
Andrew Curioso, Ronald Bradford, Patrick Galbraith

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

PHP and
MySQL®

Expert

Curioso
et al.

 $44.99 USA
 $53.99 CANProgramming Languages / PHP

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters, and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As the world’s most popular, general purpose, open source scripting
language, PHP is frequently used with MySQL to create high-traffic,
mission-critical applications. This indispensable book shares proven,
author-tested best practices and expert techniques that can be applied
to even the most demanding MySQL-driven PHP apps. You’ll explore
ways to extend MySQL with user-defined functions, write PHP
extensions, and solve problems when PHP and MySQL alone are not
enough and other techniques or third-party tools are necessary.

Expert PHP and MySQL:

• Reviews essential techniques, such as design patterns, complex
queries, and advanced regular expression

• Addresses advanced PHP concepts, such as iterators and closures

• Demonstrates using Gearman for multitasking in your web applications

• Discusses caching using memcached with MySQL and your PHP
web applications

• Discusses ways to create PHP Extensions and MySQL User Defined Functions

• Shows how to use Sphinx for search functionality in your PHP
web applications

Andrew Curioso is a senior software engineer at MyVBO (Virtual Business Office)
creating an innovative and scalable infrastructure for Rich Internet Applications using
PHP and MySQL.

Ronald Bradford is a technology strategist and advisor specializing in MySQL, Drizzle
and related web technologies. With a primary focus on architecture, design,
performance analysis and scalability of web applications, his consulting portfolio
ranges from Internet startups to Fortune 500 companies.

Patrick Galbraith is a principal software engineer at Lycos, adding new PHP and MySQL
offerings for Tripod Users, switching remaining apps using Oracle to MySQL as well as
other interesting projects.

Wrox Expert books present the wisdom accumulated by an experienced
author team who is recognized as experts by the programming community.
These experts challenge professional developers to examine their current
practices in pursuit of better results.

Best practices and expert techniques
for today’s most demanding apps Expert

PH
P and M

ySQ
L

®

Related Wrox Books

Beginning PHP5, Apache, and MySQL Web Development
ISBN: 978-0-7645-7966-0
PHP, Apache, and MySQL are the three key open source technologies that form the basis for most active web servers. This
book guides you through the entire process of setting up your own site and walks you through every step, from the installation
of PHP, Apache, and MySQL to database management, security, and integration with other technologies. The multi-platform
approach addresses installation and usage on both Linux® and Windows®, and two common-themed, reusable web sites are
examined. Upon completion of this book, you’ll be able to create well designed, dynamic web sites using open source tools.

Beginning PHP 5.3
ISBN: 978-0-470-41396-8
As one of the most popular open-source web-programming languages in use today, PHP is an ideal server-side scripting language
that connects HTML-based web pages to a backend database for dynamic content. It allows you to create anything from a simple
form-to-email script to a web forum application, a blogging platform, or a content management system. This guide introduces
the PHP language and shows you how to write powerful web applications using PHP.

Professional PHP 5
ISBN: 978-0-7645-7282-1
This book has a pragmatic focus on how to use PHP in the larger scheme of enterprise-class software development. It covers
UML modeling and presents objects and object hierarchies that, when completed, comprise a robust toolkit that developers will
be able to reuse on future projects. This book is designed to arm you with the sort of constructs that are available out of the
box with platforms such as Java and .NET — from simple utility classes like Collection and Iterator, to more complex constructs
like Model/View/Controller architectures and state machines.

Professional PHP Design Patterns
ISBN: 978-0-470-49670-1
This book bridges the gap between the PHP and the older programming language by applying those tried and tested Design
Patterns to native PHP applications. It starts with an introduction to Design Patterns, describes their use and importance, and
details where you’ve seen them already. The book continues through a host of Design Patterns with code examples and explanations.
Finally, an in-depth case study shows you how to plan your next application using Design Patterns, how to program those patterns
in PHP, and how to revise and refactor an existing block of code using Design Patterns from the book. The author approaches
the concepts in technical yet usable formats that are familiar to both programmers who are self-taught and those with more
extensive formal education.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

CONTENTS AT A GLANCE

INTRODUCTION . xxix

CHAPTER 1 Techniques Every Expert Programmer Needs to Know 1

CHAPTER 2 Advanced PHP Concepts . 65

CHAPTER 3 MySQL Drivers and Storage Engines . 87

CHAPTER 4 Improving Performance through Caching . 131

CHAPTER 5 memcached and MySQL. 191

CHAPTER 6 Advanced MySQL . 221

CHAPTER 7 Extending MySQL with User-Defi ned Functions 271

CHAPTER 8 Writing PHP Extensions . 307

CHAPTER 9 Full-Text Searching . 365

CHAPTER 10 Multi-tasking in PHP and MySQL . 401

CHAPTER 11 Rewrite Rules . 443

CHAPTER 12 User Authentication . 457

CHAPTER 13 Understanding the INFORMATION_SCHEMA . 477

CHAPTER 14 Security . 493

CHAPTER 15 Command-Line and Web Services .517

CHAPTER 16 Optimization and Debugging . 543

INDEX . 567

563120ffirs.indd i563120ffirs.indd i 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd ii563120ffirs.indd ii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

EXPERT

PHP and MySQL®

563120ffirs.indd iii563120ffirs.indd iii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd iv563120ffirs.indd iv 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

EXPERT

PHP and MySQL®

Andrew Curioso
Ronald Bradford
Patrick Galbraith

563120ffirs.indd v 563120ffirs.indd v 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

Expert PHP and MySQL®

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-56312-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010920658

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. MySQL is a registered trademark of MySQL AB. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

563120ffirs.indd vi563120ffirs.indd vi 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

This book is dedicated to my wife, Laura. Without

your support this book wouldn’t be possible. Thank

you for being by my side and planning the wedding

while I was doing my writing!��������	
����
For MySQL Culture, past, present, and future. To

many in the MySQL community: you are more than

colleagues, you are great friends.����������������
This book is dedicated to my son, Kiran Patrick.

“Kiran” means “ray of light” in Sanskrit, and you are

a ray of light in my life!������������������

563120ffirs.indd vii 563120ffirs.indd vii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd viii563120ffirs.indd viii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

ABOUT THE AUTHORS

ANDREW CURIOSO has been coding in PHP and MySQL for a decade. His experience includes develop-
ing professional-grade PHP and MySQL based web applications for MIT Lincoln Laboratory (part of
the Massachusetts Institute of Technology) and being at the ground fl oor of the state-of-the-art web-
publishing platform Webon at Lycos (currently the page builder technology for Angelfire.com). Aside
from software engineering, Andrew takes interest in software usability, business, the semantic web, and
robotics. He currently works at MyVBO, a virtual business offi ce that provides powerful tools to help
small to medium sized business manage their companies online. Over the years, he’s had the opportu-
nity to work on exciting projects and specializes in data portability, linked data, social media, and Rich
Internet Applications. His home on the web can be found at http://andrewcurioso.com/.

RONALD BRADFORD has more than two decades of professional IT industry experience in a broad
range of disciplines. His core expertise is in relational database management systems (RDBMS)
including MySQL, Oracle and Ingres. His technical software development skills include working
in Java (J2EE), PHP, Perl, Python, Web (HTML/CSS/XML/JSON), and Linux/Unix operating
systems. He is a professional speaker, educational curriculum developer, and writer who special-
izes in technical presentations, workshops, online content publishing, and knowledge transfer.
More information on his related MySQL writings, presentations and useful tools can be found at
http://ronaldbradford.com.

PATRICK GALBRAITH lives up in the sticks of southwestern New Hampshire near Mt. Monadnock
with his wife Ruth and son Kiran. Since 1993, he has been using and developing Open Source soft-
ware. He has worked on various Open Source projects including MySQL, federated storage engine,
memcached Functions for MySQL, Drizzle, Narada Search Engine Slashcode, and is the maintainer
of DBD::mysql. He has worked at a number of companies throughout his career, including MySQL
AB, Classmates.com, OSDN/Slashdot, and Lycos. He currently works at NorthScale, a leading
provider of scale-out infrastructure software for web applications. He is also part owner of a wire-
less broadband company, Radius North, which provides Internet service to underserved rural areas
of New Hampshire. His website, which comes by way of a 5.8GHz Alvarion access unit up in a pine
tree, is http://patg.net.

563120ffirs.indd ix563120ffirs.indd ix 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd x563120ffirs.indd x 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

ABOUT THE TECHNICAL EDITORS

ALAN COLLISON is a software engineer with more than a dozen years of experience developing scal-
able PHP applications. His expertise ranges from the design and development of front end GUIs to
the implementation of core server side application business logic.

JAY COSKEY is a software developer and software development manager who lives in Seattle, and
has worked for companies including Cray Inc. and Amazon.com. He has used numerous languages
on Linux, Unix, and Windows platforms, in environments ranging from OS development, to web
and enterprise systems. When not involved in mathematics or software, he can sometimes be found
woodworking.

ERIC DAY has been writing high-performance servers and databases for most of his career and cur-
rently works on open source projects such as Drizzle and Gearman. He has also written a number of
extensions for higher level languages such as PHP. When not hacking on code, he can be found run-
ning, enjoying a good vegan meal, or blogging at http://oddments.org/.

KEN MACKE is a systems architect, developer, and owner of RockIP Networks — a provider of web
hosting and IT consulting services. Ken has over 15 years of experience creating cutting-edge software
with technologies such as PHP, C++, C#, and .NET. You can fi nd Ken online at twitter.com/kmacke.

ELIZABETH NARAMORE has been a web developer since 1997, with a focus in PHP and E-commerce.
In addition to being a web developer, she is an author, editor, speaker, and educator, and active
member of communities such as the PHP Community, PHPWomen, and her local PHP Users Group.

TROND NORBYE is a Senior Software Engineer specializing in databases and distributed caching. He
currently works at NorthScale designing and implementing scale out data systems. Prior to joining
NorthScale, Trond was a key member of Sun Microsystems’ Web Scale Infrastructure group where
he worked on Drizzle, Gearman and Memcached. In his copious free time he is a core contributor
on the Memcached, Libmemcached and OpenGrok Open Source projects.

KARL WILBUR is an enterprise consultant, PHP developer and Linux guru with more than a decade
of LAMP experience and a passion for the bleeding-edge. When not out motorcycling the Midwest
he can be found lurking on the Internet at http://karlwilbur.net/.

563120ffirs.indd xi563120ffirs.indd xi 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd xii563120ffirs.indd xii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

CREDITS

EXECUTIVE EDITOR

Robert Elliott

PROJECT EDITOR

Maureen Spears

TECHNICAL EDITORS

Alan Collison

Jay Coskey

Eric Day

Ken Macke

Elizabeth Naramore

Trond Norbye

Karl Wilbur

PRODUCTION EDITOR

Eric Charbonneau

COPY EDITOR

Kim Cofer

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

MARKETING MANAGER

Ashley Zurcher

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

COMPOSITOR

Jeff Lytle, Happenstance Type-o-Rama

PROOFREADER

Nancy Bell

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Michael E. Trent

COVER IMAGE

©Gavin Hellier/Photographer’s Choice RF/

Getty Images

563120ffirs.indd xiii563120ffirs.indd xiii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd xiv563120ffirs.indd xiv 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

ACKNOWLEDGMENTS

IT WAS THANKS TO MY BROTHER RAY CURIOSO JR. that I was really able to get a head start. He
started an embroidery business in the 90s out of my parents’ garage. It has since moved to its own
place but there was that time in-between where, thanks to his company, I was one of the only people
that I knew with Internet access. It was slow and it took days to download software development
kits and it wasn’t as easy to fi nd programming help for a beginner as it is today. But I made do with
what I had. It was also because of him and his business — it needed an ecommerce site — that I put
down the C code and the ASP and got my start with PHP and MySQL.

I’d like to thank my parents too for being a constant source of support for me. It was my father who
taught me the value of hard work. And, of course, thank my wife who put up with me spending
long nights working for a start up and writing a book at the same time. We were married during the
writing and without her hard work planning the wedding, supporting me, and standing by my side
this book would not have been possible.

I’d like to thank my teammates at Lycos. It was truly a pleasure working with each of them. I’d
particularly like to thank my managers. Don Kosak for inspiring me, Neal Shanske for keeping me
on my toes. I’d like to thank Derek Bruneau since everything I learned about good software design
and usability I learned thanks to him. And I’d like to thank my fellow engineers Lisa Wallmark,
Chandra Yadav, and Kevin Harrington. I’d like to also thank my team at MyVBO, in particular
Robert (Bob) Wilkins and Matthew Sheppard for their understanding as I juggled work and writing.

Finally, I would also like to take a minute to thank the team that worked tirelessly to make this book
happen. Bob Elliott who made this book happen, Maureen Spears who edited this whole thing cover to
cover, and my co-authors Patrick and Ronald. Patrick in particular has been a good friend and deserves
credit for putting the team together. He is the one thread that connects us all. Which brings me to the
tech editors. They all did an amazing job and the book is much better because of each of them.

There are countless people who have helped me along the way. I am sure that I forgot someone. To
anyone who has ever encouraged me to follow my dreams or supported me in any way: thank you.��������	
����
TODAY, I AM A WELL RESPECTED AUTHORITY in the MySQL fi eld. This was not possible without a
lot of hard work and great mentorship. I would fi rst like to thank the late Frank Jarvis from DDIAE
(now USQ) who in 1988 introduced me to the works of C.J. Date, M. Stonebraker and E.F. Codd
during my university studies.

My fi rst relational database experience started with Ingres and led to immediate work with systems
design and software development in the database fi eld. In the early 90’s, as a young, energetic and
knowledgeable database architect with several successful government projects, my work alongside

563120ffirs.indd xv 563120ffirs.indd xv 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

my now good friend Bruce Turner helped in my understanding and appreciation of more formal
processes in the management and success of large scale deployments. We worked together again for
Oracle Corporation in the late 90s where Bruce still works today. To Bruce, thank you for your sup-
port and mentoring. Those TAFE days with Mike and Laurie still rate as some of my favorites. From
my fi rst use of MySQL over ten years ago until today I still seek input, advice and encouragement
from the MySQL community. Many of you from the MySQL community I consider as great friends.

Finally, to my fi ance Cindy who has been supportive throughout the entire process of my fi rst book
in MySQL with compromises that have enabled me to complete this work on schedule.��������	
����
�
ONE WEEKEND IN 1993, I had the chance to go on a getaway to San Diego. Instead, I opted to stay
home and download, onto 26 fl oppies, Slackware Linux, which I promptly installed onto my Packard
Bell 386. I could never get the built-in video card to work with X, so I ended up buying a separate video
card and had to edit my XConfi g fi le to get it to work. How much more interesting this was to do than
editing a confi g.sys and an autoexec.bat! From then on, I was hooked. I worked at Siemens Ultrasound
Group in Issaquah, Washington, at the time. An engineer there named Debra, when asked what was a
good thing to learn, said something I’ll never forget: ‘‘Learn Perl.’’ Debra — you were right! I always
wanted to be a C ++ graphics programmer. That didn’t happen because of this thing called the World
Wide Web. I remember Ray Jones and Randy Bentson of Celestial Software showing me a program
called Mosaic, which allowed you to view text over the Internet. Images would be launched using XV.
Everywhere I worked, I had to write programs that ran on the Web, which required me to write CGI
in Perl. So much for my goal of being a C ++ programmer — but I consider this a great trade for a
great career. (I did eventually get to write C ++ for MySQL!) I would fi rst like to thank my wife, Ruth,
for being patient and supportive of me for numerous lost weekends with this book and my previous
book Developing Web Applications with Perl, memcached, MySQL and Apache, as well as accepting
me working on yet another book so soon after the fi rst! Next in line for thanks, our editor, Maureen
Spears, who is not only a great editor, but also a friend. Not only did she edit this current work, but she
was my editor for my previous book. Next, I would like to thank my co-authors, Andrew and Ronald.
It’s been a whole different experience co-authoring versus being a sole author, having learned a bit
about putting together something — as a team.

A special thanks goes to our tech editors as well as to Trond Norbye (memcached, libmemcached),
Eric Day (Gearman, Drizzle) and Andrew Aksyonoff (Sphinx) for stepping up as tech editors when
we were in a crunch and reviewing the material I wrote about their projects!

Thank you to Bob Elliott, who gave us the opportunity to work as a team to write this book!
Thanks to Monty Widenius for creating MySQL and for being a mentor as well as a good friend
who worked hard to include FederatedX into MariaDB while I was working on this book. Thanks
also to Brian Aker for being another great mentor and friend, as well as being a software-producing
machine with a scrolling page full of open source software projects that he’s created, including
Drizzle and libmemcached.

563120ffirs.indd xvi 563120ffirs.indd xvi 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

I WOULD LIKE TO THANK MY CURRENT COLLEAGUES at Northscale — Steve Yen, Dustin Sallings,
James Phillips, Matt Ingenthron, Rod Ebrahimi, Eric Lambert and Trond Norbye — it’s a real privilege
to work with guys who have so much expertise. Also thanks go to my former colleagues at Lycos who
encouraged me while writing my previous book — Don Kosak, Chandra Yadav, Tristan Escalada, oth-
ers, as well as Andrew Curioso! Also to former colleagues at Grazr and MySQL. Last but not least,
thanks to the team members of MariaDB and Drizzle for integrating projecs I worked on while writing
this book. Thanks also to anyone I forgot to mention. I know I probably forgot someone!��������	
�������

563120ffirs.indd xvii 563120ffirs.indd xvii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

563120ffirs.indd xviii563120ffirs.indd xviii 2/18/10 9:07:32 AM2/18/10 9:07:32 AM

CONTENTS

INTRODUCTION XXIX

TECHNIQUES EVERY EXPERT PROGRAMMER CHAPTER 1:
NEEDS TO KNOW 1

Object-Oriented PHP 2

Instantiation and Polymorphism 2

Interfaces 7

Magic Methods and Constants 8

Design Patterns 11

Using MySQL Joins 20

INNER JOIN 22

OUTER JOIN 24

Other JOIN Syntax 26

Complex Joins 27

MySQL Unions 28

GROUP BY in MySQL Queries 30

WITH ROLLUP 31

HAVING 32

Logical Operations and Flow Control in MySQL 33

Logic Operators 33

Flow Control 34

Maintaining Relational Integrity 35

Constraints 36

NOT NULL 36

UNSIGNED 36

ENUM and SET 37

UNIQUE KEY 37

FOREIGN KEY 38

Using Server SQL Modes 41

Storage Engine Integrity 45

What MySQL Does Not Tell You 45

What’s Missing? 46

Subqueries in MySQL 46

Subquery 46

Correlated Subquery 46

Derived Table 47

563120ftoc.indd xix563120ftoc.indd xix 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xx

CONTENTS

Using Regular Expressions 49

General Patterns 50

Expert Regular Expressions 52

Putting It All Together in PHP 55

Regular Expressions in MySQL 60

Summary 63

ADVANCED PHP CONCEPTS 6CHAPTER 2: 5

A Problem That Needs Solving 65

Iterators and the SPL 67

A Sample View for the Application 67

The Iterator Interface 69

The Countable Interface 73

The SeekableIterator Interface and Pagination 75

The ArrayAccess Interface 77

Lambda Functions and Closures 78

The Old Way: Lambda-Style Functions 78

Understanding Closures 81

Using the Query Builder for Prototyping 83

Summary 85

MYSQL DRIVERS AND STORAGE ENGINES 8CHAPTER 3: 7

MySQL Drivers 88

About MySQL Storage Engines 89

Obtaining Storage Engine Information 89

Default Storage Engines 93

MyISAM 93

InnoDB 97

Memory 103

Blackhole 108

Archive 109

Merge 110

CSV 112

Federated 112

Other MySQL Supplied Engines 118

Falcon 118

Maria 120

Pluggable Engines 121

InnoDB Plugin 121

PBXT 122

XtraDB 123

563120ftoc.indd xx563120ftoc.indd xx 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxi

CONTENTS

Engines as Standalone Products 124

Infi niDB 124

TokuDB 124

Infobright 125

Other MySQL Off erings 125

Storage Engine Patch Products 125

MySQL-Related Products 126

Other Engines 127

Integrated Hardware Engines 128

Other Solutions 128

Waffl egrid 129

Summary 129

IMPROVING PERFORMANCE THROUGH CACHING 13CHAPTER 4: 1

eAccelerator and APC 132

Installing and Confi guring APC 132

Installing and Confi guring eAccelerator 133

User Cache 134

Checking the Cache Status 135

When to Use APC and eAccelerator 138

memcached 138

What Is memcached? 139

What memcached Does for You 139

How Does memcached Work? 139

How to Use memcached 141

What Is Gearman? 144

Caching Strategies 144

Installing memcached 145

Starting memcached 148

Startup Scripts 149

Testing Your memcached Installation 151

memcached Clients 153

Libmemcached 153

Libmemcached Features 154

Libmemcached Utility Programs 154

Installing libmemcached 155

Libmemcached Utility Programs 155

memcat 155

memfl ush 156

memcp 156

memstat 157

memrm 157

563120ftoc.indd xxi563120ftoc.indd xxi 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxii

CONTENTS

memslap 157

memerror 158

PECL/Memcached 158

Connecting, Instantiation 160

Setting Client Behavior 162

Putting and Retrieving Data 163

Append and Prepend 166

Delete 168

Increment and Decrement 168

Multi-get 169

Multi-set 170

Cache Locality Using byKey Methods and Multi get/set 171

getDelayed 173

CAS 174

Statistics 176

Server List 178

Error Handling 178

Practical Caching 180

memcached Proxy: moxi 185

Other “memcapable” Key-Value Stores 186

Tokyo Tyrant 187

Summary 188

MEMCACHED AND MYSQL 19CHAPTER 5: 1

The Memcached Functions for MySQL 191

How the Memcached Functions for MySQL Work 192

Installing the Memcached Functions for MySQL 193

Prerequisites 193

Confi gure the Source 194

Build the Source 194

Install the UDF 195

Checking Installation 196

Using the Memcached Functions for MySQL 196

Establishing a Connection to the memcached Server 197

Data Setting Functions 198

Data Fetching Functions 204

Increment and Decrement 204

Behavioral Functions 206

Statistical Functions 209

Version Functions 211

Fun with Triggers (and UDFs) 212

563120ftoc.indd xxii563120ftoc.indd xxii 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxiii

CONTENTS

Read-Through Caching with Simple Select Statements 216

Updates 219

Summary 220

ADVANCED MYSQL 22CHAPTER 6: 1

Views 221

Access Permissions 223

Additional Information about Views 225

Stored Procedures and Functions 226

General Attributes 226

Stored Routine Logic 228

Using Stored Routines Privileges and Meta Data 230

Extending Stored Routines 231

Stored Routine Disadvantages 231

User Defi ned Functions 231

Triggers 232

No Triggers 233

Trigger Syntax 233

Insert Triggers 233

Update Triggers 234

Delete Triggers 235

Replace Triggers 236

Trigger Permissions 237

Transactions 237

Atomicity 238

Consistency 240

Isolation 242

Durability 247

Implied Commit 250

Replication 250

Replication Purposes 250

Replication Setup 251

Testing MySQL Replication 254

How Does MySQL Replication Work? 255

Testing MySQL Replication 259

Important Confi guration Options 260

Important Replication Commands 261

Breaking Replication 261

Using Replication Selectively 262

The Issues with MySQL Replication 263

The Benefi ts of MySQL Replication 264

563120ftoc.indd xxiii563120ftoc.indd xxiii 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxiv

CONTENTS

Events 264

Creating Events 265

Enabling the Events Scheduler 267

Altering Events 267

Event Privileges 268

Event Meta Data 269

Summary 270

EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS 27CHAPTER 7: 1

Introduction to UDFs 272

Developing a UDF 273

UDF Development Requirements 273

UDF Required Functions 274

A Practical UDF Example 274

UDF High-Level Design 275

Designing an Algorithm to Use for Your UDF 277

Implementing the Program 277

Building the UDF 292

Installing the UDF 294

Running Your New UDF 295

Using a UDF with PHP 296

Connecting and Disconnecting to MySQL 296

Returning the Result Set Array 297

Other UDF SQL Statements 300

Debugging a UDF 300

Attaching gdb to an Already Running Process 301

Setting a BreakPoint and Stepping through Code 302

Dealing with Literal Values 304

Debugging Summary 304

Summary 305

WRITING PHP EXTENSIONS 30CHAPTER 8: 7

Setting Up the Build Environment 308

Creating an Extension with ext_skel 309

Creating and Compiling Skeleton Code 309

Using a Function Defi nitions File 312

Generating Help Files 313

Creating an Extension with CodeGen_PECL 314

Creating the Basic XML File 314

Defi ning Functions 316

Defi ning Constants, INI Directives, and Globals 318

Defi ning Objects, Methods, and Properties 319

563120ftoc.indd xxiv563120ftoc.indd xxiv 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxv

CONTENTS

Variables in PHP Extensions 321

Setting and Testing zvals 323

Reading and Comparing zvals 324

Dealing with Strings as zvals 326

Advanced Memory Management 328

Using Functions in Extensions 329

Basic Defi nitions 329

Using Arguments 331

Defi ning Argument Information 334

Returning Values 334

Built-In Functions 335

Creating and Consuming PHP API Functions 336

More Notes and Creating Helper Functions 339

Input/Output 340

Standard Out 340

Files and Streams 341

Networking 344

Errors and Warnings 346

Arrays and Hash Tables 347

Building and Accessing Arrays 347

Accessing and Modifying Hash Tables 349

Objects and Interfaces 349

Creating a Class 350

Interacting with Objects 355

Constants, INI Directives, and Globals 357

Constants 357

Globals and INI Directives 358

Describing an Extension 361

Printing a Description 361

Building a Table 362

Specifying a Logo 362

Summary 364

FULL-TEXT SEARCHING 36CHAPTER 9: 5

MySQL FULLTEXT Indexes 365

Using MySQL FULLTEXT Indexes 367

MySQL FULLTEXT Index Issues 368

A Better Solution: The Sphinx Full-Text Search Engine 369

Sphinx Confi guration and Installation 370

Sphinx.conf Settings 371

Starting Sphinx 382

Searching Sphinx 383

563120ftoc.indd xxv563120ftoc.indd xxv 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxvi

CONTENTS

Delta Indexes 389

Merging Indexes 394

Developing Applications That Use SPHINX 395

Sphinx and PHP 395

Summary 399

MULTI-TASKING IN PHP AND MYSQL 40CHAPTER 10: 1

Gearman 401

What Is Gearman? 402

Installing and Running Gearman 404

Using the Gearman MySQL UDFs 407

PHP and Gearman 409

Narada: A Search Engine Application 412

Obtaining Narada 413

Narada Components 413

Database Tables for the Search Engine Application 415

Sphinx Setup 416

Gearman Workers 429

Index Page 435

One Other Tidbit of Code 438

The Big Picture 439

Running Narada 439

To-Do List for Narada 441

Other Job Server Systems 442

Summary 442

REWRITE RULES 44CHAPTER 11: 3

Using Rewrite Rules 444

Understanding the Purpose and Structure of Rewrite Rules 444

Understanding and Controlling Rewrite Rule Flow 445

Conditional Rules 447

Logging and Optimization 450

Rewrite Maps 451

Built-In Maps 451

Random and Text Lookups 452

Using PHP and MySQL 452

Summary 456

USER AUTHENTICATION 45CHAPTER 12: 7

Designing the Database 458

HTTP-Based Authentication 460

Basic Authentication 461

563120ftoc.indd xxvi563120ftoc.indd xxvi 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxvii

CONTENTS

Digest Authentication 463

Pure PHP Authentication 466

Using PHP Sessions 467

Building Secure Cookies 471

Access Control Lists 473

Summary 475

UNDERSTANDING THE INFORMATION_SCHEMA 47CHAPTER 13: 7

Using the INFORMATION_SCHEMA 478

Table Objects Tables 479

Other Database Objects Tables 481

MySQL Status Tables 482

PROCESSLIST (5.1) 482

SESSION_STATUS/GLOBAL_STATUS (5.1) 484

SESSION_VARIABLES/GLOBAL_VARIABLES (5.1) 485

MySQL Meta Data Tables 486

CHARACTER_SETS 486

COLLATIONS 487

COLLATION_CHARACTER_SET_APPLICABILITY 488

MySQL ACL Permissions Tables 488

USER_PRIVILEGES 488

SCHEMA_PRIVILEGES 489

TABLE_PRIVILEGES 489

COLUMN_PRIVILEGES 490

INFORMATION_SCHEMA Extensions 491

SHOW Cross Reference 491

Summary 492

SECURITY 49CHAPTER 14: 3

Hardening Your MySQL Server 493

Installation Defaults 494

Operating System Security 495

MySQL Security Permissions 495

Additional Database Security 500

Auditing 500

Encoding Data 501

Bi-directional Encoding 501

Single-Directional Encoding 505

PHP Security Recipes 506

Protecting against SQL Injection 506

Protecting against Replay Attacks 507

563120ftoc.indd xxvii563120ftoc.indd xxvii 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

xxviii

CONTENTS

Protecting against XSS 509

Protecting against CSRF 511

Automation Attacks 514

Summary 516

COMMAND-LINE AND WEB SERVICES 51CHAPTER 15: 7

Creating Command-Line Scripts 517

Reading Command-Line Input 518

Prompting for Input 520

Completed Classes 521

Setting Up Cron Jobs 522

Bonus: Output in Color 523

Creating Web Services 524

RESTful Web Services 524

SOAP Web Services 532

Getting Started with the SOAP Library 533

Summary 541

OPTIMIZATION AND DEBUGGING 54CHAPTER 16: 3

Debugging PHP 543

Creating Stack Traces 544

Optimizing Queries 545

Reducing SQL 545

Identifying SQL Statements 545

Optimizing SELECT 546

Optimizing UPDATE 556

Optimizing DELETE 556

Optimizing INSERT 558

Optimizing REPLACE 558

INSERT … ON DUPLICATE KEY UPDATE 558

Debugging MySQL 560

Error Log 560

Slow Query Log 561

Processlist 562

Other Commands 564

Using a Debugger with MySQL 564

Summary 565

INDEX 567

563120ftoc.indd xxviii563120ftoc.indd xxviii 2/18/10 9:07:48 AM2/18/10 9:07:48 AM

INTRODUCTION

PHP AND MYSQL HAVE BEEN USED FOR YEARS to power some of the most popular websites and
open source applications anywhere. It’s no secret that the Web has evolved. Modern web sites are
expected to be dynamic and the user count for popular sites is now measured in the millions.

This book examines some of the technologies and techniques needed to make robust and scalable
applications perform in today’s high-demand world. Early chapters focus on essential concepts. For
example:

➤ Object Oriented Programming

Design Patterns➤

Advanced MySQL queries➤

Later chapters get down into the trenches and focus on ways to improve application performance
through caching with memcached (and others), full-text search with Sphinx, and multitasking with
Gearman.

Today’s PHP programmer can’t be afraid to get their hands dirty. By the time this book is done you
will be well on your way to extending PHP and MySQL using C. In PHP we cover extension writ-
ing. In MySQL we cover User Defi ned Functions.

The book focuses on critical skills and best practices in the areas of security, optimization, and soft-
ware architecture. The examples are written with the assumption that you already know the basics
so common code is occasionally stripped out to make the examples more readable and focused. And
as such you will see examples in the book that don’t check the return value of a function for errors.
Don’t put code like that onto your live server; fi x it fi rst! You know how.

This book will give you the tools that you need to write mission critical applications with PHP and
MySQL — including high-traffi c ones. The hope is that you can use some of the skills covered in
this book to create your own open source projects and eventually contribute to the PHP and MySQL
communities. Or perhaps you just use this book to help you create the next PHP and MySQL pow-
ered success story

WHO THIS BOOK IS FOR

This book is designed to cover some of the most advanced topics in the PHP and MySQL worlds. It
is intended for advanced PHP and MySQL users who have signifi cant experience and have already
worked on several projects. Some people who should read this book include:

➤ Programmers creating mission-critical applications

➤ Programmers creating websites or applications that need to support thousands (if not mil-
lions) of users

563120flast.indd xxix563120flast.indd xxix 2/18/10 9:20:19 AM2/18/10 9:20:19 AM

xxx

INTRODUCTION

➤ Programmers who create applications that need to store and access large amounts of data or
requires lots of processing

➤ Programmers who just fi nd things like design patterns, PHP extensions, and MySQL UDFs
interesting and who want to learn more

This book assumes that you also have a working knowledge of C as well and that you have at least
compiled a C programmer or two (PHP and MySQL count). PHP extensions and MySQL User
Defi ned Functions are both written in C.

This book starts off easy but quickly dives into many advanced topics. It’s all right if you’re not
already an advanced PHP, MySQL, and C programmer but you’ll probably want to keep some other
Wrox books handy for reference.

WHAT THIS BOOK COVERS

PHP and MySQL are both well established with many libraries and extensions available. It would
be impossible to cover every expert topic in a single book. Likewise, this book doesn’t try to cover
beginner level topics at all. The authors did, however, hand pick topics that they think are essential
for any expert PHP and MySQL programmer to know.

The book is laid out like this:

➤ Chapters 1 through 3 are intended as a crash course in concepts that you absolutely must
know before reading the rest of the book. They cover topics like design patters, iterators, and
the difference between the MySQL storage engines.

➤ Chapters 4 and 5 take a brief break from the essentials and focuses on one of the most
important concepts for creating scalable applications: caching.

Chapter 6 revisits the essentials and touches on some advanced MySQL topics.➤

➤ Chapters 7 and 8 dive into extending PHP and MySQL with C. They are the only chapters in
the book where you’re not writing code in just PHP or SQL.

Chapter 9 goes over full-text search and introduces Sphinx.➤

Chapter 10 covers multitasking and discusses Gearman.➤

➤ Chapters 11 and 12 cover essentials including advanced rewrite rules, custom session han-
dling and user security.

Chapter 13 goes over MySQL INFORMATION_SCHEMA.➤

Chapter 14 touches on security some more.➤

➤ Chapters 15 and 16 wrap up the book with other uses of PHP and MySQL besides web
applications and optimizing and debugging.

563120flast.indd xxx563120flast.indd xxx 2/18/10 9:20:19 AM2/18/10 9:20:19 AM

xxxi

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

Apart from a willingness to learn and all the skills listed in “Whom This Book Is For” you will
also need:

➤ PHP 5.3 or newer with MySQL and MySQLi enabled. Preferably compiled from source (for
Chapter 8). However, some examples will run in older versions as well.

MySQL 5.1 or higher. You can also substitute MariaDB or Drizzle for most examples.➤

Apache 2.0 web server confi gured for PHP with mod_rewrite enabled.➤

Using Linux

If you are using Linux for your PHP and MYSQL development (highly recommended):

➤ An ANSI C compiler (Ex: GCC) to compile PHP extensions and MySQL User Defi ned
Functions

fl ex: Version 2.5.4➤

bison: Version 1.28 (preferred), 1.35, or 1.75➤

Using Windows

If you are using Windows you will need:

➤ Microsoft Visual Studio 2008 or newer

Windows SDK 6.1➤

You can also substitute Microsoft IIS in place of Apache. However, some of the content in this book
is Apache specifi c.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is
directly relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion look like this.

563120flast.indd xxxi563120flast.indd xxxi 2/18/10 9:20:19 AM2/18/10 9:20:19 AM

xxxii

INTRODUCTION

As for other conventions in the text:

➤ New terms and important words are highlighted in italics when fi rst introduced.

Keyboard combinations are treated like this: Ctrl+R.➤

➤ Filenames, URLs, and code within the text are treated like so: persistence.properties.

This book uses monofont type with no highlighting for most code examples.
This book uses bolding to emphasize code that is of particular importance in the
present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source-code fi les that accompany the book. All of the source code used in
this book is available for download a t www.wrox.com. Once at the site, simply locate the book’s title
(either by using the Search box or by using one of the title lists) and click the Download Code link
on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-56312-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time you will be helping us provide even
higher-quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

563120flast.indd xxxii563120flast.indd xxxii 2/18/10 9:20:20 AM2/18/10 9:20:20 AM

xxxiii

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fi x the
problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system on which you can post messages relating to Wrox books and related technologies and inter-
act with other readers and technology users. The forums offer a subscription feature to e-mail you
topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

563120flast.indd xxxiii563120flast.indd xxxiii 2/18/10 9:20:20 AM2/18/10 9:20:20 AM

563120flast.indd xxxiv563120flast.indd xxxiv 2/18/10 9:20:20 AM2/18/10 9:20:20 AM

Techniques Every Expert
Programmer Needs to Know

WHAT’S IN THIS CHAPTER?

➤ Understanding Object-oriented fundamentals in PHP

➤ Understanding INNER and OUTER JOINs

➤ Other JOIN syntax you should know

Using MySQL Unions➤

➤ Using GROUP BY in MySQL queries

Implementing MySQL Logical Operations and fl ow control➤

Maintaining MySQL relational integrity➤

Using subqueries in MySQL➤

Utilizing advanced PHP regular expressions➤

This chapter covers the techniques that you, the profi cient PHP and MySQL developer, should
know and use before you tackle more advanced domain features in PHP and MySQL. The
chapter starts with an in-depth overview of object-oriented programming techniques in PHP
and object-oriented design patterns. As a PHP developer, you then become familiar with a
number of core MySQL requirements for retrieving data including the different types of joins,
UNION, GROUP BY, and subqueries syntax. This chapter also details the logic operators and
fl ow control and techniques for maintaining relational integrity in MySQL. The chapter con-
cludes with an in-depth review of advanced regular expressions in both PHP and MySQL.

1

563120c01.indd 1563120c01.indd 1 2/18/10 9:08:14 AM2/18/10 9:08:14 AM

2 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

OBJECT-ORIENTED PHP

Object-orientation has become a key concept behind proper PHP software design. This book fol-
lows the idea that in properly designed software, all business logic (the rules that drive how an
application behaves) should be object oriented. The only exception is when small scripts act as a
view or a way to display data returned from other objects.

Taking this approach solves a few problems because it:

➤ Makes it easy to extend the functionality of existing code.

➤ Allows for type hinting, which gives greater control over what variables are passed into
functions.

➤ Allows for established design patterns to be used to solve common software design problems
and makes debugging much easier.

This section covers object-oriented PHP and key design patterns in depth. Later chapters cover even
more advanced object-oriented topics.

Instantiation and Polymorphism

The two key benefi ts of object-oriented programming in PHP are the ability to abstract data into
classes and for the application to act on those structures. It is important to understand polymor-
phism, which is when one object appears and can be used in the same way as another object of
a related type. It stands to reason that if B is a descendant of A and a function can accept A as a
parameter, it can also accept B.

Three classes are used in this chapter while covering polymorphism:

➤ Node

BlogEntry➤

ForumTopic➤

In this application both BlogEntry and ForumTopic are siblings of each other and descendants of
Node. This is a good time to become familiar with the example code that comes with the book. The
code archive contains a folder for every chapter. Each folder has a .class.php fi le and a .test.php
fi le for every class. SQL fi les aren’t used in this section, but when they are, they have a .sql extension.

The typical class looks a lot like this:

class ClassNameHere extends AnotherClass {
 public function someFunction() {
 parent::someFunction();
 }
};

The parent keyword is used to directly reference a variable or method in the parent class, bypass-
ing any variables or methods of the same name in the current class. The method is marked as
public, which is a familiar concept for object-oriented programming but relatively new to PHP.

563120c01.indd 2563120c01.indd 2 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

Object-Oriented PHP ❘ 3

Older PHP applications will not defi ne a visibility for the member methods. When the visibility is
not defi ned it is assumed to be public. A member variable or method (function inside a class) can
have one of three visibilities:

➤ public indicates that the member is accessible globally across all of PHP.

➤ private indicates that a member can be accessed only from within the class in which it is
defi ned. Private members cannot be overridden in later classes because those classes too do
not have access to the member.

➤ protected indicates that the member can be accessed only by the class in which it is defi ned
and all descending classes.

Additionally, three other keywords can augment private, public, and protected. They are
static, abstract, and final:

➤ static members are not tied to particular instances of a class and can be accessed by any
instance. They should be used sparingly but are very useful for shared variables across all
instances. The static keyword can also be used inside methods and functions to defi ne a
variable that is global to all calls to that function. Both uses are relied upon by later examples
in this chapter.

➤ abstract methods must be implemented in all classes that descend from that class that
defi nes it. Abstract methods can only be defi ned in classes that are marked as abstract. It is
not possible to directly instantiate an abstract class because of the nature of abstraction.

➤ fi nal methods can never be redefi ned in descending classes and therefore their functionality
cannot be changed.

Variables inside a class can also be declared constant using const. Constants are always public
static and their value can never be changed at run time. Unlike normal variables, constants cannot
have a dollar sign in front of them and by convention are always capitalized.

Each and every type of visibility is used throughout this book. The next section covers most of them
by using the three classes described previously.

Polymorphism in Action

The three classes mentioned previously need to be defi ned in order to be useful. The goal of this sec-
tion is not to create a fully functioning application but rather to demonstrate techniques that are the
core of the rest of the book. The fi rst class to be defi ned is the Node class as shown in Listing 1-1.

LISTING 1-1: NODE.CLASS.PHP

<?php
abstract class Node {
 private $debugMessages;

 public function __construct() {
 $this->debugMessages = array();
 $this->debug(__CLASS__.” constructor called.”);

563120c01.indd 3563120c01.indd 3 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

4 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 }

 public function __destruct() {
 $this->debug(__CLASS__.” destructor called.”);
 $this->dumpDebug();
 }

 protected function debug($msg) {
 $this->debugMessages[] = $msg;
 }

 private function dumpDebug() {
 echo implode(“\n”, $this->debugMessages);
 }

 public abstract function getView();
}
?>

The Node class is abstract and therefore cannot be instantiated. However, it can have private mem-
bers. The descendant classes will not be able to access the private members directly but the members
can be accessed from other more visible methods inside of Node. In the node class, the member vari-
able $debugMessage is being accessed from several methods and dumpDebug() is a private method
being called from the destructor. For the purpose of this example, both ForumTopic and BlogEntry
are identical in all regards except name. The magic constant __CLASS__ will be used to tell them
apart as shown in Listing 1-2.

LISTING 1-2: ForumTopic.class.php

<?php
class ForumTopic extends Node {
 private $debugMessages;

 public function __construct() {
 parent::__construct();
 $this->debug(__CLASS__.” constructor called.”);
 }

 public function __destruct() {
 $this->debug(__CLASS__.” destructor called.”);
 parent::__destruct();
 }

 public function getView() {
 return “This is a view into “.__CLASS__;
 }
}
?>

563120c01.indd 4563120c01.indd 4 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

Object-Oriented PHP ❘ 5

Now it is time to run some tests and see what happens. The fi rst test is to create an instance of each
subclass and observe the debug output. The entire test is just one line of code but has a several lines
of output:

$forum = new ForumTopic();
/* Output:
Node constructor called.
ForumTopic constructor called.
ForumTopic destructor called.
Node destructor called.
*/

The output shows that the constructor for each class is called and that it bubbles down appropri-
ately to the parent class before adding its own debug message. The opposite is true for the destruc-
tor. Whether the parent class is called fi rst, last, or in the middle of a method can be determined at
design time for each specifi c class. However, in general, because the constructors and destructors for
descendant classes often reference the variables from the parent, it is a good practice to call the par-
ent at the beginning of the constructor and end of the destructor.

Almost as important is the output demonstrating that the __CLASS__ variable is always equal to the
name of the class in which the function being called is defi ned. It is not necessarily the same as the out-
put of get_class($this). The get_class() method returns the name of the class that was instanti-
ated. In non-technical terms this method always returns the class name that directly follows the new
keyword when instantiating the object.

A WORD ON THE DESTRUCTOR

The destructor, in this case, was never explicitly called. Unless the script ends in a
fatal error, the destructor for any remaining objects will always be executed when
the script completes. The garbage collector will also fi re the destructor immediately
if the number of references to an object goes to zero. In this case the destructor is
what dumps the debug output to the screen, so it is simple to test to see if the gar-
bage collector is doing its job:

$topic = new ForumTopic();

echo “---------------------\n”;
$topic = null;
echo “---------------------\n”;

/* Output:

Node constructor called.
ForumTopic constructor called.
ForumTopic destructor called.
Node destructor called.

*/

continues

563120c01.indd 5563120c01.indd 5 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

6 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

However, if there is another variable thrown into the mix the situation becomes
much different:

$topic = new ForumTopic();
$reference = $topic;

echo “---------------------\n”;
$topic = null;
echo “---------------------\n”;

/* Output:

Node constructor called.
ForumTopic constructor called.
ForumTopic destructor called.
Node destructor called.
*/

Class instances are always passed by reference unless explicitly cloned. Using
the reference operator on a class variable like $reference = &$topic; will not
increase the reference count for the object and will therefore not prevent it from
being garbage collected. The code, in effect, is creating a reference to a reference.

Handling Terminal Types and Type Hinting

One practical application of get_class() is explored later in this book; however, it is not always
helpful to determine just the terminal type of an object. For example, in almost every case it is
wrong to execute code only if the output of get_class() matches a string. After all, what happens
if the class is subclassed? Shouldn’t the subclasses also pass the test?

The keyword that solves the issue is instanceof. It evaluates to true if the operand on the left is
of the type on the right or any subclasses of that type. For example, if a method takes an arbitrary
parameter but should execute specifi c code if the variable is a Node object, it can be written like this:

if ($foo instanceof Node) ...

In this case $foo can be an instance of ForumTopic or BlogEntry. It cannot be an instance of Node
only because Node is abstract and cannot be instantiated. PHP also supports type hinting, which
allows a method or function to take only an object of a set type or its descendants. Type hinting,
unfortunately, is not available for primitive types such as string and integer:

function print_view(Node $node) {
 echo “Printing the view for “.get_class($node).”\n”;
 echo $node->getView().”\n”;
}

Class methods should use type hinting whenever possible to improve the maintainability of the code.
Code that uses type hinting is less error-prone and partially self-documenting.

563120c01.indd 6563120c01.indd 6 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

Object-Oriented PHP ❘ 7

Interfaces

Interfaces are structures for defi ning functionality that a class must implement. An interface does
not dictate the inner workings of that functionality. Think of interfaces as templates that classes
need to adhere to. Chapter 2 makes heavy use of some of PHP’s built-in interfaces.

Classes do not inherit interfaces because only the method signatures and return types are defi ned
within them. Instead they implement the interface. However, it is occasionally useful to derive one
interface from another. For example, an interface called Iterator may be used as the base interface
for a new interface called RecursiveIterator that defi nes all the functionality of the standard
Iterator interface but also defi nes new functionality.

An interface is never instantiated directly. However, variables can be tested against interfaces. Testing
against an interface ensures that an object implements all the methods of the interface before attempt-
ing to call a method. For example, say the interface PageElement defi nes a getXML() method:

if ($object instanceof PageElement)
 $body->appendChild($object->getXML($document));

Interfaces are defi ned in a similar way to classes. Instead of class the keyword interface is used.
Two other important distinctions are that all methods inside an interface must always be defi ned as
public and methods do not have a body. Consider Listing 1-3 which shows a new interface called
ReadableNode:

LISTING 1-3: ReadableNode.interface.php

<?php
interface ReadableNode {
 public function isRead();
 public function markAsRead();
 public function markAsUnread();
};
?>

You can then create a reusable utility function markNodeAsRead() to check if a node is readable and
to call the markAsRead() method if it is.

function markNodeAsRead($node) {
 if ($node instanceof ReadableNode)
 $node->markAsRead();
}

Interfaces are useful for defi ning sets of functionality when it is not important how the methods are
implemented. Because PHP doesn’t have multi-inheritance they are also useful for defi ning classes
that have a collection of disparate functionality but still need the benefi ts of polymorphism and type
hinting. Unlike inheritance, a class can implement as many interfaces as it desires. Also, an interface
can extend multiple other interfaces. For example, if a class is both Readable and Deletable:

<?php
interface MessagingNode extends Readable, Deletable {

563120c01.indd 7563120c01.indd 7 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

8 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

};

class ForumTopic extends Node implements Readable, Deletable {
 …
};

class BlogEntry extends Node implements MessagingNode {
 …
}
?>

In this case both the classes ForumTopic and BlogEntry must implement every method found in
both the interface Readable and Deletable. In this case the new MessagingNode interface is little
more than shorthand.

Magic Methods and Constants

Before diving into design patterns it is necessary to review magic methods inside PHP. Magic
methods are specially named methods that can be defi ned in any class and are executed via built-
in PHP functionality. Magic methods always begin with a double underscore. In fact, the magic
methods __destruct() and __construct() have already been used several times in this chapter. It
is not good practice to write user-defi ned functions and methods that begin with the double under-
score in case PHP implements methods with those names in future versions.

Magic constants are used to access certain read-only properties inside PHP. Magic constants both
begin and end with a double underscore and are always capitalized. The constant __CLASS__ has
been used several times in this chapter to output the name of the class in which the code is defi ned.

Practical Use of Magic Constants

It is often useful to determine where in the code output originates. This is the purpose of all of the
magic constants and is particularly useful when writing custom logging functions. The seven magic
constants are as follows:

➤ __CLASS__ equates to the class in which the constant is referenced. As noted earlier, this
variable is always equal to the class in which it is defi ned, which is not always the class that
was instantiated. In the previous example, __CLASS__ as defi ned inside Node always returns
Node even if the method is part of an object that was instantiated as a descendant class. In
addition to debugging, the class constant is also useful for static callback functions.

➤ __FILE__ is always equal to the fi lename where the constant is referenced.

➤ __LINE__ is used in conjunction with __FILE__ in order to output a location in code. For
example:

error_log(‘Notice: Placeholder class. Don’t forget to change before
release! In ‘.__FILE__.’ on line ‘.__LINE__);

Both _FILE_ and _LINE_ are relative to the fi le currently executing regardless of
whether that fi le was included or required from a different fi le.

563120c01.indd 8563120c01.indd 8 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

Object-Oriented PHP ❘ 9

➤ __DIR__ functions exactly like dirname(__FILE__) and returns the absolute directory in
which the fi le is located. It is useful for specifying absolute paths, which are sometimes faster
than relative paths; particularly when including scripts.

➤ __FUNCTION__ and __METHOD__ make it possible to determine the function or method name,
respectively, using magic constants. When possible, these constants should be used in place of
hard-coding the function name.

➤ __NAMESPACE__ is the seventh and fi nal magic constant. As the name suggests, it is equal to
the current namespace.

As a debugging mechanism using the magic constants is very basic. More advanced techniques for
debugging are discussed in depth in Chapter 16.

Adding Magic Functionality to Classes

Although the magic methods __construct() and __destruct() are the most commonly used,
several more exist. When using design patterns it becomes necessary to expand on certain built-in
functionality of PHP. This section fi rst covers the cases where each magic method is useful and then
illustrates the use of the method. The fi rst set of methods has to do with data representation.

In many cases it is useful to have a string representation of an object so you can output it to the user
or another process. Referencing an object as a string will, by default, evaluate to the object’s ID
in memory, which in most cases is less than ideal. PHP provides a standard way of overriding this
default functionality and returning any desirable string representation. A numeric class might return
the number as a string, a user class might return a username, a node class might return a node title,
an XML node might return the text content of the node, and so on. The magic method used for this
functionality is __toString(). The method is triggered in any situation where an object is used as a
string, for example: echo “Hello $obj”;. It can also be called directly like any other normal pub-
lic method, which is preferable to hacks such as appending an empty string to force coercion.

Serialization is another process integral to PHP applications that store state or cache entire objects. It
generates a string representation of an object. Serialization is done manually by calling serialize()
and is reversed with unserialize(). Both methods work on any PHP variable (except a resource such
as a MySQL handle) without any modifi cation. However, sometimes it is necessary to clean up a com-
plex object prior to serialization.

Classes can implement the magic method __sleep(), which is called immediately before serializa-
tion. It is expected to return an array where the values are the member variables that should be
saved. Member variables can be public, private, or protected. Likewise, __wakeup() is called
when you restore the object. One use for these functions is to ignore a resource handle on sleep and
to then reopen the handle on restoration as shown in Listing 1-4.

LISTING 1-4: FileLog.class.php

<?php
class FileLog {
 private $fpointer;

563120c01.indd 9563120c01.indd 9 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

10 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 private $filename;

 function __construct($filename) {
 $this->filename = $filename;
 $this->fpointer = fopen($filename,’a’);
 }

 function __destruct() {
 fclose($this->fpointer);
 }

 function __sleep() {
 return array(“filename”);
 }

 function __wakeup() {
 $this->fpointer = fopen($this->filename,’a’);
 }

 public function write($line) {
 fwrite(“$line\n”, $this->fpointer);
 }
};

/*
 Example usage:
 $log = new FileLog(“debug.txt”);
 $data = serialize($log);
 $log = null;
 $log = unserialize($data);
 echo $data;
 Example output:
 O:7:”FileLog”:1:{s:17:”FileLogfilename”;s:9:”debug.txt”}
*/
?>

The serialized data, as seen in the comments of the previous example, contains the data type fol-
lowed by the length of the data and then the data itself. A semicolon separates multiple members
and each member has two variables. The fi rst variable is the name and the second is the value.

When serializing, private member variables have the class name prepended to them, whereas pro-
tected variables have an asterisk prepended. In both cases the prefi x is surrounded by two null bytes.
The bytes cannot be seen in print, however. Looking closely at the string s:17:”FileLogfilename”
it becomes apparent that the string is only 15 printable characters in length. The remaining two
characters are the null bytes before and after the word FileLog.

The next four magic methods have to do with retrieving, inspecting, and storing inaccessible mem-
ber variables. They are __set(), __unset(), __get(), and __isset(). Each is invoked when trying
to access a member variable that is not available to the context that is requesting it. That can mean
that a variable marked as private or protected and accessed outside the scope or that a member vari-
able does not exist. Both __unset() and __isset() are triggered by the functions with the same
name (sans the underscores) in PHP. All these methods are used extensively in the section “Design
Patterns” so they won’t be covered in any more detail in this section.

563120c01.indd 10563120c01.indd 10 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

Object-Oriented PHP ❘ 11

Similarly, the method __call() is invoked when you try to call a method that is either undefi ned or
inaccessible. A similar method named __callStatic() is called for static methods.

Three magic methods won’t be covered in this chapter. __set_state() is used when you import a
class via a call to var_export() and is worth looking into if an application does a lot of dynamic
code evaluation. __clone() is invoked if you try to make a clone of an object and you can use it
for various processes. The third method, __invoke(), is used when an object is being called as if it
were a function; it is covered more in Chapter 2.

The next section discusses the eight design patterns that you can use in applications for cleaner and
more readable code as well as to solve common problems in software design.

Design Patterns

This section covers design patterns in PHP. The eight patterns that are covered in this section are:

➤ Singleton

Multiton➤

Proxy➤

Façade➤

Decorator➤

Factory➤

Observer Pattern➤

Publisher/subscriber➤

Singleton and Multiton Patterns

The singleton and less common multiton patterns control the number of instances of a class in an
application. As the names imply, a singleton can be instantiated only once and a multiton any num-
ber of times. In the case of the latter, there can be only one instance for any given key.

Because of the nature of singletons they are often used for confi guration and for variables that need
to be accessed from anywhere in the application. Using singletons is sometimes considered poor
practice because it creates a global state and does not encapsulate all the functionality of the system
in a single root object. In many cases this can make unit testing and debugging more diffi cult. This
book leaves the reader to make his or her own decision regarding these patterns. In general, some
object orientation is better than none. Listing 1-5 shows an example of a singleton pattern.

LISTING 1-5: SingletonExample.class.php

<?php
class SingletonExample {
 public static function getInstance() {
 static $instance = null;
 if ($instance == null) {

563120c01.indd 11563120c01.indd 11 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

12 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 $instance = new SingletonExample();
 }
 return $instance;
 }
};
?>

The singleton class makes use of both functions of the keyword static. The fi rst is in the method
defi nition, indicating that the method is not associated with any particular instance of the class. The
second is in the method itself. The keyword static, when placed in front of a local variable in a
function or method indicates that all calls to that method, regardless of what object the call is made
to, will share that variable.

In the case of the singleton, the variable $instance is initialized to null and retains whatever value
is set to it across all calls to the method. On fi rst execution it is always null. On later executions
it is always the same instance of the SingletonExample object. Making a single static method call
ensures retrieval of the same instance every time:

$singleton = SingletonExample::getInsance();

A multiton is similar except that it requires a key to be passed to the getInstance() function. For
a given key there can be only one instance of the object. This pattern is useful when dealing with
many nodes that have unique identifi ers that can appear multiple times in a single execution (such as
a node in a Content Management System). Multitons save memory and ensure that there aren’t mul-
tiple confl icting instances of the same object. The SingletonExample class can be quickly modifi ed
to be a multiton instead as shown in Listing 1-6.

LISTING 1-6: MultitonExample.class.php

<?php
class MultitonExample {
 public static function getInstance($key) {
 static $instances = array();
 if (!array_key_exists($key, $instances)) {
 $instances[$key] = new MultitonExample();
 }
 return $instance[$key];
 }
};
?>

Because PHP objects are always passed by reference it is ensured that each instance returned from
a multiton or singleton object is consistent throughout the application. You must be careful when
using these patterns with serialization or with the clone keyword because either action may result
in multiple versions of what should be the same object.

Multitons and singletons are similar in concept to lazy initialization. In lazy initialization, object
initialization that requires a signifi cant amount of processing or memory is delayed until the object
is needed. This usually consists of a conditional to check to see if the object exists, followed by a
return of either the existing object or a new one — much like in the two previous patterns. The book

563120c01.indd 12563120c01.indd 12 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

Object-Oriented PHP ❘ 13

sometimes uses lazy initialization for database handles or data sets to avoid spending resources that
are not needed by the application.

Proxy and Façade Patterns

Proxy and façade patterns are grouped together because they each provide abstraction for more
complex functionality. How abstraction is achieved differs for both patterns.

In the case of a proxy, all methods and member variables are routed to the destination object. The
proxy can, if it is desirable, modify or inspect the data as it passes through. The magic methods
make implementing this pattern very easy in PHP. One use for this pattern is to log method access.
It could also be used to determine code coverage or to just debug an issue (see Listing 1-7):

LISTING 1-7: LoggingProxy.class.php

<?php

class LoggingProxy {
 private $target;

 function __construct($target) {
 $this->target = $target;
 }

 protected function log($line) {
 error_log($line);
 }

 public function __set($name, $value) {
 $this->target->$name = $value;
 $this->log(“Setting value for $name: $value”);
 }

 public function __get($name) {
 $value = $this->target->$name;
 $this->log(“Getting value for $name: $value”);
 return $value;
 }

 public function __isset($name) {
 $value = isset($this->target->$name);
 $this->log(“Checking isset for $name: “.($value?”true”:”false”));
 return $value;
 }

 public function __call($name, $arguments) {
 $this->log(“Calling method $name with: “.implode(“,”,$arguments));
 return call_user_func_array(array($this->target,$name), $arguments);
 }

};

?>

563120c01.indd 13563120c01.indd 13 2/18/10 9:08:15 AM2/18/10 9:08:15 AM

14 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The LoggingProxy example uses callback functions in the __call() method. The purpose of
the method is to call a defi ned function within the target class. The class also makes liberal use
of variable member names. Variable member names and callbacks are covered in greater detail in
Chapter 2.

A proxy can be as simple as the preceding one or as complex as needed. In most cases a proxy should
not change the behavior of the class that it is a proxy for; however, it is possible to do that as well.
It is also possible for the proxy to be an interface into an entirely different system. For example, it
may be useful to have a MySQL database proxy that executes stored procedures or a proxy that is an
interface to XML Remote Procedure Calls.

One disadvantage of a proxy is that it is not of the same type as the class it is a proxy for. Therefore
it cannot be used in situations where type hinting is necessary or when the code checks to ensure
that an object is of a certain type.

The façade pattern serves a different purpose. It is meant to abstract complex functionality so that
the application does not need to know the details around which subsystem handles each request. For
example, if making a typical API request requires that a user be authenticated via a user subsystem,
the request is made to a remote server with an API subsystem, and then the response is decoded via
a function from a different API, the resulting façade method looks like this:

public function apiRequestJson($method, $parameters) {
 $user = User::getAuthenticatedUser();
 if ($user->hasPermission($method)) {
 $result = $this->api->$method($parameters);
 return json_decode($result);
 }
}

Façades do not add new functionality but rather delegate the responsibilities to the appropriate sub-
system. The subsystems do not need to know of the existence of a façade and the application does
not need to know about the existence of the subsystems.

Sometimes it becomes necessary to extend the functionality of a class while maintaining object
integrity and allowing for type hinting. The ideal pattern for that is the decorator pattern.

Decorator Pattern

The decorator pattern extends the functionality of a class similar to standard inheritance. Unlike
standard inheritance, the decorator pattern can add functionality dynamically at run time if an
object has already been instantiated. This action is referred to as decorating the object. One ben-
efi t of decoration is that it allows any combination of decorators to extend the same object. For
example, a car might have an option for an in-car navigation system and an option for leather seats.
A customer may want just the seats or may want just the navigation system. Using this pattern the
combination can be dynamic.

Taking the car example a step further, you can create a series of classes for decorating the car. To
make things easier, all car decorations will extend from a CarDecorator class. It is also possible for
decorators to extend other decorators. For instance, the user may be able to upgrade from a basic
radio to a CD player/radio combination to a multi-disc CD player with radio. A chain of inheritance
can be created because a multi-disk CD player with radio shares all the functionality of a basic

563120c01.indd 14563120c01.indd 14 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Object-Oriented PHP ❘ 15

radio. For simplicity, the following examples assume that the only two methods in the class Car are
getPrice() and getManufacturer() as shown in Listing 1-8:

LISTING 1-8: AbstractCar.class.php

<?php

abstract class AbstractCar {
 public abstract function getPrice();
 public abstract function getManufacturer();
};

?>

The car class extends the AbstractCar class and must implement all the methods in the abstract
class. The result is the car without any decorators added as shown in Listing 1-9.

LISTING 1-9: Car.class.php

<?php

class Car extends AbstractCar {
 private var $price = 16000;
 private var $manufacturer = “Acme Autos”;

 public function getPrice() { return $this->price; }
 public function getManufacturer() { return $this->manufacturer; }
};

?>

The CarDecorator class also extends AbstractCar. It serves as the base class for all future decora-
tors. The purpose of the class is to act as a proxy into the real implementation, which in this case is
called the target. Because the base price for the car exists not in the decorator object but in the target,
it is necessary for getPrice() to query the price from the target object as shown in Listing 1-10.

LISTING 1-10: CarDecorator.class.php

<?php

class CarDecorator extends AbstractCar {
 private var $target;

 function __construct(Car $target) { $this->target = $target; }

 public function getPrice() { return $target->getPrice(); }
 public function getManufacturer() { return $target->getManufacturer(); }
};

?>

563120c01.indd 15563120c01.indd 15 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

16 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The fi rst step is complete, creating a CarDecorator class that extends from AbstractCar. The car
decorator could be used directly but it wouldn’t serve much purpose. For now all it does is forward
all requests to the target Car object. Extending both Car and its decorator from an abstract class
allows the decorators to avoid the overhead of extending a complete Car object but still maintain its
polymorphic properties.

The next step is to defi ne a concrete decorator. Once the base decorator is created it becomes easy to
implement new decorators as shown in Listing 1-11:

LISTING 1-11: NavigationSystem.class.php

<?php

class NavigationSystem extends CarDecorator {
 public function getPrice() { return parent::getPrice()+1000; }
};

?>

The pattern can be particularly useful in ecommerce applications but it is also commonly used in
graphical applications. An icon may decorate a text box; or a scroll bar may decorate a canvas. In
the previous example getting the price of a car that has a navigation system and leather seats is just
three lines of code:

<?php

$car = new Car();
$car = new NavigationSystem($car);
$car = new LeatherSeats($car);
echo $car->getPrice();

?>

When using decorators in this manner, it is technically possible for multiple instances of the same
decorator to decorate an object. Having two navigation systems in one car doesn’t make any sense. A
simple function can be added to the CarDecorator class to check to see if a decorator is being used:

public function hasDecoratorNamed($name) {
 if (get_class($this) == $name)
 return true;
 else if ($this->target instanceof CarDecorator)
 return $this->target->hasDecoratorNamed($name);
 else
 return false;
}

The decorator can be combined with a proxy pattern to create additional functionality at run time.
For example, if the code were to implement all the functionality of a car, the NavigationSystem
class may add a turnOnNavigation() method. Because the method to turn on navigation would
only be available in the navigation decorator it becomes necessary to proxy call to unknown meth-
ods through to the target.

563120c01.indd 16563120c01.indd 16 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Object-Oriented PHP ❘ 17

Factory Method

The factory method pattern is a creational pattern much like singletons, multitons, and lazy initial-
ization. Factory methods are used to return an instance of an object that is a subclass of the object
containing the factory method. One simple example is a class called GDImage that will take a valid
image fi lename and return an appropriate image object as shown in Listing 1-12.

LISTING 1-12: GDImage.class.php

<?php

abstract class GDImage {
 public static function createImage($filename) {
 $info = getimagesize($filename);
 $type = $info[2];

 switch ($type) {
 case IMAGETYPE_JPEG:
 new new JPEGImage($filename);

 case IMAGETYPE_PNG:
 new new PNGImage($filename);

 case IMAGETYPE_GIF:
 new new GIFImage($filename);
 }

 return null;
 }
};

?>

In the GD example, the classes PNGImage, GIFImage, and JPEGImage would all descend from the
common class GDImage. Pure implementations of the factory design pattern will always defi ne fac-
tory methods as static. Additionally, GDImage should be treated as an abstract class and never be
directly instantiated.

Another use for factory methods is for unit testing. A factory might return a working valid object
under normal conditions but return a dummy object under test conditions. This is useful because
using a live object both requires a fully functional data service and can possibly modify real data.
For example, a class called User may return an AuthenticatedUser if the system is not in test-
ing mode or a TestUser if the system is in testing mode and AuthenticatedUser is not the direct
subject of the test.

The factory method can be implemented in nearly any situation where a different class needs to be
instantiated depending on the type of data. There can also be more than one factory method per
class. For example, the GDImage class in the previous example may have a second factory method
called createFromString() that returns the appropriate object based on a binary input.

563120c01.indd 17563120c01.indd 17 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

18 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Observer and Publisher/Subscriber Patterns

The observer pattern and the publisher/subscriber pattern are more common in event-based archi-
tectures than they are in most stateless server-side Internet applications; however they do have
uses in PHP. The observer pattern is simpler to implement and is suffi cient in most cases so it is
covered fi rst.

In the observer pattern the observer must know what objects are broadcasting the events that they
want to listen for. It is a sniper rifl e approach to event handling. When an event happens on the
publisher object, it notifi es all observers at once. But if another object fi res the same event, it is
not broadcasted unless the observer is also watching that object. In Listing 1-13, a simple reusable
observer system can be defi ned with one class and one interface:

LISTING 1-13: Observer.interface.php

<?php
interface Observer {
 public function notify($event);
};
?>

The observable object then contains a method that can be used to register an observer as shown in
Listing 1-14.

LISTING 1-14:OBSERVABLEOBJECT.CLASS.PHP

<?php
class ObservableObject {
 private function $observers = array();

 public function observe(Observer $observer) {
 $this->observers[] = $observer;
 }

 public function dispatch($event) {
 foreach ($this->observers as $observer)
 $observer->notify($event);
 }
};
?>

A class that wants to broadcast events extends ObservableObject and any class that wants to listen
to events can simply implement the interface Observer. In a more complex system the observer can
specify the type of event that it wants to listen for.

The publisher/subscriber pattern is similar except that it decouples the subscribers (observers) from
the publishers (observable objects). Instead a new class is introduced called an Event. The observer

563120c01.indd 18563120c01.indd 18 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Using MySQL Joins ❘ 19

subscribes for notifi cation whenever the event is triggered anywhere in the application instead of
observing events on just a single class. The observer does not know or care what classes can publish
the event.

Some systems implement the publisher/subscriber pattern using a controller as a delegate for all
events. That method requires that all events be registered in a central location. For simplicity, the
event object itself will act as a delegate (Listing 1-15):

LISTING 1-15: BroadcastingEvent.class.php

<?php
class BroadcastingEvent {
 private static $observers = array();

 public static function subscribe(Observer $observer) {
 self::$observers[] = $observer;
 }

 public function publish() {
 foreach (self::$observers as $observer)
 $observer->notify($this);
 }
};
?>

The BroadcastingEvent class and the ObservableObject class both look very similar. Two
changes are that the array of observers is now a static variable in the class instead of an instance
variable and the event type no longer needs to be passed to the dispatching function because dis-
patching is a method of the event itself.

The major paradigm shift is that the observers and the dispatching object no longer need to have any
knowledge of each other. This decoupling allows for an observer/subscriber to listen for all events of
that type without needing specifi c application knowledge.

In a PHP application, this pattern is used in systems that can be dynamically extended such as
Content Management Systems. For example, an object can listen for a user load event and take spe-
cifi c actions. A CMS should not require implementation-level knowledge of all its modules.

USING MYSQL JOINS

Retrieving data from a normalized relational database that contains many tables generally involves
the use of joins in a SELECT statement. A join in MySQL queries enables you to select or manipulate
data from multiple tables in a single SQL statement.

The SQL standard provides various different join operations such as INNER JOIN, OUTER JOIN,
STRAIGHT_JOIN, and NATURAL JOIN. MySQL implements most common join syntax; however, your
expectation may differ between different relational database products.

563120c01.indd 19563120c01.indd 19 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

20 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The following examples use two simple base tables to demonstrate various different joins. The
fi rst table contains colors, and second table contains the colors of country fl ags. The sample data
includes the following rows:

For simplicity, this data is de-normalized to demonstrate the various possible MySQL join syntax.
These table structures may not necessarily represent optimal database schema design (see Table 1-1).
To construct this table and data for all examples in this section, see the code fi le create-tables.sql

TABLE 1-1: Schema Tables

TABLE VALUES

Colors Red, White, Blue, Green, Black

Flags USA, Australia, Canada, Japan, Sweden

To understand joins with multiple tables, you can use the concept of sets and the mathematical
visual approach of Venn diagrams. This shows the interaction between various sets and therefore
the types of joins that can be used to retrieve information. See http://en.wikipedia.org/wiki/
Venn_diagram for more background information on Venn diagrams.

Figure 1-1 shows the Venn diagram of two individual sets of information.

Colors

Blue

Green

Red

White

Black

Flags

USA:Red

USA:White

USA:Blue

Sweden:Blue

Sweden:Yellow

FIGURE 1-1

If you wanted to know the colors that are in the USA fl ag, you could use the following SELECT state-
ment to retrieve the necessary rows as described in Figure 1-1. This is shown in Listing 1-16.

LISTING 1-16: simple-select.sql

SELECT color
FROM flags
WHERE country=’USA’;

+-------+
| color |
+-------+
| Blue |
| Red |
| White |
+-------+

563120c01.indd 20563120c01.indd 20 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Using MySQL Joins ❘ 21

Note the following from the previous listing:

➤ In line 1 you specify the column(s) you want to retrieve.

In line 2 you specify which table you want to retrieve these column(s) from.➤

➤ In line 3 you specify any criteria or condition where you want to restrict the types of rows
you want to retrieve.

Figure 1-2 shows the Venn diagram of the intersection of these two sets, and also two exception sets
of information.

1.

Green

Black

3.

Yellow

2.

Red

White

Blue

1. Colors not in flags

2. Colors in flags

3. Invalid colors

FIGURE 1-2

INNER JOIN

If you want to know more about the attributes of the colors for the USA fl ag, you can use an INNER
JOIN, as shown in Listing 1-17, with the colors table to retrieve more information.

LISTING 1-17: inner-join.sql

SELECT flags.color, colors.is_primary, colors.is_dark, colors.is_rainbow
FROM flags
INNER JOIN colors ON flags.color = colors.color
WHERE flags.country=’USA’;

+-------+------------+---------+------------+
| color | is_primary | is_dark | is_rainbow |
+-------+------------+---------+------------+
Blue	yes	yes	yes
Red	yes	no	yes
White	yes	no	no
+-------+------------+---------+------------+

Note the following for the previous Listing:

➤ Line 1 selects additional columns from the colors table.

➤ Line 3 specifi es an INNER JOIN with the colors table and the fl ags table, and states that you
want to join on the color column in fl ags with the color column in colors.

563120c01.indd 21563120c01.indd 21 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

22 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The Table Alias

When working with joins in MySQL it is common practice to alias tables used in the SQL query.
You can very easily rewrite the previous example as shown in Listing 1-18.

LISTING 1-18: inner-join-alias.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM flags f
INNER JOIN colors c ON f.color = c.color
WHERE f.country=’USA’;

For each table, you can optionally specify an alias after the table in the FROM clause. There are no
general restrictions on the length of the alias; however it is best practice to use appropriate naming
standards for your application. A table alias in MySQL has a maximum 256 characters in length,
whereas a table name has only 64 characters.

ON and USING

For a join command, the ON syntax is of the format table1.column_name = table2.column_name.

When your schema design names columns in an identical fashion between join tables, you can
shortcut the ON syntax with the USING syntax in the format USING(column_name). For an example
see Listing 1-19.

LISTING 1-19: inner-join-using.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM flags f
INNER JOIN colors c USING (color)
WHERE f.country=’USA’;

In line 3 you will see the USING syntax as an alternative to the ON syntax in the previous SQL
example.

When the column name between two tables is the same, you can simply use the
ON syntax with the USING syntax. It is a good practice to use appropriate data-
base naming standards, and specify columns with the same name when they
contain the same data in different tables.

An Alternative INNER JOIN Syntax

You can also use the comma (,) syntax for specifying an INNER JOIN as shown in Listing 1-20.

563120c01.indd 22563120c01.indd 22 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Using MySQL Joins ❘ 23

LISTING 1-20: inner-join-comma.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM flags f, colors c
WHERE f.country=’USA’
AND f.color = c.color;

This comma syntax is a common and well-used approach; however, it does not provide the best
readability for a software developer. With this comma syntax the join columns and restriction crite-
ria are all specifi ed in the WHERE clause, unlike with the INNER JOIN syntax where the ON or USING
defi nes the join between each table when the table is specifi ed, and the WHERE restricts the rows of
results based on the table join. Overall this improves readability and decreases the possibility of
missing a join column in a more complex multitable statement.

Listing 1-21 shows an example where you miss a join between two tables because it is not defi ned in
the WHERE clause:

LISTING 1-21: missing-where-join.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM flags f, colors c
WHERE f.country=’USA’;

+-------+------------+---------+------------+
| color | is_primary | is_dark | is_rainbow |
+-------+------------+---------+------------+
Blue	no	yes	no
Red	no	yes	no
White	no	yes	no
Blue	yes	yes	yes
Red	yes	yes	yes
White	yes	yes	yes
Blue	yes	yes	yes
Red	yes	yes	yes
White	yes	yes	yes
Blue	yes	no	yes
Red	yes	no	yes
White	yes	no	yes
Blue	yes	no	no
Red	yes	no	no
White	yes	no	no
+-------+------------+---------+------------+

Without the correct table join you are effectively retrieving a cartesian product of both tables.

