 END get_student_info;

 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER)
 IS
 BEGIN
 SELECT student_id, zip
 INTO p_student_id, p_zip
 FROM student
 WHERE UPPER(last_name) = UPPER(p_last_name)
 AND UPPER(first_name) = UPPER(p_first_name);
 p_return_code := 0;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('Student name is not valid.');
 p_return_code := -100;
 p_student_id := NULL;
 p_zip := NULL;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
 END get_student_info;

 PROCEDURE remove_student
 -- the parameters student_id and p_ri give user an
 -- option of cascade delete or restrict delete for
 -- the given students records
 (p_studid IN student.student_id%TYPE,
 p_ri IN VARCHAR2 DEFAULT 'R')
 IS
 -- declare exceptions for use in procedure
 enrollment_present EXCEPTION;
 bad_pri EXCEPTION;
 BEGIN
 -- R value is for restrict delete option
 IF p_ri = 'R' THEN
 DECLARE
 -- a variable is needed to test if the student
 -- is in the enrollment table
 v_dummy CHAR(1);
 BEGIN
 -- This is a standard existence check
 -- If v_dummy is assigned a value via the
 -- SELECT INTO, the exception
 -- enrollment_present will be raised
 -- If the v_dummy is not assigned a value, the
 -- exception no_data_found will be raised
 SELECT NULL
 INTO v_dummy
 FROM enrollment e
 WHERE e.student_id = p_studid
 AND ROWNUM = 1;

 -- The rownum set to 1 prevents the SELECT
 -- INTO statement raise to_many_rows
 -- exception
 -- If there is at least one row in enrollment
 -- table with corresponding student_id, the
 -- restrict delete parameter will disallow the
 -- deletion of the student by raising

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- deletion of the student by raising
 -- the enrollment_present exception
 RAISE enrollment_present;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- The no_data_found exception is raised
 -- when there are no students found in the
 -- enrollment table Since the p_ri indicates
 -- a restrict delete user choice the delete
 -- operation is permitted
 DELETE FROM student
 WHERE student_id = p_studid;
 END;
 -- when the user enter "C" for the p_ri
 -- he/she indicates a cascade delete choice
 ELSIF p_ri = 'C' THEN
 -- delete the student form the enrollment and
 -- grade tables
 DELETE
 FROM enrollment
 WHERE student_id = p_studid;

 DELETE
 FROM grade
 WHERE student_id = p_studid;

 -- delete from student table only after corresponding
 -- records have been removed from the other tables because
 -- the student table is the parent table
 DELETE
 FROM student
 WHERE student_id = p_studid;
 ELSE
 RAISE bad_pri;
 END IF;
 EXCEPTION
 WHEN bad_pri THEN
 RAISE_APPLICATION_ERROR
 (-20231, 'An incorrect p_ri value was '||
 'entered. The remove_student procedure can '||
 'only accept a C or R for the p_ri parameter.');

 WHEN enrollment_present THEN
 RAISE_APPLICATION_ERROR
 (-20239, 'The student with ID'||p_studid||
 ' exists in the enrollment table thus records'||
 ' will not be removed.');
 END remove_student;

BEGIN
 SELECT trunc(sysdate, 'DD')
 INTO v_current_date
 FROM dual;
END student_api;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16 Stored Code

1) Add a function in school_api package specification called get_course_descript. The caller takes a
course.cnumber%TYPE parameter and it returns a course.description%TYPE.

A1: Answer: Your answer should look similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
 v_current_date DATE;
 PROCEDURE discount;
 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE;
 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE;
 PRAGMA RESTRICT_REFERENCES
 (total_cost_for_student, WNDS, WNPS, RNPS);
 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE remove_student
 (p_studid IN student.student_id%TYPE,
 p_ri IN VARCHAR2 DEFAULT 'R');
 FUNCTION get_course_descript
 (p_cnumber course.course_no%TYPE)
 RETURN course.description%TYPE;
END student_api;

2) Create a function in the school_api package body called get_course_description. A caller passes in a
course number and it returns the course description. Instead of searching for the description itself, it
makes a call to get_course_descript_private. It passes its course number to get_course_descript_private.
It passes back to the caller the description it gets back from get_course_descript_private.

A2: Answer: Your answer should look similar to the following:

CREATE OR REPLACE PACKAGE BODY student_api AS
 PROCEDURE discount IS
 CURSOR c_group_discount IS
 SELECT distinct s.course_no, c.description
 FROM section s, enrollment e, course c
 WHERE s.section_id = e.section_id
 GROUP BY s.course_no, c.description,
 e.section_id, s.section_id
 HAVING COUNT(*) >=8;
 BEGIN
 FOR r_group_discount IN c_group_discount LOOP
 UPDATE course
 SET cost = cost * .95
 WHERE course_no = r_group_discount.course_no;

 DBMS_OUTPUT.PUT_LINE
 ('A 5% discount has been given to'||
 r_group_discount.course_no||' '||
 r_group_discount.description);
 END LOOP;
 END discount;

 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE
 IS
 v_new_instid instructor.instructor_id%TYPE;
 BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BEGIN
 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
 INTO v_new_instid
 FROM dual;
 RETURN v_new_instid;
 EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 v_sqlerrm VARCHAR2(250) :=
 SUBSTR(SQLERRM,1,250);
 BEGIN
 RAISE_APPLICATION_ERROR
 (-20003, 'Error in instructor_id: '||
 v_sqlerrm);
 END;
 END new_instructor_id;

 FUNCTION get_course_descript_private
 (p_course_no course.course_no%TYPE)
 RETURN course.description%TYPE
 IS
 v_course_descript course.description%TYPE;
 BEGIN
 SELECT description
 INTO v_course_descript
 FROM course
 WHERE course_no = p_course_no;
 RETURN v_course_descript;
 EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
 END get_course_descript_private;

 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE
 IS
 v_cost course.cost%TYPE;
 BEGIN
 SELECT sum(cost)
 INTO v_cost
 FROM course c, section s, enrollment e
 WHERE c.course_no = c.course_no
 AND e.section_id = s.section_id
 AND e.student_id = p_student_id;
 RETURN v_cost;
 EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
 END total_cost_for_student;

