
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata

Oracle PL/SQL Language Pocket Reference, 2nd
Edition
By Chip Dawes, Steven Feuerstein, Bill Pribyl

Publisher : O'Reilly

Pub Date : February 2003

ISBN : 0-596-00472-9
Pages : 127

The new edition of this must-have pocket guide boils down the most vital information from Oracle
PL/SQL Programming, the bestseller that many consider "the Bible" for PL/SQL development. This
concise booklet summarizes features available in Oracle's powerful new product-- Oracle9i-- and
provides essential information on PL/SQL block structure, fundamental language elements, control
statements, and use of procedures, functions, packages, triggers, Oracle objects, external procedures,
and methods of calling Java classes from PL/SQL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata

Oracle PL/SQL Language Pocket Reference, 2nd
Edition
By Chip Dawes, Steven Feuerstein, Bill Pribyl

Publisher : O'Reilly

Pub Date : February 2003

ISBN : 0-596-00472-9
Pages : 127

 Copyright

 Chapter 1. Oracle PL/SQL Language Pocket Reference

 Section 1.1. Introduction

 Section 1.2. Acknowledgments

 Section 1.3. Conventions

 Section 1.4. PL/SQL Language Fundamentals

 Section 1.5. Variables and Program Data

 Section 1.6. Conditional and Sequential Control

 Section 1.7. Loops

 Section 1.8. Database Interaction

 Section 1.9. Cursors in PL/SQL

 Section 1.10. Exception Handling

 Section 1.11. Records in PL/SQL

 Section 1.12. Named Program Units

 Section 1.13. Triggers

 Section 1.14. Packages

 Section 1.15. Calling PL/SQL Functions in SQL

 Section 1.16. Oracle's Object-Oriented Features

 Section 1.17. Collections

 Section 1.18. External Procedures

 Section 1.19. Java Language Integration

 Section 1.20. Reserved Words

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of ants and the topic of Oracle PL/SQL is a trademark
of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Oracle PL/SQL Language Pocket Reference

Section 1.1. Introduction

Section 1.2. Acknowledgments

Section 1.3. Conventions

Section 1.4. PL/SQL Language Fundamentals

Section 1.5. Variables and Program Data

Section 1.6. Conditional and Sequential Control

Section 1.7. Loops

Section 1.8. Database Interaction

Section 1.9. Cursors in PL/SQL

Section 1.10. Exception Handling

Section 1.11. Records in PL/SQL

Section 1.12. Named Program Units

Section 1.13. Triggers

Section 1.14. Packages

Section 1.15. Calling PL/SQL Functions in SQL

Section 1.16. Oracle's Object-Oriented Features

Section 1.17. Collections

Section 1.18. External Procedures

Section 1.19. Java Language Integration

Section 1.20. Reserved Words

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 Introduction

The Oracle PL/SQL Language Pocket Reference is a quick reference guide to the PL/SQL programming
language, which provides procedural extensions to the SQL relational database language and a range
of Oracle development tools. Where a package, program, or function is supported only for a particular
version of Oracle (e.g., Oracle9i), we indicate this in the text.

The purpose of this pocket reference is to help PL/SQL users find the syntax of specific language
elements. It is not a self-contained user guide; basic knowledge of the PL/SQL programming language
is required. For more information, see the following O'Reilly books:

Oracle PL/SQL Programming, Third Edition, by Steven Feuerstein with Bill Pribyl

Learning Oracle PL/SQL, by Bill Pribyl with Steven Feuerstein

Oracle Built-in Packages, by Steven Feuerstein, Charles Dye, and John Beresniewicz

Oracle PL/SQL Built-ins Pocket Reference, by Steven Feuerstein, John Beresniewicz, and Chip Dawes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Acknowledgments

Many thanks to all those who helped in the preparation of this book. In particular, thanks to first
edition reviewers Eric J. Givler and Stephen Nelson and second edition reviewer Jonathan Gennick. In
addition, we appreciate all the good work by the O'Reilly crew in editing and producing this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Conventions

UPPERCASE indicates PL/SQL keywords.

lowercase indicates user-defined items such as parameters.

Italic indicates filenames and parameters within text.

Constant width is used for code examples and output.

[] enclose optional items in syntax descriptions.

{ } enclose a list of items in syntax descriptions; you must choose one item from the list.

| separates bracketed list items in syntax descriptions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 PL/SQL Language Fundamentals

This section summarizes the fundamental components of the PL/SQL language: characters, identifiers,
literals, delimiters, use of comments and pragmas, and construction of statements and blocks.

1.4.1 PL/SQL Character Set

The PL/SQL language is constructed from letters, digits, symbols, and whitespace, as defined in the
following table:

Type Characters
Letters A-Z, a-z
Digits 0-9
Symbols ~!@#$%^&*()_-+=|[]{ }:;"'< >,.?/ ^
Whitespace space, tab, newline, carriage return

Characters are grouped together into four lexical units: identifiers, literals, delimiters, and comments.

1.4.2 Identifiers

Identifiers are names for PL/SQL objects such as constants, variables, exceptions, procedures,
cursors, and reserved words. Identifiers have the following characteristics:

Can be up to 30 characters in length

Cannot include whitespace (space, tab, carriage return)

Must start with a letter

Can include a dollar sign ($), an underscore (_), and a pound sign (#)

Are not case-sensitive

In addition, you must not use PL/SQL's reserved words as identifiers. For a list of those words, see
the table in the final section in this book, Section 1.20.

If you enclose an identifier within double quotes, then all but the first of these rules are ignored. For
example, the following declaration is valid:

DECLARE
 "1 ^abc" VARCHAR2(100);
BEGIN
 IF "1 ^abc" IS NULL THEN ...
END;

1.4.3 Boolean, Numeric, and String Literals

Literals are specific values not represented by identifiers. For example, TRUE, 3.14159, 6.63E-34,
`Moby Dick', and NULL are all literals of type Boolean, number, or string. There are no complex
datatype literals as they are internal representations. Unlike the rest of PL/SQL, literals are case-
sensitive. To embed single quotes within a string literal, place two single quotes next to each other.
See the following table for examples:

Literal Actual value
'That''s Entertainment!' That's Entertainment!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'"The Raven"' "The Raven"

'TZ=''CDT6CST''' TZ='CDT6CST'

'''' '

'''hello world''' 'hello world'

'''''' ''

1.4.4 Datetime Interval Literals (Oracle9i)

The datetime interval datatypes are new with Oracle9i. These datatypes represent a chronological
interval expressed in terms of either years and months or days, hours, minutes, seconds, and
fractional seconds. Literals of these datatypes require the keyword INTERVAL followed by the literal
and format string(s). The interval must go from a larger field to a smaller one, so YEAR TO MONTH is
valid, but MONTH TO YEAR is not. See the following table for examples:

Literal Actual value
INTERVAL `1-3' YEAR TO MONTH 1 year and 3 months later
INTERVAL `125-11' YEAR(3) TO MONTH 125 years and 11 months later
INTERVAL `-18' MONTH 18 months earlier
INTERVAL `-48' HOUR 48 hours earlier
INTERVAL `7 23:15' DAY TO MINUTE 7 days, 23 hours, 15 minutes later
INTERVAL `1 12:30:10.2' DAY TO SECOND 1 day, 12 hours, 30 minutes, 10.2 seconds later
INTERVAL `12:30:10.2' HOUR TO SECOND 12 hours, 30 minutes,10.2 seconds later

1.4.5 Delimiters

Delimiters are symbols with special meaning, such as := (assignment operator), || (concatenation
operator), and ; (statement delimiter). The following table lists the PL/SQL delimiters:

Delimiter Description
; Terminator (for statements and declarations)
+ Addition operator
- Subtraction operator
* Multiplication operator
/ Division operator
** Exponentiation operator
|| Concatenation operator
:= Assignment operator
= Equality operator
<> and != Inequality operators

^= and ~= Inequality operators

< "Less than" operator
<= "Less than or equal to" operator
> "Greater than" operator
>= "Greater than or equal to" operator
(and) Expression or list delimiters

<< and >> Label delimiters

, (Comma) Item separator
' (Single quote) Literal delimiter
" (Double quote) Quoted literal delimiter
: Host variable indicator
% Attribute indicator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. (Period) Component indicator (as in record.field or package.element)
@ Remote database indicator (database link)
=> Association operator (named notation)
.. (Two periods) Range operator (used in the FOR loop)
-- Single-line comment indicator
/* and */ Multiline comment delimiters

1.4.6 Comments

Comments are sections of the code that exist to aid readability. The compiler ignores them.

A single-line comment begins with a double hyphen (—) and ends with a new line. The compiler
ignores all characters between the — and the new line.

A multiline comment begins with slash asterisk (/*) and ends with asterisk slash (*/). The /* */
comment delimiters can also be used for a single-line comment. The following block demonstrates
both kinds of comments:

DECLARE
 -- Two dashes comment out only the physical line.
 /* Everything is a comment until the compiler
 encounters the following symbol */

You cannot embed multiline comments within a multiline comment, so be careful during development
if you comment out portions of code that include comments. The following code demonstrates this
issue:

DECLARE
 /* Everything is a comment until the compiler
 /* This comment inside another WON'T work!*/
 encounters the following symbol. */

 /* Everything is a comment until the compiler
 -- This comment inside another WILL work!
 encounters the following symbol. */

1.4.7 Pragmas

The PRAGMA keyword is used to give instructions to the compiler. There are four types of pragmas in
PL/SQL:

EXCEPTION_INIT

Tells the compiler to associate the specified error number with an identifier that has been
declared an EXCEPTION in your current program or an accessible package. See Section 1.10 for
more information on this pragma.

RESTRICT_REFERENCES

Tells the compiler the purity level of a packaged program. The purity level is the degree to
which a program does not read/write database tables and/or package variables. See Section
1.15 for more information on this pragma.

SERIALLY_REUSABLE

Tells the runtime engine that package data should not persist between references. This is used
to reduce per-user memory requirements when the package data is only needed for the
duration of the call and not for the duration of the session. See Section 1.14 for more
information on this pragma.

AUTONOMOUS_TRANSACTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Starting in Oracle8i, tells the compiler that the function, procedure, top-level anonymous
PL/SQL block, object method, or database trigger executes in its own transaction space. See
Section 1.8 for more information on this pragma.

1.4.8 Statements

A PL/SQL program is composed of one or more logical statements. A statement is terminated by a
semicolon delimiter. The physical end-of-line marker in a PL/SQL program is ignored by the compiler,
except to terminate a single-line comment (initiated by the — symbol).

1.4.9 Block Structure

Each PL/SQL program is a block consisting of a standard set of elements, identified by keywords (see
Figure 1-1). The block determines the scope of declared elements, and how exceptions are handled
and propagated. A block can be anonymous or named. Named blocks include functions, procedures,
packages, and triggers.

Figure 1-1. The PL/SQL block structure

Here is an example of an anonymous block:

DECLARE
 today DATE DEFAULT SYSDATE;
BEGIN
 -- Display the date.
 DBMS_OUTPUT.PUT_LINE ('Today is ' || today);
END;

Here is a named block that performs the same action:

CREATE OR REPLACE PROCEDURE show_the_date
IS
 today DATE DEFAULT SYSDATE;
BEGIN
 -- Display the date.
 DBMS_OUTPUT.PUT_LINE ('Today is ' || today);
END show_the_date;

The following table summarizes the sections of a PL/SQL block:

Section Description

Header
Required for named blocks. Specifies the way the program is called by other PL/SQL
blocks. Anonymous blocks do not have a header. They start with the DECLARE keyword if
there is a declaration section, or with the BEGIN keyword if there are no declarations.

Declaration Optional; declares variables, cursors, TYPEs, and local programs that are used in the
block's execution and exception sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Execution Optional in package and TYPE specifications; contains statements that are executed
when the block is run.

Exception Optional; describes error-handling behavior for exceptions raised in the executable
section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 Variables and Program Data

PL/SQL programs are normally used to manipulate database information. You commonly do this by
declaring variables and data structures in your programs, and then working with that PL/SQL-specific
data.

A variable is a named instantiation of a data structure declared in a PL/SQL block (either locally or in a
package). Unless you declare a variable as a CONSTANT, its value can be changed at any time in your
program.

The following table summarizes the different types of program data:

Type Description
Scalar Variables made up of a single value, such as a number, date, or Boolean
Composite Variables made up of multiple values, such as a record or a collection
Reference Pointers to values
LOB Variables containing large object (LOB) locators

1.5.1 Scalar Datatypes

Scalar datatypes divide into four families: number, character, datetime, and Boolean.

1.5.1.1 Numeric datatypes

Numeric datatypes are further divided into decimal, binary integer, and PLS_INTEGER storage types.

Decimal numeric datatypes store fixed and floating-point numbers of just about any size. They include
NUMBER, DEC, DECIMAL, NUMERIC, FLOAT, REAL, and DOUBLE PRECISION. The maximum precision
of a variable with type NUMBER is 38 digits, which yields a range of values from 1.0E-129 through
9.999E125. (This range of numbers would include the mass of an electron over the mass of the
universe or the size of the universe in angstroms.)

Variables of type NUMBER can be declared with precision and scale, as follows:

NUMBER(precision, scale)

where precision is the number of digits, and scale is the number of digits to the right (positive scale)
or left (negative scale) of the decimal point at which rounding occurs. Legal values for scale range
from -84 to 127. The following table shows examples of precision and scale:

Declaration Assigned value Stored value
NUMBER 6.02 6.02
NUMBER(4) 8675 8675
NUMBER(4) 8675309 Error
NUMBER(12,5) 3.14159265 3.14159
NUMBER(12,-5) 8675309 8700000

Binary integer numeric datatypes store whole numbers. They include BINARY_INTEGER, INTEGER,
INT, SMALLINT, NATURAL, NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE. Binary integer
datatypes store signed integers in the range of -231 + 1 to 231 - 1. The subtypes include NATURAL (0
through 231) and POSITIVE (1 through 231) together with the NOT NULL variations NATURALN and
POSITIVEN. SIGNTYPE is restricted to three values (-1, 0, 1).

PLS_INTEGER datatypes have the same range as the BINARY_INTEGER datatype, but use machine
arithmetic instead of library arithmetic, so are slightly faster for computation-heavy processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following table lists the PL/SQL numeric datatypes with ANSI and IBM compatibility. In this table:

prec is the precision for the subtype.

scale is the scale of the subtype.

binary is the binary precision of the subtype.

PL/SQL datatype Compatibility Oracle RDBMS datatype
DEC(prec,scale) ANSI NUMBER(prec,scale)
DECIMAL(prec,scale) IBM NUMBER(prec,scale)
DOUBLE PRECISION ANSI NUMBER
FLOAT(binary) ANSI, IBM NUMBER
INT ANSI NUMBER(38)
INTEGER ANSI, IBM NUMBER(38)
NUMERIC(prec,scale) ANSI NUMBER(prec,scale)
REAL ANSI NUMBER
SMALLINT ANSI, IBM NUMBER(38)

1.5.1.2 Character datatypes

Character datatypes store alphanumeric text and are manipulated by character functions. As with the
numeric family, there are several subtypes in the character family, shown in the following table:

Family Description

CHAR Fixed-length alphanumeric strings. Valid sizes are 1 to 32767 bytes (which is larger than
the Oracle database limit of 4000).

VARCHAR2 Variable-length alphanumeric strings. Valid sizes are 1 to 32767 bytes (which is larger
than the Oracle database limit of 4000).

LONG
Variable-length alphanumeric strings. Valid sizes are 1 to 32760 bytes. LONG is included
primarily for backward compatibility. CLOB is the preferred datatype for large character
strings.

RAW
Variable-length binary strings. Valid sizes are 1 to 32767 bytes (which is larger than the
Oracle database limit of 2000). RAW data do not undergo character set conversion when
selected from a remote database.

LONG
RAW

Variable-length binary strings. Valid sizes are 1 to 32760 bytes. LONG RAW is included
primarily for backward compatibility. BLOB and BFILE are the preferred datatypes for
large binary data.

ROWID

Fixed-length binary data. Every row in a database has a physical address or ROWID. A
ROWID has four parts in base 64:

OOOOOOFFFBBBBBBRRR

where:

OOOOOO is the object number.

FFFF is the absolute or relative file number.

BBBBBBBB is the block number within the file.

RRRR is the row number within the block.

UROWID Universal ROWID. Variable-length hexadecimal string depicting a logical, physical, or
non-Oracle row identifier. Valid sizes are up to 4000 bytes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5.1.3 Datetime datatypes

Oracle expanded support for datetime data in Oracle9i by introducing an assortment of new
datatypes. The datetime datatypes are DATE (the only datetime datatype pre-Oracle9i), TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE. The two interval datatypes,
also new to Oracle9i, are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND.

DATE values are fixed-length, date-plus-time values. The DATE datatype can store dates from January
1, 4712 B.C. to December 31, 9999 A.D. Each DATE includes the century, year, month, day, hour,
minute, and second. Sub-second granularity is not supported via the DATE datatype; use one of the
TIMESTAMP datatypes instead. The time portion of a DATE defaults to midnight (12:00:00 AM) if it is
not included explicitly.

TIMESTAMP values store date and time to sub-second granularity. The sub-second precision (the
number of digits to the right of the decimal) either defaults or is set to 0 through 9 digits by
declaration, as in:

DECLARE
 mytime_declared TIMESTAMP(9);
 mytime_default TIMESTAMP;

The default precision is 6 digits of precision to the right of the decimal.

TIMESTAMP WITH TIME ZONE values store date and time values like a TIMESTAMP but also store the
hourly offset from UTC (Coordinated Universal Time, which is essentially equivalent to Greenwich
Mean Time). As with TIMESTAMP, the sub-second precision is 0 to 9 digits, either declared or
inherited from the default 6 digits of precision.

DECLARE
 mytime_declared TIMESTAMP(9) WITH TIME ZONE;
 mytime_default TIMESTAMP WITH TIME ZONE;

TIMESTAMP WITH LOCAL TIME ZONE values store date and time values together with the UTC offset,
like a TIMESTAMP WITH TIME ZONE. The principal difference between these timestamp datatypes
occurs when values are saved to or retrieved from a database table. TIMESTAMP WITH LOCAL TIME
ZONE values are converted to the database time zone and saved without an offset. The values
retrieved from the database table are converted from the database time zone to the session's time
zone.

The offset from UTC for both TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE
can be hours and minutes or a time zone region (found in the V$TIMEZONE_NAMES data dictionary
view) with the optional daylight savings time name (also found in V$TIMEZONE_NAMES). For
example:

ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT=
 'DD-Mon-YYYY HH24:MI:SS.FF TZR';
DECLARE
 my_tswtz TIMESTAMP(4) WITH TIME ZONE;
BEGIN
 my_tswtz := '31-JUL-02 07:32:45.1234 US/Pacific';

INTERVAL YEAR TO MONTH values store a period of time in years and months:

DECLARE
 myy2m INTERVAL YEAR TO MONTH;
BEGIN
 myy2m := INTERVAL '1-6' YEAR TO MONTH;

INTERVAL DAY TO SECOND values store a period of time in days, hours, minutes, seconds, and
fractional seconds:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE
 myd2s INTERVAL DAY TO SECOND;
BEGIN
 myd2s := INTERVAL '2 10:32:15.678' DAY TO SECOND;

1.5.1.4 Boolean datatype

The BOOLEAN datatype can store one of only three values: TRUE, FALSE, or NULL. BOOLEAN variables
are usually used in logical control structures such as IF...THEN or LOOP statements.