OUTER JOIN

As you probably noticed with the Venn diagram in Figure 1-2, when looking at a cartesian product
between two intersecting sets, you will see there are indeed three different possible sets of data. The
fi rst set is the intersection of both sets and retrieving these rows using the INNER JOIN syntax has

563120c01.indd 23563120c01.indd 23 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

24 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

been demonstrated with Listing 1-17. The other two sets are the exclusions, that is, the colors that
are not in fl ags, and the countries that have colors that are not defi ned in the set of recorded colors.
You can retrieve these rows using the OUTER JOIN syntax as shown in Listing 1-22.

LISTING 1-22: outer-join.sql

SELECT f.country, f.color
FROM flags f
LEFT OUTER JOIN colors c USING (color)
WHERE c.color IS NULL;

+---------+--------+
| country | color |
+---------+--------+
| Sweden | Yellow |
+---------+--------+

SELECT c.color, c.is_primary
FROM colors c
LEFT OUTER JOIN flags f USING (color)
WHERE f.country IS NULL;

+-------+------------+
| color | is_primary |
+-------+------------+
| Black | no |
| Green | yes |
+-------+------------+

As you have noticed in these queries, the syntax is not just OUTER JOIN, but it also includes the key-
word LEFT. You should also note that OUTER is an optional keyword and it is generally a best prac-
tice to reduce the SQL syntax to just use LEFT JOIN.

An OUTER JOIN is used for two primary reasons. The fi rst is when a set of data
values may be unknown yet you want to retrieve a full set of rows that match
part of your criteria. The second reason is when a normalized database does not
enforce referential integrity. In the preceding example, it’s logical that colors
may exist and are not a fl ag color. It is not logical that fl ag colors do not exist
in the colors table. In this situation the use of an OUTER JOIN is identifying data
that constitutes a lack of data integrity.

RIGHT JOIN

If you were wondering if there was a companion RIGHT OUTER JOIN syntax, there is. It is possible
to return the same results as shown in the preceding example using a RIGHT JOIN as shown in
Listing 1-23.

563120c01.indd 24563120c01.indd 24 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Using MySQL Joins ❘ 25

LISTING 1-23: right-join.sql

SELECT c.color, c.is_primary
FROM colors c
LEFT JOIN flags f USING (color)
WHERE f.country IS NULL;

…can be written as

SELECT c.color, c.is_primary
FROM flags f
RIGHT JOIN colors c USING (color)
WHERE f.country IS NULL;

+-------+------------+
| color | is_primary |
+-------+------------+
| Black | no |
| Green | yes |
+-------+------------+

LEFT JOIN

It is generally considered a good practice to write queries as LEFT JOIN, and to be consistent
throughout all your SQL statements for your application.

In review of these two join examples you can conclude the following conditions:

➤ A join using INNER JOIN can be considered a mandatory condition, where a row in the left-
side table must match a corresponding row in the right-side table.

➤ A join using OUTER JOIN can be considered an optional condition, where a row in the LEFT
or RIGHT table as specifi ed may or may not correspond to a row in the associated table.

Other JOIN Syntax

MySQL provides a number of other varieties of joins. For the CROSS JOIN in MySQL this is consid-
ered identical in operation to an INNER JOIN.

MySQL provides a STRAIGHT_JOIN, which is considered equivalent to the JOIN command. However,
this acts more as a hint to the MySQL optimizer to determine processing tables in a given order.
The NATURAL [LEFT|RIGHT] JOIN is similar to the corresponding [INNER|LEFT|RIGHT] JOIN;
however, all matching column names between both tables are implied. In the previous INNER JOIN
example with both the ON and USING syntax, you could have simply written:

LISTING 1-24: natural-join.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM flags f
NATURAL JOIN colors c
WHERE f.country=’USA’;

563120c01.indd 25563120c01.indd 25 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

26 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The NATURAL JOIN can be dangerous because the columns are not specifi ed, additional join columns
may actually exist in your database design intentionally or unintentionally, and your table structures
may change over time; the results of the query may in fact result in different rows returned. For
more information on joins you can review the MySQL Reference Manual, which includes several
different sections:

➤ Join Syntax http://dev.mysql.com/doc/refman/5.1/en/join.html

➤ Left Join and Right Join Optimization http://dev.mysql.com/doc/refman/5.1/en/left-
join-optimization.html

➤ Outer Join Simplifi cation http://dev.mysql.com/doc/refman/5.1/en/outer-join-
simplification.html

➤ Join Types Index http://dev.mysql.com/doc/refman/5.1/en/dynindex-jointype.html

UPDATE and DELETE JOIN Syntax

Joins are not limited to SELECT statements in MySQL. You can use a join in MySQL UPDATE and
DELETE statements as well. Listing 1-25 shows an example.

LISTING 1-25: update.sql

UPDATE flags INNER JOIN colors USING (color)
SET flags.color = UPPER(color)
WHERE colors.is_dark = ‘yes’;

SELECT color
FROM flags
WHERE country = ‘USA’;

+-------+
| color |
+-------+
| BLUE |
| Red |
| White |
+-------+

Case Sensitivity

MySQL by default performs case-insensitive comparison for string columns in a table join ON,
USING, or WHERE comparison. This differs from other popular relational databases. In this case
‘USA’ is equal to ‘usa’, for example. It is possible via either defi ning your table column with a
case-sensitive collation or using a specifi c prequalifi er to implement case-sensitive comparison.
Listing 1-26 shows an example.

LISTING 1-26: case-sensitivity.sql

SELECT ‘USA’ = ‘USA’, ‘USA’ = ‘Usa’, ‘USA’ = ‘usa’,
 ‘USA’ = ‘usa’ COLLATE latin1_general_cs AS different;

563120c01.indd 26563120c01.indd 26 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

Using MySQL Joins ❘ 27

+---------------+---------------+---------------+-----------+
| ‘USA’ = ‘USA’ | ‘USA’ = ‘Usa’ | ‘USA’ = ‘usa’ | different |
+---------------+---------------+---------------+-----------+
| 1 | 1 | 1 | 0 |
+---------------+---------------+---------------+-----------+

Complex Joins

Although the basics of joins in MySQL have been described, to become a real expert is to under-
stand the possibilities of joins. It is possible to write rather obfuscated SQL statements including
subqueries and derived tables. However, the disadvantage is the lack of readability and maintain-
ability of your SQL. Listing 1-27 is a simple multi-table join that combines joining to the same table
multiple times, and combines INNER JOIN and LEFT JOIN syntax to return the population, state,
and capital of all countries that have at least Red, White, and Blue in the fl ag:

LISTING 1-27: complex-join.sql

SELECT f1.country, c.population,
 IFNULL(ci.city,’Not Recorded’) AS city, s.abbr, s.state
FROM flags f1
INNER JOIN flags f2 ON f1.country = f2.country
INNER JOIN flags f3 ON f1.country = f3.country
INNER JOIN countries c ON f1.country = c.country
LEFT JOIN cities ci ON f1.country = ci.country AND ci.is_country_capital = ‘yes’
LEFT JOIN states s ON f1.country = s.country AND ci.state = s.state
WHERE f1.color = ‘Red’
AND f2.color = ‘White’
AND f3.color = ‘Blue’;

+-----------+------------+---------------+------+-------+
| country | population | city | abbr | state |
+-----------+------------+---------------+------+-------+
| Australia | 21888000 | Not Recorded | NULL | NULL |
| USA | 307222000 | Washington DC | NULL | NULL |
+-----------+------------+---------------+------+-------+

In this example, if you were to replace the LEFT JOIN with an INNER JOIN, the results of the data
would change accordingly based on the recorded data.

When it is possible to write complex joins, in MySQL the combination of joins,
subqueries, and derived tables can result in SQL statements that do not perform
optimally. There must always be a balance between returning a result set in a
single query and performance of the statement. Although writing multiple state-
ments in MySQL, combined with the use of temporary tables, may introduce
more SQL code, this may be more optimal for the speed of your web site.

563120c01.indd 27563120c01.indd 27 2/18/10 9:08:16 AM2/18/10 9:08:16 AM

28 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

MYSQL UNIONS

A UNION statement is used to combine the results of more than one SELECT statement into the results
for one SQL query. For a valid UNION statement, all SELECT statements must have the same number
of columns, and these columns must be of the same data type for each column in the SELECT state-
ment. MySQL supports the UNION and UNION ALL constructs for joining SELECT results.

When learning to use UNION, you can fi rst consider writing individual SELECT statements. All indi-
vidual SELECT statements within a UNION statement are valid SELECT statements, except for the
ORDER BY clause, which can be defi ned only once in a UNION statement and is used to order the
results of all combined queries. Listing 1-28 shows an example.

LISTING 1-28: union.sql

SELECT f.country
FROM flags f
INNER JOIN colors c USING (color)
WHERE c.is_dark = ‘yes’
UNION
SELECT f.country
FROM flags f
INNER JOIN colors c USING (color)
WHERE c.is_primary = ‘yes’;

+-----------+
| country |
+-----------+
| Australia |
| Sweden |
| USA |
| Canada |
| Japan |
+-----------+

The UNION also supports the additional keywords ALL or DISTINCT. By default, the UNION syntax
returns a unique set of rows for all SELECT sets, removing any duplicates. The ALL syntax, how-
ever, returns all rows from each SELECT statement combined, and the DISTINCT syntax returns all
DISTINCT rows for each SELECT. Listing 1-29 shows an example of this.

LISTING 1-29: union-all.sql

SELECT f.country, ‘Dark’
FROM flags f
INNER JOIN colors c USING (color)
WHERE c.is_dark = ‘yes’
UNION ALL
SELECT f.country, ‘Primary’
FROM flags f
INNER JOIN colors c USING (color)

563120c01.indd 28563120c01.indd 28 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

MySQL Unions ❘ 29

WHERE c.is_primary = ‘yes’;

+-----------+---------+
| country | Dark |
+-----------+---------+
Australia	Dark
Sweden	Dark
USA	Dark
Australia	Primary
Sweden	Primary
USA	Primary
Australia	Primary
Canada	Primary
Japan	Primary
USA	Primary
Australia	Primary
Canada	Primary
Japan	Primary
USA	Primary
+-----------+---------+

In Listing 1-30 you will see a different set of results using the DISTINCT keyword.

LISTING 1-30: union-distinct.sql

SELECT f.country, ‘Dark’
FROM flags f
INNER JOIN colors c USING (color)
WHERE c.is_dark = ‘yes’
UNION DISTINCT
SELECT f.country, ‘Primary’
FROM flags f
INNER JOIN colors c USING (color)
WHERE c.is_primary = ‘yes’;

+-----------+---------+
| country | Dark |
+-----------+---------+
Australia	Dark
Sweden	Dark
USA	Dark
Australia	Primary
Sweden	Primary
USA	Primary
Canada	Primary
Japan	Primary
+-----------+---------+

MySQL does not support the INTERSECT or MINUS syntax that are additional
UNION related constructs that can be found in other relational database prod-
ucts. Refer to http://dev.mysql.com/doc/refman/5.1/en/union.html for
more information.

563120c01.indd 29563120c01.indd 29 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

30 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

GROUP BY IN MYSQL QUERIES

The GROUP BY syntax allows for the aggregation of rows selected and the use of scalar functions. In
MySQL, it is possible to use scalar functions without a GROUP BY and produce what can be con-
sidered inconsistent results. Listing 1-31 shows an example.

LISTING 1-31: count-no-group.sql

SELECT country, COUNT(*)
FROM flags;
+-----------+----------+
| country | COUNT(*) |
+-----------+----------+
| Australia | 12 |
+-----------+----------+

MySQL provides the expected ANSI SQL syntax requiring a GROUP BY statement to contain all
non-scalar function columns with the use of sql_mode. Listing 1-32 shows an example of this.

LISTING 1-32: count-group.sql

SET SESSION sql_mode=ONLY_FULL_GROUP_BY;

SELECT country, COUNT(*)
FROM flags;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
 with no GROUP columns is illegal if there is no GROUP BY clause

SELECT country, COUNT(*) AS color_count
FROM flags
GROUP BY country;
+-----------+-------------+
| country | color_count |
+-----------+-------------+
Australia	3
Canada	2
Japan	2
Sweden	2
USA	3
+-----------+-------------+

One scalar function exists that does not return a numeric value; this is the GROUP_CONCAT() func-
tion shown in Listing 1-33.

LISTING 1-33: count-group-concat.sql

SELECT country, GROUP_CONCAT(color) AS colors
FROM flags
GROUP BY country;

563120c01.indd 30563120c01.indd 30 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

GROUP BY in MySQL Queries ❘ 31

+-----------+----------------+
| country | colors |
+-----------+----------------+
Australia	Blue,Red,White
Canada	Red,White
Japan	Red,White
Sweden	Blue,Yellow
USA	Blue,Red,White
+-----------+----------------+

SELECT country, GROUP_CONCAT(color) AS colors, COUNT(*) AS color_count
FROM flags
GROUP BY country;
+-----------+----------------+-------------+
| country | colors | color_count |
+-----------+----------------+-------------+
Australia	Blue,Red,White	3
Canada	Red,White	2
Japan	Red,White	2
Sweden	Blue,Yellow	2
USA	Blue,Red,White	3
+-----------+----------------+-------------+
5 rows in set (0.00 sec)

WITH ROLLUP

A feature of the GROUP BY syntax is the additional keywords WITH ROLLUP. With this syntax, the
rows returned include aggregated rows for each GROUP BY column. This is represented by NULL. The
output in Listing 1-34 shows a single-column and two-column example:

LISTING 1-34: count-with-rollup.sql

SELECT country, COUNT(*) AS color_count
FROM flags
GROUP BY country WITH ROLLUP;
+-----------+-------------+
| country | color_count |
+-----------+-------------+
Australia	3
Canada	2
Japan	2
Sweden	2
USA	3
NULL	12
+-----------+-------------+

SELECT c.color, c.is_dark, COUNT(*)
FROM colors c, flags f
WHERE c.color = f.color
GROUP BY c.color, c.is_dark WITH ROLLUP;
+-------+---------+----------+
| color | is_dark | COUNT(*) |

563120c01.indd 31563120c01.indd 31 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

32 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

+-------+---------+----------+
Blue	yes	3
Blue	NULL	3
Red	no	4
Red	NULL	4
White	no	4
White	NULL	4
NULL	NULL	11
+-------+---------+----------+

HAVING

To restrict the list of aggregated rows returned when using GROUP BY for any scalar functions, you use
the HAVING clause to defi ne the condition and not the WHERE clause. Listing 1-35 shows an example.

LISTING 1-35: having.sql

SELECT country, GROUP_CONCAT(color) AS colors
FROM flags
GROUP BY country
HAVING COUNT(*) = 2;

+---------+-------------+
| country | colors |
+---------+-------------+
Canada	Red,White
Japan	Red,White
Sweden	Blue,Yellow
+---------+-------------+

You can use scalar functions that are not defi ned in the SELECT clause as shown in the preceding
example. Unlike ORDER BY you must specify the name of the column; the numeric column order is
not a permitted syntax.

LOGICAL OPERATIONS AND FLOW CONTROL IN MYSQL

MySQL has three states for any logic, TRUE, FALSE, or NULL:

mysql> SELECT TRUE,FALSE,NULL;
+------+-------+------+
| TRUE | FALSE | NULL |
+------+-------+------+
| 1 | 0 | NULL |
+------+-------+------+

Comparison operations such as =, <>, IS, IS NOT, IN, ISNULL, and so on will result in one of these
three states:

mysql> SELECT ‘A’ IS NOT NULL, ‘A’ IS NULL, NULL = NULL, NULL IS NULL;
+-----------------+-------------+-------------+--------------+
| ‘A’ IS NOT NULL | ‘A’ IS NULL | NULL = NULL | NULL IS NULL |

563120c01.indd 32563120c01.indd 32 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

Logical Operations and Flow Control in MySQL ❘ 33

+-----------------+-------------+-------------+--------------+
| 1 | 0 | NULL | 1 |
+-----------------+-------------+-------------+--------------+

MySQL always returns 1 for a TRUE state, and any non-zero value evaluates to TRUE.

mysql> SELECT 5 IS TRUE, 0 IS FALSE, 10 IS NOT NULL;
+-----------+------------+----------------+
| 5 IS TRUE | 0 IS FALSE | 10 IS NOT NULL |
+-----------+------------+----------------+
| 1 | 1 | 1 |
+-----------+------------+----------------+

Logic Operators

MySQL has four logic control operators: AND, OR, NOT, and XOR. Three of these operators also have
shorthand notations: && (AND), || (OR), ! (NOT). These shorthand notations should not be con-
fused with the Bit operators, which are single characters of & and |.

mysql> SELECT TRUE AND TRUE, TRUE AND FALSE, TRUE AND NULL, NULL AND NULL;
+---------------+----------------+---------------+---------------+
| TRUE AND TRUE | TRUE AND FALSE | TRUE AND NULL | NULL AND NULL |
+---------------+----------------+---------------+---------------+
| 1 | 0 | NULL | NULL |
+---------------+----------------+---------------+---------------+

mysql> SELECT TRUE OR TRUE, TRUE OR FALSE, TRUE OR NULL, NULL OR NULL;
+--------------+---------------+--------------+--------------+
| TRUE OR TRUE | TRUE OR FALSE | TRUE OR NULL | NULL OR NULL |
+--------------+---------------+--------------+--------------+
| 1 | 1 | 1 | NULL |
+--------------+---------------+--------------+--------------+

mysql> SELECT TRUE XOR TRUE, TRUE XOR FALSE, TRUE XOR NULL, NULL XOR NULL;
+---------------+----------------+---------------+---------------+
| TRUE XOR TRUE | TRUE XOR FALSE | TRUE XOR NULL | NULL XOR NULL |
+---------------+----------------+---------------+---------------+
| 0 | 1 | NULL | NULL |
+---------------+----------------+---------------+---------------+

Unlike AND, OR, and XOR, the NOT operator does not evaluate two values; it simply returns the inverse
of the provided value:

mysql> SELECT NOT TRUE, NOT FALSE, NOT NULL;
+----------+-----------+----------+
| NOT TRUE | NOT FALSE | NOT NULL |
+----------+-----------+----------+
| 0 | 1 | NULL |
+----------+-----------+----------+

You can change the || shorthand operator of MySQL using sql_mode=PIPES_AS_CONCAT, which
will give unexpected results as shown in Listing 1-36.

563120c01.indd 33563120c01.indd 33 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

34 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

LISTING 1-36: logic-operators.sql

mysql> SELECT TRUE OR FALSE, TRUE || FALSE;
+---------------+---------------+
| TRUE OR FALSE | TRUE || FALSE |
+---------------+---------------+
| 1 | 1 |
+---------------+---------------+

mysql> SET SESSION sql_mode=PIPES_AS_CONCAT;
mysql> SELECT TRUE OR FALSE, TRUE || FALSE;
+---------------+---------------+
| TRUE OR FALSE | TRUE || FALSE |
+---------------+---------------+
| 1 | 10 |
+---------------+---------------+

Flow Control

MySQL provides four functions for control fl ow: IF(), CASE, IFNULL(), and NULLIF(). The IF()
function provides the syntax of a ternary operator with two possible outcomes for a given condition:

mysql> SELECT IF (2 > 1,’2 is greater than 1’,’2 is not greater than 1’) AS answer;
+---------------------+
| answer |
+---------------------+
| 2 is greater than 1 |
+---------------------+

The MySQL CASE statement operates in similar fashion to the PHP switch syntax where a single
given condition of multiple options results in a true assignment. The CASE statement also includes a
special default case when no conditions equate to a TRUE value.

mysql> SET @value=CONVERT(RAND()* 10, UNSIGNED INTEGER);

mysql> SELECT @value,
 -> CASE
 -> WHEN @value < 3 THEN ‘Value is < 3’
 -> WHEN @value > 6 THEN ‘Value is > 6’
 -> WHEN @value = 3 OR @value = 6 THEN ‘Value is 3 or 6’
 -> ELSE ‘Value is 4 or 5’
 -> END;

+--------+------------------+
| 3 | Value is 3 or 6 |
+--------+------------------+

Though it is possible to perform complex fl ow control functions via SQL, the
MySQL database is designed for storing and retrieving data. Where possible, com-
plex rules should be written in the application layer to enable greater performance.

563120c01.indd 34563120c01.indd 34 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

Maintaining Relational Integrity ❘ 35

The remaining two functions IFNULL() and NULLIF() support conditional expressions for handling
NULL. IFNULL() returns NULL if the provided expression equates to NULL, or the value of the expres-
sion. NULLIF() returns a NULL result if the two expressions result in a TRUE condition. Listing 1-37
shows an example of this.

LISTING 1-37: fl ow-control.sql

mysql> SELECT IFNULL(NULL,’Value is NULL’) AS result1,
 IFNULL(1 > 2, ‘NULL result’) AS result2;
+---------------+---------+
| result1 | result2 |
+---------------+---------+
| Value is NULL | 0 |
+---------------+---------+

mysql> SELECT NULLIF(TRUE,TRUE) AS istrue,
 NULLIF(TRUE,FALSE) AS isfalse,
 NULLIF(TRUE,NULL) AS isnull;
+--------+---------+--------+
| istrue | isfalse | isnull |
+--------+---------+--------+
| NULL | 1 | 1 |
+--------+---------+--------+

MAINTAINING RELATIONAL INTEGRITY

Although many developers consider relational integrity as using foreign keys to maintain referen-
tial integrity of your data, i.e. the Consistency part of the ACID properties, relational integrity in
MySQL is available via a variety of means and at various different levels. These can be specifi ed
at the table structure level syntax of CREATE TABLE, ALTER TABLE or at the MySQL SESSION or
GLOBAL VARIABLES level. MySQL can also provide a level of integrity that is storage engine specifi c.

Constraints

A constraint restricts the type of value that is stored in a given table column. There are various
options for single column values including NOT NULL, UNSIGNED, ENUM, and SET. A UNIQUE KEY con-
straint applies to one or more columns of a single table. A FOREIGN KEY constraint involves a man-
datory relationship between two tables.

NOT NULL

To ensure a column must contain a value, you can specify the NOT NULL constraint. It is important
that the use of DEFAULT is not specifi ed to enforce NOT NULL constraints. The DEFAULT attribute, as
the name suggests, provides a default value when one is not specifi ed. With a column defi nition of
col1 CHAR(5) NOT NULL DEFAULT ‘’, when col1 is not specifi ed in an INSERT statement, an error
is not returned for not specifying a mandatory column. Instead a blank value ‘’ — not to be con-
fused with a NULL value — is inserted into the column. This is even more confusing when the col-
umn is defi ned as nullable. In this instance, you have NULL and ‘’ as possible values. These are not

563120c01.indd 35563120c01.indd 35 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

36 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

equal and this leads to confusion in your application. Should they be equal? When searching col1
LIKE NULL you would also need to include OR col1 = ‘’.

UNSIGNED

When an integer column only requires a non-negative number, the specifi cation of the UNSIGNED
constraint will ensure the column can only contain 0 or a positive value. For example:

LISTING 1-38: unsigned.sql

mysql> DROP TABLE IF EXISTS example;
mysql> CREATE TABLE example (
 -> int_signed INT NOT NULL,
 -> int_unsigned INT UNSIGNED NOT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (int_signed, int_unsigned) VALUES (1, 1);
mysql> INSERT INTO example (int_signed, int_unsigned) VALUES (0, 0);
mysql> INSERT INTO example (int_signed, int_unsigned) VALUES (-1, 1);
mysql> INSERT INTO example (int_signed, int_unsigned) VALUES (1, -1);

ERROR 1264 (22003): Out of range value for column ‘int_unsigned’ at row 1

mysql> SELECT * FROM example;

+------------+--------------+
| int_signed | int_unsigned |
+------------+--------------+
1	1
0	0
-1	1
+------------+--------------+

ENUM and SET

The ENUM data column and supporting SET column data types enable you to enforce integrity by
enabling only a specifi c set of possible values. This can be of benefi t when only a set range of values
are possible for a column. Listing 1-39 shows an example.

LISTING 1-39: enum.sql

mysql> CREATE TABLE example (
 -> currency ENUM(‘USD’,’CAD’,’AUD’) NOT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (currency) VALUES (‘AUD’);
mysql> INSERT INTO example (currency) VALUES (‘EUR’);

563120c01.indd 36563120c01.indd 36 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

Maintaining Relational Integrity ❘ 37

ERROR 1265 (01000): Data truncated for column ‘currency’ at row 1

mysql> SELECT * FROM example;
+----------+
| currency |
+----------+
| AUD |
+----------+

The SET data type operates similarly to ENUM except that one or more of the defi ned values are per-
mitted as a valid value. The disadvantage of using ENUM or SET is that a DDL statement is required
to change the range of possible values.

UNIQUE KEY

The UNIQUE KEY constraint ensures that all values in a given column are actually unique. A UNIQUE
KEY constraint may also involve more than one column. It is possible for a UNIQUE KEY constraint to
contain a nullable column, because NULL is considered a unique value. Listing 1-40 shows an example.

LISTING 1-40: unique-key.sql

mysql> CREATE TABLE example (
 -> int_unique INT UNSIGNED NOT NULL,
 -> int_nullable_unique INT UNSIGNED NULL,
 -> UNIQUE KEY (int_unique),
 -> UNIQUE KEY(int_nullable_unique)
 ->) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (1, 1);
mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (2, NULL);
mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (3, NULL);
mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (1, NULL);
ERROR 1062 (23000): Duplicate entry ‘1’ for key ‘int_unique’

mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (4, 1);
ERROR 1062 (23000): Duplicate entry ‘1’ for key ‘int_nullable_unique’

mysql> SELECT * FROM example;
+------------+---------------------+
| int_unique | int_nullable_unique |
+------------+---------------------+
2	NULL
3	NULL
1	1
+------------+---------------------+

FOREIGN KEY

Developers will generally consider foreign keys as the basis of relational integrity; however, as
shown in this chapter, other important factors exist for maintaining integrity. Foreign keys can

563120c01.indd 37563120c01.indd 37 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

38 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

ensure the Consistency portion of ACID compliance. Though it is possible to use manual procedures
to maintain data integrity, this is a less than an ideal approach.

In the current production MySQL 5.1, foreign keys are supported only with the InnoDB storage
engine. Some additional third-party storage engines do support foreign keys. Refer to Chapter 3 for
additional information.

The MySQL Reference Manual defi nes the syntax for a FOREIGN KEY that can be used in CREATE
TABLE or ALTER TABLE as:

[CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

As you’ve seen from earlier join examples, the countries table contains an invalid color. If you had
defi ned the tables using foreign keys, you would not have experienced this data integrity problem.
This provides a code example of what is necessary to correct bad data. First, you should attempt to
create the missing foreign key integrity constraint as shown in Listing 1-41.

LISTING 1-41: foreign-key-alter.sql

mysql> ALTER TABLE flags
 -> ADD FOREIGN KEY (color)
 -> REFERENCES colors (color)
 -> ON DELETE CASCADE;
ERROR 1452 (23000): Cannot add or update a child row:a foreign key constraint fails
 (‘chapter1’.’#sql-86f_1928bd’, CONSTRAINT ‘#sql-86f_1928bd_ibfk_1’ FOREIGN KEY
 (‘color’) REFERENCES ‘colors’ (‘color’) ON DELETE CASCADE)

Due to the error, you now need to identify the problem data in either the parent or child table. You
could identify with a subquery or, as shown previously, an outer join to retrieve the invalid data. We
know because of the small sample data that the color Yellow is the cause of the failure. Do you:

➤ Delete the offending row that contains the invalid data? This would then in turn produce
invalid consistent data for the Swedish fl ag.

➤ Delete all fl ag data for Sweden? This would delete potentially valid data that you may use or
that may be valuable elsewhere.

Add the missing data to the colors base table?➤

These are important design decisions that affect how your application will run. In Listing 1-42, we
make the decision to use the last option and add the missing color Yellow to the colors table to suc-
cessfully add the foreign key.

563120c01.indd 38563120c01.indd 38 2/18/10 9:08:17 AM2/18/10 9:08:17 AM

Maintaining Relational Integrity ❘ 39

LISTING 1-42: foreign-key-yellow.sql

mysql> INSERT INTO colors (color,is_primary,is_dark,is_rainbow)
 VALUES (‘Yellow’,’no’,’no’,’yes’);

mysql> ALTER TABLE flags
 ADD FOREIGN KEY (color)
 REFERENCES colors (color)
 ON DELETE CASCADE;

mysql> SELECT *
 FROM colors
 WHERE color=’Yellow’;
+--------+------------+---------+------------+
| color | is_primary | is_dark | is_rainbow |
+--------+------------+---------+------------+
| Yellow | no | no | yes |
+--------+------------+---------+------------+

mysql> SELECT *
 FROM flags
 WHERE country IN (SELECT country
 FROM flags
 WHERE color=’Yellow’);
+---------+--------+
| country | color |
+---------+--------+
| Sweden | Blue |
| Sweden | Yellow |
+---------+--------+

You have now defi ned a FOREIGN KEY between the colors table and the fl ags table where the
color for the fl ag must exist in the colors tables. You have also defi ned this rule to have a cascade
DELETE rule, which states that if you delete a color, you will also delete all rows that use this color.
Listing 1-43 shows an example:

LISTING 1-43: foreign-key-delete.sql

mysql> DELETE FROM colors WHERE color=’Yellow’;
mysql> SELECT * FROM flags WHERE color=’Yellow’;
Empty set (0.00 sec)

mysql> SELECT *
 FROM flags
 WHERE country IN (SELECT country
 FROM flags
 WHERE color=’Yellow’);

mysql> SELECT *

563120c01.indd 39563120c01.indd 39 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

40 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 FROM flags
 WHERE country = ‘Sweden’;
+---------+-------+
| country | color |
+---------+-------+
| Sweden | Blue |
+---------+-------+

Although the FOREIGN KEY constraint has ensured data integrity at the row level, it has not per-
formed the type of integrity you would expect. The use of the FOREIGN KEY constraint will not
ensure the level of application integrity you ideally wish to have.

Defi ning your foreign key defi nitions is a very important architectural design
decision that should be performed before you add any data. It is far easier to
remove a constraint later than to add it later.

A further benefi t of InnoDB foreign key constraints is the requirement that both columns in the
from table and the to table must use an identical data type. This improves the data integrity of the
database.

You can fi nd additional information on foreign keys in InnoDB at http://dev.mysql.com/doc/
refman/5.0/en/innodb-foreign-key-constraints.html.

It is possible for foreign key constraints to be disabled within MySQL with the SET foreign_key_
checks = 0|1 option. This can further confuse the integrity of your database because permission to
manipulate data via a DML statement can be overridden via the SET command at both the SESSION
or GLOBAL level.

When using cascading foreign key constraints and the REPLACE command, your
database may exhibit unexpected behavior or performance. The REPLACE com-
mand is generally understood and described as an UPDATE for the matching row.
If no row is found then the INSERT command inserts the row. In implementa-
tion, however, REPLACE is actually a DELETE of the existing row, and then an
INSERT of the new row. Be aware of this execution path of REPLACE when add-
ing constraints that use cascading syntax.

Using Server SQL Modes

Introduced fi rst in 4.1 and enhanced in 5.0, the Server SQL mode provides various features includ-
ing different types of relational integrity. MySQL, by default, is very lax with data integrity and this
can have unexpected results. For example, look at Listing 1-44.

563120c01.indd 40563120c01.indd 40 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

Maintaining Relational Integrity ❘ 41

LISTING 1-44: no-sql-mode.sql

mysql> CREATE TABLE example (
 -> i TINYINT UNSIGNED NOT NULL,
 -> c CHAR(2) NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (i) VALUES (0), (-1),(255), (9000);
Query OK, 4 rows affected, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1264 | Out of range value for column ‘i’ at row 2 |
| Warning | 1264 | Out of range value for column ‘i’ at row 4 |
+---------+------+--+
2 rows in set (0.00 sec)

mysql> INSERT INTO example (c) VALUES (‘A’),(‘BB’),(‘CCC’);
Query OK, 3 rows affected, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1364 | Field ‘i’ doesn’t have a default value |
| Warning | 1265 | Data truncated for column ‘c’ at row 3 |
+---------+------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM example;
+-----+------+
| i | c |
+-----+------+
0	NULL
0	NULL
255	NULL
255	NULL
0	A
0	BB
0	CC
+-----+------+
7 rows in set (0.00 sec)

In these preceding SQL statements you fi nd numerous actual errors in the data, yet no errors actu-
ally occurred.

MySQL issues only warnings, and most application developers actually ignore these warnings, never
executing a SHOW WARNINGS to identify these silent data truncations. You expected to insert a value
of 9,000; however, only 255 was stored. You expected to insert a string of three characters, yet only
two characters were recorded. You didn’t specify a value for a NOT NULL column, yet a default value
was recorded.

563120c01.indd 41563120c01.indd 41 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

42 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The solution is to use a strict SQL mode available since MySQL 5.0. MySQL provides two strict
types: STRICT_ALL_TABLES and STRICT_TRANS_TABLES. For the purposes of ensuring data integrity
for all tables, this section only discusses STRICT_ALL_TABLES. When you re-run the previous SQL
statements, you see the code in Listing 1-45:

LISTING 1-45: sql-mode-traditional.sql

mysql> TRUNCATE TABLE example;
Query OK, 0 rows affected (0.00 sec)

mysql> SET SESSION sql_mode=’TRADITIONAL’;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO example (i) VALUES (0), (-1),(255), (9000);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 2
mysql> INSERT INTO example (c) VALUES (‘A’),(‘BB’),(‘CCC’);
ERROR 1364 (HY000): Field ‘i’ doesn’t have a default value
mysql> SELECT * FROM example;
Empty set (0.00 sec)

mysql> INSERT INTO example (i) VALUES (0);
mysql> INSERT INTO example (i) VALUES (-1);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 1
mysql> INSERT INTO example (i) VALUES (255);
mysql> INSERT INTO example (i) VALUES (9000);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 1
mysql> INSERT INTO example (c) VALUES (‘A’);
ERROR 1364 (HY000): Field ‘i’ doesn’t have a default value
mysql> INSERT INTO example (i,c) VALUES (1,’A’);
mysql> INSERT INTO example (i,c) VALUES (1,’BB’);
mysql> INSERT INTO example (i,c) VALUES (1,’CCC’);
ERROR 1406 (22001): Data too long for column ‘c’ at row 1
mysql> SELECT * FROM example;
+-----+------+
| i | c |
+-----+------+
0	NULL
255	NULL
1	A
1	BB
+-----+------+
4 rows in set (0.00 sec)

You will notice now the expected errors of a more traditional relational database system. You will
also notice that the multiple INSERT VALUES statements fail unconditionally. It is possible to alter
this behavior by using a nontransactional storage engine such as MyISAM and further confuse the
possible lack of data integrity. Listing 1-46 shows an example.

LISTING 1-46: sql-mode-traditional-myisam.sql

mysql> ALTER TABLE example ENGINE=MyISAM;
mysql> TRUNCATE TABLE example;

563120c01.indd 42563120c01.indd 42 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

Maintaining Relational Integrity ❘ 43

mysql> SET SESSION sql_mode=’TRADITIONAL’;
mysql> INSERT INTO example (i) VALUES (0), (-1),(255), (9000);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 2
mysql> INSERT INTO example (i,c) VALUES (1,’A’),(1,’BB’),(1,’CCC’);
ERROR 1406 (22001): Data too long for column ‘c’ at row 3
mysql> SELECT * FROM example;
+---+------+
| i | c |
+---+------+
0	NULL
1	A
1	BB
+---+------+
3 rows in set (0.00 sec)

sql_mode=TRADITIONAL

The use of sql_mode is essential in application development to providing an acceptable level of
data integrity. Systems should ideally be defi ned with a minimum of sql_mode=TRADITIONAL. The
MySQL Reference Manual provides the following description for TRADITIONAL.

“Make MySQL behave like a ‘traditional’ SQL database system. A simple
description of this mode is ‘give an error instead of a warning’ when inserting an
incorrect value into a column.

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_
ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_
ZERO, NO_AUTO_CREATE_USER.”

TRADITIONAL provides additional modes including important data integrity for date values.

It is important that changing the sql_mode for an application requires appropri-
ate testing. It is dangerous to change sql_mode on a production system because
functionality that may have operated previously may now operate differently.

sql_mode=NO_ENGINE_SUBSTITUTION

When using relational integrity that is engine specifi c, such as the InnoDB FOREIGN KEY constraint, it
is important that a table is created with the intended storage engine as specifi ed with the CREATE TABLE
statement. Unfortunately, MySQL does not enforce this by default. Listing 1-47 shows an example.

LISTING 1-47: sql-mode-engine-myisam.sql

mysql> CREATE TABLE example (
 -> col1 INT UNSIGNED NOT NULL,
 -> col2 INT UNSIGNED NOT NULL

563120c01.indd 43563120c01.indd 43 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

44 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 ->) ENGINE=InnoDB DEFAULT CHARSET latin1;
Query OK, 0 rows affected, 2 warnings (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1286 | Unknown table engine ‘InnoDB’ |
| Warning | 1266 | Using storage engine MyISAM for table ‘example’ |
+---------+------+---+
2 rows in set (0.00 sec)

mysql> SHOW CREATE TABLE example\G
*************************** 1. row ***************************
 Table: example
Create Table: CREATE TABLE `example` (
 `col1` int(10) unsigned NOT NULL,
 `col2` int(10) unsigned NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

The table has been successfully created, yet the created storage of MyISAM is
not the specifi ed storage engine of InnoDB.

To ensure this does not occur, you need to use the sql_mode in Listing 1-48.

LISTING 1-48: sql-mode-engine-error.sql

mysql> SET SESSION sql_mode=’NO_ENGINE_SUBSTITUTION’;

mysql> CREATE TABLE example (
 -> col1 INT UNSIGNED NOT NULL,
 -> col2 INT UNSIGNED NOT NULL
 ->) ENGINE=InnoDB DEFAULT CHARSET latin1;
ERROR 1286 (42000): Unknown table engine ‘InnoDB’

Storage Engine Integrity

The ARCHIVE storage engine provides a unique feature that can be considered a level of integrity. In
Listing 1-49, DELETE and UPDATE are not supported and they return an error:

LISTING 1-49: archive-engine.sql

mysql> CREATE TABLE example (
 -> pk INT UNSIGNED NOT NULL AUTO_INCREMENT,
 -> col2 VARCHAR(10) NOT NULL,
 -> PRIMARY KEY(pk)

563120c01.indd 44563120c01.indd 44 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

Subqueries in MySQL ❘ 45

 ->) ENGINE=ARCHIVE DEFAULT CHARSET latin1;

mysql> INSERT INTO example (col2) VALUES (‘a’),(‘b’),(‘c’);

mysql> UPDATE example SET col2=’x’ WHERE pk=1;
ERROR 1031 (HY000): Table storage engine for ‘example’ doesn’t have this option

mysql> DELETE FROM example WHERE pk=1;
ERROR 1031 (HY000): Table storage engine for ‘example’ doesn’t have this option

What MySQL Does Not Tell You

You should also be aware that MySQL may perform silent column changes when you create a table
in MySQL. Though subtle, it is important that you know about these changes because they may
refl ect an impact on relational integrity. The following is a summary of several important points;
however, you should always refer to the MySQL manual for a complete list of version specifi c
changes: http://dev.mysql.com/doc/refman/5.1/en/silent-column-changes.html.

➤ VARCHAR columns specifi ed less than four characters are silently converted to CHAR.

➤ All TIMESTAMP columns are converted to NOT NULL.

➤ String columns defi ned with a binary CHARACTER SET are converted to the corresponding
binary data type; for example, VARCHAR is converted to VARBINARY.

What’s Missing?

MySQL does not support any check constraints on columns, for example the popular Oracle syntax
that can restrict the range of values that can be recorded in a column:

CONSTRAINT country_id CHECK (country_id BETWEEN 100 and 999)

SUBQUERIES IN MYSQL

The subquery is a powerful means of retrieving additional data in a single MySQL SELECT state-
ment. With subqueries, it is possible to introduce other sets of information for varying purposes.
The following examples show three different and popular forms of subqueries.

Subquery

A true subquery, also known as dependent query, is a standalone SELECT statement that you can
execute independently to produce a set of results that are then used with the parent query. In this
form, the subquery is executed fi rst, and the results are used for comparison with the parent query.

LISTING 1-50: subquery.sql

SELECT color
FROM colors

563120c01.indd 45563120c01.indd 45 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

46 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

WHERE color IN
 (SELECT color
 FROM flags);

+-------+
| color |
+-------+
| Blue |
| Red |
| White |
+-------+

Correlated Subquery

A correlated subquery performs a join between the parent query and the subquery resulting in a
dependency during the process of retrieving results. In this situation, both sets of data must be
determined independently, then compared to return the matching results:

LISTING 1-51: correlated-sub-query.sql

SELECT DISTINCT f.color
FROM flags f
WHERE EXISTS
 (SELECT 1
 FROM colors c
 WHERE c.color = f.color);

+-------+
| color |
+-------+
| Blue |
| Red |
| White |
+-------+

Derived Table

Though SELECT statements shown in this chapter have used tables and columns, it is possible for any
table or column within a SELECT statement to actually be the result of a SELECT statement. This is
known as a derived table.

You can use a SELECT statement to create a derived table that acts in the position as a normal table.
For example:

LISTING 1-52: derived-table.sql

SELECT r.color, r.countries, c.is_dark, c.is_primary
FROM colors c,
 (SELECT color, GROUP_CONCAT(country) AS countries
 FROM flags

563120c01.indd 46563120c01.indd 46 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

Subqueries in MySQL ❘ 47

 GROUP BY color) r
 WHERE c.color = r.color;
+-------+----------------------------+---------+------------+
| color | countries | is_dark | is_primary |
+-------+----------------------------+---------+------------+
Blue	Australia,Sweden,USA	yes	yes
Red	Australia,Canada,Japan,USA	no	yes
White	Australia,Canada,Japan,USA	no	yes
+-------+----------------------------+---------+------------+

An earlier example used a GROUP BY statement to return a concatenated list of colors per country.
This can also be retrieved using a column-based derived table as shown in Listing 1-53.

LISTING 1-53: derived-column.sql

SELECT DISTINCT f.country,
 (SELECT GROUP_CONCAT(color)
 FROM flags f2
 WHERE f2.country = f.country) AS colors
FROM flags f;

+-----------+----------------+
| country | colors |
+-----------+----------------+
Australia	Blue,Red,White
Sweden	Blue,Yellow
USA	Blue,Red,White
Canada	Red,White
Japan	Red,White
+-----------+----------------+

You can fi nd a great example of the complexity of SQL and derived tables in the Blog Post by Shlomi
Noach at http://code.openark.org/blog/mysql/sql-pie-chart.

Complex Sub Queries

Listing 1-54 is a 66-line SQL statement that includes combined examples of UNION, GROUP BY, IF()
and CASE() fl ow control, and multiple subqueries including table and column derived tables:

LISTING 1-54: complex-sql.sql

SELECT
 group_concat(
 IF(round(sqrt(pow(col_number/@stretch-0.5-(@size-1)/2, 2) +
 pow(row_number-(@size-1)/2, 2))) BETWEEN @radius*2/3 AND @radius,
 (SELECT SUBSTRING(@colors, name_order, 1) FROM
 (
 SELECT
 name_order,
 name_column,
 value_column,

563120c01.indd 47563120c01.indd 47 2/18/10 9:08:18 AM2/18/10 9:08:18 AM

48 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 accumulating_value,
 accumulating_value/@accumulating_value AS accumulating_value_ratio,
 @aggregated_data := CONCAT(@aggregated_data, name_column, ‘: ‘,
 value_column, ‘ (‘, ROUND(100*value_column/@accumulating_value), ‘%)’,
 ‘|’) AS aggregated_name_column,
 2*PI()*accumulating_value/@accumulating_value AS accumulating_value_radians
 FROM (
 SELECT
 name_column,
 value_column,
 @name_order := @name_order+1 AS name_order,
 @accumulating_value := @accumulating_value+value_column
 AS accumulating_value
 FROM (
 SELECT name AS name_column, value AS value_column
 FROM sample_values2 LIMIT 4
) select_values,
 (SELECT @name_order := 0) select_name_order,
 (SELECT @accumulating_value := 0) select_accumulating_value,
 (SELECT @aggregated_data := ‘’) select_aggregated_name_column
) select_accumulating_values
) select_for_radians
 WHERE accumulating_value_radians >= radians LIMIT 1
), ‘ ‘)
 order by col_number separator ‘’) as pie
FROM (
 SELECT
 t1.value AS col_number,
 t2.value AS row_number,
 @dx := (t1.value/@stretch - (@size-1)/2) AS dx,
 @dy := ((@size-1)/2 - t2.value) AS dy,
 @abs_radians := IF(@dx = 0, PI()/2, (atan(abs(@dy/@dx)))) AS abs_radians,
 CASE
 WHEN SIGN(@dy) >= 0 AND SIGN(@dx) >= 0 THEN @abs_radians
 WHEN SIGN(@dy) >= 0 AND SIGN(@dx) <= 0 THEN PI()-@abs_radians
 WHEN SIGN(@dy) <= 0 AND SIGN(@dx) <= 0 THEN PI()+@abs_radians
 WHEN SIGN(@dy) <= 0 AND SIGN(@dx) >= 0 THEN 2*PI()-@abs_radians
 END AS radians
 FROM
 tinyint_asc t1,
 tinyint_asc t2,
 (select @size := 23) sel_size,
 (select @radius := (@size/2 - 1)) sel_radius,
 (select @stretch := 4) sel_stretch,
 (select @colors := ‘#;o:X”@+-=123456789abcdef’) sel_colors
 WHERE
 t1.value < @size*@stretch
 AND t2.value < @size) select_combinations
 GROUP BY row_number
UNION ALL
 SELECT
 CONCAT(
 REPEAT(SUBSTRING(@colors, value, 1), 2),
 ‘ ‘,
 SUBSTRING_INDEX(SUBSTRING_INDEX(@aggregated_data, ‘|’, value), ‘|’, -1)
)

563120c01.indd 48563120c01.indd 48 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

Using Regular Expressions ❘ 49

 FROM
 tinyint_asc
 WHERE
 value BETWEEN 1 AND @name_order
;

Subqueries in MySQL were fi rst available in version 5.0. In prior versions, the
use of joins was necessary and in many instances they were able to achieve the
same result.

USING REGULAR EXPRESSIONS

Regular expressions become indispensable as soon as application requirements include validation or
parsing of complicated text data. This book does a lot of that and it all builds on the foundations in
this chapter. It is vital for a developer to have a good working knowledge of the regular expression
language in order to increase productivity and to save time by avoiding the need to write special-
purpose text parsers.

This section starts with general practices regarding regular expressions and then fi nishes with some
examples. The expressions in the book can sometimes be complicated and diffi cult to read. This is
one of the downsides of using regular expressions, but when they are used properly they can replace
hundreds of lines of traditional text-parsing code and will outperform native PHP on long or com-
plex strings.

General Patterns

Regular expressions in PHP start and end with a boundary character. This is usually a slash but
it can be any character as long as it is the fi rst character of the expression. Regular expressions in
MySQL, by contrast, do not have a boundary character. For ease of reading, this book uses slash as
a boundary character for all regular expressions unless they appear directly in a MySQL query. It is
also common to use a hash character as a boundary in PHP. When an expression has many slashes
the hash effectively avoids the need to escape every single non-terminal slash. In web applications
this approach is very useful for URIs. These two lines are both functionally identical and valid regu-
lar expressions:

/yin\/yang/i
#yin/yang#i

In all cases a regular expression will match the pattern inside the boundaries. Modifi ers can be
placed after the closing boundary to alter the behavior of the regular expression. In the previous
example, the modifi er “i” is used to make the expression case-insensitive.

The pattern can range from simple (a tiny set of possible strings) to complex (an infi nite number of
possible matches). Complex regular expressions should always be commented to avoid confusion
down the road. It is not uncommon for developers to come across a regular expression and ask,
“What is that supposed to be doing?” even if they wrote it themselves just a few days earlier.

563120c01.indd 49563120c01.indd 49 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

50 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Matching a Range of Characters

Regular expressions are often used to match a string where a fi nite character set is expected to occur
(or not occur). This is where regular expressions save a lot of time. Enclosing a set of characters in
square brackets [like this] will match any of the characters in the set. The example in the preced-
ing sentence will match the letters l, i, k, e, t, h, and s as well as a space (ASCII 0x20). Putting a
caret (̂) after the opening bracket will give you any character that is not one of those seven. Using a
dash inside the brackets can specify ranges, for example: a valid username contains only letters A-Z,
numbers, dashes, and underscores. There are also several short codes for predefi ned and frequently
used character sets. These two regular expressions both match the username:

/^[A-Za-z0-9_\-]{3,15}$/
/^[\w\-]{3,15}$/

By design, those regular expressions will also ensure that the username is between three and fi fteen
characters long as indicated by the braces. They force the regular expression to match that many
instances of the pattern preceding them. The brackets, combined with the numbers inside of them,
are called a quantifi er.

This is the fi rst time in the book that \w is used. \w will match word characters
in a regular expression. So [A-Za-z0-9_] can be simplifi ed into just \w. Two
other useful and related shorthand characters are:

\s➤ matches whitespace characters such as spaces, line feeds, and carriage
returns: [\t\n\r]

\d➤ matches digits: [0-9]

Using the uppercase version of a shorthand character will negate it. For exam-
ple: \S will match any character that is not whitespace.

Even slightly changing the regular expression alters the meaning dramatically. Changing the braces
to {3,} instead of {3,15} will match usernames that are at least three characters long but can be any
length. Likewise, changing it to {3} will only allow usernames that are exactly three characters long.

The expression is anchored by a caret at the front and a dollar sign at the end. This ensures that the
entire string is matched. Remove both of them and the resulting regular expression would match
any substring that has at least three consecutive characters and matches the pattern (allowing bogus
usernames). Removing the dollar sign will match any string that starts with at least three of the
allowed characters. The inverse is true if just the caret sign is removed.

A more complex task would be to match an email address. Matching an email address is useful
for dumb validation of input. The application can ensure that the user at least tried to enter valid
data (but not that the data is actually valid). RFC 5322 documents the proper format for an email
address. The task can be as easy as /\w@\w/ or very diffi cult.

The email address is divided into a local-part and a domain-part. The local-part can contain almost
any printable ASCII character. It excludes all brackets except curly brackets. It also excludes the

563120c01.indd 50563120c01.indd 50 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

Using Regular Expressions ❘ 51

@ sign, colon, semicolon, and commas, with the exception being if the local-part is surrounded by
quotes, it can contain the excluded characters. These fi rst two addresses have valid local-parts and
the third does not (note the commas):

Boston.MA@example.com
“Boston,MA”@example.com
Boston,MA@example.com

The quote syntax is rarely seen and the RFC for the Simple Mail Transfer Protocol (RFC 5321)
warns against it in section 4.2.1. Two possible regular expressions for the local-part of the domain
(with and without quotes) look like this:

/”[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+”/
/[\w!#$%&’*+\/=?^`{|}~.-]+/

The plus sign is a quantifi er that tells the regular expression engine to look for one or more of the
previous expressions. Using an asterisk as a quantifi er tells the engine to look for zero or more.

The domain-part has more strict rules to follow (and thus is a little easier to validate against). The
domain can be any number of subdomains separated by dots. The subdomain can contain alpha-
numeric characters and dashes as long as it doesn’t start or end with a dash. The domain can also
be an IP address enclosed in square brackets. The resulting regular expressions for the domain
portion might look like this:

/([A-Za-z0-9-]+\.)+[A-Za-z0-9-]+/
/\[([0-9]{1,3}\.){3}[0-9]{1,3}\]/

Complex groups can be enclosed in parentheses like they are in the previous example for matching a
valid IP address. The expression will match the fi rst three octets followed by a dot and then the fi nal
octet (which does not have a trailing dot).

Now that all the pieces are there they need to be put together using alternation. Using the pipe char-
acter to separate parts of the regular expression tells the engine that it can accept any of the parts as
input. You can group alternations together using parentheses. The almost fi nal regular expression
looks like this:

/^(
 “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+”
| [\w!#$%&’*+\/=?^`{|}~.-]+
) @ (
 ([A-Za-z0-9-]+\.)+[A-Za-z0-9-]+
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\]
)$/x

The x modifi er in the preceding example can be used to indicate that whitespace should be ignored.
It is useful for making long expressions easier to read by making them span multiple lines.

The regular expressions for both parts have glaring errors. The local-part allows for a dot at the
beginning and the end as well as consecutive dots, and the domain-part of the regular expression
allows for hyphens at the beginning and end of subdomains, none of which is allowed by the RFC.
Those errors need to be fi xed for the regular expression to be accurate.

563120c01.indd 51563120c01.indd 51 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

52 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Expert Regular Expressions

The errors in the email expression can be fi xed using simple regular expression syntax to detect a
more limited character set for the beginning and end. Ironically that will produce a more compli-
cated and diffi cult to read expression. Instead, lookarounds can be used.

Lookaheads and Lookbehinds

Lookaheads and lookbehinds (collectively called lookarounds) can be used to assert the presence or
absence of characters in a string. In the email example they can be used to assert that the fi rst char-
acter in the local-part is not a dot and neither is the last character. They are each special types of
groups. When the start of a group (opening parenthesis) is followed by a question mark, it indicates
to the engine that the type for that group will follow. There are many types of groups, all of which
are covered in this chapter.

Lookaheads use an equal sign and lookbehinds use a less-than sign followed by an equal sign. Using
both, the engine can match the letter b that is immediately preceded by a and followed by c:

/(?<=a)b(?=c)/

Lookaheads and lookbehinds can also be negated using an exclamation point instead of an equal
sign. The preceding regular expression can easily be modifi ed to be the letter b that is not preceded
by a or followed by c:

/(?<!a)b(?!c)/

The entire string will not match if any negative lookahead or negative lookbe-
hind matches. So abx and xbc both fail to match. A slightly more complicated
regular expression that succeeds for both those strings but still fails for abc
would be:

 /(?<!a)b|b(?!c)/

All lookarounds are zero-width, which means that they do not count toward the match. This can be
useful for string replacement where you do not want the beginning or end of a string to be replaced.
They can then be used to help out with the email problem as well. The problem can be simplifi ed
by ignoring the complexity of the local-part for now and saying that the expression only needs to
match a word containing dots that does not start or end with a dot. The expression [\w.]+ will
match alphanumeric characters and dots. A negative lookahead and a negative lookbehind can be
used together so that it doesn’t match words that start or end with a dot:

/^(?!\.)[\w.]+(?<!\.)$/

Caution must be taken when using the dot character. It does not need to be escaped inside the
character set, but outside it must be. Removing the slash before the fi rst or last dot will read “not
ending/beginning with any character,” which is clearly not desirable. Changing the last exclama-
tion point to an equal sign will only match strings that do end in a dot. Using negative lookarounds

563120c01.indd 52563120c01.indd 52 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

Using Regular Expressions ❘ 53

to catch leading and trailing dots in the local-part and hyphens in the domain-part lead to a new
completed regular expression:

/^(
 “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+”
| (?!\.)[\w!#$%&’*+\/=?^`{|}~.-]+(?<!\.)
) @ (
 ((?!-)[\w-]+(?<!-)\.)+(?!-)[\w-]+(?<!-)
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\]
)$/x

The new expression will match any valid email address and will fail on an address that does not fol-
low the rules outlined in the RFCs. Lookarounds are just one type of group. There is an entirely dif-
ferent type called capture groups that is also very common.

Capturing Data

Regular expressions have the ability to capture data. Starting a group without providing a type
(a parenthesis that is not followed by unescaped question mark) will cause that group to be cap-
tured. Data from the capture group can be referenced both from inside the regular expression and
PHP. When referenced from within the same expression it is referred to as a back-reference. Back-
references can be achieved by using \# where # is the number of the captured groups. You can use
back-references to match both a single and double-quoted string with the same regular expression:

/(‘|”)[^\1]*?\1/

The back-references (\1) ensure that the end quote is of the same type as the opening quote and
that the quoted string can contain other quotes as long as they are not the same type. It is impor-
tant that the asterisk is made lazy using the question mark. Otherwise if there are multiple quoted
strings inside the subject, the expression will match it as if it contains only one giant quoted string.

Any quantifi er can be made lazy using the question mark (even the question
mark quantifi er itself). The question mark serves several purposes in regular
expressions:

➤ To mark the previous character, group, or character class as optional.

➤ To mark the previous quantifi er as lazy. A lazy quantifi er will quit matching
as soon as it can. It will continue on to the next part of the regular expres-
sion if it can. In contrast, a greedy quantifi er (no question mark) will keep
matching as long as it can.

➤ To indicate the type of a group (if placed immediately after the opening
parenthesis).

Most programmers are accustomed to escaping quotes inside a quoted string to prevent the string
from terminating. The previous regular expression does not behave properly in that situation.

563120c01.indd 53563120c01.indd 53 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

54 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

By using a negative lookbehind and alternation the top example string can be matched using the
bottom regular expression:

“Hello \”my\” world”
/(‘|”)([^\1]|\\\1)*?(?<!\\)\1/

The alternation ensures that the engine behaves as intended when it encounters a backslash followed
by the quote type. The negative lookbehind then ensures that the expression keeps looking for a
closing quote instead of terminating lazily when it fi nds the fi rst inner quote.

Sometimes it is undesirable to capture data. In those cases it can be avoided by putting ?: at the begin-
ning of the group. The colon turns it into a non-capturing group. Non-capturing groups are extremely
useful for keeping the number of back-references available down to a minimum and makes writing
code much easier and cleaner. Sometimes it is desirable to have a lot of back-references. In these cases
it is useful to name them so as to avoid confusion (“Is that group \4 or is it \5?”).

Naming a capture group is as easy as putting P<name_here> after the question mark. A named
group can then be back-referenced using (?=name_here) in the expression. A simple example pat-
tern will discover Pseudo-Shakespearean questions in the subject text. The regular expression on the
fi rst line will match all subsequent subjects:

/(?P<word>(?:\w+\s?)+) or not (?P=word)\?$/i
To be or not to be?
PHP or not PHP?
Sleep or not sleep?

Named capture groups are used later in this chapter when writing a PHP script that verifi es an email
address. For now it is useful to go over documenting regular expressions.

Documenting Regular Expressions

Regular expressions can also be commented. The comment syntax is rarely used in this book. An
alternative method is to use PHP comments above the regular expression. However, it is a good
practice to comment individual alternations and subpatterns when the code contains complex regu-
lar expressions (like the email expression).

Comments are a special type of non-capturing group that starts with a ?#. A comment can very eas-
ily be added into any expression but they are easiest to read in expressions where the x modifi er is
used and whitespace can be utilized liberally. A comment inside a regular expression will look like
this:

(?# comment goes here)

The completed email regular expression from before is altered to include comments when it is used
in the next section and in the code examples that accompany this book.

Putting It All Together in PHP

PHP uses Perl-style regular expressions via its preg_ family of functions. PHP has also supported
POSIX-style regular expressions via ereg_; however, those functions are deprecated in PHP 5.3 and
should not be used anymore.

563120c01.indd 54563120c01.indd 54 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

Using Regular Expressions ❘ 55

The PHP example in this section completely validates an email address. It supports two types of val-
idation: lazy and complete. The lazy method simply returns true if the regular expression matches
and if the string appears to be a valid email. However, that only serves to make using a fake email
more diffi cult but not impossible. The complete method also checks DNS to make sure the domain
name exists and then uses SMTP to connect to the Mail Transfer Agent (MTA) and make sure the
user exists.

Each DNS zone for a domain can contain one or more Mail Exchange (MX) records that tell mail
clients and transfer agents what server to connect to in order to send and retrieve mail. RFC 2810
states that a domain can receive email even if no MX records are found or valid for it. In that case, the
mail client will attempt to connect to the hostname itself. PHP has a handy function called getmxrr()
that will get the MX records. Prior to PHP 5.3 the function would only work on UNIX/Linux-based
systems. As of PHP 5.3 it will also work on Windows without any messy hacks. The getMX() method
looks like this:

private function getMX($hostname) {
 $hosts = array();
 $weights = array();
 getmxrr($hostname, $hosts, $weights);
 $results = array();
 foreach ($hosts as $i => $host)
 $results[$host] = $weights[$i];
 arsort($results, SORT_NUMERIC);
 $results[$hostname] = 0;
 return $results;
}

As mentioned earlier, RFC 2810 states that the domain itself is a valid location to look for an
email server, so the code appends the domain to the end of the result array but gives it zero weight
and adds it after the sort so that it will be lighter (lower priority) than any MX records that were
returned from the DNS server.

The second method takes the MX records and tries to connect to them on port 25 (SMTP) in order
until one succeeds. If it reaches the end of the list and still doesn’t have a valid connection, either
the host — and therefore the entire email address — is bogus or the server is down. This example
assumes the server should be up and returns false under the case where it is unreachable.

The new method called openSMTPSocket() takes a host name, uses it to call getMX(), loops
through all the hosts, and returns a valid socket pointer if it can:

private function openSMTPSocket($hostname) {
 $hosts = $this->getMX($hostname);
 foreach ($hosts as $host => $weight) {
 if ($sock = @fsockopen($host, self::SMTP_PORT,
 $errno, $errstr, self::CONN_TIMEOUT)) {
 stream_set_timeout($sock, self::READ_TIMEOUT);
 return $sock;
 }
 }
 return null;
}

563120c01.indd 55563120c01.indd 55 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

56 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

With a valid socket pointer the example can then say “hello” to the MTA (telling it what host you
are looking for in case there is more than one host on that server) and then ask if the email is valid.
If it is valid it returns true. In all cases, it closes the socket handle when it is done with it:

private function validateUser($hostname, $user) {
 if ($sock = $this->openSMTPSocket($hostname)) {
 $this->smtpSend(“HELO $hostname”);
 $this->smtpSend(“MAIL FROM: <$user@$hostname>”);
 $resp = $this->smtpSend(“RCPT TO: <$user@$hostname>”);

 $valid = (preg_match(‘/250|45(1|2)\s/’) == 1);
 fclose($fp);
 return $valid;
 } else {
 return false;
 }
}

private function smtpSend($sock, $data) {
 fwrite($sock, “$data\r\n”)
 return fgets($sock, 1024);
}

The email address may be defi nitively valid (response 250) or gray-listed (responses 451 and 451) on
the MTA. The method uses a regular expression to test the response and returns true in any of those
cases. In a completed application it makes sense to return a confi dence score instead of a Boolean.
The score may be zero if the regular expression doesn’t match or the MTA returns negative when
asking if the user exists. It may be one if the MTA verifi es the user and the user is not gray-listed,
and 0.25 and 0.75 might be used for “the SMTP server is unreachable” and “the user is gray-listed,”
respectively. That way an application can choose to only allow a user to register if the score is 0.5 or
higher.

The fi nal piece of the puzzle is the class that holds it all together — the rest of the email address
verifi cation class looks like the code in Listing 1-55.

LISTING 1-55: EmailValidator.class.php

<?php

class EmailValidator {
 const CONN_TIMEOUT = 10;
 const READ_TIMEOUT = 5;
 const SMTP_PORT = 25;
 private $email;

 public function __construct($email) { $this->email = $email; }

 private function getParts() {
 $regex = <<<__REGEX__
/^(?P<user>
 “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+” (?# quoted username)
| (?!\.)[\w!#$%&’*+\/=?^`{|}~.-]+(?<!\.) (?# non-quoted username)

563120c01.indd 56563120c01.indd 56 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

Using Regular Expressions ❘ 57

) @ (?P<host>
 (?:(?!-)[\w-]+(?<!-)\.)+(?!-)[\w-]+(?<!-) (?# host)
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\] (?# host IP address)
)$/x
__REGEX__;

 return (preg_match($regex, $this->email, $matches) ? $matches : null);
 }

 public function isValid($lazy) {
 static $valid = null;

 if ($lazy) return ($this->getParts() != null);
 if ($valid !== null) return $valid;
 $valid = false;

 if ($parts = $this->getParts()) {
 $valid = $this->validateUser($parts[‘host’], $parts[‘user’]);
 }
 return $valid;
 }

 private function validateUser($hostname, $user) { ... }
 private function openSMTPSocket($hostname) { ... }
 private function smtpSend($sock, $data) { ... }
 private function getMX($hostname) { ... }
};
?>

It is common for ISPs to block outgoing connections on port 25. This tactic
forces the customer to use the ISP’s mail relay and makes it easier to thwart
people who are trying to use the network for spam. Unfortunately, it also means
that if the example application in this section is being run on a home network
it is likely that the port will be blocked and the application will always return
false for every email address. The only two solutions are to get the ISP to
unblock the port (much more likely on hosting providers than consumer ISPs)
or run the PHP from a computer living on a different ISP’s network.

Lazy validation (regular expression only) will always work regardless of the
ISP’s fi rewall settings but does not have as high a confi dence factor.

The email regular expression changed slightly between the previous section and this. It now cap-
tures the hostname and user in named groups so that they can be easily referenced by PHP. It also
makes the host pattern non-capturing so the matches don’t end up with extra data that isn’t needed.
Passing a third parameter to preg_match() captures the matches and capture groups in an array.
The output of the $matches array on the input andrew@example.com looks like this:

Array
(
 [0] => Array

563120c01.indd 57563120c01.indd 57 2/18/10 9:08:19 AM2/18/10 9:08:19 AM

58 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

 (
 [0] => andrew@example.com
 [user] => andrew
 [1] => andrew
 [host] => example.com
 [2] => example.com
)

)

Notice how the numbered matches are still kept in the result so each named group can be referenced
two different ways. It also means that changing a group from unnamed to named will not affect the
ordering of the unnamed groups. The fi rst index (index zero) always equals the entire match string. The
email testing class is now complete; however, it is just one of the uses for regular expressions in PHP.

Replacing Strings

The email regular expression can also be used to replace all valid emails in a string with an HTML
link to send a mail to the user. To make things more interesting the next example replaces each email
address username with a mailto link and each domain with a link directly to the domain. Assume
that $emailRegex is fi lled with the entire email regular expression from the previous example but
with the anchors removed so it can match a partial string:

preg_replace($emailRegex,
 ‘\1@\2’
 $testString);

This example shows a simple replacement. For more complex replacements a callback function can
be used to replace the string with a computed value. Callback functions are used extensively in later
chapters. Listing 1-56 is a utility class can be used to replace all email addresses in a given text with
obfuscated links that can then be clicked to open the email client but won’t give away the email to
data miners:

LISTING 1-56: EmailLinker.php

<?php
class EmailLinker {

 public function getJavascript() {
 return <<<__JS__
<script type=”text/javascript” language=”javascript”>
function mailDecode(url) {
 var script=document.createElement(‘script’);
 script.src = ‘?mail=’+url;
 document.body.appendChild(script);
}
</script>
__JS__;
 }

 public function redirectIfNeeded() {
 if (array_key_exists(‘mail’, $_GET)) {

563120c01.indd 58563120c01.indd 58 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

Using Regular Expressions ❘ 59

 header(“Location: mailto:”.base64_decode($_GET[‘mail’]));
 exit;
 }
 }

 private function emailReplaceCallback($matches) {
 $encoded = base64_encode($matches[0]);
 return ‘<a href=”?mail=’.urlencode($encoded).’”’.
 ‘ onclick=”mailDecode(\’’.$encoded.’\’); return false;”>’.
 ‘email ‘.$matches[‘user’].’’;
 }

 public function link($text) {
 $emailRegex = <<<__REGEX__
/(?P<user>
 “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+” (?# quoted username)
| (?!\.)[\w!#$%&’*+\/=?^`{|}~.-]+(?<!\.) (?# non-quoted username)
) @ (?P<host>
 (?:(?!-)[\w-]+(?<!-)\.)+(?!-)[\w-]+(?<!-) (?# host)
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\] (?# host IP address)
)/x
__REGEX__;

 return preg_replace_callback($emailRegex,
 array($this,’emailReplaceCallback’), $text);
 }
}
?>

The preg_replace() callback line and the callback function that is used are both highlighted. The
class has corresponding JavaScript that can be retrieved using getJavascript() and echoed into
the header of the document. The class will work without the JavaScript, but it works much bet-
ter with it. It also relies on the method redirectIfNeeded() being called before any output. The
redirect will detect if the user clicked an email link and will send the user to the properly formatted
mailto: URL.

The resulting text does not include the email address anywhere in it but still allows users to be
emailed. It is not completely secure: if spammers or malicious users went through the trouble of Base
64 decoding the string or following the link they could get the users’ email addresses. But it does
prevent all but the most sophisticated email data mining techniques to the point where a data miner
would have to write a script specifi cally for this example.

PHP has been the primary focus for regular expressions up to this point. It is also possible to perform
basic regular expression matches in MySQL in order to fi lter the data before it even gets to the PHP.

Regular Expressions in MySQL

MySQL has extremely limited support for the now familiar Perl-style regular expressions. It uses a
modifi ed POSIX format so support is limited to basic character classes, alternations, anchors, and
quantifi ers. Lookarounds, back-references, and capture groups are not allowed. However, regular
expressions in MySQL can be useful for matching simple strings and for narrowing down a result
set for later culling in PHP.

563120c01.indd 59563120c01.indd 59 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

60 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Regular expressions in MySQL are referenced using the REGEXP and REGEXP BINARY operations.
The latter is case-sensitive whereas the former is not. Expression can also be negated using the NOT
operation. For example, a links table can be queried for all links that point to example.com or its
subdomains:

SELECT *
 FROM `links`
 WHERE `url` REGEXP ‘https?://([a-z0-9-]*\.)*example\.com’;

MySQL doesn’t have the escaped characters that many other regular expression engines have.
Instead it has special keywords that can be used in the expression to match a range of characters.
Table 1-2 shows the MySQL character classes and their PHP equivalents.

TABLE 1-2: MySQL Character Classes with PHP Equivalents

MYSQL (POSIX) PHP LONG FORM (EITHER)

[:alpha:] [A-Za-z]

[:alnum:] [A-Za-z0-9]

[:blank:] [\t\r\n]

[:cntrl:] [\x00-\x1F\x7F]

[:digit:] \d [0-9]

[:graph:] [\x21-\x7E]

[:lower:] [a-z]

[:print:] [\x20-\x7E]

[:punct:] [!”#$%&’()*+,\-./:;<=>?@[\\\]^_`{|}~]

[:space:] \s [\t\r\n\v\f]

[:upper:] [A-Z]

[:xdigit:] [A-Fa-f0-9]

It is worth noting that [:print:] will match any character that can be printed to the screen and
that [:graph:] is identical except that it will not match a space character (because space is not
graphical).

The special character classes can be combined with other characters or classes. Because the sub-
domain of the previous regular expression consists of alphanumeric characters or hyphens it can
be rewritten as:

SELECT *
 FROM `links`
 WHERE `url` REGEXP ‘https?://([:alnum:-]*\.)*example\.com’;

563120c01.indd 60563120c01.indd 60 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

Using Regular Expressions ❘ 61

The word boundary shorthand (\b) is replaced in MySQL by two character classes. One matches
the end of a word and the other matches the beginning. Like \b they are both zero-width. To match
all messages in a forum that contain the word HTML but not XHTML, a simple regular expression
could be used:

SELECT * FROM `forum` WHERE `body` REGEXP ‘[[:<:]]HTML[[:>:]]’

The regular expression functionality built into MySQL is suffi cient under almost all circumstances.
However, if a PHP program ends up doing a lot of post-fi ltering of the result set based on the output
of a complex regular expression, it may be time to extend MySQL.

Using LIB_MYSQLUDF_PREG

The LIB_MYSQLUDF_PREG library is a set of MySQL User Defi ned Functions that allow Perl-
compatible regular expressions (same as PHP) to be executed in a MySQL query. Besides allowing
for back-references and lookarounds it also allows capture groups to be selected by the query.

The library must be installed from source. Chapter 7 on MySQL UDFs provides more details on
installing from source code. If you are already familiar with the typical build process, it can be
installed in three lines:

./configure
make
make installdb

It requires the libpcre headers and MySQL to be on the system. If they are installed in unusual loca-
tions there are a few extra steps. The location of either can be easily specifi ed manually:

./configure --with-pcre=/path/to/libpcre --with-mysql=/path/to/mysql/config

Almost anything that PHP is capable of can also be done in MySQL once the library is installed.

Capturing Data

It is often useful to capture part of a complex string in a data set. One example is to query the data-
base for a list of all domains that have registered users and return the number of users from each.
There is no need for a complicated email matching expression like the one used in previous examples
because the application can assume that if the email made its way into the database, it is already
valid. The query looks like this:

SELECT
 PREG_CAPTURE(‘/@([^@]+)$/’ , `email`, 1) AS `domain`,
 COUNT(*) AS `count`
FROM `users`
GROUP BY `domain`

However, if the application does this often for the same string it is a sign that a new column should
be added to the table. Because a column cannot be returned as an array, the PREG_CAPTURE function
takes a third parameter that is the group to return. If PREG_CAPTURE is replaced by PREG_POSITION,
then instead of the domain it will return the index of the start of the fi rst group. In MySQL the index is
one-based so when querying for the position of the fi rst character it is index 1, not 0. The default for the
group parameter is 0, which returns the entire match, 1 returns the fi rst match, and so on, like in PHP.

563120c01.indd 61563120c01.indd 61 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

62 ❘ CHAPTER 1 TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

String Replacement

When selecting from or updating a table, it is useful to modify an existing column. For example, the
application may need to display a sample report that blanks out certain information such as revenue
numbers. MySQL can replace the data at query time instead of having to loop through the entire
data set in PHP when displaying it:

SELECT
 PREG_REPLACE(‘/\$[:digit:]*(\.[:digit:]+)?/’,
 ‘[subscriber-only]’, `body`)
 AS `body`
FROM `reports`;

String replacements are also useful when doing updates to a table. Because the library supports
back-references it is easy to make complex replacements.

Filtering a Query Based on a Regular Expression

The built-in MySQL regular expression functionality is primarily useful for returning a Boolean or
fi ltering an entire result set. LIB_MYSQLUDF_PREG can do that too.

One alias for REGEXP in MySQL is RLIKE. Similarly, the UDF includes a function PREG_RLIKE that
returns 1 if the pattern matched and 0 if there isn’t any match. The behavior is identical to the built-
in MySQL functionality except that it allows for more complex Perl-compatible regular expressions.
The syntax is also slightly different because the latter is a UDF. The following two queries have
identical output:

SELECT *
 FROM `links`
 WHERE `url` REGEXP ‘https?://([:alnum:-]*\.)*example\.com’;

SELECT *
 FROM `links`
 WHERE PREG_RLIKE(‘https?://([\w-]*\.)*example\.com’,`url`);

Regular expressions are slower than other methods of string matching because they need to compile
the expression in order to match against it and each position in the string may take several passes to
look for a match. For those reasons a developer should always opt to use basic string matching such
as LIKE to fi lter results. However, when more complex string matching and replacements are needed
Regular Expressions are the only way to go.