 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER)
 IS
 BEGIN
 SELECT last_name, first_name, zip
 INTO p_last_name, p_first_name, p_zip
 FROM student
 WHERE student.student_id = p_student_id;
 p_return_code := 0;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('Student ID is not valid.');
 p_return_code := -100;
 p_last_name := NULL;
 p_first_name := NULL;
 p_zip := NULL;

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
 END get_student_info;

 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER)
 IS
 BEGIN
 SELECT student_id, zip
 INTO p_student_id, p_zip
 FROM student
 WHERE UPPER(last_name) = UPPER(p_last_name)
 AND UPPER(first_name) = UPPER(p_first_name);
 p_return_code := 0;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE
 ('Student name is not valid.');
 p_return_code := -100;
 p_student_id := NULL;
 p_zip := NULL;

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('Error in procedure get_student_info');
 END get_student_info;

 PROCEDURE remove_student
 -- the parameters student_id and p_ri give user an
 -- option of cascade delete or restrict delete for
 -- the given students records
 (p_studid IN student.student_id%TYPE,
 p_ri IN VARCHAR2 DEFAULT 'R')
 IS
 -- declare exceptions for use in procedure
 enrollment_present EXCEPTION;
 bad_pri EXCEPTION;
 BEGIN
 -- the R value is for restrict delete option
 IF p_ri = 'R' THEN
 DECLARE
 -- a variable is needed to test if the student
 -- is in the enrollment table
 v_dummy CHAR(1);
 BEGIN
 -- This is a standard existence check
 -- If v_dummy is assigned a value via the
 -- SELECT INTO, the exception
 -- enrollment_present will be raised
 -- If the v_dummy is not assigned a value, the
 -- exception no_data_found will be raised

 SELECT NULL
 INTO v_dummy
 FROM enrollment e
 WHERE e.student_id = p_studid
 AND ROWNUM = 1;

 -- The rownum set to 1 prevents the SELECT
 -- INTO statement raise to_many_rows
 -- exception
 -- If there is at least one row in enrollment
 -- table with corresponding student_id, the
 -- restrict delete parameter will disallow
 -- the deletion of the student by raising
 -- the enrollment_present exception
 RAISE enrollment_present;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- The no_data_found exception is raised
 -- when there are no students found in the
 -- enrollment table
 -- Since the p_ri indicates a restrict
 -- delete user choice the delete operation
 -- is permitted
 DELETE FROM student
 WHERE student_id = p_studid;
 END;
 -- when the user enter "C" for the p_ri
 -- he/she indicates a cascade delete choice

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -- he/she indicates a cascade delete choice
 ELSIF p_ri = 'C' THEN
 -- delete the student from the enrollment and
 -- grade tables
 DELETE FROM enrollment
 WHERE student_id = p_studid;

 DELETE FROM grade
 WHERE student_id = p_studid;

 -- delete from student table only after
 -- corresponding records have been removed from
 -- the other tables because the student table is
 -- the parent table
 DELETE
 FROM student
 WHERE student_id = p_studid;
 ELSE
 RAISE bad_pri;
 END IF;
 EXCEPTION
 WHEN bad_pri THEN
 RAISE_APPLICATION_ERROR
 (-20231, 'An incorrect p_ri value was '||
 'entered. The remove_student procedure can '||
 'only accept a C or R for the p_ri 'parameter.');

 WHEN enrollment_present THEN
 RAISE_APPLICATION_ERROR
 (-20239, 'The student with ID'||p_studid||
 ' exists in the enrollment table thus records'||
 ' will not be removed.');
 END remove_student;

 FUNCTION get_course_descript
 (p_cnumber course.course_no%TYPE)
 RETURN course.description%TYPE
 IS
 BEGIN
 RETURN get_course_descript_private(p_cnumber);
 END get_course_descript;

BEGIN
 SELECT trunc(sysdate, 'DD')
 INTO v_current_date
 FROM dual;
END student_api;

3) Add a PRAGMA RESTRICT_REFERENCES for get_course_description specifying the following: writes no
database state, writes no package state, and reads no package state.

3) Answer: Your answer should look similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
 v_current_date DATE;
 PROCEDURE discount;
 FUNCTION new_instructor_id
 RETURN instructor.instructor_id%TYPE;
 FUNCTION total_cost_for_student
 (p_student_id IN student.student_id%TYPE)
 RETURN course.cost%TYPE;
 PRAGMA RESTRICT_REFERENCES
 (total_cost_for_student, WNDS, WNPS, RNPS);
 PROCEDURE get_student_info
 (p_student_id IN student.student_id%TYPE,
 p_last_name OUT student.last_name%TYPE,
 p_first_name OUT student.first_name%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE get_student_info
 (p_last_name IN student.last_name%TYPE,
 p_first_name IN student.first_name%TYPE,
 p_student_id OUT student.student_id%TYPE,
 p_zip OUT student.zip%TYPE,
 p_return_code OUT NUMBER);
 PROCEDURE remove_student
 (p_studid IN student.student_id%TYPE,
 p_ri IN VARCHAR2 DEFAULT 'R');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 p_ri IN VARCHAR2 DEFAULT 'R');
 FUNCTION get_course_descript
 (p_cnumber course.course_no%TYPE)
 RETURN course.description%TYPE;
 PRAGMA RESTRICT_REFERENCES
 (get_course_descript,WNDS, WNPS, RNPS);
END student_api;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17 Triggers

1) Create the following trigger: Create or modify a trigger on the ENROLLMENT table that fires before an
INSERT statement. Make sure all columns that have NOT NULL and foreign key constraints defined on
them are populated with their proper values.

A1: Answer: Your trigger should look similar to the following:

CREATE OR REPLACE TRIGGER enrollment_bi
BEFORE INSERT ON ENROLLMENT
FOR EACH ROW
DECLARE
 v_valid NUMBER := 0;
BEGIN
 SELECT COUNT(*)
 INTO v_valid
 FROM student
 WHERE student_id = :NEW.STUDENT_ID;

 IF v_valid = 0 THEN
 RAISE_APPLICATION_ERROR (-20000, 'This is not a valid student');
 END IF;

 SELECT COUNT(*)
 INTO v_valid
 FROM section
 WHERE section_id = :NEW.SECTION_ID;

 IF v_valid = 0 THEN
 RAISE_APPLICATION_ERROR (-20001, 'This is not a valid section');
 END IF;

 :NEW.ENROLL_DATE := SYSDATE;
 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;
END;

Consider this trigger. It fires before the INSERT statement on the ENROLLMENT table. First, you validate new values for
student ID and section ID. If one of the IDs is invalid, the exception is raised and the trigger is terminated. As a result,
the INSERT statement causes an error. If both student and section IDs are found in the STUDENT and SECTION tables,
respectively, the ENROLL_DATE, CREATED_DATE, and MODIFIED_DATE are populated with current date, and columns
CREATED_BY and MODIFIED_BY are populated with current user name.