The following truth tables show the results of logical AND, OR, and NOT operations with PL/SQL's
three-value Boolean model:

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

NOT (TRUE) NOT (FALSE) NOT (NULL)
FALSE TRUE NULL

1.5.2 NLS Character Datatypes

The standard WE8MSWIN1252 or WE8ISO8859P2 character set does not support some languages,
such as Chinese and Greek. To support a secondary character set, Oracle allows two character sets in
a database—the database character set and the national character set (NLS).

The two NLS datatypes, NCHAR and NVARCHAR2, are used to represent data in the national character
set. NCHAR values are fixed-length character data; the maximum length is 32767 bytes. NVARCHAR2
values are variable-length character data; the maximum length is also 32767 bytes.

1.5.3 LOB Datatypes

PL/SQL supports a number of large object (LOB) datatypes, which can store objects of up to four
gigabytes of data. Unlike the scalar datatypes, variables declared for LOBs use locators, or pointers to
the actual data. LOBs are manipulated in PL/SQL using the built-in package DBMS_LOB. The LOB
datatypes are:

BFILE

File locators pointing to read-only large binary objects in operating system files. With BFILEs,
the large objects are outside the database.

BLOB

LOB locators that point to large binary objects inside the database.

CLOB

LOB locators that point to large character (alphanumeric) objects inside the database.

NCLOB

LOB locators that point to large national character set objects inside the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5.4 Implicit Datatype Conversions

Whenever PL/SQL detects that a datatype conversion is necessary, it attempts to change the values
as required to perform the operation. Figure 2 shows what types of implicit conversions PL/SQL can
perform.

Figure 1-2. Implicit conversions performed by PL/SQL

1.5.5 NULLs in PL/SQL

PL/SQL represents unknown or inapplicable values as NULL values. Because a NULL is unknown, a
NULL is never equal or not equal to anything (including another NULL value). In addition, most
functions return a NULL when passed a NULL argument—the notable exceptions are NVL, NVL2,
CONCAT, and REPLACE. You cannot check for equality or inequality to NULL; therefore, you must use
the IS NULL or IS NOT NULL syntax to check for NULL values.

Here is an example of the IS NULL syntax used to check the value of a variable:

BEGIN
 IF myvar IS NULL
 THEN
 ...

1.5.6 Declaring Variables

Before you can use a variable, you must first declare it in the declaration section of your PL/SQL block
or in a package as a global. When you declare a variable, PL/SQL allocates memory for the variable's
value and names the storage location so that the value can be retrieved and changed. The syntax for
a variable declaration is:

variable_name datatype [CONSTANT] [NOT NULL]
 [{ := | DEFAULT } initial_value]

1.5.6.1 Constrained declarations

The datatype in a declaration can be constrained or unconstrained. Constrained datatypes have a size,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The datatype in a declaration can be constrained or unconstrained. Constrained datatypes have a size,
scale, or precision limit that is less than the unconstrained datatype. For example:

total_sales NUMBER(15,2); -- Constrained.
emp_id VARCHAR2(9); -- Constrained.
company_number NUMBER; -- Unconstrained.
book_title VARCHAR2; -- Not valid.

Constrained declarations require less memory than unconstrained declarations. Not all datatypes can
be specified as unconstrained. You cannot, for example, declare a variable to be of type VARCHAR2.
You must always specify the maximum size of a variable-length string.

1.5.6.2 Constants

The CONSTANT keyword in a declaration requires an initial value and does not allow that value to be
changed. For example:

min_order_qty NUMBER(1) CONSTANT := 5;

1.5.6.3 Default values

Whenever you declare a variable, it is assigned a default value of NULL. Initializing all variables is
distinctive to PL/SQL; in this way, PL/SQL differs from languages such as C and Ada. If you want to
initialize a variable to a value other than NULL, you do so in the declaration with either the
assignment operator (:=) or the DEFAULT keyword:

counter BINARY_INTEGER := 0;
priority VARCHAR2(8) DEFAULT 'LOW';

A NOT NULL constraint can be appended to the variable's datatype declaration to indicate that NULL is
not a valid value. If you add the NOT NULL constraint, you must explicitly assign an initial value for
that variable.

1.5.7 Anchored Declarations

Use the %TYPE attribute to anchor the datatype of a scalar variable to either another variable or to a
column in a database table or view. Use %ROWTYPE to anchor a record's declaration to a cursor or
table (see Section 1.11 for more detail on the %ROWTYPE attribute).

The following block shows several variations of anchored declarations:

DECLARE
 tot_sales NUMBER(20,2);
 -- Anchor to a PL/SQL variable.
 monthly_sales tot_sales%TYPE;

 -- Anchor to a database column.
 v_ename employee.last_name%TYPE;

 CURSOR mycur IS
 SELECT * FROM employee;

 -- Anchor to a cursor.
 myrec mycur%ROWTYPE;

The NOT NULL clause on a variable declaration (but not on a database column definition) follows the
%TYPE anchoring and requires anchored declarations to have a default in their declaration. The
default value for an anchored declaration can be different from that for the base declaration:

tot_sales NUMBER(20,2) NOT NULL DEFAULT 0;
monthly_sales tot_sales%TYPE DEFAULT 10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5.8 Programmer-Defined Subtypes

PL/SQL allows you to define unconstrained scalar subtypes. An unconstrained subtype provides an
alias to the original underlying datatype; for example:

CREATE OR REPLACE PACKAGE std_types
IS
 -- Declare standard types as globals.
 SUBTYPE dollar_amt_t IS NUMBER;
END std_types;

CREATE OR REPLACE PROCEDURE process_money
IS
 -- Use the global type declared above.
 credit std_types.dollar_amt_t;
 ...

A constrained subtype limits or constrains the new datatype to a subset of the original datatype. For
example, POSITIVE is a constrained subtype of BINARY_INTEGER. The declaration for POSITIVE in the
STANDARD package is:

SUBTYPE POSITIVE IS BINARY_INTEGER RANGE 1..2147483647;

You can define your own constrained subtypes in your programs:

PACKAGE std_types
IS
 SUBTYPE currency_t IS NUMBER (15, 2);

END;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.6 Conditional and Sequential Control

PL/SQL includes conditional (IF, CASE) structures as well as sequential control (GOTO, NULL)
constructs.

1.6.1 Conditional Control Statements

There are several varieties of IF-THEN-ELSE and CASE structures.

1.6.1.1 IF-THEN combination

IF condition THEN
 executable statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
END IF;

1.6.1.2 IF-THEN-ELSE combination

IF condition THEN
 TRUE sequence_of_executable_statement(s)
ELSE
 FALSE/NULL sequence_of_executable_statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSE
 generate_response('BRONZE');
END IF;

1.6.1.3 IF-THEN-ELSIF combination

IF condition-1 THEN
 statements-1
ELSIF condition-N THEN
 statements-N
[ELSE
 ELSE statements]
END IF;

For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSIF priority_client THEN
 generate_response('SILVER');
ELSE
 generate_response('BRONZE');
END IF;

1.6.1.4 CASE statement (Oracle9i)

There are two types of CASE statements: simple and searched.

A simple CASE statement is similar to an IF-THEN-ELSIF structure. The statement has a switch
expression immediately after the keyword CASE. The expression is evaluated and compared to the
value in each WHEN clause. The first WHEN clause with a matching value is executed and then control
passes to the next statement following the END CASE. For example:

CASE region_id
 WHEN 'NE' THEN
 mgr_name := 'MINER';
 WHEN 'SE' THEN
 mgr_name := 'KOOI';
 ELSE mgr_name := 'LANE';
END CASE;

If a switch expression evaluates to NULL, the ELSE case is the only one that can possibly match;
WHEN NULL will never match because Oracle performs an equality comparison on the expressions.

Both the CASE statement and the CASE expression (see the next section) should include an ELSE
clause that will execute statements if no WHEN clause evaluates TRUE, because PL/SQL's runtime
engine will raise an exception if it finds no matching expression.

The searched CASE statement does not have a switch; instead, each WHEN clause has a complete
Boolean expression. The first matching WHEN clause is executed and control passes to the next
statement following the END CASE. For example:

CASE
 WHEN region_id = 'EAME' THEN
 mgr_name := 'SCHMIDT';
 WHEN division = 'SALES' THEN
 mgr_name := 'KENNEDY';
 ELSE mgr_name := 'GUPTA';
END CASE;

1.6.1.5 CASE expression (Oracle9i)

There are also two types of CASE expressions: simple and searched. You can use CASE expressions
anywhere that you can use any other type of expressions in PL/SQL programs.

A simple CASE expression lets you choose an expression to evaluate based on a scalar value that you
provide as input. The following example shows a simple CASE expression being used with the built-in
DBMS_OUTPUT package to output the value of a Boolean variable. DBMS.OUTPUT.PUT_LINE is not
overloaded to handle Boolean types, so in this example the CASE expression converts the Boolean
value in a character string, which PUT_LINE can then handle:

DECLARE
 boolean_true BOOLEAN := TRUE;
 boolean_false BOOLEAN := FALSE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 boolean_false BOOLEAN := FALSE;
 boolean_null BOOLEAN;

 FUNCTION boolean_to_varchar2 (flag IN BOOLEAN)
 RETURN VARCHAR2 IS
 BEGIN
 RETURN
 CASE flag
 WHEN TRUE THEN 'True'
 WHEN FALSE THEN 'False'
 ELSE 'NULL' END;
 END;

BEGIN
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2(boolean_true));
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2(boolean_false));
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2(boolean_null));
END;

A searched CASE expression evaluates a list of expressions to find the first one that evaluates to
TRUE, and then returns the results of an associated expression. In the following example, a searched
CASE expression returns the proper bonus value for any given salary:

DECLARE
 salary NUMBER := 20000;
 employee_id NUMBER := 36325;

 PROCEDURE give_bonus
 (emp_id IN NUMBER, bonus_amt IN NUMBER) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emp_id);
 DBMS_OUTPUT.PUT_LINE(bonus_amt);
 END;

BEGIN
 give_bonus(employee_id,
 CASE
 WHEN salary >= 10000 AND salary <=20000 THEN 1500
 WHEN salary > 20000 AND salary <= 40000 THEN 1000
 WHEN salary > 40000 THEN 500
 ELSE 0
 END);
END;

1.6.2 Sequential Control Statements

PL/SQL provides a GOTO statement and a NULL statement to aid in sequential control operations.

1.6.2.1 GOTO

The GOTO statement performs unconditional branching to a named label. You should only rarely use a
GOTO. At least one executable statement must follow the label (the NULL statement can be this
necessary executable statement). The format of a GOTO statement is:

GOTO <<label_name>>;

For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEGIN
 GOTO second_output;

 DBMS_OUTPUT.PUT_LINE('This line will never execute.');

 <<second_output>>
 DBMS_OUPUT.PUT_LINE('We are here!);
END

There are a number of scope restrictions on where a GOTO can branch control. A GOTO:

Can branch out of an IF statement, LOOP, or sub-block

Cannot branch into an IF statement, LOOP, or sub-block

Cannot branch from one section of an IF statement to another (from the IF-THEN section to the
ELSE section is illegal)

Cannot branch into or out of a sub-program

Cannot branch from the exception section to the executable section of a PL/SQL block

Cannot branch from the executable section to the exception section of a PL/SQL block,
although a RAISE does this

1.6.2.2 NULL

The NULL statement is an executable statement that does nothing. It is useful when an executable
statement must follow a GOTO label or to aid readability in an IF-THEN-ELSE structure. For example:

IF :report.selection = 'DETAIL' THEN
 exec_detail_report;
ELSE
 NULL;
END IF;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.7 Loops

The LOOP construct allows you to execute a sequence of statements repeatedly. There are three kind
of loops: simple (infinite), FOR, and WHILE.

You can use the EXIT statement to break out of LOOP and pass control to the statement following the
END LOOP.

1.7.1 Simple Loop

LOOP
 executable_statement(s)
END LOOP;

The simple loop should contain an EXIT or EXIT WHEN unless you want it to execute infinitely. Use the
simple loop when you want the body of the loop to execute at least once. For example:

LOOP
 FETCH company_cur INTO company_rec;
 EXIT WHEN company_cur%ROWCOUNT > 5 OR
 company_cur%NOTFOUND;
 process_company(company_cur);
END LOOP;

1.7.2 Numeric FOR Loop

FOR loop_index IN [REVERSE] lowest_number..highest_number
LOOP
 executable_statement(s)
END LOOP;

The PL/SQL runtime engine automatically declares the loop index a PLS_INTEGER variable; never
declare a variable with that name yourself. The lowest_number and highest_number ranges can be
variables, but are evaluated only once—on initial entry into the loop. The REVERSE keyword causes
PL/SQL to start with the highest_number and decrement down to the lowest_number. For example,
this code:

BEGIN
 FOR counter IN 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT(counter);
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;

 FOR counter IN REVERSE 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT(counter);
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;END;

yields the following output:

1234
4321

1.7.3 Cursor FOR Loop

FOR record_index IN [cursor_name | (SELECT statement)]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FOR record_index IN [cursor_name | (SELECT statement)]
LOOP
 executable_statement(s)
END LOOP;

The PL/SQL runtime engine automatically declares the loop index a record of
cursor_name%ROWTYPE; never declare a variable with that name yourself.

The cursor FOR loop automatically opens the cursor, fetches all rows identified by the cursor, and
then closes the cursor. You can embed the SELECT statement directly in the cursor FOR loop. For
example:

FOR emp_rec IN emp_cur
LOOP
 IF emp_rec.title = 'Oracle Programmer'
 THEN
 give_raise(emp_rec.emp_id,30)
 END IF;
END LOOP;

1.7.4 WHILE Loop

WHILE condition
LOOP
 executable_statement(s)
END LOOP;

Use the WHILE loop in cases where you may not want the loop body to execute even once:

WHILE NOT end_of_analysis
LOOP
 perform_analysis;
 get_next_record;
 IF analysis_cursor%NOTFOUND AND next_step IS NULL
 THEN
 end_of_analysis := TRUE;
 END IF;
END LOOP;

1.7.5 REPEAT UNTIL Loop Emulation

PL/SQL does not directly support a REPEAT UNTIL construct, but a modified simple loop can emulate
one. The syntax for this emulated REPEAT UNTIL loop is:

LOOP
 executable_statement(s)
 EXIT WHEN Boolean_condition;
END LOOP;

Use the emulated REPEAT UNTIL loop when executing iterations indefinitely before conditionally
terminating the loop.

1.7.6 EXIT Statement

EXIT [WHEN condition];

If you do not include a WHEN clause in the EXIT statement, it will terminate the loop unconditionally.
Otherwise, the loop terminates only if the Boolean condition evaluates to TRUE. The EXIT statement is
optional and can appear anywhere in the loop.

1.7.7 Loop Labels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loops can be optionally labeled to improve readability and execution control, as we showed earlier in
the discussion of the GOTO statement. The label must appear immediately in front of the statement
that initiates the loop.

The following example demonstrates the use of loop labels to qualify variables within a loop and also
to terminate nested and outer loops:

<<year_loop>>
FOR yearind IN 1 .. 20
LOOP
 <<month_loop>>
 LOOP
 ...
 IF year_loop.yearind > 10
 THEN
 EXIT year_loop;
 END IF;
 END LOOP month_loop;
END LOOP year_loop;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.8 Database Interaction

PL/SQL is tightly integrated with the underlying SQL layer of the Oracle database. You can execute
SQL statements (UPDATE, INSERT, DELETE, MERGE, and SELECT) directly in PL/SQL programs. You
can also execute Data Definition Language (DDL) statements through the use of dynamic SQL. In
addition, you can manage transactions with COMMIT, ROLLBACK, and other Data Control Language
(DCL) statements.

1.8.1 Transaction Management

The Oracle RDBMS provides a transaction model based on a unit of work. The PL/SQL language
supports most, but not all, of the database model for transactions (you cannot, for example, specify
ROLLBACK FORCE). A transaction begins with the first change to data and ends with either a COMMIT
or a ROLLBACK. Transactions are independent of PL/SQL blocks. Transactions can span multiple
PL/SQL blocks, or there can be multiple transactions in a single PL/SQL block. The PL/SQL-supported
transaction statements include COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION, and LOCK
TABLE, described in the following sections.

1.8.1.1 COMMIT

COMMIT [WORK] [COMMENT text];

COMMIT makes the database changes permanent and visible to other database sessions. The WORK
keyword is optional and only aids readability—it is rarely used. The COMMENT text is optional and can
be up to 50 characters in length. It is only germane to in-doubt distributed (two-phase commit)
transactions. The database statement COMMIT FORCE, also for distributed transactions, is not
supported in PL/SQL.

1.8.1.2 ROLLBACK

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

ROLLBACK undoes the changes made in the current transaction either to the beginning of the
transaction or to a savepoint. A savepoint is a named processing point in a transaction, created with
the SAVEPOINT statement. Rolling back to a savepoint is a partial rollback of a transaction, wiping out
all changes (and savepoints) that occurred later than the named savepoint.

1.8.1.3 SAVEPOINT

SAVEPOINT savepoint_name;

SAVEPOINT establishes a savepoint in the current transaction. savepoint_name is an undeclared
identifier—you do not declare it. More than one savepoint can be established within a transaction. If
you reuse a savepoint name, that savepoint is moved to the later position and you will not be able to
roll back to the initial savepoint position.

1.8.1.4 SET TRANSACTION

SET TRANSACTION READ ONLY;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION USE ROLLBACK SEGMENT rbseg_name;

SET TRANSACTION has three transaction control functions:

READ ONLY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Marks the beginning of a read-only transaction. This indicates to the RDBMS that a read-
consistent view of the database is to be enforced for the transaction (the default is for the
statement). This read-consistent view means that only changes committed before the
transaction begins are visible for the duration of the transaction. The transaction is ended with
either a COMMIT or a ROLLBACK. Only LOCK TABLE, SELECT, SELECT INTO, OPEN, FETCH,
CLOSE, COMMIT, or ROLLBACK statements are permitted during a read-only transaction.
Issuing other statements, such as INSERT or UPDATE, in a read-only transaction results in an
ORA-1456 error.

ISOLATION LEVEL SERIALIZABLE

Similar to a READ ONLY transaction in that transaction-level read consistency is enforced
instead of the default statement-level read consistency. Serializable transactions do allow
changes to data, however.

USE ROLLBACK SEGMENT

Tells the RDBMS to use the specifically named rollback segment rbseg_name. This statement is
useful when only one rollback segment is large, and a program knows that it needs to use the
large rollback segment, such as during a month-end close operation. For example, if we know
that our large rollback segment is named rbs_large, we can tell the database to use it by
issuing the following statement before our first change to data:

SET TRANSACTION USE ROLLBACK SEGMENT rbs_large;

1.8.1.5 LOCK TABLE

LOCK TABLE table_list IN lock_mode MODE [NOWAIT];

This statement bypasses the implicit database row-level locks by explicitly locking one or more tables
in the specified mode. The table_list is a comma-delimited list of tables. The lock_mode is one of the
following: ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW EXCLUSIVE, or
EXCLUSIVE. The NOWAIT keyword specifies that the RDBMS should not wait for a lock to be released.
If there is a lock when NOWAIT is specified, the RDBMS raises the exception "ORA-00054: resource
busy and acquire with NOWAIT specified." The default RDBMS locking behavior is to wait indefinitely.