SUMMARY

This chapter covered both PHP and MySQL essentials for the expert developer.

It covered the object-oriented design approach now available in PHP including a number of key
design patterns. It is impossible to master PHP without fi rst having a complete understanding of
class instantiation, interfaces, class methods, and constants.

563120c01.indd 62563120c01.indd 62 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

Summary ❘ 63

This chapter also went over the foundations of MySQL. Being able to use MySQL joins is essential
in a normalized relational database design where data is maintained in multiple tables. Combined
with the ability to aggregate and group results, and leverage subqueries and derived tables, you can
master all the power and fl exibility that MySQL has to offer in retrieving your information.

Though MySQL provides options for fl ow control and logic within SQL, as a developer you should
always determine what is best performed at the database level and what is best performed within
your PHP code.

The chapter concluded with regular expressions — the cornerstone of string manipulation — and
parsing in any programming language, including PHP and MySQL.

563120c01.indd 63563120c01.indd 63 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

563120c01.indd 64563120c01.indd 64 2/18/10 9:08:20 AM2/18/10 9:08:20 AM

Advanced PHP Concepts

WHAT’S IN THIS CHAPTER?

➤ Using iterators

Making classes behave like arrays➤

Understanding Lambda-style functions➤

Using True lambda functions and closures➤

This chapter covers several concepts that can lead to better coding practices and cleaner, more
manageable code. They are used in various chapters throughout the rest of the book and several
of the concepts take advantage of the built-in functionality of the Standard PHP Library (SPL).
Specifi cally, the four interfaces provided by the SPL allow programmers to easily utilize PHP’s
ability to iterate through data and create a data structure that behaves exactly like a PHP array.

This chapter also uses standard language constructs available in PHP 5.3.0 called lambda
functions. Lambda functions are useful when they are used as closures to create dynamic
functionality.

A fi ctitious book club database is used as the example for this chapter. The application is simple;
it provides the minimal functionality and keeps the least amount of information about the books
possible. This chapter goes over simple use cases.

A PROBLEM THAT NEEDS SOLVING

Loops are used in a typical PHP application to iterate directly through result sets fetched from
MySQL:

<?php
$conn = mysql_connect(‘localhost’, ‘mysql_user’,
 ‘mysql_password’, ‘database’);
$result = mysql_query(‘SELECT * FROM `example_table`’, $conn);

2

563120c02.indd 65563120c02.indd 65 2/18/10 10:36:25 AM2/18/10 10:36:25 AM

66 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

if ($result)
 while ($row = mysql_fetch_assoc($result)) {
 // Execute logic or display row
}
?>

The highlighted approach is benefi cial only for the most basic of PHP applications. Issues come into
the picture when you start dealing with more expansive date sets. Consider some casual use cases:

USE CASES

The following use cases illustrate two users: one who manages inventory versus one
who wants to browse a list.

Sue Needs to Manage Books

Sue has been running a book club for eight years and wants to display all her books
online so that her members can view them. She needs to manage her inventory by
going to a book management page where she can read the fi rst 20 books. On the
top of the page she can see that there are 75 books total. There are four pages total.
On the bottom she can click and go directly to any of the pages. To the right of
each book she can click Delete or Edit.

Jane Wants to Browse Book Club Books

Jane is a member of the book club and wants to browse through the list of books.
She navigates to a page with 10 book results on it. On the top of the page she can
see that there are 75 total results. On the bottom of the page she can jump to any
page from one to eight or click Next to go directly to the next page.

The basic procedural code that is commonly used to query MySQL is too simple to be useful. Much
more code must be added to the example to support Jane’s use case. The simple example can become
unmanageable very quickly. For a one-person team this may be acceptable. However, a larger team
will run into signifi cant problems. It requires that the developer who designs the view know the
details of how the books are stored in the database, and it makes changing the underlying storage
mechanism diffi cult.

Sue’s use case introduces a slightly different page but one that shares many of the same functions.
On that page, she is also viewing a list of books. However, she has 20 books listed per page instead
of the 10 that Jane had and she has a couple of additional management options presented to her.
Using these two use cases you can get a list of requirements for the example application:

➤ The application must facilitate browsing through a variable-length collection of books.

The results must be paginated by an arbitrary number of results per page. You can default to 10.➤

563120c02.indd 66563120c02.indd 66 2/18/10 9:08:38 AM2/18/10 9:08:38 AM

Iterators and the SPL ❘ 67

➤ You should not be fetching results from the database if they are not needed yet. Not all
books are being displayed at the same time. Conversely, you should not be fetching less data
than is required so that you can avoid excessive database calls.

The business logic should be separated into classes that can be easily reused by both views.➤

It must be easy for a developer to loop through the list and retrieve data from each of the books.➤

➤ A developer does not need to worry about the details of how to paginate the list or of the
underlying database. The storage mechanism can be changed at any time without breaking
either of the views.

The last two items aren’t actually from the use case. However, they are equally as important when
you’re dealing with a medium to large team or an open source project. As a rule, logical business units
should always be separated into classes. By doing this, you create a standard and easily understood
method to access and modify the data. This approach can cut development time, lessen maintenance
costs, and shorten the learning curve for new developers coming on the team. It is always easier to take
these goals into consideration at the beginning of the project rather than waiting until the code base
becomes larger. You will be using iterators and closures to accomplish each of these goals.

ITERATORS AND THE SPL

Iterators provide a way for PHP to loop through an arbitrary data set using a foreach loop.
Predefi ned iterators exist in the SPL to loop through arrays, directories, and XML. Another com-
mon use of iterators, and one that you will be implementing in this chapter, is to loop through a
MySQL result set. You will also be using several other interfaces from the SPL to create array-like
functionality for your object.

You will also create three new classes:

➤ A class that retrieves the data

A class that extends one of the SPL classes to provide pagination functionally➤

A ➤ Book class that stores, modifi es, and accesses the book information

A Sample View for the Application

You will be using MySQL as the database connector in order to simplify the application requirements.
The application does require that the server is running PHP 5.3 and is compiled using the MySQL
Native Driver (covered in the next chapter). The view for this application may look something like this:

<?php
$dbConn = new mysqli(‘localhost’, ‘mysql_user’, ‘mysql_password’, ‘bookclub’);

$booksPerPage = 10;
$page = (isset($_GET[‘page’]) ? $_GET[‘page’]: 1);

$bookList = new BookList($dbConn);
$bookPage = new Page($bookList, $page, $booksPerPage);
?>

563120c02.indd 67563120c02.indd 67 2/18/10 9:08:38 AM2/18/10 9:08:38 AM

68 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head> <title>Book Club List</title> </head>
<body>
 <p>
 Showing books
 <?php
 printf(‘%d-%d of %d’, $page->getFirstIndex(),
 $page->getLastIndex(), count($bookList));
 ?>
 </p>
 <table>
 <thead>
 <th>Title</th>
 <th>Author</th>
 <th>Publisher</th>
 </thead>
 <tbody>
<?php
foreach ($bookPage as $key => $book) {
 printf(‘ <tr><td>%s</td>%s</td><td>%s</td></tr>\n’,
 $book->title, $book->authors, $book->publisher);
}
?>
 </tbody>
 </table>
 <ul class=”pages”>
<?php
$totalPages = ceil(count($bookList)/$booksPerPage);
if ($page > 1)
 printr(‘ Prev\n’, $page-1);

for ($i=1; $i <= $totalPages; $i++) {
 if ($i == $page)
 printr(‘ %d\n’, $i);
 else
 printr(‘ %d\n’, $i, $i);
}

if ($page < $totalPages)
 printr(‘ Next\n’, $page+1);
?>

 </body>
</html>

This view satisfi es all the major requirements for this application. It displays the total number of
results at the top, followed by a table of book results, and then fi nishes off with a list of pages and a
Next button if the visitor is not already on the last page. It also produces valid XHTML. Following
markup standards helps designers create better-looking pages and keeps code quality high. It also

563120c02.indd 68563120c02.indd 68 2/18/10 9:08:38 AM2/18/10 9:08:38 AM

Iterators and the SPL ❘ 69

has the benefi t of being able to open pages with a PHP DOM object if needed. All of the examples in
this book validate to XHTML 1.0 Strict if their output is intended for a web browser.

The developer coding the view for this book club doesn’t need to have any understanding of how the
data is stored and can use a standard foreach loop to print out a row for each book. It is common
to populate applications with dummy data early on in the development of a project before access to
the real data is completed. This is particularly true in larger teams where multiple groups might be
writing closely related pieces of code. Using standard design patterns available in PHP ensures that
each team is on the same page.

Another benefi t that the example view demonstrates is the ability to use count($bookList) to
retrieve the total number of books returned by the underlying query. The Page and BookList
classes can both look and behave exactly like a standard array in PHP. That ability is part of what
makes the SPL so powerful.

The fi rst iterator that you will be building is the BookList class as illustrated in Listing 2-1. It will
be a wrapper for all the MySQL selecting functionality. Before you begin, you need to create the
table to store the books and design a query to fetch all the books in a format that you can use:

LISTING 2-1: bookclub.sql

CREATE TABLE books (id INT AUTO_INCREMENT PRIMARY KEY,
 ISBN VARCHAR(20) UNIQUE,
 title VARCHAR(50), publisher INT);
CREATE TABLE book_authors (bookid INT, authorid INT,
 PRIMARY KEY (bookid,authorid));
CREATE TABLE authors (id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20));
CREATE TABLE publishers (id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20));

 SELECT `ISBN`, `title`, (
 SELECT GROUP_CONCAT(`name`)
 FROM `book_authors` AS t2
 JOIN `authors` AS t3 ON t2.authorid = t3.id
 WHERE t2.bookid = t1.id
 GROUP BY `bookid`
) AS `author`, `t4`.`name` AS publisher
 FROM `books` AS t1
 JOIN `publishers` AS t4 ON t1.publisher = t4.id;

Now that the database tables are created it is time to write more PHP code. As mentioned earlier,
much of the functionality in the SPL is provided by interfaces. BookList will need to implement
three of the interfaces for this simple application. The new class, once done, will be both robust and
reusable in just about any situation where a list of books would be needed in the application. The
same patterns can be applied to any type of data.

The Iterator Interface

The fi rst interface to implement is the aptly named Iterator interface. The Iterator interface provides
a set of fi ve methods that must be implemented in order for iteration to work with built-in PHP

563120c02.indd 69563120c02.indd 69 2/18/10 9:08:38 AM2/18/10 9:08:38 AM

70 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

constructs. The Iterator design pattern itself is well established and is not exclusive to PHP. The SPL
interface is simply a standardization of the methods so that they can be reliably implemented across
all PHP applications.

All iterators, in any language, must be able to perform four actions:

➤ Rewind the iterator to the fi rst element.

Advance to the next element.➤

Check to see if the iterator has reached the last element.➤

Get the current item pointed to by the iterator’s internal pointer.➤

The PHP interface defi nes these four methods as well as a fi fth (bolded in the code) to replicate PHP’s
treatment of arrays as hash tables. Here is the basic layout of a class that implements the interface:

<?php
class BookList implements Iterator {
 public function current() { .. }
 public function key() { .. }
 public function next() { .. }
 public function rewind() { .. }
 public function valid() { .. }
}
?>

The class has everything it needs in order to be traversed in a foreach loop just by combining these
methods. At the same time, they are the bare minimum. You will be implementing two more inter-
faces over the course of this chapter to add some important but missing functionality. For now, it
may be helpful to consider this: the following two pieces of code are identical to each other:

foreach ($bookList as $key => $book) { }

for ($bookList->rewind(); $bookList->valid(); $bookList->next()) {
 $key = $bookList->key();
 $book = $bookList->current();
}

You need your data before either of those will function. A good fi rst place to start is by writing the
constructor and defi ning the variables that the class will need. The design makes one assumption. If
the application requests any book on the page it is extremely likely that it will be requesting all the
books on the page (if it wasn’t then it probably wouldn’t be using a class called BookList and would
be using Book instead). The consequence is that the class can load all the records with just one trip
to the database. You are not going to assume that the developer will only be requesting one page at
a time. Instead the class will be built so that it is very easy for the developer to loop from the fi rst
book all the way through to the last on a single page. It will, however, make multiple database calls
if it isn’t confi gured correctly.

The most direct way to do this is by having an associative array inside your class and using the page
number as the key to that array. The data in the array will be a set of additional arrays that include
the actual books. You will also need to store the current page that the user is on.

563120c02.indd 70563120c02.indd 70 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

Iterators and the SPL ❘ 71

In the sample view for the application a MySQL object was passed to the constructor. The class will
also store that resource so that you can fetch new values from the database as needed. Your new
constructor and variable defi nitions look like this:

class BookList implements Iterator {
 private $pages = array();
 private $currentPage = 1;
 private $database = null;
 private $booksPerPage = 10;

 public function __construct($database) { $this->database = $database; }
}

Once you have all the variable defi nitions in place you can start to write your iterator methods.
There isn’t a particular order to implement these because all of them must be fully working in
order for the foreach loop to be able to do its job. You might as well start with the fi rst one that is
called for any loop.

Rewinding an Iterator

The rewind() method needs to set or reset the iterator to the very fi rst item of the data set.
Pagination will be ignored for the purpose of this method. The fi rst item is always book zero on
page one regardless of what page the view is currently displaying. The method does not return any
values (and if it does they will be completely ignored by PHP) so you can write it in as few as three
lines of code:

public function rewind() {
 $this->currentPage = 1;
 if (array_key_exists(1,$this->pages))
 reset($this->pages[$i]);
}

The fi rst thing the method does after setting the current page is to check to make sure the page
exists inside of the pages array before proceeding. The constructor does not initialize any page data
so when the rewind method is called for the fi rst time it is likely the actual array may be empty.
Your class will be doing delayed loading of the data from MySQL so the array will not be there until
it is actually needed. It is possible that the fi rst page will never be needed so fetching it now could be
unnecessarily costly. The remaining methods do require accessing the data from the database at this
stage of the application; they will each be covered in the next section.

The rewind() method does have an analog in procedural PHP and arrays.
However, it is named differently. There is a built-in function that shares its
name with the iterator method but it will return a fi le pointer to the beginning
of the fi le and throw an error if you pass an array to it. The equivalent operation
on an array is actually reset($array).

563120c02.indd 71563120c02.indd 71 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

72 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

Validating and Returning the Current Record

The valid() method is used to check to see if the iterator’s internal pointer is referencing a legiti-
mate entry. It always returns a Boolean value. It will typically return a value of false when the
iterator has reached the last item in the collection or if the collection does not contain any items.

The key() method returns an identifi er for the current item. Its complement is the current()
method, which returns the data that corresponds to the key. It is not technically required that the
key be unique; however, in practice there should be only one value per key. A unique key allows for
a much wider range of applications. Later in the chapter you will be using the key to access books
and confl icting keys would introduce ambiguity.

Because all three methods need to use the data from the page array you’ll write a helper method
to retrieve the data for the current page. Each call to the method would need to be preceded by a
check to see if the data for the page has already been fetched. You can simply move the check into
the method. UNIX and Linux users will be familiar with the touch program that can be used to
set the access time of a fi le or create it if it doesn’t exist. Your new method follows this approach. It
can — and should — be declared as a private member because it will only be used internally. The
new method and the validation and retrieval methods that use it look like this:

private function &touchPage($pageNo=false) {
 if ($pageNo === false) $pageNo = $this->currentPage;

 if (!array_key_exists($pageNo,$this->pages)) {
 $start = ($pageNo-1)*$this->itemsPerPage;
 $query = <<<__QUERY
 SELECT `ISBN`, `title`, (
 SELECT GROUP_CONCAT(`name`)
 FROM `book_authors` AS t2
 JOIN `authors` AS t3 ON t2.authorid = t3.id
 WHERE t2.bookid = t1.id
 GROUP BY `bookid`
) AS `author`, `t4`.`name` AS publisher
 FROM `books` AS t1
 JOIN `publishers` AS t4 ON t1.publisher = t4.id
 LIMIT $start, {$this->booksPerPage}
__QUERY;

 $result = $this->database->query($query);
 $this->pages[$pageNo] = $result->fetch_all(MYSQLI_ASSOC);
 }

 $tmp = &$this->pages[$pageNo];
 return $tmp;
}

public function valid() {
 $page = &$this->touchPage();
 return (key($page) !== null);
}

public function current() {
 return current($this->touchPage());

563120c02.indd 72563120c02.indd 72 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

Iterators and the SPL ❘ 73

}

public function key() {
 return key($this->touchPage())+$this->booksPerPage*($this->currentPage-1);
}

Without the last of the methods it is impossible to read any values from the iterator except the fi rst.
The next() method will advance the internal pointer by one and return the current element. The
new pointer may or may not refer to a valid value. The next() method is more complicated than
some of the other methods of the class because the books are stored in multiple arrays. It needs to
detect if the internal pointer for the inner array has reached the end and attempt to advance to the
next page if it has. First, the method also checks if the page is full. Each page has a fi xed number of
elements and a partially full page cannot have a next page.

public function next() {
 $page = &$this->touchPage();
 next($page);
 if (key($page) === null && count($page) == $this->booksPerPage) {
 $this->currentPage++;
 $page = &$this->touchPage();
 reset($page);
 }
 return current($page);
}

The newly completed class loops through every book in the database. Every 10 records (or however
many records are defi ned in $booksPerPage) it will fetch a new set from the database until they are
exhausted. Unfortunately, there will be one extra database query in the case where the last page is full.
You will fi x that next. The Iterator interface gets you most of the way to meeting the business require-
ments. Two more interfaces need to be implemented in order to completely satisfy the requirements.

The Countable Interface

Going back to the view, you can see that the total number of results is obtained by calling
count($bookList). In order for the count() function to work, you need to implement the
Countable interface. The interface defi nes only one method. However, to obtain the results you
must store the total number of records in the table. You will use the constructor for that:

..
private $totalBooks = 0;

public function __constructor($database) {
 ..
 if ($result = $database->query(“SELECT count(*) FROM books”))
 if ($row = $result->fetch_row())
 $this->totalBooks = $row[0];
}

public function count() {
 return $this->totalBooks;
}

563120c02.indd 73563120c02.indd 73 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

74 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

The validity function can be optimized now that the class has the ability to report its count. The
method can assume that if the page being fetched is greater than the maximum number of pages, it
must be empty. In that case, an empty array can be returned instead of executing a SELECT from the
database. The bold lines of code were added in this revision of the method:

private function &touchPage($pageNo=false) {
 if ($pageNo === false) $pageNo = $this->currentPage;

 if (!array_key_exists($pageNo,$this->pages)) {
 if ($pageNo > ceil($this->count()/$this->booksPerPage)) {
 $this->pages[$pageNo] = array();
 } else {
 ..
 }
 }

 $tmp = &$this->pages[$pageNo];
 return $tmp;
}

In a more complex application with expensive queries, using count(*) on every page may be pro-
hibitive. Caching yields better performance and avoids database hits. Caching is covered extensively
in both Chapters 4 and 5.

It is a good idea to stop and examine some of the implications of the code thus
far. It is likely that in some cases, the count may become invalid while loop-
ing because it is calculated only once. If accuracy is necessary, it might be a
good idea to do a write-lock on the table in the constructor and unlock it in the
destructor. This will stall any scripts attempting to do a write to the table, so it
is important that caution be taken when performing locks.

Another condition exists when the user moves to the next page. If a record has
been added or deleted, the user may end up missing entries and possibly see the
same entry on two consecutive pages. This can be avoided several ways:

➤ Passing the fi rst entry on the next page via the query string along with the
page number that is already being sent

➤ Caching the search results, either in a fi le, memory, or a temporary table in
MySQL

However, in situations where the data is non-critical or updated infrequently
(such as the book club application) it is acceptable to paginate using only the
methods in this chapter.

563120c02.indd 74563120c02.indd 74 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

Iterators and the SPL ❘ 75

The SeekableIterator Interface and Pagination

The fi nal feature that the class is missing is seeking a specifi c record. Without that ability, it is not
possible to paginate and still stay within the parameters of the SPL. The SeekableIterator inter-
face extends Iterator so a class does not need to indicate that it implements both of them. It also
adds an additional method called seek(), which takes an integer as a parameter.

The seek() method will move the internal pointer for the object to the record that exists at a par-
ticular index. Seeking is unlike other methods that you have implemented thus far. Instead of wait-
ing for a validity call it will immediately throw an OutOfBoundsException when trying to access a
record that doesn’t exist. Because you have implemented Countable it can easily check against those
bounds. Seeking is also the only method that doesn’t have an analog when dealing with arrays.
Instead it must reset the array, then loop until the internal pointer hits the appropriate item:

public function seek($index) {
 if ($index < 0 || $index > $this->totalBooks)
 throw new OutOfBoundsException();

 $this->currentPage = (int)floor($index/$this->booksPerPage)+1;
 $page = &$this->touchPage();
 reset($page);
 for ($i= $index % $this->booksPerPage; $i>0; $i--) next($page);
}

Now that you have the ability to seek you can implement your Pagination class. The
Pagination class is an extension of the IteratorIterator class that is also a part of the SPL.
IteratorIterator implements OuterIterator, which, as the name implies, provides a wrapper
around a second unseen iterator.

IteratorIterator provides you with one useful method: getInnerIterator(). Aside from that,
every method needs to be rewritten. The new class is an iterator that loops through only the ele-
ments on a given page. Each method in the Iterator interface — which is also implemented by
IteratorIterator — must know the bounds and act accordingly. In simple applications the
inherited functionality of the other methods are acceptable and don’t need to be re-implemented.
Listing 2-2 shows this in action.

LISTING 2-2: Page.class.php

<?php
class Page extends IteratorIterator {
 private $page;
 private $currentItem;
 public $itemsPerPage;

 public function __construct(Iterator $iterator, $page, $itemsPerPage) {
 parent::__construct($iterator);

563120c02.indd 75563120c02.indd 75 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

76 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

 $this->page = $page;
 $this->itemsPerPage = $itemsPerPage;
 $this->rewind();
 }

 public function valid() {
 return ($this->currentItem != $this->itemsPerPage &&
 $this->getInnerIterator()->key() !== null);
 }

 public function rewind() {
 $currentItem = 0;
 $this->getInnerIterator()->seek(($this->page-1)*$this->itemsPerPage);
 }

 public function next() {
 if ($this->currentItem < $this->itemsPerPage) {
 $this->currentItem++;
 $this->getInnerIterator()->next();
 }
 }

 public function current() {
 return ($this->currentItem != $this->itemsPerPage
 ? $this->getInnerIterator()->current()
 : null);
 }
 public function key() {
 return ($this->currentItem != $this->itemsPerPage
 ? $this->getInnerIterator()->key()
 : null);
 }
}
?>

Each method checks to make sure that the iterator is still within the bounds of the page. The cur-
rent page and the number of records per page are passed to the constructor and then the rewind()
method is called. The method is different than previous implementations because instead of going to
the front of the inner iterator it goes to the fi rst item on the selected page.

The new Page class can be extended to also implement the Countable and Seekable interfaces. For
this application they are not needed so they are not covered in this chapter. If the new Page class is
used in other applications, it is worth the time to implement the two additional interfaces. Each has
only one method and can be written in under fi ve lines of code.

You have now fully implemented everything you need to satisfy your use cases, but the application is
far from being ready to deploy. It has a robust and easy-to-use reporting system but it still lacks the
ability to insert, update, or delete records and the security that comes with those abilities. The next
step is to create a Book class that has all the necessary operations. You can fi nd full versions of the
classes described in this chapter, as well as a Book class, on the Wiley web site. Chapter 12 covers
adding authentication and user management. Before you go into that there is one more interface that
you can add to the BookList class.

563120c02.indd 76563120c02.indd 76 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

Iterators and the SPL ❘ 77

The ArrayAccess Interface

The new application behaves almost exactly like an array. It implements every feature of an array
that is needed for the use case. There is one piece of functionality missing that could conceivably be
needed in future cases. That is the ability to access elements of the BookList using array notation.
By implementing the ArrayAccess interface the BookList can be accessed randomly using a famil-
iar $bookList[$i] notation and without changing the internal pointer to the current record.

If the keys returned by the key() method in the BookList class were not unique, this technique
would not be able to function properly and you would only be able to access some of the books.

The ArrayAccess interface defi nes four methods that must be implemented. Three of the methods
can be programmed easily. They are the methods to access, update, and check the validity of records
based on a given key:

public function offsetExists($offset) {
 return ($offset > 0 && $offset < count($this));
}

public function offsetGet($offset) {
 $pageOfOffset = (int)floor($offset/$this->booksPerPage)+1;
 $page = &$this->touchPage($pageOfOffset);
 return $page[$offset % $this->booksPerPage];
}

public function offsetSet($offset, $newValue) {
 $pageOfOffset = (int)floor($offset/$this->booksPerPage)+1;
 $page = &$this->touchPage($pageOfOffset);
 $page[$offset % $this->booksPerPage] = $newValue;
}

The fourth method provides the ability to unset an element. This is problematic because there are a
fi xed number of elements on each page and you keep a hash table for all the book records. You can’t
simply shift the entire result set downward. You also need to refi ll any partially fi lled pages and
make sure that future calls to touchPage() are properly limited. You can accomplish this by using
an array to track unlinks.

In this case, the new lower bound of the LIMIT in your query is now the total number of unlinks in
all pages prior to the page currently being fetched subtracted from the original offset:

public function offsetUnset($offset) {
 $pageOfOffset = (int)floor($offset/$this->booksPerPage)+1;
 $page = &$this->touchPage($pageOfOffset);

 $this->deletions[$pageOfOffset]++;
 ksort($this->deletions);
 unset($page[$offset % $this->booksPerPage]);
 $page = array_values($page);
 while (is_array($this->pages[$pageOfOffset+1])) {
 $this->pages[$pageOfOffset][] = array_shift($this->pages[++$pageOfOffset]);

563120c02.indd 77563120c02.indd 77 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

78 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

 }

 $record = ($pageOfOffset-1)*$this->booksPerPage +
 count($this->pages[$pageOfOffset]) +
 $this->getAdjustmentForPage($pageOfOffset);
 if ($result = $this->database->query(“SELECT * FROM books LIMIT $record,1”))
 $this->pages[$pageOfOffset][] = $result->fetch_object();

 $this->totalBooks--;
}

private function getAdjustmentForPage($pageNo) {
 $adjust = 0;
 for (reset($this->deletions);
 key($this->deletions) !== null && key($this->deletions) < $pageNo;
 next($this->deletions))
 $adjust += current($this->deletions);
 return $adjust;
}

The new $deletions member variable must be defi ned and initialized to an empty array. It is used
to get an adjustment for when the database is queried for new pages and when fi lling pages that
were left partially fi lled after calling unset(). The touchPage() method must then be updated to
account for the change.

An acceptable alternative in many situations is to throw an exception stating that the method is not
implemented, especially because making unlink() work as it does with arrays can pose some design
questions. For example: does calling unlink() on a book in a BookList cause the book to then be
removed from the database? In this example it does not.

The SPL offers much more functionality in addition to the interfaces covered in this chapter. Some
of the functionality not covered in this chapter is discussed in later chapters, specifi cally exception
handling.

LAMBDA FUNCTIONS AND CLOSURES

A lambda function (also commonly referred to as an anonymous function) is, as its alternative name
implies, a function that does not require a name when it is defi ned. Instead, lambda functions are
assigned to a variable that can then be used to call that function. They are used as callback functions
and in other situations where it is unnecessary or undesirable to defi ne a function in the global scope.

The Old Way: Lambda-Style Functions

Lambda-style functions are something that has been part of PHP since version 4.0.1 via the create_
function() call. They are called lambda-style functions because they are not truly anonymous.
The function will fi nd a unique name that is not currently being used as an identifi er elsewhere in

563120c02.indd 78563120c02.indd 78 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

Lambda Functions and Closures ❘ 79

the script and then use that as the name for the newly created function. Usually the generated func-
tion will be called lambda_N where N is an integer starting at one and lambda_N is not yet defi ned.
The new function’s name is returned as a string.

The function create_function() relies on the ability for variable notation to
be used in almost any atomic part of an identifi er, including as the name of a
function and the name of a method or member variable inside a class. Some
examples of this type of notation are:

<?php
$x = “hello”;

function hello($name) { echo “Hello $name\n”; }
$x(“Andrew”); // Output: “Hello Andrew”

$obj = new StdClass();
$obj->$x = “Test Hello”;
echo “{$obj->hello}\n”; // Output: “Test Hello”

class say {
 public static function hello($name) { echo “Hello $name\n”; }
}
say::$x(“Boston”); // Output: “Hello Boston”
?>

The ability to create new functions dynamically via a built-in PHP function does solve some non-
trivial problems. It allows the programmer to write one-time-use functions without needing a
constant name in the class or global scopes. What it does not do is provide any functionality that
cannot be accomplished using different means. It does save time and avoids bloating the code for
extremely simple functions. A common use of lambda-style functions is as a callback to pass to a
preg_replace_callback() function call. Consider that you use the notation {table_name} to rep-
resent a table in your query and you want to add the prefi x “foo_” to the front of every table name
while simultaneously removing the brackets (see Listing 2-3):

LISTING 2-3: CreateFunctionDemo.php

<?php
$temp = create_function(‘$match’, ‘return ‘.
 ‘(preg_match(\’/^{(.*)}$/\’,$match[1],$m) ‘.
 ‘? “foo_$m[1]”: $match[1]);’);
$query = ‘SELECT * FROM {books}’;
$regExp = ‘/([^{“\’]+|\’(?:\\\\\’.|[^\’])*\’|”(?:\\\\”|[^”])*”|{[^}{]+})/’;
echo preg_replace_callback($regExp, $temp, $query);
?>

563120c02.indd 79563120c02.indd 79 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

80 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

The second regular expression only looks complicated because it must account for a bracketed string
inside of single or double quotes that is not a table name. When parsing quoted strings, it is impor-
tant to ensure that quotes inside the string can be escaped. Because escaping of quotes is done with
a backslash, there are a signifi cant number of slashes in the regular expression. After all the slashes
are parsed out by PHP you end up with a slightly simplifi ed regular expression:

/([^{“‘]+|’(?:\\’.|[^’])*’|”(?:\\”|[^”])*”|{[^}{]+})/

The expression will match free text, single-quoted strings, double-quoted strings, and your table
names. A more simple expression would result in matching of bracketed strings that are not
intended to be table names; for instance, a bracketed string inside quotation marks or a bracketed
string inside of quotation marks with other escaped quotation marks inside. The resulting code is
not very readable but it covers all the cases.

The result achieved by lambda-style functions can also be accomplished by defi ning a function or
method. The benefi t of not needing a unique name when writing the code is lost in exchange for
syntax checking by the byte code compiler, ease of reading, and the ability to include the callback
function inside of a class. Your new query builder might look something like Listing 2-4.

LISTING 2-4: QueryBuilder.class.php

<?php
class QueryBuilder {
 private $query;
 private $prefix;

 public function __construct($prefix=’’) {
 $this->query = $query;
 $this->prefix = $prefix;
 }

 public function replaceCallback($match) {
 return (preg_match(‘/^{(.*)}$/’,$match[1],$m)
 ? (empty($this->prefix) ? $m[1]: “{$this->prefix}_$m[1]”)
 : $match[1]
);
 }

 public function build($query) {
 static $regExp = ‘/([^{“\’]+|\’(?:\\\\\’.|[^\’])*\’|’.
 ‘”(?:\\\\”|[^”])*”|{[^}{]+})/’;
 return preg_replace_callback($regExp,
 array(&$this, “replaceCallback”), $query);
 }
};

$builder = new QueryBuilder(‘foo’);
echo $builder->build(“SELECT * FROM {books}”);
?>

563120c02.indd 80563120c02.indd 80 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

Lambda Functions and Closures ❘ 81

Any function in PHP that takes a parameter of type Callback can be one of
four types:

➤ A string with the name of the function to call. The create_function()
example uses this method.

➤ An array of two elements with the fi rst element as an object and the second
element as the name of a method in the object. The highlighted code in the
preceding example uses this method.

➤ A string representing a static method (example: “hello::world”).

A certain type of object (more on this one next).➤

Doing the extra work and putting the functions directly inside the class as methods makes for
much easier-to-read and more manageable code. PHP 5.3 and future versions provide true lambda
functions as a method for maintaining code manageability while still providing the benefi t of using
create_function() to defi ne functions without needing to give them a name. However, if that
were all lambda functions did, they would just be syntactic sugar without providing any new func-
tionality. The killer application that they bring to the table is the ability to have closures.

Understanding Closures

Closures are a concept that should be very familiar to JavaScript programmers as well as program-
mers for many other modern languages. A closure is a function that wraps (or closes around) the
current scope. It has the implication that the scope in which the function is defi ned will remain
accessible for at least as long as the closure itself. To create a closure, fi rst, create a new lambda
function in PHP:

<?php
$x = function($number) {
 return $number * 10;
};
echo $x(8); // Output: 80
?>

Notice how the function isn’t given a name and the result is assigned to a variable. Lambda func-
tions created this way are returned as objects of type closure. This can be a source of confusion.
Although closure is created transparently in this situation it does not take advantage of any of the
properties of a closure.

Lambda functions take advantage of new functionality in PHP 5.3: the ability
to call an object as if it were a function. It is possible to emulate the functional-
ity of the closure class by using a new magic method called __invoke(). The
__invoke() method will be called whenever the class is called as a function.

563120c02.indd 81563120c02.indd 81 2/18/10 9:08:39 AM2/18/10 9:08:39 AM

82 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

Because closures are stored in variables they can be returned from functions and executed outside
the scope of the function in which they are defi ned. The similarities between PHP and many lan-
guages with closure end here. Variables are not accessible inside functions unless they are declared
as global. In much the same way, variables from the child scope are not accessible from within the
closure unless explicitly stated using the use keyword.

One of the benefi ts of closures is that variables inside of the closure are not necessarily bound to
copies of the variables in the parent scope, but can be bound to the actual variables themselves. In
a true closure such as JavaScript the latter is usually the case. In PHP, variables are copied into the
closure by value. The default behavior can be modifi ed by explicitly typing an ampersand before the
variable in the use statement as shown in Listing 2-5.

LISTING 2-5: ClosureTest.class.php

<?php
class ClosureTest {
 public $multiplier;
 public function __construct($multilier) {
 $this->multiplier = $multilier;
 }
 public function getClosure() {
 $mul = &$this->multiplier;
 return function($number) use(&$mul) {
 return $mul * $number;
 };
 }
}

$test = new ClosureTest(10);
$x = $test->getClosure();

echo $x(8); // Output: 80
$test->multiplier = 2;
echo $x(8); // Output: 16
?>

If either of the ampersands in the getClosure() method are deleted, both outputs will be 80
because the variable $mul inside of the closure will be a copy and not a reference. This can be fur-
ther illustrated in Listing 2-6, which uses a simple for loop:

LISTING 2-6: ClosureLoop.php

<?php
$i = 0;

$lambda1 = function() use ($i) { echo “$i”; };
$lambda2 = function() use (&$i) { echo “$i”; };

for ($i=1; $i<=5; $i++) {
 $lambda1();
 $lambda2();

563120c02.indd 82563120c02.indd 82 2/18/10 9:08:40 AM2/18/10 9:08:40 AM

Lambda Functions and Closures ❘ 83

}
// Output: 0102030405
?>

The fi rst closure passes a copy and the second passes by reference. By combining all the new
techniques from this chapter you can extend your previous query generation class. The new class
will return closure objects that can be passed an arbitrary number of parameters. You will use
sprintf() for variable replacement but the code, shown in Listing 2-7, will escape all input before
inserting it into the query.

LISTING 2-7: QueryBuilderImproved.class.php

 <?php
class QueryBuilderImproved extends QueryBuilder {

 public function getQueryObject($query) {
 $self = $this;
 return function() use ($self,$query) {
 $argv = func_get_args();
 foreach ($argv as $i => $arg)
 $argv[$i] = mysql_escape_string($arg);
 array_unshift($argv, $self->build($query));
 return call_user_func_array(“sprintf”, $argv);
 };
 }

};

// Example usage
$builder = new QueryBuilderImproved();
$deleteBook = $builder->getQueryObject(“DELETE FROM {books} WHERE id=%d”);

$deleteBook($_GET[‘id’]);
?>

One of the restrictions of closures in PHP is that you cannot pass the keyword $this to it. It is not
uncommon for languages to have this restriction. The workaround is to assign $this to a tempo-
rary variable and pass that variable through to the closure instead. $self is easy to remember and
understand. It is also common practice in other languages with support for closure. $self is used
throughout this book when using closures. Objects in PHP do not need to be explicitly declared
as “by reference”; they are always by reference unless explicitly copied. There isn’t any need for an
ampersand in front of the operator.

Using the Query Builder for Prototyping

The query builder can be used to generate quick book class that is useful for rapid prototyping. It is
not a good idea to release code using this method to production systems. For that, you should sepa-
rate the methods into completely defi ned functions. You will be using a static property inside your
page class as an array of pointers to closures. Each closure represents a data operation. Only the
delete method is used in Listing 2-8, but other methods can be quickly inserted as well.

563120c02.indd 83563120c02.indd 83 2/18/10 9:08:40 AM2/18/10 9:08:40 AM

84 ❘ CHAPTER 2 ADVANCED PHP CONCEPTS

LISTING 2-8: Book.class.php

<?php
class Book{
 private static $methods = null;
 private static $builder;

 private $database;

 public $id;
 public $authors;
 public $title;
 public $publisher;

 public function __construct($database) { $this->database = $database; }

 public function __call($name, $params) {
 if (!is_array(self::$methods)) self::init();

 if (array_key_exists($name, self::$methods)) {
 array_unshift($params, $this->id);
 $query = call_user_func_array(self::$methods[$name], $params);
 return $this->database->query($query);
 }
 }

 private static function init() {
 self::$builder = new QueryBuilderImproved();
 self::$methods = array(
 ‘delete’ => self::$builder->getQueryObject(“DELETE FROM {books} WHERE id=%d”)
);
 }
}
?>

The BookList class will need to be updated to use the new page object. The mysqli_result object
has a fetch_object() method, which can be used to automatically load a MySQL result into a
class. By passing the name of the class in as the fi rst parameter you can create and load the page
object: $result->fetch_object(‘Page’). The method will work as intended regardless of whether
the member variables are public or private.

Variables that do not exist will be created automatically. The default behavior
can be overridden by using the __set() magic method. A simple empty setter
will disallow creation of any variables that do not exist:

public function __set($name, $value) {
 /* intentionally empty */
}

563120c02.indd 84563120c02.indd 84 2/18/10 9:08:40 AM2/18/10 9:08:40 AM

Summary ❘ 85

The next steps are to create the update and insert functionality, test the application, and fi nally
convert any prototype class members to complete methods. Both can be done easily using the tech-
niques covered earlier in this chapter.

SUMMARY

This chapter covered one method for separating display and business logic by using the Iterator
design pattern. The pattern is defi ned in PHP by an interface in the Standard PHP Library. The SPL
contains several useful interfaces that can be utilized by standard PHP functionality, including:

➤ Iterator is used to enable a data set to be easily traversed by standard foreach loops. It
defi nes the methods next(), current(), rewind(), valid(), and key().

➤ SeekableIterator extends the basic Iterator interface and adds a defi nition for a seek()
method. The seek() method should throw an OutOfBoundsException if the index being
sought is not valid.

➤ Countable allows any class that implements it to be enumerated via the PHP count() func-
tion, which bears the same name as the interface’s only method defi nition.

➤ ArrayAccess is an interface that allows the class to be accessed via standard array notation.
It specifi es the methods needed to read, update, delete, and check the validity of data at spe-
cifi c keys.

You looked at the disadvantages of having business logic in the view and saw how pagination,
data access, and reporting can be quickly implemented for specifi c data sets by combining an itera-
tor with an outer iterator that extends IteratorIterator to only show records from a specifi c
page. You also saw how functionality can be generically implemented using lambda functions and
closures.

Lambda — dynamic unnamed — functions can be created at run time. Lambda-style functions can
be created in any version of PHP greater than 4.0.1 by calling create_function() but as of PHP
5.3 you can create true lambda functions. Lambda functions along with closures can be used to cre-
ate functionality that would be diffi cult to create otherwise.

Variables from the initiating scope can be passed into the closures by using the use keyword. They
are passed by value unless they are objects. However, by using an ampersand any variable can also
be passed by reference. The keyword $this cannot be passed directly into a closure; it must be
assigned to a temporary variable fi rst. $self is commonly used for this practice. The same technique
must be used for any class member.

So far you haven’t looked deeply into the inner workings of MySQL. The next chapter goes into
detail about the two MySQL drivers available to PHP and the various storage engines that program-
mers can choose for their MySQL database.

563120c02.indd 85563120c02.indd 85 2/18/10 9:08:40 AM2/18/10 9:08:40 AM

563120c02.indd 86563120c02.indd 86 2/18/10 9:08:40 AM2/18/10 9:08:40 AM

MySQL Drivers and
Storage Engines

WHAT’S IN THIS CHAPTER?

➤ Understanding the available PHP drivers for MySQL access

Learning about MySQL storage engines➤

➤ Identifying features of specifi c storage engines for your application

requirements

➤ Learning about the underlying disk layouts, formats, and space

requirements of diff erent storage engines

➤ Learning about additional MySQL-related products and specialized

storage engines

While it is possible to program in PHP to produce web pages with static data, and with MySQL
to create tables and manage data directly, accessing MySQL information via PHP completes the
integration of LAMP stack functionality and provides a data-driven dynamic web site.

MySQL can be accessed in PHP by two different MySQL drivers. This chapter looks at these
various options and the different features for drivers.

MySQL is a unique database that allows for different approaches to storing and accessing data
via the concept of a storage engine. With different MySQL storage engines comes a variety of
different features that can dramatically affect the application experience. As a developer, it is
important to understand the differences between features, including transactional and non-
transactional support, various table- and row-level locking strategies, and data integrity with
foreign keys as well as different index types including btree, hash, and full-text. This chapter
discusses the default built-in storage engines with MySQL and describes the variety of differ-
ent engines and associated products that can operate like a MySQL database, but provide a
wide variety of features and different performance.

3

563120c03.indd 87563120c03.indd 87 2/18/10 9:08:50 AM2/18/10 9:08:50 AM

88 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

MYSQL DRIVERS

As of PHP 5.3 there are two different libraries available for interfacing PHP with MySQL.
Traditionally PHP is compiled against libmysql. It is an external C library that implements the low-
level protocol for communicating with MySQL servers. But it does have a few drawbacks:

➤ It is diffi cult to compile against because it is necessary to fi rst download the MySQL distribu-
tion onto the PHP server.

The GPL license that is used for libmysql is not compatible with the PHP license.➤

Persistent connections are not supported in MySQLi using libmysql.➤

Fortunately PHP 5.3 came along and with it: mysqlnd. The name mysqlnd stands for MySQL Native
Driver (for PHP), and it is an implementation of the MySQL protocol written completely with PHP in
mind. It is also licensed under the PHP license. Solving the licensing issues means that it can be distrib-
uted with PHP so you no longer need to download a copy of MySQL on the same machine.

The improved library also adds persistent connections to MySQLi but the benefi ts don’t stop there:

➤ It is reported that mysqlnd has better performance.

➤ The function mysqli_fetch_all() works with mysqlnd.

Performance statistics calls were added to MySQLi.➤

The fact that it is a native PHP extension also means that it makes use of PHP memory management
routines and libraries. Thus making it tightly integrated with PHP and providing better memory
performance and resource limiting.

Both extensions conform to the MySQL API so it is transparent to the other extensions that use
it. You can compile against either library, just don’t use any of the new functionality with the old
library. To compile against mysqlnd simple confi gure PHP with:

 ./configure --with-mysql=mysqlnd \
 --with-mysqli=mysqlnd

It is possible to use either of the MySQL libraries in your installation. However, it is a good idea to
use mysqlnd. It has all the benefi ts of the non-native MySQL driver and then some and in the future
it will be better maintained.

This book does not explicitly take advantage of any of the functionality of
mysqlnd. It also uses the original MySQL extension instead of MySQLi in many
cases. This is to make code easier to read and quicker to get up and running. In
a production environment it is recommended that you use the mysqlnd library
and MySQLi or PDO for data access.

563120c03.indd 88563120c03.indd 88 2/18/10 9:08:50 AM2/18/10 9:08:50 AM

About MySQL Storage Engines ❘ 89

ABOUT MYSQL STORAGE ENGINES

MySQL as a relational database offers a unique feature in the management of data — it offers different
storage engines that defi ne different characteristics for the persistence and retrieval of your information.

Each storage engine has relative strengths and weaknesses; the choice of one engine for one task may
not be ideal for another. MySQL supports the use of multiple storage engines in a single schema;
however, complexity in execution and functionality such as transaction support and backup strategy
are all affected.

Beginning with MySQL 5.1, MySQL offers the pluggable storage engine architecture (PSEA), where
it is possible for a vendor to provide a runtime storage engine that can be loaded dynamically in an
operational environment. While the theory enables this, in practice only a few engines have been
able to achieve it. Limitations with the customization of internal MySQL features including pars-
ing and optimizing SQL statements, and the changes in the specifi cation in point releases leading to
incompatibilities, has made it impossible for creative solutions with optimized data management to
work seamlessly. Many providers have been forced to produce custom MySQL binaries.

Some of the different features of storage engines include:

➤ Transactional and non-transactional

Persistent and non-persistent➤

Table and row level locking➤

Different index methods such as btree, hash, and rtree➤

Clustered indexes, primary and secondary➤

Data compression➤

Full-text searching➤

Obtaining Storage Engine Information

This section covers the various ways to obtain information about storage engines for the tables that
you have defi ned in your database schemas.

Available Engines

The SHOW.ENGINES command and the INFORMATION_SCHEMA.ENGINES table provide information
on what engines are available in your current MySQL instance. This includes details of whether the
engine is supported (for example, look at FEDERATED section in the code that follows) and whether
the engine is transactional or non-transactional.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: InnoDB
 Support: YES
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES

563120c03.indd 89563120c03.indd 89 2/18/10 9:08:50 AM2/18/10 9:08:50 AM

90 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

 XA: YES
 Savepoints: YES
...
*************************** 5. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: FEDERATED
 Support: NO
 Comment: Federated MySQL storage engine
Transactions: NULL
 XA: NULL
 Savepoints: NULL
...
*************************** 8. row ***************************
 Engine: MyISAM
 Support: DEFAULT
 Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
 XA: NO
 Savepoints: NO

Defi ning the Storage Engine

The default storage engine for offi cial MySQL binaries is the MyISAM engine. You can alter this with
the system variable default-storage-engine when defi ned in the MySQL confi guration my.cnf
fi le.

Generally you will specify the storage engine in a CREATE TABLE or ALTER TABLE command.
This occurs after the column defi nitions, and is specifi ed with the ENGINE option, as shown in
Listing 3-1.

LISTING 3-1: simple-examples.sql

mysql> CREATE TABLE example_myisam(
 > id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 > c VARCHAR(100) NOT NULL)
 > ENGINE=MyISAM;

mysql> SHOW CREATE TABLE example_myisam\G
*************************** 1. row ***************************
 Table: example_myisam
Create Table: CREATE TABLE `example_myisam` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `c` varchar(100) NOT NULL,
 PRIMARY KEY (`id`)

563120c03.indd 90563120c03.indd 90 2/18/10 9:08:50 AM2/18/10 9:08:50 AM

About MySQL Storage Engines ❘ 91

) ENGINE=MyISAM DEFAULT CHARSET=latin1

mysql> CREATE TABLE example_memory(
 > id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 > c VARCHAR(100) NOT NULL)
 > ENGINE=MEMORY;

mysql> SHOW CREATE TABLE example_memory\G
*************************** 1. row ***************************
 Table: example_memory
Create Table: CREATE TABLE `example_memory` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `c` varchar(100) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MEMORY DEFAULT CHARSET=latin1

If you do not specify a storage engine with the CREATE TABLE command, the default is used as
shown in Listing 3-2.

LISTING 3-2: noengine-example.sql

mysql> SELECT @@storage_engine\G
*************************** 1. row ***************************
@@storage_engine: MyISAM

mysql> CREATE TABLE example_noengine(
 > id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c VARCHAR(100) NOT NULL);

mysql> SHOW CREATE TABLE example_noengine\G
*************************** 1. row ***************************
 Table: example_noengine
Create Table: CREATE TABLE `example_noengine` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `c` varchar(100) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

Storage engines may also have specifi c settings. For example, MAX_ROWS is applicable only to MyISAM.
The MySQL parser is generally incapable of determining which options are storage engine–specifi c,
so while a table structure defi nition may include additional options, they may not apply. Refer to the
MySQL Reference Manual for more information.

Confi rming a Table Storage Engine

You have three ways to determine the storage engine of a table with the mysql client. You can use
the SHOW CREATE TABLE command to fi nd the full table structure, including all table options:

mysql> SHOW CREATE TABLE mysql.db\G
*************************** 1. row ***************************
 Table: db

563120c03.indd 91563120c03.indd 91 2/18/10 9:08:50 AM2/18/10 9:08:50 AM

92 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

Create Table: CREATE TABLE `db` (
 `Host` char(60) COLLATE utf8_bin NOT NULL DEFAULT ‘’,
 `Db` char(64) COLLATE utf8_bin NOT NULL DEFAULT ‘’,
 `User` char(16) COLLATE utf8_bin NOT NULL DEFAULT ‘’,
...
 PRIMARY KEY (`Host`,`Db`,`User`),
 KEY `User` (`User`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin

You can use the SHOW TABLE STATUS command to obtain table statistics and engine-specifi c details:

mysql> USE mysql
mysql> SHOW TABLE STATUS LIKE ‘db’\G
*************************** 1. row ***************************
 Name: db
 Engine: MyISAM
 Version: 10
 Row_format: Fixed
 Rows: 2
 ...
 Comment: Database privileges

You can use the INFORMATION_SCHEMA to obtain the same information from the SHOW CREATE
TABLE and SHOW TABLE STATUS commands (see Listing 3-3):

LISTING 3-3: show-tables.sql

SELECT table_schema, table_name, engine, version, row_format
FROM information_schema.tables;
+--------------------+------------------------+--------+---------+------------+
| table_schema | table_name | engine | version | row_format |
+--------------------+------------------------+--------+---------+------------+
...
| information_schema | COLUMNS | MyISAM | 10 | Dynamic |
| information_schema | TABLES | MEMORY | 10 | Fixed |
...
mysql	db	MyISAM	10	Fixed
mysql	event	MyISAM	10	Dynamic
mysql	func	MyISAM	10	Fixed
mysql	general_log	CSV	10	Dynamic
mysql	slow_log	CSV	10	Dynamic
mysql	user	MyISAM	10	Dynamic
...
+--------------------+------------------------+--------+---------+------------+

Storage engines have three important characteristics:

➤ Engine name

Version➤

Row format➤

These are discussed in more detail with the individual engines.

563120c03.indd 92563120c03.indd 92 2/18/10 9:08:50 AM2/18/10 9:08:50 AM

Default Storage Engines ❘ 93

DEFAULT STORAGE ENGINES

By default, MySQL offi cial binaries include a number of different built-in storage engines. The fol-
lowing are supplied and enabled by default in a MySQL 5.1 binary distribution:

➤ MyISAM

InnoDB➤

Memory➤

Blackhole➤

Archive➤

Merge➤

CSV➤

The Federated engine is provided in MySQL 5.1 source code but is not enabled
by default. As of 5.1.38, the InnoDB plugin version 1.04 is included in the
binary distribution but is not enabled by default.

MyISAM

MyISAM is the default storage engine of MySQL 5.1. This engine is an implementation of the well-
defi ned database storage ISAM architecture and has been available since MySQL 3.x.

Key Features

Non-transactional➤

Fast insert rate➤

Btree based indexes➤

Supports FULLTEXT index➤

16k data pages➤

4k index pages➤

Limitations

Non-transactional➤

Fast insert rate➤

Btree based indexes➤

Supports FULLTEXT index➤

563120c03.indd 93563120c03.indd 93 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

94 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

➤ 16k data pages

4k index pages➤

Important Parameters

➤ key_buffer_size: This buffer is used for holding data from MyISAM indexes. MyISAM
can also support the defi nition of multiple index caches and enables the ability for pinning of
specifi c table indexes per named buffer.

➤ table_cache: This buffer holds information of open tables that are used when running que-
ries. While applicable to all storage engines, due to additional fi les, it is important to tune this
parameter when there are a lot of tables and complex queries.

➤ bulk_insert_buffer_size: This buffer is used for improving INSERT statements with a
large number of VALUES or INSERT…SELECT as well as LOAD DATA INFILE.

➤ myisam_recover: This parameter defi nes the storage engine default recovery mode. A recom-
mended value is FORCE, BACKUP.

Examples

A MyISAM table is represented as three separate fi les in the fi le system located in the defi ned data
directory for the MySQL instance. These fi les are:

➤ table.frm: This is the table format defi nition fi le.

➤ table.MYD: This is the MyISAM data fi le.

➤ table.MYI: This is the MyISAM index fi le.

MyISAM has three different row formats. By default, MyISAM determines whether to use Fixed or
Dynamic format based on the column defi nitions specifi ed in the table. The Fixed row format pro-
vides a calculation to determine the offset of the row within the data fi le, and can provide a small
improvement in performance. You can force MyISAM to used Fixed format; however, this can lead to
an increased disk footprint (see Listing 3-4).

LISTING 3-4: myisam-examples.sql

CREATE TABLE example_myisam_fixed(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c CHAR(100) NOT NULL)
ENGINE=MyISAM;

CREATE TABLE example_myisam_dynamic(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c VARCHAR(100) NOT NULL)
ENGINE=MyISAM;

CREATE TABLE example_myisam_fixed2(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

563120c03.indd 94563120c03.indd 94 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

Default Storage Engines ❘ 95

 c VARCHAR(100) NOT NULL)
ENGINE=MyISAM ROW_FORMAT=FIXED;

SELECT table_name, engine,row_format
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_myisam_%’;
+------------------------+--------+------------+
| table_name | engine | row_format |
+------------------------+--------+------------+
example_myisam_dynamic	MyISAM	Dynamic
example_myisam_fixed	MyISAM	Fixed
example_myisam_fixed2	MyISAM	Fixed
+------------------------+--------+------------+

You can see the difference in size when you load data into these tables. Using the standard Linux
dictionary fi le generally located in /usr/share/dict/words you have the following table sizes as
shown in Listing 3-5.

LISTING 3-5: load-myisam.sql

LOAD DATA INFILE ‘/usr/share/dict/words’ INTO TABLE example_myisam_dynamic(c);
LOAD DATA INFILE ‘/usr/share/dict/words’ INTO TABLE example_myisam_fixed(c);
LOAD DATA INFILE ‘/usr/share/dict/words’ INTO TABLE example_myisam_fixed2(c);
SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_myisam_%’;
+------------------------+------------+------------+------------+-------------+
| table_name | table_rows | row_format | data | indx |
+------------------------+------------+------------+------------+-------------+
example_myisam_dynamic	234936	Dynamic	4842.6484	2359.0000
example_myisam_fixed	234936	Fixed	24090.1172	2356.0000
example_myisam_fixed2	234936	Fixed	24319.5469	2356.0000
+------------------------+------------+------------+------------+-------------+

MyISAM provides a third row format called Compressed; however, there is no mysql client or SQL
command to specify this format. This is created with the myisampack command. This command
works directly on the .MYD data fi le, and should be executed only when the database is not in use.

$ myisampack data/test/example_myisam_fixed2.MYI

Compressing data/test/example_myisam_fixed2.MYD: (234936 records)
- Calculating statistics
- Compressing file
90.62%
Remember to run myisamchk -rq on compressed tables
myisamchk -rq data/test/example_myisam_fixed.MYI
- check record delete-chain
- recovering (with sort) MyISAM-table ‘data/test/example_myisam_fixed.MYI’
Data records: 234936
- Fixing index 1

563120c03.indd 95563120c03.indd 95 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

96 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

The key advantage of a compressed table is a reduction in disk footprint as now shown by reviewing
the size of the table:

SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_myisam_%’;
+------------------------+------------+------------+------------+-------------+
| table_name | table_rows | row_format | data | indx |
+------------------------+------------+------------+------------+-------------+
example_myisam_dynamic	234936	Dynamic	4842.6484	2359.0000
example_myisam_fixed	234936	Fixed	24090.1172	2356.0000
example_myisam_fixed2	234936	Compressed	2280.2529	2356.0000
+------------------------+------------+------------+------------+-------------+

The difference with a compressed table is that you cannot insert any data. For example:

INSERT INTO example_myisam_fixed VALUES(NULL,’x’);
Query OK, 1 row affected (0.00 sec)

INSERT INTO example_myisam_fixed2 VALUES(NULL,’x’);
ERROR 1036 (HY000): Table ‘example_myisam_fixed2’ is read only

The current version for MyISAM data since MySQL 5.x has been Version 10. It is possible when
upgrading MySQL from 4.x, that the internal structure of a MyISAM table is not upgraded to the
current version. In this case you should always perform an ALTER statement to upgrade the version.
The following code shows the difference in MySQL versions:

SELECT VERSION();
+-----------------+
| VERSION() |
+-----------------+
| 4.1.22-standard |
+-----------------+

SHOW TABLE STATUS LIKE ‘user’\G
*************************** 1. row ***************************
 Name: user
 Engine: MyISAM
 Version: 9
 Row_format: Dynamic
 Rows: 4
 ...

SELECT VERSION();
+-----------------+
| VERSION() |
+-----------------+
| 5.1.31-1ubuntu2 |
+-----------------+

SHOW TABLE STATUS LIKE ‘user’\G
*************************** 1. row ***************************
 Name: user

563120c03.indd 96563120c03.indd 96 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

Default Storage Engines ❘ 97

 Engine: MyISAM
 Version: 10
 Row_format: Dynamic
 Rows: 6
...

When to Use MyISAM

MyISAM can be an ideal engine in a high read environment, or in a high write environment, but is not
suited for a read/write environment. The key problem is that DML statements cause table-level lock-
ing. When this occurs all pending reads are blocked until the DML statement is completed.

You can see this in operation by running a benchmark that executes a large number of repeating
SELECT statements. When reviewing the SHOW PROCESSLIST you will not see a state of Locked.
When you introduce a single UPDATE, for example, that takes time to execute, you will see all future
SELECT statements also displayed as Locked.

Perhaps the greatest problem with MyISAM is its lack of data integrity during a MySQL instance
crash. MyISAM achieves its high volume write throughput in a number of ways. One way is the lack
of transactions, and therefore the lack of overhead to provide consistency during rollback. The sec-
ond is the lack of disk synchronization of index data during DML statements. In the example of an
INSERT statement, the data is written and synced on disk, but the index data is not. It is held in the
key_buffer and written to disk, but not synced.

In the event of a server crash, the index fi le may be inconsistent, and may require recovery via the
REPAIR TABLE command. There are several problems here. The fi rst is that you generally do not
know the extent of corruption until the table and index is accessed. Although there is a CHECK
TABLE command, this is only an indicator, and can provide a false positive. The second is that recov-
ery time is dependent on your database size. As your database grows, the time for possible recovery
also increases. This lack of reproducibility in time can cause great problems in planning and support
of a timely recovery. The future replacement to MyISAM is the Maria storage engine, which provides
the benefi ts of MyISAM and includes full crash recovery.

Though many installations move to using transactional tables for all data, it is not possible to elimi-
nate MyISAM because this is used internally by MySQL in the mysql meta schema.

InnoDB

While the MyISAM storage engine is the default and widely used due to lack of knowledge of under-
standing the different storage engines, the InnoDB storage engine is the most popular engine used by
more established MySQL users and organizations. The primary reason is full transactional support.

Key Features

Transactional➤

Fully ACID compliant➤

Supports MVCC (Multi Version Concurrency Control) and four isolation levels➤

Row level locking➤

563120c03.indd 97563120c03.indd 97 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

98 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

➤ Supports foreign keys

Supported by a commercial entity Innobase as the primary product➤

Primary key is a clustered index➤

Limitations

Does not support full text indexes➤

Table level locking on DDL statements➤

Owned by company with other commercial interests and competing products➤

Not as open as other open source offerings in the development roadmap➤

➤ Generally 2x–3x greater disk space requirements to MyISAM

Important Parameters

➤ innodb_buffer_pool_size: Defi nes the amount of system memory allocated to InnoDB
internal data storage.

➤ innodb_log_fi le_size: Defi nes the amount of disk storage assigned for the
InnoDB transaction logs. The total disk size is innodb_log_file_size times
innodb_log_files_in_group.

➤ innodb_fl ush_log_at_trx_commit: Defi nes how InnoDB should fl ush the transaction logs
to disk. A change in this variable is used to increase performance; however, this decreases
durability.

➤ innodb_thread_concurrency: Defi nes the number of internal threads the InnoDB kernel
can use to manage transaction concurrency.

➤ innodb_fl ush_method: Determines which system calls and options are used to fl ush data and
log transactions.

Of all the storage engines InnoDB has the greatest number of parameters. For
a full list of parameters go to http://dev.mysql.com/doc/refman/5.1/en/
innodb-parameters.html. InnoDB also has the most information on monitor-
ing output via the SHOW ENGINE INNODB STATUS and SHOW GLOBAL STATUS
LIKE ‘innodb%’ commands.

Understanding InnoDB Table Usage

By default an Innodb table is represented as two separate fi les in the fi le system located in the
defi ned data directory for the MySQL instance. These fi les are:

➤ table.frm: This is the table format defi nition fi le.

➤ ibdata1: This is the default InnoDB tablespace for all tables.

563120c03.indd 98563120c03.indd 98 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

Default Storage Engines ❘ 99

In addition, InnoDB generally has two transaction log fi les that are critical for operation:

➤ ib_logfile0

ib_logfile1➤

You can change the names and locations of the default names for InnoDB tablespace and log fi les via
various confi guration options.

Diff erences from MyISAM

As a developer you should be aware of specifi c differences between MyISAM and InnoDB. As men-
tioned, the primary reason to use InnoDB is transactional support. With this support comes a
number of other features — a signifi cant one is that of row-level locking. MyISAM, though very fast,
suffers from table-level locking in a high write and read environment. This can be overcome by sim-
ply changing tables to use InnoDB.

However, impacts to altering the storage engine can affect both functionality and performance of
your MySQL databases. A few important considerations for developers are:

➤ Increase in disk footprint

Impact on disk storage due to Primary key type ➤

➤ Performance of COUNT(*)

➤ No support for FULLTEXT indexes

Differences in SQL Query Execution Plan (QEP)➤

The fi rst is disk footprint. InnoDB generally uses two to three times more disk space. Although the
sample table is very basic, you can see an increase in disk space (see Listing 3-6).

LISTING 3-6: innodb-example.sql

CREATE TABLE example_innodb(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c VARCHAR(100) NOT NULL)
ENGINE=InnoDB;
LOAD DATA INFILE ‘/usr/share/dict/words’ INTO TABLE example_innodb(c);
SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_myisam_%’;
+------------------------+------------+------------+------------+-------------+
| table_name | table_rows | row_format | data | indx |
+------------------------+------------+------------+------------+-------------+
| example_myisam_dynamic | 234936 | Dynamic | 4842.6484 | 2359.0000 |
| example_innodb | 240903 | Compact | 8720.0000 | 0.0000 |
+------------------------+------------+------------+------------+-------------+

The primary cause for this is the use of a clustered primary key index that stores all data in the table
in primary key order. This provides signifi cant benefi ts for primary key ordered searching; however

563120c03.indd 99563120c03.indd 99 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

100 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

this impacts disk footprint. This is important to understand because InnoDB disk pages that are 16K
are read and stored into the innodb_buffer_pool also as 16K pages. Ineffi cient disk storage with
unused portions of these pages leads to less effective memory usage, and ultimately an impact in
overall performance.

When data is inserted into an InnoDB table in primary key order, for example an AUTO_INCREMENT
column, InnoDB will use 15/16th of the data page. When data is not inserted in primary key order,
for example a natural key, by default InnoDB will use only a 50 percent fi ll factor of data pages.
These fi gures are not tunable.

While MyISAM provides exact counts of the number of rows in given tables in the
MySQL meta data, InnoDB row counts are approximate as shown in the preced-
ing example. Care should be taken because in some circumstances these names
can be drastically inaccurate. For an example, see http://ronaldbradford
.com/blog/mysql_information_schema-table_rows-out-by-a-factor-of-

100x-2009-09-09/.

InnoDB also stores information in secondary indexes differently from MyISAM. Within the btree struc-
ture of the secondary index, InnoDB stores the value you are indexing, and also stores the value of the
primary key. In MyISAM the index stores the value you are indexing and a pointer to the row of data
that includes the value of the primary key. This is very signifi cant when you have tables with large-
width primary keys and your table has a lot of secondary indexes. An example is using a 40 byte,
3-column primary key column and having 19 indexes. By introducing a short 4-byte primary key, the
index disk footprint was reduced by 75 percent of the original size.

Generally when using InnoDB, it is best to keep your primary key as short as possible. Listing 3-7
only has a small number of indexes, but gives you an indication.

LISTING 3-7: wide-innodb.sql

CREATE TABLE wide_myisam (
 word VARCHAR(100) NOT NULL,
 reverse_word VARCHAR(100) NOT NULL,
 soundex_word VARCHAR(100) NOT NULL,
 contains_a ENUM(‘Y’,’N’) NOT NULL DEFAULT ‘N’,
 md5 CHAR(32) NOT NULL,
PRIMARY KEY(word),
INDEX (soundex_word),
UNIQUE INDEX (md5),
INDEX (reverse_word(10))
) ENGINE=MyISAM DEFAULT CHARSET latin1 COLLATE latin1_general_cs;
INSERT INTO wide_myisam (word,reverse_word,soundex_word,contains_a,md5)
SELECT DISTINCT c,REVERSE(c),SOUNDEX(c),IF(INSTR(c,’a’)>0,’Y’,’N’),MD5(c)
FROM example_innodb;

CREATE TABLE wide_innodb (

563120c03.indd 100563120c03.indd 100 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

Default Storage Engines ❘ 101

 word VARCHAR(100) NOT NULL,
 reverse_word VARCHAR(100) NOT NULL,
 soundex_word VARCHAR(100) NOT NULL,
 contains_a ENUM(‘Y’,’N’) NOT NULL DEFAULT ‘N’,
 md5 CHAR(32) NOT NULL,
PRIMARY KEY(word),
INDEX (soundex_word),
UNIQUE INDEX (md5),
INDEX (reverse_word(10))
) ENGINE=InnoDB DEFAULT CHARSET latin1 COLLATE latin1_general_cs;
INSERT INTO wide_innodb (word,reverse_word,soundex_word,contains_a,md5)
SELECT DISTINCT c,REVERSE(c),SOUNDEX(c),IF(INSTR(c,’a’)>0,’Y’,’N’),MD5(c)
FROM example_innodb;

SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘wide_%’;
+-------------+------------+------------+------------+------------+
| table_name | table_rows | row_format | data | indx |
+-------------+------------+------------+------------+------------+
| wide_innodb | 224025 | Compact | 23104.0000 | 39536.0000 |
| wide_myisam | 234936 | Dynamic | 15086.1836 | 20962.0000 |
+-------------+------------+------------+------------+------------+

You see from this example that the total disk footprint of the InnoDB table is an increase of 70 per-
cent over MyISAM; however, the index portion is 100 percent larger. When you introduce an AUTO_
INCREMENT primary key as shown in Listing 3-8 you see a reduction in disk footprint of the data
portion by 10 percent. You also see a 5 percent reduction in index space, but you have indeed added
an additional index to simulate the primary key.

LISTING 3-8: wide-innodb-with-pk.sql

CREATE TABLE wide_innodb_with_pk (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 word VARCHAR(100) NOT NULL,
 reverse_word VARCHAR(100) NOT NULL,
 soundex_word VARCHAR(100) NOT NULL,
 contains_a ENUM(‘Y’,’N’) NOT NULL DEFAULT ‘N’,
 md5 CHAR(32) NOT NULL,
PRIMARY KEY(id),
UNIQUE INDEX(word),
INDEX (soundex_word),
UNIQUE INDEX (md5),
INDEX (reverse_word(10))
) ENGINE=InnoDB DEFAULT CHARSET latin1 COLLATE latin1_general_cs;

INSERT INTO wide_innodb_with_pk (word,reverse_word,soundex_word,contains_a,md5)
SELECT DISTINCT c,REVERSE(c),SOUNDEX(c),IF(INSTR(c,’a’)>0,’Y’,’N’),MD5(c)
FROM example_innodb;
SELECT table_name,table_rows,row_format,

563120c03.indd 101563120c03.indd 101 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

102 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘wide_%’;

+---------------------+------------+------------+------------+------------+
| table_name | table_rows | row_format | data | indx |
+---------------------+------------+------------+------------+------------+
wide_innodb	243525	Compact	23104.0000	39536.0000
wide_innodb_with_pk	244771	Compact	21040.0000	39040.0000
wide_myisam	234936	Dynamic	15086.1836	20962.0000
+---------------------+------------+------------+------------+------------

As you start to add additional indexes you get to see a greater difference. Using the MyISAM index
data as a control test, the InnoDB table with the same structure is 100 percent larger, whereas the
InnoDB table with the AUTO_INCREMENT primary key is only 80 percent larger. Although these tables
are small, you can see the impact of a single column change.

+---------------------+------------+------------+------------+------------+
| table_name | table_rows | row_format | data | indx |
+---------------------+------------+------------+------------+------------+
wide_innodb	239154	Compact	21056.0000	67408.0000
wide_innodb_with_pk	235054	Compact	22064.0000	59488.0000
wide_myisam	234936	Dynamic	16003.9023	32535.0000
+---------------------+------------+------------+------------+------------+

Applications that use SELECT COUNT(*) FROM TABLE when using MyISAM will fi nd an instant
response, whereas for InnoDB this must be calculated by reading the data. For large tables this can
cause a high performance impact as disk I/O, and fl ushing of data from the internal buffer pool
affects other online operations signifi cantly. Using an index to retrieve a portion of rows to perform
a COUNT(*) is the necessary alteration to overcome a full table scan for your application.

In smaller MySQL environments you can fi nd the use of the FULLTEXT index for text searching. This
type of index is only supported in MyISAM. In this situation is it generally the approach to duplicate
the columns in a second table that remains a MyISAM table. This generally gives you all the features
of InnoDB, as well as the FULLTEXT feature of MyISAM. There are data integrity, performance, and
disaster recovery impacts with this approach. Care should always be taken with important design
considerations to realize the total impact for your entire system.

Optimizing SQL Using InnoDB

The fi nal point for discussion about InnoDB is that of SQL optimizations. Internally MySQL parses
a SQL query and then determines via a cost-based optimizer the best means of satisfying the query
in the quickest time. The optimizer uses information about table indexes and the statistics of column
distribution to determine the best execution path. MySQL by default uses only one index per table
in an SQL query (with a few minor exceptions). When joining multiple tables, especially intersection
tables, only one index is used. When converting a table from MyISAM to InnoDB, you cannot assume
the same indexes will be used when your query is executed. It is important that you review the
Query Execution Plan (QEP) via the EXPLAIN syntax. Two differences that affect how data is stored
and retrieved have already been discussed. With InnoDB data is now in primary key order, and this
provides for sequential reading of data when using a primary key. The second point is that the value

563120c03.indd 102563120c03.indd 102 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

Default Storage Engines ❘ 103

of the primary key is stored in a secondary index, allowing for this value to be used in some situa-
tions as if it were a second indexed column of the index.

As with any changes in your application it is important that you test these changes under realistic
production conditions. Converting tables from MyISAM to InnoDB while changing application func-
tionality can result in worse performance when the MySQL environment is not tuned appropriately,
or particular situations including those discussed are not understood and considered as impacts.

Memory

The Memory storage engine, also known historically as the Heap storage engine, is an in-memory
only table that does not provide data persistence. The Memory storage engine is actually used inter-
nally by the mysql kernel when a temporary table is required.

Key Features

Very fast, in memory➤

Non-transactional➤

Supports the hash index by default➤

Btree indexes also supported➤

Ideal for primary key lookups➤

Limitations

Does not support transactions➤

Table level locking on DML and DDL statements➤

Data not persistent➤

Does not support TEXT/BLOB data types➤

Fixed row width➤

➤ No ability to limit the total amount of memory for all Memory tables

Important Parameters

➤ max_heap_table_size: Defi nes the maximum size of a single Memory table.

➤ tmp_table_size: Defi nes the maximum size of the table when used for internally temporary
tables.

➤ init_fi le: Defi nes a SQL fi le of commands that are executed when the MySQL instance is
started. Used as a means to seed Memory tables.

Example Table Usage

The syntax for creating a Memory table (as shown in Listing 3-9) is identical to previous examples.

563120c03.indd 103563120c03.indd 103 2/18/10 9:08:51 AM2/18/10 9:08:51 AM

104 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

LISTING 3-9: memory-example.sql

CREATE TABLE example_memory(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c VARCHAR(100) NOT NULL)
ENGINE=Memory;

Memory tables are confi ned to a maximum table size as defi ned by the max_heap_table_size system
variable. Listing 3-10 demonstrates the table full error message, and corrects the maximum size,
based on the size of the comparison Fixed MyISAM table size to show the data in a Memory table.

LISTING 3-10: memory-load.sql

LOAD DATA INFILE ‘/usr/share/dict/words’ INTO TABLE example_memory (c);
ERROR 1114 (HY000): The table ‘example_memory’ is full

SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_memory%’;
+----------------+------------+------------+------------+-----------+
| table_name | table_rows | row_format | data | indx |
+----------------+------------+------------+------------+-----------+
| example_memory | 144595 | Fixed | 15310.2539 | 1134.4219 |
+----------------+------------+------------+------------+-----------+

SHOW GLOBAL VARIABLES LIKE ‘max_heap_table_size’;
+---------------------+----------+
| Variable_name | Value |
+---------------------+----------+
| max_heap_table_size | 16777216 |
+---------------------+----------+

SET SESSION max_heap_table_size = 256*1024*1024;
TRUNCATE TABLE example_memory
LOAD DATA INFILE ‘/tmp/words’ INTO TABLE example_memory (c);
Query OK, 234936 rows affected (0.37 sec)

SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_memory%’;
+----------------+------------+------------+------------+-----------+
| table_name | table_rows | row_format | data | indx |
+----------------+------------+------------+------------+-----------+
| example_memory | 234936 | Fixed | 24927.4258 | 1897.1172 |
+----------------+------------+------------+------------+-----------+

When using large memory tables, a consideration is table-level locking. While adding an index is
generally considered a method for performance tuning SQL queries, with memory tables you need
to factor the size of the memory table, the cost of maintaining the index, and the type of index. For

563120c03.indd 104563120c03.indd 104 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 105

example, take a typical session table. While the purpose is to insert and update content, it is necessary
to implement a purging process of old or stale sessions. It is important to consider two limitations of
the Memory table: table-level locking and the index type. Listing 3-11 is an example session table.