Consider the following INSERT statement:

INSERT INTO enrollment (student_id, section_id)
VALUES (777, 123);

The value 777, in this INSERT statement does not exist in the STUDENT table and therefore is invalid. As a result, this
INSERT statement causes the following error:

INSERT INTO enrollment (student_id, section_id)
*
ERROR at line 1:
ORA-20000: This is not a valid student
ORA-06512: at "STUDENT.ENROLLMENT_BI", line 10
ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BI'

2) Create the following trigger: Create or modify a trigger on the SECTION table that fires before an UPDATE
statement. Make sure that the trigger validates incoming values so that there are no constraint violation
errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

errors.

A2: Answer: Your trigger should look similar to the following:

CREATE OR REPLACE TRIGGER section_bu
BEFORE UPDATE ON SECTION
FOR EACH ROW
DECLARE
 v_valid NUMBER := 0;
BEGIN
 IF :NEW.INSTRUCTOR_ID IS NOT NULL THEN
 SELECT COUNT(*)
 INTO v_valid
 FROM instructor
 WHERE instructor_id = :NEW.instructor_ID;

 IF v_valid = 0 THEN
 RAISE_APPLICATION_ERROR (-20000,
 'This is not a valid instructor');
 END IF;
 END IF;

 :NEW.CREATED_BY := USER;
 :NEW.CREATED_DATE := SYSDATE;
 :NEW.MODIFIED_BY := USER;
 :NEW.MODIFIED_DATE := SYSDATE;
END;

This trigger fires before the UPDATE statement on the SECTION table. First, you check if there is a new value for an
instructor ID with the help of an IF-THEN statement. If the IF-THEN statement evaluates to TRUE, the instructor's ID is
checked against the INSTRUCTOR table. If a new instructor ID does not exist in the INSTRUCTOR table, the exception is
raised, and the trigger is terminated. Otherwise, all columns with NOT NULL constraints are populated with their
respected values.

Consider the following UPDATE statement:

UPDATE section
 SET instructor_id = 220
 WHERE section_id = 79;

The value 220 in this UPDATE statement does not exist in the INSTRUCTOR table and therefore is invalid. As a result,
this UPDATE statement when run causes an error:

UPDATE section
*
ERROR at line 1:
ORA-20000: This is not a valid instructor
ORA-06512: at "STUDENT.SECTION_BU", line 11
ORA-04088: error during execution of trigger 'STUDENT.SECTION_BU'
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18 Collections

1) Create the following script. Create an index-by table and populate it with the instructor's full name. In
other words, each row of the index-by table should contain first name, middle initial, and last name.
Display this information on the screen.

A1: Answer: Your script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 CURSOR name_cur IS
 SELECT first_name||' '||last_name name
 FROM instructor;

 TYPE name_type IS TABLE OF VARCHAR2(50)
 INDEX BY BINARY_INTEGER;
 name_tab name_type;

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 name_tab(v_counter) := name_rec.name;

 DBMS_OUTPUT.PUT_LINE ('name('||v_counter||'): '||
 name_tab(v_counter));
 END LOOP;
END;

In the preceding example, the index-by table name_tab is populated with instructor full names. Notice that the variable
v_counter is used as a subscript to reference individual table elements. This example produces the following output:

name(1): Fernand Hanks
name(2): Tom Wojick
name(3): Nina Schorin
name(4): Gary Pertez
name(5): Anita Morris
name(6): Todd Smythe
name(7): Marilyn Frantzen
name(8): Charles Lowry
name(9): Rick Chow

PL/SQL procedure successfully completed.

2) Modify the script created in 1). Instead of using an index-by table, use a varray.

A2: Answer: Your script should look similar to the following. All changes are highlighted in bold.

SET SERVEROUTPUT ON
DECLARE
 CURSOR name_cur IS
 SELECT first_name||' '||last_name name
 FROM instructor;

 TYPE name_type IS VARRAY(15) OF VARCHAR2(50);
 name_varray name_type := name_type();

 v_counter INTEGER := 0;
BEGIN
 FOR name_rec IN name_cur LOOP
 v_counter := v_counter + 1;
 name_varray.EXTEND;
 name_varray(v_counter) := name_rec.name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name_varray(v_counter) := name_rec.name;

 DBMS_OUTPUT.PUT_LINE ('name('||v_counter||'): '||
 name_varray(v_counter));
 END LOOP;
END;

In this version of the script, you define a varray of 15 elements. It is important to remember to initialize the array
before referencing its individual elements. In addition, the array must be extended before new elements are added to it.

3) Modify the script created in 2). Create an additional varray and populate it with unique course numbers
that each instructor teaches. Display instructor's name and the list of courses he or she teaches.

A3: Answer: Your script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 CURSOR instructor_cur IS
 SELECT instructor_id, first_name||' '||last_name name
 FROM instructor;

 CURSOR course_cur (p_instructor_id NUMBER) IS
 SELECT unique course_no course
 FROM section
 WHERE instructor_id = p_instructor_id;

 TYPE name_type IS VARRAY(15) OF VARCHAR2(50);
 name_varray name_type := name_type();

 TYPE course_type IS VARRAY(10) OF NUMBER;
 course_varray course_type;

 v_counter1 INTEGER := 0;
 v_counter2 INTEGER;
BEGIN
 FOR instructor_rec IN instructor_cur LOOP
 v_counter1 := v_counter1 + 1;
 name_varray.EXTEND;
 name_varray(v_counter1) := instructor_rec.name;

 DBMS_OUTPUT.PUT_LINE ('name('||v_counter1||'): '||
 name_varray(v_counter1));

 -- Initialize and populate course_varray
 v_counter2 := 0;
 course_varray := course_type();
 FOR course_rec in
 course_cur (instructor_rec.instructor_id)
 LOOP
 v_counter2 := v_counter2 + 1;
 course_varray.EXTEND;
 course_varray(v_counter2) := course_rec.course;

 DBMS_OUTPUT.PUT_LINE ('course('||v_counter2||'): '||
 course_varray(v_counter2));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE ('===========================');
 END LOOP;
END;

Consider the script just created. First, you declare two cursors, INSTRUCTOR_CUR and COURSE_CUR. The
COURSE_CUR accepts a parameter because it returns a list of course taught by a particular instructor. Notice that the
SELECT statement uses function UNIQUE to retrieve distinct course numbers. Second, you declare two varray types and
variables, name_varray and course_varray. Notice that you do not initialize the second varray at the time of declaration.
Next, you declare two counters and initialize the first counter only.