1.8.2 Autonomous Transactions

Autonomous transactions, introduced in Oracle8i, execute within a block of code as separate
transactions from the outer (main) transaction. Changes can be committed or rolled back in an
autonomous transaction without committing or rolling back the main transaction. Changes committed
in an autonomous transaction are visible to the main transaction, even though they occur after the
start of the main transaction. Those changes committed in an autonomous transaction are visible to
other transactions as well. The RDBMS suspends the main transaction while the autonomous
transaction executes:

PROCEDURE main IS
BEGIN
 UPDATE ... -- Main transaction begins here.
 DELETE ...
 at_proc; -- Call the autonomous transaction.
 SELECT ...
 INSERT ...
 COMMIT; -- Main transaction ends here.
END;

PROCEDURE at_proc IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN -- Main transaction suspends here.
 SELECT ...
 INSERT ... -- Autonomous transaction begins here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INSERT ... -- Autonomous transaction begins here.
 UPDATE ...
 DELETE ...
 COMMIT; -- Autonomous transaction ends here.
END; -- Main transaction resumes here.

So, changes made in the main transaction are not visible to the autonomous transaction, and if the
main transaction holds any locks that the autonomous transaction waits for, a deadlock occurs. Using
the NOWAIT option on UPDATE statements in autonomous transactions can help to minimize this kind
of deadlock. Functions and procedures (local program, standalone, or packaged), database triggers,
top-level anonymous PL/SQL blocks, and object methods can be declared autonomous via the
compiler directive PRAGMA AUTONOMOUS_TRANSACTION. In addition, there must be a commit or a
rollback at each exit point in the autonomous program.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.9 Cursors in PL/SQL

Every SQL statement executed by the RDBMS has a private SQL area that contains information about
the SQL statement and the set of data returned. In PL/SQL, a cursor is a name assigned to a specific
private SQL area for a specific SQL statement. There can be either static cursors, whose SQL
statement is determined at compile time, or dynamic cursors, whose SQL statement is determined at
runtime. Static cursors are used only for DML statements (SELECT, INSERT, UPDATE, DELETE,
MERGE, or SELECT FOR UPDATE). These static cursors can be explicitly declared and named or may
appear in-line as an implicit cursor. Dynamic cursors are used for any type of valid SQL statement
including DDL (CREATE, TRUNCATE, ALTER) and DCL (GRANT, REVOKE). Dynamic cursors are
implemented with the EXECUTE IMMEDIATE statement.

1.9.1 Explicit Cursors

Explicit cursors are SELECT statements that are DECLAREd explicitly in the declaration section of the
current block or in a package specification. Use OPEN, FETCH, and CLOSE in the execution or
exception sections of your programs.

1.9.1.1 Declaring explicit cursors

To use an explicit cursor, you must first declare it in the declaration section of a block or package.
There are three types of explicit cursor declarations:

A cursor without parameters; for example:

CURSOR company_cur
 IS
 SELECT company_id FROM company;

A cursor that accepts arguments through a parameter list; for example:

CURSOR company_cur (id_in IN NUMBER) IS
SELECT name FROM company
WHERE company_id = id_in;

A cursor header that contains a RETURN clause in place of the SELECT statement; for example:

CURSOR company_cur (id_in IN NUMBER)
RETURN company%ROWTYPE;

This last example shows that the cursor can be declared separately from its implementation; for
example, the header in a package specification and the implementation in the package body. See
Section 1.14 for more information.

1.9.1.2 Opening explicit cursors

To open a cursor, use the following syntax:

OPEN cursor_name [(argument [,argument ...])];

where cursor_name is the name of the cursor as declared in the declaration section. The arguments
are required if the definition of the cursor contains a parameter list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You must open an explicit cursor before you can fetch rows from that cursor. When the cursor is
opened, the processing actually includes the parse, bind, open, and execute phases of SQL statement
execution. This OPEN processing includes determining an execution plan, associating host variables
and cursor parameters with the placeholders in the SQL statement, determining the result set, and,
finally, setting the current row pointer to the first row in the result set.

When using a cursor FOR loop, the OPEN is implicit in the FOR statement. If you try to open a cursor
that is already open, PL/SQL will raise an "ORA-06511: PL/SQL: cursor already open" exception.

1.9.1.3 Fetching from explicit cursors

The FETCH statement places the contents of the current row into local variables. To retrieve all rows
in a result set, each row needs to be fetched. The syntax for a FETCH statement is:

FETCH cursor_name INTO record_or_variable_list;

where cursor_name is the name of the cursor as declared and opened.

1.9.1.4 Closing explicit cursors

After all rows have been fetched, a cursor needs to be closed. Closing a cursor enables the PL/SQL
memory optimization algorithm to release the associated memory at an appropriate time. You can
close an explicit cursor by specifying a CLOSE statement as follows:

CLOSE cursor_name;

where cursor_name is the name of the cursor declared and opened.

If you declare a cursor in a local anonymous, procedure, or function block, that cursor will
automatically close when the block terminates. Package-based cursors must be closed explicitly, or
they stay open for the duration of your session. Closing a cursor that is not open raises an INVALID
CURSOR exception.

1.9.1.5 Explicit cursor attributes

There are four attributes associated with cursors: ISOPEN, FOUND, NOTFOUND, and ROWCOUNT.
These attributes can be accessed with the % delimiter to obtain information about the state of the
cursor. The syntax for a cursor attribute is:

cursor_name%attribute

where cursor_name is the name of the explicit cursor.

The behaviors of the explicit cursor attributes are described in the following table:

Attribute Description

%ISOPEN
TRUE if cursor is open.

FALSE if cursor is not open.

%FOUND

INVALID_CURSOR is raised if cursor has not been OPENed.

NULL before the first fetch.

TRUE if record was fetched successfully.

FALSE if no row was returned.

INVALID_CURSOR if cursor has been CLOSEd.
INVALID_CURSOR is raised if cursor has not been OPENed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%NOTFOUND

NULL before the first fetch.

FALSE if record was fetched successfully.

TRUE if no row was returned.

INVALID_CURSOR if cursor has been CLOSEd.

%ROWCOUNT

INVALID_CURSOR is raised if cursor has not been OPENed.

The number of rows fetched from the cursor.

INVALID_CURSOR if cursor has been CLOSEd.

Frequently, a cursor attribute is checked as part of a WHILE loop that fetches rows from a cursor, as
shown here:

DECLARE
 caller_rec caller_pkg.caller_cur%ROWTYPE;
BEGIN
 OPEN caller_pkg.caller_cur;
 LOOP
 FETCH caller_pkg.caller_cur into caller_rec;
 EXIT WHEN caller_pkg.caller_cur%NOTFOUND
 OR
 caller_pkg.caller_cur%ROWCOUNT > 10;

 UPDATE call
 SET caller_id = caller_rec.caller_id
 WHERE call_timestamp < SYSDATE;
 END LOOP;
 CLOSE caller_pkg.caller_cur;
END;

1.9.2 Implicit Cursors

Whenever a SQL statement is directly in the execution or exception section of a PL/SQL block, you are
working with implicit cursors. SQL statements handled this way include INSERT, UPDATE, DELETE,
MERGE, and SELECT INTO. Unlike explicit cursors, implicit cursors do not need to be declared,
OPENed, FETCHed, or CLOSEd.

SELECT statements handle the %FOUND and %NOTFOUND attributes differently from the way that
explicit cursors do. When an implicit SELECT statement does not return any rows, PL/SQL immediately
raises the NO_DATA_FOUND exception and control passes to the exception section. When an implicit
SELECT returns more than one row, PL/SQL immediately raises the TOO_MANY_ROWS exception and
control passes to the exception section.

Implicit cursor attributes are referenced via the SQL cursor. For example:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id;

 IF SQL%NOTFOUND THEN
 INSERT INTO activity_log (uid,last_accessed)
 VALUES (user_id,SYSDATE);
 END IF
END;

The following table lists the implicit cursor attributes:

Attributes Description
Always FALSE because the cursor is opened implicitly and closed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL%ISOPEN Always FALSE because the cursor is opened implicitly and closed
immediately after the statement is executed.

SQL%FOUND

NULL before the statement.

TRUE if one or more rows were inserted, merged, updated, or deleted or if
only one row was selected.

FALSE if no row was selected, merged, updated, inserted, or deleted.

SQL%NOTFOUND

NULL before the statement.

TRUE if no row was selected, merged, updated, inserted, or deleted.

FALSE if one or more rows were inserted, merged, updated, or deleted.
SQL%ROWCOUNT Number of rows affected by the cursor.

SQL%BULK_ROWCOUNT
Pseudo index-by table containing the numbers of rows affected by the
statements executed in bulk bind operations. See Section 1.17.8 for more
information. (Introduced with Oracle8i.)

Use the RETURNING clause in INSERT, UPDATE, and DELETE statements to obtain data modified by
the associated DML statement. This clause allows you to avoid an additional SELECT statement to
query the results of the DML statement. For example:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id
 RETURNING last_accessed, cost_center
 INTO timestamp, chargeback_acct;

1.9.2.1 SELECT FOR UPDATE clause

By default, the Oracle RDBMS locks rows as they are changed. To lock all rows in a result set, use the
FOR UPDATE clause in your SELECT statement when you OPEN the cursor, instead of when you
change the data. Using the FOR UPDATE clause does not require you to actually make changes to the
data; it only locks the rows when opening the cursor. These locks are released on the next COMMIT or
ROLLBACK. As always, these row locks do not affect other SELECT statements unless they, too, are
FOR UPDATE. The FOR UPDATE clause is appended to the end of the SELECT statement and has the
following syntax:

SELECT ...
 FROM ...
 FOR UPDATE [OF column_reference] [NOWAIT];

where column_reference is a comma-delimited list of columns that appear in the SELECT clause. The
NOWAIT keyword tells the RDBMS to not wait for other blocking locks to be released. The default is to
wait forever.

In the following example, only columns from the inventory (pet) table are referenced FOR UPDATE, so
no rows in the dog_breeds (dog) table are locked when hounds_in_stock_cur is opened:

DECLARE
 CURSOR hounds_in_stock_cur IS
 SELECT pet.stock_no, pet.breeder, dog.size
 FROM dog_breeds dog ,inventory pet
 WHERE dog.breed = pet.breed
 AND dog.class = 'HOUND'
 FOR UPDATE OF pet.stock_no, pet.breeder;
BEGIN

1.9.2.2 WHERE CURRENT OF clause

UPDATE and DELETE statements can use a WHERE CURRENT OF clause if they reference a cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE and DELETE statements can use a WHERE CURRENT OF clause if they reference a cursor
declared FOR UPDATE. This syntax indicates that the UPDATE or DELETE should modify the current
row identified by the FOR UPDATE cursor. The syntax is:

[UPDATE | DELETE] ...
 WHERE CURRENT OF cursor_name;

By using WHERE CURRENT OF, you do not have to repeat the WHERE clause in the SELECT statement.
For example:

DECLARE
 CURSOR wip_cur IS
 SELECT acct_no, enter_date FROM wip
 WHERE enter_date < SYSDATE - 7
 FOR UPDATE;
BEGIN
 FOR wip_rec IN wip_cur
 LOOP
 INSERT INTO acct_log (acct_no, order_date)
 VALUES (wip_rec.acct_no, wip_rec.enter_
 date);
 DELETE FROM wip
 WHERE CURRENT OF wip_cur;
 END LOOP;
END;

1.9.3 Dynamic Cursors

Dynamic cursors are implemented with an EXECUTE IMMEDIATE statement together with the OPEN
FOR, FETCH, and CLOSE statements. The EXECUTE IMMEDIATE statement supports single-row queries
and DDL, while the OPEN FOR, FETCH, and CLOSE statements support dynamic multi-row queries.
The syntax for these statements is:

EXECUTE IMMEDIATE sql_statement
 [INTO {variable [,variable ...] | record}]
 [USING [IN | OUT | IN OUT] bind_argument
 [,[IN | OUT | IN OUT] bind_argument ...]]
 [{RETURNING | RETURN} INTO bind_argument [,bind_argument]...];

The EXECUTE IMMEDIATE statement parses and executes the SQL statement in a single step. The
EXECUTE IMMEDIATE statement requires a terminating semicolon, but the sql_statement must not
have a trailing semicolon. For example:

EXECUTE IMMEDIATE 'TRUNCATE TABLE foo';
EXECUTE IMMEDIATE 'GRANT SELECT ON '|| tabname_v ||
 ' TO ' || grantee_list;

The OPEN FOR statement assigns a multi-row query to a weakly typed cursor variable. The rows are
then FETCHed and the cursor CLOSEd:

DECLARE
 TYPE cv_typ IS REF CURSOR;
 cv cv_typ;
 laccount_no NUMBER;
 lbalance NUMBER;
BEGIN
 OPEN cv FOR
 'SELECT account_no, balance
 FROM accounts
 WHERE balance < 500';
 LOOP
 FETCH cv INTO laccount_no, lbalance;
 EXIT WHEN cv%NOTFOUND;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 EXIT WHEN cv%NOTFOUND;
 -- Process the row.
 END LOOP;
 CLOSE cv;
END;

Because SQL statements usually execute repeatedly, declare your dynamic cursor with bind variables
and pass the values to Oracle at runtime. The parsed form of the statement can be reused from the
shared pool, improving performance. For example:

EXECUTE IMMEDIATE 'INSERT INTO hr.regions
 (region_id, region_name) VALUES (:r_id, :r_name)'
 USING id, name;

1.9.4 Cursor Variables

A cursor variable is a data structure that points to a cursor object, which in turn points to the cursor's
result set. You can use cursor variables to more easily retrieve rows in a result set from client and
server programs. You can also use cursor variables to hide minor variations in queries.

The syntax for a REF_CURSOR type (cursor variable) is:

TYPE ref_cursor_name IS REF CURSOR
 [RETURN record_type];

If you do not include a RETURN clause, then you are declaring a weak REF CURSOR. Cursor variables
declared from weak REF CURSORs can be associated with any query at runtime. A REF CURSOR
declaration with a RETURN clause defines a "strong" REF CURSOR. A cursor variable based on a
strong REF CURSOR can be associated with queries whose result sets match the number and datatype
of the record structure after the RETURN at runtime.

To use cursor variables, you must first create a REF_CURSOR type, then declare a cursor variable
based on that type.

The following example shows the use of both weak and strong REF CURSORs:

DECLARE
 -- Create a cursor type based on the company's
 table.
 TYPE company_curtype IS REF CURSOR
 RETURN companies%ROWTYPE;

 -- Create the variable based on the REF CURSOR.
 company_cur company_curtype;

 -- And now the weak, general approach.
 TYPE any_curtype IS REF CURSOR;
 generic_curvar any_curtype;

The syntax to OPEN a cursor variable is:

OPEN cursor_name FOR SELECT_statement;

FETCH and CLOSE a cursor variable using the same syntax as for explicit cursors. There are a number
of restrictions on cursor variables:

You cannot declare package-level cursor variables because they do not have a persistent state.
(You can declare them in packaged procedures and functions, however.)

You cannot assign NULLs to a cursor variable nor can you use comparison operators to test for
equality, inequality, or nullity.

Neither database columns nor collections can store cursor variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Neither database columns nor collections can store cursor variables.

You cannot use RPCs to pass cursor variables from one server to another.

1.9.5 Cursor Expressions

A cursor expression is a cursor that is used as a column expression in the SELECT list of an explicit
cursor. The syntax for a cursor expression is:

CURSOR (subquery)

Cursor expressions can reduce the amount of redundant data returned to a calling program over
techniques that involve joining the tables together. The cursor expression is automatically opened
when the parent row is fetched. Cursor expressions can be nested as well. These nested cursors are
closed when one of the following occurs:

The nested cursor is explicitly closed by the program.

The parent cursor is closed.

The parent cursor is re-executed.

An exception is raised during the fetch of the parent row.

An example of a cursor expression follows:

DECLARE
TYPE refcursor IS REF CURSOR;
CURSOR order_cur IS
 SELECT o.order_date ,o.order_status
 ,CURSOR(SELECT p.translated_name
 ,i.unit_price
 ,i.quantity
 FROM oe.order_items i
 ,oe.product_descriptions p
 WHERE i.product_id = p.product_id
 AND i.order_id = o.order_id)
 FROM oe.orders o
 WHERE order_date BETWEEN TO_DATE('01-Jan-03')
 AND TO_DATE('31-Jan_03');
odate oe.orders.order_date%TYPE;
ostatus oe.orders.order_status%TYPE;
od_cur refcursor;
tname oe.product_descriptions.translated_name%TYPE;
price oe.order_items.unit_price%TYPE;
qty oe.order_items.quantity%TYPE;
BEGIN
 OPEN order_cur;
 LOOP
 FETCH order_cur INTO odate, ostatus, od_cur;
 EXIT WHEN order_cur%NOTFOUND;
 LOOP
 FETCH od_cur INTO tname, price, qty;
 EXIT WHEN od_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(odate||','||ostatus
 ||','||tname||','||price||','||qty);
 END LOOP;
 END LOOP;
 CLOSE order_cur;
END;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.10 Exception Handling

PL/SQL allows developers to raise and handle errors (exceptions) in a very flexible and powerful way.
Each PL/SQL block can have its own exception section in which exceptions can be trapped and
handled (resolved or passed on to the enclosing block).

When an exception occurs (is raised) in a PL/SQL block, its execution section immediately terminates.
Control is passed to the exception section.

Every exception in PL/SQL has an error number and error message; some exceptions also have
names.

1.10.1 Declaring Exceptions

Some exceptions (see the following table) have been pre-defined by Oracle in the STANDARD package
or other built-in packages, such as UTL_FILE. You can also declare your own exceptions as follows:

DECLARE
 exception_name EXCEPTION;

Error Named exception
ORA-00001 DUP_VAL_ON_INDEX
ORA-00051 TIMEOUT_ON_RESOURCE
ORA-00061 TRANSACTION_BACKED_OUT
ORA-01001 INVALID_CURSOR
ORA-01012 NOT_LOGGED_ON
ORA-01017 LOGIN_DENIED
ORA-01403 NO_DATA_FOUND
ORA-01410 SYS_INVALID_ROWID
ORA-01422 TOO_MANY_ROWS
ORA-01476 ZERO_DIVIDE
ORA-01725 USERENV_COMMMITSCN_ERROR
ORA-01722 INVALID_NUMBER
ORA-06500 STORAGE_ERROR
ORA-06501 PROGRAM_ERROR
ORA-06502 VALUE_ERROR
ORA-06504 ROWTYPE_MISMATCH
ORA-06511 CURSOR_ALREADY_OPEN
ORA-06530 ACCESS_INTO_NULL
ORA-06531 COLLECTION_IS_NULL
ORA-06532 SUBSCRIPT_OUTSIDE_LIMIT
ORA-06533 SUBSCRIPT_BEYOND_COUNT
ORA-09592 CASE_NOT_FOUND
ORA-30625 SELF_IS_NULL
ORA-29280 INVALID_PATH
ORA-29281 INVALID_MODE
ORA-29282 INVALID_FILEHANDLE
ORA-29283 INVALID_OPERATION
ORA-29284 READ_ERROR
ORA-29285 WRITE_ERROR
ORA-29286 INTERNAL_ERROR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-29287 INVALID_MAXLINESIZE
ORA-29288 INVALID_FILENAME
ORA-29289 ACCESS_DENIED
ORA-29290 INVALID_OFFSET
ORA-29291 DELETE_FAILED
ORA-29292 RENAME_FAILED

An exception can be declared only once in a block, but nested blocks can declare an exception with
the same name as an outer block. If this multiple declaration occurs, scope takes precedence over
name when handling the exception. The inner block's declaration takes precedence over a global
declaration.

When you declare your own exception, you must RAISE it explicitly. All declared exceptions have an
error code of 1 and the error message "User-defined exception," unless you use the EXCEPTION_INIT
pragma.