LISTING 3-11: memory-session.sql

CREATE TABLE example_memory_session(
 user_id INT UNSIGNED NOT NULL,
 session VARCHAR(1000) NOT NULL,
 created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated TIMESTAMP NOT NULL,
PRIMARY KEY(user_id))
ENGINE=Memory;

The SQL of your application would include statements to create and modify session information for
example:

INSERT INTO example_memory_session (user_id,session,created,updated)
 VALUES (?, ?, NOW(), NOW());
UPDATE example_memory_session
SET session=?, updated = NOW()
WHERE user_id =?

You would remove old session information with a DELETE statement such as:

DELETE from example_memory_session WHERE updated < NOW() - INTERVAL ? HOUR;

Listing 3-12 simulates existing sessions by using a stored procedure to create data for a 24 hour
period.

LISTING 3-12: load-session.sql

/* Based on
 http://datacharmer.blogspot.com/2006/06/filling-test-tables-quickly.html
*/

delimiter $$

drop procedure if exists make_dates $$
CREATE PROCEDURE make_dates(max_recs int)
begin
 declare updated datetime;
 declare rand_min int;
 declare numrecs int default 1;

 truncate table example_memory_session;
 while numrecs < max_recs
 do
 select round(rand() * 1440) INTO rand_min;
 set updated = date_format(now() –
 interval rand_min minute, ‘%Y-%m-%d %H:%i:00’);
 insert into example_memory_session (user_id, session, updated)

563120c03.indd 105563120c03.indd 105 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

106 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

 values (numrecs, REPEAT(‘A’,5), updated);
 set numrecs = numrecs + 1;
 end while;
 select count(*) from example_memory_session;
end $$

delimiter ;

You can run this on a table to create 1,000,000 records. You need about 1 GB of RAM to simulate
this deleting process.

SET SESSION max_heap_table_size = 1024*1024*1024;
call make_dates (1000000);
DELETE from example_memory_session WHERE updated < NOW() - INTERVAL 10 HOUR;
Query OK, 587795 rows affected (2.08 sec)

Note that during this time of approximately two seconds, the table is locked, and no INSERT or
UPDATE statements can be performed. This is unusable in most production environments with any
reasonable number of concurrent users. The obvious choice is to add an index and test:

ALTER TABLE example_memory_session ADD INDEX (updated);
call make_dates (1000000);
DELETE from example_memory_session WHERE updated < NOW() - INTERVAL 10 HOUR;
Query OK, 585065 rows affected (29.29 sec)

This was an unexpected result. With an index, you generally see an improvement in performance;
however, the DELETE now takes 10 times as long. Let’s review the Query Execution Plan (QEP) to
identify a possible cause.

EXPLAIN SELECT * from example_memory_session
WHERE updated < NOW() - INTERVAL 10 HOUR\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: example_memory_session
 type: ALL
possible_keys: updated
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 999999
 Extra: Using where

SHOW CREATE TABLE example_memory_session\G
*************************** 1. row ***************************
 Table: example_memory_session
Create Table: CREATE TABLE `example_memory_session` (
 `user_id` int(10) unsigned NOT NULL,
 `session` varchar(1000) NOT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `updated` timestamp NOT NULL DEFAULT ‘0000-00-00 00:00:00’,

563120c03.indd 106563120c03.indd 106 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 107

 PRIMARY KEY (`user_id`),
 KEY `updated` (`updated`)
) ENGINE=MEMORY DEFAULT CHARSET=latin1

As you can see, the EXPLAIN shows that a possible index exists, but the QEP reports is not being
used. It is possible that the index is actually being used, with this index being the table default hash
index type and not a btree index. With the Memory engine it is possible to specify a different index
type. For example:

TRUNCATE TABLE example_memory_session;
ALTER TABLE example_memory_session DROP INDEX updated,
ADD INDEX (updated) USING BTREE;
call make_dates (1000000);

EXPLAIN SELECT * FROM example_memory_session
WHERE updated < NOW() - INTERVAL 10 HOUR\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: example_memory_session
 type: range
possible_keys: updated
 key: updated
 key_len: 4
 ref: NULL
 rows: 612792
 Extra: Using where

DELETE from example_memory_session WHERE updated < NOW() - INTERVAL 10 HOUR;
Query OK, 583834 rows affected (2.33 sec)
SHOW CREATE TABLE example_memory_session\G
*************************** 1. row ***************************
 Table: example_memory_session
Create Table: CREATE TABLE `example_memory_session` (
 `user_id` int(10) unsigned NOT NULL,
 `session` varchar(1000) NOT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `updated` timestamp NOT NULL DEFAULT ‘0000-00-00 00:00:00’,
 PRIMARY KEY (`user_id`),
 KEY `updated` (`updated`) USING BTREE
) ENGINE=MEMORY DEFAULT CHARSET=latin1

As you can see, while the index is used there is no improvement in time. Though this exercise shows
the potential impact of the default heap index, in design you would never implement this functional-
ity due to limitations of table level locking in this particular engine. The correct way to implement
this solution is to change the actual DELETE query to be more effi cient. Because there is no require-
ment to delete all the data in one statement, deleting small chunks achieves the same result, and
causes locking of 5–10 ms.

DELETE FROM example_memory_session
WHERE updated < NOW() - INTERVAL 10 HOUR
LIMIT 1000;

563120c03.indd 107563120c03.indd 107 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

108 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

Blackhole

The Blackhole storage engine represents the same general characteristics of its celestial namesake.
Information is accepted via DML statements; however, this information cannot be retrieved because
it is never actually stored.

Key Features

Very fast➤

No disk space requirements➤

Ideal for benchmarking➤

Limitations

Does not support transactions➤

Does not store data➤

Important Parameters

N/A➤

Uses for Blackhole

While it may seem that this table is impractical in a production MySQL system it does serve specifi c
benefi ts in isolated cases. Two example reasons for using Blackhole are for security and for replica-
tion performance.

When important information is stored in the MySQL table outside of a fi rewall environment, for
example, credit card details on a public website, the use of Blackhole combined with MySQL rep-
lication can ensure this data is never actually stored in the external database which is accessible for
possible attack.

When Blackhole is used in a MySQL replication topology, this can speed up performance.

You can also use Blackhole for selective tables on a master or slave servers to preserve the structure
of the database schema and DML statements; however, the data is never stored.

Listing 3-13 shows how you can INSERT, UPDATE, and SELECT from a Blackhole table; however, the
results are not as expected with a regular table:

LISTING 3-13: blackhole-example.sql

CREATE TABLE example_blackhole(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c VARCHAR(100) NOT NULL)
ENGINE=blackhole;

INSERT INTO example_blackhole VALUES (1,’a’), (2,’b’), (3,’c’);

563120c03.indd 108563120c03.indd 108 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 109

Query OK, 3 rows affected (0.00 sec)

UPDATE example_blackhole SET c = ‘x’ WHERE id = 1;
Query OK, 0 rows affected (0.00 sec)

SELECT * FROM example_blackhole;
Empty set (0.00 sec)

Archive

The Archive storage engine was specifi cally designed for the storage of large amounts of sequential
write once only data, generally logging or auditing information.

Key Features

Very fast, ideal for logging data➤

High compression factor➤

Row level locking➤

Limitations

Non-transactional.➤

➤ INSERT only. Does not support UPDATE or DELETE.

Does not support indexes.➤

Important Parameters

N/A➤

Understanding Archive Tables Usages

An Archive table is represented as three or four separate fi les in the fi le system located in the
defi ned data directory for the MySQL instance. These fi les are:

➤ table.frm: This is the table format defi nition fi le.

➤ table.ARZ: This is the Archive table data fi le.

➤ table.ARM: This is the Archive table meta data.

➤ table.ARN: This is a temporary fi le that is present during a table optimization process.

When comparing the size of Archive to the MyISAM compressed table, you see a future improvement
in disk storage without the requirement of manual commands to produce the compressed format.
You can create the Archive table by repeating the syntax as detailed in previous examples.

SELECT table_name,table_rows,row_format,
 data_length/1024 AS data,index_length/1024 AS indx
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name LIKE ‘example_%’;

563120c03.indd 109563120c03.indd 109 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

110 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

+------------------------+------------+------------+------------+-------------+
| table_name | table_rows | row_format | data | indx |
+------------------------+------------+------------+------------+-------------+
example_myisam_dynamic	234936	Dynamic	4842.6484	2359.0000
example_myisam_fixed	234936	Fixed	24090.1172	2356.0000
example_myisam_fixed2	234936	Compressed	2280.2529	2356.0000
example_archive	234936	Compressed	1588.9619	0.0000
+------------------------+------------+------------+------------+-------------+

The only operations that are permitted with an Archive table are INSERT and SELECT. No other
DDL is permitted. An Archive table is also only permitted a primary key, and no additional indexes
are permitted. The following are example error messages when attempting these operations:

update example_archive set id=1 where id=2;
ERROR 1031 (HY000): Table storage engine for ‘example_archive’
doesn’t have this option
truncate table example_archive;
ERROR 1031 (HY000): Table storage engine for ‘example_archive’
doesn’t have this option
alter table example_archive add index (c);
ERROR 1069 (42000): Too many keys specified; max 1 key allowed

Merge

The Merge storage engine is effectively a view over MyISAM tables. This engine was originally
designed to overcome operating system limitations when fi le systems could not support individual
fi les greater than 2G.

With Merge you can select data from multiple identical defi ned tables. You can then update and
delete data appropriately. Inserts occur on the last specifi ed table in the merge defi nition. While you
can perform DML and SELECT statements on the Merge table, you can also perform these on the
underlying MyISAM tables. Primary key and unique key constraints are also on a per-table basis, not
on the Merge table.

To understand the properties and parameters of Merge, refer to MyISAM. Though this may appear to
be similar to partitioning, there is no intelligence with Merge. Queries are executed against underly-
ing tables serially.

Merge can be successfully used when you want to manage manual partitioning and improved lock-
ing strategy with MyISAM.

Be careful when using myisam-recover=FORCE,BACKUP with Merge. There have been many reported
problems in this area.

A Merge table is represented by the individual fi les for each underlying MyISAM table and two additional
tables in the fi le system located in the defi ned data directory for the MySQL instance. These fi les are:

➤ table.frm: This is the Merge table format defi nition fi le.

➤ table.MRG: This is the Merge table meta data of underlying tables.

Listing 3-14 shows how you create a Merge table and how data can be inserted and retrieved directly
or with the underlying tables:

563120c03.indd 110563120c03.indd 110 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 111

LISTING 3-14: merge-example.sql

CREATE TABLE example_merge1 (
id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
c VARCHAR(100) NOT NULL)
ENGINE=MyISAM;
CREATE TABLE example_merge2 (
id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
c VARCHAR(100) NOT NULL)
ENGINE=MyISAM;
CREATE TABLE example_merge3 (
id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
c VARCHAR(100) NOT NULL)
ENGINE=MyISAM;

CREATE TABLE example_merge_all (
id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
c VARCHAR(100) NOT NULL)
ENGINE=MERGE
UNION=(example_merge1,example_merge2,example_merge3)
INSERT_METHOD=LAST;

INSERT INTO example_merge_all (id, c) VALUES (NULL,’a’);
SELECT * FROM example_merge_all;
+----+---+
| id | c |
+----+---+
| 1 | a |
+----+---+
1 row in set (0.00 sec)

SELECT * FROM example_merge1;
Empty set (0.00 sec)

SELECT * FROM example_merge2;
Empty set (0.00 sec)

SELECT * FROM example_merge3;
+----+---+
| id | c |
+----+---+
| 1 | a |
+----+---+
1 row in set (0.00 sec)

INSERT INTO example_merge1 (id, c) VALUES (NULL, ‘b’);
SELECT * FROM example_merge_all;
+----+---+
| id | c |
+----+---+
| 1 | b |
| 1 | a |
+----+---+
2 rows in set (0.00 sec)

563120c03.indd 111563120c03.indd 111 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

112 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

CSV

The CSV (Comma Separated Value) storage engine allows the management of an underlying CSV fi le
via SQL statements. In MySQL 5.1, the general query log and the slow query log are actually imple-
mented as the CSV engine.

Key Features

Plain text data format➤

Interchangeable data with other programs➤

Fast import time via fi le copy➤

Limitations

Table level locking➤

Non-transactional➤

Does not support indexes➤

Important Parameters

N/A➤

Understanding CSV Table Usage

An CSV table is represented as three separate fi les in the fi le system located in the defi ned data direc-
tory for the MySQL instance. These fi les are:

➤ table.frm: This is the table format defi nition fi le.

➤ table.CSV: This is the table data fi le.

➤ table.CSM: This is the CSV table meta data.

Federated

The Federated storage engine is a storage engine that, instead of accessing data from a local fi le or
tablespace, accesses data from a remote MySQL table through the MySQL client API. It builds SQL
statements internally, based on what the query was against the Federated table, and runs those
statements on the remote MySQL table.

If the query against the Federated table is a write statement such as INSERT or UPDATE, the
Federated storage engine builds a query, deriving the column names and values from internal data
structures that are dependent on the fi elds and values of the original query. Then it executes the SQL
to perform that write operation on the remote table, reporting back to the storage engine the num-
ber of rows affected.

If it’s a read operation, it constructs a SELECT statement also built using internal data structures for
column names, as well as WHERE clauses for ranges and indexes. It then executes that statement after

563120c03.indd 112563120c03.indd 112 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 113

which the Federated storage engine retrieves the result set from the remote table and iterates over
that result. It then converts the results into the same internal format that all other storage engines
use and then returns the data to the user.

A DELETE statement is similar to a SELECT statement in how the column names are built into the
constructed SQL statement, as well as in building the WHERE clause. The main difference is that the
operation is DELETE FROM versus SELECT, resulting in the rows specifi ed in the SQL statement being
deleted and the count of the rows affected being returned to the storage engine, which in turn decre-
ments its total row count.

Characteristics of the Federated Storage Engine

The Federated storage engine was developed as a standard by IBM and others defi ning Federated
functionality. The standards for Federated are as follows:

➤ Transparency: The remote data sources and details thereof are not necessarily known by the
user, such as how the data is stored, what the underlying schema is, and what dialect of SQL
is used to retrieve information from that data source.

➤ High degree of function: To be able to have, as much as possible, the same functionality that
is had with regular tables.

➤ Extensibility and openness: To adhere to a standard as defi ned in the ANSI SQL/MED
(Management of External Data) extension to the SQL standard.

➤ Autonomy of data sources: Not affecting the remote data source, not interfering with its
normal operation. This also means that the Federated storage engine cannot modify the defi -
nition of the remote data source, as in the case of statements such as ALTER and DROP TABLE
not being sent to the remote data source.

➤ Optimized performance: Utilizing the optimizer to create the most effi cient statements to
run on the remote data source. Also, the long-term goal is to have a means of delegating
operations to the local server and remote server according to which is best suited for each
operation.

Of course, not all of these guiding principles have been achieved, but these are certainly goals for
development of the Federated storage engine that provide a roadmap of the long-term direction of
Federated development.

Some of the basic characteristics of the Federated storage engine are outlined in Table 3-1.

TABLE 3-1: Federated Characteristics

CHARACTERISTIC DESCRIPTION

Column Requirements When creating a Federated table, the table must have the same named

columns as the remote table, and no more columns than the remote table.

The remote table can have more columns than the Federated table.

continues

563120c03.indd 113563120c03.indd 113 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

114 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

CHARACTERISTIC DESCRIPTION

Queries and Results A query on a Federated table internally produces an entire result set from

a table on a remote server, and as such, if that table contains a lot of data,

all of that data will be retrieved. One way to deal with huge result sets is

to defi ne an index on a column of the Federated table, even if that column

is not indexed on the remote table, and try to use any means to limit the

result set. However, note that LIMIT does not aff ect the size of the result

set from the remote table.

Remote Table The remote table must be in existence prior to creating the Federated

table that references it.

Index Support The Federated storage engine supports indexes insofar as the column that

is defi ned as an index is specifi ed in a WHERE clause in the SQL query the

table generates, and that the column it specifi es is an index on the remote

table. This means that you could have a Federated table with an index on

a column that is not an index on the remote table, which is not a problem,

and in fact can be used to reduce result set size.

Referencing Another

Federated Table

The manual states a Federated table can reference a Federated table. This

is a bad idea. Don’t do it.

Transactions Transactions aren’t supported in Federated, but are support with

FederatedX if using a transactional engine (InnoDB, MariaDB, Falcon, and

so on) as the remote data source.

What Federated

Supports

Federated supports SELECT, INSERT, UPDATE, and DELETE. However,

ALTER TABLE cannot be used to change the remote table’s defi nition (this

would violate the very defi nition of a Federated table), but it can be used to

modify the local Federated table’s defi nition.

Using DROP TABLE This only drops the local Federated table.

It’s worthwhile to mention that although the Federated storage engine may not support some
features such as transactions as well as other enhancements, there is a fork of Federated called
FederatedX, which is a more active development branch of Federated initiated by the authors of
Federated: Patrick Galbraith and Antony Curtis.

Creating a Federated Table

As with other storage engines, creating a Federated table involves setting ENGINE=FEDERATED. Also
necessary with Federated is specifying a connection string of either a connection URL or a server
name (the next subsection covers more about Federated servers):

CONNECTION=scheme://user:password@host/schema/table
CONNECTION=server
CONNECTION=server/tablename.

TABLE 3-1 (continued)

563120c03.indd 114563120c03.indd 114 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 115

The following shows the creation of a non-Federated table on a remote data source, and then the
creation of a Federated table.

The remote server is 192.168.1.118, and the schema is remote:

mysql> CREATE TABLE `t1` (
 -> `id` int(3) NOT NULL auto_increment,
 -> `name` varchar(32) NOT NULL default ‘’,
 -> PRIMARY KEY (`id`)
 ->);

mysql> INSERT INTO t1 (name) VALUES (‘first’), (‘second’), (‘hello world’);

Then on a local server, 192.168.1.100, in a schema named federated:

mysql> CREATE TABLE `t1` (
 -> `id` int(3) NOT NULL auto_increment,
 -> `name` varchar(32) NOT NULL default ‘’,
 -> PRIMARY KEY (`id`)
 ->) ENGINE=FEDERATED
 -> CONNECTION=’mysql://feduser:feduser@192.168.1.118/remote/t1’;
Query OK, 0 rows affected (0.07 sec)

mysql> SELECT * FROM t1;
+----+-------------+
| id | name |
+----+-------------+
1	first
2	second
3	hello world
+----+-------------+

mysql> INSERT INTO t1 (name) VALUES (‘hello federated’);

mysql> SELECT * FROM t1;
+----+-----------------+
| id | name |
+----+-----------------+
1	first
2	second
3	hello world
4	hello federated
+----+-----------------+

Then back on the remote server:

mysql> SELECT * FROM t1;
+----+-----------------+
| id | name |
+----+-----------------+
1	first
2	second
3	hello world
4	hello federated
+----+-----------------+

This means there has been a successful Federated table creation.

563120c03.indd 115563120c03.indd 115 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

116 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

Federated Servers

As you’ve seen in the preceding example, a URL-like string was specifi ed to give the necessary infor-
mation for the Federated table in order to connect to the remote data source. In cases where there is
a large number of Federated tables, changing these tables’ connection information can be cumber-
some and requires altering all of the tables with a modifi ed connection string. For instance, if you
needed to change what server 1000 Federated tables connect to, you would have to alter each one of
those tables to have a new server in its connection string.

To devise a better solution, in MySQL 5.1, the idea of a Federated Server was developed. This con-
cept was part of the SQL/MED specifi cation. It essentially lets you create a named database object
called a SERVER that is associated with various connection meta-data information. The other half
of this functionality is that the Federated storage engine can merely specify the server name (as well
as table if it is desired to name the table differently than the Federated table). This means you can
change the connection information of the table that one or more Federated tables use to connect to
their remote data source with a single SQL statement against the SERVER. So, in the 1000-table
scenario, not a single table would have to be changed!

The syntax for a Federated Server is straightforward:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

In this example, to use a Federated server, you would create it as:

mysql> CREATE SERVER
 -> ‘servera’ FOREIGN DATA WRAPPER ‘mysql’
 -> OPTIONS
 -> (HOST ‘192.168.1.118’,
 -> DATABASE ‘remote’,
 -> USER ‘feduser’,
 -> PASSWORD ‘feduser’,
 -> PORT 3306,
 -> SOCKET ‘’,
 -> OWNER ‘root’);

Then, to use this server with the previously created table, you would have to drop the table fi rst (this
is the Federated standard method; the engine does not support ALTER on the remote table) and then
re-create it, using the server name that was just created instead of a URL connection string:

mysql> DROP TABLE t1 ;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE `t1` (
 -> `id` int(3) NOT NULL AUTO_INCREMENT,
 -> `name` varchar(32) NOT NULL DEFAULT ‘’,
 -> PRIMARY KEY (`id`)
 ->) ENGINE=FEDERATED DEFAULT CHARSET=latin1 CONNECTION=’servera’;

mysql> SELECT * FROM t1;

563120c03.indd 116563120c03.indd 116 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Default Storage Engines ❘ 117

+----+-----------------+
| id | name |
+----+-----------------+
1	first
2	second
3	hello world
4	hello federated
+----+-----------------+

A table name could have been specifi ed in this example and would be separated from the server
name with a forward slash ‘/’.

CONNECTION= ‘servera/t1’

This would be useful if the remote table name and Federated table name differed.

Federated under the Hood

To gain a little insight to how Federated works, you can observe several things. First, as mentioned
before, Federated accesses its data not from a local fi le, but from a remote data source through the
MySQL client library. This means there will only be one fi le created for a Federated table, the .frm
fi le, which is the table defi nition fi le. For Federated, this fi le merely contains the connection informa-
tion for the Federated table:

ishvara:/home/mysql/var/federated # ls
db.opt t1.frm

The other revealing thing to look at is the SQL log, if it is turned on, on the remote server. On the
server with the Federated table, you issue:

mysql> SELECT * FROM t1;

The query log on the remote server shows:

080823 11:17:56 181 Connect feduser@arjuna on remote

 181 Query SET NAMES latin1

 181 Query SHOW TABLE STATUS LIKE ‘t1’

 181 Query SELECT `id`, `name` FROM `t1`

As you can see:

➤ The fi rst command the server with the Federated table sends is SET NAMES <character
set>. This is to ensure that the character set of the Federated table is set on the remote
server.

➤ The second command sent is SHOW TABLE STATUS. This command obtains information on
the remote table, which Federated then uses to set values for the local Federated table, such
as the number of records in the table.

563120c03.indd 117563120c03.indd 117 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

118 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

➤ Finally, the Federated storage engine sends the query to obtain the data that was specifi ed in
the original query. The difference between the original query on the Federated table and the
query that Federated constructs to be run against the remote table is that Federated specifi es
each column. It does this internally by looping over each fi eld (column) in a data structure
representing the structure of the table and appending each to the complete statement.

If data is inserted into the Federated table, such as with this query:

mysql> INSERT INTO t1 (name) VALUES (‘one more value’);

then the statement as found in the log on the remote server is:

080823 11:29:06 181 Query INSERT INTO `t1` (`id`, `name`)
VALUES (0, ‘one more value’)

Just as with the SELECT statement, the INSERT statement is built by the Federated storage engine,
additionally appending into the VALUES half of the INSERT statement the values being inserted.

Viewing the SQL log on a remote server that a Federated table utilizes can be a very useful means of
seeing how the Federated storage engine works, as well as a good debugging tool.

OTHER MYSQL SUPPLIED ENGINES

Offi cial MySQL binaries that can be found at http://www.mysql.com include two further engines
that have been developed internally by the MySQL team. These are the Falcon storage engine and
the Maria storage engine.

Neither of these engines is in the current Generally Available (GA) products, or
the most current Alpha version of MySQL.

Falcon

Falcon is a purchased technology from Netfrastructure in 1996. That was incorporated as a storage
engine and was designed to be a possible replacement to InnoDB as the default transactional storage
engine. This was due to the purchase of Innobase, the creators of InnoDB by Oracle Corporation, a
competitor of the MySQL product.

Unfortunately this engine has never lived up to the published hype. A key feature of the now defunct
MySQL 6.0 product, Falcon is not included in the current alpha version of MySQL 5.4. With a
change in policy of future products from feature-based releases to time-based and feature-complete
requirements, there is no schedule on when Falcon will be available and production ready. In addi-
tion, the original architect of Falcon is no longer a member of the development team or working
actively on the product.

563120c03.indd 118563120c03.indd 118 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

Other MySQL Supplied Engines ❘ 119

Key Features

Transactional➤

Supports MVCC (Multi Version Concurrency Control)➤

Designed for machines with lots of RAM➤

Dynamic data compression➤

Page and record caches➤

Flexible page size for tablespace➤

➤ Additional meta data information in the INFORMATION_SCHEMA

Limitations

Not a GA product➤

No roadmap for implementation➤

Important Parameters

➤ falcon_page_cache_size: This defi nes the amount of memory used for caching data.

➤ falcon_io_threads: This defi nes the number of background threads for performing disk
writes.

➤ falcon_page_size: This defi nes the size of the data pages for tablespaces.

➤ falcon_checkpoint_schedule: This defi nes the frequency of checkpoints that synchronize
in memory and disk information. The specifi cation is a crontab format string.

There is no current product listed on the MySQL web site to download the Falcon
storage engine. You need to look at the product archives to fi nd MySQL 6.0.11
which is available at http://downloads.mysql.com/archives.php?p=mysql-
6.0&v=6.0.11.

Falcon Table Usage

By default, Falcon tables are represented within a common tablespace. You can also defi ne named
tablespaces that can store specifi c tables. These are located in the data directory for the MySQL
instance. The related fi les are:

➤ falcon_user.fts: This is the default tablespace.

➤ falcon_temporary.fts: This is used for temporary tables.

➤ falcon_master.fl 1 and falcon_master.fl 2: These are the transaction log fi les.

563120c03.indd 119563120c03.indd 119 2/18/10 9:08:52 AM2/18/10 9:08:52 AM

120 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

Falcon has a large number of system parameters (currently 29) that you can view using SHOW GLOBAL
VARIABLES LIKE ‘falcon%’. Though there is no output from the commands used by other engines
such as SHOW GLOBAL STATUS LIKE ‘falcon%’ and SHOW ENGINE FALCON STATUS. All diagnostic
information is available via Falcon specifi c INFORMATION_SCHEMA tables. The current list is:

➤ FALCON_RECORD_CACHE_SUMMARY

FALCON_SYSTEM_MEMORY_DETAIL➤

FALCON_TABLESPACE_IO➤

FALCON_SYSTEM_MEMORY_SUMMARY➤

FALCON_VERSION➤

FALCON_TRANSACTION_SUMMARY➤

FALCON_SERIAL_LOG_INFO➤

FALCON_SYNCOBJECTS➤

FALCON_TRANSACTIONS➤

FALCON_RECORD_CACHE_DETAIL➤

The following example shows detailed information about database reads and writes to the indi-
vidual tablespaces:

SELECT * FROM INFORMATION_SCHEMA.FALCON_TABLESPACE_IO;
+------------------+-----------+---------+---------+------+-----------+-------+
| TABLESPACE | PAGE_SIZE | BUFFERS | P_READS |WRITES| LOG_READS | FAKES |
+------------------+-----------+---------+---------+------+-----------+-------+
FALCON_MASTER	4096	1024	88	0	1410947	2
FALCON_TEMPORARY	4096	1024	1	0	0	1
FALCON_USER	4096	1024	4416	0	5140107	6617
+------------------+-----------+---------+---------+------+-----------+-------+

You can fi nd a more detailed description of the Falcon storage engine at
http://dev.mysql.com/doc/falcon.

Maria

The Maria storage engine also has a unique history. Originally part of a supported MySQL 5.1
branch of the offi cial product, Maria is now the storage engine of MariaDB, a new MySQL-
compatible product created by the original MySQL founder, Michael “Monty” Widenius. Maria is
designed as a replacement to MyISAM including new features such as automatic crash recovery, for-
eign keys, and in the future, transactional support. An easy way to think of MariaDB is to consider
the relationship with CentOS and Red Hat. This includes all the features of the original product
and the closest compatibility but also value added features that are user friendly and hopefully may
become features of the original product in the future.

563120c03.indd 120563120c03.indd 120 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

Pluggable Engines ❘ 121

Key Features

Crash save➤

Higher insert concurrency➤

Improved code quality➤

Transactional (in 2.x versions) supporting ACID compliance, MVCC, and row-level locking➤

While you can download a historical version of Maria from the MySQL offi cial web site in the
6.0.11 archive version as used with the Falcon engine, all current development is included in
MariaDB and is available from http://mariadb.com.

PLUGGABLE ENGINES

Although MySQL created the pluggable storage engine architecture (PSEA) in 5.1 to enable third
parties to provide products that integrate with MySQL, most engines have failed to leverage the
fully pluggable architecture as detailed in the following section. Those that are pluggable at present
include InnoDB (the plugin version), PBXT, and XtraDB.

InnoDB Plugin

The pluggable storage engine architecture has enabled Innobase, the creators of the built-in InnoDB
storage engine, to release new features independently of the limited offi cial MySQL product release
cycle. Some of these features are signifi cant improvements to the built-in version. The most recent
point releases of MySQL 5.1, starting with MySQL 5.1.38 (01 September 2009), now include both
the built-in and plugin versions of InnoDB.

Key Features (in Addition to Those Listed in InnoDB) Include:

➤ Improved performance in locking and large core systems

Dynamic control of additional variables➤

Fast index creation➤

Data compression➤

New row format➤

➤ INFORMATION_SCHEMA tables

Important Parameters

➤ ignore-builtin-innodb: In order to use the plugin version, you must disable the built in
version.

➤ plugin-load: This defi nes the list of plugins which includes the storage engine and
INFORMATION_SCHEMA tables.

563120c03.indd 121563120c03.indd 121 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

122 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

➤ innodb_fi le_format: To use new DYNAMIC and COMPRESSED formats, you need to set this
parameter to Barracuda.

➤ innodb_fi le_per_table: In order to use the new fi le formats you must also specify this
parameter which changes the storage of tables from a common tablespace to per table
tablespaces.

You can fi nd the MySQL Reference Manual at http://dev.mysql.com/doc/
refman/5.1/en/innodb.html for introduction and confi guration information
necessary with your my.cnf confi guration fi le. More information is also avail-
able at http://innodb.com/products/innodb_plugin.

With the introduction of the new Barracuda fi le format it is possible to specify additional arguments
on the CREATE TABLE statement to specify the ROW_FORMAT and the KEY_BLOCK_SIZE. However, if you
fail to set the correct parameters as listed in the important parameters, the table is created but with
warnings, and you may not get what you expect. For an example see the following Listing 3-15.

LISTING 3-15: innodb-plugin-example.sql

CREATE TABLE example_innodb_dynamic (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c VARCHAR(100) NOT NULL)
ENGINE=InnoDB ROW_FORMAT=DYNAMIC;
SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1478 | InnoDB: ROW_FORMAT=DYNAMIC requires innodb_file_per_table. |
| Warning | 1478 | InnoDB: assuming ROW_FORMAT=COMPACT. |
+---------+------+--

The InnoDB Plugin versions 1.0.4 and 1.05 that are included with MySQL are
still considered beta quality.

PBXT

The Primebase Transaction engine (PBXT) was the fi rst truly pluggable engine and leverages underly-
ing internal MyISAM data structure to achieve a greater compatibility with MySQL.

Key features

Transactional➤

ACID compliant➤

563120c03.indd 122563120c03.indd 122 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

Pluggable Engines ❘ 123

Row level locking➤

Truly pluggable➤

Short auto recovery➤

Logged based design aligns well with SSD technology.➤

Limitations

Almost solely developed by one individual➤

Long development lifecycle➤

Not yet GA➤

Important Parameters

➤ pbxt_index_cache_size: The amount of memory assigned for index caching.

➤ pbxt_record_cache_size: The amount of memory assigned for caching the table record
data.

➤ pbxt_log_cache_size: The amount of memory assigned for the transaction log data.

➤ pbxt_checkpoint_frequency: The time for a checkpoint of the data written to the transac-
tion log fi le. This affects the performance of MySQL during a disaster recovery.

➤ pbxt_data_log_threshold: The size of an internal data log fi le. This affects the maximum
amount of data possible in the data tablespace.

You can fi nd more information about the PBXT storage engine at http://
primebase.org.

XtraDB

The Percona XtraDB storage engine is a drop-in and backward-compatible InnoDB storage engine.
This engine includes all the listed features of InnoDB but includes specifi c modifi cations to provide
additional instrumentation, better memory management, and performance and scalability improve-
ments for large core and highly concurrent work environments.

See http://www.percona.com/docs/wiki/percona-xtradb:start for more
information.

563120c03.indd 123563120c03.indd 123 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

124 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

ENGINES AS STANDALONE PRODUCTS

Though MySQL created the pluggable storage engine architecture (PSEA) as discussed in the previ-
ous section, many service providers have been unable to integrate with MySQL. The most common
problem is requiring changes in the internal MySQL optimizer. Because of the current MySQL
architecture and development life cycle this is unfortunately unlikely to be provided.

One solution is in the form of Drizzle, an original fork of MySQL. While Drizzle has many features,
one key feature was to ensure that core components of an RDBMS product are indeed fully plugga-
ble. A number of the engines discussed in this section are better supported with the Drizzle product.
For more information see http://drizzle.org.

Some providers, for example Tokutek, have provided patches for incorporation into MySQL to
enable their respective engine to become fully pluggable. Unfortunately, feature changes and com-
munity patches with the MySQL product can have a long lead time for production implementation.

Infi niDB

InfiniDB is a data warehousing and data analytics product from Calpont (http://calpont.com)
that integrates with MySQL but is not limited to some of the restrictions of other storage engine
providers. InifiniDB leverages the essential components of MySQL including the communication
protocol, user authentication, and query parsing, but bypasses other limitations to provide some
true high concurrency, parallel processing, and multi-node capabilities. Internally, data is stored in a
column-oriented architecture and requires far less tuning with no index requirements, and horizon-
tal and vertical partitioning is provided automatically. This engine supports ACID-compliant trans-
actions and MVCC (multi-version concurrency control).

The greatest promise with InfiniDB is the true capacity of parallel processing.

InfiniDB is available as an open source product at http://infinidb.org.

TokuDB

Providing a clustered index for all indexes via the Fractal Tree™ technology, TokuDB aims to
improve performance and scalability in given workloads by at least 10 times. The underlying stor-
age engine transforms the way information is managed, and can turn random I/O from index scans
into sequential I/O, thereby producing dramatic gains. In addition, the underlying disk footprint
has shown to be less than InnoDB and MyISAM. Tokutek also provides the iiBench (Indexed Insertion
Benchmark) as a better example of typical social media–related operations.

TokuDB is a commercial product from Tokutek that provides a free version for smaller databases
(currently less than 50GB).

563120c03.indd 124563120c03.indd 124 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

Other MySQL Off erings ❘ 125

You can fi nd full details at http://tokutek.com.

Infobright

Infobright is an engine designed for data warehousing and analytics. This is provided with a custom
MySQL binary and includes open source and commercial versions.

An Infobright community version is available at http://www.infobright.org
and a commercial version is available at http://www.infobright.com.

OTHER MYSQL OFFERINGS

Though understanding the approximately dozen described storage engines can be a complicated
undertaking by software developers, there is signifi cant opportunity for more fl exibility and com-
plexity in the MySQL ecosystem. It is important to realize that signifi cant development is occur-
ring in this technology space, and many of the listed products can operate and appear much like a
MySQL offi cial product.

Storage Engine Patch Products

Two primary products exist that provide the basic MySQL built-in storage engines as well as addi-
tional engines and patches for features and performance. These are the Percona performance builds
and the Our Delta community builds.

Percona Performance Builds

The Percona builds for Version 5.0 include a number of performance patches developed by Percona
and the MySQL community to greatly improve performance and instrumentation in high concur-
rency situations. Many of these patches have now been included in the InnoDB Plugin and the
MySQL 5.4 alpha version. For those wishing to not upgrade to new MySQL versions but remain
with Version 5.0, these builds can generally be a drop-in replacement to existing MySQL binaries.

You can fi nd more details at http://www.percona.com/mysql/.

563120c03.indd 125563120c03.indd 125 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

126 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

Our Delta

Our Delta is a community effort to provide enhanced builds of MySQL 5.0 and MariaDB 5.1 on
the most popular platforms. As discussed, it is often diffi cult to get community patches or improve-
ments into the mainline product managed by MySQL. Our Delta seeks to leverage the power of the
open source license and provide modifi ed versions that include many of the popular patches that
provide many features such as greater performance, instrumentation, and reliability. Contributions
come from companies including Google, Innobase, Facebook, Open Query, Percona, Primebase,
Proven Scaling, and Sphinx.

More information is available at http://ourdelta.org.

MySQL-Related Products

Two products of note that are not MySQL storage engine products or enhanced builds of the MySQL
product are Drizzle and MariaDB. Both will play a signifi cant role in the MySQL ecosystem.

Drizzle

Drizzle was originally a MySQL fork, but has now developed into an individual database product
with many differences and fewer features than MySQL. Many of the storage engines discussed are
included in Drizzle. Designed for large core servers and more distributed computing, it includes
an improved pluggable architecture for all components, not just storage engines. While still under
heavy development, benchmarks show that Drizzle outperforms MySQL 5.1 for large core systems.

For more information see http://drizzle.org.

MariaDB

MariaDB is designed as a drop-in replacement for MySQL. While providing the greatest compat-
ibility and matching the features of MySQL, there is a different development approach designed for
more features, fewer bugs, and greater performance. Many of the original development team for
the MySQL product now work on the MariaDB product. In addition to the default storage engines
found in MySQL, MariaDB includes by default additional storage engines including Maria, PBXT,
XtraDB, and FederatedX.

For more information see http://mariadb.com.

563120c03.indd 126563120c03.indd 126 2/18/10 9:08:53 AM2/18/10 9:08:53 AM

Other MySQL Off erings ❘ 127

Other Engines

These additional engines form the basis of different products, have been included as patches, or used
by certain companies and provided to the community for possible future use. The following list is
just a highlight and many not listed include storage engines for fi le system fi les, memcached, IBM
DB2I, Sphinx full-text search, and AWS S3, for example.

NDB

This engine is actually an entire product originally purchased by MySQL and incorporated into the
MySQL Cluster product. NDB includes a number of key features that distinguish it from a more tradi-
tional MySQL storage engine. The NDB engine provides transaction support and synchronous replica-
tion ensuring that all data nodes are consistent. It also provides a native C interface to directly with the
data by passing the SQL interact if desired for three to fi ve times performance improvement.

NDB has a number of strengths and weaknesses in comparison to the MySQL server product which
this book covers. This does not make this a drop-in replacement for a MySQL replication topology.
NDB is popular with the telecommunication and gaming industries that use primary key lookups,
few joins, and require much high availability.

More information is available at http://mysql.com/products/database/
cluster/.

eBay Memory Engine

The eBay Memory engine extends the default Memory storage engine by providing variable-length
record support. As discussed in the Memory section, one key use of this engine is for session man-
agement. One key disadvantage here is the fi xed-width limitation. This engine enables a far greater
amount of in-memory session data to be maintained, and could be ideal for large web sites that
manage in-session information. This engine is also the default temporary table engine and Memory
storage engine for the Drizzle product.

You can fi nd more information at http://code.google.com/p/mysql-heap-
dynamic-rows/.

NitroEDB

The NitroEDB storage engine was developed by Nitro Security. The underlying database product was
developed in relative isolation from traditional relational databases and included some amazing fea-
tures, including insert performance at 50,000 statements per second and aggregated index queries on
large data sets up to 1,000 times faster than existing storage engines. This engine also supported pat-
ented technologies in N-Tree management that extended traditional relational functionality.

563120c03.indd 127563120c03.indd 127 2/18/10 9:08:54 AM2/18/10 9:08:54 AM

128 ❘ CHAPTER 3 MYSQL DRIVERS AND STORAGE ENGINES

For more information see http://nitrosecurity.com/information/tech/EDB/.

Solid

Solid is a transactional engine from Solid Tech that was acquired by IBM and effectively shelved.
The current IBM solidDB product page does not include any references to the originally developed
MySQL storage engine.

Integrated Hardware Engines

Available MySQL storage engines are not limited to just software. Two commercial providers include
specialized hardware with their respective implementation of customized MySQL storage engines.

Kickfi re

Kickfi re is a column-oriented data store with additional specifi c hardware for compression and
indexing. Due to the nature of requiring the specialized hardware it’s not possible to evaluate or
demonstrate this product.

More information is available at http://www.kickfire.com.

Virident

Virident is a combination of custom improvements in memory management based on the InnoDB
storage engine, as well as providing a dedicated memory hardware appliance.

More information is available at http://www.virident.com.

Other Solutions

In addition to previously mentioned engines that also include hardware components, various
storage engines can involve integration of MySQL with other products. We conclude this section
on storage engines with one example.

563120c03.indd 128563120c03.indd 128 2/18/10 9:08:54 AM2/18/10 9:08:54 AM

Summary ❘ 129

Waffl egrid

Waffl egrid is actually a custom patch and extension to InnoDB where memached, a distributed in-
memory infrastructure, is used as a level 2 cache for InnoDB. The concept is very simple, leveraging
two existing technologies to boost performance in data access. The benefi t of memcached as an LRU
cache is the built-in distributed nature allowing a group of servers to act as secondary cache of the
InnoDB buffer pool.

For more information see http://wafflegrid.com/.

SUMMARY

With all the fl exibility of MySQL storage engines comes great responsibility for a developer to
ensure the best solution for the product you are developing.

It is very easy to have a mis-confi gured or poorly performing MySQL installation due to the lack
of correct storage engine confi guration or the specifi c limitations of storage engines. Knowing the
relative strengths of the MySQL product, combined with the business requirements of the customer,
allows you the opportunity to consider not just MySQL features, but various MySQL storage
engines.

While MySQL provides an easy method to mix and match different storage engines for individual tables
within a MySQL instance, care should be taken. The lack of transaction support when expected and
the complexity of consistent backups are a common problem in a mixed engine instance.

You should fi rst start with a decision of the default storage engine. This is generally a decision of
a transactional storage engine or a non-transactional storage engine. This affects the development
approach that is undertaken. Generally by default the options chosen are InnoDB or MyISAM, respec-
tively. However, as discussed there are multiple variances of InnoDB at present, and Maria as a
MyISAM replacement.

With the stability of newer engines you should strongly consider a dedicated engine when your
requirements are for a specifi c purpose such as a data warehouse.

563120c03.indd 129563120c03.indd 129 2/18/10 9:08:54 AM2/18/10 9:08:54 AM

563120c03.indd 130563120c03.indd 130 2/18/10 9:08:54 AM2/18/10 9:08:54 AM

Improving Performance
through Caching

WHAT’S IN THIS CHAPTER?

➤ Using eAccelerator and APC for opcode and user caching

Using memcached in PHP➤

Using memcached in MySQL➤

Methods for maintaining cache and database integrity➤

A PHP web application’s ability to display information — data from a database — is one of
its most crucial, core functions. The speed at which this data is retrieved from the database is
made manifest to the end user as overall site performance. So, whichever way you can, you try
to make your database calls as effi cient as possible. This includes trying to get as much infor-
mation as possible in as few queries as possible, yet ensuring your queries perform optimally.

However, as your web site or web application realizes increased traffi c, your database’s per-
formance soon becomes a bottleneck and much of what is being continually displayed requires
a huge number of queries against the database, causing your database to reach read capacity.
This is where you want to employ caching to temporarily cache data that is repetitively needed
to provide common data for your web application.

For instance, imagine a popular blog web site. This blog would contain a listing of blog entries
composed of a title, the fi rst paragraph of the blog entry, a link to the entire post body, a date,
and even a summary of the comment count. Without caching, you would have to run a query
against the database for every page display to obtain a listing of blog entries from at least a
blog table. You might even possibly join this against the comment table to obtain an aggregate
count of the comments for this blog entry or join against a user preferences table to obtain dis-
play, time zone, or ordering preferences for the given blog’s user.

4

563120c04.indd 131563120c04.indd 131 2/18/10 9:09:04 AM2/18/10 9:09:04 AM

132 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

Yet, if the blog web site were to have a caching mechanism, you can run these data retrieval que-
ries on a less frequent basis, caching the same data into a cache that would previously have been
obtained from the database for each access. This provides much faster response time to the blog web
site because you access the database less. It is now possible to display the blog entries using a simple
key lookup from the cache instead of a complex query against a database.

A common problem with modern web applications is the C10K problem — which is how does your
server handle ten thousand concurrent client connections. Two primary components that help solve
the C10K problem are the use of asynchronous/non-blocking calls, and effective caching. This chap-
ter focuses on the caching component.

This chapter explores PHP optimization through caching, including opcode caching (more on that
later) but also user caching to store arbitrary key and value pairs for quick retrieval without increas-
ing load on the database or other external date sources.

EACCELERATOR AND APC

PHP intermediate code caching (more commonly called bytecode or opcode caching) extensions
take the code generated by the PHP compiler and store it in its compiled form. The result is that the
PHP fi le no longer needs to be compiled on each execution. There are two popular opcode caching
extensions: eAcellerator and APC.

Both store the compiled version of PHP scripts and both extensions also have the added ability of allow-
ing for arbitrary values to be stored in the cache as well. There will be more on that second part later.

Both extensions use the system memory and the disk for caching. Memory caching provides much
better performance over hard drive–based access. However, regardless of whether the fi le is in mem-
ory or on disk, the fact that the opcodes are stored and not the raw unprocessed PHP can increase
the performance of an application many times over. Both extensions will try to use memory fi rst and
most compiled PHP fi les will fi t nicely into memory without having to resort to the disk.

The bottom line is that it is always a good idea to have one of the opcode caching extensions installed.
Not having one installed not only increases page load time by having to compile the PHP scripts on
every execution, but also decreases the ability for a server to handle load as a result. Because compiling
a PHP script inherently requires disk access as well as a signifi cant amount of computation, a server
with an opcode cache enabled will always be faster than the same server without any cache.

Installing and Confi guring APC

Alternative PHP Cache (APC) was originally developed by Community Connect Inc. and was contrib-
uted to the PHP community in 2002. It was updated in 2005 by Yahoo! Inc. to support the then brand
new PHP 5.1. It is completely open source under the PHP license and is community maintained.

APC is developed and deployed as a PECL extension and as such follows a standard method of
installation and confi guration. The entire extension can be installed in one line:

pecl install APC

563120c04.indd 132563120c04.indd 132 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

eAccelerator and APC ❘ 133

Alternatively, you can download it from SVN and compile and install it manually. It may also be
necessary to enable the extension in the php.ini fi le. Once the extension is installed, you can use
several confi guration variables to change its behavior. Some of the most common confi gurations are
outlined in this section.

Setting apc.stat to 0 can turn off the fi le-stat operation for the opcode cache. Under normal operation
APC checks to see if the PHP fi le has been modifi ed before executing the cached version. If the fi le was
modifi ed, the cache is refreshed. Turning off the file-stat means that if a PHP fi le is cached, no hit
is made to the fi le system at all. This option can improve performance but you should use it with care,
because changes to PHP fi les are not be refl ected until the cache is cleared or the server is restarted. This
setting is ideal for production systems where fi les typically only change during the release of a new ver-
sion, but it should be left as the default in development environments where the PHP changes often. In
practice, however, fi le stat operations are very fast on most fi le systems so don’t expect immense speed
improvements by using this directive.

The directives apc.ttl and apc.user_ttl are used to specify the default time to live for cached
opcode fi les and user data, respectively, in seconds. The default for both is 0, which means that the
data will never be cleared. This means that it is possible for the cache to fi ll up with stale, rarely
used data, which will block additional and potentially more relevant data from being stored. A time
to live of zero may be desirable for opcode cache but it is often not ideal for user data. The meaning
of user data is covered shortly.

Installing and Confi guring eAccelerator

eAccelerator is another popular opcode caching extension. It is based on an open source project
called Turck MMCache and still retains some of the original code. It is licensed under the GNU
General Public License and like APC also makes the full source code available. However, it is main-
tained independently from the PHP community.

Installing and confi guring eAccelerator on a Linux-based system with a compiler and build environ-
ment already set up is easy:

phpize
./configure --with-eaccelerator-shared-memory
make
make install
mkdir -p /var/cache/eaccelerator
chmod 0777 /var/cache/eaccelerator

The parameter passed to the confi guration script is important for enabling user caching. If you do
not want a user cache, you can exclude it. The next step is to confi gure eAccelerator, which you
must do manually by adding a few lines to the php.ini fi le:

extension=”eaccelerator.so”
eaccelerator.shm_size=”16”
eaccelerator.cache_dir=”/tmp/eaccelerator”
eaccelerator.enable=”1”
eaccelerator.optimizer=”1”
eaccelerator.check_mtime=”1”
eaccelerator.debug=”0”
eaccelerator.filter=”“

563120c04.indd 133563120c04.indd 133 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

134 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

eaccelerator.shm_max=”0”
eaccelerator.shm_ttl=”0”
eaccelerator.shm_prune_period=”0”
eaccelerator.shm_only=”0”
eaccelerator.compress=”1”
eaccelerator.compress_level=”9”

The eaccelerator.cache_dir directive must be the same as the directory created in the previ-
ous step. All directives that include the term “shm” refer to shared memory. By setting time to live
values and a maximum size of the shared memory it is possible to prevent the cache from becoming
overwhelmingly large.

eAccelerator also has a built-in opcode optimizer that attempts to make the compiled PHP scripts
more effi cient. The optimization step occurs only during the initial compilation so it is inexpensive
and it is usually best to leave it on.

Like APC, eAccelerator does not automatically evict data from the cache unless a time to live is
specifi ed. This means that the cache can become full or too large to fi t in shared memory (and there-
fore slower). You can use the eaccelerator.shm_ttl directive to confi gure a default time to live for
all data in shared memory. Unlike APC there is no way to confi gure the value for just the user cache,
so the time to live will also affect opcode caches.

User Cache

The user cache doesn’t have anything to do with any application-level concept of a user, but is rather
a cache that can be used to store whatever the application wants. APC has user cache as a basic
feature whereas, as mentioned earlier, it needs to be enabled at compile time in newer versions of
eAccelerator.

User cache can store arbitrary values using an application-defi ned key. It is up to the application
to make sure that the key is unique. Also, when caching a value into the cache it is possible to set a
time to live for just that key. Because both extensions do not expire, cached data by default makes it
possible to exclude this value from the function call if the data never changes or include it if the data
is expected to become stale or irrelevant.

It is the responsibility of the application developer to determine the optimal time to live. There is a
defi nite trade-off between keeping data longer and incurring extra storage costs or evicting data and
requiring additional calculation if the data needs to be re-accessed later. However, when properly
tuned the cache can prevent excess hits to external resources — like the MySQL database — and
dramatically improve application performance.

The two most common methods in either extension are the set and get/fetch operations. The two
operations can be easily invoked. For APC:

apc_store(“key”, $object, 3600);
$stored_object = apc_fetch(“key”);

For eAccelerator:

eaccelerator_put(“key”, serialize($object), 3600);
$store_object = unserialize(eaccelerator_get(“key”));

563120c04.indd 134563120c04.indd 134 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

eAccelerator and APC ❘ 135

Both store methods have the same parameters in the same order: key, value, and then time to live.
In each case the key is the word “key” (which is, incidentally, a very bad key name) and the time to
live of one hour. The key difference is that eAccelerator does not automatically serialize the data.
Forgetting to serialize an object when using eAccelerator causes a fatal error when the application
tries to retrieve the data, making it diffi cult to debug errors.

In both cases it is not a bad idea to serialize objects. APC is known to have issues with some com-
plex array structures, which can be solved by serializing. Also, in both cases, it is not necessary to
serialize strings, Booleans, and numbers because those are already primitives.

The one thing that can never be stored in cache is a resource, which includes MySQL and fi le handles.
Those have to be reopened on each execution.

The most common use of the user cache is to store content from a resource that is expensive to
access, such as a database server, external HTTP server, or even the fi le system. It will always be
faster to access the data from memory.

Checking the Cache Status

It is often desirable to check the status of the cache to determine if it is effective and if the system
has the right amount of resources allocated for it. Both APC and eAccelerator have different meth-
ods for determining cache utilizations and provide different qualities of information.

In eAccelerator it is possible to display all the keys currently stored in the user cache using the func-
tion eaccelerator_list_keys(). The return value is an array of key information that looks some-
thing like this:

Array
(
 [0] => Array
 (
 [name] => key_name
 [ttl] => 1256555832
 [created] => 1256555787
 [size] => 23583
)
)

Each item in the array is a different stored value. The output tells you the name of the key, the time
when the key becomes stale, the time it was created, and the size in bytes. The value of ttl will be
–1 if the key is stale and is ready to be garbage collected; however, the key will remain in memory
until space is needed for additional storage.

Another useful function is eaccelerator_info(), which returns all the information available in
phpinfo() about eAccelerator but also some additional data such as memory usage and how many
scripts are cached:

Array
(
 [version] => 0.9.5.3
 [shm_type] => mmap_anon

563120c04.indd 135563120c04.indd 135 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

136 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 [sem_type] => spinlock
 [logo] => PHPE6F78DE9-13E4-4dee-8518-5FA2DACEA803
 [cache] => 1
 [optimizer] => 1
 [memorySize] => 33554396
 [memoryAvailable] => 5139408
 [memoryAllocated] => 28414988
 [cachedScripts] => 162
 [removedScripts] => 0
 [cachedKeys] => 1206
)

The third eAccelerator function gets a list of all the scripts currently cached. The function eaccel-
erator_cached_scripts() returns an array:

Array
(
 [0] => Array
 (
 [file] => /path/to/web/root/index.php
 [mtime] => 1256557026
 [size] => 948
 [reloads] => 1
 [usecount] => 0
 [hits] => 100
)
)

The script information is the only data available that provides a little bit of usage information. For
each script the application can determine how many times the script was accessed as well as how
many times the script has changed and was reloaded from the hard drive. Aside from that informa-
tion the application knows very little about cache usage.

The last function requires that the value of eaccelerator.allowed_admin_path is set in the PHP.ini
fi le and that the script calling the function is in that path. The allowed admin path should be password
protected to avoid unauthorized access. Other functions that are required to be in that path are func-
tions that turn on and off caching as well as the function to clean up the cache. The directory is speci-
fi ed as an absolute path on the server and not a web URI/URL.

All the eAccelerator functions in this section can be used to create an admin control panel that can
be helpful for monitoring and making runtime changes to eAccelerator. It would be useful to obtain
a percentage of cache hits versus misses and other similar information, but that is not currently
available. It is, however, available with APC.

APC provides a function called apc_cache_info() that returns various pieces of information about
the cache. The information includes the number of hits to the cache as well as the number of misses,
which is very helpful for determining the usefulness of the cache. It also determines the number of
hits to each individual key. The returned results look something like this:

Array
(
 [num_slots] => 2000

563120c04.indd 136563120c04.indd 136 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

eAccelerator and APC ❘ 137

 [ttl] => 0
 [num_hits] => 100
 [num_misses] => 25
 [start_time] => 1256555787
 [cache_list] => Array
 (
 [0] => Array
 (
 [filename] => /path/to/web/root/index.php
 [device] => 29954
 [inode] => 1130511
 [type] => file
 [num_hits] => 10
 [mtime] => 1256555787
 [creation_time] => 1256555777
 [deletion_time] => 0
 [access_time] => 1256555900
 [ref_count] => 1
 [mem_size] => 23583
)
)

The information provided is very similar to that of eAccelerator. The cache_list array also con-
tains values from the user cache. Another useful function in APC is apc_sma_info(), which returns
information about the shared memory allocation. Specifi cally, it returns the number of segments of
memory, how large a segment is, and a list of all blocks of memory:

Array
(
 [num_seg] => 1
 [seg_size] => 31457280
 [avail_mem] => 31448408
 [block_lists] => Array
 (
 [0] => Array
 (
 [0] => Array
 (
 [size] => 31448408
 [offset] => 8864
)

)

)
)

The only value that is typically useful from the shared memory allocation is the available memory.
If all the application needs to do is gather some statistics, both apc_sma_info() and apc_cache_
info() accept a $limited parameter that can be true to exclude the array of information (memory
blocks and cached keys, respectively), which is not immediately useful for statistical purposes. In the

563120c04.indd 137563120c04.indd 137 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

138 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

case of apc_cache_info() it is actually the second parameter because the fi rst is the type of cache
to return information on. See the PHP manual for more information.

Like eAccelerator, you can use the APC functions to create an administrator control panel to view
usage statistics as well as the removal of values stored in cache. However, because of the nature of
both systems the status functions become less useful the more servers that the application has.

When to Use APC and eAccelerator

APC and eAccelerator are both very useful and very similar tools. Each yields similar performance
and both provide the same functionality. APC is a more open project and may appeal to developers
who want to hack the source code to provide custom functionality; which is easy because it is based
on PECL. eAccelerator is more restrictive, but is also an active project and is open source so it can
be modifi ed as well.

It is up to the individual application team to determine which license is more appropriate and which
system is easier to work with. An application should never be deployed to a production environment
without one of these because they both increase performance dramatically.

Several other opcode caching solutions are available that provide the same functionality but are
either less common or not open source. This book chooses to use open source software whenever
possible, so proprietary closed source solutions are not included here.

Although the usefulness of the opcode caching is undeniable it is up to the application developer to
decide when and where to apply user cache techniques in particular applications.

One case in which a local user cache should never be used is when the data changes frequently. In these
cases it is extremely diffi cult (if not impossible, depending on the system architecture) to invalidate or
change a cached value across multiple machines. The result is a very ineffi cient cache where some serv-
ers might display one version of the data while other servers display a completely different version.

Finally, the biggest disadvantage of a local user cache is that it produces many copies of the same data
across multiple servers. Local user cache is not something you want to use if you have more than one
web server. Though it may be the most effi cient way to go for a single web server because it guaran-
tees that the cache is always on the local machine, it is often necessary in complex applications to
have a distributed cache to optimize resource allocation. That is where memcached comes into play.

MEMCACHED

Many of the caches that have been already discussed in this chapter have more to do with caching
precompiled code for faster execution as well as optimization. The other type of caching that you
want to take advantage of is caching data that your application normally obtains from a database —
without having to access the database. This helps to relieve the load on your database so that every
access to your site that requires data doesn’t always have to obtain that data from the database,
which on extremely busy sites can adversely affect your database’s, and your site’s, overall perfor-
mance. Furthermore, having a cache that is distributed and shared allows you to scale out by using
commodity hardware to provide distributed services such as cache. With the huge web sites that are

563120c04.indd 138563120c04.indd 138 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

memcached ❘ 139

now commonplace, scaling out, versus the traditional scaling up, is how organizations are now deal-
ing with growth. Many great innovative solutions have been borne out of necessity, and one of those
solutions that provides distributed caching is memcached.

What Is memcached?

Memcached is a high-performance, distributed memory object caching system. It is essentially a
simple multi-threaded server that allocates memory to provide a key/value cache for applications to
cache data to alleviate database load or reduce fi le system access. Applications utilize memcached
through a client that communicates with memcached using either the ASCII or binary protocol.
Memcached was created by Brad Fitzpatrick and his company Danga Interactive to reduce the
load on the stressed database for their extremely busy web site, Livejournal.com. At the time,
Livejournal.com had about 1 million users and 20 million dynamic page views per day. With the
advent of memcached, their database load dropped to almost nothing. Since then, many other web
sites have adopted the use of memcached: Facebook, Slashdot.org, Fotolog, and Digg, to name a few.
These are all sites that are extremely busy, and in recent years, there are now thousands of web sites
with the C10K problem — which is the need to serve 10,000 clients on your web site simultaneously.
Application caching using memcached is a crucial component for solving this problem because the
database is often the bottleneck for a web site. You, too, can take advantage of memcached for the
benefi t of your database and web site. This chapter introduces you to how to use memcached with
your PHP web applications.

What memcached Does for You

Memcached allows you to take extra, unused memory and
make it available to your applications that could use extra
memory for caching. It also allows you to make better use of
your memory in that it conglomerates disparate memcached
servers into one memory pool. In traditional caching systems,
memory would be used on each server separately, which was
wasteful because the capacity of this type of cache was only a
fraction of what it could be when you consider the sum total of
memory across your server farm. Also, it was complex to keep
the data stored in the cache consistent. Figure 4-1 illustrates
traditional caching per server with what memcached gives you.

How Does memcached Work?

Memcached at its core utilizes a slab allocator, providing a
dictionary, or hash lookup table where items are cached in
memory, which is networked using a server built with libevent,
a non-blocking networking library, for extremely fast perfor-
mance. The important thing to realize is that data “stored” in
memcached is not durable — meaning it’s not really stored in
a traditional on-disk sense and is gone when the memcached server goes away by being either shut
down or restarted.

Without Memcached

When Used Separately

Total Usable Cache size: 64MB

64MB Spare

web server

64MB Spare

web server

With Memcached

When Logically Combined

Total Usable Cache size: 128MB

64MB Spare

web

server

web

server

Combined cache: 128 MB

64MB Spare

FIGURE 4-1

563120c04.indd 139563120c04.indd 139 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

140 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

For more info on Slab allocators see Jeff Bonwicks article http://www.ibm
.com/developerworks/linux/library/l-linux-slab-allocator/ as well as
Steve Yen’s article about memcached’s slab allocator at http://code.google
.com/p/memcached/wiki/MemcachedSlabAllocator.

Memcached has no failover or built-in replication, so it is up to the application using memcached to
implement how data is managed and kept up to date. It should be noted that the memcached project is
one that is constantly being improved upon by the diligent efforts of Alan Kasindorf, Dustin Sallings,
Trond Norbye, and Turo Maesaka. You can always fi nd out answers to questions or other information
about memcached using the memcached user mailing list or IRC channel #memcached at Freenode.

Memcached is an LRU (Least Recently Used) cache, which means that the stored data that is the old-
est and least accessed is evicted and replaced with newer items when memcached’s memory capacity is
reached. Also, memcached enables you to set an expiration value for the object being stored, meaning
that you can provide an expiration time, in seconds, for an object you are storing to expire sometime
in the future or not at all, at least until the LRU functionality results in the object being evicted. In
terms of eviction precedence, memcached fi rst replaces expired objects followed by objects that are the
oldest and least recently used.

One thing to know about memcached is that it has a contract with the user that says “you are not
completely guaranteed that an item will be in the cache or will obtain the desired item you are request-
ing, but you will never get what you did not ask for.” This doesn’t mean that memcached is unreliable
and that you will get a ton of cache misses. It merely means that because it is an LRU cache, some-
times items could have either expired or been evicted, but you will certainly never get something you
didn’t ask for.

Memcached can run in any type of confi guration: either on one or more servers, or even multiple
instances on the same server. The memcached server itself is very simplistic; sometimes even the term
dumb server is used. This isn’t a negative connotation. It merely means that it has no concept of other
memcached servers. All the functionality and intelligence for how items are set and retrieved and on
which server they are found is implemented in the memcached client.

In terms of your application, whether you have one or a hundred memcached servers, that particular
client connection to memcached acts as if it is connected to one single source of storage — a mem-
cached cluster. This is the one of the greatest things about memcached! You can use cheap, commodity
hardware to solve your caching requirements. Also, memcached is not CPU intensive. It simply uses
memory.

Memcached, up until recently, did not require any authorization to connect. At the time of this writ-
ing, Dustin Sallings (one of the current developers of memcached) has implemented SASL support, and
by the time you read this book memcached will be a well-tested and mature feature!

The mechanism that the client uses to treat multiple memcached servers as one is called consistent
hashing. It’s implemented in the client, which determines what server an object is stored to or retrieved
from. Consistent hashing essentially computes a hashed value of the servers connected to and compares
that to the hashed value of the key of the object for computing which memcached server to use.

563120c04.indd 140563120c04.indd 140 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

memcached ❘ 141

Once the client knows which servers to request for a given item, it sends the requests in parallel to the
appropriate servers. Each server then uses its hash key lookup table to retrieve the stored item and
sends the results to the client. The client then aggregates the results together for the application to use.

Figure 4-2 shows the basic concept of how mem-
cached works — your PHP application using a
memcached library (which is discussed shortly)
connects to one or more memcached servers in a
server pool. How items are cached among these
multiple servers is accomplished through the func-
tion of consistent hashing, allowing multiple serv-
ers to be treated as a single pool in the fi rst place.

How to Use memcached

Traditionally, to store or retrieve data in your
application, you would run SQL queries or stored
procedure calls from your application to the data-
base. With caching available, you can modify your applications to take advantage of the caching to
fi rst check the cache before accessing the database.

One example of caching for a web application is the web site Slashdot.org. As most geeks know,
Slashdot has its stories, which are regularly posted and displayed on the front page or in sectional
pages. Slashdot was originally designed prior to the existence a good caching solution. The front
page was displayed dynamically, and required several SQL queries against the database were
required to obtain information such as the story title, fi rst paragraph, author’s name, user display
options, and other required data. These front page stories changed on an hourly basis at most, so
this was defi nitely something that was a good candidate for caching.

The fi rst attempt at caching for these front-page stories was accomplished using a global variable
per Apache child process. This was better than nothing, but still not the most ideal solution. Along
came memcached, which made it possible to cache this information using a database query that ran
only as often needed to keep the cache up to date versus every front page access!

Types of Caching

You will employ three primary types of caching within your applications: read-through caching for
reads, and write-through and write-back caching for writes:

➤ Read-through caching: When data is retrieved, the application checks the cache fi rst to see if
the retrieved data is already cached. If the data is in the cache, it just returns that data without
having to query the database. If the data is not in the cache, the data is fi rst obtained from
the database, then stored in the cache, and fi nally returned to the user. The idea is for a read
operation not only to obtain the requested data, but also to ensure the cache has the required
data for subsequent reads. Figure 4-3 shows a diagram of how a read-through cache works.

➤ Write-through caching: When data is written to memcached, it is also written to the data-
base, synchronously. Figure 4-4 shows how straightforward write-through caching is.

memcached

client library

PHP Application

memcached server pool

Consistent hashing

FIGURE 4-2

563120c04.indd 141563120c04.indd 141 2/18/10 9:09:05 AM2/18/10 9:09:05 AM

142 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

➤ Write-back caching: When data is written to memcached, some mechanism eventually writes
the data to the database, asynchronously. This mechanism uses a separate process that needs
to know what data items have been cached, and uses that information to read the stored data
from memcached to the databases. For any process to know what items have been cached,
you need something that at least stores the keys for stored items, which you can then use as
a catalogue to know what to fetch from memcached and then store in the database. A cata-
logue table is suitable for this. It’s simply for saving entries for each key of items that need
to be processed from memcached to the database. The mechanisms that initiate this separate
asynchronous process to store data into the database (or other persistent store) can be imple-
mented in several ways, some of which are:

➤ Using a job server such as Gearman. When the data is written to memcached, the key
of the item is stored in the catalogue table and a job is requested to process cached
items using a Gearman client either from within the application or by a trigger on
the catalogue table. Gearman then assigns the job to a worker that obtains the stored
data from memcached and stores it in MySQL, and fi nally the entry for the processed
item is removed from the catalogue table.

➤ Using the catalogue table. When the data is written to memcached, an entry is
made into the catalogue table that a cron job would then run at a given frequency.
This works much in the same way that the Gearman worker works except it oper-
ates on a batch of item keys and can run as frequently or infrequently as needed.
This is known as lazy processing/caching because you can control how often data is
retrieved from the cache and stored in the database.

Figure 4-5 shows write-back caching with three possible mechanisms, as just described, of getting
data that is stored in memcached stored into MySQL.

Start-application

request

Obtain object from

Memcached

Obtain object from

MySQL and write

to memcached

Yes NoIs object in

memcached?

memcached MySQL

FIGURE 4-3

Start-application

data store

Cache data in

memcached

Write data in

MySQL

memcached
MySQL

FIGURE 4-4

563120c04.indd 142563120c04.indd 142 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

memcached ❘ 143

MySQL

Start - write object

to memcached

Gearman

client

-OR-

 write to catalogue table,

activate trigger

-OR-

add mask to

Gearman

-OR-

Cron job reads

hash keys from

catalogue table

WorkerWorker Worker

Gearman job

server

Obtain object from

memcached given

keys(s) then write

object to MySQL

Data access process

call data

access

process

Obtain keys from

catalogue table
cron job

call data

access process

memcached

FIGURE 4-5

Another benefi t of caching is that it gives you the fl exibility to use all sorts of useful tricks. You can
use the cache to perform “lazy” processing. For instance, imagine an application that processes
RSS feeds and needs to both store the components of the feed into the database and provide a JSON
cache of the feed for an AJAX client application to display.

One part of the application, run via a web request, requests an RSS feed from the Internet. It
obtains the RSS feed content, which is an XML fi le. The application then parses this XML fi le into
a DOM Perl object and converts the XML into JSON. The JSON is then stored in memcached, and
becomes available for the application to serve it to the AJAX client. The XML DOM object is stored
as a separate object in memcached and an entry is made in a queue table containing the key of the
DOM object. By some mechanism, either a cron job or a trigger to a UDF on the queue table, yet
another process (non-web) reads from the queue table, which obtains all keys stored in this queue
table and retrieves the DOM objects stored in memcached with these key values. This process then
loops through each DOM object, storing each feed item in the database. This process also deletes
the entries in the queue table and deletes the processed DOM objects from memcached.

563120c04.indd 143563120c04.indd 143 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

144 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

What all this means is that an application that would normally perform all of these actions in the
web application layer can now be split into two processes by memcached: a web application, which
mainly has to take care of fetching and caching, and a non-web application that can run asynchro-
nously, separately from the web request, which takes care of the heavier database processing at
whatever frequency is desired.

What Is Gearman?

Gearman is yet another useful project from the same people who created memcached: Danga, Brian
Fitzpatrick, et al. It is a server that is used to dispatch, assign, or “farm out” jobs to machines that
are better suited to run these tasks than the machine having made the call. This allows tasks to be
run in parallel, allowing for load balancing and better scaling as well as being able to call functions
that are not written in the same programming language as the application code.

Gearman consists of a server — called interestingly enough gearmand — and clients: caller clients,
which make requests to the server, and workers that can perform the work requested by the clients.
There are client APIs for PHP, Perl, Ruby, Python, and others.

You can use Gearman to handle things like processing items stored in memcached (write-through
caching) as well as any processing you want to distribute to relieve the load on your main server.

In Chapter 10 you will see just how useful Gearman is, with the demonstration
of building a search engine application as a practical example of how you can
use Gearman.

Caching Strategies

You can employ different types of caching strategies for different types of data, depending on how
often that data changes and what type of data is being stored, as shown in Table 4-1:

TABLE 4-1: Caching Strategies

STRATEGY DESCRIPTION

Deterministic cache The caching described in the read-through cache example. The

client application requests data. If the data is in memcached, it’s

simply returned. If it is not, the data is obtained from MySQL, writ-

ten to memcached and then returned to the requester.

Non-deterministic cache Data that you assume to always be in memcached. This is particularly

useful for more static data. This also requires the promise that the

data is always loaded into memcached, such as when a web server

starts. Also, if possible, you should attempt to keep this cache on its

own server if it has other types of stored objects that might cause the

more static data to be replaced through the LRU mechanism.

563120c04.indd 144563120c04.indd 144 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Installing memcached ❘ 145

STRATEGY DESCRIPTION

Session or state cache The cache that you use for storing data such as user session data.

It is particularly useful for applications such as shopping carts.

Proactive caching Similar to non-deterministic cache, this is where data is automati-

cally updated in cache on a database write. You could do this

using triggers and the Memcached Functions for MySQL, which are

covered in Chapter 5.

File system or page caching Caching templates or HTML code that comprises the design of

your web site. This allows you to avoid using the fi le system to

obtain your site content.

Partial page caching Where page components are stored. Allows you to avoid using

expensive queries that provide calculations, such as comment or

story popularity, to display a page every time. Instead, you can

build these components on a regular basis and then store them in

memcached. When the page displays, it just obtains these pre-built

components from memcached and displays them!

Cache replication Functionality built into your application that writes data to multiple

memcached servers for each item stored. This ensures that you

have redundancy.

INSTALLING MEMCACHED

Installing memcached is very simple. You can either use a package installer for most Linux distri-
butions or compile the source. There is only one prerequisite package that memcached requires —
libevent. Libevent is an API that memcached uses to scale any number of open connections. You
can also install this on most Linux distributions with package management or by source.

CentOS

To install memcached on a CentOS Linux server, follow these steps:

1. Start out by running

[root@testbox ~]# yum search memcached

This produces various results. The two most important are (this is on a 64-bit CPU; on
32-bit it may be i386):

memcached.x86_64: High Performance, Distributed Memory Object Cache
memcached-selinux.x86_64: SELinux policy module supporting memcached

563120c04.indd 145563120c04.indd 145 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

146 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

The SELinux package is to ensure that memcached has the correct fi rewall settings to be
allowed to be run. Memcached runs by default on port 11211. You could just as easily set
the fi rewall to allow 11211 through.

2. Next you run the install:

[root@testbox ~]# yum install memcached.x86_64
. . . .
Dependencies Resolved

===
 Package Arch Version Repository Size
===
Installing:
 memcached x86_64 1.2.5-2.el5 epel 59 k
Installing for dependencies:
 libevent x86_64 1.1a-3.2.1 base 21 k

Transaction Summary
===
Install 2 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 80 k
Is this ok [y/N]:

As you can see, libevent is automatically included as a dependency, so there is no need to
specifi cally install it.

3. Select “y” to complete the installation. The installer will also set up the init scripts that start
memcached when the operating system is booted.

Ubuntu

With Ubuntu, use apt-cache search:

$ apt-cache search memcached
libcache-memcached-perl--Cache::Memcached--client library for memcached
libmemcache-dev--development headers for libmemcache C client API
libmemcache0--C client API for memcached memory object caching system
memcached--A high-performance memory object caching system

All of these packages are ones that you might as well install. The libmemcached packages are for the
high-performance client library Libmemcached, which is explained later in this chapter. Use apt-
get install to install these packages:

$ apt-get install memcached libmemcache-dev
libmemcache0
Reading package lists.. Done
Building dependency tree
Reading state information.. Done
The following extra packages will be installed:
 libevent1

563120c04.indd 146563120c04.indd 146 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Installing memcached ❘ 147

The following NEW packages will be installed:
 libevent1 libmemcache-dev libmemcache0
 memcached
0 upgraded, 6 newly installed, 0 to remove and 96 not upgraded.
Need to get 227kB/278kB of archives.
After unpacking 946kB of additional disk space will be used.
Do you want to continue [Y/n]? Y

As with yum, apt-get ensures libevent is installed, taking care of any dependencies.

OpenSolaris

With OpenSolaris, you can install from the package manager GUI, or from the command line:

$ pfexec pkg install SUNWmemcached
DOWNLOAD PKGS FILES XFER (MB)
Completed 1/1 11/11 0.1/0.1

PHASE ACTIONS
Install Phase 43/43

Installing Memcached from Source

You can also install memcached by source. This may be your preferred option especially if you want
the latest and greatest release. You can fi nd the web page for memcached at Danga.com: http://
www.danga.com/memcached/. From there you will fi nd a link to the latest source, or repository in
either git or subversion. If you are not using a packaged version of libevent, you’ll need to obtain
that too — from http://monkey.org/~provos/libevent/.