In the body of the block, you open INSTRUCTOR_CUR and populate name_varray with its first element. Next, you
initialize the second counter and course_varray. This step is necessary because you need to repopulate course_varray for
the next instructor. Next, you open COURSE_CUR to retrieve corresponding courses and display them on the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the next instructor. Next, you open COURSE_CUR to retrieve corresponding courses and display them on the screen.

When run, the script produces the following output:

name(1): Fernand Hanks
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 134
course(6): 140
course(7): 146
course(8): 240
course(9): 450
===========================
name(2): Tom Wojick
course(1): 25
course(2): 100
course(3): 120
course(4): 124
course(5): 125
course(6): 134
course(7): 140
course(8): 146
course(9): 240
===========================
name(3): Nina Schorin
course(1): 20
course(2): 25
course(3): 100
course(4): 120
course(5): 124
course(6): 130
course(7): 134
course(8): 142
course(9): 147
course(10): 310
===========================
name(4): Gary Pertez
course(1): 20
course(2): 25
course(3): 100
course(4): 120
course(5): 124
course(6): 130
course(7): 135
course(8): 142
course(9): 204
course(10): 330
===========================
name(5): Anita Morris
course(1): 20
course(2): 25
course(3): 100
course(4): 122
course(5): 124
course(6): 130
course(7): 135
course(8): 142
course(9): 210
course(10): 350
===========================
name(6): Todd Smythe
course(1): 20
course(2): 25
course(3): 100
course(4): 122
course(5): 125
course(6): 130
course(7): 135
course(8): 144
course(9): 220
course(10): 350
===========================
name(7): Marilyn Frantzen
course(1): 25
course(2): 120

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

course(2): 120
course(3): 122
course(4): 125
course(5): 132
course(6): 135
course(7): 145
course(8): 230
course(9): 350
===========================
name(8): Charles Lowry
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 132
course(6): 140
course(7): 145
course(8): 230
course(9): 420
===========================
name(9): Rick Chow
course(1): 10
===========================

PL/SQL procedure successfully completed.

As mentioned earlier, it is important to reinitialize the variable v_counter2 that is used to reference individual elements of
course_varray. When this step is omitted and the variable is initialized only once at the time declaration, the script
generates the following runtime error:

name(1): Fernand Hanks
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 134
course(6): 140
course(7): 146
course(8): 240
course(9): 450
name(2): Tom Wojick
DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 33

Why do you think this error occurs?

4) Find and explain errors in the following script:

DECLARE
 TYPE varray_type1 IS VARRAY(7) OF INTEGER;
 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY BINARY_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);
 table2 table_type2 := table_type2(varray1, varray_type1(8, 9, 0));

BEGIN
 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

FOR i IN 1..10 LOOP
 varray1.EXTEND;
 varray1(i) := i;
 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '|| varray1(i));
 END LOOP;
END;

A4: Answer: Consider the error generated by the preceding script:

 table2 table_type2 := table_type2(varray1, varray_type1(8, 9, 0));
 *
ERROR at line 6:
ORA-06550: line 6, column 26:
PLS-00222: no function with name 'TABLE_TYPE2' exists in this scope
ORA-06550: line 6, column 11:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-06550: line 6, column 11:
PL/SQL: Item ignored
ORA-06550: line 9, column 44:
PLS-00320: the declaration of the type of this expression is incomplete or
malformed
ORA-06550: line 9, column 4:
PL/SQL: Statement ignored

Notice that this error refers to the initialization of table2, which has been declared as an index-by table of
varrays. You will recall that index-by tables are not initialized prior to their use. As a result, the declaration
of table2 must be modified. Furthermore, additional assignment statement must be added to the
executable portion of the block as follows:

DECLARE
 TYPE varray_type1 IS VARRAY(7) OF INTEGER;
 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY BINARY_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);
 table2 table_type2;
BEGIN
 -- These statements populate index-by table
 table2(1) := varray1;
 table2(2) := varray_type1(8, 9, 0);

 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

 FOR i IN 1..10 LOOP
 varray1.EXTEND;
 varray1(i) := i;
 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||
 varray1(i));
 END LOOP;
END;

When run, this version produces a different error:

table2(1)(2): 2
varray1(1): 1
varray1(2): 2
varray1(3): 3
varray1(4): 4
DECLARE
*
ERROR at line 1:
ORA-06532: Subscript outside of limit
ORA-06512: at line 14

Notice that this is a runtime error that refers to varray1. This error occurs because you are trying to extend
varray beyond its limit. Varray1 can contain up to seven integers. After initialization, the varray contains
three integers. As a result, it can be populated with no more than four additional integer numbers. So the
fifth iteration of the loop tries to extend the varray to eight elements, which in turn causes a subscript
beyond count error.

It is important to note that there is no correlation between the loop counter and the EXTEND method.
Every time the EXTEND method is called, it increases the size of the varray by one element. Since the
varray has been initialized to three elements, the EXTEND method adds a fourth element to the array for
the first iteration of the loop. At this same time, the first element of the varray is assigned a value of 1 via
the loop counter. For the second iteration of the loop, the EXTEND method adds a fifth element to the
varray while the second element is assigned a value of 2, and so forth.