You can associate an error number with a declared exception with the PRAGMA EXCEPTION_INIT
statement using the following syntax:

DECLARE
 exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT (exception_name,
 error_number);

where error_number is a literal value (variable references are not allowed). This number can be an
Oracle error, such as -1855, or an error in the user-definable -20000 to -20999 range.

1.10.2 Raising Exceptions

An exception can be raised in three ways:

By the PL/SQL runtime engine

By an explicit RAISE statement in your code

By a call to the built-in function RAISE_APPLICATION_ERROR

The syntax for the RAISE statement is:

RAISE exception_name;

where exception_name is the name of an exception that you have declared, or an exception that is
declared in the STANDARD package. If you use the RAISE statement inside an exception handler, you
can omit the exception name to re-raise the current exception:

RAISE;

This syntax is not valid outside the exception section.

The RAISE_APPLICATION_ERROR built-in function has the following header:

RAISE_APPLICATION_ERROR (
 num BINARY_INTEGER,
 msg VARCHAR2,
 keeperrorstack BOOLEAN DEFAULT FALSE);

where num is the error number (an integer between -20999 and -20000), msg is the associated error
message, and keeperrorstack controls the contents of the error stack.

1.10.3 Scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scope of an exception section is that portion of the code that is "covered" by the exception
section. An exception handler will only handle or attempt to handle exceptions raised in the
executable section of the PL/SQL block. Exceptions raised in the declaration or exception sections are
automatically passed to the outer block. Any line or set of PL/SQL code can be placed inside its own
block and given its own exception section. This allows you to limit the propagation of an exception.

1.10.4 Propagation

Exceptions raised in a PL/SQL block propagate to an outer block if they are unhandled or re-raised in
the exception section. When an exception occurs, PL/SQL looks for an exception handler that checks
for the exception (or is the WHEN OTHERS clause) in the current block. If a match is not found, then
PL/SQL propagates the exception to the enclosing block or calling program. This propagation
continues until the exception is handled or propagated out of the outermost block, back to the calling
program. In this case, the exception is "unhandled" and (1) stops the calling program, and (2) causes
an automatic rollback of any outstanding transactions.

Once an exception is handled, it will not propagate upward. If you want to trap an exception, display
a meaningful error message, and have the exception propagate upward as an error, you must re-raise
the exception. The RAISE statement can re-raise the current exception or raise a new exception, as
shown here:

PROCEDURE delete_dept(deptno_in IN NUMBER)
DECLARE
 still_have_employees EXCEPTION
 PRAGMA EXCEPTION_INIT(still_have_employees.
 -2292)
BEGIN
DELETE FROM dept
WHERE deptno = deptno_in;
EXCEPTION
 WHEN still_have_employees
 THEN
 DBMS_OUTPUT.PUT_LINE
('Please delete employees in dept first');
 ROLLBACK;
 RAISE; /* Re-raise the current exception. */
END;

1.10.4.1 WHEN OTHERS clause

Use the WHEN OTHERS clause in the exception handler as a catch-all to trap any exceptions that are
not handled by specific WHEN clauses in the exception section. If present, this clause must be the last
exception handler in the exception section. You specify this clause as follows:

EXCEPTION
 WHEN OTHERS
 THEN
 ...

1.10.4.2 SQLCODE and SQLERRM

SQLCODE and SQLERRM are built-in functions that provide the SQL error code and message for the
current exception. Use these functions inside the exception section's WHEN OTHERS clause to handle
specific errors by number. The EXCEPTION_INIT pragma allows you to handle errors by name. For
example, the following code:

CREATE TABLE err_test
 (widget_name VARCHAR2(100)
 ,widget_count NUMBER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ,widget_count NUMBER
 ,CONSTRAINT no_small_numbers CHECK
 (widget_count > 1000));
BEGIN
 INSERT INTO err_test (widget_name, widget_count)
 VALUES ('Athena',2);
EXCEPTION
 WHEN OTHERS THEN
 IF SQLCODE = -2290
 AND SQLERRM LIKE '%NO_SMALL_NUMBERS%'
 THEN
 DBMS_OUTPUT.PUT_LINE('widget_count is too
 small');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Exception not handled,'
 ||'SQLcode='||SQLCODE);
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 END IF;
END;

produces this output:

widget_count is too small

The built-in package DBMS_UTILITY's FORMAT_ERROR_STACK and FORMAT_CALL_STACK procedures
can be used to capture the full error stack and call stack. See the book Oracle Built-in Packages for
more information on DBMS_UTILITY.

1.10.4.3 Exceptions and DML

When an exception is raised in a PL/SQL block, it does not roll back your current transaction, even if
the block itself issued an INSERT, UPDATE, or DELETE. You must issue your own ROLLBACK statement
if you want to clean up your transaction as a result of the exception.

If your exception goes unhandled (propagates out of the outermost block), however, most host
environments will then force an automatic, unqualified rollback of any outstanding changes in your
session.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.11 Records in PL/SQL

A PL/SQL record is a data structure composed of multiple pieces of information called fields. To use a
record, you must first define it and declare a variable of this type.

There are three types of records: table-based, cursor-based, and programmer-defined.

1.11.1 Declaring Records

You define and declare records either in the declaration section of a PL/SQL block or globally, via a
package specification.

You do not have to explicitly define table-based or cursor-based records, as they are implicitly defined
with the same structure as a table or a cursor. Variables of these types are declared via the
%ROWTYPE attribute. The record's fields correspond to the table's columns or the columns in the
SELECT list. For example:

DECLARE
 -- Declare table-based record for company table.
 comp_rec company%ROWTYPE

 CURSOR comp_summary_cur IS
 SELECT C.company_id,SUM(S.gross_sales) gross
 FROM company C ,sales S
 WHERE C.company_id = S.company_id;

 -- Declare a cursor-based record.
 comp_summary_rec comp_summary_cur%ROWTYPE;

Programmer-defined records must be explicitly defined with the TYPE statement in the PL/SQL
declaration section or in a package specification. Variables of this type can then be declared as shown
here:

DECLARE
 TYPE name_rectype IS RECORD(
 prefix VARCHAR2(15)
 ,first_name VARCHAR2(30)
 ,middle_name VARCHAR2(30)
 ,sur_name VARCHAR2(30)
 ,suffix VARCHAR2(10));

 TYPE employee_rectype IS RECORD (
 emp_id NUMBER(10) NOT NULL
 ,mgr_id NUMBER(10)
 ,dept_no dept.deptno%TYPE
 ,title VARCHAR2(20)
 ,name empname_rectype
 ,hire_date DATE := SYSDATE
 ,fresh_out BOOLEAN);

 -- Declare a variable of this type.
 new_emp_rec employee_rectype;
BEGIN

1.11.2 Referencing Fields of Records

Individual fields are referenced via dot notation:

record_name.field_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

record_name.field_name

For example:

employee.first_name

Individual fields within a record can be read from or written to. They can appear on either the left or
right side of the assignment operator:

BEGIN
 insurance_start_date := new_emp_rec.hire_date +
 30;
 new_emp_rec.fresh_out := FALSE;
 ...

1.11.3 Record Assignment

An entire record can be assigned to another record of the same type, but one record cannot be
compared to another record via Boolean operators. This is a valid assignment:

shipto_address_rec := customer_address_rec

This is not a valid comparison:

IF shipto_address_rec = customer_address_rec
THEN
 ...
END IF;

The individual fields of the records need to be compared instead.

Values can be assigned to records or to the fields within a record in four different ways:

The assignment operator can be used to assign a value to a field:

new_emp_rec.hire_date := SYSDATE;

You can SELECT INTO a whole record or the individual fields:

SELECT emp_id,dept,title,hire_date,college_recruit
 INTO new_emp_rec
 FROM emp
 WHERE surname = 'LI'

You can FETCH INTO a whole record or the individual fields:

FETCH emp_cur INTO new_emp_rec;
FETCH emp_cur INTO new_emp_rec.emp_id,
 new_emp_rec.name;

You can assign all of the fields of one record variable to another record variable of the same
type:

IF rehire THEN
 new_emp_rec := former_emp_rec;
ENDIF;

This aggregate assignment technique works only for records declared with the same TYPE
statement.

1.11.4 Nested Records

Nested records are records contained in fields that are records themselves. Nesting records is a
powerful way to normalize data structures and hide complexity within PL/SQL programs. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE
 -- Define a record.
 TYPE phone_rectype IS RECORD (
 area_code VARCHAR2(3),
 exchange VARCHAR2(3),
 phn_number VARCHAR2(4),
 extension VARCHAR2(4));

 -- Define a record composed of records.
 TYPE contact_rectype IS RECORD (
 day_phone# phone_rectype,
 eve_phone# phone_rectype,
 cell_phone# phone_rectype);

-- Declare a variable for the nested record.
 auth_rep_info_rec contact_rectype;
BEGIN

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.12 Named Program Units

PL/SQL allows you to create a variety of named program units, or containers for code. These include:

Procedure

A program that executes one or more statements

Function

A program that returns a value

Package

A container for procedures, functions, and data structures

Trigger

A program that executes in response to database changes

Object type

Oracle's version of an object-oriented class; object types can contain member procedures and
functions

1.12.1 Procedures

Procedures are program units that execute one or more statements and can receive or return zero or
more values through their parameter lists. The syntax of a procedure is:

CREATE [OR REPLACE] PROCEDURE name
 [(parameter [,parameter])]
 [AUTHID { CURRENT_USER | DEFINER }]
 [DETERMINISTIC]
{ IS | AS }
 declaration_section
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [name];

A procedure is called as a standalone executable PL/SQL statement:

apply_discount(new_company_id, 0.15);

1.12.2 Functions

Functions are program units that execute zero or more statements and return a value through the
RETURN clause. Functions can also receive or return zero or more values through their parameter
lists. The syntax of a function is:

CREATE [OR REPLACE] FUNCTION name
 [(parameter [,parameter])]
 RETURN return_datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RETURN return_datatype
 [AUTHID { CURRENT_USER | DEFINER }]
 [DETERMINISTIC]
 [PARALLEL_ENABLE]
 [PIPELINED]
 [AGGREGATE USING]
{ IS | AS }
 [declaration_section]
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [name];

A function must have at least one RETURN statement in the execution section. The RETURN clause in
the function header specifies the datatype of the returned value.

See Section 1.12.3.9 for information on the keywords OR REPLACE, AUTHID, DETERMINISTIC,
PARALLEL_ENABLE, PIPELINED, and AGGREGATE USING. See Section 1.12.3.11 for additional
information on AUTHID.

A function can be called anywhere that an expression of the same type can be used. You can call a
function:

In an assignment statement:

sales95 := tot_sales(1995,'C');

To set a default value:

DECLARE
 sales95 NUMBER DEFAULT tot_sales(1995,'C');
BEGIN

In a Boolean expression:

IF tot_sales(1995,'C') > 10000
THEN
...

In a SQL statement:

SELECT first_name ,surname
 FROM sellers
WHERE tot_sales(1995,'C') > 1000;

As an argument in another program unit's parameter list.

Here, for example, max_discount is a programmer-defined function and SYSDATE is a built-in
function:

apply_discount(company_id, max_discount(SYSDATE));

1.12.3 Parameters

Procedures, functions, and cursors may have a parameter list. This list contains one or more
parameters that allow you to pass information back and forth between the sub-program and the
calling program. Each parameter is defined by its name, datatype, mode, and optional default value.
The syntax for a parameter is:

parameter_name [mode] [NOCOPY] datatype
 [{ := | DEFAULT } value]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [{ := | DEFAULT } value]

1.12.3.1 Datatype

The datatype can be any PL/SQL or programmer-defined datatype, but cannot be constrained by a
size (NUMBER is valid, NUMBER(10) is not valid). The actual size of the parameter is determined from
the calling program or via a %TYPE constraint.

CREATE OR REPLACE PROCEDURE empid_to_name
(in_id emp.emp_id%TYPE -- Compiles OK.
,out_last_name VARCHAR2 -- Compiles OK.
,out_first_name VARCHAR2(10) -- Won't compile.
) IS
...

The lengths of out_last_name and out_first_name are determined by the calling program:

DECLARE
 surname VARCHAR2(10);
 first_name VARCHAR2(10);
BEGIN
 empid_to_name(10, surname, first_name);
END;

1.12.3.2 Mode

The mode of a parameter specifies whether the parameter can be read from or written to, as shown in
the following table:

Mode Description Parameter usage

IN Read-only The value of the actual parameter can be referenced inside the program, but
the parameter cannot be changed.

OUT or IN
OUT Read/write The program can both reference (read) and modify (write) the parameter.

If the mode is not explicitly defined, it defaults to IN.

OUT parameters are not the same as IN OUT parameters. When running the called program, the
runtime engine ignores (sets to NULL) any argument value you supply for an OUT parameter; it
preserves the value provided for an IN OUT. If an exception is raised during execution of a procedure
or function, assignments made to OUT or IN OUT parameters get rolled back unless the parameter
includes the NOCOPY option.

The NOCOPY compiler hint for parameters makes the parameter a call by reference instead of a call
by value. Normally, PL/SQL passes IN/OUT parameters by value—a copy of the parameter is created
for the sub-program. When parameter items get large, as collections and objects do, the copy can eat
memory and slow down processing. NOCOPY directs PL/SQL to pass the parameter by reference,
using a pointer to the single copy of the parameter.

The disadvantage of NOCOPY is that when an exception is raised during execution of a program that
has modified an OUT or IN OUT parameter, the changes to the actual parameters are not "rolled back"
because the parameters were passed by reference instead of being copied.

1.12.3.3 Default values

IN parameters can be given default values. If an IN parameter has a default value, then you do not
need to supply an argument for that parameter when you call the program unit. It automatically uses
the default value. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE PROCEDURE hire_employee
 (emp_id IN VARCHAR2
 ,hire_date IN DATE := SYSDATE
 ,company_id IN NUMBER := 1
)
IS
 ...

Here are some example calls to the above procedure:

-- Use two default values.
hire_employee(new_empno);
-- Use one default value.
hire_employee(new_empno,'12-Jan-1999');
-- Use non-trailing default value, named notation.
hire_employee(emp_id=>new_empno, comp_id=>12);

1.12.3.4 Parameter-passing notations

Formal parameters are the names that are declared in the header of a procedure or function. Actual
parameters (arguments) are the values or expressions placed in the parameter list when a procedure
or function is called. In the empid_to_name example shown earlier in Section 1.12.3.1, the actual
parameters to the procedure are in_id, out_last_name, and out_first_name. The formal parameters
used in the call to this procedure are 10, surname, and first_name.

PL/SQL lets you use either of two styles for passing arguments in parameter lists: positional notation
or named notation.

Positional notation

The default. Each value in the list of arguments supplied in the program call is associated with
the parameter in the corresponding position.

Named notation

Explicitly associates the argument value with its parameter by name (not position). When you
use named notation, you can supply the arguments in any order and you can omit IN
arguments that have default values.

The call to the empid_to_name procedure is shown here with both notations:

BEGIN
 -- Implicit positional notation.
 empid_to_name(10, surname, first_name);

 -- Explicit named notation.
 empid_to_name(in_id=>10
 ,out_last_name=>surname
 ,out_first_name=>first_name);
END;

You may combine positional and named notation, as long as positional arguments appear to the left of
any named notation arguments; for example:

empid_to_name(10, surname, out_first_name => first_name);

When calling stored functions from SQL, named notation is not supported.

1.12.3.5 Local programs

A local program is a procedure or function that is defined in the declaration section of a PL/SQL block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A local program is a procedure or function that is defined in the declaration section of a PL/SQL block.
The declaration of a local program must appear at the end of the declaration section, after the
declarations of any types, records, cursors, variables, and exceptions. A program defined in a
declaration section may only be referenced within that block's executable and exception sections. It is
not defined outside that block.

The following program defines a local procedure and function:

PROCEDURE track_revenue
IS
 l_total NUMBER;

 PROCEDURE calc_total (year_in IN INTEGER) IS
 BEGIN
 calculations here ...
 END;

 FUNCTION below_minimum (comp_id IN INTEGER)
 RETURN BOOLEAN
 IS
 BEGIN
 ...
 END;
BEGIN
 ...main procedure logic here
END;

Local programs may be overloaded with the same restrictions as overloaded packaged programs.

1.12.3.6 Program overloading

PL/SQL allows you to define two or more programs with the same name within any declaration
section, including a package specification or body. This is called overloading. If two or more programs
have the same name, they must be different in some other way so that the compiler can determine
which program should be used.

Here is an example of overloaded programs in a built-in package specification:

PACKAGE DBMS_OUTPUT
IS
 PROCEDURE PUT_LINE (a VARCHAR2);
 PROCEDURE PUT_LINE (a NUMBER);
 PROCEDURE PUT_LINE (a DATE);
END;

Each PUT_LINE procedure is identical, except for the datatype of the parameter. That is enough
difference for the compiler.

To overload programs successfully, one or more of the following conditions must be true:

Parameters must differ by datatype family (number, character, datetime, or Boolean).

The program type must be different (you can overload a function and a procedure of the same
name and identical parameter list).

The numbers of parameters must be different.

You cannot overload programs if:

Only the datatypes of the functions' RETURN clauses are different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Only the datatypes of the functions' RETURN clauses are different.

Parameter datatypes are within the same family (CHAR and VARCHAR2, NUMBER and
INTEGER, etc.).

Only the modes of the parameters are different.

1.12.3.7 Forward declarations

Programs must be declared before they can be used. PL/SQL supports mutual recursion , in which
program A calls program B, whereupon program B calls program A. To implement this mutual
recursion, you must use a forward declaration of the programs. This technique declares a program in
advance of the program definition, thus making it available for other programs to use. The forward
declaration is the program header up to the IS/AS keyword:

PROCEDURE perform_calc(year_in IN NUMBER)
IS
 /* Forward declaration for total_cost
 function. */
 FUNCTION total_cost (...) RETURN NUMBER;

 /* The net_profit function can now use
 total_cost. */
 FUNCTION net_profit(...) RETURN NUMBER
 IS
 BEGIN
 RETURN total_sales(...) - total_cost(...);
 END;

 /* The Total_cost function calls net_profit. */
 FUNCTION total_cost (...) RETURN NUMBER
 IS
 BEGIN
 IF net_profit(...) < 0
 THEN
 RETURN 0;
 ELSE
 RETURN...;
 END IF;
 END;
BEGIN /* procedure perform_calc */
 ...
END perform_calc;

1.12.3.8 Table functions

Table functions take a collection or REF CURSOR (set of rows) as input and return a collection of
records (set of rows) as output. The PIPE ROW command is used to identify the input and output
streams. This streamlined nature allows you to pipeline table functions together, eliminating the need
to stage tables between transformations. Table functions typically appear in the FROM clause of SQL
statements. For example:

CREATE FUNCTION pet_family
(dad_in IN pet_t, mom_in IN pet_t)
RETURN pet_nt PIPELINED IS
 l_count PLS_INTEGER;
 retval pet_nt := pet_nt ();

BEGIN
 PIPE ROW (dad_in); -- identify streaming input
 PIPE ROW (mom_in); -- identify streaming input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PIPE ROW (mom_in); -- identify streaming input

 IF mom_in.breed = 'RABBIT' THEN l_count := 12;
 ELSIF mom_in.breed = 'DOG' THEN l_count := 4;
 ELSIF mom_in.breed = 'KANGAROO' THEN l_count := 1;
 END IF;

 FOR indx IN 1 .. l_count
 LOOP
 -- stream the results into the ouput pipeline
 PIPE ROW (pet_t ('BABY' || indx, mom_in.breed
 ,SYSDATE));
 END LOOP;

 RETURN;
END;

1.12.3.9 Compiling stored PL/SQL programs

The following keywords are available when creating Oracle9i stored programs:

OR REPLACE

Used to rebuild an existing program unit, preserving privileges granted on it.