Now, follow these steps:

1. Download libevent:

$ wget http://monkey.org/~provos/libevent-1.4.10-stable.tar.gz

2. Compile and install libevent:

$ tar xvzf libevent-1.4.8-stable.tar.gz

$ cd libevent-1.4.8-stable

$./confi gure

$ make

$ make install

3. Download memcached:

$ wget http://memcached.googlecode.com/fi les/memcached-1.4.4.tar.gz

Or use git:

$ git clone git://github.com/memcached/memcached.git

563120c04.indd 147563120c04.indd 147 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

148 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

4. Compile and install memcached:

$ tar xvzf memcached-1.4.4.tar.gz

$ cd memcached-1.4.4

$./confi gure

$ make

$ sudo make install

STARTING MEMCACHED

Depending on where memcached is installed, you will need to start it from that location. You can
start memcached by hand. To see all options available to memcached, use the -h switch:

$ /usr/local/bin/memcached -h
memcached 1.4.4
-p <num> TCP port number to listen on (default: 11211)
-U <num> UDP port number to listen on (default: 11211, 0 is off)
-s <file> UNIX socket path to listen on (disables network support)
-a <mask> access mask for UNIX socket, in octal (default: 0700)
-l <ip_addr> interface to listen on (default: INADDR_ANY, all addresses)
-d run as a daemon
-r maximize core file limit
-u <username> assume identity of <username> (only when run as root)
-m <num> max memory to use for items in megabytes (default: 64 MB)
-M return error on memory exhausted (rather than removing items)
-c <num> max simultaneous connections (default: 1024)
-k lock down all paged memory. Note that there is a
 limit on how much memory you may lock. Trying to
 allocate more than that would fail, so be sure you
 set the limit correctly for the user you started
 the daemon with (not for -u <username> user;
 under sh this is done with ‘ulimit -S -l NUM_KB’).
-v verbose (print errors/warnings while in event loop)
-vv very verbose (also print client commands/responses)
-vvv extremely verbose (also print internal state transitions)
-h print this help and exit
-i print memcached and libevent license
-P <file> save PID in <file>, only used with -d option
-f <factor> chunk size growth factor (default: 1.25)
-n <bytes> minimum space allocated for key+value+flags (default: 48)
-L Try to use large memory pages (if available). Increasing
 the memory page size could reduce the number of TLB misses
 and improve the performance. In order to get large pages
 from the OS, memcached will allocate the total item-cache
 in one large chunk.
-D <char> Use <char> as the delimiter between key prefixes and IDs.
 This is used for per-prefix stats reporting. The default is

563120c04.indd 148563120c04.indd 148 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Starting memcached ❘ 149

 “:” (colon). If this option is specified, stats collection
 is turned on automatically; if not, then it may be turned on
 by sending the “stats detail on” command to the server.
-t <num> number of threads to use (default: 4)
-R Maximum number of requests per event, limits the number of
 requests process for a given connection to prevent
 starvation (default: 20)
-C Disable use of CAS
-b Set the backlog queue limit (default: 1024)
-B Binding protocol--one of ascii, binary, or auto (default)
-I Override the size of each slab page. Adjusts max item size
 (default: 1mb, min: 1k, max: 128m)
-S Turn on Sasl authentication

The most common options you will use are –u and –m. The fi rst option, -u, specifi es the user,
defaults to the current user, and won’t let you run memcached as root, so if you start memcached as
root, you will have to specify a non-root user. The second option, –m, is the size in megabytes of the
block of memory that will be slated for memcached. The default is 64 megabytes.

You cannot (nor would you want to) run memcached as the root user. If you do,
memcached will not start and will inform you that you have to use the –u fl ag.

If you are logged in as yourself, and just want to run memcached with defaults, you can certainly
just start it, backgrounded:

$ /usr/local/bin/memcached &

Or with the daemonize fl ag:

$ /usr/local/bin/memcached -d

If you want to run memcached in super-mega-uber verbose mode to a log fi le:

$ /usr/local/bin/memcached –u username –vv >>/tmp/memcached.log 2>&1 &

The –vv fl ag causes memcached to print out any request to the server. You can see exactly what
memcached is doing if you run it with –vv. This can be very useful for debugging your application
to ensure that it is using memcached and to see the items being set or retrieved.

Startup Scripts

Alternatively, you can use startup scripts that come with memcached if you are running a UNIX
variant that uses SYSV startup scripts. You can fi nd them in the scripts directory of the source
package. Some of these scripts are a bit dated and you will most likely have to edit them for the par-
ticular setup of your system. This requires system privileges, such as root (or using sudo):

 $ ls
memcached-init memcached.sysv memcached-tool start-memcached

563120c04.indd 149563120c04.indd 149 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

150 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

Debian-Based Startup Scripts

memcached-init relies on start-memcached, which you also need to edit and place in a directory
specifi ed in memcached-init. Once you have memcached-init edited, copy it as /etc/init.d/
memcached. Make sure to set the correct permissions:

chmod 755 /etc/init.d/memcached

Then set up the run-level permissions for this script (linked to their appropriate run-levels) to ensure
that memcached automatically starts up at system boot:

update-rc.d memcached-init defaults
 Adding system startup for /etc/init.d/memcached-init ..
 /etc/rc0.d/K20memcached-init -> ./init.d/memcached-init
 /etc/rc1.d/K20memcached-init -> ./init.d/memcached-init
 /etc/rc6.d/K20memcached-init -> ./init.d/memcached-init
 /etc/rc2.d/S20memcached-init -> ./init.d/memcached-init
 /etc/rc3.d/S20memcached-init -> ./init.d/memcached-init
 /etc/rc4.d/S20memcached-init -> ./init.d/memcached-init
 /etc/rc5.d/S20memcached-init -> ./init.d/memcached-init

Redhat-Based Startup Scripts

You must edit scripts/memcached.sysv. You will need to run these steps as root or using sudo. You
must ensure that the correct paths, port, and the user that memcached runs as are used:

PORT=11211
USER=nobody
MAXCONN=1024
CACHESIZE=64
OPTIONS=”“

One other change you might have to make to ensure the path to memcached is known to the startup
script is to add the variable prog_path, right after prog:

prog=”memcached”
prog_path=”/usr/local/bin/memcached”

Then you would change:

daemon memcached -d -p $PORT -u $USER -m $CACHESIZE -c $MAXCONN. . .

to:

daemon $prog_path -d -p $PORT -u $USER -m $CACHESIZE -c $MAXCONN. . .

Once the script is ready, it can be copied as /etc/init.d/memcached. To set up the script to be
started upon system reset, fi rst add it:

[root@host]# chkconfig --add memcached

Verify that it will still need to have its levels set up:

 [root@host]# chkconfig --list memcached
memcached 0:off 1:off 2:off 3:off 4:off 5:off 6:off

563120c04.indd 150563120c04.indd 150 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Starting memcached ❘ 151

Set memcached to run in the proper levels (2, 3, 4, 5):

[root@host]# chkconfig --level 2345 memcached on

Then verify that the changes were made:

 0:off 1:off 2:on 3:on 4:on 5:on 6:off

OpenSolaris

Memcached is registered as a service in SMF and you must use svccfg if you want to start mem-
cached with specifi c options. This is documented in memcached (1M).

To start memcached simply run the following command:

$ svcadm enable memcached

To check the status of memcached, run the following command:

$ svcs memcached
STATE STIME FMRI
online Dec_09 svc:/application/servers/buildbot:memcached

To stop memcached simply run the following command:

$ svcadm disable memcached

Testing Your memcached Installation

You can verify that you have installed memcached successfully as well as gain a simple understand-
ing of how easy it is to run memcached. You have been shown that you can use startup scripts to
automatically have memcached start up along with the operating system as well as have an easy
start/stop control over the server. Sometimes you may want to debug your application to deter-
mine if it is correctly caching. In this case, you can start up memcached by hand (not with the init
script — and make sure to shut down memcached with the init script before doing the following
steps). The command-line option to run memcached to be verbose about what the server is doing is
the –v fl ag, to which you append more “v”s to make memcached print more verbose messages. The
–vvv is the fl ag that gives you all the details of what memcached is doing, including the internal
function calls it is making. The next example uses only –vv because all you want to see is mem-
cached setting and fetching values; two “v”s are suffi cient for this level of detail:

mybox:~ username$ /usr/local/bin/memcached –vv

This is running memcached with the –vv fl ag, non-backgrounded, so leave the terminal you started
it in open. In another terminal, telnet the memcached server at port 11211 (the default memcached
port) to see if your server is running and that you can run a few commands:

mybox:~ username$ telnet localhost 11211
Trying::1..
Connected to localhost.
Escape character is ‘^]’.
version
VERSION 1.4.4

563120c04.indd 151563120c04.indd 151 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

152 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

set t1 0 0 4
test
STORED
get t1
VALUE t1 0 4
test
END
delete t1
DELETED
get t1
END

Though this chapter hasn’t covered the various memcached operations yet, you can easily under-
stand what is being done here. As mentioned in the introduction, memcached has both an ASCII
and a binary client protocol. The preceding example uses the ASCII protocol (which a human can
type into a telnet session), which is a very simple protocol that is described at http://github.com/
memcached/memcached/blob/master/doc/protocol.txt.

This process has the following steps:

1. The version command is run, which produces as response of 1.4.4 the version of this spe-
cifi c memcached server running locally.

2. The set command is run, along with the key name “t1”, fl ags, expiration value, and the
length of the data you intend to cache in memcached for this key. The response of STORED
verifi es that t1 was stored.

3. The get command is run, specifying only the key, which results in the value for this item
being fetched.

4. A delete command deletes the item using the key “t1” with a response of DELETED verifying
the item was deleted, which a subsequent get of “t1” shows to not be available anymore.

Back in the terminal, you had started memcached with the –vv fl ag, you can see the server doing
its job:

<32 version
>32 VERSION 1.4.4
<32 set t1 0 0 4
>32 STORED
<32 get t1
>32 sending key t1
>32 END
<32 delete t1
>32 DELETED
<32 get t1
>32 END

Which indeed it is!

You can also use this if you are troubleshooting caching issues in your application — such as deter-
mining if items are being cached on a given server or whether your application is using the cache to
obtain data fi rst before attempting to obtain data from the database.

563120c04.indd 152563120c04.indd 152 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Libmemcached ❘ 153

memcached Clients

To use memcached, as with any server, you also need a client to interact with the server. As already
mentioned, the client is where all the functionality is implemented for making memcached instances
work as one single unit, or pool of cache through consistent hashing. The clients you will want to be
familiar with as a PHP developer are:

➤ libmemcached: This is a fast and effi cient C library originally written by Brian Aker, now
actively maintained by Brian Aker, Trond Nordbye, and several other developers that many
different interpreted languages such as PHP, Perl, Python, and Ruby wrap around.

➤ PECL/memcached: This is a newer PHP PECL memcached client, interfaced to
libmemcached.

➤ PECL/memcache: This is the original PHP memcached client (note the “e” versus “ed” at the
end), implemented in pure PHP, not wrapped around any C library.

➤ PHP libmemcached: This client is a wrapper of libmemcached.

So, what client do you use? Well, the most recent, actively developed and feature-rich client is PECL/
memcached. PECL/memcached, because it uses libmemcached, has more features than PECL/
memcache:

➤ Optional use of the new memcached binary protocol

Supports CAS operations➤

➤ Supports delayed get

➤ Supports get/set to a specifi c server

Can store numeric values natively versus converting them to string values➤

Allows you to set timeout as well as other options (behaviors) in the client➤

Supports append and prepend operations➤

PECL/memcache does have one feature that PECL/memcached does not: Automatic key fi xup for
invalid keys. PECL/memcached will return a false for invalid keys.

LIBMEMCACHED

Libmemcached is a faster memcached client library written in C that both the PECL/Memcached (the
PHP client, discussed in the next section) and the Memcached Functions for MySQL (discussed in
the next chapter) are built on top of. It is a faster, more effi cient, thread-safe, full-featured C library
that has a signifi cant performance gain over existing client libraries. Not only that, but you also have
much more control over how the client functions because you can set the client behavior (memcached_
behavior_set()) with numerous behavior settings such as hashing algorithm or controlling whether
the client is blocking or non-blocking, providing CAS (Check and Set) support, and sorting server host
sorting, and so on.

563120c04.indd 153563120c04.indd 153 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

154 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

This section gives you some familiarity with libmemcached because it is now the de facto client
library on top of which so many other interpreted languages, including PHP, are built. Also, lib-
memcached has a number of useful client tools that can help you to work with memcached directly
rather than having to write a utility in an interpreted language.

Libmemcached Features

Some of the design notes for memcached are that libmemcached has:

➤ Synchronous and Asynchronous support.

A high degree of control in setting how the client itself behaves.➤

➤ The ability to fetch and store data by a master key which means you can group values or
objects to a specifi c server.

TCP and Unix Socket protocols.➤

A half dozen or so different hash algorithms.➤

Implemented new CAS, replace, and append operators.➤

Extensive documentation. Man pages cover, in detail, the entire API.➤

➤ Implemented both modulo and consistent hashing solutions, having to do with how data is
partitioned among servers within the cluster.

Libmemcache Utility Programs

Libmemcached also includes several command-line tools, shown in Table 4-2, that allow you to
debug your memcached cluster as well as gauge its performance:

TABLE 4-2: Command-Line Tools

COMMAND DESCRIPTION

memcat Copies the value of a key to standard output

memflush Flushes the contents of your servers

memrm Removes a key(s) from the server

memcp Copies fi les to a memached server

memstat Dumps the stats of your servers to standard output

memslap Generates testing loads on a memcached cluster

Also of particular interest to readers of this book, libmemcached provides several client interfaces/
libraries to other languages such as Ruby, Python, Perl, and for this book, PHP.

563120c04.indd 154563120c04.indd 154 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Libmemcached Utility Programs ❘ 155

Installing libmemcached

You can install libmemcached via the OS vendor’s specifi c install utilities such as yum or apt-get;
however, because libmemcached is a new project and changes often, it’s preferable to compile lib-
memcached from source or use the latest RPM from the libmemcached project page if you’re using a
Linux distribution that utilizes RPM. The project page for libmemached is found at http://
tangent.org/552/libmemcached.html.

The following shows the code for installing via RPM, Ubuntu/Debian and source:

➤ RPM (Redhat, Suse, Fedora, Centos):

wget http://download.tangent.org/libmemcached-0.34-1.x86_64.rpm
rpm –ihv libmemcached-0.34-1.x86_64.rpm

Ubuntu/Debian:➤

$ sudo apt-cache search libmemcached
libmemcached-dbg - Debug Symbols for libmemcached
libmemcached-dev - Development files for libmemcached
libmemcached-tools - Commandline tools for talking to memcached via libmemcached
libmemcached2 - A C and C++ client library to the memcached server
sudo apt-get install libmemcached2

Source:➤

tar xvzf libmemcached-0.35.tar.gz
./configure
make
sudo make install

At this point, libmemcached will be installed. You can write programs that utilize the libmemcached
library (including the PHP driver PECL/memcached, discussed in the section “PECL/Memcached”)
as well as use the utility programs.

LIBMEMCACHED UTILITY PROGRAMS

As mentioned before, libmemcached includes useful utility programs that provide various function-
alities for testing your memcached cluster. These utilities are simple to use and all specify a list of
servers included with the servers option.

memcat

This utility displays the output of one or more cached values in memcached by key value. For example,
two values were stored using the code:

$memc = new Memcached();

$servers array(
 array(‘localhost’, 11211),

563120c04.indd 155563120c04.indd 155 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

156 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 array(‘localhost’, 22122));

$memc->set(‘somekey’, “This is a value in memcached”);
$memc->set(‘anotherkey’, 123456789);

You can view these stored values by using memcat:

$ memcat –servers=localhost:22122,localhost:11211 somekey anotherkey
This is a value in memcached
123456789

This code is a convenient means to quickly check what you have stored for a certain value without
writing any code. Now, if you have stored a PHP object or other data structure — something other
than a simple scalar, the object will probably not display correctly because it is stored serialized in
memcached. You can also use the following code to fi gure out what value is cached on what server:

$ memcat --servers=localhost:11211 somekey anotherkey
123456789

$ memcat --servers=localhost:22122 somekey anotherkey
This is a value in memcached

As you can see, in both cases, both keys were used and only one value was fetched. In the fi rst case,
you see how the value for anotherkey is obtained from the memcached server running on port
11211. In the second case, the value for somekey is obtained from the memcached server running
on port 22122.

 memfl ush

This utility does what the name implies — cleans house. It fl ushes all servers listed in the argu-
ment to --servers. The following code shows the usage and result after using memflush (or lack
thereof).

$ memflush --servers=127.0.0.1:22122,127.0.0.1:11211

$ memcat --servers=localhost:22122,localhost:11211 somekey anotherkey

$

memcp

This is a really nifty utility that allows you to copy a fi le to memcached. The fi le is keyed with the
name of the fi le sans directory path

$ cat /etc/redhat-release
CentOS release 5.2 (Final)

$ memcp --servers=localhost:11211 /etc/redhat-release
$ memcat --servers=localhost:11211 redhat-release
CentOS release 5.2 (Final)

563120c04.indd 156563120c04.indd 156 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

Libmemcached Utility Programs ❘ 157

memstat

This utility lists the status of one or more memcached servers — just like the PECL/Memcached
method stats().

$ memstat --servers=localhost:11211
Listing 1 Server

Server: localhost (11211)
 pid: 3055
 uptime: 1367933
 time: 1229221949
 version: 1.2.6
 pointer_size: 64
 rusage_user: 2.904558
 rusage_system: 2.159671
 curr_items: 3
 total_items: 18
 bytes: 323
 curr_connections: 2
 total_connections: 80
 connection_structures: 3
 cmd_get: 103
 cmd_set: 18
 get_hits: 78
 get_misses: 25
 evictions: 0
 bytes_read: 323
 bytes_written: 323
 limit_maxbytes: 67108864
 threads: 1

memrm

This utility removes a value from memcached:

$ memrm --servers=localhost:11211 redhat-release

$ memcat --servers=localhost:11211 redhat-release

$

memslap

This utility is a load generation simulation and benchmark tool for memcached servers. The options
it takes can be displayed with –-help

$ memslap --help
memslap v1.0

Generates a load against a memcached cluster of servers.

Current options. A ‘=’ means the option takes a value.

 --concurrency=

563120c04.indd 157563120c04.indd 157 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

158 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

Number of users to simulate with load.
 --debug
Provide output only useful for debugging.
 --execute-number=
Number of times to execute the given test.
 --flag
Provide flag information for storage operation.
 --flush
Flush servers before running tests.
 --help
Diplay this message and then exit.
 --initial-load=
Number of key pairs to load before executing tests.
 --non-blocking
Set TCP up to use non-blocking IO.
 --servers=
List which servers you wish to connect to.
 --tcp-nodelay
Set TCP socket up to use nodelay.
 --test=
Test to run (currently “get” or “set”).
 --verbose
Give more details on the progression of the application.
 --version
Display the version of the application and then exit.
 --binary
forgot to document this function :)

An example of running memslap with a concurrency of 100 and 10 test runs is:

$ memslap --servers=localhost:22122,localhost:11211 --concurrency=500
 --execute-number=20 --verbose

Threads connecting to servers 500
Took 1.020 seconds to load data

As you can see, this is quite faster than such a test would be against a database server!

memerror

This prints the canonical error message for a given memcached server error code. The example that
follows uses an error code of 13.

memerror 13

CONNECTION DATA DOES NOT EXIST

PECL/MEMCACHED

For client access to memcached, PECL/memcached provides numerous methods of the Memcached
class to access a pool of memcached servers. The fi rst thing in understanding how to use memcached
using a client such as PECL/memcached is to know the basic operations that you perform on mem-
cached to either retrieve from memcached or cache an item in memcached.

563120c04.indd 158563120c04.indd 158 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

PECL/Memcached ❘ 159

You can run the code snippets presented in this section with the programs that
the author included with the source code.

You have already seen some simple set, get, and delete operations. These of course are the core
operations involved in any key/value stored, but there is more to memcached than this. Being that
memcached is a key/value store, you will use a key for all data operations. The operations available
are shown in Table 4-3:

TABLE 4-3: Available PECL/memcached Operations

OPERATION DESCRIPTION

Set Caches an item in memcached using the key specifi ed, whether it is already in

memcached or not. In addition to a key for the item, an expiration time, in sec-

onds, means you can determine how long you want this item to remain in cache

(for all “set” operations). As mentioned, memcached is an LRU cache, and nor-

mally items expire that are least recently used and have the longest time value.

This expiration value essentially makes it so the item is marked as expired and

the space becomes available for use by memcached.

Add Caches an item in memcached, but only if it doesn’t already exist for the key

specifi ed. You can also provide an expiration time, in seconds, for how long you

want this item to remain in cache.

Replace Replaces an item in memcached only if it exists for the key specifi ed, replacing

the value of the existing item for that key. An expiration value in seconds can

also be set.

CAS Stands for check and set. Only cache an item if no one else has updated the

item since you last fetched it.

Append Appends the supplied value to the end of the existing value for the given item

specifi ed by key.

Prepend Prepends the supplied value to the beginning of the existing value for the given

item specifi ed by key.

Get Obtains an item from memcached for the given key.

Delete Deletes an item from memcached for a given key.

Increment Increments the value (numeric) of an item for the key specifi ed. You can use

this as a sequence.

Decrement Decrements the value (numeric) of an item for the key specifi ed. You can use

this as a “reverse” sequence.

continues

563120c04.indd 159563120c04.indd 159 2/18/10 9:09:06 AM2/18/10 9:09:06 AM

160 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

OPERATION DESCRIPTION

Stats Obtains the statistics for the memcached server. This returns a list of various

statistic names and values for each memcached server in the pool of servers

specifi ed in the connection.

Flush_all Flushes all items from the pool of memcached servers specifi ed in the

connection.

Version Reports the version of memcached.

Now that you’ve seen the essential operations with memcached, next you learn how to use PECL/
memcached to perform these operations and effectively implement caching.

Connecting, Instantiation

To begin using memcached, you must connect to one or more memcached servers. Before you con-
nect to a memcached server pool, you will instantiate a Memcached instance. The usage of the con-
structor is:

Memcached::__construct([string $persistent_id]);

The constructor returns a handle to the connection pool that you use for all subsequent method
calls. The $persistent_id value is optional and represents a unique ID you assign this connection
and makes it so the instance persists between requests. If you do not use a $persistent_id value,
the instance is destroyed at the end of the request. An example of this would be:

$memc = new Memcached(‘mymemc’);

Another step you can perform when connecting to memcached is to set some client options, or
behaviors, for the duration of the connection:

public bool Memcached::setOption(int $options, mixed $value);

The behaviors include utilizing different distribution and hashing algorithms, determining the type
of serializer to use for serializing and de-serializing objects, determining timeout values, using the
binary protocol (or not), as well as many other options. Please refer to the documentation on the full
list of options you can set. The setOption() method returns a true or false for success or failure.

Next, you need to set which servers comprise the memcached pool you are connecting to. For this,
the Memcached method addServer() or addServers() is used:

public bool Memcached::addServer(
 string $host,
 int $port
 [, int $weight])

public bool Memcached::addServers(array $servers)

TABLE 4-3 (continued)

563120c04.indd 160563120c04.indd 160 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 161

addServer() takes a single $host, $port, and optional $weight, whereas addServers() takes an
array of servers where each array member is an array of a host, port, and optional weight. What is
the weight value? This value places a value of precedence of a given server for determining which
server among all specifi ed in the pool in which to cache an item. This affects the distribution of how
items are stored as a whole.

The following is an example of how a connection is initiated:

<?php

setting id ‘mymemc’
$memc = new Memcached(‘mymemc’);

prefix every item key with “myapp:”
$memc->setOption(Memcached::OPT_PREFIX_KEY, “myapp:”);

set server distribution to consistent hashing
$memc->setOption(Memcached::OPT_DISTRIBUTION, Memcached::DISTRIBUTION_CONSISTENT);

two servers
$servers = array (
 array (‘192.168.1.126’, 11211),
 array (‘127.0.0.1’, 11211)
);

now add the servers
$memc->addServers($servers);

$memc->addServer(‘192.168.1.133’, 11211);

?>

As shown, fi rst a Memcached object is instantiated. Next two options are set: Memcached::OPT_
PREFIX_KEY and Memcached::OPT_DISTRIBUTION.

➤ OPT_PREFIX_KEY: Causes the key of the stored item to be prefi xed with the value specifi ed,
in this case with myapp:. This allows you to give a namespace to your keys so what you are
caching can be per application, all without having to explicitly set the prefi x value.

➤ OPT_DISTRIBUTION: Specifi es the type of server distribution algorithm that determines which
server sets or fetches an item to or from. In this example, consistent hashing is used. Again,
to see all options, please refer to the documentation (http://us3.php.net/manual/en/
memcached.constants.php).

Next, you defi ne an array with two members, two arrays, each a server IP address and port, and
then add it to the Memcached connection handle using addServers(). A third single server is added
using addServer(). Note that you generally want to defi ne all your servers prior to fetching or set-
ting any of your items in memcached, otherwise changing the list of servers changes the distribution
of how items are stored and could result in cache misses.

563120c04.indd 161563120c04.indd 161 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

162 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

Setting Client Behavior

PECL/memcached has client behavior functions that allow you to set and retrieve numerous set-
tings, which determine how the client behaves such as distribution, network timeouts, serializer,
automatic prefi xing of keys, the hashing algorithm used. You set these behaviors, or options, prior
to connection. You can fi nd the numerous options you have at your disposal can at the PHP site
http://us2.php.net/manual/en/memcached.constants.php.

The following example shows how you can both set and retrieve some of the client options. In this
case, the default distribution is printed (which is DISTRIBUTION_MODULA) and then is changed to
DISTRIBUTION_CONSISTENT. Then the serializer is changed to use JSON for encoding. The server
array is stored and then retrieved.

$memc = new Memcached();

// find out the current distribution type
$distribution = $memc->getOption(Memcached::OPT_DISTRIBUTION);

// since the value is numeric, set to a text value
$distribution = $distribution == Memcached::DISTRIBUTION_CONSISTENT ?
 “CONSISTENT, KETAMA”: “MODULA”;

echo “The distribution is currently: $distribution\n”;

$memc->setOption(Memcached::OPT_DISTRIBUTION, Memcached::DISTRIBUTION_CONSISTENT);

$distribution = $memc->getOption(Memcached::OPT_DISTRIBUTION);
$distribution = $distribution == Memcached::DISTRIBUTION_CONSISTENT ?
 “CONSISTENT, KETAMA”: “MODULA”;

echo “The distribution is now set to: $distribution\n”;

// a very cool feature is setting the serializer to JSON
$memc->setOption(Memcached::OPT_SERIALIZER, MEMCACHED_SERIALIZER_JSON);

two servers in the pool
$servers = array (
 array (‘192.168.1.106’, 11211),
 array (‘127.0.0.1’, 11211)
);

now add the servers
$memc->addServers($servers);
$memc->addServer(‘192.168.1.125’, 11211);

// set a value
if ($memc->set(‘t1’, $servers)) {
 // if true, success setting
 echo “t1 was set.\n”;
}
else {
 // if false, failed to set
 echo “failed to set t1\n”;

563120c04.indd 162563120c04.indd 162 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 163

}

// now fetch t1
$t1= $memc->get(‘t1’);

$result_code= $memc->getResultCode;
if ($result_code == Memcached::RES_SUCCESS) {
 print_r($t1);
}
elseif ($result_code == Memcached::RES_NOTFOUND) {
 print “t1 not found\n”;
}

Code snippet memc_behaviors.php

Just to see how changing the serializer to use JSON works, telnet port 11211 of the memcached
server where t1 was cached and you will see that it is in fact serialized using JSON! This can be very
useful if you are storing data that could simply be fetched and displayed through JavaScript in your
application. It also makes it possible to share data with other components or applications that might
be written in other languages.

get t1
VALUE t1 4 95
a:2:
{i:0;a:2:{i:0;s:13:”192.168.1.106”;i:1;i:11211;}
 i:1;a:2:{i:0;s:9:”127.0.0.1”;i:1;i:11211;}}
END

Putting and Retrieving Data

Now that you have a memcached client connection, the next thing to demonstrate is how to cache
and retrieve that data to/from memcached. When caching items in memcached, the value can be a
string, a number, or a serialized PHP variable or object. Regarding objects, PECL/memcached auto-
matically handles serialization — if you cache a PHP object, for instance an array. The Memcached
class methods for doing this are:

➤ add: The method add() adds a given item keyed by $key with the value of $value, with the
optional integer $expiration (seconds). The method addByKey() has as its fi rst value the
$server_key variable. This is an arbitrary string value you use throughout your code that
causes items to be cached on a specifi c server as opposed to using a distribution algorithm.
It should be noted that you cannot specify the particular server — the server chosen for
the server key is a function of consistent hashing. This method can be useful if you want to
ensure particular items are on one server. An optional numeric expiration time (in seconds)
can be specifi ed by $expiration. Upon success, true will be returned, and upon failure false
will be returned. Failures of the add operation includes either a server error or attempting to
add an item for a key that already exists.

public bool Memcached::add(
 string $key,
 mixed $value

563120c04.indd 163563120c04.indd 163 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

164 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 [, int $expiration])

public bool Memcached::addByKey(
 string $server_key,
 string $key,
 mixed $value
 [, int $expiration])

➤ set: The method set()sets, regardless of whether it already exists, a given item keyed by
$key with the value of $value, with the optional expiration time in seconds. The method
setByKey() will set a given item, regardless of whether it exists, to a specifi c server specifi ed
by the arbitrary string value $server_key.

public bool Memcached::set(
 string $key,
 mixed $value [, int $expiration])

public bool Memcached::setByKey(
 string $server_key,
 string $key,
 mixed $value
 [, int $expiration])

➤ replace: The method replace()replaces the value of an existing item with the value of
$value keyed by $key. You can specify an optional numeric expiration time (in seconds).
The method replaceByKey() takes as its fi rst argument an arbitrary string value you specify
within your application to ensure items are stored on a specifi c server. The method returns
true upon success, and false upon failure. Possible failures of the replace operation could be
either a server error or attempting to replace a non-existing item.

public bool Memcached::replace(
 string $key, mixed $value
 [, int $expiration])

public bool Memcached::replaceByKey(
 string $server_key,
 string $key,
 mixed $value
 [, int $expiration])

➤ get: The methods get() and getByKey() fetch an item from memcached for a given key.
As you can already assume, getByKey() lets you specify a server key as the fi rst argument.
Also, just as the set* methods automatically serialize PHP objects, likewise get methods de-
serialize PHP objects.

public mixed Memcached::get(
 string $key
 [, callback $cache_cb
 [, double &$cas_token]])

public mixed Memcached::getByKey(
 string $server_key,
 string $key

563120c04.indd 164563120c04.indd 164 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 165

 [, callback $cache_cb
 [, double &$cas_token]])

The arguments for get() are fi rst the key of the item, the string value $key. The next argument,
which is optional, is a read-through caching callback, which is a function that you specify that
obtains the item data being requested should it not exist in memcached. The last argument is an
optional reference variable for obtaining the CAS token value of the item to be used for CAS opera-
tions. For getByKey(), as with the other *ByKey methods, the fi rst argument is the string $server_
key value, followed by the same order and number of arguments as get().

The following are some simple examples of how to use these methods. Assume for these examples that
the previously shown connection has already been made. The fi rst example is a simple set and get:

// set a value
if ($memc->set(‘t1’, ‘some value’)) {
 // if true, success setting
 echo “t1 was set.\n”;
}
else {
 // if false, failed to set
 echo “failed to set t1\n”;
}

// now fetch t1
$t1= $memc->get(‘t1’);
// Obtain the result code
$result_code= $memc->getResultCode;
if ($result_code == Memcached::RES_SUCCESS) {
 print “t1 is $t1\n”;
}
elseif ($result_code == Memcached::RES_NOTFOUND) {
 print “t1 not found\n”;
}

Code snippet memc.php

As you can see, this example is painfully simple. You have a key and a value. You set the value using
the key and then you can retrieve it using the key. This is memcached! Of course there is more than
just get and set. The next example shows you that you can add and replace, depending on whether
the item already is in memcached.

// if $val exists, then it can be replaced
if ($val = $memc->get(‘t2’)) {
 // if successful replace, then print so
 if ($memc->replace(‘t2’, ‘replaced value’)) {
 echo “replaced t2’s value\n”;
 }
 else {
 // otherwise, print that replace failed
 echo “failed to replace t2’s value\n”;
 }
}
// if the value didn’t exist, then add it
else {

563120c04.indd 165563120c04.indd 165 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

166 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 // success
 if ($memc->add(‘t2’, ‘added value’)) {
 echo “added t2’s value\n”;
 }
 // failure
 else {
 echo “failed to add t2’s value\n”;
 }
}

Code snippet memc.php

In this example, what is shown is that if a value exists using a get, it is replaced. Otherwise, add the
value. There are times when you may prefer to use replace() or add(), but you most likely will just
use set() for simplicity.

The next snippet shows how expiration works:

// set expiration to 6 seconds
if ($memc->set(‘t3’, ‘this will expire in 6 seconds’, 6)) {
 $i = 0;
 // loop until the value has expired, using print statements to demonstrate
 while(1) {
 if ($val = $memc->get(‘t3’)) {
 echo “\$val (t3) still exists after $i seconds.\n”;
 sleep(1);
 $i++;
 }
 else {
 echo “\$val (t3) has expired after $i seconds.\n”;
 break;
 }
 }
}

The output of this shows that expirations work as advertised:

$val (t3) still exists after 0 seconds.
$val (t3) still exists after 1 seconds.
$val (t3) still exists after 2 seconds.
$val (t3) still exists after 3 seconds.
$val (t3) still exists after 4 seconds.
$val (t3) still exists after 5 seconds.
$val (t3) has expired after 6 seconds.

Setting an expiration value is useful when you want to refresh the cached items in your data more
often. For such functionality, you can add a check for the existence of a value that has expired,
which if not present (expired) would force a re-caching of the value.

Append and Prepend

Two other data modifi cation operations are append and prepend. These are useful operations par-
ticularly for string data — you wouldn’t want to perform these operations against serialized objects!

563120c04.indd 166563120c04.indd 166 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 167

For example, if you have some components of your site’s design or even a block of HTML you’ve
already cached and you want to concatenate data to the beginning or end of them, these methods
are what you use to do so.

You can use the methods append() and appendByKey() to concatenate a value to the end of the
value of an existing item, and use prepend() and prependByKey() to concatenate a value to the
beginning of a value of an existing item:

public bool Memcached::append(string $key, string $value);

public bool Memcached::appendByKey(string $server_key, string $key, string $value);

public bool Memcached::prepend(string $key, string $value);

public bool Memcached::prependByKey(string $server_key,
 string $key, string $value);

One demonstration of how you might use something like this is in some sort of application that
posts a listing of RSS items for a blog application as seen in the following code.

// turn compression off
$memc->setOption(Memcached::OPT_COMPRESSION, false);
$memc->set(‘rss_entries’, $entries);
$entries = ‘’;
$header = “<rss version=’2.0’>\n <channel>\n”;
$footer = “ <channel>\n</rss>\n”;

// get a new rss entry
$entry = getNewRssEntry();

// prepend to the beginning of the entries
if ($memc->prepend(‘rss_entries’, $entry)) {
 echo “prepended\n”;
}
else {
 echo “not prepended.\n”;
}

// get the entries
$entries = $memc->get(‘rss_entries’);

// display the entries, should have the new entry at the beginning
displayRss($header . $entries . $footer);

Code snippet pend.php

In this example, there is already a cached block containing existing entries. The function
getNewRssEntry()obtains the latest entry content with some regularity, and that new entry
prepends to the beginning of the existing entries. The newly modifi ed entries then wraps with a
header and footer and displays using displayRss().

563120c04.indd 167563120c04.indd 167 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

168 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

Delete

Obviously, you may want to also delete items in memcached. The delete() and deleteByKey()
methods perform this operation. delete() has as its fi rst argument the string value, $key, of the
item you want to delete. deleteByKey() has as its fi rst argument the server key $server_key, fol-
lowed by $key and $time.

public bool Memcached::delete(string $key)

public bool Memcached::deleteByKey(
 string $server_key,
 string $key
)

A simple example is:

memc->delete(‘t1’);

Increment and Decrement

Increment and decrement operations enable you to have a sequence or global counter — not only
one that increments, but also decrements — using memcached. Unlike a database, you don’t have to
concern yourself with what database server you connect to nor have any replication complexity with
an auto-increment value if you are using a dual-master setup. Also, you can explicitly specify how
much you wish to increment or decrement your sequence. However, the one issue is that memcached
is not a durable store. The methods increment() and decrement() provide the increment and dec-
rement operations:

public int Memcached::increment(
 string $key
 [, int $offset])

public int Memcached::incrementByKey(
 string $server_key,
 string $key
 [, int $offset])

public int Memcached::decrement(
 string $key
 [, int $offset])

public int Memcached::decrementByKey(
 string $server_key,
 string $key
 [, int $offset])

These methods not only change the value of the integer but also return the incremented or decre-
mented values. An example of usage is:

if ($memc->set(‘counter’, 1)) {
 echo $memc->increment(‘counter’) . “\n”;
 echo $memc->increment(‘counter’, 10) . “\n”;

563120c04.indd 168563120c04.indd 168 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 169

 echo $memc->decrement(‘counter’) . “\n”;
 echo $memc->decrement(‘counter’, 5) . “\n”;
}

Code snippet incdec.php

This simple example shows both increment and decrement, as well as specifying and omitting the
value to increment by. The output of this code snippet is:

2
12
11
6

As you can imagine, you could make use of this functionality in a number of ways, depending on
what functionality your application requires.

Multi-get

You can also retrieve multiple items simultaneously using the getMulti() and getMultiByKey()
methods, which take advantage of the memcached client protocol that enables you to specify mul-
tiple keys for a get. You most certainly want to use a multi-get if you need to obtain several values at
once because you can obtain more items per request, hence fewer network round-trips. More bang
for the buck!

public mixed Memcached::getMulti(
 array $keys
 [, array &$cas_tokens
 [, integer $flags]])

public mixed Memcached::getMultiByKey(
 string $server_key,
 array $keys
 [, array &$cas_tokens
 [, integer $flags]])

getMulti() has as its fi rst argument an array of strings — the keys for items you are requesting.
The next optional argument is an array reference to CAS token values (double) that correspond
to each item being requested. This array contains the CAS token values following the call to get-
Multi(). The last argument is an optional integer value for the particular fl ags you want to use
for this getMulti() call. For instance, you can set a fl ag to specify that you want the order of
items being returned to be the same order as the item keys you specifi ed, as shown in the following
example:

// set a value
for ($i = 1; $i <= 5; $i++) {
 $key = “t$i”;
 if ($memc->set($key, “$i: some value”)) {
 // if true, success setting
 echo “t$i was set.\n”;
 }
 else {
 // if false, failed to set

563120c04.indd 169563120c04.indd 169 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

170 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 echo “failed to set t$i\n”;
 }
}

$null_val = null;
$t_array = $memc->getMulti(array (‘t5’,’t3’,’t1’),
 $null_val,
 Memcached::GET_PRESERVE_ORDER);

print_r($t_array);

Code snippet mget.php

In this example, fi ve items are set starting from t1 through t5. Then there is a subsequent call to
getMulti(), but only specifying three of the items and in reverse order. The output of print_r()
shows that using the fl ag Memcached::GET_PRESERVE_ORDER resulted in the items being returned in
the order requested, assigned to the array $t_array as this snippet of the output shows:

Array
(
 [t5] => 5: some value
 [t3] => 3: some value
 [t1] => 1: some value
)

Multi-set

The memcached client protocol doesn’t have the ability to allow multiple set-type of operations;
however, PECL/memcached provides functionality to provide multi-set with the Memcached class’s
methods setMulti() and setMultiByKey(). Essentially, you set multiple items using an associa-
tive array — the keys corresponding with the key for the single item and value the value of the item.
There is an optional array that you can supply that provides an array of expiration times corre-
sponding with each item being set.

public bool Memcached::setMulti(
 array $items
 [, int $expiration])

public bool Memcached::setMultiByKey(
 string $server_key,
 array $items
 [, int $expiration])

The following code snippet is a very simple example showing you how you use setMulti() with
a modifi cation of the previous example for getMulti(). You can get items using getMulti() to
obtain an array of the items you want or you can get them separately as the loop shows.

$items = array ();
// build up the associative array
for ($i = 1; $i <= 5; $i++) {
 $items[“t$i”] = “$i: some value”;
}

// multi-set each item of the array

563120c04.indd 170563120c04.indd 170 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 171

$memc->setMulti($items);

// You can perform a multi-get
$null_val = null;
$t_array = $memc->getMulti(array (‘t5’,’t3’,’t1’),
 $null_val,
 Memcached::GET_PRESERVE_ORDER);

// just as before, you have an array of the keys you requested
print_r($t_array);

// or get each item individually
for ($i = 1; $i <= 5; $i++) {
 $val = $memc->get(“t$i”);
 print “$val\n”;
}

Code snippet mset.php

Cache Locality Using byKey Methods and Multi get/set

In some cases, you may prefer behavior that allows you to cache related data on one server. Doing
this along with multi-get methods reduces the number of network round-trips. This is what the vari-
ous *byKey methods are for. These methods are useful for partitioning your cache per server and for
sending any items you cache to a specifi c server — specifi ed by the server key — rather than having
the client automatically caching an item on whatever server the distribution algorithm determines it
should use. These methods do not let you determine on which server items are stored, but they do
guarantee that only one server is used for the given server key.

The following code drives home how cache partitioning works along with your useful –vv
command-line argument (your memcached debug tool) when you run memcached (using a
different terminal window for each server):

// arbitrary list of server keys, can be any name you chose
$server_keys = array(‘serverA’, ‘serverB’, ‘serverC’);
// loop through for each server key
foreach ($server_keys as $server_key) {
 // loop through, assigning
 $items = array();
 for ($i = 0; $i < 4; $i++) {
 // use a random string for the key
 $key = “$server_key:” . rand_str(8);
 $items[$key] = “value for $key”;
 }
 $key_list[$server_key] = $items;
 $memc->setMultiByKey($server_key, $items);

}

Code snippet by_key_mget.php

The previous example uses three different server keys that are defi ned in an array, which is then
iterated over and which sets four items for each server. The key for each item contains the server

563120c04.indd 171563120c04.indd 171 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

172 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

key, which allows you view, along with the verbose output of each server, where each was stored. In
addition, a multi-dimensional array keeps track of what keys and to what server key items are set.
You can use this to fetch these items later.

<32 new auto-negotiating client connection
32: Client using the ascii protocol
<32 set myapp:serverC:xrfKYehz 0 0 26
>32 STORED
<32 set myapp:serverC:TbSY42SI 0 0 26
>32 STORED
<32 set myapp:serverC:oaXHEWkO 0 0 26
>32 STORED
<32 set myapp:serverC:gwOi3xxp 0 0 26
>32 STORED
<32 quit
<32 connection closed.

So, as shown, localhost was the server used for serverC. Next, in a terminal window to another
server, 192.168.1.126, you will see:

<6 server listening
<7 send buffer was 124928, now 268435456
<7 server listening (udp)

Interesting, nothing happened there. Curious and curiouser! What about the terminal window for
192.168.1.133?

<10 new auto-negotiating client connection
10: Client using the ascii protocol
<10 set myapp:serverA:tUzhFpjr 0 0 26
>10 STORED
<10 set myapp:serverA:0tzhCQhG 0 0 26
>10 STORED
<10 set myapp:serverA:zwNNAqhu 0 0 26
>10 STORED
<10 set myapp:serverA:0eLt123j 0 0 26
>10 STORED
<10 set myapp:serverB:LsHRXr0X 0 0 26
>10 STORED
<10 set myapp:serverB:ay5dFcj5 0 0 26
>10 STORED
<10 set myapp:serverB:OwHOdo9c 0 0 26
>10 STORED
<10 set myapp:serverB:JKM0CFjO 0 0 26
>10 STORED
<10 quit
<10 connection closed.

Aha! So, the client used 192.168.1.133 for both serverA and serverB. In summary, the servers used
for each server key were:

➤ serverA: 192.168.1.133

➤ serverB: 192.168.1.133

➤ serverC: localhost

563120c04.indd 172563120c04.indd 172 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 173

This demonstrates that by using the *ByKey methods, a specifi c server will be used for caching items
for a given server key, but again, not which server. You have no control over that. The next code
snippet shows fetching of these items — with a multi-get, something you want to do as often as pos-
sible — using the getMultiByKey() method and the array for keeping track of which keys map to
which server in the previous example:

foreach ($server_keys as $server_key) {
 // loop through for each server key, multi-get all items
 $items = array();
 $keys = array_keys($key_list[$server_key]);
 $items = $memc->getMultiByKey($server_key, $keys);
 var_dump($items);
}

If you look at the terminal windows for each memcached server, you will see a similar verifi cation
stating which server keys are being mapped to which server.

getDelayed

You also have the ability to call a get without waiting for the data (non-blocking, asynchronous
get). This works so that a request for items is made and immediately returned without waiting for
the data. The data can be later fetched when needed, much in the same way that a database query
calls a prepare, executes it, and then fetches the data result. For PECL/memcached, this functional-
ity is implemented with the methods getDelayed() and getDelayedByKey() in conjunction with
the fetch() or fetchAll() methods to later retrieve the data.

public bool Memcached::getDelayed(
 array $keys
 [, bool $with_cas
 [, callback $value_cb]])

public bool Memcached::getDelayedByKey(
 $server_key,
 array $keys
 [, bool $with_cas
 [, callback $value_cb]])

The arguments to getDelayed() are fi rst $keys, an array of keys for requested items, followed
by an optional Boolean fl ag, $with_cas, that toggles whether the CAS tokens for the items being
requested should be returned. The last argument is an optional callback function that you can
specify and that handles each item returned in the result set when it’s fetched. As with all ByKey*
methods, getDelayedByKey() has as its fi rst argument the string server key. Both getDelayed()
and getDelayedByKey() return true or false, which correspond to success and failure, respectively.

An example of usage is:

if ($memc->getDelayed(array (‘t1’,’t2’,’t3’), true)) {
 echo “mget successful.\n”;
 $result = array();

 while ($result = $memc->fetch()) {
 echo “key: “ . $result[“key”] .
 “ value: ‘” . $result[“value”] .

563120c04.indd 173563120c04.indd 173 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

174 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 “‘ cas: “ . $result[“cas”] . “\n”;
 }
}
elseif ($memc->getResultCode() == Memcached::RES_NOTSTORED) {
 echo “error: NOT STORED\n”;
}

Code snippet getdelayed.php

You can alternatively use a callback for processing each item returned as shown in the following
example, which modifi es the previous example:

$memc->getDelayed(array (‘t1’,’t2’,’t3’), true, ‘print_item’);

if ($memc->getResultCode() == Memcached::RES_NOTSTORED) {
 echo “error: NOT STORED\n”;
}
else {
 echo “mget successfull.\n”;
}

function print_item($memc, $item) {
 echo “key: “ . $item[“key”] .
 “ value: ‘” . $item[“value”] .
 “‘ cas: “ . $item[“cas”] . “\n”;
}

As you can see, this negates the need for explicitly fetching and processing all retrieved items — the
callback function does it all for you.

CAS

If you want to add some atomicity to your application with regards to get and set, you use CAS,
which stands for check and swap. CAS is a set operation that works so that your attempt to set an
item only succeeds if the item was not updated since you last fetched it. If some other client modifi ed
the item since you last fetched it, your attempt at modifi cation fails. Also, for any CAS operation to
succeed, you must have the correct CAS token value for that item or the attempt to modify the item
will fail. You obtain this CAS token value using a get operation:

public bool Memcached::cas(
 double $cas_token,
 string $key,
 mixed $value
 [, int $expiration])

public bool Memcached::casByKey(
 double $cas_token,
 string $key,
 mixed $value
 [, int $expiration])

The fi rst argument is $cas_token, which is a double value for the stored item that you can obtain in
a previous get. The remaining arguments are the same as the set() and setByKey() methods. And

563120c04.indd 174563120c04.indd 174 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 175

of course casByKey() has as its fi rst argument the server key. Just like set(), cas() also returns a
Boolean true if successful, false if failure.

The following simple example shows how CAS works. In this example, assume that there are two
Memcached instances, each a client connected to the same memcached pool of servers. The reason
for two clients is to give an example that distills down to the most basic concept of why you would
want to use CAS.

// set a value
if ($memc->set(‘t1’, ‘initially set value’)) {
 // if true, success setting
 echo “t1 initially set.\n”;
}
else {
 // if false, failed to set
 echo “failed to set t1\n”;
}

// now fetch t1
if ($t1= $memc->get(‘t1’, null, $cas)) {
 print “t1 value is ‘$t1’\n”;
}
elseif ($memc->getResultCode() == Memcached::NOT_FOUND) {
 print “t1 not found\n”;
}
echo “cas value $cas\n”;

// did anyone else change it since?
sleep(2);
if ($memc->cas($cas, ‘t1’, ‘a new value using cas’)) {
 echo “t1 set with cas\n”;
}
else {
 echo “t1 not set with cas\n”;
}
// now fetch t1 again
if ($t1= $memc->get(‘t1’, null, $cas)) {
 echo “t1 value is ‘$t1’\n”;
}
elseif ($memc->getResultCode() == Memcached::NOT_FOUND) {
 echo “t1 not found\n”;
}
echo “cas value $cas\n”;

sleep(2);
// another client, t2 is setting
echo “memc2 is setting t1\n”;
$memc2->set(‘t1’, ‘memc2 changed me’);
sleep(2);
// did anyone else change it since?
sleep(2);

// this should not succeed
if ($memc->cas($cas, ‘t1’, ‘check if cas can set’)) {
 echo “t1 set with cas\n”;

563120c04.indd 175563120c04.indd 175 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

176 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

}
else {
 echo “t1 not set with cas\n”;
}

Code snippet cas.php

This example shows how CAS succeeds if another client hasn’t modifi ed the item since you last
fetched it and then how CAS fails if another client ($memc2) did modify it in between the last
fetch. The sleep() calls are for accentuating the central point of the example when running the
program. The following output verifi es that the second client, $memc2, having modifi ed t1 since it
was last fetched by $memc, causes the second cas() call to fail:

t1 initially set.
t1 value is ‘initially set value’
cas value 14
t1 set with cas
t1 value is ‘a new value using cas’
cas value 15
memc2 is setting t1
t1 not set with cas

Also note in this output that the CAS token increments each time there is a successful CAS
operation.

Statistics

You may, in fact, want to write internal utility applications to monitor memcached and provide
information about how your memcached server pool is functioning. This includes information such
as how much memory is being used, how many items have been stored, how many cache hits and
misses there have been, and so on. The method for this information is getStats():

public array Memcached::getStats(void)

The following code if run with the previous connection the pool of three memcached servers:

$stats_ar = $memc->getStats();

print_r($stats_ar);

Code snippet memc_stats.php

produces the output showing three servers’ stats:

Array
(
 [192.168.1.106:11211] => Array
 (
 [pid] => 45035
 [uptime] => 75925
 [threads] => 4
 [time] => 1256400151
 [pointer_size] => 32
 [rusage_user_seconds] => 0

563120c04.indd 176563120c04.indd 176 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 177

 [rusage_user_microseconds] => 729726
 [rusage_system_seconds] => 1
 [rusage_system_microseconds] => 519083
 [curr_items] => 0
 [total_items] => 0
 [limit_maxbytes] => 67108864
 [curr_connections] => 10
 [total_connections] => 12
 [connection_structures] => 11
 [bytes] => 0
 [cmd_get] => 0
 [cmd_set] => 0
 [get_hits] => 0
 [get_misses] => 0
 [evictions] => 0
 [bytes_read] => 20
 [bytes_written] => 745
 [version] => 1.4.1_25_g2c7bfeb
)

 [127.0.0.1:11211] => Array
 (
 [pid] => 743
 [uptime] => 75921
 [threads] => 1
 [time] => 1256400151
 [pointer_size] => 64
 [rusage_user_seconds] => 0
 [rusage_user_microseconds] => 70000
 [rusage_system_seconds] => 0
 [rusage_system_microseconds] => 10000
 [curr_items] => 2
 [total_items] => 9
 [limit_maxbytes] => 67108864
 [curr_connections] => 2
 [total_connections] => 13
 [connection_structures] => 3
 [bytes] => 329
 [cmd_get] => 10
 [cmd_set] => 9
 [get_hits] => 10
 [get_misses] => 0
 [evictions] => 0
 [bytes_read] => 956
 [bytes_written] => 1491
 [version] => 1.2.6
)

 [192.168.1.125:11211] => Array
 (
 [pid] => 11596
 [uptime] => 75889
 [threads] => 2
 [time] => 1256399615

563120c04.indd 177563120c04.indd 177 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

178 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 [pointer_size] => 32
 [rusage_user_seconds] => 0
 [rusage_user_microseconds] => 8000
 [rusage_system_seconds] => 0
 [rusage_system_microseconds] => 12000zzzzzzzzz

 [curr_items] => 1
 [total_items] => 5
 [limit_maxbytes] => 67108864
 [curr_connections] => 4
 [total_connections] => 10
 [connection_structures] => 5
 [bytes] => 66
 [cmd_get] => 5
 [cmd_set] => 5
 [get_hits] => 4
 [get_misses] => 1
 [evictions] => 0
 [bytes_read] => 260
 [bytes_written] => 733
 [version] => 1.2.8
)

)

For information on what each statistic means, please consult the memcached
project web site at http://memcached.org.

Server List

One other useful informational method is the getServers() method, which returns a list of servers
as an array that the server pool is composed of — just like the server list shown previously, used in
creating a connection:

public array Memcached::getServerList (void)

This simple snippet shows how this works:

$server_ar = $memc->getServerList();
print_r($server_ar);

Error Handling

Throughout these examples, you have seen various ways of dealing with errors. In some cases, for
instance, a set operation is performed as the conditional to an if-else block. If true, the value was
set; if false, something failed. This is one way of dealing with an error of a set. For get, you some-
times use the simple check that a value was fetched to conditionally determine if there was an error.
However, as shown in some examples, you might want to know what the specifi c error was or use

563120c04.indd 178563120c04.indd 178 2/18/10 9:09:07 AM2/18/10 9:09:07 AM

PECL/Memcached ❘ 179

a condition of a specifi c error in an if-else block. To retrieve the specifi c error of something that
failed, you can use the following methods:

public string Memcached::getResultMessage(void)
public int Memcached::getResultCode(void)

The fi rst method, getResultMessage(), returns a string message from the particular operation that
was performed. The method getResultCode() returns a numeric code from the server. You can fi nd
the result codes and what they mean at http://us2.php.net/manual/en/memcached.constants
.php. The following example shows how you can use these two methods:

// set a value
if ($memc->set(‘t1’, ‘initially set value’)) {
 echo “success setting\n”;
}
elseif ($memc->getResultCode() == Memcached::RES_NOTSTORED) {
 echo “‘t1’ was not set\n”;
}

echo “return message from set operation was: “ . $memc->getResultMessage() . “\n”;

$t1= $memc->get(‘t1’, null, $cas);
echo “return message from get operation was: “ . $memc->getResultMessage() . “\n”;

if ($memc->add(‘t1’, ‘added value should not work’)) {
 echo “success adding\n”;
}
elseif ($memc->getResultCode() == Memcached::RES_NOTSTORED) {
 echo “‘t1’ was not added\n”;
}
echo “return message from get operation was: “ . $memc->getResultMessage() . “\n”;

$memc->delete(‘t1’);
$t1= $memc->get(‘t1’, null, $cas);
echo “return message from get operation was: “ . $memc->getResultMessage() . “\n”;

Code snippet result.php

The output of this code gives you:

success setting
return message from set operation was: SUCCESS
return message from get operation was: SUCCESS
‘t1’ was not added
return message from add operation was: NOT STORED
return message from get operation was: NOT FOUND

Interestingly, if you were to shut down your memcached servers within the pool (just for testing —
don’t do this in a production environment!) all calls to getResultMessage() would return:

return message from set operation was: SYSTEM ERROR
return message from get operation was: SYSTEM ERROR
return message from add operation was: SYSTEM ERROR
return message from get operation was: SYSTEM ERROR

563120c04.indd 179563120c04.indd 179 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

180 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

PRACTICAL CACHING

Now that you have seen the numerous operations available with PECL/memcached, it would be use-
ful to see how to modify a simple database-driven class to utilize caching. The fi rst thing to think
about is what data you want to cache. How much must this cached data match what is in the data-
base or other durable store? Is it data that can be lazily cached or copied from a cache to a durable
store, or does it have to be read without the chance of a cache miss or written so that whenever any
data is written to the database it is also cached? These are the questions that will determine how you
build a caching layer into your application — and the nature and functionality requirements of your
application are probably what will in large part provide the answers to those questions.

Another thing to consider is what sort of value you want to use for the keys of items that are cached.
The most important thing is that it makes sense — keep it simple! One way to categorize or organize
your keys is to use a namespace of sorts. In this example, the key will be composed of the name of
the database table as the fi rst part of the key, separated by a colon, and then the unique id of the
item being stored — in this example, the user id.

The following example is very simple and a standard type of read-through and write-through cache
example. It consists of a User object. This is an object that you instantiate. If upon instantiation,
you provide a user id, the user data is retrieved using that id from the database and then each User
class attribute is set with the retrieved data which are accessible with get and set methods of the
class. What is needed is a caching layer. This will be implemented in several places:

You can run the code snippets presented in this section with the programs that
the author included with the source code.

➤ Check cache when the user data is retrieved. If the data is in the cache, set the user attributes
with the data retrieved from cache. There is no need to check the database, so you can pro-
ceed. If the data is not in the cache, retrieve it from the database and then cache the data
retrieved.

You don’t want to cache a database raw result set. You do want to cache the data
in some sort of ready-to-use form. In this example, an associative array is used.

Write to cache whenever you either insert into or update the database.➤

Delete from cache if the user is deleted from the database.➤

In the following examples, the code where caching logic was added are in bold for clarity. The
fi rst method is of course the constructor. The constructor takes two arguments — either the user
id ($uid) or the username. Originally, the class had only a connection to the database established
accessible with the private class member $dbh. As shown in bold, to add caching, a connection

563120c04.indd 180563120c04.indd 180 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

Practical Caching ❘ 181

handle (the member $memc) to memcached is created. This is the connection the various methods
will use for caching.

Require “globals.php”;

class User {

 static $userAttribs = array(
 ‘uid’,
 ‘username’,
 ‘firstname’,
 ‘lastname’,
 ‘password’,
 ‘email’,
 ‘address’,
 ‘city’,
 ‘state’,
 ‘age’,
 ‘zip’,
);

 private $dbh, $memc;

 private $uid, $username, $firstname, $lastname, $password, $email,
 $address, $city, $state, $age;

 private $_user_loaded;

 public function __construct($uid = 0, $username = ‘’) {

 $this->uid = intval($uid);
 $this->username = $username;

 // database connection
 $this->dbh = new mysqli($MYSQL_HOST, $MYSQL_USER, $MYSQL_PASS, $SCHEMA);

 // handle error connecting
 if (mysqli_connect_errno() != 0) {
 printf(“Can’t connect to MySQL Server. Errorcode: %s\n”,
 mysqli_connect_error());
 exit;
 }

 if (!$this->dbh) {
 printf(“Can’t connect to MySQL Server. Errorcode: %s\n”,
 mysqli_connect_error());
 exit;
 }

 // memcached server pool connection
 $serverlist = $MEMCACHED_SERVER_LIST;

 // set the memc private member
 $this->memc = new Memcached();

563120c04.indd 181563120c04.indd 181 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

182 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

 $this->memc->AddServers($serverlist);

 // this loads the user data for the instantiated class to be able to use
 $this->load();
 }

Code snippet User.php and user_client.php

The load() method is called from the constructor so that instantiation with a given user id or user-
name will result in the instantiated User object’s having various user attributes (private attributes,
listed in the static array $userAttribs) set with the data for the given user, accessible with get and
set methods (not shown in this example). The changes to load() are to simply add a condition that
checks if the user data was found in memcached, and if so, the method returns without needing to
access the database. If the data is not found in memcached, it must be retrieved from the database
and then cached in memcached. This is a read-through cache.

public function load() {
 // if the user data has been loaded, no need to do so again
 if ($this->_user_loaded) {
 return true;
 }

 // get the UID from the database
 if (!$this->uid) {
 $this->uid = $this->uidFromName($this->username);
 }
 // still no UID, this is a new user
 if (!$this->uid) {
 $this->loadNewUser($this->username);
 }

 // if user is in cache
 if (! $this->getFromCache()) {
 // if user wasn’t in DB, return false
 if (! $this->getFromDB()) {
 // if not in database nor memcached, return false, no such user exists
 return false;
 }
 // if user was in DB, read-through cache
 else {
 $this->setToCache();
 return true;
 }
 }
 return true;
 }

The save() method handles both inserts of new users and updates to existing users. The caching imple-
mented here is a very simple write-through cache as accomplished with the method setToCache():

public function save() {
 if ($this->uid) {
 $this->update();
 }

563120c04.indd 182563120c04.indd 182 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

Practical Caching ❘ 183

 else {
 $this->insert();
 }
 // write to cache, regardless (write-through)
 $this->setToCache();
 }

Because so little code is required for the database deletion, it’s just as simple to add the delete-
FromCache() method call to this database method.

 /*
 * delete existing user object from the database
 */
 function delete () {

 $this->load();

 $delete = ‘DELETE FROM users WHERE uid = ?’;

 $sth = $this->dbh->prepare($delete);
 $sth->bind_param(‘i’, $this->uid);

 $sth->execute();

 $rows = $sth->affected_rows;

 $sth->close();

 // delete from cache
 $this->deleteFromCache();

 return $rows ? true: false;
 }

Next the caching methods are shown. The method getFromCache() simply retrieves the serialized
array from memcached for the given key $key, then loops through each attribute, setting the class
attributes to the values from the retrieved array:

private function getFromCache() {
 $key = “user:$this->uid”;
 $user = $this->memc->get($key);
 if ($user) {
 // set object attribs from $user fetched
 foreach (self::$userAttribs as $attrib) {
 print “$attrib $user[$attrib]\n”;
 $this->$attrib = $user[$attrib];
 }
 $this->_user_loaded = true;
 return true;
 }
 else {
 return false;
 }
 }

563120c04.indd 183563120c04.indd 183 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

184 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

The method setToCache() performs a similar looping through each attribute as getToCache()
except the values of the array that is serialized are set to the values of the class attributes, then the
array is stored serialized using the key specifi ed by $key:

private function setToCache() {
 $key = “user:$this->uid”;
 $user = array();
 // set $user array with each attrib for object
 foreach (self::$userAttribs as $attrib) {
 $user[$attrib] = $this->$attrib;
 }

 // use return value of set
 return ($this->memc->set($key, $user));

 }

The method deleteFromCache() is an extremely simple method that deletes the item for the given
key $key from memcached:

private function deleteFromCache() {
 $key = “user:$this->uid”;
 // use return value of set
 return ($this->memc->delete($key));
 }

Now, a simple program to verify this class works. Also, if you run memcached –vvv, as well as tail
your MySQL query log, you can see that the data is being written and retrieved from both mem-
cached and MySQL appropriately:

<?php

require “User.php”;

// instantiate with uid 12345
$user = new User(12345);

print “age: “ . $user->getAge() . “\n”;
print “email: “ . $user->getEmail() . “\n”;
print “current address: “ . $user->getAddress() . “\n”;
print “city: “ . $user->getCity() . “\n”;
print “state: “ . $user->getState() . “\n”;
print “zip: “ . $user->getZip() . “\n”;

// change email address
$user->setEmail(“patg@northscale.com”);

// why not shave off a decade or so?!
$user->setAge(30);

// move to Portsmouth, NH
$user->setCity(“Portsmouth”);
$user->setAddress(“33 Concord St.”);

563120c04.indd 184563120c04.indd 184 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

Practical Caching ❘ 185

$user->setZip(“03801”);

// write data
$user->save();

// verify it was saved!
print “age: “ . $user->getAge() . “\n”;
print “email: “ . $user->getEmail() . “\n”;
print “current address: “ . $user->getAddress() . “\n”;
print “city: “ . $user->getCity() . “\n”;
print “state: “ . $user->getState() . “\n”;
print “zip: “ . $user->getZip() . “\n”;

?>

The output shows the data was in fact updated:

age: 41
email: patg@northscale.com
current address: 38 Granite St.
city: Cheshire
state: NH
zip: 03320
age: 30
email: patg@northscale.com
current address: 33 Concord St.
city: Portsmouth
state: NH
zip: 03801

If you were to write a program that simply accesses data for the user (no updates), you would see
that the database isn’t being touched once the user is initially loaded.

memcached Proxy: moxi

As you’ve seen, in your application code you have deal with setting up which servers the pool com-
prises. You may want to abstract this information in your application, or better yet, you could
use a proxy. There just happens to be a memcached proxy called moxi. Developed by Steve Yen of
NorthScale, the idea was to develop a proxy that used the same client protocol as memcached that
could handle connecting to servers in a given pool, allowing the application using the proxy to not
have to maintain any sort of server list — just connecting to one connection. Also, the proxy was
developed to provide a better way to add and remove memached server nodes. Other features moxi
provides include:

➤ Front cache. Hot keys are cached and are handled by moxi without having to fetch data from
the actual memcached server nodes for “hot” keys.

G➤ et de-duplication. This means that if several client connections to moxi are requesting the
same keys, those requests are consolidated into a single request to reduce network requests.

Authenticated connections to memcached server nodes.➤

Aggregation of statistics.➤

563120c04.indd 185563120c04.indd 185 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

186 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

Moxi is built using the memcached codebase, so it closely follows the development of memcached.
To obtain memcached, access http://labs.northscale.com/moxi for both documentation and
download instructions.

As an example, moxi is run with a pool of three server instances shown in the previous sessions:

./moxi -z 22122=localhost:11211,192.168.1.118:11211,192.168.1.125:11211

This means that moxi is running on port 22122 and is proxying to the pool of three servers shown
on port 11211. The connections to moxi from your application are considered upstream, whereas
the connections from moxi to the pool of memcached servers are considered downstream. In your
PHP code, you no longer need to set up the server list. You only have to connect to one server — in
this case, localhost on port 22122:

$memc = new Memcached(‘moxicon’);
$memc->addServer(‘localhost, 22122);

… if you want to see a trace of what moxi is doing, what items it is caching, and what is occurring
with downstream and upstream connections.

One thing to keep in mind with using moxi is that if you have logic in your
application that uses the byKey methods that you use to ensure items are stored
on a particular server, they will not work as advertised because the key distribu-
tion is not handled by moxi.

Other “memcapable” Key-Value Stores

The term memcapable was coined by Matt Ingenthron. It simply means a given key-value store has
support for the memcached client protocol. Trond Norbye wrote a tool with the namesake memca-
pable, which is included with libmemcached. Although the term itself has come to mean that there
is support for both binary and ASCII memcached protocols, this tool was originally developed to be
run against a particular key-value store to fi rst check if the server supports the memcached binary
protocol.

Some memcapable key/value stores worth mentioning are:

➤ Tokyo Tyrant: A network server for the key-value database library Tokyo Cabinet storing
backend (http://1978th.net/tokyotyrant/).

➤ MemcacheDB: Distributed key-value database using Berkeley DB as a storing backend
(http://memcachedb.org/).

➤ Lightcloud: Distributed and persistent key-value database built on top of Tokyo Tyrant
(http://opensource.plurk.com/LightCloud/).

563120c04.indd 186563120c04.indd 186 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

Practical Caching ❘ 187

Tokyo Tyrant is discussed in a bit more detail in the following section.

Tokyo Tyrant

Tokyo Tyrant is the network interface (database server) on top of the engine Tokyo Cabinet, a
database library. Both these projects are written by Mikio Hirabayashi and development of both
is supported by the popular Japanese web site Mixi.com (http://mixi.com) since they exten-
sively use both projects. Tokyo Tyrant has its own networking protocol as well as an HTTP and
memcached protocol interface, that latter of which you can utilize the same way you would for
memcached itself.

Tokyo Cabinet is a high-concurrency database library. It is a key-value store and works much like
DBM or Berkeley DB. Interestingly, it supports several APIs for storage:

➤ In-memory extensible string, array list, map of hash table, and map of ordered tree

On-disk fi le hash, B+tree, fi xed-length array, and table database➤

The library itself has bindings for a number of languages including PHP. Note — these bindings are
not the network API that Tokyo Tyrant provides.

Tokyo Tyrant is the server your application code will talk to using a memcached client such as
PECL/memcached. Some of its features include:

➤ Memcached client protocol

Hot backups and update log➤

Asynchronous replication➤

You can use Tokyo Tyrant the same way you use memcached for caching data. The memcached cli-
ent you use will interact with any Tokyo Tyrant server as if it were a memcached server except it
runs on a different port (default 1978). The difference between Tokyo Tyrant and memcached is
that Tokyo Tyrant uses Tokyo Cabinet for storing data that provides you with a number of storage
mechanism choices either in-memory or on-disk, which can give you a caching layer that is also
durable. Note, though, that memory is faster than disk, so if you use an on-disk storage, you gain
durability but lose in speed — all depending on what you require for your application. Another fea-
ture, as already listed, is that Tokyo Tyrant supports asynchronous replication. This can make for
an interesting setup in the case where you have two servers that run in a dual master setup. Using
Tokyo Tyrant through the memcached protocol uses consistent hashing to distribute items you cache
between the two servers, yet replication would ensure that both servers have all keys. Again, this
might be a useful setup for you depending on your application’s needs. In fact, you could use any
mixture of memcached and Tokyo Tyrant for your application and even use moxi as a proxy to any
one of them. The memcached client protocol is the key to being able to work with either!

You can obtain both Tokyo Cabinet and Tokyo Tyrant from http://1978th.net/ (along with some
other interesting projects).

563120c04.indd 187563120c04.indd 187 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

188 ❘ CHAPTER 4 IMPROVING PERFORMANCE THROUGH CACHING

To run Tokyo Tyrant, you can either use the server directly or edit the utility script that needs to be
copied to your /etc/init.d directory. Table 4-4 show how to run the server on the command line
and how the options specifi ed determine what storage mechanism it uses:

TABLE 4-4: Running Tokyo Tyrant on the Command Line

COMMAND STORAGE MECHANISM

ttserver “*” In-memory hash

ttserver “+” In-memory tree

ttserver /var/ttserver/casket.tch On-disk hash

ttserver /var/ttserver/casket.tcb On-disk b-tree

ttserver /var/ttserver/casket.tct On-disk fi xed-length

As you can see, the argument given to the Tokyo Tyrant server, ttserver, determines what storage
mechanism it uses through Tokyo Cabinet. The fi le-based storage mechanisms specify the data fi le
that is used and the fi le extension determines what type of fi le-based storage mechanism is used, as
indicated. You want to ensure that the path you provide is writable by Tokyo Tyrant.

An interesting example involves using moxi as a proxy to two Tokyo Tyrant servers. First moxi is
started — this time specifying port 1978 for the downstream:

host$ /usr/local/bin/moxi -z
22122=localhost:1978,192.168.1.118:11211,192.168.1.125:1978

And Tokyo Tyrant started on two servers:

otherhost$ ttserver ~/ttserver/casket.tch

You will run your PHP script against moxi, on port 22122, just as you did before with memcached
as the downstream servers!

Some aspects of the memcached protocol that are not supported with Tokyo Tyrant are:

➤ Prepend and append.

Expirations don’t work out of the box when on-disk stores are used.➤

Another point of interest in this example is that moxi is incredibly useful for easily switching out
whatever backend you want to use for caching or even durable storage — without having to change
anything in your application!

SUMMARY

Using caching can vastly improve the performance of an application. Opcode caching is used to
store PHP documents in their compiled form, allowing for signifi cant performance increases during
code execution. User cache stores arbitrary values in a native format that is easy for the application

563120c04.indd 188563120c04.indd 188 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

Summary ❘ 189

to use. Two types of user cache were discussed in this chapter: local and distributed. eAccelerator
and APC (Alternative PHP Cache) provide opcode caching and the application should always have
one of them installed. Both extensions are much faster than compiling the PHP script on the fl y and/
or hitting the database; however, they only provide local user caching for arbitrary data.

Memcached is a high-performance, distributed memory object caching system that enables you to
cache data that you would otherwise have to obtain from the database. This can benefi t your appli-
cation in many ways, such as relieving the load on the database, reducing application calls to the
database, and providing faster data access because obtaining data from memcached is extremely
fast — faster than obtaining it from the database. Unlike local solutions, memcached also provides
redundancy and has the benefi ts of pooled resources and the ability to invalidate and change values
across all machines that use the cache.

This chapter showed you everything you could possibly want to know about using caching in PHP.
First, the local data and opcode caching systems were discussed. Then the basic concept of mem-
cached was explained: how memcached is a simple memory server that allocates a block of memory
for storing data, which is accessible with key values. Also, how memcached can run on multiple
servers making it so you can utilize less-powerful machines (than database or web server machines)
that have ample memory and have all machines work collectively as a cluster.

This chapter also explained read-through, write-through, and write-back cache and some simple
demonstrations of each.

563120c04.indd 189563120c04.indd 189 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

563120c04.indd 190563120c04.indd 190 2/18/10 9:09:08 AM2/18/10 9:09:08 AM

memcached and MySQL

WHAT’S IN THIS CHAPTER?

➤ Obtaining, installing, and confi guring the Memcached Functions for

MySQL

➤ Syntax and usage examples for various user-defi ned functions

included with Memcached Functions for MySQL

➤ Constructing database statements that obtain data from both mem-

cached and MySQL

Using triggers to automatically cache data in memcached➤

In Chapter 4, the PHP client library PECL/memcached that PHP applications use to interface
with memcached server pools is implemented at the application layer. What about memcached
and MySQL? Is there any sort of interoperability between the two given that they are so com-
monly used together? It would be great if there was some sort of “glue” between the two,
perhaps not even requiring you to have your interaction to each implemented in your PHP
application code.

In the open-sourced world, if there is a need, then there is probably a solution to that need!
This is why the Memcached Functions for MySQL — aka Memcached UDFs — were written.

This chapter shows you how to take advantage of the Memcached Functions for MySQL, a
suite of user-defi ned functions that make it possible to cache and retrieve cached data at the
database layer — from within MySQL.

THE MEMCACHED FUNCTIONS FOR MYSQL

As you will see in Chapter 7, MySQL has an API for writing user defi ned functions, otherwise
known as UDFs. That chapter shows an example of a UDF that has a fi le stat on a directory
containing a schema’s data fi les to calculate how much disk space a given schema uses. Because

5

563120c05.indd 191563120c05.indd 191 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

192 ❘ CHAPTER 5 MEMCACHED AND MYSQL

the UDF API is so fl exible, it’s possible to write many different user-defi ned functions to do a number
of things. With the advent of libmemcached, it became obvious that you could take advantage of this
API, along with the UDF API, to create functions that interact with memcached through libmem-
cached. This could provide all the functionality that you would normally implement with an external
language, at the application layer, and this gives you the ability to interact directly with memcached at
the database level.