Finally, consider the error-free version of the script and its output:

DECLARE
 TYPE varray_type1 IS VARRAY(7) OF INTEGER;
 TYPE table_type2 IS TABLE OF varray_type1 INDEX BY BINARY_INTEGER;

 varray1 varray_type1 := varray_type1(1, 2, 3);
 table2 table_type2;
BEGIN
 -- These statements populate index-by table
 table2(1) := varray1;
 table2(2) := varray_type1(8, 9, 0);

 DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

 FOR i IN 4..7 LOOP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR i IN 4..7 LOOP
 varray1.EXTEND;
 varray1(i) := i;
 END LOOP;

 -- Display elements of the varray
 FOR i IN 1..7 LOOP
 DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||
 varray1(i));
 END LOOP;
END;

table2(1)(2): 2
varray1(1): 1
varray1(2): 2
varray1(3): 3
varray1(4): 4
varray1(5): 5
varray1(6): 6
varray1(7): 7

PL/SQL procedure successfully completed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19 Records

1) Create the following script. Create an index-by table with the element type of a user-defined record. This
record should contain first name, last name, and the total number of courses that a particular instructor
teaches. Display the records of the index-by table on the screen.

A1: Answer: Your script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 CURSOR instructor_cur IS
 SELECT first_name, last_name, COUNT(UNIQUE s.course_no) courses
 FROM instructor i
 LEFT OUTER JOIN section s
 ON (s.instructor_id = i.instructor_id)
 GROUP BY first_name, last_name;

 TYPE rec_type IS RECORD
 (first_name INSTRUCTOR.FIRST_NAME%TYPE,
 last_name INSTRUCTOR.LAST_NAME%TYPE,
 courses_taught NUMBER);

 TYPE instructor_type IS TABLE OF REC_TYPE
 INDEX BY BINARY_INTEGER;

 instructor_tab instructor_type;

 v_counter INTEGER := 0;
BEGIN
 FOR instructor_rec IN instructor_cur LOOP
 v_counter := v_counter + 1;

 -- Populate index-by table of records
 instructor_tab(v_counter).first_name :=
 instructor_rec.first_name;
 instructor_tab(v_counter).last_name :=
 instructor_rec.last_name;
 instructor_tab(v_counter).courses_taught :=
 instructor_rec.courses;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||
 instructor_tab(v_counter).first_name||' '||
 instructor_tab(v_counter).last_name||', teaches '||
 instructor_tab(v_counter).courses_taught||' courses.');
 END LOOP;
END;

Consider the SELECT statement used in this script. This SELECT statement returns the instructor's name and total
number of courses that he or she teaches. The statement is using an outer join so that if a particular instructor is not
teaching any courses, he or she will be included in the results of the SELECT statement. Note that the SELECT
statement uses ANSI 1999 SQL standard.

You will find detailed explanations and examples of the statements using the
new ANSI 1999 SQL standard in Appendix E and in the Oracle help.
Throughout this book we try to provide you with examples illustrating both
standards; however, our main focus is on PL/SQL features rather than SQL.

In this script, you define a cursor against the INSTRUCTOR and SECTION tables that is used to populate the index-by
table of records, instructor_tab. Each row of this table is a user-defined record of three elements. You populate the index-
by table via the cursor FOR loop. Consider the notation used to reference each record element of the index-by table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by table via the cursor FOR loop. Consider the notation used to reference each record element of the index-by table:

instructor_tab(v_counter).first_name
instructor_tab(v_counter).last_name
instructor_tab(v_counter).courses_taught

To reference each row of the index-by table, you use the counter variable. However, because each row of this table is a
record, you must also reference individual fields of the underlying record. When run, this script produces the following
output:

Instructor, Anita Morris, teaches 10 courses.
Instructor, Charles Lowry, teaches 9 courses.
Instructor, Fernand Hanks, teaches 9 courses.
Instructor, Gary Pertez, teaches 10 courses.
Instructor, Marilyn Frantzen, teaches 9 courses.
Instructor, Nina Schorin, teaches 10 courses.
Instructor, Rick Chow, teaches 1 courses.
Instructor, Todd Smythe, teaches 10 courses.
Instructor, Tom Wojick, teaches 9 courses.

PL/SQL procedure successfully completed.

2) Modify the script created in project (1). Instead of using an index-by table, use a nested table.

A2: Answer: Your script should look similar to the following. All changes are highlighted in bold.

SET SERVEROUTPUT ON
DECLARE
 CURSOR instructor_cur IS
 SELECT first_name, last_name, COUNT(UNIQUE s.course_no) courses
 FROM instructor i
 LEFT OUTER JOIN section s
 ON (s.instructor_id = i.instructor_id)
 GROUP BY first_name, last_name;

 TYPE rec_type IS RECORD
 (first_name INSTRUCTOR.FIRST_NAME%TYPE,
 last_name INSTRUCTOR.LAST_NAME%TYPE,
 courses_taught NUMBER);

 TYPE instructor_type IS TABLE OF REC_TYPE;
 instructor_tab instructor_type := instructor_type();

 v_counter INTEGER := 0;
BEGIN
 FOR instructor_rec IN instructor_cur LOOP
 v_counter := v_counter + 1;
 instructor_tab.EXTEND;

 -- Populate index-by table of records
 instructor_tab(v_counter).first_name :=
 instructor_rec.first_name;
 instructor_tab(v_counter).last_name :=
 instructor_rec.last_name;
 instructor_tab(v_counter).courses_taught :=
 instructor_rec.courses;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||
 instructor_tab(v_counter).first_name||' '||
 instructor_tab(v_counter).last_name||', teaches '||
 instructor_tab(v_counter).courses_taught||' courses.');
 END LOOP;
END;

Notice that the instructor_tab must be initialized and extended before its individual elements can be referenced.

3) Modify the script created in project (2). Instead of using a nested table, use a varray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A3: Answer: Your script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 CURSOR instructor_cur IS
 SELECT first_name, last_name, COUNT(UNIQUE s.course_no) courses
 FROM instructor i
 LEFT OUTER JOIN section s
 ON (s.instructor_id = i.instructor_id)
 GROUP BY first_name, last_name;

 TYPE rec_type IS RECORD
 (first_name INSTRUCTOR.FIRST_NAME%TYPE,
 last_name INSTRUCTOR.LAST_NAME%TYPE,
 courses_taught NUMBER);

 TYPE instructor_type IS VARRAY(10) OF REC_TYPE;
 instructor_tab instructor_type := instructor_type();

 v_counter INTEGER := 0;
BEGIN
 FOR instructor_rec IN instructor_cur LOOP
 v_counter := v_counter + 1;
 instructor_tab.EXTEND;

 -- Populate index-by table of records
 instructor_tab(v_counter).first_name :=
 instructor_rec.first_name;
 instructor_tab(v_counter).last_name :=
 instructor_rec.last_name;
 instructor_tab(v_counter).courses_taught :=
 instructor_rec.courses;

 DBMS_OUTPUT.PUT_LINE ('Instructor, '||
 instructor_tab(v_counter).first_name||' '||
 instructor_tab(v_counter).last_name||', teaches '||
 instructor_tab(v_counter).courses_taught||' courses.');
 END LOOP;
END;

This version of the script is almost identical to the previous version. Instead of using a nested table, you are using a
varray of 15 elements.