AUTHID

Defines whether the program will execute with the privileges of, and resolve names like, the
object owner (DEFINER), or as the user executing the function (CURRENT_USER). Prior to
Oracle8i, only the built-in packages DBMS_SQL and DBMS_UTILITY executed as
CURRENT_USER. The default AUTHID is DEFINER.

DETERMINISTIC

Required for function-based indexes. A function is DETERMINISTIC if it always returns the
same value when called with the same parameters. Deterministic functions do not meaningfully
reference package variables or the database. The built-in INITCAP is deterministic, but
SYSDATE is not.

PARALLEL_ENABLED [(PARTITION in_parm BY {ANY HASH | RANGE})]

Tells the optimizer that a function is safe for parallel execution. The PARTITION BY clause is
only available to functions that have a REF CURSOR IN parameter. This clause is used with
table functions and tells the optimizer how the input can be partitioned.

PIPELINED (Oracle9i)

Used with table functions. Specifies that the results of this table function should be returned
iteratively via the PIPE ROW command. A pipelined function can start to return data as it is
generated instead of all at once after processing is complete.

AGGREGATE USING (Oracle9i)

Required for aggregate functions. Tells Oracle that the function evaluates a group of rows and
returns a single result. For example, the built-in function AVG is an aggregate function.

1.12.3.10 Native compilation of PL/SQL (Oracle9i)

With Oracle9i you can speed up many of your PL/SQL programs by compiling the stored programs
natively. Oracle will translate your PL/SQL program into C code and compile it into a shared library
(DLL on NT). You must have a supported C compiler on your database server machine to use native
compilation. To compile natively, you must follow these steps:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Edit the makefile, spnc_makefile.mk, which you should find in the $ORACLE_HOME/plsql
subdirectory.

Set the initialization parameter PLSQL_COMPILER_FLAGS = `NATIVE'. Individual developers
may alter the value of PLSQL_COMPILER_FLAGS using the ALTER SESSION statement.

The following parameters many also need to be set: PLSQL_NATIVE_C_COMPILER,
PLSQL_NATIVE_LINKER, PLSQL_NATIVE_LIBRARY_DIR, PLSQL_NATIVE_MAKE_UTILITY, and
PLSQL_NATIVE_MAKE_FILE_NAME. The DBA can set these parameters in the Oracle
initialization file or using an ALTER SYSTEM statement.

Create or replace your stored programs.

Verify the native compilation by querying the data dictionary view USER_STORED_SETTINGS
and also by locating the shared library or DLL in the database server's file system.

1.12.3.11 Privileges and stored PL/SQL

Stored SQL supports two models for addressing privileges at runtime. The default is definer rights,
which tells Oracle that the privileges of the owner or definer of the program should be used. With the
definer rights model, the owner of the program must have the required privileges granted directly to
him—he cannot inherit the privileges from a role.

With invoker rights, the user who executes the program does so using his own privileges. Anonymous
PL/SQL blocks always execute with invoker rights. To create a program that uses the invoker rights
model, include the keywords AUTHID CURRENT_USER in your program's declaration.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.13 Triggers

Triggers are programs that execute in response to changes in table data or certain database events.
There is a predefined set of events that can be "hooked" with a trigger, enabling you to integrate your
own processing with that of the database. A triggering event fires or executes the trigger.

There are three types of triggering events:

DML events fire when an INSERT, UPDATE, or DELETE statement executes.

DDL events fire when a CREATE, ALTER, or DROP statement executes.

Database events fire when one of the predefined database-level events occurs.

Complete lists of these events are included in later sections.

1.13.1 Creating Triggers

The syntax for creating a trigger on a DML event is:

CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER | INSTEAD OF } trigger_event
 ON {table_or_view_reference |
 NESTED TABLE nested_table_column OF view}
 [REFERENCING [OLD AS old] [NEW AS new]
 [PARENT AS parent]]
[FOR EACH ROW][WHEN trigger_condition]
trigger_body;

The syntax for creating a trigger on a DDL or database event is:

CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER } trigger_event
 ON [DATABASE | schema]
 [WHEN trigger_condition]
trigger_body;

Trigger events are listed in the following table:

Trigger
event Description

INSERT Fires whenever a row is added to the table_or_view_reference.

UPDATE Fires whenever an UPDATE changes the table_or_view_reference. UPDATE triggers
can additionally specify an OF clause to restrict firing to updates OF certain columns.

DELETE Fires whenever a row is deleted from the table_or_view_reference. Does not fire on a
TRUNCATE of the table.

ALTER
Fires whenever an ALTER statement changes a database object. In this context,
objects are things like tables or packages (found in ALL_OBJECTS). Can apply to a
single schema or the entire database.

DROP
Fires whenever a DROP statement removes an object from the database. In this
context, objects are things like tables or packages (found in ALL_OBJECTS). Can
apply to a single schema or the entire database.

SERVERERROR Fires whenever a server error message is logged. Only AFTER triggers are allowed in
this context.

LOGON Fires whenever a session is created (a user connects to the database). Only AFTER
triggers are allowed in this context.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

triggers are allowed in this context.

LOGOFF Fires whenever a session is terminated (a user disconnects from the database). Only
BEFORE triggers are allowed in this context.

STARTUP Fires when the database is opened. Only AFTER triggers are allowed in this context.
SHUTDOWN Fires when the database is closed. Only BEFORE triggers are allowed in this context.

Triggers can fire BEFORE or AFTER the triggering event. AFTER data triggers are slightly more
efficient than BEFORE triggers.

The REFERENCING clause is allowed only for the data events INSERT, UPDATE, and DELETE. It lets
you give a non-default name to the old and new pseudo-records. These pseudo-records give the
program visibility to the pre- and post-change values in row-level triggers. These records are defined
like %ROWTYPE records, except that columns of type LONG or LONG RAW cannot be referenced. They
are prefixed with a colon in the trigger body, and referenced with dot notation. Unlike other records,
these fields can only be assigned individually—aggregate assignment is not allowed. All old fields are
NULL within INSERT triggers, and all new fields are NULL within DELETE triggers.

FOR EACH ROW defines the trigger to be a row-level trigger. Row-level triggers fire once for each row
affected. The default is a statement-level trigger, which fires only once for each triggering statement.

The WHEN trigger_condition specifies the conditions that must be met for the trigger to fire. Stored
functions and object methods are not allowed in the trigger condition.

The trigger body is a standard PL/SQL block. For example:

CREATE OR REPLACE TRIGGER add_tstamp
 BEFORE INSERT ON emp
 REFERENCING NEW as new_row
 FOR EACH ROW
 BEGIN
 -- Automatically timestamp the entry.
 SELECT CURRENT_TIMESTAMP
 INTO :new_row.entry_timestamp
 FROM dual;
END add_tstamp;

Triggers are enabled on creation, and can be disabled (so they do not fire) with an ALTER statement,
issued with the following syntax:

ALTER TRIGGER trigger_name { ENABLE | DISABLE };

ALTER TABLE table_name { ENABLE | DISABLE } ALL
 TRIGGERS;

1.13.2 Trigger Predicates

When using a single trigger for multiple events, use the trigger predicates INSERTING, UPDATING,
and DELETING in the trigger condition to identify the triggering event, as shown in this example:

CREATE OR REPLACE TRIGGER emp_log_t
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 dmltype CHAR(1);
BEGIN
 IF INSERTING THEN
 dmltype := 'I';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 ELSIF UPDATING THEN
 dmltype := 'U';
 INSERT INTO emp_log (emp_no, who, operation)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 END IF;
END;

1.13.3 DML Events

The DML events include INSERT, UPDATE, and DELETE statements on a table or view. Triggers on
these events can be statement-level triggers (table only) or row-level triggers and can fire BEFORE or
AFTER the triggering event. BEFORE triggers can modify the data in affected rows, but perform an
additional logical read. AFTER triggers do not perform this additional logical read, and therefore
perform slightly better, but are not able to change the :new values. AFTER triggers are thus better
suited for data validation functionality. Triggers cannot be created on SYS-owned objects. The order in
which these triggers fire, if present, is as follows:

BEFORE statement-level trigger
For each row affected by the statement:
BEFORE row-level trigger
The triggering statement
AFTER row-level trigger
AFTER statement-level trigger

1.13.4 DDL Events

The DDL events are CREATE, ALTER, and DROP. These triggers fire whenever the respective DDL
statement is executed. DDL triggers can apply to either a single schema or the entire database.

1.13.5 Database Events

The database events are SERVERERROR, LOGON, LOGOFF, STARTUP, and SHUTDOWN. Only BEFORE
triggers are allowed for LOGOFF and SHUTDOWN events. Only AFTER triggers are allowed for LOGON,
STARTUP, and SERVERERROR events. A SHUTDOWN trigger will fire on a SHUTDOWN NORMAL and a
SHUTDOWN IMMEDIATE, but not on a SHUTDOWN ABORT.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.14 Packages

A package is a collection of PL/SQL objects that are grouped together. There are a number of benefits
to using packages, including information hiding, object-oriented design, top-down design, object
persistence across transactions, and improved performance.

Elements that can be placed in a package include procedures, functions, constants, variables, cursors,
exception names, and TYPE statements (for associative arrays [formerly known as index-by tables],
records, REF CURSORs, etc.).

1.14.1 Package Structure

A package can have two parts: the specification and the body. The package specification is required
and lists all the objects that are publicly available (i.e., may be referenced from outside the package)
for use in applications. It also provides all the information a developer needs in order to use objects in
the package; essentially, it is the package's API.

The package body contains all the code needed to implement procedures, functions, and cursors listed
in the specification, as well as any private objects (accessible only to other elements defined in that
package), and an optional initialization section.

If a package specification does not contain any procedures or functions and no private code is needed,
then that package does not need to have a package body.

The syntax for the package specification is:

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID { CURRENT_USER | DEFINER }]
{ IS | AS }

 [definitions of public TYPEs
 ,declarations of public variables, types, and
 objects
 ,declarations of exceptions
 ,pragmas
 ,declarations of cursors, procedures, and
 functions
 ,headers of procedures and functions]

END [package_name];

The syntax for the package body is:

CREATE [OR REPLACE] PACKAGE BODY package_name
 { IS | AS }

 [definitions of private TYPEs
 ,declarations of private variables, types, and
 objects
 ,full definitions of cursors
 ,full definitions of procedures and functions]

[BEGIN
 executable_statements

[EXCEPTION
 exception_handlers]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exception_handlers]]

END [package_name];

The optional OR REPLACE keywords are used to rebuild an existing package, preserving any EXECUTE
privileges previously granted to other accounts. The declarations in the specifications cannot be
repeated in the body. Both the executable section and the exception section are optional in a package
body. If the executable section is present, it is called the initialization section and it executes only
once—the first time any package element is referenced during a session.

You must compile the package specification before the body specification. When you grant EXECUTE
authority on a package to another schema or to PUBLIC, you are giving access only to the
specification; the body remains hidden.

Here's an example of a package:

CREATE OR REPLACE PACKAGE time_pkg IS
 FUNCTION GetTimestamp RETURN DATE;
 PRAGMA RESTRICT_REFERENCES (GetTimestamp, WNDS);

 PROCEDURE ResetTimestamp(new_time DATE DEFAULT
 SYSDATE);
END time_pkg;

CREATE OR REPLACE PACKAGE BODY time_pkg IS
 StartTimeStamp DATE := SYSDATE;
 -- StartTimeStamp is package data.

 FUNCTION GetTimestamp RETURN DATE IS
 BEGIN
 RETURN StartTimeStamp;
 END GetTimestamp;

 PROCEDURE ResetTimestamp(new_time DATE DEFAULT SYSDATE)
 IS
 BEGIN
 StartTimeStamp := new_time;
 END ResetTimestamp;

END time_pkg;

1.14.2 Referencing Package Elements

The elements declared in the specification are referenced from the calling application via dot notation:

package_name.package_element

For example, the built-in package DBMS_OUTPUT has a procedure PUT_LINE, so a call to this package
would look like this:

DBMS_OUTPUT.PUT_LINE('This is parameter data');

1.14.3 Package Data

Data structures declared within a package specification or body, but outside any procedure or function
in the package, are package data. The scope of package data is your entire session, spanning
transaction boundaries and acting as globals for your programs.

Keep the following guidelines in mind as you work with package data:

The state of your package variables is not affected by COMMITs and ROLLBACKs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The state of your package variables is not affected by COMMITs and ROLLBACKs.

A cursor declared in a package has global scope. It remains OPEN until you close it explicitly or
until your session ends.

A good practice is to hide your data structures in the package body and provide "get and set"
programs to read and write that data. This technique can help protect your data.

1.14.4 SERIALLY_REUSABLE Pragma

If you need package data to exist only during a call to the packaged functions or procedures, and not
between calls of the current session, you can potentially save runtime memory by using the pragma
SERIALLY_REUSABLE. After each call, PL/SQL closes the cursors and releases the memory used in the
package. This technique is applicable only to large user communities executing the same routine.
Normally, the database server's memory requirements grow linearly with the number of users; with
SERIALLY_REUSABLE, this growth can be less than linear, because work areas for package states are
kept in a pool in the Oracle's System Global Area (SGA) and are shared among all users. This pragma
must appear in both the specification and the body, as shown here:

CREATE OR REPLACE PACKAGE my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE foo;
END my_pkg;

CREATE OR REPLACE PACKAGE BODY my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE foo IS
 ...
END my_pkg;

1.14.5 Package Initialization

The first time a user references a package element, the entire package is loaded into the SGA of the
database instance to which the user is connected. That code is then shared by all sessions that have
EXECUTE authority on the package.

Any package data are then instantiated into the session's User Global Area (UGA), a private area in
either the System Global Area or the Program Global Area (PGA). If the package body contains an
initialization section, that code will be executed. The initialization section is optional and appears at
the end of the package body, beginning with a BEGIN statement and ending with the EXCEPTION
section (if present) or the END of the package.

The following package initialization section runs a query to transfer the user's minimum balance into a
global package variable. Programs can then reference the packaged variable (via the function) to
retrieve the balance, rather than execute the query repeatedly:

CREATE OR REPLACE PACKAGE usrinfo
IS
 FUNCTION minbal RETURN VARCHAR2;
END usrinfo;
/

CREATE OR REPLACE PACKAGE BODY usrinfo
IS
 g_minbal NUMBER; -- Package data
 FUNCTION minbal RETURN VARCHAR2
 IS BEGIN RETURN g_minbal; END;
BEGIN -- Initialization section
 SELECT minimum_balance
 INTO g_minbal
 FROM user_configuration
 WHERE username = USER;
EXCEPTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN g_minbal := NULL;
END usrinfo;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.15 Calling PL/SQL Functions in SQL

Stored functions can be called from SQL statements in a manner similar to built-in functions like
DECODE, NVL, or RTRIM. This is a powerful technique for incorporating business rules into SQL in a
simple and elegant way. Unfortunately, there are a number of caveats and restrictions.

The most notable caveat is that stored functions executed from SQL are not by default guaranteed to
follow the statement-level read consistency model of the database. Unless the SQL statement and any
stored functions in that statement are in the same read-consistent transaction (even if they are read-
only), each execution of the stored function may look at a different time-consistent set of data. To
avoid this potential problem, you need to ensure read consistency programmatically by issuing the
SET TRANSACTION READ ONLY or SET TRANSACTION ISOLATION LEVEL SERIALIZABLE statement
before executing your SQL statement containing the stored function. A COMMIT or ROLLBACK then
needs to follow the SQL statement to end this read-consistent transaction.

1.15.1 Calling a Function

The syntax for calling a stored function from SQL is the same as that used to reference it from
PL/SQL:

[schema_name.][pkg_name.]func_name[@db_link]
 [parm_list]

schema_name is optional and refers to the user/owner of the function or package. pkg_name is
optional and refers to the package containing the called function. func_name is required and is the
function name. db_link is optional and refers to the database link name to the remote database
containing the function. parm_list is optional, as are the parameters passed to the function.

The following are example calls to the GetTimestamp function in the time_pkg example seen earlier in
Section 1.14.1:

-- Capture system events.
INSERT INTO v_sys_event (timestamp ,event ,qty_waits)
 SELECT time_pkg.GetTimestamp ,event ,total_waits
 FROM v$system_event

-- Capture system statistics.
INSERT INTO v_sys_stat (timestamp,stat#,value)
 SELECT time_pkg.GetTimestamp ,statistic# ,value
 FROM v$sysstat;

1.15.2 Requirements and Restrictions

There are a number of requirements for calling stored functions in SQL:

All parameters must be IN; no IN OUT or OUT parameters are allowed.

The datatypes of the function's parameters and RETURN must be compatible with RDBMS
datatypes. You cannot have arguments or RETURN types like BOOLEAN, programmer-defined
record, associative array, etc.

The parameters passed to the function must use positional notation; named notation is not
supported.

The function must be stored in the database, not in a local program, Developer/2000 PL/SQL
library, or form.

1.15.3 Calling Packaged Functions in SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prior to Oracle8i, it was necessary to assert the purity level of a packaged procedure or function when
using it directly or indirectly in a SQL statement. Beginning with Oracle8i, the PL/SQL runtime engine
determines a program's purity level automatically if no assertion exists. The RESTRICT_REFERENCES
pragma is still supported for backward compatibility, but has been deprecated in Oracle9i.

The RESTRICT_REFERENCES pragma asserts a purity level. The syntax for the
RESTRICT_REFERENCES pragma is:

PRAGMA RESTRICT_REFERENCES (program_name | DEFAULT,
 purity_level);

The keyword DEFAULT applies to all methods of an object type or all programs in a package.

There can be from one to five purity levels, in any order, in a comma-delimited list. The purity level
describes to what extent the program or method is free of side effects. Side effects are listed in the
following table with the purity levels they address:

Purity
level Description Restriction

WNDS Write No Database
State Executes no INSERT, UPDATE, or DELETE statements.

RNDS Read No Database
State Executes no SELECT statements.

WNPS Write No Package
State Does not modify any package variables.

RNPS Read No Package
State Does not read any package variables.

TRUST — Does not enforce the restrictions declared but allows the compiler to
trust they are true.

1.15.4 Column/Function Name Precedence

If your function has the same name as a table column in your SELECT statement and the function has
no parameter, then the column takes precedence over the function. To force the RDBMS to resolve
the name to your function, prepend the schema name to it:

CREATE TABLE emp(new_sal NUMBER ...);
CREATE FUNCTION new_sal RETURN NUMBER IS ...;

SELECT new_sal FROM emp; -- Resolves to column.
SELECT scott.new_sal FROM emp; -- Resolves to function.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.16 Oracle's Object-Oriented Features

In Oracle, an object type combines attributes (data structures) and methods (functions and
procedures) into a single programming construct. The object type construct allows programmers to
define their own reusable datatypes for use in PL/SQL programs and table and column definitions. An
object type must be created in a database before it can be used in a PL/SQL program.

An instance of an object type is an object in the same way that a variable is an instance of a scalar
type. Objects are either persistent (stored in the database) or transient (stored only in PL/SQL
variables). Objects can be stored in a database as a row in a table (a row object) or as a column in a
table. A table of row objects can be created with syntax such as this:

CREATE TABLE table_name OF object_type;

When stored in such a table, the object (row) has an OID (Object IDentifier) that is unique throughout
the database.