Developed and maintained by the author of this chapter, the Memcached Functions for MySQL are
a suite of functions available to use with MySQL that provide you the ability to interact with mem-
cached from MySQL. These functions perform most of the operations shown in Chapter 4, just like
PECL/memcached, because these functions are also built using libmemcached.

Because you can use these functions from within MySQL, you have at your disposal the power of an
SQL engine in order to initiate caching or data retrieval using the result sets from query. You can com-
bine the fetching of data from one or more tables with the fetching of data from memcached and apply
any SQL operations on that result set, such as LIMIT, sorting, and other conditional operations.

Some other aspects of these functions are that they:

➤ Are written in C using libmemcached and the Memcached Functions for MySQL API

➤ Provide get, set, CAS, append, prepend, increment, decrement, delete, replace, add, fl ush,
stats, client behavior setting and retrieval functions, as well as other functionality

Can be used to store procedures and triggers➤

➤ Allow you to interact with memcached and MySQL independent of the language in which
the application is written, or for languages that don’t have clients for memcached

Are open source➤

HOW THE MEMCACHED FUNCTIONS FOR MYSQL WORK

These user-defi ned functions are built with the libmemcached client library for various operations
with a memcached server pool. When a particular UDF is called — say, when the user types
memc_get(‘mykey’) — the UDF processes the arguments, ensuring the proper number of argu-
ments have been passed — in this case one argument, the key mykey — for the value that you desire
to be retrieved. The UDF then passes this argument to the appropriate libmemcached API call, in
this case memcached_mget(), memcached_fetch_result() and memcached_result_value(). So,
what these UDFs provide are convenient functions that have the advantage of using the fast, light-
weight libmemcached library, hiding the implementation details of the libmemcached calls, much in
the same way that the PECL/memcached Memcached class does for PHP.

Figure 5-1 illustrates how these UDFs give the user the ability to access data from MySQL
and memcached, and how simple they are implemented using API functions of libmemcached.
Although memcached client support isn’t an issue with PHP, these UDFs make it possible to
interact with memcached using any client that can talk to MySQL and solves the problem of an
application that has no client support for memcached.

563120c05.indd 192563120c05.indd 192 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

Installing the Memcached Functions for MySQL ❘ 193

MySQL

mysql, mysqli, PDO

PHP Application

libmemcached

Database and

memcached data

accessed from

MySQL

memcashed_set,
memcached_mget,
memcached_fetch...

memc_set(),

memc_get(),

memc_replace()...

Memcached

FIGURE 5-1

INSTALLING THE MEMCACHED FUNCTIONS FOR MYSQL

The MySQL plugin interface allows you to easily load UDFs. All that is involved is compiling,
installing, and then running the SQL command to load the UDF shared library.

To obtain the source for the Memcached Functions for MySQL go to: https://
launchpad.net/memcached-udfs. This page provides links to the source code
either as a source archive fi le or as a Bazaar revision control system through
Launchpad repository where you can obtain the latest source.

Prerequisites

The prerequisites for building, installing, and actually using the memcached functions for MySQL are:

➤ A MySQL or MariaDB database server

libmemcached installed (Chapter 4)➤

One or more memcached servers➤

A compiler➤

563120c05.indd 193563120c05.indd 193 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

194 ❘ CHAPTER 5 MEMCACHED AND MYSQL

Confi gure the Source

To confi gure the source, follow these simple steps:

1. Untar/gzip the source package:

gzcat memcached_functionVs_mysql-1.0.tar.gz | tar xf –

2. Enter the project directory: cd memcached_functions_mysql

3. Run the confi gure script:

./confi gure --with-mysql=/usr/local/mysql/bin/mysql_confi g
--libdir=/usr/local/mysql/lib/mysql/plugin/

The two arguments are as follows:

➤ --with-mysql: This argument tells the confi gure program where to fi nd the mysql_config
program, which provides the necessary compiler fl ags for the specifi c system so the UDFs can
be built properly.

➤ --libdir: This is the directory where the compiled shared libraries are installed. On MySQL
5.0, this is the directory where other libraries are found. With 5.1, the plug-in interface was
changed for programs such as storage engines and UDFs so that shared libraries would reside
in a directory one level deeper within the normal library directory, called plugin.

Additionally, you may want to add an entry on your operating system so you can load the shared
library. Some operating systems might need this set because, by default, they don’t load dynamic
libraries in directories that are in their library path. For example, if you must add an entry for /usr/
local/mysql/lib/mysql/plugin, you would add a mysql.conf fi le in /etc/ld.so.conf.d that
might look like this:

/usr/local/mysql/lib/mysql
/usr/local/mysql/lib/mysql/plugin
/usr/lib64/mysql/

You would then run ldconfig to create the necessary links and cache to the most recent shared
libraries found in the directories you specifi ed in /etc/ld.so.conf.d/mysql.conf:

sudo ldconfig

Build the Source

The next thing you do is compile the source:

make
sudo make install

When you install the built source, the dynamic library created from the compilation are installed to
the directory specifi ed in the directory you used in the --libdir argument.

563120c05.indd 194563120c05.indd 194 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

Installing the Memcached Functions for MySQL ❘ 195

Install the UDF

Now that the dynamic library is installed, you can load the various UDFs. The source package
comes with several goodies and you can install using one of two methods:

➤ An SQL script that you can either run or cut and paste

A Perl utility➤

Using SQL Script Install

The SQL script, install_functions.sql, contains the SQL statements to install the UDFs and can
be found in the sql directory of the source distribution. It contains statements for each function,
just as shown in the following code for memc_get:

CREATE FUNCTION memc_get RETURNS STRING SONAME “libmemcached_functions_mysql.
so”;

You can simply run this script by loading with the mysql client, which you will need to run as the
root user because creating functions in mysql requires this privilege level:

mysql –-user root –-password < sql/install_functions.sql

Using the Perl Install Utility

Another alternative is to use the utility install.pl to install the UDFs. This utility can be run
interactively or non-interactively. To see the available options for this program, run the program
with the following options:

./utils/install.pl -h

To run this utility, you must specify a user and password and the user must be one that has system
privileges. With only the --user and --password arguments, the program runs interactively:

./utils/install.pl -u root -p s3krit
function memc_cas_by_key doesn’t exist. Create? [Y|n]
Y
Running: CREATE FUNCTION memc_cas_by_key
RETURNS INT SONAME ‘libmemcached_functions_mysql.so’
function memc_cas doesn’t exist. Create? [Y|n]
Y
Running: CREATE FUNCTION memc_cas
RETURNS INT SONAME ‘libmemcached_functions_mysql.so’
function memc_servers_set doesn’t exist. Create? [Y|n]

If you supply the argument –s or --silent, the utility runs without interaction:

./utils/install.pl -u root -p s3krit –s

563120c05.indd 195563120c05.indd 195 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

196 ❘ CHAPTER 5 MEMCACHED AND MYSQL

Checking Installation

After installing the functions, you can check the func table in the mysql system schema to verify
that the UDFs were installed. You should see the following code:

ysql> select * from mysql.func where name like ‘memc%’;
+------------------------------+-----+---------------------------------+----------+
| name | ret | dl | type |
+------------------------------+-----+---------------------------------+----------+
memc_set	2	libmemcached_functions_mysql.so	function
memc_stat_get_keys	0	libmemcached_functions_mysql.so	function
memc_stats	0	libmemcached_functions_mysql.so	function
memc_set_by_key	2	libmemcached_functions_mysql.so	function
memc_delete_by_key	2	libmemcached_functions_mysql.so	function
memc_cas_by_key	2	libmemcached_functions_mysql.so	function
memc_stat_get_value	0	libmemcached_functions_mysql.so	function
memc_delete	2	libmemcached_functions_mysql.so	function
memc_get_by_key	0	libmemcached_functions_mysql.so	function
memc_get	0	libmemcached_functions_mysql.so	function
memc_append	2	libmemcached_functions_mysql.so	function
memc_append_by_key	2	libmemcached_functions_mysql.so	function
memc_prepend	2	libmemcached_functions_mysql.so	function
memc_prepend_by_key	2	libmemcached_functions_mysql.so	function
memc_increment	2	libmemcached_functions_mysql.so	function
memc_decrement	2	libmemcached_functions_mysql.so	function
memc_replace	2	libmemcached_functions_mysql.so	function
memc_replace_by_key	2	libmemcached_functions_mysql.so	function
memc_servers_behavior_get	0	libmemcached_functions_mysql.so	function
memc_servers_behavior_set	2	libmemcached_functions_mysql.so	function
memc_list_behaviors	0	libmemcached_functions_mysql.so	function
memc_behavior_get	0	libmemcached_functions_mysql.so	function
memc_behavior_set	2	libmemcached_functions_mysql.so	function
memc_servers_set	2	libmemcached_functions_mysql.so	function
memc_list_distribution_types	0	libmemcached_functions_mysql.so	function
memc_udf_version	0	libmemcached_functions_mysql.so	function
memc_cas	2	libmemcached_functions_mysql.so	function
memc_list_hash_types	0	libmemcached_functions_mysql.so	function
memc_add	2	libmemcached_functions_mysql.so	function
memc_add_by_key	2	libmemcached_functions_mysql.so	function
memc_libmemcached_version	0	libmemcached_functions_mysql.so	function
memc_server_count	2	libmemcached_functions_mysql.so	function
+------------------------------+-----+---------------------------------+----------+

The output above shows the numerous UDFs that were installed, verifying a successful installation.
Actual usage of the functions will verify that these UDFs work.

USING THE MEMCACHED FUNCTIONS FOR MYSQL

The Memcached Functions for MySQL use libmemcached, and each function mirrors the API func-
tions of libmemached. As you recall from Chapter 3, the way to call a UDF is to use either a SELECT
statement:

mysql> select memc_get(‘abc’);

563120c05.indd 196563120c05.indd 196 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

Using the Memcached Functions for MySQL ❘ 197

+-----------------+
| memc_get(‘abc’) |
+-----------------+
| this is a test |
+-----------------+

…or a SET statement, assigning the variable to a user-defi ned variable:

mysql> set @test = memc_get(‘abc’);

mysql> select @test;
+----------------+
| @test |
+----------------+
| this is a test |
+----------------+

Depending on which memcached UDFs you run, some may return a value retrieved from mem-
cached or set a value in memcached (retrieving a true/false of success/failure).

To obtain the source for the Memcached Functions for MySQL go to: https://
launchpad.net/memcached-udfs. This page provides links to the source code
either as a source archive fi le or as a Bazaar revision control system through
Launchpad repository where you can obtain the latest source.

Establishing a Connection to the memcached Server

When using these UDFs, you must fi rst establish a connection to the memcached server pool you
intend to utilize for caching. Just as with the PECL/memcached Memcached class’s connection
method, you have a UDF method for initiating a connection.

memc_servers_set

memc_servers_set makes a connection to the memcached server pool being used.

memc_servers_set(‘server1:port, server2:port, serverN:port ...’);

You supply a list of servers with their port numbers — as many as you like — delimited by comma.
Upon success, 1 is returned; –1 is returned upon a failure.

mysql> SELECT memc_servers_set(‘127.0.0.1:11211, 127.0.0.1:22122’);
+--+
| memc_servers_set(‘127.0.0.1:11211, 127.0.0.1:22122’) |
+--+
| 0 |
+--+

Once a connection is established, you can use all the other functions to store and retrieve values.

563120c05.indd 197563120c05.indd 197 2/18/10 9:09:25 AM2/18/10 9:09:25 AM

198 ❘ CHAPTER 5 MEMCACHED AND MYSQL

memc_server_count

The function memc_server_count() takes no arguments and returns the number of memcached
servers that are connected to.

memc_server_count();

If for instance, two servers were connected to as in the preceding example of memc_servers_set(),
memc_server_count() will show:

mysql> select memc_server_count();
+---------------------+
| memc_server_count() |
+---------------------+
| 2 |
+---------------------+

Data Setting Functions

Just as with libmemcached, the Memcached Functions for MySQL allows you to cache values in
memcached servers. These functions all return true upon success and false upon failure, so you can
also use SQL statements to test their return values, such you would do in a stored procedure.

memc_set

The function memc_set() allows you to store a value in memcached. It takes two required argu-
ments — the key for what’s being stored, and a value. The stored value can be either a string or a
numeric value. If it’s a string, you must place the string in quotes; if it’s numeric, you don’t need
quotes. memc_set() can also take an optional third numeric expiration argument of the expiration
time in seconds. memc_set() returns a zero upon success or a non-zero value upon failure. The syn-
tax for memc_set() is:

memc_set(‘key’, value, expiration);
memc_set(‘key’, value);

The example that follows shows a value of ‘xyz’ being stored with the key ‘foo’ for fi ve seconds:

mysql> select memc_set(‘foo’, ‘xyz’, 5);
+---------------------------+
| memc_set(‘foo’, ‘xyz’, 5) |
+---------------------------+
| 1 |
+---------------------------+

Also shown is a successful set() results in a return value of 1 (true).

If you run the following four statements on the same line (so they run all at once), you can see the
effect of putting an expiration value on something stored in memcached. You’ll also see the use of
memc_get(), which is explained in detail later.

mysql> select memc_set(‘foo’, ‘xyz’, 5); select memc_get(‘foo’); select sleep (6);
 -> select memc_get (‘foo’);

563120c05.indd 198563120c05.indd 198 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 199

+---------------------------+
| memc_set(‘foo’, ‘xyz’, 5) |
+---------------------------+
| 0 |
+---------------------------+
1 row in set (0.01 sec)

+-----------------+
| memc_get(‘foo’) |
+-----------------+
| xyz |
+-----------------+
1 row in set (0.00 sec)

+-----------+
| sleep (6) |
+-----------+
| 0 |
+-----------+
1 row in set (6.01 sec)

+------------------+
| memc_get (‘foo’) |
+------------------+
| NULL |
+------------------+
1 row in set (0.01 sec)

As you see, after six seconds, foo is expired to the bit-bucket in the sky.

The following code, of course, sets foo to the value of xyz without an expiration.

mysql> select memc_set(‘foo’, ‘xyz’);
+------------------------+
| memc_set(‘foo’, ‘xyz’) |
+------------------------+
| 1 |
+------------------------+

memc_set_by_key

The function memc_set_by_key() works the same way as memc_set() except the fi rst argument is
a master server key, which allows you to group stored values by server. The rest of the arguments
are the same as memc_set, except they shifted by one. The second argument is the key for the object
being stored. The third argument is the value being stored and the optional fourth value is a numeric
expiration in seconds.

The syntax for memc_set_by_key() is:

memc_set_by_key(‘master key’, ‘key’, value);
memc_set_by_key(‘master key’, ‘key’, value, expiration);

563120c05.indd 199563120c05.indd 199 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

200 ❘ CHAPTER 5 MEMCACHED AND MYSQL

The example that follows shows how you store a value using a server key:

mysql> select memc_set_by_key(‘A’, ‘key1’, ‘test’);
+--------------------------------------+
| memc_set_by_key(‘A’, ‘key1’, ‘test’) |
+--------------------------------------+
| 1 |
+--------------------------------------+

memc_add

The function memc_add() takes two required arguments: a string key and a value. The value can
be either numeric or a string that is cached in memcached and that is specifi ed by key if this isn’t
already set. This function also has a third, optional, numeric argument for the number of seconds
that the value is stored before it expires. memc_set() returns a zero upon success or a non-zero
value upon failure.

The function memc_add_by_key() works the same as memc_add() except it has as its fi rst argument
a master server key that allows you to group stored values by server. The arguments following the
master key argument are the same as for memc_add() — just shifted in order.

The syntax of memc_add() and memc_add_by_key() is:

memc_add(‘key’, value);
memc_add(‘key’, value, expiration);
memc_add_by_key(‘master key’, ‘key’, value);
memc_add_by_key(‘master key’, ‘key’, value, expiration);

The example that follows shows a value being added that, as yet, doesn’t exist:

mysql> select memc_set(‘key1’, 333);
+-----------------------+
| memc_set(‘key1’, 333) |
+-----------------------+
| 1 |
+-----------------------+

memc_replace

The function memc_replace takes two required arguments: a string key and a value, either numeric
or string, that replaces the existing value of the key already stored. memc_replaced returns a zero
upon success or a non-zero value upon failure.

The function memc_replace_by_key() works the same as memc_replace() except it has as its fi rst
argument a master server key which allows you to group stored values by server. The arguments fol-
lowing the master key argument are the same as for memc_replace() — just shifted in order.

The syntax for memc_replace() and memc_replace_by_key() is:

memc_replace(‘key’, value);
memc_replace(‘key’, value, expiration);
memc_replace_by_key(‘master key’, ‘key’, value);
memc_replace_by_key(‘master key’, ‘key’, value, expiration);

563120c05.indd 200563120c05.indd 200 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 201

The example that follows shows the retrieval of a previously stored value that is then replaced:

mysql> select memc_get(‘key2’);
+------------------+
| memc_get(‘key2’) |
+------------------+
| before value |
+------------------+

mysql> select memc_replace(‘key2’, ‘replaced value’);
+--+
| memc_replace(‘key2’, ‘replaced value’) |
+--+
| 0 |
+--+
mysql> select memc_get(‘key2’);
+------------------+
| memc_get(‘key2’) |
+------------------+
| replaced value |
+------------------+

The next example shows how to replace a value that doesn’t exist and returns an error code of 14:

mysql> select memc_replace(‘doesntexist’, ‘abcdefg’);
+--+
| memc_replace(‘doesntexist’, ‘abcdefg’) |
+--+
| 14 |
+--+

memc_cas

If you recall from Chapter 4, CAS stands for check and set. The Memcached Functions for MySQL
also have CAS UDFs. The function memc_cas()sets a value if the cas value is the same as the cas
value on the server itself.

The syntax for memc_cas() and memc_cas_by_key() is:

memc_cas(‘key’, value, cas);
memc_cas(‘key’, value, cas, expiration);
memc_cas_by_key(‘master_key’, ‘key’, value, cas, expiration);

This functionality is still experimental and you have to enable it by setting the behavior
MEMCACHED_BEHAVIOR_SUPPORT_CAS.

mysql> select memc_servers_behavior_set(‘MEMCACHED_BEHAVIOR_SUPPORT_CAS’, 1);
+--+
| memc_servers_behavior_set(‘MEMCACHED_BEHAVIOR_SUPPORT_CAS’, 1) |
+--+
| 0 |
+--+

563120c05.indd 201563120c05.indd 201 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

202 ❘ CHAPTER 5 MEMCACHED AND MYSQL

memc_prepend

The function memc_prepend() prepends value to the beginning of an existing stored value, stored
by key. The value being prepended can be either numeric or a string if the value already stored is a
string. You cannot prepend anything to an existing stored numeric value or it results in that value
being set to NULL. The expiration argument is optional and sets the expiration time in seconds.

The function memc_prepend_by_key() works the same as memc_prepend except the fi rst argument
is a master server key to which the value is prepended, all other values working the same.

The syntax for memc_prepend() and memc_prepend_by_key() is:

memc_prepend(‘key’, value);
memc_prepend(‘key’, value, expiration);
memc_prepend_by_key(‘master key’, ‘key’, value);
memc_prepend_by_key(‘master key’, ‘key’, value, ‘expiration’);

The example that follows shows a value initially set to ‘ this is some text’ but that has ‘this
will be prepended.. ’ prepended to it using memc_prepend():

mysql> select memc_set(‘abc’, ‘ this is some text’);
+---------------------------------------+
| memc_set(‘abc’, ‘ this is some text’) |
+---------------------------------------+
| 1 |
+---------------------------------------+

mysql> select memc_get(‘abc’);
+--------------------+
| memc_get(‘abc’) |
+--------------------+
| this is some text |
+--------------------+

mysql> select memc_prepend(‘abc’, ‘hither... ‘);
+-----------------------------------+
| memc_prepend(‘abc’, ‘hither... ‘) |
+-----------------------------------+
| 1 |
+-----------------------------------+

mysql> select memc_get(‘abc’);
+------------------------------+
| memc_get(‘abc’) |
+------------------------------+
| hither... this is some text |
+------------------------------+

memc_append

The function memc_append() appends the argument value to the existing value stored as key. The
value being appended can be either numeric or a string if the value already stored is a string. You

563120c05.indd 202563120c05.indd 202 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 203

cannot append anything to an existing stored numeric value or it will result in that value being set to
NULL. The argument expiration is optional and specifi es the expiration time in number of seconds.

The function memc_append_by_key() works the same as memc_append() except the fi rst argument
is a master key that the value was stored as.

The syntax for memc_append() and memc_append_by_key() is:

memc_append(‘key’, value);
memc_append(‘key’, value, expiration);
memc_append_by_key(‘master key’, ‘key’, value):
memc_append_by_key(‘master key’, ‘key’, value, expiration);

An example showing what memc_append() does is shown in the following code. First an existing
value has text appended to it, and a subsequent memc_get() retrieves the value, verifying that it had
the text appended by memc_append()

mysql> select memc_append(‘abc’, ‘ ...tither’);
+----------------------------------+
| memc_append(‘abc’, ‘ ...tither’) |
+----------------------------------+
| 1 |
+----------------------------------+

mysql> select memc_get(‘abc’);
+---------------------------------------+
| memc_get(‘abc’) |
+---------------------------------------+
| hither... this is some text ...tither |
+---------------------------------------+

memc_delete

The function memc_delete() deletes the value stored as key from memcached. The return value is
zero if the value is deleted and non-zero value if not.

Just as with any of the other *_by_key() functions, memc_delete_by_key() works the same as
memc_delete() except it has the master key representing the server where the object is stored as its
fi rst argument.

The syntax for memc_delete() and memc_delete_by_key() is:

memc_delete(‘key’);

memc_delete_by_key(‘master key’, ‘key’);

mysql> select memc_delete(‘foo’);
+------------------------+
| memc_delete(‘foo’, 15) |
+------------------------+
| 1 |
+------------------------+

563120c05.indd 203563120c05.indd 203 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

204 ❘ CHAPTER 5 MEMCACHED AND MYSQL

Data Fetching Functions

The Memcached Functions for MySQL, of course, are the means to fetch data. These return the
actual stored value, one value per function call. Currently, there aren’t any functions to fetch mul-
tiple values at once because the UDF interface only allows for one row to be returned.

memc_get

As you have seen in the setting functions examples, memc_get() fetches a value stored in mem-
cached. Additionally, memc_get_by_key() has as its fi rst argument the server key, which would be
whatever the server key was when caching the item.

The syntax for memc_get() and memc_get_by_key() is:

memc_get(‘key’);
memc_get_by_key(‘master_key’, ‘key’);

The example that follows shows how memc_get() is used:

mysql> select memc_get(‘abc’);
+----------------------------+
| memc_get(‘abc’) |
+----------------------------+
| A value that was stored... |
+----------------------------+

mysql> set @a = memc_get(‘abc’);

mysql> select @a;
+----------------------------+
| @a |
+----------------------------+
| A value that was stored... |
+----------------------------+

Increment and Decrement

Occasionally, you might want a centralized counter or sequence, without having to use a database
table or sequence. You can accomplish this using the memcached increment or decrement (if you
want an anti counter!) operation. The thing to remember is that that data is not durable.

memc_increment

The function memc_increment() increments an integer value stored in memcached by key. The
value argument is optional and is the number by which the stored value is incremented. If the value
is not supplied, the value of 1 is the default assumed. The incremented value is returned upon a suc-
cessful increment of the value. If you use an invalid value to increment, memc_increment()ignores
the increment operation and returns the existing value.

563120c05.indd 204563120c05.indd 204 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 205

The syntax for memc_increment() is:

memc_increment(‘key’);
memc_increment(‘key’, value);

The example that follows shows how to use memc_increment() to increment a value by 1, the
default increment value. The fi rst calls memc_increment() without an increment value (defaulting to
1) and then with an increment value of 12.

mysql> select memc_set(‘counter’, 1);
+------------------------+
| memc_set(‘counter’, 1) |
+------------------------+
| 1 |
+------------------------+

mysql> select memc_get(‘counter’);
+---------------------+
| memc_get(‘counter’) |
+---------------------+
| 1 |
+---------------------+

mysql> select memc_increment(‘counter’);
+---------------------------+
| memc_increment(‘counter’) |
+---------------------------+
| 2 |
+---------------------------+

mysql> select memc_increment(‘counter’, 10);
+-------------------------------+
| memc_increment(‘counter’, 10) |
+-------------------------------+
| 12 |
+-------------------------------+

memc_decrement

The function memc_decrement() decrements an integer value stored in memcached, stored as the
fi rst argument key. The optional value argument is the amount to decrease by, defaulting to 1 if
not supplied. You cannot decrement a value below zero. The return value of memc_decrement() is
the decremented value.

The syntax of memc_decrement() is:

memc_decrement(‘key’);
memc_decrement(‘key’, value);

The examples that follow show how to use memc_decrement() to decrement a cached value by 1
(the default), by not supplying a decrement value, and then decrementing the value by 20 by supply-
ing an explicit decrement value of 20.

mysql> select memc_decrement(‘counter’);

563120c05.indd 205563120c05.indd 205 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

206 ❘ CHAPTER 5 MEMCACHED AND MYSQL

+---------------------------+
| memc_decrement(‘counter’) |
+---------------------------+
| 21 |
+---------------------------+

mysql> select memc_decrement(‘counter’,20);
+------------------------------+
| memc_decrement(‘counter’,20) |
+------------------------------+
| 1 |
+------------------------------+

Behavioral Functions

As you saw in Chapter 4 when you used PECL/memcached, libmemcached gives you a lot of control
over the behavior of the client and since these UDFs are building on top of libmemcached, they also
provide this same versatility.

memc_list_behaviors

The function memc_list_behaviors() displays a list of all the available behavior types that are
available for setting the client to.

The syntax for memc_list_behaviors() is:

memc_list_behaviors()

The example that follows shows the output of memc_list_behaviors():

mysql> select memc_list_behaviors()\G
*************************** 1. row ***************************
memc_list_behaviors():
MEMCACHED SERVER BEHAVIORS
MEMCACHED_BEHAVIOR_SUPPORT_CAS
MEMCACHED_BEHAVIOR_NO_BLOCK
MEMCACHED_BEHAVIOR_TCP_NODELAY
MEMCACHED_BEHAVIOR_HASH
MEMCACHED_BEHAVIOR_CACHE_LOOKUPS
MEMCACHED_BEHAVIOR_SOCKET_SEND_SIZE
MEMCACHED_BEHAVIOR_SOCKET_RECV_SIZE
MEMCACHED_BEHAVIOR_BUFFER_REQUESTS
MEMCACHED_BEHAVIOR_KETAMA
MEMCACHED_BEHAVIOR_POLL_TIMEOUT
MEMCACHED_BEHAVIOR_RETRY_TIMEOUT
MEMCACHED_BEHAVIOR_DISTRIBUTION
MEMCACHED_BEHAVIOR_BUFFER_REQUESTS
MEMCACHED_BEHAVIOR_USER_DATA
MEMCACHED_BEHAVIOR_SORT_HOSTS
MEMCACHED_BEHAVIOR_VERIFY_KEY
MEMCACHED_BEHAVIOR_CONNECT_TIMEOUT
MEMCACHED_BEHAVIOR_KETAMA_WEIGHTED
MEMCACHED_BEHAVIOR_KETAMA_HASH
MEMCACHED_BEHAVIOR_BINARY_PROTOCOL

563120c05.indd 206563120c05.indd 206 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 207

MEMCACHED_BEHAVIOR_SND_TIMEOUT
MEMCACHED_BEHAVIOR_RCV_TIMEOUT
MEMCACHED_BEHAVIOR_SERVER_FAILURE_LIMIT
MEMCACHED_BEHAVIOR_IO_MSG_WATERMARK
MEMCACHED_BEHAVIOR_IO_BYTES_WATERMARK

memc_behavior_get

The function memc_behavior_get() retrieves the current value of any of the behaviors that you
set in libmemcached, either numeric or a named value. If the value returned is one of the object dis-
tribution or hash algorithm behaviors, memc_behaviors_get() is versatile enough to convert the
numeric behavioral value to the named canonical.

The function memc_servers_behavior_get() is the same function as memc_behavior_get() and
exists for historical purposes.

You must call the function memc_servers_set() to connect to one or more memcached servers
prior to calling memc_behavior_get(). In the example that follows, you can see that memcached_
behavior_get obtains a named hash algorithm, a binary true or false value, and an integer value —
all of which depend on the an already established connection to memcached.

The syntax of memc_behavior_get() and memc_servers_behavior_get() is:

memc_behavior_get(‘<behavior name>’);
memc_servers_behavior_get(‘<behavior name>’);

An example of using memc_behavior_get() to obtain the values of several behaviors is as follows:

mysql> select memc_behavior_get;(‘MEMCACHED_BEHAVIOR_HASH’);
+--+
| memc_servers_behavior_get(‘MEMCACHED_BEHAVIOR_HASH’) |
+--+
| MEMCACHED_HASH_DEFAULT |
+--+

mysql> select memc_behavior_get(‘MEMCACHED_BEHAVIOR_SUPPORT_CAS’);
+---+
| memc_servers_behavior_get(‘MEMCACHED_BEHAVIOR_SUPPORT_CAS’) |
+---+
| 1 |
+---+

mysql> select memc_behavior_get(‘MEMCACHED_BEHAVIOR_POLL_TIMEOUT’);
+--+
| memc_servers_behavior_get(‘MEMCACHED_BEHAVIOR_POLL_TIMEOUT’) |
+--+
| 1000 |
+--+

memc_behavior_set

The function memc_behavior_set() allows you to set any one of the behaviors that libmemcached
lets you modify, as shown in memc_behaviors_list(). Some behaviors are boolean 1 or 0, numeric,

563120c05.indd 207563120c05.indd 207 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

208 ❘ CHAPTER 5 MEMCACHED AND MYSQL

as well as canonical constant values that are internally converted to their actual numeric values. The
numeric values can either be quoted or not, but the canonical values must be quoted.

You must call memc_servers_set() to connect to one or more memcached servers prior to setting a
client behavior.

The syntax of memc_behavior_set() is:

memc_behavior_set(‘<behavior name>’, value);
memc_servers_behavior_set(‘<behavior name>’, value)

The following example shows the setting of a numeric as well as canonical hash type value and then
retrieving those behaviors to verify that they were indeed set:

mysql> select memc_behavior_set(‘MEMCACHED_BEHAVIOR_POLL_TIMEOUT’, 2000);
+--+
| memc_behavior_set(‘MEMCACHED_BEHAVIOR_POLL_TIMEOUT’, 2000) |
+--+
| 0 |
+--+

mysql> select memc_behavior_set(‘MEMCACHED_BEHAVIOR_HASH’, ‘MEMCACHED_HASH_MD5’);
+--+
| memc_behavior_set(‘MEMCACHED_BEHAVIOR_HASH’, ‘MEMCACHED_HASH_MD5’) |
+--+
| 0 |
+--+

mysql> select memc_behavior_get(‘MEMCACHED_BEHAVIOR_POLL_TIMEOUT’);
+--+
| memc_behavior_get(‘MEMCACHED_BEHAVIOR_POLL_TIMEOUT’) |
+--+
| 2000 |
+--+

mysql> select memc_behavior_get(‘MEMCACHED_BEHAVIOR_HASH’);
+--+
| memc_behavior_get(‘MEMCACHED_BEHAVIOR_HASH’) |
+--+
| MEMCACHED_HASH_MD5 |
+--+

Before tuning the client behavior, it would be prudent to read the documenta-
tion for libmemcached because changing values can lead to a non-working
setup. Manual pages are great for this. Just type:

man memcached_behavior_set

or

man memcached_behavior_get

563120c05.indd 208563120c05.indd 208 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 209

memc_list_hash_types

The function memc_list_hash_types() lists the canonical hash value types that can be assigned
using memc_behavior_set() or are returned from using memc_behavior_get() for the behavior
types MEMCACHED_BEHAVIOR_HASH or MEMCACHED_BEHAVIOR_KETAMA_HASH.

The syntax for memc_list_hash_types() is as follows:

memc_list_hash_types();

The code that follows shows an example of the output of memc_list_hash_types():

mysql> select memc_list_hash_types()\G
*************************** 1. row ***************************
memc_list_hash_types():
MEMCACHED_HASH_DEFAULT
MEMCACHED_HASH_MD5
MEMCACHED_HASH_CRC
MEMCACHED_HASH_FNV1_64
MEMCACHED_HASH_FNV1A_64
MEMCACHED_HASH_FNV1_32
MEMCACHED_HASH_FNV1A_32
MEMCACHED_HASH_JENKINS
MEMCACHED_HASH_HSIEH

To read more about these hash types, read the libmemcached manual page on behaviors by typing:

man memcached_behavior_set

memc_list_distribution_types

The function memc_list_distribution_types() lists the canonical distribution types for values
among servers that can be assigned using memc_behavior_set() or are returned using memc_
behavior_get() for the behavior type MEMCACHED_BEHAVIOR_DISTRIBUTION.

The syntax for memc_list_distribution_types() is:

memc_list_distribution_types()

The code that follows shows an example of the output of running
memc_list_distribution_types():

mysql> select memc_list_distribution_types()\G
*************************** 1. row ***************************
memc_list_distribution_types():
MEMACHED_DISTRIBUTION_MODULA
MEMCACHED_DISTRIBUTION_CONSISTENT
MEMCACHED_DISTRIBUTION_KETAMA

Statistical Functions

You can also obtain statistics about each memcached server with the various statistical functions.
This can be extremely useful in obtaining information such as usage statistics, server version,

563120c05.indd 209563120c05.indd 209 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

210 ❘ CHAPTER 5 MEMCACHED AND MYSQL

process id, uptime, and many other details. This type of information could be used in managing
connections to memcached as well as if you were building an application that keeps and displays
statistics on your overall system.

memc_stats

The function memc_stat() will return a list of the various statistics from one or more memcached
servers specifi ed in the single argument for servers, which is in the same format you would provide
to the function memc_server_add().

The syntax for memc_stats() is as follows:

memc_stats();

To which it will use the existing specifi ed server pool, or specifi c servers can be specifi ed:

memc_stats(‘server1:port, server2:port, ...’);

The output of memc_stats(), shown in the code that follows, is of two servers — one a memcached
server and one a Tokyo Tyrant server:

mysql> select memc_stats(‘127.0.0.1:11211,127.0.0.1:1978’)\G
*************************** 1. row ***************************
memc_stats(‘127.0.0.1:11211,127.0.0.1:1978’): Listing 2 Server

Server: 127.0.0.1 (11211)
 pid: 23408
 uptime: 6072
 time: 1257307515
 version: 1.4.2
 pointer_size: 32
 rusage_user: 0.64484
 rusage_system: 0.131676
 curr_items: 2
 total_items: 7
 bytes: 122
 curr_connections: 13
 total_connections: 24
 connection_structures: 14
 cmd_get: 21
 cmd_set: 14
 get_hits: 21
 get_misses: 1
 evictions: 0
 bytes_read: 122
 bytes_written: 122
 limit_maxbytes: 67108864
 threads: 4

Server: 127.0.0.1 (1978)
 pid: 14551
 uptime: 52356
 time: 1257307515

563120c05.indd 210563120c05.indd 210 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 211

 version: 1.1.34
 pointer_size: 0
 rusage_user: 32.216153
 rusage_system: 45.921686
 curr_items: 7
 total_items: 0
 bytes: 529216
 curr_connections: 0
 total_connections: 0
 connection_structures: 0
 cmd_get: 0
 cmd_set: 0
 get_hits: 0
 get_misses: 0
 evictions: 0
 bytes_read: 529216
 bytes_written: 529216
 limit_maxbytes: 0
 threads: 0

memc_stat_get_value

The function memc_stat_get_value() can be used to retrieve a particular statistic from a mem-
cached server. The fi rst argument is a comma separated list of one or more servers, the second argu-
ment the statistic name.

The syntax for memc_stat_get_value() is as follows:

memc_stat_get_value(‘server1:port, server2:port, ...’, ‘stat name’);

The code that follows shows how this can be quite handy to retrieve the a statistic such as the mem-
cached server version.

mysql> select memc_stat_get_value(‘127.0.0.1:11211’, ‘version’);
+---+
| memc_stat_get_value(‘127.0.0.1:11211’, ‘version’) |
+---+
| 1.4.2 |
+---+

memc_stat_get_keys

The function memc_stat_get_keys() takes no arguments and returns statistic keys available to be
used with the function memc_stat_get_value(). The syntax is:

memc_stat_get_keys()

Version Functions

Also available are version functions provided version information for both the UDF package itself as
well as the library that the Memcached Functions for MySQL were built against.

563120c05.indd 211563120c05.indd 211 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

212 ❘ CHAPTER 5 MEMCACHED AND MYSQL

memc_libmemcached_version

The function memc_libmemcached_version() takes no arguments and returns the version of lib-
memcached library that the Memcached Functions for MySQL were linked against.

The syntax for memc_libmemcached_version() is as follows:

memc_libmemcached_version()

The code that follows shows the output of libmemcached_version():

mysql> select memc_libmemcached_version();
+-----------------------------+
| memc_libmemcached_version() |
+-----------------------------+
| 0.33 |
+-----------------------------+

memc_udf_version

The function memc_udf_version() takes no arguments and returns the version of the Memcached
Functions for MySQL that are being used.

The syntax for memc_udf_version() is:

memc_udf_version()

The output of memc_udf_version() is shown in the following code:

mysql> select memc_udf_version();
+--------------------+
| memc_udf_version() |
+--------------------+
| 1.0 |
+--------------------+

Fun with Triggers (and UDFs)

You can get really creative with the use of triggers and the Memcached Functions for MySQL. As
you recall, triggers provide a means to have a given action take place upon a change to a row in
a table — insert, update and delete, either before or after the change is made. With memcached,
you could hide a lot of the details of caching from the application code, at least the part of caching
where data is written to the database and you want to ensure that the data in memcached mirrors
the changes made to the database.

The Source Distribution Directory

In the distribution directory containing the source code to the Memcached Functions for MySQL,
there is a fi le in the sql/ directory called, interestingly enough, trigger_fun.sql. This fi le contains

563120c05.indd 212563120c05.indd 212 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 213

some practical examples of how you can employ triggers to use these UDFs to do things such as work
as a sequence, as well as store data in memcached whenever there is a change to a row in a table.

1. The fi rst thing this fi le creates is a simple table called urls that contains two columns: an id
which is the primary key, and url which is a string in which URL values are stored.

drop table if exists urls;
create table urls (
 id int(3) not null,
 url varchar(64) not null default ‘’,
 primary key (id)
);

2. It then sets up the connection to memcached:

select memc_servers_set(‘localhost:11211’);

And a simple sequence object that will start at 0:

select memc_set(‘urls:sequence’, 0);

3. Then the insert triggers is created:

DELIMITER |

DROP TRIGGER IF EXISTS url_mem_insert |
CREATE TRIGGER url_mem_insert
BEFORE INSERT ON urls
FOR EACH ROW BEGIN
 SET NEW.id = memc_increment(‘urls:sequence’);
 SET @mm = memc_set(concat(‘urls:’,NEW.id), NEW.url);
END |

The trigger url_mem_insert does two things upon (before) the insert of a row to urls:

➤ Increments the counter object urls:sequence by one.

➤ Sets the URL value keyed by concatenating the string urls: with the new id value,
which was just incremented and then calls memc_set(). The SQL statement SET
must be used because you cannot call SELECT from within a trigger.

For instance, the fi rst record inserted will increment urls:sequence to 1, which the value
of id will assume, hence the key created will be urls:1, then whatever url value is being
inserted into urls will also be inserted into memcached as urls:1.

4. Next, an update trigger :

DROP TRIGGER IF EXISTS url_mem_update |
CREATE TRIGGER url_mem_update
BEFORE UPDATE ON urls
FOR EACH ROW BEGIN
 SET @mm = memc_replace(concat(‘urls:’,OLD.id), NEW.url);
END |

563120c05.indd 213563120c05.indd 213 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

214 ❘ CHAPTER 5 MEMCACHED AND MYSQL

The trigger url_memc_update is executed any time a record in urls is updated. It uses the
same scheme to create a memcached key by concatenating urls: with the id of the record being
updated. For example, the fi rst record initially has the value of http://www.foo.com, which,
if updated with the URL value of http://www.fee.com, in the updated trigger, results in the
call of memc_replace(‘urls:1’, ‘http://www.fee.com’); replaces the URL value in mem-
cached as well. The syntax SET is used because you cannot call SELECT from within a trigger.

5. Then fi nally, a delete trigger:

DROP TRIGGER IF EXISTS url_mem_delete |
CREATE TRIGGER url_mem_delete
BEFORE DELETE ON urls
FOR EACH ROW BEGIN
 SET @mm = memc_delete(concat(‘urls:’,OLD.id));
END |

Trigger Execution

The trigger url_mem_delete is executed on the deletion of any row in urls. It also uses the scheme
to build a memcached key that the other two triggers use. For example, upon the deletion of a record
that contains http://www.fee.com, which has the id value of 1, the UDF memc_delete(‘urls:1’)
is called.

trigger_fun.sql, which comes with the source distribution, also has some use case SQL state-
ments to show the triggers in action.

1. First, the data is inserted:

insert into urls (url) values (‘http://google.com’);
insert into urls (url) values (‘http://lycos.com/’);
insert into urls (url) values (‘http://tripod.com/’);
insert into urls (url) values (‘http://microsoft.com/’);
insert into urls (url) values (‘http://slashdot.org’);
insert into urls (url) values (‘http://mysql.com’);
insert into urls (url) values (‘http://northscale.com/’);
insert into urls (url) values (‘http://memcached.org/’);

2. An SQL statement to verify that the data exists in the table is issued:

select * from urls;

Yet another handy SQL statement verifi es each value that you expect to be stored as a result of the
previous inserts statements. You can use memc_get() within a query to return several results to
select the id from urls for all URLs in the urls table. This constructs a key that can fetch the items
cached in memcached.

select id, memc_get(concat(‘urls:’, id)) from urls;

One of the records is updated and immediately the key for this record is selected from the table as
well as fetched from memcached. It should have the updated value — the same value as the select
statement following the update:

update urls set url= ‘http://mysql.com/sun’ where url = ‘http://mysql.com’;
select url from urls where url = ‘http://mysql.com/sun’;
select memc_get(‘urls:6’);

563120c05.indd 214563120c05.indd 214 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 215

The same type of test is performed, except this time deleting a record:

delete from urls where url = ‘http://microsoft.com/’;
select * from urls where url = ‘http://microsoft.com/’;
select memc_get(‘urls:4’);

Now you can run trigger_fun.sql by command line to verify that these triggers work as advertised:

mysql --user root --password test < trigger_fun.sql

memc_servers_set(‘localhost:11211’)
1
memc_set(‘urls:sequence’, 0)
1

This is the output of selecting all records from the urls table after inserting the six records:

Id url
1 http://google.com
2 http://lycos.com
3 http://tripod.com
4 http://microsoft.com
5 http://slashdot.org
6 http://mysql.com
7 http://northscale.com
8 http://memcached.com

The following is the output of fetching the items from memcached using the aggregate query of the
id column of the urls table to call memc_get()for each key. You’ll see that all the values were in
fact stored via the trigger and exactly match the output of the previous query against the urls table:

Id memc_get(concat(‘urls:’, id))
1 http://google.com
2 http://lycos.com
3 http://tripod.com
4 http://microsoft.com
5 http://slashdot.org
6 http://mysql.com
7 http://northscale.com
8 http://memcached.com

The following code is the output after the update statement in trigger_fun.sql:

update urls set url= ‘http://mysql.com/sun’ where url = ‘http://mysql.com’;

Then the urls table is queried with the query:

select url from urls where url = ‘http://mysql.com/sun’;
url http://mysql.com/sun

Then the query is run:

select memc_get(‘urls:6’);

Resulting in the output:

memc_get(‘urls:6’) http://mysql.com/sun

563120c05.indd 215563120c05.indd 215 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

216 ❘ CHAPTER 5 MEMCACHED AND MYSQL

…verifying that the URL http://mysql.com was updated to http://mysql.com/sun both in the
urls table and memcached!

Then fi nally, the record is deleted. Of course, the select from urls for the url http://microsoft.com
yields nothing, but for memcached NULL is returned (correct).

memc_get(‘urls:4’)
NULL

So, you can see all the triggers work as advertised!

Using triggers can hide all of these details from the application. Values are automatically cached
upon writing to the database. This is very convenient and powerful in that it offers an integration
of durable data store as well as a method of organizing the keys for the cached items (MySQL) and
lightweight, fast caching (memcached)!

You don’t want to use insert or update triggers that automatically set values in
memcached when you work with tables that have huge data sets that frequently
update; you could end up calling set() or replace() when it’s not needed. This
is because a trigger doesn’t check whether the item in memcached should be set
or replaced in the fi rst place; a trigger runs regardless of whether an item in mem-
cached needs to be updated. It’s reasonable to use the insert or update triggers on
more “static” (tables that don’t change often) or small tables that don’t have huge
data sets. You can defi nitely use delete triggers on any size table.

Read-Through Caching with Simple Select Statements

One last part of this chapter is to show how you can use these UDFs to cache data in a single select.

As you saw in Chapter 6, a user would be fetched from the database and memcached in separate
SQL statements. You can combine obtaining data and caching in one step.

For example, you can cache a single user, in this case the user with the username of capttofu.

mysql> SELECT uid, username, email, firstname, surname,
 -> memc_set(concat(‘users:uid:’,username), uid),
 -> memc_set(concat(‘users:username:’,uid), username),
 -> memc_set(concat(‘users:email:’, username), email),
 -> memc_set(concat(‘users:firstname:’, username), firstname),
 -> memc_set(concat(‘users:surname:’, username), surname)
 -> from users where uid = 1\G
*************************** 1. row ***************************
 uid: 1
 username: capttofu
 email: capttofu@capttofu.org
 firstname: Patrick
 surname: Galbraith
 memc_set(concat(‘users:uid:’,username), uid): 0
 memc_set(concat(‘users:username:’,uid), username): 0

563120c05.indd 216563120c05.indd 216 2/18/10 9:09:26 AM2/18/10 9:09:26 AM

Using the Memcached Functions for MySQL ❘ 217

 memc_set(concat(‘users:email:’, username), email): 0
memc_set(concat(‘users:firstname:’, username), firstname): 0
 memc_set(concat(‘users:surname:’, username), surname): 0

In this example, the key used is tablename:column:unique_identifier. Also, because both uid
and username are unique, you can create a key using both, particularly storing, so you can look up
each based off the other. For example, if you cache user:uid:capttofu to have the value of 1 and
user:username:1 to have the value of capttofu, you can look either up given either key.

To see that these values were stored, you can select them all out on one line:

mysql> select memc_get(‘users:uid:capttofu’) as uid,
 -> memc_get(‘users:username:1’) as username,
 -> memc_get(‘users:email:capttofu’) as email,
 -> memc_get(‘users:firstname:capttofu’) as firstname,
 -> memc_get(‘users:surname:capttofu’) as surname;
+-----+----------+-----------------------+-----------+-----------+
| uid | username | email | firstname | surname |
+-----+----------+-----------------------+-----------+-----------+
| 1 | capttofu | capttofu@capttofu.org | Patrick | Galbraith |
+-----+----------+-----------------------+-----------+-----------+

…which is how you can cache without using serialization. You just have to keep your keys in order!

Also, you can use the Power of the SELECT™ to cache multiple records in one fell swoop!

If you recall, some things such as geographical data like states can be pre-cached at the beginning
of a program’s execution, and the UserApp example did this very thing. This can be done with one
simple SQL statement as follows:

mysql> select state_abbr, state_name,
 -> memc_set(concat(‘states:state_abbr:’,state_name), state_abbr),
 -> memc_set(concat(‘states:state_name:’, state_abbr), state_name),
 -> memc_set(concat(‘states:state_flower:’,state_abbr), state_flower)
 -> from states\G
*************************** 1. row ***************************
 state_abbr: AL
 state_name: Alabama
 memc_set(concat(‘states:state_abbr:’,state_name), state_abbr): 0
 memc_set(concat(‘states:state_name:’, state_abbr), state_name): 0
memc_set(concat(‘states:state_flower:’,state_abbr), state_flower): 0
*************************** 2. row ***************************
 state_abbr: AK
 state_name: Alaska
 memc_set(concat(‘states:state_abbr:’,state_name), state_abbr): 0
 memc_set(concat(‘states:state_name:’, state_abbr), state_name): 0
memc_set(concat(‘states:state_flower:’,state_abbr), state_flower): 0
*************************** 3. row ***************************
 state_abbr: AR
 state_name: Arkansas
 memc_set(concat(‘states:state_abbr:’,state_name), state_abbr): 0
 memc_set(concat(‘states:state_name:’, state_abbr), state_name): 0
memc_set(concat(‘states:state_flower:’,state_abbr), state_flower): 0
...

563120c05.indd 217563120c05.indd 217 2/18/10 9:09:27 AM2/18/10 9:09:27 AM

218 ❘ CHAPTER 5 MEMCACHED AND MYSQL

...
*************************** 49. row ***************************
 state_abbr: WI
 state_name: Wisconsin
 memc_set(concat(‘states:state_abbr:’,state_name), state_abbr): 0
 memc_set(concat(‘states:state_name:’, state_abbr), state_name): 0
memc_set(concat(‘states:state_flower:’,state_abbr), state_flower): 0
*************************** 50. row ***************************
 state_abbr: WY
 state_name: Wyoming
 memc_set(concat(‘states:state_abbr:’,state_name), state_abbr): 0
 memc_set(concat(‘states:state_name:’, state_abbr), state_name): 0
memc_set(concat(‘states:state_flower:’,state_abbr), state_flower): 0
*************************** 51. row ***************************
 state_abbr: DC
 state_name: District of Columbia
 memc_set(concat(‘states:state_abbr:’,state_name), state_abbr): 8
 memc_set(concat(‘states:state_name:’, state_abbr), state_name): 0
memc_set(concat(‘states:state_flower:’,state_abbr), state_flower): 0

This query caches all the states for the columns specifi ed in memc_set using concatenation to create
the key, just like the previous example, except with this there are 51 records in the result set, all of
which are now cached!

To select the data from memcached using the results of a query against the states table, run the
following:

mysql> select memc_get(concat(‘states:state_abbr:’,state_name)) as state_abbr,
memc_get(concat(‘states:state_name:’,state_abbr)) as state_name,
memc_get(concat(‘states:state_flower:’,state_abbr)) from states limit 20;
+------------+-------------+---+
| state_abbr | state_name | memc_get(concat(‘states:state_flower:’,state_abbr)) |
+------------+-------------+---+
AL	Alabama	Camellia
AK	Alaska	Forget Me Not
AR	Arkansas	Apple Blossom
AZ	Arizona	Saguaro Cactus Blossom
CA	California	California Poppy
CO	Colorado	Rocky Mountain Columbine
CT	Connecticut	Mountain Laurel
DE	Delaware	Peach Blossom
FL	Florida	Orange Blossom
GA	Georgia	Cherokee Rose
HI	Hawaii	Pua Aloalo
ID	Idaho	Syringa - Mock Orange
IA	Iowa	Wild Prairie Rose
IN	Indiana	Peony
IL	Illinois	Purple Violet
KS	Kansas	Sunflower
KY	Kentucky	Goldenrod
LA	Louisiana	Magnolia
ME	Maine	White Pine Cone and Tassel
MD	Maryland	Black-Eyed Susan
+------------+-------------+---+

563120c05.indd 218563120c05.indd 218 2/18/10 9:09:27 AM2/18/10 9:09:27 AM

Using the Memcached Functions for MySQL ❘ 219

Fantastic! You now have a multiple-key data fetch from memcached. The table states essentially
provides the list of keys. Notice also that any SQL statement condition can be used, in this case a
LIMIT clause.

OK, so you think this chapter is done and you can go to sleep (if you aren’t already!)? Well, there’s
one more trick to show you!

Updates

Consider a simple table foo which has only one column, a, which is an int (not important other
than for showing this example). To use the memc_replace() with an UPDATE statement to update
both a table and memcached, follow these steps:

1. Insert four values into this table and then set a value in memcached using a key that maps to
the table:

mysql> INSERT INTO foo VALUES (1), (2), (3), (4);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT memc_set(‘foo:3’, 3);
+----------------------+
| memc_set(‘foo:3’, 3) |
+----------------------+
| 0 |
+----------------------+

2. Fetch the value to verify it was set:

mysql> SELECT memc_get(‘foo:3’);
+-------------------+
| memc_get(‘foo:3’) |
+-------------------+
| 3 |
+-------------------+

3. Now update the table and memcached! Notice here that the call to memc_replace() returns
a true, so that is included in the WHERE clause with the AND conjunction.

mysql> UPDATE foo SET a = 33 WHERE a = 3 AND memc_replace(‘foo:3’, 33);
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

4. Verify it was replaced:

mysql> SELECT memc_get(‘foo:3’);
+-------------------+
| memc_get(‘foo:3’) |
+-------------------+
| 33 |
+-------------------+

Which it was!

563120c05.indd 219563120c05.indd 219 2/18/10 9:09:27 AM2/18/10 9:09:27 AM

220 ❘ CHAPTER 5 MEMCACHED AND MYSQL

The trick, here, is that you can use a conjunction in an update statement — so long as the condition
evaluates to true. If you recall, memc_set(), and memc_replace() return false, a zero, upon success-
ful data store. So, in order for the condition to be evaluated as true and therefore make the update
statement occur, you would negate the return value of memc_replace().

SUMMARY

Interacting with memcached at the database layer can provide you a whole range of benefi ts that
you might not otherwise have if your interactions were limited to only being in the application
layer. Because MySQL is a relational database management system, you can leverage the database’s
relational and management capabilities along with the power of fast caching that memcached pro-
vides to tie the durable data store of the database with the caching layer of memcached using the
Memcached Functions for MySQL. This moves some of the complexity that would otherwise be
found in your PHP application code to a lower level.

This chapter introduced you to the Memcached Functions for MySQL, showing you how to obtain,
install, and confi gure these functions to use from within MySQL. As shown in Chapter 4 with PECL/
memcached, the various functions provide the operations that memcached affords. Next, you saw
examples of using triggers to automatically cache, replace/update, and delete values from memcached
based on actions performed against a database table. Having read this chapter, you should now have
an idea of how to take advantage of the power these user-defi ned functions can provide you!

563120c05.indd 220563120c05.indd 220 2/18/10 9:09:27 AM2/18/10 9:09:27 AM

Advanced MySQL

WHAT’S IN THIS CHAPTER?

➤ Understanding the usage and fl exibility of views

Encapsulating business logic within stored procedures and functions➤

Extending statement DDL operations with triggers➤

Enhancing data consistency with transactions➤

➤ Understanding and using MySQL Replication to extend your data-

base usage

Scheduling one-time or recurring database events➤

After mastering MySQL tables and columns and the various SQL commands for data man-
agement in your application, this chapter looks at key advanced features of MySQL that can
enhance your application programming features and functionality.

Throughout this chapter, you create a number of different objects; some examples may specifi -
cally reference the database schema. You can ensure all examples work with the following new
schema:

DROP SCHEMA IF EXISTS chapter6;
CREATE SCHEMA chapter6;
USE chapter6;

VIEWS

A view in MySQL is a server defi nition that enables a simpler representation of underlying
tables and columns. This can lead to an easier understanding of a complex data model, and
ultimately easier coding practices. Views were fi rst available in MySQL 5.0. A view may be of

6

563120c06.indd 221563120c06.indd 221 2/18/10 9:09:40 AM2/18/10 9:09:40 AM

222 ❘ CHAPTER 6 ADVANCED MYSQL

benefi t when you integrate data from an existing legacy system. For example, perhaps you extract
data from a mainframe and use the same table structure in your MySQL database, but its structure
is cryptic at best:

CREATE TABLE tbl1453 (
 i_id INT UNSIGNED NOT NULL,
 s_nm VARCHAR(100) NOT NULL,
 s_txt1 VARCHAR(50) NULL,
 s_txt2 VARCHAR(50) NULL,
 d_c DATE NOT NULL,
 d_m DATE NOT NULL,
 stat CHAR(1) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO tbl1453(i_id, s_nm, s_txt1, s_txt2, d_c, d_m, stat) VALUES
(1,’Acme Corp’,NULL,NULL,’2001–10–04’,’2008–07–01’,’A’),
(2,’Example Co.’,NULL,NULL,’2002–02–02’,’2002–02–02’,’A’),
(3,’Defunct Inc’,NULL,NULL,’2005–01–01’,’2005–12–31’,’I’);

You can create a view to easily describe the active customers based on knowledge determined
from the data:

CREATE VIEW active_customers AS
SELECT i_id AS id, s_nm AS name,
 d_c AS date_created, d_m AS date_modified
FROM tbl1453
WHERE stat = ‘A’;

mysql> SELECT * FROM active_customers;
+----+-------------+--------------+---------------+
| id | name | date_created | date_modified |
+----+-------------+--------------+---------------+
| 1 | Acme Corp | 2001–10–04 | 2008–07–01 |
| 2 | Example Co. | 2002–02–02 | 2002–02–02 |
+----+-------------+--------------+---------------+

This view provides a clear level of human readability.

A second benefi t is that it provides a simplifi ed and human readable representation for end user
reporting by joining multiple tables together that are in defi ned in a normalized form. Chapter 1
provides a complex SQL statement that gives details of countries where the fl ags include the colors
of Red, White, and Blue. This could be simplifi ed to a view, and to the end user all the normaliza-
tion and joins to additional tables are removed:

CREATE VIEW RWB_flags AS
SELECT f1.country, c.population,
 IFNULL(ci.city,’Not Recorded’) AS city, s.abbr, s.state
FROM flags f1
INNER JOIN flags f2 ON f1.country = f2.country
INNER JOIN flags f3 ON f1.country = f3.country
INNER JOIN countries c ON f1.country = c.country
LEFT JOIN cities ci ON f1.country = ci.country
 AND ci.is_country_capital = ‘yes’

563120c06.indd 222563120c06.indd 222 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

Views ❘ 223

LEFT JOIN states s ON f1.country = s.country
 AND ci.state = s.state
WHERE f1.color = ‘Red’
AND f2.color = ‘White’
AND f3.color = ‘Blue’;

SELECT * FROM RWB_flags;
+-----------+------------+---------------+------+-------+
| country | population | city | abbr | state |
+-----------+------------+---------------+------+-------+
| Australia | 21888000 | Not Recorded | NULL | NULL |
| USA | 307222000 | Washington DC | NULL | NULL |
+-----------+------------+---------------+------+-------+

Another benefi t of views is the ability to grant different permissions to access your data. You may, for
example, have a table that contains sensitive data in several columns. Creating a view that excludes
these columns can give access to some data to users without the need to make expensive schema
changes to the tables. An example is provided in the following section.

Access Permissions

The correct use and management of views requires a more in-depth knowledge of the underlying
MySQL security model. The ability to create views requires a greater privilege than normally pro-
vided to create tables. For example, a normal application DBA account should have only the follow-
ing privileges:

$ mysql -uroot –p

CREATE USER expert@localhost IDENTIFIED BY ‘wroxbooks’;
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE ON chapter6.* TO expert@localhost;

Though it is possible to create the data as shown earlier, an attempt to create the view would result
in the following error:

$ mysql -uexpert -pwroxbooks chapter6

CREATE VIEW active_customers AS
SELECT i_id AS id, s_nm AS name, d_c AS date_created, d_m AS date_modifi ed
FROM tbl1453 WHERE stat = `A’;

ERROR 1142 (42000): CREATE VIEW command denied to user
 ‘expert’@’localhost’ for table ‘active_customers’

You require the CREATE VIEW privilege in addition to the general CREATE privilege used to create
table objects. The following code creates a different user to show the interaction:

$ mysql -uroot -p

CREATE USER expert_admin@localhost IDENTIFIED BY ‘wroxadmin’;

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE VIEW ON chapter6.* TO

563120c06.indd 223563120c06.indd 223 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

224 ❘ CHAPTER 6 ADVANCED MYSQL

 expert_admin@localhost;

$ mysql -uexpert_admin -pwroxadmin chapter6

CREATE VIEW active_customers AS
SELECT i_id AS id, s_nm AS name, d_c AS date_created, d_m AS date_modifi ed
FROM tbl1453 WHERE stat = `A’;

An attempt to create a view on tables where the user does not have permissions also results in an
error. For example, this new user has permissions to create views only in a specifi c schema. If you
attempt to access data to which you do not have permission, you’ll get the following error:

mysql> CREATE VIEW system_users AS SELECT host,user,password FROM mysql.user;
ERROR 1142 (42000): ANY command denied to user ‘expert_admin’@’localhost’
for table ‘user

If, for example, you created this view with a user that had suffi cient permissions such as the MySQL
root user, other users will, by default, get the ability to view the information:

$ mysql -uroot -p chapter6

CREATE VIEW system_users AS SELECT host,user,password FROM mysql.user;

The user that previously did not have permission to view the data when creating the view now has
read permissions to a subset of data:

$ mysql -uexpert_admin -pwroxadmin chapter6

mysql> SELECT * FROM system_users;
+---------------------+-----------------+-------------------------------------+
| host | user | password |
+---------------------+-----------------+-------------------------------------+
localhost	root	*FDAF706717E70DB8DDAD0C5214B13770E1
localhost	drizzle	*F86E8EF33D51597CCF3D822F3E78FE6715
localhost	monitor	*80B4B538AB825D18DA6292E50F4D916C0E
localhost	expert	*FDAF706717E70DB8DDAD0C5214B13770E1
localhost	expert_admin	*FDAF706717E70DB8DDAD0C5214B13770E1
+---------------------+-----------------+-------------------------------------+

The password values in this example have been truncated for display purposes.

The reason here is that by default, the permissions to use the view are that of the DEFINER of the view.
You can also change this for a view defi nition, so that you must have permissions to also see the under-
lying data, for example. You can do this by adding the SQL SECURITY INVOKER clause to the CREATE
VIEW statement, as shown in the code that follows.

$ mysql –uroot –p chapter6

DROP VIEW IF EXISTS system_users;
CREATE
SQL SECURITY INVOKER

563120c06.indd 224563120c06.indd 224 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

Views ❘ 225

VIEW system_users AS SELECT host,user,password FROM mysql.user;

$ mysql -uexpert_admin -pwroxadmin chapter6
mysql> SELECT * FROM system_users;

ERROR 1356 (HY000): View ‘chapter6.system_users’ references invalid table(s)
or column(s) or function(s) or definer/invoker of view lack rights to use them

You also require greater permissions to view the syntax of a view defi nition:

$ mysql -uexpert_admin -pwroxadmin chapter6

mysql> SHOW CREATE VIEW system_users;

ERROR 1142 (42000): SHOW VIEW command denied to user ‘expert_admin’@’localhost’
 for table ‘system_users’
$ mysql -uroot -p chapter6

SHOW CREATE VIEW system_users\G
*************************** 1. row ***************************
 View: system_users
 Create View: CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL
SECURITY DEFINER VIEW `chapter2`.`system_users` AS select `mysql`.`user`.`Host`
 AS `host`,`mysql`.`user`.`User` AS `user`,`mysql`.`user`.`Password` AS
 `password` from `mysql`.`user`
character_set_client: latin1
collation_connection: latin1_swedish_ci

Additional Information about Views

The following additional points are relevant to the experienced developer in understanding the limi-
tations of view functionality:

➤ A view name must be unique with the table namespace. It is not possible to have a view that
is the same name as a table for a given schema.

➤ It is possible in MySQL to update a view in some circumstances. The primary requirement is
that there exists a one-to-one relationship between a given row in the table and a correspond-
ing row.

➤ Views are commonly used in data warehousing solutions. MySQL does not generally perform
well with views on top of other views. It may be necessary to rewrite views when possible
that include other views for more optimized performance.

➤ A number of caveats exist for using views. The most signifi cant points are that you cannot
use temporary tables in views and a FROM clause table cannot be a derived table.

➤ MySQL does not have the concept of a materialized view. You can create the illusion of a
materialized view by using MySQL replication and stopping the process at defi ned times;
however, this is only possible for the entire MySQL instance, not individual views.

563120c06.indd 225563120c06.indd 225 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

226 ❘ CHAPTER 6 ADVANCED MYSQL

STORED PROCEDURES AND FUNCTIONS

MySQL provides stored procedures and stored functions to encapsulate business functionality at the
database level. MySQL refers to procedures and functions as routines. Some clear advantages for
using stored routines include:

➤ They historically have been used to ensure important business decisions are at the database
level, and that any application that accesses the data does so via stored procedure. This can
be important when client applications support multiple programming languages.

➤ They have the ability to reduce the network roundtrip when several commands can occur at
the same time. An example may be when data for a given record is stored in two tables in a
one-to-one relationship.

➤ It is possible to provide a different level of security access to data, with access to data only
via stored procedures.

General Attributes

With the exception of stored functions returning a MySQL data type, the following attributes apply
to both stored procedures and stored functions:

➤ The routine can accept a fi xed number of parameters.

The routine has a number of characteristics defi ning its usage and nature.➤

The routine has a block of executable MySQL code.➤

Parameters

Parameters include a parameter type (IN, OUT, INOUT), a name, and a data type. When no parameter
type is specifi ed, the IN type is the default. The name and data type are required. Stored routines
can be defi ned without parameters. Listing 6-1 shows a few parameter examples.

LISTING 6-1: sp-param.sql

DELIMITER //
DROP PROCEDURE IF EXISTS sample_no_param//
CREATE PROCEDURE sample_no_param()
BEGIN
 SELECT 1 + 1;
END//

DROP PROCEDURE IF EXISTS sample_2_param//
CREATE PROCEDURE sample_2_param(param1 INT, param2 INT)
BEGIN
 SELECT param1 + param2;
END//

CREATE PROCEDURE sample_out(OUT o_param INT)

563120c06.indd 226563120c06.indd 226 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

Stored Procedures and Functions ❘ 227

BEGIN
 SELECT 1 + 1 INTO o_param;
END//

CREATE FUNCTION sample_func(param1 INT)
RETURNS INT
BEGIN
 RETURN 1 + param1;
END//

DELIMITER;

The following output shows the execution and resources of these routines with various parameter
declarations.

mysql> CALL sample_no_param();
+-------+
| 1 + 1 |
+-------+
| 2 |
+-------+

mysql> CALL sample_2_param(2,3);
+-----------------+
| param1 + param2 |
+-----------------+
| 5 |
+-----------------+

mysql> CALL sample_out(@param_out);
mysql> SELECT @param_out;
+------------+
| @param_out |
+------------+
| 2 |
+------------+

mysql> SELECT sample_func(2);
+----------------+
| sample_func(2) |
+----------------+
| 3 |
+----------------+

MySQL stored routines do not support parameters that are sets or arrays as
data types. It is also not possible for a stored routine to accept a variable num-
ber of parameters, and overloading parameters is also not supported.

563120c06.indd 227563120c06.indd 227 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

228 ❘ CHAPTER 6 ADVANCED MYSQL

Characteristics

Following the parameters specifi cation you can specify characteristics about the data used by the
routine. These characteristics are presently only information and are not enforced:

➤ LANGUAGE SQL: Defi nes the language that may be used. The only valid value is SQL.

➤ [NOT] DETERMINISTIC: Defi nes whether the routine, generally a function, returns the
same value for the given parameters every time. By default a routine is defi ned as NOT
DETERMINISTIC.

➤ NO SQL: Indicates that the routine does not contain any SQL statements.

➤ CONTAINS SQL: The default characteristic of the SQL options.

➤ READS SQL DATA: indicates that the routine reads data only and does not modify any data.

➤ MODIFIES SQL DATA: Indicates that the routine reads and modifi es data.

Stored Routine Logic

A stored routine may contain an individual SQL statement, or it can include multiple SQL state-
ments when enclosed with a BEGIN.END statement block.

The key areas within a statement block are:

➤ Variables

Cursors➤

Handlers and conditions➤

Flow control➤

Return (stored functions only)➤

Variables

For local variables within a stored routine you need to fi rst defi ne these variables within a DECLARE
statement. Variables can be assigned a default value, assigned a value with SET command, or with
the INTO syntax in a SELECT statement:

LISTING 6-2: sp-variables.sql

DELIMITER //
DROP FUNCTION IF EXISTS variable_example//
CREATE FUNCTION variable_example (seed INT)
RETURNS INT
BEGIN
 DECLARE example_int INT;
 DECLARE example_result INT;

 SET example_int:= 1;

563120c06.indd 228563120c06.indd 228 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

Stored Procedures and Functions ❘ 229

 SELECT example_int + seed INTO example_result;

 RETURN example_result;
END//

DELIMITER;

SELECT variable_example(5);
+---------------------+
| variable_example(5) |
+---------------------+
| 6 |
+---------------------+

Cursors

A MySQL cursor is a read-only, forward-only looping SELECT query. Cursors must be specifi ed by
the DECLARE clause after variable declarations. Data is retrieved in cursors via the OPEN, FETCH, and
CLOSE commands. Listing 6-3 is the basic construct for a cursor.

LISTING 6-3: sp-cursor.sql

DELIMITER //
DROP FUNCTION IF EXISTS cursor_example//
CREATE PROCEDURE cursor_example ()
BEGIN
 DECLARE l_user VARCHAR(50);
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE cur1 CURSOR FOR SELECT user FROM mysql.user;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET done = TRUE;

 OPEN cur1;

 lab:
 LOOP
 FETCH cur1 INTO l_user;
 IF (done) THEN
 LEAVE lab;
 END IF;
 END LOOP;
END//

DELIMITER;

Handlers and Conditions

As demonstrated in the previous cursor code you can declare a HANDLER for logic control based on
given MySQL error codes. The MySQL Reference Manual defi nes the syntax of the HANDLER and
CONDITION clauses as:

DECLARE condition_name CONDITION FOR condition_value

condition_value:

563120c06.indd 229563120c06.indd 229 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

230 ❘ CHAPTER 6 ADVANCED MYSQL

 SQLSTATE [VALUE] sqlstate_value
| mysql_error_code

DECLARE handler_type HANDLER FOR condition_value[,.] sp_statement

handler_type:
 CONTINUE
| EXIT
| UNDO

condition_value:
 SQLSTATE [VALUE] sqlstate_value
| condition_name
| SQLWARNING
| NOT FOUND
| SQLEXCEPTION
| mysql_error_code

Flow Control

MySQL provides a number of constructs for managing program fl ow. Most are familiar to software
developers.

➤ IF . THEN . ELSEIF THEN . ELSE . END IF

CASE . WHEN . THEN . ELSE . END CASE➤

LOOP . END LOOP➤

REPEAT . UNTIL . END REPEAT➤

WHILE . DO . END WHILE➤

LEAVE➤

➤ ITERATE (similar to a loop continue)

It is worth noting that the most obvious omission is a FOR loop.

Using Stored Routines Privileges and Meta Data

To implement stored routines you need to provide additional user privileges for the creation and
management of routines, and for users to execute routines. For your DBA user, the CREATE ROUTINE
and ALTER ROUTINE privileges are necessary to manage objects. For your read/write and read-only
users, the EXECUTE privilege is required.

MySQL provides information about routines in the mysql.proc and mysql.procs_priv tables.
Information is also available in the INFORMATION_SCHEMA.ROUTINES table. A number of SHOW com-
mands exist to provide various information:

➤ SHOW PROCEDURE STATUS

SHOW FUNCTION STATUS➤

563120c06.indd 230563120c06.indd 230 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

Stored Procedures and Functions ❘ 231

SHOW CREATE PROCEDURE➤

SHOW CREATE FUNCTION➤

The following commands are extensions that are only available for MySQL server installations with
debugging support enabled.

➤ SHOW PROCEDURE CODE

SHOW FUNCTION CODE➤

The MySQL INFORMATION_SCHEMA does not include a cross-reference between routines and tables used.

Extending Stored Routines

Although some limitations have been listed, the MySQL Stored Routines Library at http://mysql-
sr-lib.sourceforge.net/ can provide some working solutions for features you may fi nd with
other stored database languages, such as:

➤ Globals

Arrays➤

Named parameters➤

“for each” loops➤

Syntax helpers➤

Testing➤

Stored Routine Disadvantages

Stored routines are not precompiled for optimized operation. A stored procedure is received and
re-parsed on a per-connection basis. When used by a language such as PHP, the overhead does
not lead to the potential speed improvement that you can obtain using stored procedures in other
RDBMS products.

Stored routines are not automatically marked as invalid due to a schema change. This requires the
fi rst re-execution of the stored procedure to fail to determine invalid syntax. Unfortunately it can be
diffi cult to test this in a production environment without affecting production data.

The greatest missing functionality of stored routines is the lack of a SQL standard SIGNAL syntax.
This is similar to other RDBMS products’ RAISE syntax that provide the developer the opportunity
to manage exceptions for both database and application logic with stored routines.

User Defi ned Functions

MySQL provides a third means for including business functionality within the database. This is
a user defi ned function (UDF) that is written and compiled C code. These functions use a very
restricted set of return values but can provide an interface to existing external code.

The memcached functions are good examples of user defi ned functions. Check out https://
launchpad.net/memcached-udfs.

563120c06.indd 231563120c06.indd 231 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

232 ❘ CHAPTER 6 ADVANCED MYSQL

TRIGGERS

Triggers, as the name suggests, perform an action based on a certain DML statement being trig-
gered or executed. MySQL triggers can be defi ned at six different integration points:

➤ BEFORE INSERT

AFTER INSERT➤

BEFORE UPDATE➤

AFTER UPDATE➤

BEFORE DELETE➤

AFTER DELETE➤

This functionality is in line with more traditional relational databases. You will notice there are no
triggers for REPLACE. This is discussed in more detail later. MySQL does not provide triggers on
other events, such as system startup or shutdown, or ALTER commands. For example, MySQL trig-
gers have a number of limitations:

➤ Only one trigger can be specifi ed for each of the previously defi ned six points. Other data-
bases, for example, enable you to specify multiple triggers, such as two AFTER INSERT trig-
gers for the same table.

➤ Triggers are possible FOR EACH ROW only; there is no per-statement level functionality.

There is no instead of trigger syntax.➤

There is no when clause restriction.➤

The following examples show the use of triggers to produce an audit trail of changes to data for a
given table. Listing 6-4 shows the prerequisite tables for the following examples.