4) Create the following script. Create a user-defined record with three fields: course_no, description, cost, and
prerequisite_rec. The last field, prerequisite_rec, should be a user-defined record with three fields: prereq_no,
prereq_desc, and prereq_cost. For any ten courses that have a prerequisite course, populate the user-defined
record with all corresponding data and display its information on the screen.

A4: Answer: Your script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE
 CURSOR c_cur IS
 SELECT course_no, description, cost, prerequisite
 FROM course
 WHERE prerequisite IS NOT NULL
 AND rownum <= 10;

 TYPE prerequisite_type IS RECORD
 (prereq_no NUMBER,
 prereq_desc VARCHAR(50),
 prereq_cost NUMBER);

 TYPE course_type IS RECORD
 (course_no NUMBER,
 description VARCHAR2(50),
 cost NUMBER,
 prerequisite_rec PREREQUISITE_TYPE);

 course_rec COURSE_TYPE;
BEGIN
 FOR c_rec in c_cur LOOP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FOR c_rec in c_cur LOOP
 course_rec.course_no := c_rec.course_no;
 course_rec.description := c_rec.description;
 course_rec.cost := c_rec.cost;

 SELECT course_no, description, cost
 INTO course_rec.prerequisite_rec.prereq_no,
 course_rec.prerequisite_rec.prereq_desc,
 course_rec.prerequisite_rec.prereq_cost
 FROM course
 WHERE course_no = c_rec.prerequisite;

 DBMS_OUTPUT.PUT_LINE ('Course: '||
 course_rec.course_no||' – '||
 course_rec.description);
 DBMS_OUTPUT.PUT_LINE ('Cost: '|| course_rec.cost);
 DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||
 course_rec.prerequisite_rec. prereq_no||' – '||
 course_rec.prerequisite_rec.prereq_desc);
 DBMS_OUTPUT.PUT_LINE ('Prerequisite Cost: '||
 course_rec.prerequisite_rec.prereq_cost);
 DBMS_OUTPUT.PUT_LINE ('==');
 END LOOP;
END;

In the declaration portion of the script, you define a cursor against the COURSE table; two user-defined record types,
prerequisite_type and course_type; and user-defined record, course_rec. It is important to note the order in which the
record types are declared. The prerequsite_type must be declared first because one of the course_type elements is of the
prerequisite_type.

In the executable portion of the script, you populate course_rec via the cursor FOR loop. First, you assign values to the
course_rec.course_no, course_rec.description, and course_rec.cost. Next, you populate the nested record,
prerequsite_rec, via the SELECT INTO statement against the COURSE table. Consider the notation used to reference
individual elements of the nested record:

course_rec.prerequisite_rec.prereq_no,
course_rec.prerequisite_rec.prereq_desc,
course_rec.prerequisite_rec.prereq_cost

You specify the name of the outer record followed by the name of the inner (nested) record followed by the name of the
element. Finally, you display record information on the screen.

Note that this script does not contain a NO_DATA_FOUND exception handler even though there is a SELECT INTO
statement. Why do you think this is the case?

When run, the script produces the following output:

Course: 25 - Intro to Programming
Cost: 1195
Prerequisite: 140 - Structured Analysis
Prerequisite Cost: 1195
==
Course: 80 - Structured Programming Techniques
Cost: 1595
Prerequisite: 204 - Intro to SQL
Prerequisite Cost: 1195
==
Course: 100 - Hands-On Windows
Cost: 1195
Prerequisite: 20 - Intro to Computers
Prerequisite Cost: 1195
==
Course: 120 - Intro to Java Programming
Cost: 1195
Prerequisite: 80 - Structured Programming Techniques
Prerequisite Cost: 1595
==
Course: 122 - Intermediate Java Programming
Cost: 1195
Prerequisite: 120 - Intro to Java Programming
Prerequisite Cost: 1195
==

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

==
Course: 124 - Advanced Java Programming
Cost: 1195
Prerequisite: 122 - Intermediate Java Programming
Prerequisite Cost: 1195
==
Course: 125 - JDeveloper
Cost: 1195
Prerequisite: 122 - Intermediate Java Programming
Prerequisite Cost: 1195
==
Course: 130 - Intro to Unix
Cost: 1195
Prerequisite: 310 - Operating Systems
Prerequisite Cost: 1195
==
Course: 132 - Basics of Unix Admin
Cost: 1195
Prerequisite: 130 - Intro to Unix
Prerequisite Cost: 1195
==
Course: 134 - Advanced Unix Admin
Cost: 1195
Prerequisite: 132 - Basics of Unix Admin
Prerequisite Cost: 1195
==

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20 Native Dynamic SQL

1) Create a stored procedure based on the script ch20_1c.sql (version 3), created in the first lab of this
chapter. The procedure should accept two parameters to hold a table name and an ID, and should return
six parameters with first name, last name, street, city, state, and zip information.

A1: Answer: Your procedure should look similar to the procedure shown below. All changes are highlighted in
bold.