1.16.1 Object Types

An object type has two parts: the specification and the body. The specification is required and
contains the attributes and method specifications. The syntax for creating the object type specification
is:

CREATE [OR REPLACE] TYPE obj_type_name
[AUTHID { CURRENT_USER | DEFINER }]
{ { IS | AS } OBJECT | UNDER parent_type_name }
(
 attribute_name datatype,...,
 [[[NOT] OVERRIDING] [{NOT] FINAL] [{NOT}
 INSTANTIABLE] method_spec,...,]
 [PRAGMA RESTRICT_REFERENCES(program_name, purities)]
)
[[NOT] FINAL]
[[NOT] INSTANTIABLE];

Where method_spec is one of the following:

MEMBER { PROCEDURE | FUNCTION } program_spec

or:

STATIC { PROCEDURE | FUNCTION } program_spec

or:

{ ORDER | MAP } MEMBER FUNCTION comparison_function_spec

or:

CONSTRUCTOR FUNCTION constructor_function_spec

Attribute specifications must appear before method specifications. Object attributes, like table
columns, are defined with a name and a datatype. The name can be any legal identifier, and the
datatype can be almost any datatype known to SQL other than LONG, LONG RAW, ROWID, and
UROWID. Attributes can be declared on other programmer-defined object types or collection types,
but not on the Oracle9i types ANYTYPE, ANYDATA, or ANYDATASET. Attributes cannot be of datatypes
unique to PL/SQL, such as BOOLEAN.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method headers appear in the object type specification in a comma-delimited list. Unlike in a package
specification, commas (not semicolons) terminate the object type program specifications. To support
object comparisons and sorting, the type can optionally include one comparison method—either
ORDER or MAP. Member methods can be overloaded in object types following the same rules as
function and procedure overloading in packages.

Method "specs" that appear above in the syntax can actually be call specs for Java classes in the
database or for external procedures written in C.

The syntax for creating the object type body is:

CREATE [OR REPLACE] TYPE BODY obj_type_name
{ IS | AS }
(
 [{ ORDER | MAP } MEMBER FUNCTION
 comparison_function_body;]
 [{ MEMBER | STATIC } { FUNCTION | PROCEDURE }
 program_body;]...
)
;

Again, the program bodies can be call specs to Java or C programs. The keywords CONSTRUCTOR,
UNDER, FINAL, and INSTANTIABLE are all new with Oracle9i.

1.16.2 Type Inheritance (Oracle9i)

Beginning with Oracle9i, you can define subtypes of object types following a single-inheritance model.
Oracle does not have a master root-level object type of the kind that you might find in other object
programming models; instead; each type is "standalone" unless declared otherwise.

The UNDER keyword specifies that the type exists as a subtype in a hierarchy. When you are using
UNDER, the parent type must be marked NOT FINAL. By default, types are FINAL, meaning that you
cannot declare a subtype of that type.

A subtype contains all of the attributes and methods of its parent (supertype) and may contain
additional attributes and methods. Methods can override corresponding methods from the parent.
Changes to the supertype—such as the addition of attributes or methods—are automatically reflected
in the subtypes.

By default, object types are INSTANTIABLE—that is, an invoking program may create an object of that
type. The phrase NOT INSTANTIABLE tells Oracle that you don't want any objects of the type, in
which case Oracle will not create a constructor for it. This variation generally makes sense only with
types that will serve as parents of other types.

1.16.3 Methods

There are four kinds of methods: member, static, constructor, and comparison.

1.16.3.1 Member methods

A member method is a procedure or function designated with the keyword MEMBER. Calling programs
may invoke such a method only on objects that have been instantiated.

1.16.3.2 Static methods

A static method has no access to a current (SELF) object. Such a method is declared using the
keyword STATIC and can be invoked at any time using type.method syntax.

1.16.3.3 Constructor methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.16.3.3 Constructor methods

Even if you don't declare any methods, every instantiable object has a default constructor method
which allows a calling program to create new objects of that type. This built-in method:

Has the same name as the object type

Is a function that returns an object of that type

Accepts attributes in named or positional notation

Must be called with a value (or NULL) for every attribute—there is no DEFAULT clause for
object attributes

Cannot be modified

Oracle9i programmers can replace this default constructor with their own using the CONSTRUCTOR
FUNCTION syntax. This method must have the same name as the object type, but there are no
restrictions on its parameter list. The RETURN clause of the constructor's header must be RETURN
SELF AS RESULT. Oracle supports the overloading of programmer-defined constructors. All non-static
methods have the implied parameter SELF, which refers to the current instance of the object. The
default mode for the SELF parameter is IN for functions and IN OUT for procedures. A programmer
can alter the mode by explicitly including SELF in the formal parameter list.

1.16.3.4 Comparison methods

The comparison methods, ORDER and MAP, establish ordinal positions of objects for comparisons such
as "<" or "between" and for sorting (ORDER BY, GROUP BY, DISTINCT). Oracle invokes a comparison
method automatically whenever it needs to perform such an operation.

MAP and ORDER methods are actually special types of member methods—that is, they only execute in
the context of an existing object. An ORDER function accepts two parameters: SELF and another
object of the same type. It must return an INTEGER value as explained in the following table:

Return value Object comparison
Any negative integer (commonly -
1) SELF < second object

0 SELF = second object
Any positive integer (commonly
1) SELF > second object

NULL Undefined comparison: attributes needed for the comparison are
NULL

For example, the Senate ranks majority party members higher than non-majority party members and
within the majority (or non-majority) by years of service. Here is an example ORDER function
incorporating these rules:

CREATE TYPE senator_t AS OBJECT (
 majority boolean_t,
 yrs_service NUMBER,
 ORDER MEMBER FUNCTION ranking (other IN
 senator_t)
 RETURN INTEGER);

CREATE OR REPLACE TYPE BODY senator_t AS
 ORDER MEMBER FUNCTION ranking (other IN
 senator_t)
 RETURN INTEGER
 IS
 BEGIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BEGIN
 IF SELF.majority.istrue()
 AND other.majority.istrue()
 THEN
 RETURN SIGN(SELF.yrs_service -
 other.yrs_service);
 ELSIF SELF.majority.istrue()
 AND other.majority.isfalse()
 THEN
 RETURN 1;
 ELSIF SELF.majority.isfalse()
 AND other.majority.istrue()
 THEN
 RETURN -1;
 ELSIF SELF.majority.isfalse()
 AND other.majority.isfalse()
 THEN
 RETURN SIGN(SELF.yrs_service -
 other.yrs_service);
 END IF;
 END ranking;
END;

A MAP function accepts no parameters and returns a scalar datatype such as DATE, NUMBER, or
VARCHAR2 for which Oracle already knows a collating sequence. The MAP function translates, or
maps, each object into this scalar datatype space.

If no ORDER or MAP function exists for an object type, SQL, but not PL/SQL, supports only limited
equality comparisons of objects. Objects are equal if they are of the same object type and if each
attribute is equal.

Use MAP if possible when frequently sorting or comparing a large number of objects, as in a SQL
statement; an internal optimization reduces the number of function calls. With ORDER, the function
must run once for every comparison.

1.16.4 Methods in Subtypes (Oracle9i)

The method modifiers OVERRIDING, FINAL, and NOT INSTANTIABLE specify how method overriding
works in the subtype:

OVERRIDING

Tells Oracle that the subtype's method will override the supertype's method.

FINAL

Tells Oracle that new subtypes may not override this method.

NOT INSTANTIABLE

Tells Oracle that this method is not available in the subtype.

As you can imagine, certain combinations of these modifiers are disallowed.

Oracle9i supports dynamic method dispatch to determine which overridden method to invoke at
runtime. That is, it will choose the method in the most specific subtype associated with the currently
instantiated object.

1.16.5 Manipulating Objects in PL/SQL and SQL

Variables declared as objects begin their life atomically null, meaning that the expression:

object IS NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object IS NULL

evaluates to TRUE. Attempting to assign values to the attributes of an atomically null object will
return an ACCESS_INTO_NULL exception. Instead, you must initialize the object, in one of these
ways:

Use either the default constructor method or a user-defined constructor

Assign to it the value of an existing object

Use SELECT INTO or FETCH INTO

Here is an example using each initialization technique:

DECLARE
 project_boiler_plate project_t;
 build_web_site project_t;

 -- Initialize via constructor.
 new_web_mgr proj_mgr_t :=
 proj_mgr_t('Ruth', 'Home Office');

 -- Initialize via Oracle9i user-defined constructor
 -- that provides defaults
 new_web_mgr proj_mgr_t := NEW proj_mgr_t();

 CURSOR template_cur IS
 SELECT VALUE(proj)
 FROM projects
 WHERE project_type = 'TEMPLATE'
 AND sub_type = 'WEB SITE';
 BEGIN
 OPEN template_cur;
 -- Initialize via FETCH INTO.
 FETCH template_cur
 INTO project_boiler_plate;

 -- Initialize via assignment.
 build_web_site := project_boiler_plate;
 ...

After an object is initialized, it can be stored in the database, and you can then locate and use that
object with the REF, VALUE, and DEREF operators.

1.16.6 Upcasting and Downcasting (Oracle9i)

Oracle9i supports implicit upcasting (widening) of a subtype and provides the TREAT operator to
downcast (narrow) a supertype. TREAT can also explicitly upcast a subtype.

Assuming that book_t is a subtype of catalog_item_t, the following example shows both upcasts and
downcasts:

DECLARE
 my_book book_t := NEW book_t();
 your_book book_t;
 some_catalog_item catalog_item_t;
BEGIN
 /* An implied upcast */
 some_catalog_item := my_book;

 /* An explicit downcast */
 your_book := TREAT(some_catalog_item AS book_t);
END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

The syntax of TREAT is:

TREAT (object_instance AS [REF] type)

where object_instance is a value that is of a particular supertype in an object hierarchy, and type is
the name of subtype (or supertype) in the same hierarchy. The TREAT expression won't compile if you
attempt to cast a type to another from a different type hierarchy. If you supply an object from the
correct type hierarchy, TREAT will return either the casted object or NULL—but not an error.

You can also use dot notation to obtain access to the casted object's attributes and methods:

TREAT (object_instance AS type).{ attribute |
 method(args...) }]

SQL also supports TREAT and implied upcasting.

1.16.6.1 REF operator

REF, short for REFerence, designates a datatype modifier or an operator to retrieve a logical pointer to
an object. This pointer encapsulates the OID and can simplify navigation among related database
objects. The syntax for a REF operator is:

REF(table_alias_name)

For example:

SELECT REF(p) FROM pets p WHERE ...

A PL/SQL variable can hold a reference to a particular object type:

DECLARE
 petref REF Pet_t;
BEGIN
 SELECT REF(p) INTO petref FROM pets p WHERE ...

Through deletions, REFs can reference a nonexistent object—called a dangling REF—resulting in a
state that can be detected with the IS DANGLING predicate. For example:

UPDATE pets
 SET owner_ref = NULL
 WHERE owner_ref IS DANGLING.

Oracle's built-in package UTL_REF provides programmatic access to stored objects via their REF.

1.16.6.2 VALUE operator

Use the VALUE operator to retrieve a row object as a single object rather than multiple columns. The
syntax for the VALUE operator is:

VALUE(table_alias_name)

For example:

SELECT VALUE(p) FROM pets p WHERE ...

1.16.6.3 DEREF operator

Use the DEREF operator to retrieve the value of an object for which you have a REF. The syntax for
DEREF is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEREF(table_alias_name)

For example:

DECLARE
 person_ref REF person_t;
 author person_t;
BEGIN
 -- Get the ref.
 SELECT REF(p) INTO person_ref
 FROM persons WHERE p.last_name ='Pribyl';

 -- Dereference the pointer back to the value.
 SELECT DEREF(person_ref) INTO author FROM dual;
 ...

In addition, Oracle uses an OID internally as a unique key to each object. As with a ROWID, you don't
typically use an OID directly.

The following table shows ways of referencing persistent objects:

Scheme Description Applications

OID
An opaque, globally unique handle, produced
when the object is stored in the database as a
table (row) object.

This is the persistent object's handle; it's
what REFs point to. Your program never
uses it directly.

VALUE

An operator. In SQL, it acts on an object in an
object table and returns the object's contents.
Different from the VALUES keyword found in
some INSERT statements.

Allows quasi-normalizing of object-
relational databases and joining of object
tables using dot navigation. In PL/SQL,
REFs serve as input/output variables.

REF
A pointer to an object. May be used within a
SQL statement as an operator or in a
declaration as a type modifier.

Used when fetching a table (row) object
into a variable, or when you need to refer
to an object table as an object instead of a
list of columns.

DEREF Reverse pointer lookup for REFs. Used for retrieving the contents of an
object when all you know is its REF.

1.16.7 Changing Object Types

You can add methods, but not attributes, to an object type stored in the database using the ALTER
TYPE statement. There are several forms of this statement:

ALTER TYPE typename
 { ADD | MODIFY | DROP } ATTRIBUTE attribute_spec
 { INVALIDATE | CASCADE
 { [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE }
 [FORCE] };

ALTER TYPE typename
 [NOT] { INSTANTIABLE | FINAL }
 { INVALIDATE | CASCADE
 { [NOT] INCLUDING TABLE DATA |
 CONVERT TO SUBSTITUTABLE }
 [FORCE] };

ALTER TYPE typename
 COMPILE [DEBUG] [SPECIFICATION | BODY]
 [REUSE SETTINGS];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [REUSE SETTINGS];

Because altering the structure of a type can have quite a few repercussions on database objects,
Oracle requires you either to INVALIDATE the dependent objects or to CASCADE the change.

When making a change from FINAL to NOT FINAL and cascading the change, you can cause existing
table objects to be either NOT SUBSTITUTABLE (the default) or SUBSTITUTABLE. The following is an
example of adding an attribute:

ALTER TYPE catalog_item_t
 ADD ATTRIBUTE publication_date VARCHAR2(400)
 CASCADE INCLUDING TABLE DATA;

The next example shows adding a method:

ALTER TYPE catalog_item_t
 ADD MEMBER PROCEDURE save,
 CASCADE;

After adding a method to a spec, you would use CREATE OR REPLACE TYPE BODY to implement it in
the body (include all the other methods as well).

There are a variety of restrictions on modifying types; for example, you cannot change a type from
INSTANTIABLE to NOT INSTANTIABLE if you have created tables that depend on the type.

The syntax for dropping an object type is:

DROP TYPE type_name [FORCE];

You can drop only an object type that has not been implemented in a table (or you can drop the
tables first). The FORCE option will drop object types even if they have dependencies, but FORCE will
irreversibly invalidate any dependent objects such as tables. FORCE does not do a DROP CASCADE.

If you are dropping a type whose parent type has table dependents, this form of the statement:

DROP TYPE subtype_name VALIDATE;

will "validate" the safety of dropping the subtype before performing it. That is, Oracle will only
perform the drop if there are no objects of the subtype in any substitutable columns of the parent
type.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.17 Collections

There are three types of collections: associative arrays (formerly known as index-by tables or PL/SQL
tables), nested tables, and VARRAYs.

Associative arrays

Single-dimension, unbounded collections of homogeneous elements available only in PL/SQL,
not in the database. Associative arrays are initially sparse; they have nonconsecutive
subscripts.

Nested tables

Single-dimension, unbounded collections of homogeneous elements available in both PL/SQL
and the database as columns or tables. Nested tables are initially dense (they have consecutive
subscripts), but they can become sparse through deletions.

VARRAYs

Variable-size arrays. Single-dimension, bounded collections of homogeneous elements
available in both PL/SQL and the database. VARRAYs are never sparse. Unlike nested tables,
their element order is preserved when you store and retrieve them from the database.

The following table compares these similar collection types:

 Collection type
Characteristic Associative array Nested table VARRAY
Dimensionality Single Single Single
Usable in SQL? No Yes Yes

Usable as a column
datatype in a table? No

Yes; data stored "out
of line" (in a separate
table)

Yes; data typically
stored "in line" (in
the same table)

Uninitialized state Empty (cannot be NULL);
elements are undefined

Atomically null; illegal
to reference elements

Atomically null;
illegal to reference
elements

Initialization Automatic, when declared Via constructor, fetch,
assignment

Via constructor,
fetch, assignment

In PL/SQL, elements
referenced by

BINARY_INTEGER (-
2,147,483,647

.. 2,147,483,647) or character
string (VARCHAR2); maximum
length of VARCHAR2 is 30,
minimum length is 1

Positive integer
between 1 and
2,147483,647

Positive integer
between 1 and
2,147483,647

Sparse? Yes Initially no; after
deletions, yes No

Bounded? No Can be extended Yes

Can assign a value to
any element at any time? Yes No; may need to

EXTEND first

No; may need to
EXTEND first, and
cannot EXTEND past
the upper bound

Means of extending Assign value to element with a
new subscript

Use built-in EXTEND
or TRIM function to
condense, with no
predefined maximum

Use EXTEND or
TRIM, but only up
to declared
maximum size.

Can be compared for
equality? No No No

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Elements retain ordinal
position and subscript
when stored and
retrieved from the
database

N/A—can't be stored in
database No Yes

1.17.1 Declaring a Collection

Collections are implemented as TYPEs. As with any programmer-defined type, you must first define
the type; then you can declare instances of that type. The TYPE definition can be stored in the
database or declared in the PL/SQL program. Each instance of the TYPE is a collection.

The syntax for declaring an associative array is:

TYPE type_name IS TABLE OF element_type [NOT NULL]
 INDEX BY {BINARY_INTEGER | VARCHAR2 (size_limit)};

The syntax for a nested table is:

[CREATE [OR REPLACE]] TYPE type_name IS TABLE OF
 element_type [NOT NULL];

The syntax for a VARRAY is:

[CREATE [OR REPLACE]] TYPE type_name IS VARRAY |
 VARYING ARRAY (max_elements) OF element_type
 [NOT NULL];

The CREATE keyword defines the statement to be DDL and indicates that this type will exist in the
database. The optional OR REPLACE keywords are used to rebuild an existing type, preserving the
privileges. type_name is any valid identifier that will be used later to declare the collection.
max_elements is the maximum size of the VARRAY. element_type is the type of the collection's
elements. All elements are of a single type, which can be most scalar datatypes, an object type, or a
REF object type. If the elements are objects, the object type itself cannot have an attribute that is a
collection. Explicitly disallowed collection datatypes are BOOLEAN, NCHAR, NCLOB, NVARCHAR2, REF
CURSOR, TABLE, and VARRAY.

NOT NULL indicates that a collection of this type cannot have any null elements. However, the
collection can be atomically null (uninitialized).

1.17.2 Initializing Collections

Initializing an associative array is trivial—simply declaring it also initializes it. Initializing a nested
table or a VARRAY can be done in any of three ways: explicitly with a constructor, or implicitly with a
fetch from the database or with a direct assignment of another collection variable.