LISTING 6-4: trigger-tables.sql

USE chapter6;
DROP TABLE IF EXISTS trigger_test;
CREATE TABLE trigger_test (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
val VARCHAR(10) NOT NULL,
PRIMARY KEY(id)
) ENGINE=InnoDB DEFAULT CHARSET latin1;

DROP TABLE IF EXISTS logger;
CREATE TABLE logger (
action ENUM (‘Insert’,’Update’,’Delete’) NOT NULL,
occurred TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
id INT UNSIGNED NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET latin1;

563120c06.indd 232563120c06.indd 232 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

Triggers ❘ 233

No Triggers

By default, no information is logged based on an INSERT statement when no triggers are defi ned:

INSERT INTO trigger_test (id,val) VALUES (NULL, ‘a’);
SELECT * FROM logger;

Empty set (0.01 sec)

Trigger Syntax

The syntax of the trigger is quite straightforward. It consists of four components:

1: CREATE TRIGGER <trigger_name>
2: BEFORE|AFTER INSERT|UPDATE|DELETE ON <table>
3: FOR EACH ROW
4: <sql statement(s)>

➤ CREATE TRIGGER <trigger_name>: Defi nes the name of the trigger.

➤ BEFORE|AFTER INSERT|UPDATE|DELETE ON <table>: Defi nes which table the trigger is
associated with and when this trigger is executed.

➤ FOR EACH ROW: Is a required syntax that states the trigger fi res for each row of the executed
query. There is no companion syntax for triggers to fi re for the statement only.

➤ <sql statement(s)>: Specifi es the statements to be executed.

Insert Triggers

Listing 6-5 demonstrates the BEFORE|AFTER INSERT syntax.

LISTING 6-5: insert-triggers.sql

DELIMITER $$
DROP TRIGGER IF EXISTS trigger_test_bri$$
CREATE TRIGGER trigger_test_bri
BEFORE INSERT ON trigger_test
FOR EACH ROW
 INSERT INTO logger(action,occurred,id) VALUES(‘Insert’,NOW(),NEW.id);
$$
DROP TRIGGER IF EXISTS trigger_test_ari$$
CREATE TRIGGER trigger_test_ari
AFTER INSERT ON trigger_test
FOR EACH ROW
 INSERT INTO logger(action,occurred,id) VALUES(‘Insert’,NOW(),NEW.id);
$$
DELIMITER;

What is introduced with the TRIGGER syntax is the NEW and OLD context. These represent the values
of the row of data before and after the statement being executed.

563120c06.indd 233563120c06.indd 233 2/18/10 9:09:41 AM2/18/10 9:09:41 AM

234 ❘ CHAPTER 6 ADVANCED MYSQL

As an example, insert a new row into the example table:

INSERT INTO trigger_test (id,val) VALUES (NULL, ‘b’);
SELECT * FROM trigger_test;
+----+-----+
| id | val |
+----+-----+
| 1 | a |
| 2 | b |
+----+-----+

SELECT * FROM logger;
+--------+---------------------+----+
| action | occurred | id |
+--------+---------------------+----+
| Insert | 2009–09–20 23:41:01 | 0 |
| Insert | 2009–09–20 23:41:01 | 2 |
+--------+---------------------+----+

You will see there are two rows in the logger table to refl ect the before and after insert triggers fi r-
ing. The AUTO_INCREMENT value for id is not yet defi ned before the INSERT statement has occurred,
and the value is defi ned after the INSERT statement.

Update Triggers

Now try adding BEFORE|AFTER UPDATE triggers and test the UPDATE syntax as shown in Listing 6-6:

LISTING 6-6: update-triggers.sql

DELIMITER $$
DROP TRIGGER IF EXISTS trigger_test_bru$$
CREATE TRIGGER trigger_test_bru
BEFORE UPDATE ON trigger_test
FOR EACH ROW
 INSERT INTO logger(action,occurred,id) VALUES(‘Update’,NOW(),OLD.id);
$$
DROP TRIGGER IF EXISTS trigger_test_aru$$
CREATE TRIGGER trigger_test_aru
AFTER UPDATE ON trigger_test
FOR EACH ROW
 INSERT INTO logger(action,occurred,id) VALUES(‘Update’,NOW(),NEW.id);
$$
DELIMITER;

For this example, you update multiple existing rows to show the use of the FOR EACH ROW syntax:

INSERT INTO trigger_test (id,val) VALUES (NULL, ‘b’);
UPDATE trigger_test SET id = id + 10 WHERE val = ‘b’;

SELECT * FROM trigger_test;
+----+-----+
| id | val |

563120c06.indd 234563120c06.indd 234 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

Triggers ❘ 235

+----+-----+
1	a
12	b
13	b
+----+-----+

SELECT * FROM logger;
+--------+---------------------+----+
| action | occurred | id |
+--------+---------------------+----+
Insert	2009–09–20 23:41:01	0
Insert	2009–09–20 23:41:01	2
Insert	2009–09–20 23:42:49	0
Insert	2009–09–20 23:42:49	3
Update	2009–09–20 23:42:49	2
Update	2009–09–20 23:42:49	12
Update	2009–09–20 23:42:49	3
Update	2009–09–20 23:42:49	13
+--------+---------------------+----+

In this example, you see the change in value before and after the actual UPDATE statement. You can
also see that the triggers operate on all rows that are affected.

Delete Triggers

Listing 6-7 completes the remaining valid triggers for BEFORE | AFTER DELETE.

LISTING 6-7: delete-triggers.sql

DELIMITER $$
DROP TRIGGER IF EXISTS trigger_test_brd$$
CREATE TRIGGER trigger_test_brd
BEFORE DELETE ON trigger_test
FOR EACH ROW
 INSERT INTO logger(action,occurred,id) VALUES(‘Delete’,NOW(),OLD.id);
$$
DROP TRIGGER IF EXISTS trigger_test_ard$$
CREATE TRIGGER trigger_test_ard
AFTER DELETE ON trigger_test
FOR EACH ROW
 INSERT INTO logger(action,occurred,id) VALUES(‘Delete’,NOW(),OLD.id);
$$
DELIMITER;

You will now see the deletion of rows:

DELETE FROM trigger_test WHERE id > 10;

SELECT * FROM trigger_test;
+----+-----+
| id | val |
+----+-----+

563120c06.indd 235563120c06.indd 235 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

236 ❘ CHAPTER 6 ADVANCED MYSQL

| 1 | a |
+----+-----+

SELECT * FROM logger;
+--------+---------------------+----+
| action | occurred | id |
+--------+---------------------+----+
Insert	2009–09–20 23:41:01	0
Insert	2009–09–20 23:41:01	2
Insert	2009–09–20 23:42:49	0
Insert	2009–09–20 23:42:49	3
Update	2009–09–20 23:42:49	2
Update	2009–09–20 23:42:49	12
Update	2009–09–20 23:42:49	3
Update	2009–09–20 23:42:49	13
Delete	2009–09–20 23:43:50	12
Delete	2009–09–20 23:43:50	12
Delete	2009–09–20 23:43:50	13
Delete	2009–09–20 23:43:50	13
+--------+---------------------+----+

You are unable to use the NEW context for a DELETE trigger. An attempt will result in the following
error:

ERROR 1363 (HY000): There is no NEW row in on DELETE trigger

You are unable to create multiple triggers of the same type on the same table. An attempt will result
in the following error:

ERROR 1235 (42000): This version of MySQL doesn’t yet support ‘multiple
 triggers with the same action time and event for one table’

The DELETE trigger will not occur for other DML that removes data such as
TRUNCATE TABLE or DROP TABLE.

Replace Triggers

MySQL provides an additional DDL command to the normal CRUD functions: REPLACE. Unlike its
name, which implies an update to the current row and, if it doesn’t exist, the creation of a new row,
a REPLACE command is executed as a DELETE command and an INSERT command. This can intro-
duce unexpected behavior, especially when combined with foreign keys and triggers.

TRUNCATE TABLE trigger_test;
TRUNCATE TABLE logger;
INSERT INTO trigger_test (id,val) VALUES (100, ‘insert’);
REPLACE INTO trigger_test (id, val) VALUES (100,’replace’);
Query OK, 2 rows affected (0.00 sec)
REPLACE INTO trigger_test (id, val) VALUES (101,’replace’);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM logger;

563120c06.indd 236563120c06.indd 236 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

Transactions ❘ 237

+--------+---------------------+-----+
| action | occurred | id |
+--------+---------------------+-----+
| Insert | 2009–10–17 14:07:06 | 100 |
| Insert | 2009–10–17 14:07:06 | 100 |

Insert	2009–10–17 14:13:02	100
Delete	2009–10–17 14:13:02	100
Delete	2009–10–17 14:13:02	100
Insert	2009–10–17 14:13:02	100

| Insert | 2009–10–17 14:13:08 | 101 |
| Insert | 2009–10–17 14:13:08 | 101 |
+--------+---------------------+-----+

You can distinguish the three different statements in the logger table by the
occurred timestamp.

Trigger Permissions

If you have SUPER privileges you can specify a user as the defi ner of the trigger. By default when
a trigger is executed, the permissions of the current user are used for underlying tables. You can
change this to enable a specifi c user to perform the operations. Use this with caution, because you
may introduce a situation where data is correctly inserted or updated, but the trigger fails due to
permission errors. The syntax occurs after the CREATE keyword:

CREATE [DEFINER <user> | CURRENT_USER]
TRIGGER <trigger_name>

Although MySQL triggers were introduced in 5.0, no new features or function-
ality have been introduced since 5.0.15 production was announced as gener-
ally available (GA) on 19 October 2005. The next major release, 5.1, did not
provide any additional functionality and there is also no new functionality in
the current 5.4 alpha version. Though this feature was implemented to provide
compatibility with major features and more popular commercial RDBMS prod-
ucts, the depth of functionality is very limiting and you should factor in this
consideration if you choose to use triggers.

TRANSACTIONS

MySQL provides a unique feature to other traditional relational databases because it supports both
a transactional and a non-transactional state. Though you can operate a transactional RDBMS in
an auto-commit mode simulating no transactions, you incur the overhead of the management that
exists to support transactions. In MySQL and by default, there is a true non-transactional mode and
this can provide signifi cant performance improvements; however, this also requires the developer to
manage any database errors in consistency.

563120c06.indd 237563120c06.indd 237 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

238 ❘ CHAPTER 6 ADVANCED MYSQL

Many terms are relevant to transactions; however, ACID is the key difference between a transac-
tional mode and a non-transactional mode. ACID is defi ned as:

➤ Atomicity

Consistency➤

Isolation➤

Durability➤

In MySQL it is important to realize that managing transactions is the responsi-
bility of the storage engine. These are discussed in detail in Chapter 3. For the
purposes of these examples, the InnoDB storage engine will be referenced; this
engine is the only included transactional storage engine in the current MySQL
5.1 production version.

Atomicity

In simple terms atomicity is all or nothing. That means that all statements within a transaction are
successful or are not successful.

Non-transactional Tables

To show the difference, Listing 6-8 demonstrates that atomicity is not possible with non-transactional
tables. The following MyISAM tables are used in this example.

LISTING 6-8: non-trans-tables.sql

DROP TABLE IF EXISTS non_trans_parent;
CREATE TABLE non_trans_parent (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 val VARCHAR(10) NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY (val)
) ENGINE=MyISAM DEFAULT CHARSET latin1;

DROP TABLE IF EXISTS non_trans_child;
CREATE TABLE non_trans_child (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 parent_id INT UNSIGNED NOT NULL,
 created TIMESTAMP NOT NULL,
PRIMARY KEY (id),
INDEX (parent_id)
) ENGINE=MyISAM DEFAULT CHARSET latin1;

To test things out, perform a sample transaction that inserts records into these two tables:

START TRANSACTION;
INSERT INTO non_trans_parent(val) VALUES(‘a’);

563120c06.indd 238563120c06.indd 238 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

Transactions ❘ 239

INSERT INTO non_trans_child(parent_id,created) VALUES(LAST_INSERT_ID(),NOW());

INSERT INTO non_trans_parent (val) VALUES(‘a’);
ERROR 1062 (23000): Duplicate entry ‘a’ for key ‘val’
ROLLBACK;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+--------+------+--
| Level | Code | Message
+--------+------+--
| Warning| 1196 | Some non-transactional changed tables couldn’t be rolled back
+--------+------+--

SELECT * FROM non_trans_parent;
+----+-----+
| id | val |
+----+-----+
| 1 | a |
+----+-----+

SELECT * FROM non_trans_child;
+----+-----------+---------------------+
| id | parent_id | created |
+----+-----------+---------------------+
| 1 | 1 | 2009–09–21 23:44:25 |
+----+-----------+---------------------+

As you can see, data that you would have expected to not exist from the transaction is present.

Transactional Tables

Repeat these SQL statements using the transactional storage engine InnoDB; you will observe the
difference between transactional and non-transactional processing. The following tables, shown in
Listing 6-9, are used in this example.

LISTING 6-9: trans-tables.sql

DROP TABLE IF EXISTS trans_parent;
CREATE TABLE trans_parent (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 val VARCHAR(10) NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY (val)
) ENGINE=InnoDB DEFAULT CHARSET latin1;

DROP TABLE IF EXISTS trans_child;
CREATE TABLE trans_child (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 parent_id INT UNSIGNED NOT NULL,
 created TIMESTAMP NOT NULL,
PRIMARY KEY (id),
INDEX (parent_id)
) ENGINE=InnoDB DEFAULT CHARSET latin1;

563120c06.indd 239563120c06.indd 239 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

240 ❘ CHAPTER 6 ADVANCED MYSQL

Perform a sample transaction that inserts records into these two tables:

START TRANSACTION;
INSERT INTO trans_parent (val) VALUES(‘a’);
INSERT INTO trans_child (parent_id,created) VALUES(LAST_INSERT_ID(),NOW());

INSERT INTO trans_parent (val) VALUES(‘a’);
ERROR 1062 (23000): Duplicate entry ‘a’ for key ‘val’
ROLLBACK;
Query OK, 0 rows affected (0.01 sec)

SELECT * FROM trans_parent;
Empty set (0.00 sec)

SELECT * FROM trans_child;
Empty set (0.00 sec)

As you can see, no data has been recorded as part of the failing transaction.

Consistency

Consistency ensures that the integrity of the entire database data remains consistent as the result of
a given transaction. The following is an example where the data is consistent based on the defi ned
referential integrity rules:

START TRANSACTION;
INSERT INTO trans_parent(val) VALUES(‘a’);
INSERT INTO trans_child(parent_id,created) VALUES(999,NOW());
COMMIT;

SELECT * FROM trans_parent;
+----+-----+
| id | val |
+----+-----+
| 3 | a |
+----+-----+

mysql> SELECT * FROM trans_child;
+----+-----------+---------------------+
| id | parent_id | created |
+----+-----------+---------------------+
| 2 | 999 | 2009–09–21 23:53:02 |
+----+-----------+---------------------+

In this example, you obviously created a child record with an invalid and non-existing parent_id;
however, you have not defi ned any constraints to enforce this consistency. So, in Listing 6-10, create
the tables with these additional constraints.

LISTING 6-10: trans-table-fk .sql

TRUNCATE TABLE trans_parent;
DROP TABLE IF EXISTS trans_child;
CREATE TABLE trans_child (

563120c06.indd 240563120c06.indd 240 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

Transactions ❘ 241

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 parent_id INT UNSIGNED NOT NULL,
 created TIMESTAMP NOT NULL,
PRIMARY KEY (id),
INDEX (parent_id),
FOREIGN KEY (parent_id) REFERENCES trans_parent(id)
) ENGINE=InnoDB DEFAULT CHARSET latin1;

Repeat the sample transaction that inserts records into these two tables:

START TRANSACTION;
INSERT INTO trans_parent(val) VALUES(‘a’);
INSERT INTO trans_child(parent_id,created) VALUES(999,NOW());

ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
 fails (`chapter6`.`trans_child`, CONSTRAINT `trans_child_ibfk_1` FOREIGN KEY
 (`parent_id`) REFERENCES `trans_parent` (`id`))
ROLLBACK;

In this example, the data that was previously successfully added now fails. This integrity requires
valid data to be entered. For example:

START TRANSACTION;
INSERT INTO trans_parent(val) VALUES(‘a’);
INSERT INTO trans_child(parent_id,created) VALUES(LAST_INSERT_ID(),NOW());
COMMIT;

This transaction added a parent record and a child record. Now try to break this integrity:

START TRANSACTION;
DELETE FROM trans_parent;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key
constraint fails (`chapter6`.`trans_child`, CONSTRAINT `trans_child_ibfk_1`
 FOREIGN KEY (`parent_id`) REFERENCES `trans_parent` (`id`))
ROLLBACK;

As you can see, an attempt to delete the parent record, when a child record exists, results in an error.
You can address this by providing a cascading constraint:

ALTER TABLE trans_child
DROP FOREIGN KEY trans_child_ibfk_1,
ADD FOREIGN KEY (parent_id) REFERENCES trans_parent(id) ON DELETE CASCADE;

START TRANSACTION;
DELETE FROM trans_parent;
COMMIT;

SELECT * FROM trans_parent;
Empty set (0.00 sec)
SELECT * FROM trans_child;
Empty set (0.00 sec)

The deletion of the parent data, with a foreign key constraint to cascade the delete, also deletes the
child records.

563120c06.indd 241563120c06.indd 241 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

242 ❘ CHAPTER 6 ADVANCED MYSQL

Isolation

MySQL provides four different isolation levels to support multiversion concurrency control
(MVCC). These are all used by InnoDB. If you are unfamiliar with the isolation concept, you can
think of this as the amount of data that has been saved in separate concurrent transactions, which is
available in the current transaction.

The default transaction isolation level is REPEATABLE-READ. This means that during a transaction the
values retrieved in a SELECT will remain consistent for all repeating SELECT statements during the
transaction irrespective of other committed statements.

The isolation level READ-COMMITTED enables SELECT statements to see committed data that has
occurred in other transactions during the execution of the current transaction.

It is often the misconception of Oracle Database administrators to change the
default isolation level from REPEATABLE-READ to READ-COMMITTED. In Oracle,
the default transaction level is READ-COMMITTED; however, though the name is
used in MySQL, its underlying functional specifi cation is indeed different.

The modifi cation of the isolation level has an impact on MySQL replication. This is discussed in
detail in the following section. The best advice is to not modify the isolation level value from the
default of REPEATABLE_READ.

You only need one table to demonstrate the various options as shown in Listing 6-11.

LISTING 6-11: isolation-table.sql

DROP TABLE IF EXISTS transaction_test;
CREATE TABLE transaction_test(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 val VARCHAR(20) NOT NULL,
 created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY(id)
) ENGINE=InnoDB DEFAULT CHARSET latin1;

Start with some initial seeded data for reference within the transaction:

INSERT INTO transaction_test(val) VALUES (‘a’),(‘b’),(‘c’);

Repeatable Read

To perform these tests you will need two open mysql client sessions. These commands will be run in
parallel.

In the fi rst session, run the following commands:

SELECT @@global.tx_isolation, @@session.tx_isolation;
START TRANSACTION;

563120c06.indd 242563120c06.indd 242 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

Transactions ❘ 243

SELECT * FROM transaction_test;
SELECT SLEEP(20);
INSERT INTO transaction_test(val) VALUES (@@session.tx_isolation);
SELECT * FROM transaction_test;
COMMIT;

In the second session, you need to execute these commands immediately while the fi rst session is
running (i.e. during the SLEEP() portion of this example):

START TRANSACTION;
INSERT INTO transaction_test(val) VALUES (‘x’),(‘y’),(‘z’);
SELECT * FROM transaction_test;
+----+-----------------+---------------------+
| id | val | created |
+----+-----------------+---------------------+
1	a	2009–09–21 00:19:43
2	b	2009–09–21 00:19:43
3	c	2009–09–21 00:19:43
4	x	2009–09–21 00:21:00
5	y	2009–09–21 00:21:00
6	z	2009–09–21 00:21:00
+----+-----------------+---------------------+
COMMIT;

As you can see, in the second session you added three additional rows and committed the data
before the fi rst session transaction completed. Look at the results of the fi rst session commands now
for comparison of the data visible in the table:

SELECT * FROM transaction_test;
+----+-----+---------------------+
| id | val | created |
+----+-----+---------------------+
1	a	2009–09–21 00:19:43
2	b	2009–09–21 00:19:43
3	c	2009–09–21 00:19:43
+----+-----+---------------------+
3 rows in set (0.00 sec)

SELECT SLEEP(20);
INSERT INTO transaction_test(val) VALUES (@@session.tx_isolation);

mysql> SELECT * FROM transaction_test;
+----+-----------------+---------------------+
| id | val | created |
+----+-----------------+---------------------+
1	a	2009–09–21 00:19:43
2	b	2009–09–21 00:19:43
3	c	2009–09–21 00:19:43
7	REPEATABLE-READ	2009–09–21 00:21:01
+----+-----------------+---------------------+
4 rows in set (0.00 sec)

563120c06.indd 243563120c06.indd 243 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

244 ❘ CHAPTER 6 ADVANCED MYSQL

The fi rst transaction did not see the results of the second completed transaction. After the COMMIT has
been executed in the fi rst session, you can see the complete results by running the following query:

mysql> SELECT * FROM transaction_test;
+----+-----------------+---------------------+
| id | val | created |
+----+-----------------+---------------------+
1	a	2009–09–21 00:19:43
2	b	2009–09–21 00:19:43
3	c	2009–09–21 00:19:43
4	x	2009–09–21 00:21:00
5	y	2009–09–21 00:21:00
6	z	2009–09–21 00:21:00
7	REPEATABLE-READ	2009–09–21 00:21:01
+----+-----------------+---------------------+

Read Committed

You can rerun the same SQL statements with the transaction isolation level set to READ-COMMITTED.
First reset your seed data:

TRUNCATE TABLE transaction_test;
INSERT INTO transaction_test(val) VALUES (‘a’),(‘b’),(‘c’);

In session 1, re-run the following SQL:

SET @@session.tx_isolation = ‘READ-COMMITTED’;
SELECT @@global.tx_isolation, @@session.tx_isolation;
START TRANSACTION;
SELECT * FROM transaction_test;
SELECT SLEEP(20);
INSERT INTO transaction_test(val) VALUES (@@session.tx_isolation);
SELECT * FROM transaction_test;
COMMIT;

In session 2, re-run the following SQL:

START TRANSACTION;
INSERT INTO transaction_test(val) VALUES (‘x’),(‘y’),(‘z’);
SELECT * FROM transaction_test;
COMMIT;

If we now look at the actual output of the SQL statements in session 1, we will see a difference between
this output and that of the REPEATABLE-READ example.

SET @@session.tx_isolation = ‘READ-COMMITTED’;
SELECT @@global.tx_isolation, @@session.tx_isolation;
+-----------------------+------------------------+
| @@global.tx_isolation | @@session.tx_isolation |
+-----------------------+------------------------+
| REPEATABLE-READ | READ-COMMITTED |
+-----------------------+------------------------+

START TRANSACTION;
SELECT * FROM transaction_test;

563120c06.indd 244563120c06.indd 244 2/18/10 9:09:42 AM2/18/10 9:09:42 AM

Transactions ❘ 245

+----+-----+---------------------+
| id | val | created |
+----+-----+---------------------+
1	a	2009–09–21 00:27:35
2	b	2009–09–21 00:27:35
3	c	2009–09–21 00:27:35
+----+-----+---------------------+

SELECT SLEEP(20);

mysql> SELECT * FROM transaction_test;
+----+----------------+---------------------+
| id | val | created |
+----+----------------+---------------------+
1	a	2009–09–21 00:27:35
2	b	2009–09–21 00:27:35
3	c	2009–09–21 00:27:35
4	x	2009–09–21 00:26:44
5	y	2009–09–21 00:26:44
6	z	2009–09–21 00:26:44
7	READ-COMMITTED	2009–09–21 00:26:54
+----+----------------+---------------------+

COMMIT;

As you can see, the results of the data within the transaction changed during the transaction to
refl ect a committed transaction.

Though this is just a demonstration, it is possible that your application would never experience the
need to select the same information more than once during a transaction.

In closing, REPEATABLE-READ is the most widely used and tested isolation level as it is the default
value and should be used in preference to READ-COMMITTED.

Read Uncommitted

As the name suggests, READ-UNCOMMITTED shows dirty data, that is, data that is not committed.
This section won’t demonstrate the full output here; however, if you run the SQL statements from
the previous section and exclude the COMMIT of the second session, you will observe the charac-
teristics of the identical output as provided in the READ-COMMITTED example. You could then, for
example, perform a ROLLBACK, yet the fi rst transaction would still have recorded these now three
phantom rows of values for x, y and z.

In session 1:

SET @@session.tx_isolation = ‘READ-UNCOMMITTED’;

The following code shows the last portion of session 1:

SELECT * FROM transaction_test;
+----+------------------+---------------------+
| id | val | created |
+----+------------------+---------------------+
| 1 | a | 2009–10–17 16:12:33 |
| 2 | b | 2009–10–17 16:12:33 |

563120c06.indd 245563120c06.indd 245 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

246 ❘ CHAPTER 6 ADVANCED MYSQL

3	c	2009–10–17 16:12:33
4	x	2009–10–17 16:12:49
5	y	2009–10–17 16:12:49
6	z	2009–10–17 16:12:49
7	READ-UNCOMMITTED	2009–10–17 16:13:02
+----+------------------+---------------------+

The following code shows the last portion of session 2 with ROLLBACK:

SELECT * FROM transaction_test;
+----+-----+---------------------+
| id | val | created |
+----+-----+---------------------+
1	a	2009–10–17 16:12:33
2	b	2009–10–17 16:12:33
3	c	2009–10–17 16:12:33
4	x	2009–10–17 16:12:49
5	y	2009–10–17 16:12:49
6	z	2009–10–17 16:12:49
+----+-----+---------------------+
6 rows in set (0.00 sec)

Wait for first session to complete.
ROLLBACK;

SELECT * FROM transaction_test;
+----+------------------+---------------------+
| id | val | created |
+----+------------------+---------------------+
1	a	2009–10–17 16:12:33
2	b	2009–10–17 16:12:33
3	c	2009–10–17 16:12:33
7	READ-UNCOMMITTED	2009–10–17 16:13:02
+----+------------------+---------------------+

Serializable

The fi nal isolation level is SERIALIZABLE. In this situation, tables are effectively locked in shared
mode, which forces transactions to block other transactions. If you were to repeat the REPEATABLE_
READ test as previously shown, you would see an identical fi nal output for the fi rst session. The
impact, however, would be a delay of the INSERT in the second session, which is blocked until the
fi rst transaction completes, and you then in turn see the row from the fi rst session:

SET @@session.tx_isolation = ‘SERIALIZABLE’;

The following code shows the end of fi rst session:

SELECT * FROM transaction_test;
+----+--------------+---------------------+
| id | val | created |
+----+--------------+---------------------+
1	a	2009–10–17 16:15:34
2	b	2009–10–17 16:15:34
3	c	2009–10–17 16:15:34
7	SERIALIZABLE	2009–10–17 16:16:06
+----+--------------+---------------------+

563120c06.indd 246563120c06.indd 246 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Transactions ❘ 247

4 rows in set (0.00 sec)

COMMIT;

The following code shows the end of second session:

INSERT INTO transaction_test(val) VALUES (‘x’),(‘y’),(‘z’);
Query OK, 3 rows affected (14.02 sec)

mysql> SELECT * FROM transaction_test;
+----+--------------+---------------------+
| id | val | created |
+----+--------------+---------------------+
1	a	2009–10–17 16:15:34
2	b	2009–10–17 16:15:34
3	c	2009–10–17 16:15:34
4	x	2009–10–17 16:15:52
5	y	2009–10–17 16:15:52
6	z	2009–10–17 16:15:52
7	SERIALIZABLE	2009–10–17 16:16:06
+----+--------------+---------------------+
7 rows in set (0.00 sec)

COMMIT;

It is interesting to note the order of the AUTO_INCREMENT column. The order as shown is the order as
the actual statement was initiated. Because this value is managed as a separate internal global value
held against the table, it was obtained in an internal exclusive mutex at the time of execution. It acts
independently of the isolation level, contrary to the SERIALIZABLE mode of the actual SQL data that
did not release the second session lock until after the INSERT completion of the locking transaction.

Isolation Levels and Replication

Be aware that MySQL replication does not work by default with an isolation level other than
REPEATABLE-READ (the default isolation level). You will receive an error similar to the following:

mysql> INSERT INTO transaction_test(val) VALUES (@@session.tx_isolation);
ERROR 1598 (HY000): Binary logging not possible. Message: Transaction level
 ‘READ-COMMITTED’ in InnoDB is not safe for binlog mode ‘STATEMENT’

To use any other isolation level in MySQL 5.1, it is necessary to change MySQL replication to row-
based replication, not statement-based replication. The impact of row based replication can be sig-
nifi cant on overall database performance.

Durability

It is more complicated to easily demonstrate and confi rm a working example of durability. You start,
fi rst, with the principle of database durability. When an acknowledgment of a successfully completed
transaction is returned to the client, InnoDB guarantees the data is consistent, even though the data on
disk at the time of the operation is not. This is due to the InnoDB logs (redo logs), which have serially
recorded the completed transactions. InnoDB does not write the updated data to disk immediately;
this is performed by a background worker thread within the InnoDB storage engine. This is a key dif-
ference between the non-transactional MyISAM engine and the transactional InnoDB engine.

563120c06.indd 247563120c06.indd 247 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

248 ❘ CHAPTER 6 ADVANCED MYSQL

In one session you run the following stored procedure to dump data into an InnoDB table
(Listing 6-12):

LISTING 6-12: trans-tables.sql

use chapter6
drop table if exists durability_test;
create table durability_test (id int unsigned not null auto_increment primary
key, c1 varchar(2000) not null) engine = innodb default charset latin1;

delimiter $$

drop procedure if exists fill_durability $$
create procedure fill_durability()
deterministic
begin
 declare counter int default 0;
 truncate table durability_test;
 while TRUE
 do
 start transaction;
 set counter:= 0;
 while counter < 10
 do
 insert into durability_test(c1) values (repeat (‘Expert PHP and MySQL’,100));
 set counter:= counter + 1;
 end while;
 commit;
 end while;
end $$
delimiter;

call fill_durability();

After a period of time in a separate session, you collect the output of SHOW ENGINE INNODB STATUS,
and then execute a kill on the mysqld process, both via the command line to minimize the delay
between commands. What you collect is the following information about the InnoDB logs from the
output:

LOG

Log flushed up to 0 856873708
Last checkpoint at 0 851353156

This information is the position the log fi les were fl ushed to, and the position of the last checkpoint
where the data on disk refl ects the committed transactions in the log fi le.

When you attempt to restart MySQL, the system automatically detects any inconsistency and per-
forms an automatic crash recovery, which performs a serialized roll forward of all SQL commands
between the reported two log positions. For this durability test, it’s impossible to prove the state of
the database because you cannot inspect those transactions in the log fi le or the state of the database

563120c06.indd 248563120c06.indd 248 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Transactions ❘ 249

before these transactions are applied; therefore you cannot confi rm the ultimate results. The follow-
ing is the MySQL error log output of a crash recovery to produce durability:

091017 17:14:13 mysqld_safe Starting mysqld daemon with databases from
InnoDB: Log scan progressed past the checkpoint lsn 0 851353156
091017 17:14:13 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files.
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer.
091017 17:14:13 InnoDB: Starting an apply batch of log records to the database.
InnoDB: Progress in percents: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
InnoDB: Apply batch completed
InnoDB: Doing recovery: scanned up to log sequence number 0 856595968
InnoDB: Doing recovery: scanned up to log sequence number 0 856873708
091017 17:14:14 InnoDB: Starting an apply batch of log records to the database.
InnoDB: Progress in percents: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 98 99
InnoDB: Apply batch completed
InnoDB: Last MySQL binlog file position 0 33100, file name ./binary-log.000003
091017 17:14:15 InnoDB: Started; log sequence number 0 856873708
091017 17:14:15 [Note] Event Scheduler: Loaded 1 event
091017 17:14:15 [Note] /Users/mysql/alpha/bin/mysqld: ready for connections.
Version: ‘5.1.39’ socket: ‘/tmp/mysql.sock’ port: 3306 MySQL Community Server (GPL)

The greatest impact of durability on a database is performance; though the data is not written to
disk in InnoDB at the time of the transaction, this is performed in a background thread that fl ushes
dirty pages from the buffer pool to disk. The innodb logs are written in a doublewrite fashion and
by default are fl ushed to disk per transaction. In a high-volume system, the limitation is the speed of
writing data to disk.

You can alter the InnoDB durability for performance by setting the innodb_flush_log_at_trx_
commit variable to a value of 0 or 2, where the default value is 1. The three values produce different
results in durability and they are listed here in most to least durable:

➤ When set to 1 (the default), Innodb writes to disk and fl ushes to disk every log transaction.
This is the slowest but most durable.

➤ When set to 2, Innodb writes to disk all log transactions as they occur, and fl ushes this data
approximately per one second.

➤ When set to 0, Innodb writes to disk all log transaction that have occurred in approximately
the last one second, and then fl ushes these to disk.

The end result is that by breaking true durability, performance is increased signifi cantly, and in a
Web 2.0 world, it is generally acceptable that in the event of a crash, the loss of up to one second of
data is acceptable. With the addition of battery-backed write cache disk controllers it is possible that
no data loss occurs when using a value of 2.

563120c06.indd 249563120c06.indd 249 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

250 ❘ CHAPTER 6 ADVANCED MYSQL

Implied Commit

Wrapping a series of commands with START TRANSACTION and COMMIT block does not imply that
ACID compliance is always enforced. Some commands create an implied COMMIT including CREATE,
ALTER, and DROP commands and therefore can break the understanding of a transaction that is using
these commands.

Refer to the MySQL reference manual at http://dev.mysql.com/doc/refman/
5.1/en/implicit-commit.html for a full list of statements that implicitly end
a MySQL transaction.

REPLICATION

MySQL replication is a means to produce copies/replicas of your MySQL data on different servers
regardless of their physical location. MySQL replication is a one-way asynchronous process that
involves a primary server, known as a master, and one or more slave servers, confi gured to connect
to the master. It is possible to create more complex relationships, with slaves acting as masters for
additional slaves, for example.

Replication can operate over a LAN or WAN; the process of the slave pulling from the master enables
slaves to be not always connected. This provides for an eventually consistent view of your data.

MySQL replication is a key component to the success of MySQL within the LAMP stack and for
Web 2.0 social media websites such as Facebook, YouTube, and Twitter. Used effectively, replication
can provide great scalability options, and combined with other products and design principles can
ensure an infrastructure that can support scalability in an automated and near seamless approach.

MySQL replication provides features that can be used for many different purposes.

Replication Purposes

You can use MySQL replication to create various MySQL topologies that you can then use for many
different purposes. The more popular options include:

➤ Read scalability

Primary backup server➤

Failover server➤

Geo redundancy➤

Data warehouse➤

Benchmarking➤

Software upgrades➤

563120c06.indd 250563120c06.indd 250 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Replication ❘ 251

Some of the more unique approaches include using MySQL replication as a means to share different
workloads across multiple servers while supporting the same data, but different storage engines and
index confi gurations to better suit the read work load. You can use replication as a proxy of data-
base security leveraging the BLACKHOLE storage engine, for example to accept data on a public site;
however, the data is never stored.

Replication Setup

MySQL replication is relatively easy to confi gure. It is even possible to run a MySQL master and
slave replication confi guration on a single server. To demonstrate MySQL replication, you should
fi rst consider the normal situation of using two servers. After installing a new instance of MySQL
on each individual server as you would normally do, you need to make the following confi guration
changes on each server in order to have a working MySQL replication environment.

Master Confi guration

On the master MySQL server, which this example codenames Alpha, you need to make the follow-
ing minimum changes to the my.cnf fi le:

[mysqld]
log-bin=binary-log
server-id=1

When you have made these changes you need to restart the MySQL daemon process:

➤ To use replication you must enable binary logging with the log-bin parameter. Binary log-
ging serves multiple purposes in a MySQL environment. For MySQL replication it provides
a stream of DDL and DML statements that can be reapplied to the replication slaves. This
option optionally accepts a fi lename prefi x and a directory. By default, the binary logs are
stored in the MySQL data directory.

➤ The second parameter listed is server-id. This is required to be a unique number within the
MySQL topology and is used to identify the source location of a given SQL statement.

The enabled binary log information can be confi rmed with the following SQL command:

SHOW MASTER STATUS;
+-------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+-------------------+----------+--------------+------------------+
| binary-log.000001 | 106 | | |
+-------------------+----------+--------------+------------------+

This information is necessary to confi gure the replication slaves. You can also obtain this informa-
tion with the following command, which actually provides the correct SQL syntax of the command
needed to execute on the slave:

$ mysqldump –uroot –p --master-data tmp
CHANGE MASTER TO MASTER_LOG_FILE=‘binary-log.000001’, MASTER_LOG_POS=106;
mysqldump: Got error: 1049: Unknown database ‘tmp’ when selecting the database

563120c06.indd 251563120c06.indd 251 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

252 ❘ CHAPTER 6 ADVANCED MYSQL

There is no way to retrieve the master data information without specifying a database. If you specify
an invalid database, you get an error message that you can ignore. You require one more step on the
master server, and this is to create an appropriate user for any MySQL slaves to pull changes from
the master. You perform this after retrieving the binary log position because you want this com-
mand to be replicated:

CREATE USER repl@’192.168.%’ IDENTIFIED BY ‘repl2009’;
GRANT REPLICATION SLAVE ON *.* TO repl@’192.168.%’;

You use an IP range for host authentication. See the section on “Hardening
Your MySQL Server” in Chapter 14, which discusses in detail the use and best
practices of these specifi ed permissions.

Slave Confi guration

To confi gure the slave server, which is codenamed Beta, you need to make the following my.cnf
changes and restart the MySQL server as you performed on the master:

[mysqld]
server-id=2
read_only=TRUE

➤ The fi rst parameter is server-id. This is required to be a unique number within the MySQL
topology and identifi es the source location of a given SQL statement.

➤ The second parameter is read_only. This states that the server cannot receive DDL or DML
statements. This is an important consideration in a MySQL topology because MySQL lacks
any tools to support collision detection. It is possible — but highly discouraged — to create a
Master/Master MySQL topology where both servers can receive writes at the same time. To
achieve this, you must design your application with specifi c replication confi guration, specifi c
database architecture design, and also use recoverable SQL syntax.

The following SQL confi gures your running server as a slave. Note, the CHANGE MASTER commands
include the username and password specifi ed on the master, and the log fi le name and position are
retrieved from the previous commands executed on the master.

SHOW SLAVE STATUS;
CHANGE MASTER TO
MASTER_HOST=‘192.168.100.1’,
MASTER_USER=‘repl’,
MASTER_PASSWORD=‘repl2009’;

CHANGE MASTER TO
MASTER_LOG_FILE=‘binary-log.000001’,
MASTER_LOG_POS=106;

563120c06.indd 252563120c06.indd 252 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Replication ❘ 253

Slave Operation

You now have a correctly confi gured slave. The fi nal step is to start the slave and confi rm operation:

SLAVE START;

SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 192.168.100.1
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: binary-log.000001
 Read_Master_Log_Pos: 327
 Relay_Log_File: macmarvin-relay-bin.000002
 Relay_Log_Pos: 473
 Relay_Master_Log_File: binary-log.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 327
 Relay_Log_Space: 632
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:

If you can confi rm that Slave_IO_Running and Slave_SQL_Running are Yes, you have a running
Master/Slave MySQL topology.

563120c06.indd 253563120c06.indd 253 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

254 ❘ CHAPTER 6 ADVANCED MYSQL

Testing MySQL Replication

The following examples use the code names alpha and beta for simplicity to ensure confi rmation
on which server the MySQL commands are performed. The best way to test this is to have two sepa-
rate sessions open. The fi rst step is to better identify your mysql client sessions.

➤ The following code tests on alpha:

mysql> PROMPT alpha>;
alpha>

➤ The following code test on beta:

mysql> PROMPT beta>;
beta>

Create a new schema and table in your tests by following these steps:

1. First confi rm nothing exists on the slave:

beta> SHOW SCHEMAS;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

2. Create the schema and table on the master and confi rm this:

alpha> CREATE SCHEMA chapter6;
alpha> USE chapter6;
alpha> CREATE TABLE replication_test(id INT UNSIGNED NOT NULL
 AUTO_INCREMENT PRIMARY KEY) ENGINE=INNODB DEFAULT CHARSET latin1;

beta> SHOW SCHEMAS;
+--------------------+
| Database |
+--------------------+
| information_schema |
| chapter6 |
| mysql |
| test |
+--------------------+

3. Verify the table exists on the client by retrieving the contents of the table:

beta> SELECT * FROM chapter6.replication_test;
Empty set (0.00 sec)

4. Add some data on the master and confi rm this is replicated:

alpha> INSERT INTO chapter6.replication_test(id) VALUES (1),(2),(3);
alpha> SELECT * FROM chapter6.replication_test;

563120c06.indd 254563120c06.indd 254 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Replication ❘ 255

+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+

5. Confi rm the same data exists on the slave:

beta> SELECT * FROM chapter6.replication_test;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+

If you attempt to add information to the slave, and not the master, you receive an error because of
your initial MySQL confi guration:

beta> INSERT INTO chapter6.replication_test(id) VALUES (4);
ERROR 1290 (HY000): The MySQL server is running with the --read-only option
so it cannot execute this statement

A user with SUPER privileges overrides the read_only security. Never run an
application user with SUPER privileges. More information on user security can
be found in Chapter 14 in the section “Hardening your MySQL Server”.

How Does MySQL Replication Work?

This section breaks down the moving parts of MySQL replication step by step, using some more
internal commands and operating system fi les to see the fl ow of how SQL is executed and replicated.
For this, you stop the slave process to ensure you can see the SQL before execution:

beta> SLAVE STOP;

Master Analysis

To perform master analysis, follow these steps:

1. Add some new data to the master for your test:

alpha> SHOW MASTER STATUS;
+-------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+-------------------+----------+--------------+------------------+
| binary-log.000001 | 828 | | |
+-------------------+----------+--------------+------------------+

alpha> INSERT INTO chapter6.replication_test(id) VALUES(10);

563120c06.indd 255563120c06.indd 255 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

256 ❘ CHAPTER 6 ADVANCED MYSQL

alpha> SHOW MASTER STATUS;
+-------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+-------------------+----------+--------------+------------------+
| binary-log.000001 | 1046 | | |
+-------------------+----------+--------------+------------------+

2. The details in the SHOW MASTER STATUS commands actually refl ect the fi lename and char-
acter pointer position in this fi le. You did not specify the location of these binary logs with
the log-bin command, so you will fi nd them in the MySQL data directory. This may vary
depending on how you installed MySQL:

alpha$ ls -l /var/log/mysql/binary-log.000001
-rw-rw--- 1 rbradfor staff 1046 Oct 4 00:08 binary-log.000001

3. Use the name of the fi le as shown in the preceding SHOW MASTER STATUS command. The
position is actually a byte count of the listed binary fi le.

4. To show how the binary logs work, you rotate these fi les. By default MySQL rotates the fi les
based on a given size; however, you can also rotate them manually:

alpha> FLUSH LOGS;
alpha> SHOW MASTER STATUS;
+-------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+-------------------+----------+--------------+------------------+
| binary-log.000002 | 106 | | |
+-------------------+----------+--------------+------------------+

alpha$ ls -l /var/log/mysql/binary-log*
-rw-rw--- 1 rbradfor staff 1090 Oct 4 00:11 binary-log.000001
-rw-rw--- 1 rbradfor staff 106 Oct 4 00:11 binary-log.000002
-rw-rw--- 1 rbradfor staff 40 Oct 4 00:11 binary-log.index

As you can see, the master status shows a new fi lename, and this is confi rmed on the fi lesystem.

Binary Log File Analysis

You can actually interrogate these fi les with the mysqlbinlog command. For example, you can look
at the log from the position of the binary log before you ran your test INSERT statement:

alpha$ mysqlbinlog –-start-position=828 /var/log/mysql/binary-log.000001

This command produces a lot of verbose information. Some lines have been removed for simplicity
and due to space constraints.

at 828
#091004 0:08:21 server id 1 end_log_pos 900 Query thread_id=8 exec_time=0
 error_code=0
.
at 900
#091004 0:08:21 server id 1 end_log_pos 1019 Query thread_id=8 exec_time=0
 error_code=0
use chapter6/*!*/;

563120c06.indd 256563120c06.indd 256 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Replication ❘ 257

SET TIMESTAMP=1254629301/*!*/;
INSERT INTO chapter6.replication_test(id) VALUES(10)
/*!*/;
at 1019
#091004 0:08:21 server id 1 end_log_pos 1046 Xid = 47
COMMIT/*!*/;
at 1046
#091004 0:11:51 server id 1 end_log_pos 1090 Rotate to binary-log.000002 pos: 4
DELIMITER;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

As you can see, the command you executed is in the replication stream.

The mysqlbinlog command has many arguments; for consideration of display output you restricted
what was displayed here with one option. Refer to mysqlbinlog --help or the MySQL Reference
Manual for additional information on this command.

Now that you understand how information is held on the master, turn your attention to the slave for
the second part of MySQL replication.

Slave Analysis

First, look at the current slave status. The following code is a summarized view:

beta> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Master_Log_File: binary-log.000001
 Read_Master_Log_Pos: 828
 Relay_Log_File: relay-bin.000002
 Relay_Log_Pos: 974
 Relay_Master_Log_File: binary-log.000001
 Slave_IO_Running: No
 Slave_SQL_Running: No
 Exec_Master_Log_Pos: 828
 Relay_Log_Space: 1133
 Seconds_Behind_Master: NULL

Note that the master log position is the position before you started. The slave replication process is
actually two threads. These perform two very different functions:

➤ The IO thread: Responsible for reading new transactions from the master, and writing these
to the relay log fi le that is on the slave server.

➤ The SQL thread; Responsible for replaying the SQL statements that are held in the relay log.

For the purpose of this test, you can look at each thread individually. First, start just the IO thread:

beta> START SLAVE IO_THREAD;
beta> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Master_Log_File: binary-log.000002
 Read_Master_Log_Pos: 106
 Relay_Log_File: relay-bin.000002
 Relay_Log_Pos: 974

563120c06.indd 257563120c06.indd 257 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

258 ❘ CHAPTER 6 ADVANCED MYSQL

 Relay_Master_Log_File: binary-log.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
 Exec_Master_Log_Pos: 828
 Seconds_Behind_Master: NULL

The slave now records the current position of the MySQL Master. Look at the data in the table:

beta> SELECT * FROM chapter6.replication_test;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+

As you can see, the row does not exist. This is because you have not started the SQL thread that will
execute all SQL statements in the relay log:

beta> START SLAVE SQL_THREAD;
Query OK, 0 rows affected (0.00 sec)

beta> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 192.168.100.3
 Master_User: repl
 Master_Port: 3306
 Master_Log_File: binary-log.000002
 Read_Master_Log_Pos: 106
 Relay_Log_File: relay-bin.000005
 Relay_Log_Pos: 252
 Relay_Master_Log_File: binary-log.000002
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Exec_Master_Log_Pos: 106
 Relay_Log_Space: 455
 Seconds_Behind_Master: 0

Now look for your data:

beta> SELECT * FROM chapter6.replication_test;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 10 |
+----+

This section did not look into the detail of the relay logs on the fi lesystem; however, they operate the
same way as the binary log fi les. You can confi rm them on the fi lesystem, and use the mysqlbinlog
command to review the contents.

563120c06.indd 258563120c06.indd 258 2/18/10 9:09:43 AM2/18/10 9:09:43 AM

Replication ❘ 259

Testing MySQL Replication

There is a very easy way to demonstrate MySQL replication and watch it in operation: On the slave,
you monitor MySQL replication dynamically with the watch command.

beta$ watch -n 1--differences ‘mysql -e “SHOW SLAVE STATUS\G”‘

This is a Linux/UNIX-specifi c command.

On the master, create and run the following stored procedure as shown in Listing 6-13, which
inserts a 2 factorial number of rows for each iteration. Carefully monitor the watch command and
you will see various counters in action by a change in values and highlighting:

LISTING 6-13: numbers-sp.sql

use chapter6
drop table if exists numbers;
create table numbers (id int unsigned not null primary key);

delimiter $$

drop procedure if exists fill_numbers $$
create procedure fill_numbers(in p_max int)
deterministic
begin
 declare counter int default 1;
 truncate table numbers;
 insert into numbers values (1);
 while counter < p_max
 do
 insert into numbers (id)
 select id + counter
 from numbers;
 select count(*) into counter from numbers;
 select counter;
 end while;
end $$

delimiter;

call fill_numbers(2000000);

As the number of rows inserted increase and are then replicated you will observe the change in
binary log position, relay log position, and also the reported seconds behind the master the slave
presently is. You also see the slave catch up, and report an eventually consistent state. Refer to
http://ronaldbradford.com/blog/verifying-mysql-replication-in-action-2009-06-28/

for additional information.

563120c06.indd 259563120c06.indd 259 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

260 ❘ CHAPTER 6 ADVANCED MYSQL

Important Confi guration Options

The following are a number of additional replication confi guration options you should be aware
of. It is not possible to detail all the options and provide full details of the benefi ts of options. This
could be a topic for an entire chapter or section of a book. Hopefully, the information provided in
Table 6-1 will give you a greater understanding of the possible options and encourage you to read
further to better understand all the options.

TABLE 6-1: Additional Replication Confi guration Options

OPTION DESCRIPTION

skip-slave-start By default, a MySQL slave automatically starts when MySQL starts;

that is, eff ectively running START SLAVE automatically. If you want

to perform this manually, use this option.

log-slave-updates If you want to run binary logging on your MySQL slave as well as

on the master, you should also enable this option to ensure any

commands executed directly on the slave are also logged. This is

important when the slave is used in a fail-over situation.

sync_binlog This is an important command to ensure consistency of data

between servers during a server crash.

innodb_support_xa This is an important command to ensure consistency and synchro-

nization between the InnoDB redo log fi les and the binary log fi le

in the event of a server crash.

max_binlog_size This option defi nes the maximum size of the binary log before it is

rolled to a new fi le.

expire_logs_days This option defi nes the number of days the binary logs are kept.

Logs are automatically deleted by MySQL after this number of days.

binlog_cache_size This option defi nes how much data can be cached during a trans-

action before the information is written to the binary log fi le.

auto_increment_increment This option enables you to change the amount an auto-increment

number increases. Combined with auto_increment_offset this

can be used to insert data across multiple servers to avoid poten-

tial collision.

replication-format New in 5.1. The current default value is STATEMENT which

refl ects the only option in 5.0. Other options include MIXED and

ROW format. Until 5.1.29 the default option was MIXED. Changing

the transaction_isolation level from the system defaults

requires the use of the ROW format.

563120c06.indd 260563120c06.indd 260 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

Replication ❘ 261

Important Replication Commands

As you have seen, a number of commands such as SHOW MASTER STATUS, SHOW SLAVE STATUS, and
START SLAVE are used to monitor MySQL replication. The following additional commands are also
important:

➤ FLUSH LOGS: Performs a manual rotation of the underlying binary and relay log fi les.

➤ SHOW MASTER LOGS: Shows a list of binary log fi les that are presently available to the
MySQL server.

➤ PURGE MASTER LOGS: Deletes binary logs. By default the expire_logs_days variable can be
used to perform this operation automatically.

Do not delete old binary log fi les manually. This will cause an inconsistency
with MySQL, and though MySQL may appear to be operating normally, any
operations such as database recovery that rely on a consistency of meta infor-
mation and fi lesystem information will fail.

Also, never let your binary log fi lesystem fi ll up on your master. This will ruin
your entire MySQL replication topology, including your master and all your
slaves. Your backup infrastructure may also be useless if you use a slave for
your backup approach as this slave will now be corrupt.

Breaking Replication

Although this chapter has shown MySQL replication in normal operation, it is important you know
how to identify and handle any possible errors. You can easily simulate an error situation by follow-
ing these steps:

1. Break the read-only characteristics of the MySQL slave:

beta> SET GLOBAL read_only=FALSE;
beta> SELECT * FROM chapter6.replication_test WHERE id > 100;
Empty set (0.02 sec)

beta> INSERT INTO chapter6.replication_test VALUES (101);
beta> SELECT * FROM chapter6.replication_test WHERE id > 100;
+-----+
| id |
+-----+
| 101 |
+-----+

2. On the master, insert the same data that now already exists on the slave:

alpha> SELECT * FROM chapter6.replication_test WHERE id > 100;
Empty set (0.02 sec)

alpha> INSERT INTO chapter6.replication_test VALUES (101);
alpha> SELECT * FROM chapter6.replication_test WHERE id > 100;

563120c06.indd 261563120c06.indd 261 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

262 ❘ CHAPTER 6 ADVANCED MYSQL

+-----+
| id |
+-----+
| 101 |
+-----+

3. On the slave, review the status of replication:

beta> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Log_File: binary-log.000003
 Read_Master_Log_Pos: 306
 Relay_Log_File: relay-bin.000013
 Relay_Log_Pos: 252
 Relay_Master_Log_File: binary-log.000003
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
 Last_Errno: 1062
 Last_Error: Error ‘Duplicate entry ‘101’ for key
 ‘PRIMARY’’ on query. Default database: ‘’.
Query: ‘INSERT INTO chapter6.replication_test VALUES (101)’
 Skip_Counter: 0
 Exec_Master_Log_Pos: 106

4. You now see an error in replication, but the cause is known, and you now have a possible
inconsistency in the data. You know the cause because this is a simulated test, but in a pro-
duction environment, this is not obvious and appropriate verifi cation of underlying data on
the master and slave is necessary:

beta> SET GLOBAL SQL_SLAVE_SKIP_COUNTER=1;
beta> SLAVE START SQL_THREAD;
beta> SHOW SLAVE STATUS\G

You should now see a running MySQL slave as was previously demonstrated.

If you follow these two rules, you eliminate user-introduced errors and the most
likely causes of replication failure:

➤ Always run your MySQL slaves in read-only mode.

➤ Never use a user with SUPER privileges to run DDL or DML statements.

Using Replication Selectively

It is also possible to run commands that are not replicated. For example, you can selectively disable
replication on a per-command basis:

alpha> SET SESSION SQL_LOG_BIN=FALSE;
alpha> INSERT INTO chapter6.replication_test VALUES (201);
alpha> SET SESSION SQL_LOG_BIN=TRUE;

563120c06.indd 262563120c06.indd 262 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

Replication ❘ 263

alpha> INSERT INTO chapter6.replication_test VALUES (202);
alpha> SELECT * FROM chapter6.replication_test WHERE id > 200;
+-----+
| id |
+-----+
| 201 |
| 202 |
+-----+

As you will observe, not all data inserted was applied to the slave:

beta> SELECT * FROM chapter6.replication_test WHERE id > 200;
+-----+
| id |
+-----+
| 202 |
+-----+

You should never use these commands lightly. MySQL does not provide any
means to ensure your database is consistent. By selectively disabling MySQL,
you introduce inconsistency and MySQL does not provide any tools to identify
or correct it. Check out the Maatkit toolkit for options to perform this.

You can also confi gure MySQL on the master or the slave to selectively log or process binary log
events. The following various options provides various ways of selecting certain operation. We are
not going to discuss these options in detail. Refer to the MySQL Reference Manual for detailed
instructions at http://dev.mysql.com/doc/refman/5.1/en/replication-options.html.

➤ replicate-do-db

replicate-do-table➤

replicate-ignore-db➤

replicate-ignore-table➤

replicate-wild-do-table➤

replicate-wild-ignore-table➤

The Issues with MySQL Replication

Two primary issues exist with MySQL replication, predominantly due to the asynchronous nature of
the process. These are:

➤ Lag: A direct result of the asynchronous nature of MySQL replication. It is important that
you monitor replication lag in your topology because generally the purpose of a MySQL
slave is for an online processing such as read scalability or for MySQL backups.

➤ Consistency: There is no guarantee the slave data is consistent with the master. In previous
examples, two instances were shown that can produce an inconsistent data set.

563120c06.indd 263563120c06.indd 263 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

264 ❘ CHAPTER 6 ADVANCED MYSQL

Several patches are now available to improve consistency and as a side result improve lag. The fi rst
patch provided in the Google MySQL Patches http://code.google.com/p/google-mysql-tools/
gives a level of semi-synchronous replication. Additional ports of MySQL including the Percona per-
formance builds now include similar patches.

The possibility of inconsistency is often not considered, especially when a MySQL slave is your
primary backup process. MySQL does not provide an ability to ensure consistency via a table check-
sum, for example. The popular Maatkit toolkit available at http://maatkit.org has a very good
tool for performing table checksums.

Although not discussed in this book, there is a MySQL product that provides
synchronous replication to overcome these two points. MySQL Cluster can
operate similar to MySQL replication; however, it is actually a different prod-
uct. Though it may appear to operate like MySQL via an SQL interface, it has
different features as well as relative strengths and limitations. Refer to the offi -
cial MySQL product page for additional information at http://www.mysql.
com/products/database/cluster/.

The Benefi ts of MySQL Replication

It is important to recognize the strengths of MySQL and maximize these while minimizing the
weaknesses. Though some issues were listed fi rst, the benefi ts of MySQL can easily outweigh the
limitations. MySQL replication is successfully used in many major websites today. Combined with
other products, such as memcached, and principles, such as sharding, the combination can provide a
powerful and scalable solution.

The MySQL Sandbox (http://mysqlsandbox.net/), originally created by
MySQL community member Giuseppe Maxia, is an invaluable tool in learn-
ing about MySQL replication. With this tool you can create and deploy various
types of different MySQL replication topologies in seconds in a totally isolated
environment for testing.

EVENTS

Events are a new feature of MySQL 5.1. Events enable the scheduling of one-off or recurring work
within the MySQL database, similar to the process of scheduling on Linux systems using cron. To
demonstrate events, create a test table that you will use as verifi cation (Listing 6-14):

LISTING 6-14: event-table.sql

DROP TABLE IF EXISTS event_test;
CREATE TABLE event_test(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

563120c06.indd 264563120c06.indd 264 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

Events ❘ 265

 created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 action VARCHAR(10) NOT NULL,
 val VARCHAR(10) NOT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET latin1;

Creating Events

To create your fi rst event, follow these steps:

1. Create an event that runs every minute (Listing 6-15):

LISTING 6-15: every-min-event.sql

CREATE EVENT e_minute
ON SCHEDULE EVERY 1 MINUTE
COMMENT ‘Perform event every minute’
DO
 INSERT INTO event_test (action,val)
 VALUES (‘Minute’,DATE_FORMAT(NOW(),’%i%s’));

2. Confi rm that nothing has happened as yet:

SELECT * FROM event_test;
Empty set (0.00 sec)

SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2009–10–17 14:52:23 |
+---------------------+

3. Create an event that runs just once (Listing 6-16):

LISTING 6-16: once-off -event.sql

CREATE EVENT e_nextminute
ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 MINUTE
COMMENT ‘Perform event just once’
DO
 INSERT INTO event_test (action,val)
 VALUES (‘1 Minute’,DATE_FORMAT(NOW(),’%i%s’));

4. You can view the scheduling information of events with the SHOW EVENTS command:

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: chapter6
 Name: e_minute
 Defi ner: rbradfor@localhost
 Time zone: SYSTEM

563120c06.indd 265563120c06.indd 265 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

266 ❘ CHAPTER 6 ADVANCED MYSQL

 Type: RECURRING
 Execute at: NULL
 Interval value: 1
 Interval fi eld: MINUTE
 Starts: 2009–10–17 14:51:42
 Ends: NULL
 Status: ENABLED
 Originator: 0
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci
*************************** 2. row ***************************
 Db: chapter6
 Name: e_nextminute
 Defi ner: rbradfor@localhost
 Time zone: SYSTEM
 Type: ONE TIME
 Execute at: 2009–10–17 15:00:07
 Interval value: NULL
 Interval fi eld: NULL
 Starts: NULL
 Ends: NULL
 Status: ENABLED
 Originator: 0
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci
2 rows in set (0.00 sec)

5. Now that a few minutes have passed, look at the data that has been inserted:

SELECT * FROM event_test;
Empty set (0.00 sec)

There is no information in the table. The output in SHOW EVENTS does not indicate any problems.
A review of the MySQL error log does not provide any errors. The problem is that the event
scheduler is not enabled by default. When the author fi rst tested events in version 5.1.6, this was
not required. The MySQL reference manual confi rms that the default behavior of events has
changed in different versions.

Never assume the default value of a given MySQL confi guration variable.
Default values can change between versions, and there are numerous occur-
rences of these. It is important to read the documentation carefully, and ensure
you read the version that is consistent with the specifi c point release of the
MySQL product and also the various MySQL connectors.

563120c06.indd 266563120c06.indd 266 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

Events ❘ 267

Enabling the Events Scheduler

Armed with this new knowledge, you can, indeed, confi rm that the scheduler is defi ned by default as
not running:

1. Enable this:

SHOW GLOBAL VARIABLES LIKE ‘event_scheduler’;
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| event_scheduler | OFF |
+-----------------+-------+
SET GLOBAL event_scheduler = TRUE;

2. Let the scheduler run for a few minutes to see the output you fi rst expected:

mysql> SELECT * FROM event_test;
+----+---------------------+----------+------+
| id | created | action | val |
+----+---------------------+----------+------+
1	2009–10–17 15:08:36	1 Minute	0836
2	2009–10–17 15:08:42	Minute	0842
3	2009–10–17 15:09:42	Minute	0942
4	2009–10–17 15:10:42	Minute	1042
+----+---------------------+----------+------+

3. If you review the schedule of events, you’ll fi nd now that only one is defi ned:

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: chapter6
 Name: e_minute
 Defi ner: root@localhost
 Time zone: SYSTEM
 Type: RECURRING
 Execute at: NULL
 Interval value: 1
 Interval fi eld: MINUTE
 Starts: 2009–10–17 14:51:42
 Ends: NULL
 Status: ENABLED
 Originator: 1
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

Altering Events

By default an event is automatically dropped when it is completed. You can override this behavior
with the ON COMPLETION PRESERVE syntax when defi ning the event. For an existing recurring event
you have the option to disable or drop the event to stop operation:

ALTER EVENT e_minute DISABLE;
mysql> SHOW EVENTS\G

563120c06.indd 267563120c06.indd 267 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

268 ❘ CHAPTER 6 ADVANCED MYSQL

*************************** 1. row ***************************
 Db: chapter6
 Name: e_minute
 Definer: root@localhost
 Time zone: SYSTEM
 Type: RECURRING
 Execute at: NULL
 Interval value: 1
 Interval field: MINUTE
 Starts: 2009–10–17 14:51:42
 Ends: NULL
 Status: DISABLED
 Originator: 1
character_set_client: latin1
collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

You can also re-enable events. You can then observe the data to show a gap of data to correspond
with the time the event was disabled:

ALTER EVENT e_minute ENABLE;
SELECT SLEEP(60);
SELECT * FROM event_test;
+----+---------------------+----------+------+
| id | created | action | val |
+----+---------------------+----------+------+
1	2009–10–17 15:08:36	1 Minute	0836
2	2009–10–17 15:08:42	Minute	0842
3	2009–10–17 15:09:42	Minute	0942
4	2009–10–17 15:10:42	Minute	1042
5	2009–10–17 15:11:42	Minute	1142
6	2009–10–17 15:12:42	Minute	1242
7	2009–10–17 15:13:42	Minute	1342
8	2009–10–17 15:18:42	Minute	1842
+----+---------------------+----------+------+

As you can see, the every minute event did not run for fi ve minutes.

To conclude the life cycle, you can remove events like other database objects with the DROP syntax:

DROP event e_minute;
SHOW EVENTS\G
Empty set (0.00 sec)

Event Privileges

In order to have permission to create or modify events you need an additional privilege: the EVENT
permission. You can use the standard GRANT and REVOKE commands to grant this privilege to users
for specifi c database schemas or all schemas. For example:

GRANT EVENT ON chapter6.* TO wrox@localhost;
REVOKE EVENT on chapter6.* FROM wrox@localhost;

563120c06.indd 268563120c06.indd 268 2/18/10 9:09:44 AM2/18/10 9:09:44 AM

Events ❘ 269

Event Meta Data

MySQL event information is available from two sources: the INFORMATION_SCHEMA and the mysql
meta schema. For example:

mysql> select * from mysql.event\G
*************************** 1. row ***************************
 db: chapter6
 name: e_minute
 body: INSERT INTO event_test (action,val)
 VALUES (‘Minute’,DATE_FORMAT(NOW(),’%i%s’))
 definer: root@localhost
 execute_at: NULL
 interval_value: 1
 interval_field: MINUTE
 created: 2009–10–17 14:51:42
 modified: 2009–10–17 14:51:42
 last_executed: 2009–10–17 19:12:42
 starts: 2009–10–17 18:51:42
 ends: NULL
 status: ENABLED
 on_completion: DROP
 sql_mode:
 comment: Perform event every minute
 originator: 1
 time_zone: SYSTEM
character_set_client: latin1
collation_connection: latin1_swedish_ci
 db_collation: latin1_swedish_ci
 body_utf8: INSERT INTO event_test (action,val)
 VALUES (‘Minute’,DATE_FORMAT(NOW(),’%i%s’))

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: chapter6
 EVENT_NAME: e_minute
 DEFINER: root@localhost
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: INSERT INTO event_test (action,val)
 VALUES (‘Minute’,DATE_FORMAT(NOW(),’%i%s’))
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: MINUTE
 SQL_MODE:
 STARTS: 2009–10–17 15:23:59
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2009–10–17 15:23:59
 LAST_ALTERED: 2009–10–17 15:23:59

563120c06.indd 269563120c06.indd 269 2/18/10 9:09:45 AM2/18/10 9:09:45 AM

270 ❘ CHAPTER 6 ADVANCED MYSQL

 LAST_EXECUTED: 2009–10–17 15:23:59
 EVENT_COMMENT: Perform event every minute
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: latin1
COLLATION_CONNECTION: latin1_swedish_ci
 DATABASE_COLLATION: latin1_swedish_ci

SUMMARY

This chapter covered a number of SQL advanced features you will fi nd in other relational database
products and a number of MySQL specifi c advanced features that you can use in your software
development practices to enrich the functionality of your products.

The use of transactions is a key component of normal application development and users who only
know MySQL may not utilize this important business feature. The added benefi ts of ACID capa-
bilities, referential constraints, MVCC, and automatic crash recovery are key considerations for a
MySQL application provided by transactions. By default, applications should be written with trans-
actions in mind. The use of stored procedures, stored functions, and triggers provides an alternative
means of providing business logic at a layer closer to the database and agnostic to front-end devel-
opment technologies. Views in MySQL can provide a layer of abstraction and simplifi cation to the
application layer, as well as provide a different means of read security to underlying information.

Finally, MySQL replication gives a means to extend operations against your data by providing addi-
tional copies of your data. Used for many purposes including backups, read scalability and database
maintenance, MySQL replication is an essential advanced feature for the PHP and MySQL expert.

563120c06.indd 270563120c06.indd 270 2/18/10 9:09:45 AM2/18/10 9:09:45 AM

Extending MySQL with
User-Defi ned Functions

WHAT’S IN THIS CHAPTER?

➤ An introduction the MySQL UDF application programming

interface (API)

➤ The complete steps for designing, implementing, testing, and debug-

ging a UDF

An introduction to using the gnu debugger, gdb➤

Have you ever been assigned a project that required some functionality from MySQL that
wasn’t included or where writing a stored procedure or function didn’t quite implement the
functionality you needed? Perhaps you have a custom library or C-program that you want
to access from within MySQL, one you could use in the database calls that your application
makes and which makes use of any performance advantages your library offers?

MySQL, being the fl exible system that it is, offers you a way to extend the server and create
your own functions — different than stored procedures or functions — which perform like
standard built-in functions that come included with MySQL. MySQL provides an API for
writing user-defi ned functions, otherwise known as UDFs, which are functions written in C
or C++ that can do whatever the user needs them to do, limited only by imagination in terms
of functionality. Though this book is for PHP programmers, extending MySQL by writing
your UDF in either C or C++ using the UDF API is pretty straightforward and the results are
extremely useful. Any experienced PHP developer with a mind for programming should be
able to easily grasp how to implement a UDF — and in the process gain a deeper understand-
ing for some internals of MySQL as well as get a C or C++ refresher!

This chapter demonstrates how to implement a functional, useful UDF. You may be saying to
yourself while reading this: “Hey, I thought this was supposed to be a PHP book!” However,

7

563120c07.indd 271563120c07.indd 271 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

272 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

any true geek hacker wants to learn something new, and this chapter shows you how you can use
a UDF from PHP code. So, you might want to crack open a book or perform a search online for
a refresher on some basic C/C++ concepts, but you won’t need to be a C or C++ guru to do this.
An advantage to this is you can always add another bullet-point to your resume after making an
attempt to write a UDF!

INTRODUCTION TO UDFS

As mentioned already, a UDF is a user-defi ned function, and this book uses the acronym UDF from
here on. A UDF is a means for you to extend MySQL by writing a function — different than a
stored function — that runs within the MySQL server instead of being stored as a program. It can
be written in C or C++ as opposed to SQL, in which stored functions are written. The UDF source
code is compiled into a shared library and loaded within MySQL, which then makes it usable.

A UDF runs within the confi nes of the MySQL server and has to adhere to some basic constructs,
which this chapter discusses. Also, it should be noted that a UDF’s execution cannot be controlled
by database user privileges as stored functions and procedures can. Being a function, like any other
function (stored or built-in), a UDF can return only a single value, either a string or numeric value,
and is also executed the same way as other functions. UDFs enable Web developers who are familiar
with C and C++ and the UDF API to implement many kinds of database functionality.

UDFs can be particularly useful in combination with a C-library such as the libmemcached, or a C
client library such as libgearman. For instance, the Memcached Functions for MySQL (https://
launchpad.net/memcached-udfs) make it possible to both store and retrieve values, as well as vari-
ous other functions that the libmemcached C-library provides in interacting with the memcached
server. Likewise, the Gearman User Defi ned Functions for MySQL provide many of the operations
the libgearman C client library provides for interacting with the Gearman job server (https://
launchpad.net/gearman-mysql-udf). Basically, if you have a well-defi ned client API with some
standard functions you would like to have available to MySQL, writing a UDF gives you the ability
to call the client functions within MySQL.

Additionally, numerous open source UDFs are available. One useful site is http://www.mysqludf
.org/, which has a number of UDFs that you can use for your database application environment as
well as to learn more about UDF programming.

The fi rst thing that you need to develop a UDF is to determine what you want it to do. What func-
tionality do you want to have access to from within MySQL? It could be something as simple as a
conversion function — for instance, you have a useful C program you’ve written before that con-
verts metric to standard, or something more complex that initiates some external process when run.

For instance, before Eric Day rewrote the Gearman job server and client library in C, I (Patrick
Galbraith) required functionality similar to what Gearman provides, which is to have a means to
call external programs from within MySQL. To do this, I wrote a UDF that took as an argument
an ID of a column of a queuing table, which in turn was written to a socket that a simple server
read. It retrieved the row of that ID and then ran external Perl processes with that ID as a program
argument. This program argument used a trigger that activated upon a record being inserted into a

563120c07.indd 272563120c07.indd 272 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

Developing a UDF ❘ 273

queuing table, which called the UDF, which in turn resulted in a Perl process handling the ID of the
row just inserted. This made it possible to implement an event-driven model of acting on the queue
with Perl programs, as opposed to a constantly polling cron Perl script. The benefi t of this scheme
was that the process ran only when there was an insert to the queuing table. When the web site was
slow and experiencing little activity, the Perl script was not being called unnecessarily. This is just
one example of how a UDF extended the functionality of MySQL.

DEVELOPING A UDF

If you have experience writing C or C++ programs, you can write a UDF. You should become famil-
iar with the UDF API, and a great way to get started is studying the UDF examples in the MySQL
source code that implements fi ve different functions.

EXPERT ADVICE

You can fi nd fi ve UDF examples in the MySQL source code within the directory
and fi le sql/udf_example.c.

UDF Development Requirements

If you have a great idea for a UDF that you want to implement, just use these examples as a template
and start from there. Things to know about writing a UDF include:

➤ It must be run on an operating system that supports dynamic loading of libraries.

➤ You will need a compiler to build your UDF. Most UNIX variants include either a compiler
that is installed by default with the operating system or you that one can easily install even
after UDF installation.

➤ You will also want a debugger installed on your operating system. This can help immensely
during the debugging process. You can have a perfect compile, but run time can be a whole
other matter! The gdb debugger on UNIX systems is one such debugger; for Windows, the
Microsoft debugger is also a useful tool.

The UDF must be written in C or C++.➤

Functions return and accept a string, an integer, and real values.➤

You can use simple, single-row and multiple-row aggregate UDFs.➤

➤ All functions must be thread-safe. This means that you cannot use global or static variables
that are changed.

➤ You can have MySQL coerce arguments to a specifi c type. For instance, you may want to always
use a string as an argument, when internally the function expects an integer. You can force the
function to accept a string, but internally convert it to an integer (using the C function atoi()).

563120c07.indd 273563120c07.indd 273 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

274 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

➤ A standard functionality in the API allows for checking the type of argument. For example,
you can check that the argument is a number as well as check the number of arguments.

A UDF can return three types of values:➤

➤ STRING_RESULT: Any string value

➤ INT_RESULT: Integer value

➤ REAL_RESULT: Float or double value

UDF Required Functions

To create a UDF, some standard, basic C functions must be implemented. These are functions, written
in C, that correspond to the name of the function as they are called in SQL. For the sake of conver-
sation, let’s assume the function name is feet_to_meters(). The three basic functions (the fi rst of
which, feet_to_meters(), is mandatory; the last two are optional) that would be implemented are:

➤ feet_to_meters(): This is the main function where all the real work happens. Whatever
output or action your function performs — calculations, connections to sockets, conversions,
and so on — you implement it here. For instance, if you had C code in a simple program that
you wrote to convert the standard foot into the metric equivalent, this is where the bulk of
your code would go.

➤ feet_to_meters_init(): This is the fi rst function called, and is a setup function. This is
where basic structures are initialized as well as checking argument counts. For instance, in
feet_to_meters(), you would have one argument, a numeric value in feet. This is where
you would ensure that the function received one and only one argument and returned an
error if not. Also, this is a good place to check whether the argument passed was a numeric
or a string value. If the argument was a string value, you would obtain the numeric value
from the string value. You can also coerce the argument type to a string (STRING_RESULT),
integer (INT_RESULT), or real number (REAL_RESULT). Also, this is a good place to allocate
anything that is used throughout the UDF that requires allocation.

➤ feet_to_meters_deinit(): This function is a cleanup function. This is where you would
free anything you allocated in feet_to_meters_init() or feet_to_meters().

A PRACTICAL UDF EXAMPLE

In the following example, try to envision that you have been given the task to write a database
administrative PHP application that displays a listing of all schemas you have available in your
MySQL instance; how many tables does each have? How much space does each of these schemas
use? You can use the information schema to obtain the fi rst two values:

mysql> select table_schema, count(*)
 -> as num_tables
 -> from information_schema.tables
 -> group by table_schema
 -> order by table_schema;

563120c07.indd 274563120c07.indd 274 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

A Practical UDF Example ❘ 275

+--------------------+------------+
| table_schema | num_tables |
+--------------------+------------+
cacti	49
drizzle_stats	6
hipergate3	183
information_schema	17
mediawiki	38
mysql	17
radius	93
remote	1
sugarcrm	98
test	9
wats	14
webapps	17
wordpress	10
+--------------------+------------+

But how would you obtain the actual space used on disk for each schema? Some ways of doing this
provide an approximate value using the information schema, but this number is not exact and has
more to do with the space used in terms of what’s being used internally as seen by MySQL. How
could you obtain the actual value of disk space used by a database schema (which is a directory
location in MySQL’s data directory) in the same way you would see with a command such as du?
This is where a UDF can be employed.