CREATE OR REPLACE PROCEDURE get_name_address (table_name_in IN VARCHAR2
 ,id_in IN NUMBER
 ,first_name_out OUT VARCHAR2
 ,last_name_out OUT VARCHAR2
 ,street_out OUT VARCHAR2
 ,city_out OUT VARCHAR2
 ,state_out OUT VARCHAR2
 ,zip_out OUT VARCHAR2)
AS
 sql_stmt VARCHAR2(200);
BEGIN
 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM '||table_name_in||' a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND '||table_name_in||'_id = :1';
 EXECUTE IMMEDIATE sql_stmt
 INTO first_name_out, last_name_out, street_out, city_out, state_out,
 zip_out
 USING id_in;
END get_name_address;

The procedure above contains two IN parameters whose values are used by the dynamic SQL statement, and six OUT
parameters that hold date returned by the SELECT statement. Once created, the procedure can be tested with the
following PL/SQL block:

SET SERVEROUTPUT ON
DECLARE
 v_table_name VARCHAR2(20) := '&sv_table_name';
 v_id NUMBER := &sv_id;
 v_first_name VARCHAR2(25);
 v_last_name VARCHAR2(25);
 v_street VARCHAR2(50);
 v_city VARCHAR2(25);
 v_state VARCHAR2(2);
 v_zip VARCHAR2(5);
BEGIN
 get_name_address (v_table_name, v_id, v_first_name, v_last_name,
 v_street, v_city, v_state, v_zip);

 DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
 DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
 DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
 DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

When run, this script produces the following output (the first run is against the STUDENT table, and the second run is
against the INSTRUCTOR table):

Enter value for sv_table_name: student
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'student';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new 2: v_table_name VARCHAR2(20) := 'student';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'instructor';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Anita
Last Name: Morris
Street: 34 Maiden Lane
City: New York
State: NY
Zip Code: 10015

PL/SQL procedure successfully completed.

2) Modify procedure created in the previous exercise. Instead of using six parameters to hold name and
address information, the procedure should return a user-defined record that contains six fields that hold
name and address information. Note: You may want to create a package where you define record type.
This record may be used later, for example, when the procedure is invoked in a PL/SQL block.

A2: Answer: Your package should look similar to the package shown below. All changes to the procedure are
highlighted in bold.

CREATE OR REPLACE PACKAGE dynamic_sql_pkg AS

 -- Create user-defined record type
 TYPE name_addr_rec_type IS RECORD
 (first_name VARCHAR2(25),
 last_name VARCHAR2(25),
 street VARCHAR2(50),
 city VARCHAR2(25),
 state VARCHAR2(2),
 zip VARCHAR2(5));

 PROCEDURE get_name_address (table_name_in IN VARCHAR2
 ,id_in IN NUMBER
 ,name_addr_rec OUT name_addr_rec_type);
END dynamic_sql_pkg;
/

CREATE OR REPLACE PACKAGE BODY dynamic_sql_pkg AS

PROCEDURE get_name_address (table_name_in IN VARCHAR2
 ,id_in IN NUMBER
 ,name_addr_rec OUT name_addr_rec_type)
IS
 sql_stmt VARCHAR2(200);
BEGIN
 sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
 ' ,b.city, b.state, b.zip' ||
 ' FROM '||table_name_in||' a, zipcode b' ||
 ' WHERE a.zip = b.zip' ||
 ' AND '||table_name_in||'_id = :1';
 EXECUTE IMMEDIATE sql_stmt
 INTO name_addr_rec
 USING id_in;
END get_name_address;

END dynamic_sql_pkg;
/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the package specification created above, you declare a user-defined record type. This record type is used by the
procedure for its OUT parameter, name_addr_rec. Once the package is created, its procedure can be tested with the
following PL/SQL block (changes are shown in bold):

SET SERVEROUTPUT ON
DECLARE
 v_table_name VARCHAR2(20) := '&sv_table_name';
 v_id NUMBER := &sv_id;
 name_addr_rec DYNAMIC_SQL_PKG.NAME_ADDR_REC_TYPE;
BEGIN
 dynamic_sql_pkg.get_name_address (v_table_name, v_id, name_addr_rec);

 DBMS_OUTPUT.PUT_LINE ('First Name: '||name_addr_rec.first_name);
 DBMS_OUTPUT.PUT_LINE ('Last Name: '||name_addr_rec.last_name);
 DBMS_OUTPUT.PUT_LINE ('Street: '||name_addr_rec.street);
 DBMS_OUTPUT.PUT_LINE ('City: '||name_addr_rec.city);
 DBMS_OUTPUT.PUT_LINE ('State: '||name_addr_rec.state);
 DBMS_OUTPUT.PUT_LINE ('Zip Code: '||name_addr_rec.zip);

END;

Notice that instead of declaring six variables, you declare one variable of the user-defined record type,
name_addr_rec_type. Because this record type has been defined in the package DYNAMIC_SQL_PKG, the name of the
record type is prefixed by the name of the package. Similarly, the name of package has been added to the procedure
call statement.

When run, this script produces the output shown below (the first output is against the STUDENT table, and the second
output is against the INSTRUCTOR table):

Enter value for sv_table_name: student
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'student';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'instructor';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Anita
Last Name: Morris
Street: 34 Maiden Lane
City: New York
State: NY
Zip Code: 10015

PL/SQL procedure successfully completed.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix E. ANSI SQL Standards

SQL Standards

JOINs

Scalar Subquery

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SQL Standards
The American National Standards Institute (http://www.ansi.org) first published a standard SQL specification in 1989.
The ANSI SQL standard was later revised in 1992, and this is often referred to as SQL-92 or SQL-2. This was revised
again, giving rise to the latest standard, known as SQL-99. Sometimes it is called SQL-3. Database vendors and third-
party software companies have had varying levels of conformance to this standard. Most major database vendors
support the SQL-92 standard. Generally what you find is that most vendors have their own extensions to the SQL
language. Oracle is no exception in this matter. Nonetheless, Oracle has made efforts to maintain the ANSI standard.
The reason for this is to provide an easier migration to third-party applications without a need to modify the SQL code.
In Oracle 8i, Oracle 9i, and Oracle 10g, Oracle has introduced a number of enhancements to conform to the SQL-99
standard. This appendix will review the main enhancements that you will see in this book. Examples will be given. It is
important to realize that although many of these features are new to Oracle in version 9i, these constructs have existed
in other programming languages. For example, the CASE statement has been a part of MS SQL Server for some time
and has been used in Cobol and C since their inception.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

JOINs
The 1999 ANSI standard introduced complete JOIN syntax in the FROM clause. The prior method was to list the tables
needed in the query in the FROM clause and then to define the joins between these tables in the WHERE clause.
However, the conditions of the SQL statement are also listed in the WHERE clause. It was decided to enhance this
syntax because listing of the joins and the conditions in the same WHERE clause can be confusing.

The 1999 ANSI join syntax includes cross joins, equijoins, full outer joins, and natural joins.