The constructor is a built-in function with the same name as the collection. It constructs the collection
from the elements passed to it. The first example shows how you can create a nested table of colors
and explicitly initialize it to three elements with a constructor:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);

 colors_tab_t('RED','GREEN','BLUE');
BEGIN

The next example shows how you can create the nested table of colors and implicitly initialize it with a
fetch from the database:

-- Create the nested table to exist in the database.
CREATE TYPE colors_tab_t IS TABLE OF VARCHAR2(32);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TYPE colors_tab_t IS TABLE OF VARCHAR2(32);

-- Create table with nested table type as column.
CREATE TABLE color_models
(model_type VARCHAR2(12)
,colors color_tab_t)
NESTED TABLE colors STORE AS
 color_model_colors_tab;

-- Add some data to the table.
INSERT INTO color_models
 VALUES('RGB',color_tab_t('RED','GREEN','BLUE'));
INSERT INTO color_models
 VALUES('CYMK',color_tab_t('CYAN','YELLOW',
 'MAGENTA' 'BLACK'));

-- Initialize a collection of colors from the table.
DECLARE
 basic_colors colors_tab_t;
BEGIN
 SELECT colors INTO basic_colors
 FROM color_models
 WHERE model_type = 'RGB';
...
END;

The third example shows how you can implicitly initialize the table via an assignment from an existing
collection:

DECLARE
 basic_colors Color_tab_t :=
 Color_tab_t ('RED','GREEN','BLUE');

 my_colors Color_tab_t;
BEGIN
 my_colors := basic_colors;
 my_colors(2) := 'MUSTARD';

1.17.3 Adding and Removing Elements

Elements in an associative array can be added simply by referencing new subscripts. To add elements
to nested tables or VARRAYs, you must first enlarge the collection with the EXTEND function, and then
you can assign a value to a new element using one of the methods described in the previous section.

Use the DELETE function to remove an element in a nested table regardless of its position. The TRIM
function can also be used to remove elements, but only from the end of a collection. To avoid
unexpected results, do not use both DELETE and TRIM on the same collection.

1.17.4 Collection Pseudo-Functions

There are several pseudo-functions defined for collections: CAST, MULTISET, and TABLE.

CAST

Maps a collection of one type to a collection of another type.

SELECT column_value
FROM TABLE(SELECT CAST(colors AS color_tab_t)
 FROM color_models_a
 WHERE model_type ='RGB');

MULTISET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Maps a database table to a collection. With MULTISET and CAST, you can retrieve rows from a
database table as a collection-typed column.

SELECT b.genus ,b.species,
 CAST(MULTISET(SELECT bh.country
 FROM bird_habitats bh
 WHERE bh.genus = b.genus
 AND bh.species = b.species)
 AS country_tab_t)
FROM birds b;

TABLE

Maps a collection to a database table (the inverse of MULTISET).

SELECT *
 FROM color_models c
 WHERE 'RED' IN (SELECT * FROM TABLE(c.colors));

You can use TABLE() to unnest a transient collection:

DECLARE
 birthdays Birthdate_t :=
 Birthdate_t('24-SEP-1984', '19-JUN-1993');
BEGIN
 FOR the_rec IN
 (SELECT COLUMN_VALUE
 FROM TABLE(CAST(birthdays AS Birthdate_t)))

1.17.5 Collection Methods

There are a number of built-in functions (methods) defined for all collections. These methods are
called with dot notation:

collection_name.method_name[(parameters)]

The methods are listed in the following table:

Collection
method Description

COUNT
function Returns the current number of elements in the collection.

DELETE [(
i [, j])]
procedure

Removes element i or elements i through j from a nested table or associative array.
When called with no parameters, removes all elements in the collection. Reduces the
COUNT if the element is not already DELETEd. Does not apply to VARRAYs.

EXISTS (i
) function

Returns TRUE or FALSE to indicate whether element i exists. If the collection is an
uninitialized nested table or VARRAY, returns FALSE.

EXTEND [(
n [, i])]
procedure

Appends n elements to a collection, initializing them to the value of element i. n is
optional and defaults to 1.

FIRST
function

Returns the lowest index in use. Returns NULL when applied to empty initialized
collections.

LAST
function

Returns the greatest index in use. Returns NULL when applied to empty initialized
collections.

LIMIT
function

Returns the maximum number of allowed elements in a VARRAY. Returns NULL for
associative arrays and nested tables.

PRIOR (i)
function

Returns the index immediately before element i. Returns NULL if i is less than or equal to
FIRST.

NEXT (i)
function

Returns the index immediately after element i. Returns NULL if i is greater than or equal
to COUNT.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRIM [(n
)]
procedure

Removes n elements at the end of the collection with the largest index. n is optional and
defaults to 1. If n is NULL, TRIM does nothing. Associative arrays cannot be TRIMmed.

The EXISTS function returns a BOOLEAN, and all other functions and procedures return
BINARY_INTEGER except for collections indexed by VARCHAR2, which can return character strings. All
parameters are of the BINARY_INTEGER type. Only EXISTS can be used on uninitialized nested tables
or VARRAYs. Other methods applied to these atomically null collections will raise the
COLLECTION_IS_NULL exception.

DELETE and TRIM both remove elements from a nested table, but TRIM also removes the placeholder,
while DELETE does not. This behavior may be confusing, because TRIM can remove previously
DELETEd elements.

Here is an example of some collection methods in use with an associative array:

DECLARE
 TYPE population_type IS
 TABLE OF NUMBER INDEX BY VARCHAR2(64);
 continent_population population_type;
 howmany NUMBER;
 limit VARCHAR2(64);
BEGIN
 continent_population('Australia') := 30000000;
 -- Create new entry
 continent_population('Antarctica') := 1000;
 -- Replace old value
 continent_population('Antarctica') := 1001;
 limit := continent_population.FIRST;
 DBMS_OUTPUT.PUT_LINE (limit);
 DBMS_OUTPUT.PUT_LINE (continent_population(limit));
 limit := continent_population.LAST;
 DBMS_OUTPUT.PUT_LINE (limit);
 DBMS_OUTPUT.PUT_LINE (continent_population(limit));
END;
/

This example produces the following output:

Antarctica
1001
Australia
30000000

Here is an example of some collection methods in use with a nested table:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);
 my_list colors_tab_t :=
 colors_tab_t('RED','GREEN','BLUE');
 element BINARY_INTEGER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');
 my_list.DELETE(2); -- delete element two
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');

 FOR element IN my_list.FIRST..my_list.LAST
 LOOP
 IF my_list.EXISTS(element)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IF my_list.EXISTS(element)
 THEN
 DBMS_OUTPUT.PUT_LINE(my_list(element)
 || ' Prior= '||my_list.PRIOR(element)
 || ' Next= ' ||my_list.NEXT(element));
 ELSE
 DBMS_OUTPUT.PUT_LINE('Element '|| element
 ||' deleted. Prior= '||my_
 list.PRIOR(element)
 || ' Next= '||my_list.NEXT(element));
 END IF;
 END LOOP;
END;

This example produces the output:

my_list has 3 elements
my_list has 2 elements
RED Prior= Next= 3
Element 2 deleted. Prior= 1 Next= 3
BLUE Prior= 1 Next=

1.17.6 Collections and Privileges

As with other TYPEs in the database, you need the EXECUTE privilege on that TYPE in order to use a
collection type created by another schema (user account) in the database.

Note that Oracle9i Release 2 made it possible to use synonyms for user-defined TYPE names.

1.17.7 Nested Collections (Oracle9i)

Nested collections are collections contained in members that are collections themselves. Nesting
collections is a powerful way to implement object-oriented programming constructs within PL/SQL
programs. For example:

CREATE TYPE books IS TABLE OF VARCHAR2(64);
CREATE TYPE our_books IS TABLE OF books;

1.17.8 Bulk Binds

You can use collections to improve the performance of SQL operations executed iteratively by using
bulk binds. Bulk binds reduce the number of context switches between the PL/SQL engine and the
database engine. Two PL/SQL language constructs implement bulk binds: FORALL and BULK COLLECT
INTO.

The syntax for the FORALL statement is:

FORALL bulk_index IN lower_bound..upper_bound [SAVE EXCEPTIONS]
 sql_statement;

bulk_index can be used only in the sql_statement and only as a collection index (subscript). When
PL/SQL processes this statement, the whole collection, instead of each individual collection element, is
sent to the database server for processing. To delete all the accounts in the collection inactives from
the table ledger, do this:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DELETE FROM ledger WHERE acct_no = inactives(i);

The default is for Oracle to stop after the first exception encountered. Use the keywords SAVE
EXCEPTIONS to tell Oracle that processing should continue after encountering exceptions. The cursor
attribute %BULK_EXCEPTIONS stores a collection of records containing the errors. These records have
two fields, EXCEPTION_INDEX and EXCEPTION_CODE, which contain the FOR ALL iteration during
which the exception was raised, as well as the SQLCODE for the exception. If no exceptions are
raised, the SQL%BULK_EXCEPTION.COUNT method returns 0. For example:

DECLARE
 TYPE NameList IS TABLE OF VARCHAR2(32);
 name_tab NameList := NameList('Pribyl'
 ,'Dawes','Feuerstein','Gennick'
 ,'Pribyl','Beresniewicz','Dawes','Dye');
 error_count NUMBER;
 bulk_errors EXCEPTION;
 PRAGMA exception_init(bulk_errors, -24381);
BEGIN
 FORALL indx IN name_tab.FIRST..name_tab.LAST SAVE EXCEPTIONS
 INSERT INTO authors (name) VALUES (name_tab(indx));
 -- authors has pk index on name
 EXCEPTION
 WHEN others THEN
 error_count := SQL%BULK_EXCEPTIONS.COUNT;
 DBMS_OUTPUT.PUT_LINE('Number of errors is ' ||
 error_count);
 FOR indx IN 1..error_count LOOP
 DBMS_OUTPUT.PUT_LINE('Error ' || indx || '
 occurred during '||'iteration ' ||
 SQL%BULK_EXCEPTIONS(indx).ERROR_INDEX);
 DBMS_OUTPUT.PUT_LINE('Error is ' ||
 SQLERRM(-SQL%BULK_EXCEPTIONS(indx).ERROR_CODE));
 END LOOP;
END;
/

Number of errors is 2
Error 1 occurred during iteration 5
Error is ORA-00001: unique constraint (.) violated
Error 2 occurred during iteration 7
Error is ORA-00001: unique constraint (.) violated

The syntax for the BULK COLLECT INTO clause is:

BULK COLLECT INTO collection_name_list;

where collection_name_list is a comma-delimited list of collections, one for each column in the
SELECT. Collections of records cannot be a target of a BULK COLLECT INTO clause. However, Oracle
does support retrieving a set of typed objects and "bulk collecting" them into a collection of objects.

The BULK COLLECT INTO clause can be used in SELECT INTO, FETCH INTO, or RETURNING INTO
statements. For example:

DECLARE
 TYPE vendor_name_tab IS TABLE OF
 vendors.name%TYPE;
 TYPE vendor_term_tab IS TABLE OF
 vendors.terms%TYPE;
 v_names vendor_name_tab;
 v_terms vendor_term_tab;
BEGIN
 SELECT name, terms
 BULK COLLECT INTO v_names, v_terms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BULK COLLECT INTO v_names, v_terms
 FROM vendors
 WHERE terms < 30;
 ...
END;

The next function deletes products in an input list of categories, and the SQL RETURNING clause
returns a list of deleted products:

FUNCTION cascade_category_delete (categorylist clist_t)
RETURN prodlist_t
IS
 prodlist prodlist_t;
BEGIN
 FORALL aprod IN categorylist.FIRST..categorylist.LAST
 DELETE FROM product WHERE product_id IN
 categorylist(aprod)
 RETURNING product_id BULK COLLECT INTO prodlist;
 RETURN prodlist;
END;

You can use the SQL%BULK_ROWCOUNT cursor attribute for bulk bind operations. It is like an
associative array containing the number of rows affected by the executions of the bulk bound
statements. The nth element of SQL%BULK_ROWCOUNT contains the number of rows affected by the
nth execution of the SQL statement. For example:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);
FOR counter IN inactives.FIRST..inactives.LAST
LOOP
 IF SQL%BULK_ROWCOUNT(counter) = 0
 THEN
 DBMS_OUTPUT.PUT_LINE('No rows deleted for '||
 counter);
 END IF;
END LOOP;

You cannot pass SQL%BULK_ROWCOUNT as a parameter to another program, or use an aggregate
assignment to another collection. %ROWCOUNT contains a summation of all %BULK_ROWCOUNT
elements. %FOUND and %NOTFOUND reflect only the last execution of the SQL statement.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.18 External Procedures

External procedures provide a mechanism for calling out to a non-database program, such as a DLL
under NT or a shared library under Unix. Every session calling an external procedure will have its own
extproc process started by the listener. This extproc process is started with the first call to the
external procedure and terminates when the session exits. The shared library needs to have a
corresponding library created for it in the database.

1.18.1 Creating an External Procedure

The following are the steps you need to follow in order to create an external procedure.

1.18.1.1 Set up the listener

External procedures require a listener. If you are running an Oracle Net database listener, it can be
used as the extproc listener as well, although you may increase security by separating it from the
external procedure listener and launching it from a privilege-limited account. Here is one way to
structure the listener.ora file:

LISTENER =
 (ADDRESS = (PROTOCOL=TCP)(HOST=hostname)(PORT=1521))

EXTPROC_LISTENER =
 (ADDRESS = (PROTOCOL = IPC)(KEY = extprocKey))

SID_LIST_LISTENER =
 (SID_DESC =
 (GLOBAL_DBNAME = global_name)
 (ORACLE_HOME = oracle_home_directory)
 (SID_NAME = SID)
)

SID_LIST_EXTPROC_LISTENER =
 (SID_DESC =
 (SID_NAME = extprocSID)
 (ORACLE_HOME = oracle_home_directory)
 (ENVS = "EXTPROC_DLLS=
 qualifier:shared_object_file_list")
 (PROGRAM = extproc)
)

extprocKey

Short identifier used by Oracle Net to distinguish this listener from other potential IPC listeners.
Its actual name is arbitrary, because your programs will never see it. Oracle uses EXTPROC0 as
the default name for the first Oracle Net installation on a given machine. This identifier must be
the same in the address list of the listener.ora and tnsnames.ora files.

extprocSID

Arbitrary unique identifier for the external procedure listener. In the default installation, Oracle
uses the value PLSExtProc.

ENVS

Means of passing environment variables to the external procedure listener. The example above
shows only one name/value pair, but any number of pairs are permitted. Use name=value
syntax, separating each name/value pair with a comma, as in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(ENVS="LD_LIBRARY_PATH=
 /lib:/oracle/product/9.2/lib,EXTPROC_DLLS=ANY")

EXTPROC_DLLS

Environment variable designating non-default locations of shared libraries/DLLs. Without this
setting, the default security settings of Oracle9i Release 2 require the library/DLL to be in the
bin subdirectory on Windows platforms, and in Oracle's lib subdirectory on Unix. The qualifier is
actually optional; if it is not present, the additional files given in a colon-delimited
shared_object_file_list are allowed. If qualifier is present, it must be one of the keywords ALL
(no location checking) or ONLY (disallows the default locations).

Here is an example ENVS entry supporting two shared libraries found in non-default locations:

(ENVS="EXTPROC_DLLS=ONLY:/u01/app/oracle/admin/local/lib/
 extprocsh.so:/u01/app/oracle/admin/local/lib/
 RawdataToPrinter.so")

Installations unconcerned with security may wish to permit any location using an entry such as the
following:

(ENVS="EXTPROC_DLLS=ALL")

See the Oracle9i Application Developers Guide - Fundamentals or the Oracle9i Net Services
Administrators Guide for more details on configuring external procedures and your listener.

1.18.1.2 Identify or create the shared library or DLL

This step has nothing to do with PL/SQL and may or may not have anything to do with the database.
You must write your own C routines and link them into a shared library/DLL or use an existing
library's functions or procedures. In the simple example in the next section, we will use the existing
random-number-generating calls available from the operating system.

1.18.1.3 Create the library in the database

Create a library in the database for the shared library or DLL using the CREATE LIBRARY statement:

CREATE [OR REPLACE] LIBRARY library_name
{ IS | AS }
 'absolute_path_and_file'
 [AGENT 'agent_db_link'];

The optional AGENT clause represents a database link associated with the service name of an external
procedure listener. In this way the library can invoke a separate runtime instantiation of the extproc
process. This process can run on a different database server, although that server must still reside on
the same machine as the calling program.

To remove libraries from the database, you use the DROP LIBRARY statement:

DROP LIBRARY library_name;

To call out to the C runtime library's rand function, you don't have to code any C routines at all,
because the call is already linked into a shared library, and because its arguments are directly type-
mappable to PL/SQL. If the rand function is in the standard /lib/libc.so shared library, as on Solaris,
you would issue the following CREATE LIBRARY statement:

CREATE OR REPLACE LIBRARY libc_l AS
 '/lib/libc.so'; -- References C runtime library.

This is the typical corresponding statement for Microsoft Windows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE LIBRARY libc_l AS
 'C:\WINDOWS\SYSTEM32\CRTDLL.DLL';

1.18.1.4 Create the PL/SQL wrapper for the external procedure

The syntax for the wrapper procedure is:

CREATE [OR REPLACE] PROCEDURE proc_name
 [parm_list]
{ AS | IS } LANGUAGE C
 [NAME external_name] LIBRARY library_name
 [AGENT IN (formal_parameter_name)]
 [WITH CONTEXT]
 [PARAMETERS (external_parameter_list)];

where:

proc_name

Name of the wrapper procedure.

library_name

Name of the library created with the CREATE LIBRARY statement.

agent_name

This clause is a way of designating a different agent process, similar to the AGENT clause on
the library, but deferring the selection of the agent until runtime. You will pass in the value of
the agent as a formal PL/SQL parameter to the call spec; it will supersede the name of the
agent given in the library, if any.

external_name

Name of the external routine as it appears in the library. It defaults to the wrapper package
name. PL/SQL package names are usually saved in uppercase, so the external_name may need
to be enclosed in double quotes to preserve case.

WITH CONTEXT

Used to pass a context pointer to the external routine, so it can make Oracle Call Interface
(OCI) calls back to the database.

PARAMETERS

Identify the external_parameter_list, which is a comma-delimited list containing the position
and datatype of parameters that get passed to the external routine. For more details on the
external_parameter_list, see Section 1.18.2.

The wrapper PL/SQL function or procedure is often in a package. Using the preceding random number
generator example, we could create the wrapper package as follows:

CREATE OR REPLACE PACKAGE random_utl
AS
 FUNCTION rand RETURN PLS_INTEGER;
 PRAGMA RESTRICT_REFERENCES(rand,WNDS,RNDS,WNPS,RNPS);

 PROCEDURE srand (seed IN PLS_INTEGER);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PROCEDURE srand (seed IN PLS_INTEGER);
 PRAGMA RESTRICT_REFERENCES(srand,WNDS,RNDS,WNPS,RNPS);
END random_utl;

CREATE PACKAGE BODY random_utl
AS
 FUNCTION rand RETURN PLS_INTEGER
 IS
 LANGUAGE C -- Language of routine.
 NAME "rand" -- Function name in the
 LIBRARY libc_l; -- The library created above.

 PROCEDURE srand (seed IN PLS_INTEGER)
 IS
 LANGUAGE C
 NAME "srand" -- Name is lowercase in this
 LIBRARY libc_l
 PARAMETERS (seed ub4); --Map to unsigned INT
END random_utl;

To use this external random number function, we simply call the package procedure srand to seed the
generator, then the package function rand to get random numbers:

DECLARE
 random_nbr PLS_INTEGER;
 seed PLS_INTEGER;
BEGIN
 SELECT TO_CHAR(SYSDATE,'SSSSS') INTO seed
 FROM dual;

 random_utl.srand(seed); -- Seed the generator.

 random_nbr := random_utl.rand; -- Get the number.
 DBMS_OUTPUT.PUT_LINE('number='||random_nbr);

 random_nbr := random_utl.rand; -- Get the number.
 DBMS_OUTPUT.PUT_LINE('number='||random_nbr);
END;

You can generate random numbers without the complexity or overhead of an external call by using
the built-in package DBMS_RANDOM. To learn more about DBMS_RANDOM and other built-ins, check
out Oracle Built-in Packages.