CROSS JOINs

The CROSS JOIN syntax indicates that you are creating a Cartesian product from two tables. The result set of a
Cartesian product is usually meaningless, but it can be used to generate a lot of rows if you need to do some testing.
The advantage of the new syntax is that it flags a Cartesian product by having the CROSS JOIN in the FROM clause.

 FOR EXAMPLE

Prior to Oracle 9i, you would create a Cartesian product with the following syntax:

SELECT *
 FROM instructor course

The new syntax is as follows:

SELECT *
 FROM instructor CROSS JOIN
 course

The result set from this is 300. This is because the COURSE table has 30 rows and the INSTRUCTOR table has 10 rows.
The CROSS JOIN will count all possible combinations resulting in the 300 rows.

EQUI JOINs

The EQUI JOIN syntax indicates the columns that comprise the JOINS between two tables. Prior to Oracle 9i, you would
indicate a join condition in the WHERE clause by stating which two columns are part of the foreign key constraint.

 FOR EXAMPLE

Prior to Oracle 9i, you would join the STUDENT table to the ZIPCODE table as follows:

SELECT s.first_name, s.last_name, z.zip, z.city, z.state
 FROM student s, zipcode z
 WHERE s.zip = z.zip

The new syntax is as follows:

SELECT s.first_name, s.last_name, zip, z.city, z.state
 FROM student s JOIN
 zipcode z USING (zip)

The reason for this syntax is that the join condition between the two tables is immediately obvious when looking at the
tables listed in the FROM clause. This example is very short, but generally your SQL statements are very long, and it
can be time consuming to find the join conditions in the WHERE clause.

Notice that the ZIP column did not have an alias. In the new JOIN syntax, the column that is referenced in the JOIN
does not have a qualifier. In the old syntax, if you did not use an alias for column ZIP, as in this example,

SELECT s.first_name, s.last_name, zip, z.city, z.state
 FROM student s, zipcode z
 WHERE s.zip = z.zip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE s.zip = z.zip

Oracle would generate the following error:

ORA-00918: column ambiguously defined

In the new JOIN syntax, if you use a qualifier, as in this example,

SELECT s.first_name, s.last_name, z.zip, z.city, z.state
 FROM student s JOIN
 zipcode z USING (zip)

Oracle generates the following error:

ORA-25154: column part of USING clause cannot have qualifier

The new JOIN syntax also allows you to define the join condition using both sides of the join. This is done with the ON
syntax. When using the ON syntax for a JOIN you must use the qualifier. This is also useful when the two sides of the
join do not have the same name.

The ON syntax can also be used for three-way joins (or more).

 FOR EXAMPLE

SELECT s.section_no, c.course_no, c.description,
 i.first_name, i.last_name
 FROM course c
 JOIN section s
 ON (s.course_no = c.course_no)
 JOIN instructor i
 ON (i.instructor_id = s.instructor_id)

The syntax for a multiple-table join becomes more complex. Notice that one table is mentioned at a time. The first JOIN
lists columns from the first two tables in the ON section. Once the third table has been indicated, the second JOIN lists
columns from the second and third tables in the ON clause.

NATURAL JOINs

The NATURAL JOIN is another part of the ANSI 1999 syntax that can be used when joining two tables based on columns
that have the same name and datatype. The NATURAL JOIN can only be used when all the columns that have the same
name in both tables comprise the join condition between these tables. You cannot use this syntax when the two
columns have the same name but a different datatype. Another benefit of this join is that if you use the SELECT *
syntax, the columns that appear in both tables will only appear once in the result set.

 FOR EXAMPLE

SELECT *
 FROM instructor NATURAL JOIN zipcode

The join that will be used here is not only on the ZIP column of both tables, but the CREATE_BY, CREATED_DATE,
MODIFIED_BY, and MODIFIED_DATE columns as well.

The student schema does not support the NATURAL JOIN condition since we have created audit columns that have the
same name in each table but are not used in the foreign keys constraints among the tables.

OUTER JOINs

INNER JOIN or EQUI JOIN is the result of joining two tables that contain rows where a match occurred on the join
condition. It is possible to lose information through an INNER JOIN because only those rows that match on the join
condition will appear in the final result set.

The result set of an OUTER JOIN will contain the same rows as the INNER JOIN plus rows corresponding to the rows
from the source tables where there was no match. The OUTER JOIN has been supported by a number of versions of the
Oracle SQL language. It had not been a part of the ANSI standard until the 1999 version.

Oracle's OUTER JOIN syntax has consisted of placing a (+) next to the columns of a table where you expect to find
values that do not exist in the other table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values that do not exist in the other table.

 FOR EXAMPLE

SELECT i.first_name, i.last_name, z.state
 FROM instructor i, zipcode z
 WHERE i.zip (+) = z.zip
GROUP BY i.first_name, i.last_name, z.state

In this example, the result set will include all states that are in the ZIPCODE table. If there is no instructor for a state
that exists in the ZIPCODE table, the values of FIRST_NAME and LAST_NAME will be blank (NULL). This syntax gets
more confusing because it must be maintained if there are more conditions in a WHERE clause. This method can only be
used on one side of the outer join at a time.

The new method of OUTER JOINS adopted in Oracle 9i allows the case of an OUTER JOIN on either side or both sides at
the same time (for example, if there were some instructors who had zipcodes that were not in the ZIPCODE table, and
you wanted to see all the instructors and all the states in both of these tables). This task can be accomplished by using
the new OUTER JOIN syntax only. This requires the aforementioned JOIN syntax with addition of new outer join
attributes as well. The choice is LEFT/RIGHT/FULL OUTER JOIN. The same OUTER JOIN can now be modified as

SELECT i.first_name, z.state
 FROM instructor i RIGHT OUTER JOIN
 zipcode z
 ON i.zip = z.zip
GROUP BY i.first_name, z.state

The RIGHT indicates that the values on the right side of the JOIN may not exist in the table on the LEFT side of the join.
This can be replaced by the word FULL if there are some instructors who have zipcodes that are not in the ZIPCODE
table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Scalar Subquery
A scalar row subquery is a single-row subquery. In other words, it returns a single row. If the scalar subquery returns
more than one row, it generates an error. The Oracle 9i version has more support of scalar subqueries than Oracle 8i.

 FOR EXAMPLE

SELECT city, state,
 (SELECT count(*)
 FROM student s
 WHERE s.zip = z.zip) as student_count
 FROM zipcode z
 WHERE state = 'CT'
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