1.18.2 Parameters

When it comes to passing PL/SQL variables to C variables, we encounter many inconsistencies. For
example, PL/SQL supports nullity, while C does not; PL/SQL can have variables in different character
sets, while C cannot; and the datatypes in PL/SQL do not directly map to C datatypes.

The PARAMETERS clause specifies the external parameter list, a comma-delimited list containing
parameters. The syntax for these parameters (other than CONTEXT) is:

{ pname | RETURN | SELF } [property] [BY REFERENCE]
 [external_datatype]

If your call spec includes WITH CONTEXT, the corresponding element in the parameter list is simply:

CONTEXT

The keyword CONTEXT indicates the position in the parameter list at which the context pointer will be
passed. By convention, CONTEXT appears as the first parameter in the external parameter list.

The keyword RETURN indicates that the descriptions are for the return value from the external

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The keyword RETURN indicates that the descriptions are for the return value from the external
routine. By default, RETURN is passed by value. You can use the keywords BY REFERENCE to pass by
reference (use pointers).

parameter_name is a PL/SQL formal parameter name. By default, IN formal parameters are passed
by value. You can use the keywords BY REFERENCE to pass by reference (as a pointer). IN OUT and
OUT formal parameters are always passed by reference.

property breaks out further to the general syntax:

INDICATOR | INDICATOR STRUCT | LENGTH | MAXLEN | TDO |
CHARSETID | CHARSETFORM

INDICATOR indicates whether the corresponding parameter is NULL. In the C program, if the indicator
equals the constant OCI_IND_NULL, the parameter is NULL. If the indicator equals the constant
OCI_IND_NOTNULL, the indicator is not NULL. For IN parameters, INDICATOR is passed by value (by
default). For IN OUT, OUT, and RETURN parameters, INDICATOR is passed by reference.

You can pass a user-defined type to an external procedure. To do so, you will typically pass three
parameters: the actual object value; a TDO (Type Descriptor Object) parameter as defined in C by the
Oracle Type Translator; and an INDICATOR STRUCT parameter, to designate whether the object is
NULL.

LENGTH and MAXLEN can be used to pass the current and maximum length of strings or RAWs. For IN
parameters, LENGTH is passed by value (by default). For IN OUT, OUT, and RETURN parameters,
LENGTH is passed by reference. MAXLEN is not valid for IN parameters. For IN OUT, OUT, and
RETURN parameters, MAXLEN is passed by reference and is read-only.

CHARSETID and CHARSETFORM are used to support NLS character sets. They are the same as the
OCI attributes OCI_ATTR_CHARSET_ID and OCI_ATTR_CHARSET_FORM. For IN parameters,
CHARSETID and CHARSETFORM are passed by value (by default) and are read-only. For IN OUT, OUT,
and RETURN parameters, CHARSETID and CHARSETFORM are passed by reference and are read-only.

SELF is used if an object member function is implemented as a callout instead of a PL/SQL routine.

When moving data between PL/SQL and C, each PL/SQL datatype maps to an "external datatype,"
identified by a PL/SQL keyword, which in turn maps to an allowed set of C types:

PL/SQL types External datatypes C types

PL/SQL includes a special set of keywords to use as the external datatype in the PARAMETERS clause.
In some cases, the external datatypes have the same name as the C types. If you pass a PL/SQL
variable of type PLS_INTEGER, the corresponding default external type is INT, which maps to an int in
C. But Oracle's VARCHAR2 uses the STRING external datatype, which normally maps to a char * in C.

The following table lists all of the possible datatype conversions supported by Oracle's PL/SQL-to-C
interface. Note that the allowable conversions depend on both the datatype and the mode of the
PL/SQL formal parameter. Default mappings are shown in bold (if ambiguous).

 C datatypes corresponding to PL/SQL
parameters that are...

Datatype of
PL/SQL parameter

PL/SQL keyword identifying
external type

IN or function return
values

IN OUT, OUT, or
any parameter
designated as

being passed BY
REFERENCE

Long integer family:
BINARY_INTEGER,
BOOLEAN,

PLS_INTEGER

INT, UNSIGNED INT, CHAR,
UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, LONG,
UNSIGNED LONG, SB1, UB1,
SB2, UB2, SB4, UB4, SIZE_T

int, unsigned int, char,
unsigned char, short,
unsigned short, long,
unsigned long, sb1, ub1,
sb2, ub2, sb4, ub4, size_t

Same list of types
as at left, but use
a pointer(e.g., the
default is int *
rather than int)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Short integer family:
NATURAL,
NATURALN,
POSITIVE,
POSITIVEN,
SIGNTYPE

Same as above, except default
is UNSIGNED INT

Same as above, except
default is unsigned int

Same as above,
except default is
unsigned int *

Character family:
VARCHAR2, CHAR,
NCHAR, LONG,
NVARCHAR2,
VARCHAR,
CHARACTER, ROWID

STRING,

OCISTRING

char *,

OCIString *

char *, OCIString
*

NUMBER OCINUMBER OCINumber * OCINumber *
DOUBLE PRECISION DOUBLE double double *
FLOAT, REAL FLOAT float float *

RAW, LONG RAW RAW, OCIRAW unsigned char *,
OCIRaw *

unsigned char *,
OCIRaw *

DATE OCIDATE OCIDate * OCIDate *
Timestamp family:

TIMESTAMP,
TIMESTAMP WITH
TIME ZONE,
TIMESTAMP WITH
LOCAL TIME ZONE

OCIDATETIME OCIDateTime * OCIDateTime *

INTERVAL DAY TO
SECOND, INTERVAL
YEAR TO MONTH

OCIINTERVAL OCIInterval * OCIInterval *

BFILE, BLOB, CLOB OCILOBLOCATOR OCILOBLOCATOR * OCILOBLOCATOR
* *

Descriptor of user-
defined type
(collection or object)

TDO OCIType * OCIType *

Value of user-defined
collection OCICOLL OCIColl **, OCIArray **,

OCITable **

OCIColl **,
OCIArray **,
OCITable **

Value of user-defined
object DVOID dvoid *

dvoid * for final
types; dvoid ** for
non-final types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.19 Java Language Integration

Java programmers can write server-side classes that invoke SQL and PL/SQL using standard JDBC
 or SQLJ calls. PL/SQL programmers can call server-side Java methods by writing a PL/SQL cover

or call spec for Java using Oracle DDL.

Server-side Java in Oracle may be faster than PL/SQL for compute-intensive programs, but not as
nimble for database access. PL/SQL is much more efficient for database-intensive routines because,
unlike Java, it doesn't have to pay the overhead for converting SQL datatypes for use inside the
stored program. Oracle programmers will want to continue to use PL/SQL for programs that perform a
lot of database I/O, and use Java for the best raw computation performance.

The first step in creating a Java stored procedure (JSP) is writing or otherwise obtaining functional
Java code. Having source code is not necessary, though, so you can use class libraries from third
parties. The classes must, however, meet the following requirements:

Methods published to SQL and PL/SQL must be declared static. PL/SQL has no mechanism for
instantiating non-static Java classes.

The classes must not issue any GUI calls (for example, to AWT) at runtime.

If you write your own JSP, and it needs to connect to the database for access to tables or stored
procedures, use standard JDBC and/or SQLJ calls in your code. Many JDBC and SQLJ reference
materials are available to provide assistance in calling SQL or PL/SQL from Java, but be sure to review
the Oracle-specific documentation that ships with your release.

Once you have the Java class in hand, either in source or .class file format, the next step is loading it
into the database. Oracle's loadjava command-line utility is a convenient way to accomplish the load.
Refer to Oracle's documentation for further assistance with loadjava.

The third step is to create a call spec for the Java method, specifying the AS LANGUAGE JAVA clause
of the CREATE command. You may create a function or procedure cover as appropriate.

Finally, you may grant EXECUTE privileges on the new JSP using GRANT EXECUTE, and PL/SQL
routines can now call the JSP as if it were another PL/SQL module.

1.19.1 Example

Let's write a simple "Hello, World" JSP that will accept an argument:

package oreilly.plsquick.demos;

public class Hello {
 public static String sayIt (String toWhom) {
 return "Hello, " + toWhom + "!";
 }
}

Saved in a file called Hello.java, the source code can be loaded directly into Oracle. Doing so will
automatically compile the code. Here is a simple form of the loadjava command:

loadjava -user scott/tiger -oci8 oreilly/plsquick/
 demos/Hello.java

The Hello.java file follows the Java file placement convention for packages and thus exists in a
subdirectory named oreilly/plsquick/demos.

We can fire up our favorite SQL interpreter, connect as SCOTT/TIGER, and create the call spec for the
Hello.sayIt() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE FUNCTION hello_there (to_whom IN VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'oreilly.plsquick.demos.Hello.sayIt
 (java.lang.String) return java.lang.String';
/

Now we can call our function very easily:

BEGIN
 DBMS_OUTPUT.PUT_LINE(hello_there('world'));
END;
/

And we get the following as the expected output:

Hello, world!

1.19.2 Publishing Java to PL/SQL

To write a call spec, use the AS LANGUAGE JAVA clause in a CREATE statement. The syntax for this
clause is:

{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [RETURN type_fullname]'

method_fullname is the package-qualified name of the Java class and method. It is case-sensitive and
uses dots to separate parts of the package full name. type_fullname is the package-qualified name of
the Java datatype. Notice that a simple string, not a SQL name, follows the NAME keyword.

Type mapping follows most JDBC rules regarding the legal mapping of SQL types to Java types.
Oracle extensions exist for Oracle-specific datatypes.

Most datatype mappings are relatively straightforward, but passing Oracle objects of a user-defined
type is harder than one would think. Oracle provides a JPublisher tool that generates the Java
required to encapsulate an Oracle object and its corresponding REF. Refer to Oracle's JPublisher
documentation for guidelines on usage.

The AS LANGUAGE JAVA clause is the same regardless of whether you are using Java as a standalone
JSP, the implementation of a packaged program, or the body of an object type method. For example,
here is the complete syntax for creating JSPs as PL/SQL-callable functions or procedures:

CREATE [OR REPLACE]
{ PROCEDURE procedure_name [(param[, param]...)]
 | FUNCTION function_name [(param[, param]...)]
 RETURN sql_type
}
[AUTHID {DEFINER | CURRENT_USER}]
[PARALLEL_ENABLE]
[DETERMINISTIC]
{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [RETURN type_fullname]'

When using Java as the implementation of a packaged procedure or function, Oracle allows you to
place the Java call spec in either the package specification (where the call spec substitutes for the
subprogram specification) or in the package body (where the call spec substitutes for the subprogram
body). Similarly, when using JSPs in object type methods, the Java call spec can substitute for either
the object type method specification or its body.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that Java functions typically map to PL/SQL functions, but Java functions declared void map to
PL/SQL procedures. Also, you will quickly learn that mistakes in mapping PL/SQL parameters to Java
parameters become evident only at runtime.

1.19.3 Data Dictionary

To learn what Java library units are available in your schema, look in the USER_OBJECTS data
dictionary view where the object_type is like `JAVA%'. If you see a Java class with INVALID status, it
has not yet been successfully resolved. Note that the names of the Java source library units need not
match the names of the classes they produce.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.20 Reserved Words

As we mentioned earlier in this book, the PL/SQL language recognizes certain identifiers (language
keywords and identifiers from the STANDARD package) as having special meaning. You must not
redefine these reserved words as identifiers in your programs.

We compiled the following table of reserved words by taking the list Oracle publishes in the
V$RESERVED_WORDS data dictionary view and trying to declare them (as variables and/or
procedures). If the declarations failed, we added the words to the list. Avoid using these words in
your programs.

ACCESS ADD ALL ALTER
AND ANY AS ASC
AT AUDIT BEGIN BETWEEN
BY CASE CHAR CHECK
CLOSE CLUSTER COLUMN COLUMNS
COMMENT COMMIT COMPRESS CONNECT
CREATE CURRENT CURSOR DATE
DECIMAL DECLARE DEFAULT DELETE
DESC DISTINCT DROP ELSE
END EXCLUSIVE EXISTS FILE
FLOAT FOR FROM FUNCTION
GRANT GROUP HAVING IDENTIFIED
IF IMMEDIATE IN INCREMENT
INDEX INDEXES INITIAL INSERT
INTEGER INTERSECT INTO IS
LEVEL LIKE LOCK LONG
MAXEXTENTS MINUS MLSLABEL MODE
MODIFY NOAUDIT NOCOMPRESS NOT
NOWAIT NULL NUMBER OF
OFFLINE ON ONLINE OPEN
OPTION OR ORDER OVERLAPS
PACKAGE PCTFREE PRIOR PRIVILEGES
PROCEDURE PUBLIC RAW RENAME
RESOURCE RETURN REVOKE ROLLBACK
ROW ROWID ROWNUM ROWS
SAVEPOINT SELECT SESSION SET
SHARE SIZE SMALLINT START
SUCCESSFUL SYNONYM SYSDATE TABLE
THEN TO TRIGGER TYPE
UID UNION UNIQUE UPDATE
USE USER VALIDATE VALUES
VARCHAR VARCHAR2 VIEW WHEN
WHENEVER WHERE WITH

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

-- (double hyphen), specifying single-line comments
/* and */, specifying multiline comments

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

AGGREGATE USING keyword
ALTER TYPE statement
anchored declarations
AS LANGUAGE JAVA clause
assigning records
associative arrays
 adding/removing elements
 initializing
 syntax for declaring
AUTHID keyword
autonomous transactions 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

BFILE datatype
binary integer datatypes
BLOB datatype
block structure in PL/SQL
body, package
BOOLEAN datatype
Boolean literals
bulk binds and collections

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

CASE expressions
CASE statements
CAST pseudo-function
character datatypes
character set in PL/SQL
CLOB datatype
collections
 adding/removing elements
 bulk binds and
 declaration syntax for
 initializing
 methods for
 pseudo-functions for
 types of
comments in PL/SQL
COMMIT statement
conditional control statements
CONSTANT keyword
constrained declarations
constrained subtypes
CONSTRUCTOR keyword
CONTEXT keyword
control statements
 conditional
 sequential
COUNT function
CREATE LIBRARY statement
cursor expressions
cursor variables
cursors in PL/SQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

data dictionary views
 USER_OBJECTS
 USER_STORED_SETTINGS
 V$RESERVED_WORDS
 V$TIMEZONE_NAMES
database events and triggers 2nd
database interaction
datatype conversions
datatypes of parameters
date datatypes
datetime interval literals (Oracle9i)
DBMS_RANDOM built-in package
DDL events and triggers 2nd
decimal numeric datatypes
declaring
 exceptions
 programs
 records
default values for parameters
DELETE procedure
DELETING trigger predicate
delimiters in PL/SQL
DEREF operator
DETERMINISTIC keyword
DML events and triggers 2nd
downcasting subtypes
DROP event 2nd
dynamic cursors 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

exception handling
EXCEPTION_INIT pragma
EXECUTE IMMEDIATE statement
EXISTS function
EXIT statements
explicit cursors
expressions, cursor
EXTEND procedure
external procedures
 creating
 creating PL/SQL wrappers for
 parameters and
extproc processes
EXTPROC_DLLS environment variable
extprocKey identifier
extprocSID identifier

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

FETCH statement
fields of records
FINAL keyword
 methods in subtypes
FIRST function
floating-point numbers, datatypes for
FOR EACH ROW statement
FOR loops
forward declarations of programs
%FOUND attribute
functions in PL/SQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

GOTO statements

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

handling exceptions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

identifiers in PL/SQL
IF-THEN-ELSE statements
implicit cursors
IN parameters
initializing
 collections
 objects
 packages
INSERTING trigger predicate
INSTANTIABLE keyword
INTERVAL keyword
IS DANGLING predicate.
IS NULL/IS NOT NULL syntax
%ISOPEN attribute

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Java language integration
Java stored procedures (JSPs)
JPublisher tool

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

language fundamentals of PL/SQL
large object (LOB) datatypes
LAST function
libraries, creating in database
LIMIT function
listeners, setting up for external procedures
literals
loadjava utility
LOB (large object) datatypes
local programs
LOCK TABLE statement
LOGON/LOGOFF events 2nd
loops in PL/SQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

methods in subtypes (Oracle9i)
methods, types of
modes of parameters
MULTISET pseudo-function
mutual recursion

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

named notation
NCHAR datatype
NCLOB datatype
nested collections
nested tables
 initializing 2nd
 syntax for declaring
nesting records
NEXT function
NLS (national character set) datatypes
 external procedures and
NOCOPY option
NOT INSTANTIABLE method modifier
NOT NULL constraint
%NOTFOUND attribute
NULL statements
NULLs in PL/SQL
numeric datatypes
numeric literals
NVARCHAR2 datatype

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

object types, changing
object-oriented features
OPEN FOR statement
OR REPLACE keyword
Oracle object-oriented features and PL/SQL
Oracle8i
 autonomous transactions and 2nd
 determining purity levels of programs
 SQL%BULK_ROWCOUNT attribute and
Oracle9i
 CASE expressions
 CASE statements
 compiling stored PL/SQL programs
 datetime interval datatypes 2nd
 external procedures
 methods in subtypes
 natively compiling stored programs
 object types
 type inheritance
 upcasting/downcasting subtypes
OUT parameters
overloading programs
OVERRIDING method modifier

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

packaged functions, calling in SQL
packages in PL/SQL
PARALLEL_ENABLED keyword
parameters
 default values for
 external procedures and
 modes of
passing arguments in parameter lists
PIPE ROW command
PIPELINED keyword
PLS_INTEGER datatype
positional notation
PRAGMA keyword
predicates, trigger
PRIOR function
privileges and stored PL/SQL
procedures in PL/SQL
propagating exceptions
purity levels of programs, determining

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

raising exceptions
records in PL/SQL
recursion, mutual
REF operator
REF_CURSOR types
referencing fields of records
REPEAT UNTIL loop emulation
reserved words in PL/SQL 2nd
RESTRICT_REFERENCES pragma 2nd
RETURN keyword
ROLLBACK statement
%ROWCOUNT attribute
%ROWTYPE attribute

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

SAVEPOINT statement
scalar datatypes
scope of exceptions
searched CASE expressions
searched CASE statements
SELECT FOR UPDATE clause
sequential control statements
SERIALLY_REUSABLE pragma 2nd
SERVERERROR event 2nd
SET TRANSACTION statement
SHUTDOWN event 2nd
specification, package
SQL statements, calling stored functions from
SQL%BULK_ROWCOUNT attribute
SQL%FOUND attribute
SQL%ISOPEN attribute
SQL%NOTFOUND attribute
SQL%ROWCOUNT attribute
SQLCODE function
SQLERRM function
STARTUP event 2nd
statements in PL/SQL
static cursors
stored functions, calling from SQL statements
stored programs, compiling
 natively
string literals
subtypes, constrained/unconstrained

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

table functions
TABLE pseudo-function
time datatypes
transaction management
TREAT operator
triggers in PL/SQL
TRIM procedure
%TYPE attribute
type inheritance (Oracle9i)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

unconstrained subtypes
UNDER keyword
upcasting subtypes
UPDATING trigger predicate
USER_OBJECTS data dictionary view
USER_STORED_SETTINGS data dictionary view

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

V$RESERVED_WORDS data dictionary view
V$TIMEZONE_NAMES data dictionary view
VALUE operator
VARCHAR2 datatype
variables
 declaring
 default values of
VARRAYs
 initializing 2nd
 syntax for declaring

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

WHEN OTHERS clause
WHERE CURRENT OF clause
WHILE loops
wrappers for external procedures

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