UDF High-Level Design

The fi rst thing you might want to do (at least to my way of thinking) is to come up with a simple C
code snippet to obtain the value of a given directory. One family of standard C functions on UNIX
for obtaining fi le information is the stat() family of functions. The manual page for fstat() gives
information on what each of these functions provides and how they are used. Also, you will need
functions and data types for working with directories and directory entries (the fi les and subdirecto-
ries contained within a directory). For this, you want to use the dirent.h system header fi le, which
provides functions and data types for POSIX directory operations.

You will also want to gain an understanding of how MySQL stores data on disk. A schema in MySQL
is organized as a directory within the data directory, known as the system variable datadir, which
you can fi nd out using the SQL statement:

mysql> show variables like ‘datadir’;
+---------------+-----------------+
| Variable_name | Value |
+---------------+-----------------+
| datadir | /var/lib/mysql/ |
+---------------+-----------------+

In this MySQL instance, the value is /var/lib/mysql, which is most often the value of the datadir
for installations of MySQL on various Linux platforms as confi gured by the operating system instal-
lation or package management tools. To see what is contained in these directories, simply view a

563120c07.indd 275563120c07.indd 275 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

276 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

given schema’s directory within the data directory (you will need adequate permissions to view this
directory). The following example views the directory for the schema test:

root@hanuman:/var/lib/mysql# ls -l test/
total 508
-rw-rw---- 1 mysql mysql 8586 2009-02-27 16:04 a1.frm
-rw-rw---- 1 mysql mysql 40 2009-02-27 16:12 a1.MYD
-rw-rw---- 1 mysql mysql 2048 2009-02-28 09:44 a1.MYI
-rw-rw---- 1 mysql mysql 8588 2009-07-14 10:28 a2.frm
-rw-rw---- 1 mysql mysql 98304 2009-07-14 10:28 a2.ibd
-rw-rw---- 1 mysql mysql 8602 2009-07-10 15:24 bench1.frm
-rw-rw---- 1 mysql mysql 98304 2009-07-10 15:24 bench1.ibd
-rw-rw---- 1 mysql mysql 65 2008-03-07 05:04 db.opt
-rw-rw---- 1 mysql mysql 8560 2009-01-26 17:20 schemalist.frm
-rw-rw---- 1 mysql mysql 184 2009-01-26 17:22 schemalist.MYD
-rw-rw---- 1 mysql mysql 1024 2009-01-29 18:16 schemalist.MYI
-rw-rw---- 1 mysql mysql 8556 2009-07-14 10:27 t3.frm
-rw-rw---- 1 mysql mysql 98304 2009-07-14 10:28 t3.ibd
-rw-rw---- 1 mysql mysql 8584 2008-08-15 07:12 test_table.frm
-rw-rw---- 1 mysql mysql 0 2008-08-15 07:12 test_table.MYD
-rw-rw---- 1 mysql mysql 1024 2008-08-15 07:12 test_table.MYI
-rw-rw---- 1 mysql mysql 8586 2009-07-14 10:19 users.frm
-rw-rw---- 1 mysql mysql 98304 2009-07-14 10:19 users.ibd

As you can see, there are two to three sets of fi les, each corresponding to a table name. This example
contains several types of fi les:

➤ .Files that end with .frm. These are table defi nition fi les, describing the table’s format. Every
table in MySQL has a .frm fi le, regardless of the storage engine used.

➤ Both .MYD and .MYI fi les. These fi les are the table data and index fi les, respectively, for the
MyISAM storage engine.

➤ Files ending with .ibd. These are tablespace fi les for the InnoDB storage engine — if the set-
ting innodb_file_per_table is set to 1 (innodb_file_per_table = 1) in your my.cnf.
This setting basically means that each table will have its own tablespace, containing both
data and indexes. Having innodb_file_per_table set to 1 is a requirement for this UDF
to properly give a summation of the byte count of all objects that comprise a schema.
Otherwise, you would have a single InnoDB tablespace fi le for all tables in all schemas
in your MySQL instance, and there would be no way to discern how many bytes a given
schema uses.

You can see by using the following information schema that the tables listed correspond to the fi le
types that you saw in the previous code:

mysql> SELECT TABLE_NAME, ENGINE FROM TABLES WHERE TABLE_SCHEMA=’test’;
+------------+--------+
| TABLE_NAME | ENGINE |
+------------+--------+
a1	MyISAM
a2	InnoDB
bench1	InnoDB
schemalist	MyISAM

563120c07.indd 276563120c07.indd 276 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

A Practical UDF Example ❘ 277

t3	InnoDB
test_table	MyISAM
users	InnoDB
+------------+--------+

Designing an Algorithm to Use for Your UDF

Now that you know what fi les you are examining, next you need to come up with a simple C pro-
gram (if you don’t already have one) that you can use for the bulk of the UDF C function. This
program will be a good refresher in C as well and allow you to iron out the logic of your program.
You can also deal with any bugs you encounter and isolate them within a small program more easily
than from within the MySQL server.

This program is a very simple program: given a directory path, it calculates the size of the fi les,
recursively within the directory.

Implementing the Program

The following code described here can be found within the code for Chapter 7, in particular the
db_bytes sub-directory. The fi rst fi le to be discussed is db_bytes/src/db_bytes.c.

To implement this program, follow these steps:

1. Include the necessary header fi les. The fi rst header fi les are the standard fi les you might use in
just about any C program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

2. Use an integer value for adding up the byte counts of each fi le. To ensure you have a large
enough numeric value, unsigned (you won’t have a negative byte count!), you can use the
type uint64_t, which requires including the stdint.h header fi le:

#include <stdint.h>

3. For printing out an error in the program, should the directory that you supply be unread-
able — such as being nonexistent or not having the correct privileges — include the errno.h
header fi le:

#include <errno.h>

4. For reading the directory to obtain the directory entries (fi les and directories), as well as be
able to call fstat() on the directory entry, and have access to the primitive system data
types, the following header fi les are also included:

#include <dirent.h>
#include <sys/stat.h>

#include <sys/types.h>

563120c07.indd 277563120c07.indd 277 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

278 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

5. Determine the name of the function to do all the work of calculating the fi le sizes. For this
example, the function is called db_bytes(). It takes one argument, a string, containing the value
of the directory to be examined for total byte count. So you would then declare this function:

/* declare dir_byte_count */
uint64_t db_bytes(char *dir_str);

6. Next is the entry point to the program. This is C, so main() is the entry point. To make this
program useful, you will want it to process a directory name, one string argument. You will also
want main() to ensure the proper number of arguments, one, are passed, and if not, exit with
an error.

/* main */
int main(int argc, char *argv[])
{
 uint64_t total;
 /* must have 1 argument (1st arg is prog name) */
 if (argc != 2)
 {
 printf(“Error: you must supply a directory name!”);
 exit(EXIT_FAILURE);
 }

/* pass the directory */
 total= dir_byte_count(argv[1]);
 /* print total */
 fprintf(stderr, “total size of %s in bytes: %lu\n”, argv[1], total);

 exit(EXIT_SUCCESS);
}

7. Defi ne the function dir_byte_count(). This function takes as a single argument a string,
which contains the directory name and recursively adds up the fi le sizes.

uint64_t dir_byte_count(char *dir_str)
{
 /*
 the variable containing the sum of fi le sizes
 */
 uint64_t total= 0;

 /* for return values from functions */
 uint64_t retval;

 /*
 pointer to the directory, when opened
 */
 DIR *pdir;

 /*
 pointer to current directory entry
 */

563120c07.indd 278563120c07.indd 278 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

A Practical UDF Example ❘ 279

 struct dirent *pdirent;

 /*
 stat structure for obtaining the status of the current directory
 entry
 */
 struct stat fstats;

8. To read and obtain the size of each fi le, the directory must be opened. If the return value is NULL,
that means there was a problem opening this directory. This could be due to any number of
errors: the directory doesn’t exist, permission restrictions, or the directory is a fi le, not a direc-
tory — this next block of code handles any of these errors and prints an informational message:

 /* open the directory */
 pdir= opendir(dir_str);

 /*
 if the pointer is null, then there was a problem
 so return an error
 */
 if (pdir == NULL) {
 printf(“ERROR: %s %d: opendir(%s) failed (%s)\n”,
 __FILE__, __LINE__, dir_str, strerror(errno));
 return 0;
 }

9. Once the directory is successfully opened, read the fi rst entry, which you use to start a while
loop. In the while loop, you perform an lstat() on the entry to obtain its size and add that
to the sum of the number of bytes, total. The last step in the loop is to read the next entry,
which if not NULL, is a condition for the while loop to continue, and iterate over and sum
the size for each entry in total, until all entries have been read:

 /* read the directory */
 pdirent= readdir(pdir);

 /* iterate over each directory entry */
 while (pdirent != NULL) {
 /* buffer for appending directory entries to */
 char dir_buff[500]= “”;

 /* we do not care about reading . or . */
 if (! strcmp(pdirent->d_name, “.”) || ! strcmp(pdirent->d_name, “.”))
 {
 pdirent= readdir(pdir);
 continue;
 }

 /* copy the initial directory */
 strncpy(dir_buff, dir_str, strlen(dir_str));

 /* add delimiter */

563120c07.indd 279563120c07.indd 279 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

280 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

 strncat(dir_buff, “/”, 1);

 /* add the fi le or directory name */
 strncat(dir_buff, pdirent->d_name, pdirent->d_reclen);

 /* stat the entry--fi le or directory */
 retval= lstat(dir_buff, &fstats);

 /* directories have sizes too */
 total += fstats.st_size;

 /* if a fi le . */
 if (pdirent->d_type == DT_REG) {
 fprintf(stderr, “fi le: %s size: %d “, dir_buff, fstats.st_size, total);
 fprintf(stderr, “total %lu\n”, total);
 }
 /* if a directory, then recurse */
 else if (pdirent->d_type == DT_DIR) {
 uint64_t tmp_total;
 fprintf(stderr, “dir: %s total so far: %lu\n”, dir_buff, total);
 tmp_total= dir_byte_count(dir_buff);
 /* add total from subdirs */
 total += tmp_total;
 fprintf(stderr, “tmp_total %lu “, tmp_total);
 fprintf(stderr, “total %lu\n”, total);
 }
 /* get next directory entry */
 pdirent= readdir(pdir);
 }
 /* close the directory */
 closedir(pdir);

 return (total);
}

Now you have a program you can use to test if your idea works!

10. Compile this program:

gcc -o total_bytes_dir total_bytes_dir.c

11. Once compilation is complete, you can test the program. To make testing easy, you can cre-
ate a test directory, and even include subdirectories. Copy a fi le into each subdirectory, as
in the following code listing, and you will see that the same fi le was copied into each subdi-
rectory. The goal in testing is to verify that the program sums the fi le sizes, recursively. The
structure appears as this:

ls -latRF testdir/
total 72
drwxr-xr-x 93 pgalbraith 22256 3162 Jul 14 17:56 ./
drwxr-xr-x 4 pgalbraith 22256 136 Jul 14 09:40 subdir/
drwxr-xr-x 4 pgalbraith 22256 136 Jul 14 09:40 ./

563120c07.indd 280563120c07.indd 280 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

A Practical UDF Example ❘ 281

-rw-r--r-- 1 pgalbraith 22256 34813 Jul 14 09:21 wroxcode-0216.tar.gz

testdir/subdir:
total 72
drwxr-xr-x 3 pgalbraith 22256 102 Jul 14 09:40 subsubdir/
drwxr-xr-x 4 pgalbraith 22256 136 Jul 14 09:40 ./
-rw-r--r-- 1 pgalbraith 22256 34813 Jul 14 09:40 wroxcode-0216.tar.gz
drwxr-xr-x 4 pgalbraith 22256 136 Jul 14 09:40 ./

testdir//subdir/subsubdir:
total 72
drwxr-xr-x 3 pgalbraith 22256 102 Jul 14 09:40 ./
-rw-r--r-- 1 pgalbraith 22256 34813 Jul 14 09:40 wroxcode-0216.tar.gz
drwxr-xr-x 4 pgalbraith 22256 136 Jul 14 09:40 ./

12. Run the program:

./total_bytes_dir testdir/
dir: testdir//subdir total so far: 136
dir: testdir//subdir/subsubdir total so far: 102
fi le: testdir//subdir/subsubdir/wroxcode-0216.tar.gz size: 34813 total 34813
tmp_total 34813 total 34915
fi le: testdir//subdir/wroxcode-0216.tar.gz size: 34813 total 69728
tmp_total 69728 total 69864
fi le: testdir//wroxcode-0216.tar.gz size: 34813 total 104677
total size of testdir/ in bytes: 104677

Excellent! As you can see, the numbers add up correctly! Now you have most of the functionality you
need for your UDF. Better yet, because MySQL schema directories don’t contain subdirectories, you
don’t even need to worry about recursion.

Now that you have functioning code that you know works, the next thing to do is to create your
UDF using this code.

Coding the UDF

The next question to ask yourself is: what should you call this UDF? If you call the function
from within in an SQL statement, what should you name the function? For this example, the
name that is chosen is db_bytes().

Project Directory Organization — Creating an Open Source Project

When writing a UDF, the fi rst thing you probably want to do is create a directory to contain the
source code. For this example, the directory is structured as an open source project, because
after all, don’t you want to be an open source hacker and share your work with the community?
The source code for this UDF example is also available for download from the Wrox web site,
which you can use as a template to create your own UDFs. In this example, a directory called
db_bytes is created.

You can have it arranged so that there are subdirectories. Table 7-1 shows a list of these
subdirectories.

563120c07.indd 281563120c07.indd 281 2/18/10 9:09:57 AM2/18/10 9:09:57 AM

282 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

TABLE 7-1: Subdirectories for an Open Source Project

SUBDIRECTORY DESCRIPTION

src/ Contains any source fi les, both .c and .h.

docs/ Contains document fi les. For several projects, using Perl’s POD documenta-

tion, which can be converted to main pages with a Makefile, is convenient

for writing documentation and has a simple markup language.

sql/ Contains any SQL fi les needed for the UDFs to function, such as the CREATE

FUNCTION statement to install the functions.

tests/ Contains tests. Usually this is a fi le containing a series of SQL statements that

you run against the server and concatenate the output to a result fi le that you

then use for subsequent tests for output comparison.

utils/ Can contain any extra utilities you use. This could include PHP command-line

scripts that install the functions or showcase how to take advantage of the

functions.

config/ Contains autoconf macros and automation scripts. Usually, if you have these

fi les from another project and they work, you won’t change the contents of

this directory. If you have a spare weekend, this is a good place to examine to

learn more about the auto-build tools if you like.

Then of course there’s the top-Level directory, as shown in Table 7-2, which itself contains these
subdirectories as well as the fi les:

TABLE 7-2: Top-Level Directory for an Open Source Project

DIRECTORY DESCRIPTION

AUTHORS: This is where you would list the developer of the project.

COPYING This is the license fi le. Choose from a number of licenses such as BSD, GPL vari-

ous versions, Artistic, and so on.

ChangeLog Every time you make a formal release of your project, include in this fi le a header

of your name, date, and version, under which there will be notes about what has

changed with this release.

INSTALL This fi le explains how to install the UDFs.

README This fi le gives an explanation about the UDFs. This can be any information

you want to provide. Also, this can be a top-level documentation that instructs

the user where to fi nd more detailed information within the repository (docs,

INSTALL, and so on) as well as online sources.

563120c07.indd 282563120c07.indd 282 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 283

DIRECTORY DESCRIPTION

configure/

configure.ac

Offi cial releases contain configure, which is generated by autoconf based on

configure.ac. You will not usually make configure part of the repository,

instead leaving it to the user to run the autoconf generation script to create one.

Makefile.am This is the template the autoconf uses to build Makefile when configure is run.

It’s good to set up a basic package to contain source and header fi les, documentation, and auto-build
fi les for making the build process easy:

radha:db_bytes patg$ ls
AUTHORS Makefile.am aclocal.m4 docs utils
COPYING Makefile.in config sql
ChangeLog NEWS configure src
INSTALL README configure.ac tests

Even if at fi rst not everything is fully completed or fl eshed out, it’s a good practice to have this struc-
ture in place to facilitate the start of a good project.

Source Code Implementation

As already stated, the src directory contains source and header fi les. For this project, one header
fi le, common.h, is created. It contains the data types, constants, and so on needed for the one or
more UDF source fi les. This fi le can be included and makes it convenient for having all data types
available defi ned. The following is what is included in common.h, which defi nes several UDF con-
stants, particularly those that have to do with string lengths, especially the length of the result
string, which will be allocated in the init() function:

#define VERSION_STRING “0.1\n”
#define VERSION_STRING_LENGTH 4

#define DIR_PATH_LENGTH 255

#define RESULT_LENGTH sizeof(char) * 16;

db_bytes.c is the next source fi le that is created. This is where you implement your UDF. It contains
all the functions for this example. When creating other UDFs, they, too, can be included in this fi le, or
a separate fi le, depending on what you prefer. If you create separate fi les for each UDF, you will have
to make a modifi cation to include these fi les to the autoconf confi guration fi le (Makefile.am).

As mentioned before, three primary functions are defi ned for each UDF. For this example, the func-
tions are named as follows:

➤ db_bytes(): This is the actual value function that performs the main operation of the
UDF — and where you will work in the bulk of the functionality of the test program you
wrote. It’s also a good place to implement the check from the section “Implementing the
Program” to ensure the directory name supplied (this will be the schema name supplied to
the UDF) exists and can be accessed.

563120c07.indd 283563120c07.indd 283 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

284 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

➤ db_bytes_init(): Used to check the number of arguments supplied and type, and if not
correct, returns an error informing the user.

➤ db_bytes_deinit(): This normally would be used for freeing any data allocated in either
db_bytes_init() or db_bytes().

To implement the UDF, follow these steps:

1. In this source fi le is the header fi le, which includes:

/*
 Copyright (C) 2009 Patrick Galbraith

 See COPYING fi le found with distribution for license.

*/

#include <mysql.h>
#include <string.h>

#include <stdio.h>
#include <stdlib.h>

#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <dirent.h>

#include “db_bytes.h”

2. Next the string containing MySQL’s datadir value is declared. It is declared extern to
expose the variable to the MySQL server, which will set this variable with the correct value.

/*
 this variable contains the directory path of datadir
 as read by MySQL, usually a relative path to the server
*/
extern char *mysql_data_home;

3. Before you implement any of the functions, declare them at the top of the fi le, before the defi -
nitions of the functions for the UDF:

/* function declaration */
/* init function */
my_bool db_bytes_init(UDF_INIT *initid,
 UDF_ARGS *args,
 char *message);

/* value function */
char *db_bytes(UDF_INIT *initid,
 UDF_ARGS *args,
 char *result, unsigned long *length,

563120c07.indd 284563120c07.indd 284 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 285

 char *is_null,
 char *error);

/* de-init function */
void db_bytes_deinit(UDF_INIT *initid);

4. Next is the defi nition of db_bytes_init(). The implementation includes checking the argu-
ment count and whether the argument is a string. If either of those checks fails, an error is
returned. Also, memory is allocated for the string that will contain the results. The arguments
are described in the function comments at the beginning of the function. Of interest is the
UDF_INIT pointer *initid. This is a useful pointer that is passed to all functions. It allows
you to allocate memory or set values that all functions have access to, as has been done here
for storing the string result of the sum of fi le sizes.

Because *initid is passed to all functions, you can use the memory you allocated in the
init function in the value function, which you also have to free in the deinit() function.

An important thing to know here is that you might have the impulse to perform
other types of checking in the init() function. In this case, you may think it
good to check whether the directory name is a directory that exists, or whether
it is an empty string. Beware! This works fi ne for literal values you supply to the
UDF; for instance, in the statement:

SELECT some_function(‘some value’);

the value “some value” is accessible and works without a problem.

However, if you make a call to the UDF within an SQL statement to provide
the argument to the function such as using the name column of a SELECT state-
ment on the table t1:

SELECT some_function(name) from t1;

the argument value will be NULL (the debugger shows 0x0), which can cause your
UDF to crash if you try utilize or depend on this value. This is by design and due
to how the call to the UDF is parsed. Literal values are available because they
are part of the statement. However, values that need to be transliterated, such as
those that have yet to be read from a table (as is the case above with the value of
the name column) are not yet accessible within the init() function. Therefore,
any such check should be implemented in the value function.

/*
 db_bytes_init

 Checks the number of arguments passed to the UDF and
 returns an error if not exactly one argument

 Also, memory is allocated for string result returned
 in value function db_bytes() which must be freed in

563120c07.indd 285563120c07.indd 285 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

286 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

 db_bytes_init()

 ARGUMENTS:
 UDF_INIT *initid
 UDF_INIT pointer which can be used to make
 allocated memory available to the other functions

 UDF_ARG *args
 UDF_ARG pointer to the UDF arguments, which includes
 the argument lengths and types

 char *message
 String for setting errors

 RETURNS boolean value, 0 success, 1 failure

*/
my_bool db_bytes_init(UDF_INIT *initid,
 UDF_ARGS *args,
 char *message)
{
 char *total_bytes;

 /*
 check the number of arguments and if a string and if
 not only one, return an error
 */
 if (args->arg_count != 1 || args->arg_type[0] != STRING_RESULT)
 {
 /*
 copy a useful message to the char pointer *message
 this will be returned to the user
 */
 strncpy(message, “ USAGE: db_bytes(‘<schema>’).”,
 MYSQL_ERRMSG_SIZE);
 return 1;
 }

 /*
 allocated a character sequence (string) pointer
 this will be used for the results in the value
 function, db_bytes()
 */
 total_bytes = malloc(RESULT_LENGTH);

 /*
 coerce the single argument to a string
 */
 args->arg_type[0]= STRING_RESULT;

 /*
 initid can be used in _init to point to allocated memory
 for use in the value function. This must be freed in
 db_bytes_deinit()

563120c07.indd 286563120c07.indd 286 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 287

 */
 initid->ptr= (char *)total_bytes;

 /*
 return of 0 is success
 */
 return 0;
}

5. Next comes the heart of the program, the value function db_bytes(). This is where you
will implement the functionality you already created with the test program earlier, of course
within the UDF API confi nes. As with db_bytes_init(), copious commenting on how the
function works is a good practice and it provides an explanation of how this code works.

The arguments are explained in the code comments. db_bytes() as db_bytes_
init(), has as its fi rst two arguments, the pointers *initid and *args, which
are the same arguments and serve the same purpose in both functions. The
argument *result is a string up to 255 bytes. Although it is unused in this
example, you could use it to store the result. For this example, to demonstrate
how the init() function can be used to allocate memory used by the value
function, an allocated string is used instead. You’ll see the compiler directive __
attribute__ ((unused)) that is used to avoid warnings for when this variable
is not used in the body of the function.

6. The next argument, *length, is a long pointer that you must use to set the length of the
return value in your UDF, otherwise your UDF will not know what length the result is going
to be and you could end up with the data being truncated. The last argument, *error, seems
like it would be used for an error message, but is instead used to make it so the function
returns a NULL on all calls of the current copy of the function.

/*
 db_bytes()

 This is the value function that given a schema name
 argument (string) it then obtains the number of bytes of
 all fi les in a MySQL schema subdirectory, then that
 value is stored in the return string and returned to the user

 ARGUMENTS:
 UDF_INT *initid
 UDF_INIT pointer which can be used to make
 allocated memory available to the other functions

 UDF_ARG *args
 UDF_ARG pointer to the UDF arguments, which includes
 the argument lengths and types

 *result

563120c07.indd 287563120c07.indd 287 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

288 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

 Unused, but could alternatively be used to store the result,
 255 bytes long

 *length
 Pointer, specifi es the length of the return value

 *is_null
 Set to true, denotes that the value being returned
 is NULL

 *error
 if set to 1 the function will not be
 called anymore and mysqld will return NULL
 for all calls to this copy of the function.

 RETURNS
 string pointer containing the value returned by the UDF
*/
char *db_bytes(UDF_INIT *initid,
 UDF_ARGS *args,
 __attribute__ ((unused)) char *result,
 unsigned long *length,
 char *is_null,
 char *error)
{

7. Next, the memory that was allocated in db_bytes_init() for the result string is pointed to
via initid->ptr, which in turn points to this allocated memory. Other variables are then
declared, which will be used per the comments in the code.

 /*
 set a char pointer to point to the memory allocated
 in db_bytes_init() for storing the result
 */
 char *total_bytes= (char *)initid->ptr;

 /* for return values from functions */
 int retval;
 /*
 the variable containing the sum of fi le sizes
 */
 uint64_t total_size= 0;

 /*
 for printing errors to which you then pass to stderr
 */
 char errstr[255];

 /*
 pointer to the directory, when opened
 */
 DIR *pdir;

 /*

563120c07.indd 288563120c07.indd 288 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 289

 character sequence/array for appending directory path to
 */
 char schema_path[DIR_PATH_LENGTH]= “”;

 /*
 pointer to current directory entry
 */
 struct dirent *pdirent;
/*
 stat structure for obtaining the status of the current directory
 entry
 */
 struct stat fstats;

Checking That the UDF Is Installed

Now, the UDF is checked by the following process:

1. The fi rst check made is to see if the schema specifi ed is INFORMATION_SCHEMA schema. The
information schema is a schema containing materialized views and does not have an actual
schema directory or database fi les, so for this there will never be any size, so NULL is returned.
Note that you set is_null to 1, length to 0 (if you set them that way, they use pointer nota-
tion), and then set the returning NULL, of course cast as a char pointer.

 /*
 return a NULL if information_schema, but not an error
 */
 if (!strcasecmp(“information_schema”, args->args[0]))
 {
 /*
 setting is_null and returning NULL ensures a NULL is returned
 in MySQL
 */
 *is_null= 1;
 *length= 0;
 return (char *)NULL;
 }

2. The value in *mysql_data_home, the datadir value, is the fi rst value appended to the char-
acter sequence/array schema_path, and then the other values are appended to build up the
full schema path for the given schema:

 /*
 start off concatentating the datadir value set in mysql_data_home
 */
 strncat(schema_path, mysql_data_home,
 strlen(mysql_data_home));

 /* need to add a delimiter */
 strncat(schema_path, “/”, 1);

 /* now add the schema name */
 strncat(schema_path, args->args[0], args->lengths[0]);
 strncat(schema_path, “/”, 1);

563120c07.indd 289563120c07.indd 289 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

290 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

3. A check is made to ensure that the schema name supplied results in a valid directory (or fi le)
by a simple lstat() check. If there is an error reading schema_path, the return value is
set to null, and an error is printed to stderr (MySQL error log). You have two ways to do
this — the way shown here is to return null and log the error to the log. You could alterna-
tively return the string value of the error, but that would prevent you from using a true/false
check with something as the built-in function isnull().

/* stat the schema_path value */
 retval= lstat(schema_path, &fstats);
 /*
 if -1 is the return value, print an error to the error log
 and return null
 */
 if (retval == -1 ||)
{
 sprintf(errstr, “ERROR with schema ‘%s’: (%s)\n”,
 args->args[0], strerror(errno));

 fprintf(stderr, errstr, errstr);
 *length= 0;
 /* *length= strlen(errstr); */
 /* return tmp_errstr; */
 is_null= 1;
 return (char *)NULL;
 }

4. The directory is opened, and the value of pdir is checked to see if that directory was opened
successfully. If not, an error is set with sprintf() of errstr, printed to stderr (MySQL
error log) and NULL is returned.

 /* open the directory */
 pdir= opendir(schema_path);
/*
 if the pointer is null, then there was a problem
 so return an error
 */
 if (pdir == NULL) {
 sprintf(errstr, “ERROR with schema ‘%s’: (%s)\n”,
 args->args[0], strerror(errno));
 *length= strlen(errstr);
 *is_null= 1;
 *error= 1;
 return (char *)NULL;
 }

5. The fi rst directory entry is read. This gives the initial entry, something to check in the subse-
quent while loop, which will iterate as long as directory entries exist. This while loop basi-
cally consists of performing an lstat() on each entry to obtain the size of the entry. There
is no concern whether the entry is a fi le or directory because both types have a size. Also, it
should be noted that with a MySQL schema directory, there shouldn’t be any subdirectories
contained within — only fi les. The one check that is performed within the while loop is to
check whether the directory entry has the name of “.” or “..” (the parent directory or cur-
rent directory, respectively), either of which should be skipped. Each entry size is added to

563120c07.indd 290563120c07.indd 290 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 291

the overall total contained in total_size. No recursion is necessary because MySQL schema
directories have no subdirectories.

6. At the end of the loop, the directory is fi nally closed:

 /*
 read the fi rst directory entry
 */
 pdirent= readdir(pdir);

 /*
 in a while loop, continue to read directory entries, summing of the
 directory entry sizes
 */
 while (pdirent != NULL) {
 /* buffer for appending directory entries to */
 char path_buf[DIR_PATH_LENGTH] = “”;

/* we do not care about reading . or .. */
 if (! strcmp(pdirent->d_name, “.”) || ! strcmp(pdirent->d_name, “..”))
 {
 pdirent= readdir(pdir);
 continue;
 }

 /* start out concatenating the schema path */
 strncat(path_buf, schema_path, strlen(schema_path));

 /* add the entry - fi le or directory name */
 strncat(path_buf, pdirent->d_name, pdirent->d_reclen);

 /* stat the entry - fi le or directory */
 retval= lstat(path_buf, &fstats);

 /*
 directory entries have a size too, so add to total
 */
 total_size+= fstats.st_size;

 /* rinse, lather, repeat - read the next entry */
 pdirent= readdir(pdir);
 }
 /* all done now, so close the directory */
 closedir(pdir);

7. Finally, the value of the summed fi le sizes in the schema directory, total_size, is printed to
the string total_bytes using sprintf(), *length set with strlen(), and total_bytes is
returned, resulting in the value being returned to the user of the UDF:

/*
 need to return a string, so use sprintf to convert the total_size
 to a string value contained in total_bytes
 */
 sprintf(total_bytes, “%d”, total_size);

 /*

563120c07.indd 291563120c07.indd 291 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

292 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

 length MUST be set for the UDF to properly return the value
 */
 *length= strlen(total_bytes);

 /* now return the string */
 return (total_bytes);
}

The purpose of db_bytes_deinit() is to free any remaining allocations or perform other “clean-
ups” that were allocated during db_bytes_init() or db_bytes_get(). The only memory that
was allocated in db_bytes_init() was for the string total_bytes, used in db_bytes(), and the
address of which was pointed to by initid->ptr. Within db_bytes_init(), initid->ptr is refer-
enced to a local char pointer *total_bytes pointer and then freed.

/* de-init function */
void db_bytes_deinit(UDF_INIT *initid)
{
 char *total_bytes= initid->ptr;

 /* free the allocated memory */
 free(total_bytes);

 return;
}

This completes the source code implementation of the db_bytes() UDF. Now it is time to build it!

Building the UDF

The UDF example shown here uses autoconf, which is a tool that builds the necessary makefi les
needed for compilation. For autoconf to be able to properly set up everything that is needed for
building your project, it requires the setup of some fi les you might want to become familiar with. To
set things up, follow these steps:

1. The fi rst fi le, Makefile.am, is the top-most autoconf fi le:

INCLUDES =
SUBDIRS = src docs
EXTRA_DIST = utils sql

You shouldn’t have to modify this fi le. It just specifi es that there are other subdirectories as
well as fi les to include when you make a distribution (more about this later).

2. The next fi le is configure.ac. This is the autoconf fi le used to run the autoconf macros that
set up the confi gure script as well as create the makefi les in all necessary directories. You
need to specify the source fi le src/db_bytes.c in the AC_INIT() macro as well as the name
of the UDF, db_bytes, and the version 0.1 in the AM_INIT_AUTOMAKE() macro. The rest you
should never have to modify.

AC_INIT(src/db_bytes.c)
AC_CONFIG_AUX_DIR(confi g)

563120c07.indd 292563120c07.indd 292 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 293

AM_CONFIG_HEADER(src/confi g.h)

AM_INIT_AUTOMAKE(“db_bytes”, 0.1)

AC_PROG_CC
AC_PROG_LIBTOOL
LIBTOOL=”$LIBTOOL --preserve-dup-deps”
AC_SUBST(LIBTOOL)dnl

sinclude(confi g/ac_mysql.m4)
MYSQL_CONFIG_TEST

AC_SUBST(MYSQL_CONFIG)
AC_SUBST(MYSQL_INC)
AC_SUBST(MYSQL_LIB)

AC_SUBST(DEPS_CFLAGS)
AC_SUBST(DEPS_LIBS)

AC_C_CONST
AC_TYPE_SIZE_T
AC_CHECK_HEADERS(limits.h syslimits.h)
AC_OUTPUT(Makefi le src/Makefi le docs/Makefi le)

3. Then in the src/ directory, add the Makefile.am fi le. This fi le is another that you modify to
create your own UDF project. The fi le specifi es the source fi le, any extra fi les such as header
fi les, and sets any additional compile, linker and loader fl ags. You can clearly see what set-
tings are specifi c to the project that you would have to change for your own project.

EXTRA_DIST = common.h
INCLUDES = -I$(top_builddir)/include $(MYSQL_INC) $(DEPS_CFLAGS)

lib_LTLIBRARIES = db_bytes.la
db_bytes_la_SOURCES = db_bytes.c
db_bytes_la_LDFLAGS = -module
db_bytes_la_LIBADD = $(DEPS_LIBS)

4. Now that the autoconf fi les are set up, you will soon execute the script, bootstrap, that runs
autoconf to generate the confi gure script and other fi les needed for build confi guration. First,
observe before running this script:

patg@hanuman:~/db_bytes$ ls
AUTHORS ChangeLog Makefi le.am NEWS confi g docs src utils
COPYING INSTALL Makefi le.in README confi gure.ac sql tests
patg@hanuman:~/db_bytes$ ls src/
Makefi le.am common.h db_bytes.c

5. Then run the script:

patg@hanuman:~/db_bytes$ sh confi g/bootstrap
confi g/bootstrap: running `aclocal-1.9’
confi g/bootstrap: running `autoheader’
confi g/bootstrap: running `libtoolize --automake --copy --force’
confi g/bootstrap: running `automake-1.9 --add-missing --copy --force’
confi g/bootstrap: running `autoconf’

563120c07.indd 293563120c07.indd 293 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

294 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

6. Afterward, observe the fi les that were generated:

patg@hanuman:~/db_bytes$ ls
AUTHORS ChangeLog Makefi le.am NEWS aclocal.m4 confi g
 confi gure.ac
sql tests COPYING INSTALL Makefi le.in README autom4te.cache
 confi gure docs src utils
patg@hanuman:~/db_bytes$ ls src/
Makefi le.am Makefi le.in common.h confi g.h.in db_bytes.c

7. The next thing you need to do is run the configure script:

./confi gure --with-mysql=/usr/bin/mysql_confi g --libdir=/usr/lib/mysql/lib

8. The argument --with-mysql provides automake the path to mysql_config, a script that
comes with MySQL development packages (or from the source build) that provides compiler
and linker fl ags needed to build programs with MySQL. The confi guration argument --libdir
is the value of the directory location where the shared library produced during compilation will
be installed. This is the library directory from which MySQL can load the UDF’s shared library.
You may need to make sure this directory is in the LD_LIBRARY_PATH.

9. After running configure, now you can build the UDF:

patg@hanuman:~/db_bytes$ make
patg@hanuman:~/db_bytes$ sudo make install

Now you should be able to install the UDF!

Installing the UDF

Installing the UDF is quite simple. You just need to make sure the UDF plug-in shared library fi le
is installed, which the make install command in the previous section should have automatically
done for you.

You will need to run the following SQL statement using the root database user or a database user
with privileges to the table func in the mysql system schema:

mysql> CREATE FUNCTION db_bytes RETURNS STRING SONAME “db_bytes.so”;

This makes it so MySQL is able to call this function and know where to fi nd the dynamic library fi le
for this function so that it can be dynamically loaded.

If ever you need to see what functions are installed on MySQL, you can view the contents of the
func table by running this query:

mysql> SELECT * FROM mysql.func;
+----------+-----+-------------------------+----------+
| name | ret | dl | type |
+----------+-----+-------------------------+----------+
| http_get | 0 | curl_functions_mysql.so | function |
+----------+-----+-------------------------+----------+

As you can see, in this instance the query shows that only one function is installed, which the previ-
ous statement CREATE FUNCTION accomplished.

563120c07.indd 294563120c07.indd 294 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

A Practical UDF Example ❘ 295

If you modify or add functionality to your UDF and you release a new version, you should com-
pile the UDF and run make install to install the modifi ed UDF. So long as the shared library
fi le is named the same and the function is named the same, you don’t have to perform the preced-
ing CREATE FUNCTION statement. If you do change it, however, you will have to restart MySQL to
ensure the changes are loaded.

Running Your New UDF

The next thing to do is to run the new UDF. The following four statements test that your UDF
works by handling schemas (test and mysql) that have actual schema subdirectories: informa-
tion_schema, which consists of materialized views and has no actual storage, and a bogus schema,
foo, that doesn’t even exist. All of these cases should work:

mysql> select db_bytes(‘test’);
+------------------+
| db_bytes(‘test’) |
+------------------+
| 476921 |
+------------------+

mysql> select db_bytes(‘mysql’);
+-------------------+
| db_bytes(‘mysql’) |
+-------------------+
| 780084 |
+-------------------+

mysql> select db_bytes(‘information_schema’);
+--------------------------------+
| db_bytes(‘information_schema’) |
+--------------------------------+
| NULL |
+--------------------------------+

mysql> select db_bytes(‘foo’);
+-----------------+
| db_bytes(‘foo’) |
+-----------------+
| NULL |
+-----------------+

And to check your work:

root@hanuman:/var/lib/mysql# du -s -b test/ mysql/
481017 test/
784180 mysql/

Pretty close — there are some differences, probably in the way that du obtains fi le size versus how
lstat() obtains it. Close enough to get a good byte count of how much space your schema uses.
The next thing to check is that the erroneous schema name, foo, produced an error in the MySQL
error log, and upon viewing the log:

ERROR with schema ‘foo’: (No such file or directory)

563120c07.indd 295563120c07.indd 295 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

296 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

Excellent! Your hard work on this UDF has paid off.

As for the original requirement that you obtain a listing of schemas and the byte count use of each
schema, you can now use your UDF to obtain this value. This is one of the most useful things about
a UDF — being able to call the UDF within a SELECT statement, and using the result set of that
statement as an argument to your UDF.

mysql> select table_schema,
 -> count(*) as num_tables,
 -> db_bytes(table_schema) as bytes
 -> from information_schema.tables
 -> group by table_schema
 -> order by table_schema;
+--------------------+------------+----------+
| table_schema | num_tables | bytes |
+--------------------+------------+----------+
cacti	49	1089453
drizzle_stats	6	642409
hipergate3	183	2887849
information_schema	17	
mediawiki	38	5081212
mysql	17	780084
radius	93	1788965
remote	1	10867
sugarcrm	98	1800256
test	9	476921
wats	14	121859
webapps	17	172266
wordpress	10	576978
+--------------------+------------+----------+

Now you have a query with the result set that you want, which you can use with your application.

USING A UDF WITH PHP

Now that you have a working UDF to use for the task you were given, you need to utilize it from
within your application. The following simple class shows how you can do so. This simple class
performs the query in the previous example and additionally allows a variable to be passed for a
specifi c schema name.

Connecting and Disconnecting to MySQL

The fi rst two methods are both the constructor and destructors, which primarily deal with connect-
ing and disconnecting to MySQL:

this contains all the globals that this application will use
require(‘SchemasConf.php’);

class Schemas
{
 # class member declarations
 private $mysqli;
 private $dbName;

563120c07.indd 296563120c07.indd 296 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

Using a UDF with PHP ❘ 297

 private $dbHost;
 private $dbUser;
 private $dbPass;
 private $_rows;
 private $_fields;
 private $_hash_result;

 #
 # constructor
 #
 public function __construct()
 {
 # obtain the connection information
 $this->dbHost= $GLOBALS[‘dbHost’];
 $this->dbUser= $GLOBALS[‘dbUser’];
 $this->dbPass= $GLOBALS[‘dbPass’];
 $this->dbName= $GLOBALS[‘dbName’];

 # connect to the database
 $this->mysqli= new mysqli($this->dbHost,
 $this->dbUser,
 $this->dbPass,
 $this->dbName);

 if ($this->mysqli->connect_error) {
 die(‘Connect Error (‘ . $mysqli->connect_errno . ‘) ‘
 . $mysqli->connect_error);
 }

 }

 #
 # destructor
 #
 public function __destruct()
 {
 $this->mysqli->close();
 }

Returning the Result Set Array

The next method listed is the get() method, which is the method that returns the result set array of
the query utilizing db_bytes(). It utilizes the mysqli prepared statement API and takes an optional
argument specifying a particular schema name if all you want to know is the information for a spe-
cifi c schema rather than all schemas.

As you can see, there’s nothing particularly special about how you call the UDF in your query. If you
were just calling db_bytes() alone as opposed to a query specifying a particular column as a result set
to the UDF as shown in this example, you could also specify a placeholder in the function call:

 #
 # get()
 #
 # this function simply gets an array containing the result

563120c07.indd 297563120c07.indd 297 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

298 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

 # set of the query that utilizes the db_bytes() UDF
 #
 # ARGUMENTS
 # optional schema_name, used in the where clause of the query
 #
 # RETURNS
 # array containing the result set of the query
 #
 public function get($schema_name = null)
 {
 # the main query
 $query= <<<EOQUERY
SELECT table_schema,
 count(*) AS num_tables,
 db_bytes(table_schema) AS bytes
FROM information_schema.tables
EOQUERY;

 # if schema_name set, append WHERE clause to query
 if (isset($schema_name)) {
 $query .= ‘ WHERE table_schema = ?’;
 }
 # append GROUP BY and ORDER BY
 $query .= ‘ GROUP BY table_schema ORDER BY table_schema’;

 # initialize the statement
 $stmt= $this->mysqli->stmt_init();

 # prepare the query
 if ($stmt->prepare($query)) {
 # bind the single placeholder if $schema_name set
 if (isset($schema_name)) {
 $stmt->bind_param(“s”, $schema_name);
 }
 }

 # execute the statement
 $stmt->execute();

 # obtain the fields to bind to
 $this->get_fields($stmt);

 # set an array to bind to for the result set
 call_user_func_array(array($stmt, ‘bind_result’), $this->_fields);

 # fetch all the rows
 $this->fetchall_hash_result($stmt);

 # close the statement
 $stmt->close();

 return $this->_hash_result;
 }

563120c07.indd 298563120c07.indd 298 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

Using a UDF with PHP ❘ 299

The get_fields() private method obtains the fi eld names of the query that was prepared in the
private class member _fields. The main purpose of this is to create an associative array for binding
the output parameters to for fetching the result set.

 #
 # get_fields()
 # a method to obtain field names, storing in class member
 # _fields
 #
 # ARGS
 # $stmt--prepared statement
 #
 private function get_fields(&$stmt) {
 $metadata= $stmt->result_metadata();
 while ($field = $metadata->fetch_field()) {
 $this->_fields[] = &$this->_row[$field->name];
 }
 $metadata->close();

 }

The fetchall_hash_result() method is used to build an associative array containing the
result of the query, stored in the class member _hash_result. This is the array that is inevitably
returned to the program using the Schemas class when it calls get().

 #
 # fetchall_hash_result()
 # a method to obtain the result of the executed prepared statement
 # storing the result as a hash/associative array the class member
 # _hash_result
 #
 # ARGS
 # $stmt--prepared statement
 #
 private function fetchall_hash_result(&$stmt) {
 call_user_func_array(array($stmt, ‘bind_result’), $this->_fields);

 while ($stmt->fetch()) {
 foreach($this->_row as $field => $val) {
 $tmp_ar[$field]= $val;
 }
 $this->_hash_result[] = $tmp_ar;
 }
 }
}

Finally, the client program instantiates and utilizes this class, which simply instantiates a Schemas
object and calls $schemas->get() to obtain an associative array containing the result set of the list
of schemas:

require(“Schemas.php”);

$schemas= new Schemas();

$result= $schemas->get();
print_r($result);

563120c07.indd 299563120c07.indd 299 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

300 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

And with this, you now have a means to satisfy your task requirement of printing out all schemas,
the number of tables, and the size in bytes of each.

OTHER UDF SQL STATEMENTS

You’ve seen how to aggregate calls to a UDF, get_bytes(), by using an SQL statement to produce
arguments to the UDF. There are other useful SQL statements that you can use with UDFs.

You can specify a UDF call as a means of supplying a value to be inserted in an INSERT statement:

mysql> INSERT INTO schema_sizes (schema_name, size)
 -> VALUES (‘test’, db_bytes(‘test’));
Query OK, 1 row affected (0.01 sec)

mysql> select * from schema_sizes;
+----+-------------+--------+
| id | schema_name | size |
+----+-------------+--------+
| 1 | test | 583855 |
+----+-------------+--------+

Another query performs as a useful update and sets a user-defi ned variable to the value being
updated:

mysql> UPDATE schema_sizes SET size= @size:= db_bytes(‘test’)
 -> WHERE schema_name=’test’;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1 Changed: 0 Warnings: 0

mysql> select @size;
+--------+
| @size |
+--------+
| 583855 |
+--------+

In this example, an UPDATE statement simultaneously updates the size column of the schema_sizes
table and sets the user-defi ned variables @size to the value to which the size column is updated.
This is one way to both update and read a value, which can be extremely useful.

You can use UDFs in pretty much any SQL statement, so the only limit to what you can do is your
imagination!

DEBUGGING A UDF

When you develop UDFs, you will most likely encounter bugs in your code. That is a given. The UDF
API is fairly easy to use, but you will stumble upon some things that necessitate the use of a debugger
to help you sort things out. This section is a brief aside on how to debug your UDF, and how to use a
debugger with MySQL in general. In this demonstration, gdb, the GNU Debugger, is used.

563120c07.indd 300563120c07.indd 300 2/18/10 9:09:58 AM2/18/10 9:09:58 AM

Debugging a UDF ❘ 301

Say, for instance, you are running your UDF, and you see the results:

mysql> select db_bytes(name) from sch;
ERROR 2013 (HY000): Lost connection to MySQL server during query

This is because the author added the following to db_bytes_init() to illustrate a point made ear-
lier in this chapter:

/* test block for debugging */
 if (strcmp(“test”, args->args[0])) {
 fprintf(stderr, “matches: %s\n”, args->args[0]);
 }

That point being that the value of args->args[0] is NULL if you use the UDF within a SELECT
statement that provides the UDF with an argument of a column name. If you try to utilize args-
>args[0], you will get a segfault. This provides a good reason to use the debugger, gdb.

Attaching gdb to an Already Running Process

You can either run MySQL from the debugger, or attach to an already running process. In this dem-
onstration you attach gdb to a running process. To attach to the running MySQL process, you need
to fi nd out what its process ID is:

ps auxww|grep mysqld|grep -v mysqld_safe|grep -v grep
mysql 17629 0.4 4.1 1412436 164476 pts/4 Sl 22:48 0:03
 /usr/sbin/mysqld
 --basedir=/usr
 --datadir=/var/lib/mysql
 --user=mysql
 --pid-file=/var/run/mysqld/mysqld.pid
 --skip-external-locking
 --port=3306
 --socket=/var/run/mysqld/mysqld.sock

As you can see, the process ID (PID) is 17629. Follow these steps:

1. Because mysqld is running as the mysql user, you will need to run gdb as root:

sudo gdb /usr/sbin/mysqld 17629

2. You will see a lot of output showing you the various MySQL threads, and then end up at the
prompt:

Reading symbols from /usr/lib/db_bytes.so.done.
Loaded symbols for /usr/lib/db_bytes.so
0x00007f267de42db2 in select () from /lib/libc.so.6
(gdb)

3. Tell the debugger to “continue” program execution by entering the command continue:

(gdb) continue
Continuing.

563120c07.indd 301563120c07.indd 301 2/18/10 9:09:59 AM2/18/10 9:09:59 AM

302 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

4. In another terminal, connected to MySQL, run the offending statement:
mysql> select db_bytes(name) from sch;
ERROR 2006 (HY000): MySQL server has gone away

5. Back in the terminal window of gdb:
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x41891950 (LWP 17662)]
0x00007f2633820bbe in db_bytes_init (initid=0x53e4500, args=0x53e44c8,
 message=<value optimized out>) at db_bytes.c:91
91 if (strcmp(“test”, args->args[0])) {
(gdb)

6. A segmentation fault is shown! You already know that this block of code would cause grief,
but gdb verifi es this for you. You can also run a backtrace:

(gdb) backtrace
#0 0x00007f2633820bbe in db_bytes_init (initid=0x53e4500, args=0x53e44c8,
 message=<value optimized out>) at db_bytes.c:91
#1 0x0000000000566fba in udf_handler::fi x_fi elds ()
#2 0x00000000005704fd in Item_udf_func::fi x_fi elds ()
#3 0x0000000000609407 in setup_fi elds ()
#4 0x0000000000624a32 in JOIN::prepare ()
#5 0x0000000000632216 in mysql_select ()
#6 0x0000000000632603 in handle_select ()
#7 0x00000000005e2dd7 in mysql_execute_command ()
#8 0x00000000005e5beb in mysql_parse ()
#9 0x00000000005e6959 in dispatch_command ()
#10 0x00000000005e73d6 in do_command ()
#11 0x00000000005e7d7e in handle_one_connection ()
#12 0x00007f267ecc53f7 in start_thread () from /lib/libpthread.so.0
#13 0x00007f267de49b3d in clone () from /lib/libc.so.6

7. You can see clearly where the problem is — in frame zero, db_bytes_init. If you switch to
frame zero with the command frame 0, you’ll see the line of code that caused the segfault,
and you can verify what caused the segfault by printing out args->args. The program seg-
faulted by trying to perform strcmp() on a NULL value:

(gdb) frame 0
#0 0x00007f1e29eb4bbe in db_bytes_init (initid=0x53e62c0, args=0x53e6288,
 message=<value optimized out>) at db_bytes.c:91
91 if (strcmp(“test”, args->args[0])) {
 (gdb) print *args->args
$2 = 0x0

Setting a BreakPoint and Stepping through Code

Now that you know which function is the problem, you can also set a breakpoint to db_bytes_
init() and step through from that breakpoint until the offending line of code. To do so:

1. You will of course need to restart MySQL, which if you are using mysqld_safe, is done for
you; however, you will have to look at the process list to fi nd out the new process ID. Now
set the breakpoint:

(gdb) break db_bytes_init
Breakpoint 1 at 0x7f424da2db40: fi le db_bytes.c, line 66.

563120c07.indd 302563120c07.indd 302 2/18/10 9:09:59 AM2/18/10 9:09:59 AM

Debugging a UDF ❘ 303

(gdb) continue
Continuing.

2. In the other terminal, re-run the offending SQL statement:

mysql> select db_bytes(name) from sch;
ERROR 2006 (HY000): MySQL server has gone away
No connection. Trying to reconnect.
Connection id: 125
Current database: test

3. The command will hang there, because the debugger has stopped execution at the breakpoint
you previously set, db_bytes_init(). Back in the debugger terminal window you will see:

 [Switching to Thread 0x41cf6950 (LWP 18597)]

Breakpoint 1, db_bytes_init (initid=0x53f7610, args=0x53f75d8,
 message=0x53eb6ad “”)
 at db_bytes.c:66
{

4. You will want to step through the execution of db_bytes_init() by entering the gdb com-
mand step (or alternatively just the letter s):

(gdb) step
if (args->arg_count != 1 || args->arg_type[0] !=
STRING_RESULT)
(gdb) step
66 {
(gdb) s
if (args->arg_count != 1 || args->arg_type[0] !=
STRING_RESULT)
(gdb) s
total_bytes = malloc(sizeof(char) * 12);

5. Next you step to the line containing the offending block of code. You can print out args-
>args to see what the value is, which in this case is NULL (0x0):

(gdb) s
91 if (strcmp(“test”, args->args[0])) {
 (gdb) print *args->args
$1 = 0x0

6. The next step will result in a segfault:

(gdb) s

Program received signal SIGSEGV, Segmentation fault.
0x00007f424da2dbbe in db_bytes_init (initid=0x53f7610, args=0x53f75d8,
 message=<value optimized out>) at db_bytes.c:91
91 if (strcmp(“test”, args->args[0])) {

563120c07.indd 303563120c07.indd 303 2/18/10 9:09:59 AM2/18/10 9:09:59 AM

304 ❘ CHAPTER 7 EXTENDING MYSQL WITH USER-DEFINED FUNCTIONS

Dealing with Literal Values

So, now you know where the bug is. What if you had used a literal value for the argument to db_
bytes()? Follow these steps:

1. In the MySQL client terminal window, the UDF is called with a literal value, ‘test’:

mysql> select db_bytes(‘test’) from sch;

2. In the debugger terminal window the debugger will stop at the same breakpoint, db_bytes_
init(). Though this time, you’ll see args->args is actually set. If you continue the program
execution, there is no segfault this time:

 (gdb) continue
Continuing.
[Switching to Thread 0x41a1c950 (LWP 18907)]

Breakpoint 1, db_bytes_init (initid=0x53f75e0, args=0x53f75a8,
 message=0x53eb66d “”)
 at db_bytes.c:66
66 {
 (gdb) s
73 if (args->arg_count != 1 || args->arg_type[0] != STRING_RESULT)
(gdb) s
88 total_bytes = malloc(sizeof(char) * 12);
 (gdb) s
91 if (strcmp(“test”, args->args[0])) {
 (
(gdb) print *args->args
$1 = 0x53f7410 “test”
(gdb) continue
Continuing.

3. And the SQL statement successfully completes:

mysql> select db_bytes(‘test’) from sch;
ERROR 2006 (HY000): MySQL server has gone away
No connection. Trying to reconnect.
Connection id: 125
Current database: test

+------------------+
| db_bytes(‘test’) |
+------------------+
| 583855 |
+------------------+
1 row in set (38.32 sec)

Debugging Summary

As mentioned before, this is by design and how UDF calls are parsed, and using the debugger is a
great way to demonstrate this as well as learn how UDFs work.

563120c07.indd 304563120c07.indd 304 2/18/10 9:09:59 AM2/18/10 9:09:59 AM

Summary ❘ 305

Now you have seen the basics of using a debugger with MySQL. This is just an introduction, but does
give you a taste of what is involved in troubleshooting problems you encounter in writing UDFs.

You can also use the debugger as a way of analyzing how MySQL works. Pick a breakpoint in the
code and step through. You can learn a lot by crawling through the program execution this way.
There are also other ways of debugging MySQL. On UNIX systems, you can use DDD (a front-end
for gdb) and Eclipse for more graphical debugging user interfaces. For Windows, the Microsoft
debugger has a great visual interface and I have even seen UNIX developers sometimes use Windows
for debugging certain problems just so they can use the Microsoft debugger!

SUMMARY

This chapter introduced you to using and developing MySQL user-defi ned functions, or UDFs.
These allow you to extend the functionality of MySQL by creating your own functions that run
within the MySQL server, which you can use through SQL statements your PHP application would
make. User-defi ned functions are written in C or C++ and need to be compiled into a shared library,
which you then install into MySQL. This chapter showed you the entire development process of a
practical UDF example, db_bytes(), which simply sums the byte count of the fi les contained within
a MySQL schema subdirectory. The chapter took you from conceptualization, project setup, cod-
ing of the necessary C functions for implementing a UDF, compilation and installation of the UDF,
as well as using the UDF in an SQL statement that provided a listing of all schemas with their byte
count on disk.

You also learned how to use db_bytes() from a PHP application, other useful SQL statements you
can use a UDF with, and how to debug a UDF with the GNU Debugger, gdb.

563120c07.indd 305563120c07.indd 305 2/18/10 9:09:59 AM2/18/10 9:09:59 AM

563120c07.indd 306563120c07.indd 306 2/18/10 9:09:59 AM2/18/10 9:09:59 AM

Writing PHP Extensions

WHAT’S IN THIS CHAPTER?

➤ Setting up a new PHP extension project

Adding functions to extensions➤

Dealing with variables from PHP➤

Using hash tables and arrays➤

Accessing MySQLi query results➤

Defi ning an object➤

Defi ning an interface➤

Providing more information about an extension➤

Sometimes pure PHP is not enough. Most commonly, this happens when speed is an issue or
integration with a third-party non-PHP library is necessary. Writing extensions is also very
useful for creating persistent resources.

This chapter builds a fully functional PHP extension that works with MySQLi Result objects
and also performs various tasks relating to each type of data. It is intended for demonstration
purposes only, but it works well and can be a good starting point for a custom extension.

This chapter assumes an intermediate understanding of the C language. Particular skill sets
that are useful include pointers and memory allocation.

8

563120c08.indd 307563120c08.indd 307 2/18/10 9:10:11 AM2/18/10 9:10:11 AM

308 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

SETTING UP THE BUILD ENVIRONMENT

For many developers, one of the most frustrating parts about writing a PHP extension is simply that
the extensions aren’t written in PHP. Like MySQL UDFs, PHP extensions are also written in C. The
C language doesn’t have an automatic garbage collector, memory management, or any of the nice-
ties of PHP so it can be much more diffi cult to work with. However, thanks to the Zend engine that
powers PHP and the PHP engine itself, it maintains all the fl exibility of PHP while adding the ben-
efi ts of a lower-level language with direct access to fi les and memory.

PHP and the Zend engine are written in C. It is important to note the distinction between C and
C++ because some developers who know C may fi nd common tasks like fi le and memory access
to be different. When compiling a PHP extension you have the option to include the header fi les
for both Zend and PHP. The headers defi ne many different functions and macros that can be used
inside the extension. Documentation for many of them is diffi cult to fi nd; this book covers the most
common ones which almost all extensions need as well as some more advanced ones.

Before digging into setting up an extension it is important to fi rst have the PHP sources on your
machine. If you have compiled PHP from scratch you probably already do. If not, you can download
them from the PHP web site. The more adventurous can download the current source from subver-
sion, which is useful if you decide to release the extension publicly and want a head start developing
and testing for the next version.

The PHP source directory has many folders. In most cases you only need to care about three of them:

➤ The Zend directory contains header and source fi les for the Zend engine (the core engine that
powers PHP). A basic extension will allow you to access much of the functionality of PHP
using just the standard PHP APIs; however, the Zend engine has tools for performing many
of the more complex and lower-level tasks.

➤ The main directory is like the Zend directory, only for PHP-specifi c functionality. Here you
will fi nd headers that defi ne access to all the PHP API functions. Notably, this is where the
PHP stream wrappers (used for I/O) are defi ned. The PHP library contains a lot of function-
ality that may seem redundant; however, they are important because the PHP versions obey
all of the security and confi guration settings in the php.ini fi le.

➤ The third directory, and the one where you’ll be spending most of your time, is the ext direc-
tory. The ext directory is where the source for all the PHP extensions — including the one
that you write yourself — is stored.

Once the source is on your machine it is necessary to make sure that you have all the tools needed
to build PHP. If you have built PHP in the past it shouldn’t be a problem. On Linux/UNIX sys-
tems it is necessary to have gcc, fl ex, and bison installed. On Windows the confi guration and com-
pilation is more diffi cult. In general, however, an extension written in a Linux/UNIX environment
is compatible with Windows, assuming best practices are adhered to. This book recommends
doing your development on a UNIX/Linux environment if you plan on distributing your exten-
sion. Because most extensions are deployed to a Linux server, the rest of this chapter focuses only
on Linux/UNIX.

563120c08.indd 308563120c08.indd 308 2/18/10 9:10:11 AM2/18/10 9:10:11 AM

Creating an Extension with ext_skel ❘ 309

CREATING AN EXTENSION WITH EXT_SKEL

It is entirely possible to create a PHP extension from scratch. However, to create an extension that is
compliant with the PHP Extension Community Library (PECL) standards in addition to just func-
tioning, it is a lot of work. Also, the fi rst stages of writing a component are largely shared by most
PHP extensions so it is unnecessary to create duplicate effort. The initial stages of development are:

➤ Creating the confi guration and build fi les for both Windows and UNIX/Linux

Creating the header and basic C fi les, which includes:➤

Creating initialization and destruction functions➤

Including the correct headers➤

Creating functions for use by PHP info tools➤

Creating test fi les➤

Creating CSV ignore fi les to make sure fi les that shouldn’t get into subversion don’t➤

Fortunately, a tool exists to do all the tedious work for you. There are actually at least two tools.
The second one is covered next. But fi rst, the PHP source comes with a shell script called ext_skel,
which as the name implies, generates the skeleton of a PECL-compliant PHP extension.

You have two ways to use ext_skel: with and without a function defi nitions fi le. The defi nitions fi le
contains a name and optional prototype for all the functions you want to be callable from PHP. It
also helps to develop good habits by forcing all the functionality of an extension to be designed and
thought through ahead of time.

Creating and Compiling Skeleton Code

This section and the section later that uses a different prototyping method are only one that assumes
that the functions are generated with the defi nition fi le. The rest of the chapter discusses extensions
as if you were starting from the most basic confi guration. The basic usage of ext_skel is like this:

cd ext
./ext_skel --extname=helloworld

Best practice is to use one word, all-lowercase, without any dashes or underscores as your extension
name. After running the command you will have a new folder with the name of the extension as
well as a few fi les. It also outputs some helpful instructions to the screen:

Creating directory helloworld
Creating basic files: config.m4 config.w32 .cvsignore helloworld.c
php_helloworld.h CREDITS EXPERIMENTAL tests/001.phpt helloworld.php [done].

To use your new extension, you will have to execute the following steps:
1. $ cd ..
2. $ vi ext/helloworld/config.m4
3. $./buildconf
4. $./configure --[with|enable]-helloworld
5. $ make
6. $./php -f ext/helloworld/helloworld.php

563120c08.indd 309563120c08.indd 309 2/18/10 9:10:11 AM2/18/10 9:10:11 AM

310 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

7. $ vi ext/helloworld/helloworld.c
8. $ make

Repeat steps 3-6 until you are satisfied with ext/util/config.m4 and
step 6 confirms that your module is compiled into PHP. Then, start
writing code and repeat the last two steps as often as necessary.

The preceding output highlights the module name to make it easier to read. Eight fi les are created.
They are the bare minimum that you need for an extension:

➤ config.m4: A macro fi le that builds confi guration fi les for UNIX/Linux. This fi le is not yet
ready. You have to edit it fi rst, but it’s a start.

➤ config.w32: A very short confi guration fi le for Windows.

➤ .cvsignore: Is for when you are using subversion as a version system (most PHP exten-
sions as well as PHP itself do). This particular fi le tells subversion to ignore any compiled
object fi les or intermediary fi les. After all, you won’t typically store a compiled binary in
revision control.

➤ One C fi le and one header fi le: They contain basic skeleton code, include the correct fi les, as
well as defi ne some example constants and functions.

➤ CREDITS: Where you should put the names of everyone who works on the extension.
Convention is to put the extension name on the fi rst line and the developers’ names on the
second line separated by commas.

➤ EXPERIMENTAL: Used to fl ag the extension as being a work in progress that may change. If
you plan on releasing your extension as experimental you should edit this fi le to include a
warning to the user. Otherwise, you should delete it before releasing your extension.

➤ One PHP fi le: The PHP fi le calls a basic function within your extension to verify that the exten-
sion is installed and working or can be loaded at run time. You can change this fi le all you want.

➤ tests directory: Created with a single test in it.

As mentioned earlier, the work isn’t done yet. The most complicated part is to edit config.m4. The
m4 fi le contains many macros that will be used later to build confi gurations. However, much of the
fi le is commented out. For the purposes of this book, you won’t worry about module dependencies
(when the extension needs to access the library functions of a different extension). At a bare mini-
mum it is necessary to add a confi guration line, set an enable fl ag, and add the module code.

The fi le contains instructions on how to use it and most of the lines are commented out. They
include methods for checking dependencies, among other things. The minimum working m4 fi le
looks like this (replace helloworld with your extension name):

PHP_ARG_ENABLE(helloworld, whether to enable helloworld support,
 [--enable-helloworld Enable helloworld support])

if test “$PHP_HELLOWORLD” != “no”; then
 AC_DEFINE(HAVE_HELLOWORLD,1,[Whether helloworld is present])
 PHP_NEW_EXTENSION(helloworld, helloworld.c, $ext_shared)
fi

563120c08.indd 310563120c08.indd 310 2/18/10 9:10:11 AM2/18/10 9:10:11 AM

Creating an Extension with ext_skel ❘ 311

Modules that have library dependencies should be compiled using with instead of enable. The
external library can then be specifi ed in the confi guration command line. The m4 fi le generates
confi gure fi les. Specifi cally, the steps printed out by ext_skel are to create an extension that can
then be compiled directly into PHP. The fi rst step after editing the m4 fi le is to build the PHP
confi gurations:

./buildconf --force

The command must be executed from within the root of the PHP source. The --force option is
only needed if the source distribution you chose was a release package. Unless you are hacking the
PHP source, it must be there. Supplying this option will regenerate the PHP confi gure fi le. Then run
the PHP confi guration fi le and recompile PHP. Remember to enable the new extension:

./configure --enable-helloworld
make
make install

The confi guration process takes some time. Once it is done you shouldn’t have any warnings or
errors. If you do it is necessary to go back and edit the extension again. If all went well you should
now have a completely working (although not very useful) extension. You can test it with the PHP
script generated by ext_skel:

php ./ext/helloworld/helloworld.php

If the extension was successfully compiled and enabled, you should see a message like this:

Functions available in the test extension:
confirm_helloworld_compiled

Congratulations! You have successfully modified ext/helloworld/config.m4.
Module helloworld is now compiled into PHP.

At this point you are done with the confi guration. But remember that this is your module and you
can confi gure it any way that you want. For example, if you want it to always compile into PHP and
have it explicitly disabled you can change the beginning part of your m4 fi le to look like this:

PHP_ARG_ENABLE(helloworld, whether to enable helloworld support,
 [--disable-helloworld Enable helloworld support], yes)

The highlighted code changed since the previous version. The fourth parameter tells the confi gura-
tion that the variable is “yes” by default and “no” is the confi guration parameter if found.

It is also possible to install an extension as shared. A shared extension creates a library fi le that can
then be enabled in the PHP confi guration rather than being built into PHP statically. This is the
method of extension writing that you will fi nd with many of the PECL extensions. It requires very few
additional steps. To compile the helloworld extension as shared, type this into the command line:

cd ext/helloworld
phpize
./configure
make
make install

563120c08.indd 311563120c08.indd 311 2/18/10 9:10:11 AM2/18/10 9:10:11 AM

312 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

The phpize program will take the m4 fi le and create a confi gure script for the shared version of the
extension. In general it is not a good idea to check the phpize output into subversion, so keep that in
mind. You may want to make a copy of the directory fi rst (when using phpize you no longer have to
compile from within the ext directory) or just make sure the generated fi les are in your svn-ignore list.

A quick note on testing: to avoid headaches, make sure to recompile PHP with-
out support for your extension before trying to use the shared version.

Once the extension is compiled it is necessary to edit php.ini to load the extension. If you are run-
ning a web server, now is the time to restart the server. However, extensions are often easier to test
on the Command Line Interface (CLI). Add this to your php.ini fi le:

extension=helloworld.so

If the extension did not install into the search path you may need to specify the full path to the
extension instead.

Sometimes you may not want the extension to be compiled as shared. In those cases you can include
a few lines of code in the m4 fi le to disable the build if the extension is compiled as shared:

if test “$ext_shared” = “yes”; then
 AC_MSG_ERROR(Cannot build helloworld as a shared module)
fi

Many options are available for confi guration. Often a safe approach is to fi nd another extension
that does what you need it to and to use it as an example.

Using a Function Defi nitions File

To simplify the process of creating a module you can specify a list of functions to auto-generate
inside of the module. The ext_skel script will not generate all the code for you but it can create all
the basic functionality such as proper formatting and parameter parsing.

The fi le can have any name and includes exactly one function defi nition per line. In its simplest
form, a line contains only one word (the function name). In the more complex form you can also
specify a parameter list after the function name.

The parameter list is enclosed in parentheses and includes a data type for each parameter. The avail-
able data types are:

➤ array

bool➤

double➤

float➤

int➤

563120c08.indd 312563120c08.indd 312 2/18/10 9:10:11 AM2/18/10 9:10:11 AM

Creating an Extension with ext_skel ❘ 313

resource➤

string➤

The document also has the ability for optional parameters. For example, say that you wanted to cre-
ate a function that prints “hello name” or returns the string instead of printing if the second param-
eter is true. The prototype may look like this:

mixed helloworld_say(string name [, bool return])

By convention all PHP function names start with the extension name followed by an underscore. In
the preceding example the return type is for documentation purposes. Its value doesn’t make any
difference when you generate the code. However, it is used when generating help fi les and comments.

The fi le can then be passed directly to ext_skel. In the next example the fi le is saved to protofi le
(no fi le extension):

./ext_skel --proto=protofile --stubs=output.c

The second parameter is optional; however, if it is not there an extension name must be specifi ed
like it was in previous examples. The --stubs option tells the script to create a new fi le that con-
tains only the defi nitions for the new function. It separates the header entry, the entries to appear
at the top of the fi le, and the function code, which you can then paste into an existing module. It is
very useful if you want to add new functions to an existing module. However, once you are comfort-
able with the extension API it may be just as easy to write the function from scratch.

Generating Help Files

Another ability of ext_skel is to generate help XML. The PHP documentation uses an XML for-
mat for all of its documentation. The document can then be easily merged into PHP.net should the
extension ever become offi cial or on any site using phpdoc.

The documentation is only relevant if there is a function prototype fi le, so if you are not using the
prototype you need to create the documentation from scratch. To create documentation it is only
necessary to specify an --xml option:

./ext_skel --xml --proto=protofile

This example lets ext_skel determine the location (always an XML fi le named after the extension).
However, it is possible to specify a location manually in the same manner as with stubs. Doing so
can be particularly useful, like with stubs, when the module already exists. Keep in mind that when
generating documentation either the stub fi le must be present or an extension name must be given.

After the code is generated, you are left with a partial documentation fi le. To complete it, you must
remove all the warnings and fi ll in every description and paragraph area. However, some of the
warnings should actually stay until your extension is no longer experimental.

It is perfectly all right to have some functions marked as experimental but not others. As a gen-
eral rule, it is experimental if the function signature or the structure of the returned data is likely
to change.

563120c08.indd 313563120c08.indd 313 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

314 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

CREATING AN EXTENSION WITH CODEGEN_PECL

As mentioned earlier, there is more than one way to create a PECL extension skeleton automatically.
The second one is CodeGen_PECL, which is actually a PEAR package. You can install it quite simply
by typing:

pear install codegen_pecl

The package is a native PHP script that creates a skeleton for the application much like ext_skel
does. The largest difference is that in addition to the ext_skel prototype format, CodeGen_PECL
lets you specify the extension as an XML document. The XML format also allows for a more
complete extension description than ext_skel’s fl at function defi nition fi le, which means that
CodeGen_PECL can generate more of the code for you.

Both systems have their pros and cons and it is up to the developer to decide which one to use. Here
are a few of the features of CodeGen_PECL that are not provided by ext_skel:

➤ Defi ning constants

➤ Defi ning php.ini directives

Defi ning per-thread global variables➤

Defi ning resources➤

Defi ning classes and methods➤

Creating test cases➤

Specifying dependencies➤

Specifying a logo➤

Creating a PECL/PEAR package XML fi le➤

Creating more complete m4 and w32 confi guration fi les➤

Supporting multiple licenses➤

Generating a Microsoft Visual Studio project fi le for Windows➤

In additional to all this, CodeGen_PECL typically produces code that is immediately ready to com-
pile without any edits. However, it does take more work to create the XML document initially and
ext_skel is still useful if you want to get up and running quickly and you don’t have a good plan
for exactly how your extension is going to work.

Creating the Basic XML File

You can name the XML fi le whatever you want; however, the name of your extension is a safe bet
to keep things organized. The fi rst step is to create the basic format and specify attribution and
“about” information for the extension. This is actually backwards from the way many developers
would normally do it. This chapter covers manually specifying the information last, because it is
typically more important that the code works than that the license is decided, logo created, and so

563120c08.indd 314563120c08.indd 314 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

Creating an Extension with CodeGen_PECL ❘ 315

on. However, when using CodeGen_PECL it is easy to specify these things at this stage and once
your extension is created changes must be done manually.

The minimal XML for the extension looks like this:

<?xml version=”1.0” ?>
<!DOCTYPE extension SYSTEM “../extension.dtd”>
<extension name=”helloworld” version=”0.1.0”>
 <summary>A Hello World extension</summary>
 <description>
 This is a sample “Hello World” extension using
 PeclCode_Gen for the book Expert PHP and MySQL.
 </description>
</extension>

The XML header is fairly standard. The highlighted parts are the ones that you want to change to
match your own extension. At this point it is possible to generate your extension:

pecl-gen helloworld.xml

If you’ve already created a helloworld extension via ext_skel you need to
either delete it, overwrite it, or change the name of this extension.

The XML fi le is optional. If you don’t use the XML specifi cation you need to specify the --ext-
name and you’ll end up with an extension that doesn’t do anything useful, but it is still good
starting point.

CodeGen_PECL also supports much of the functionality supported by ext_skel. For example, you
can use the --proto option to specify an ext_skel style function prototype fi le. Also, --xml will
create XML documentation in much the same way.

There are some additional tags that most extensions need. Include ones specifying information about
the version and the team members. You can specify the maintainers of the extension with this code:

...
 <maintainers>
 <maintainer>
 <user>pecl_user_name</user>
 <name>Andrew Curioso</name>
 <email>andrew@andrewcurioso.com</email>
 <role>lead</role>
 </maintainer>
 </maintainers>
...

You can have any number of maintainers. The information is used to create the CREDITS fi le as well
as the package fi les. An alternative role for additional maintainers is developer. Another important
tag is the license:

<license>PHP</license>

563120c08.indd 315563120c08.indd 315 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

316 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

The license is used to generate a LICENSE fi le as well as put the license at the top of each source fi le.
Because the generator needs to know the details of the license it is limited in the types of licenses it
supports. The basic types are:

➤ PHP

BSD➤

LGPL➤

If you specify any other type it is treated as an unknown license. All PHP extensions should have a
predetermined license, and in order for the extension to be listed in the PECL directory it must have
a license that is compatible with the PHP license. The common choice is to use the PHP license itself.
Using GPL is not allowed (although LGPL is) because GPL is not compatible. Be sure to read the
license well before adopting it and ask for help if you are not sure. Licenses are very diffi cult to change
after you release your extension in any form and old released code is often subject to the old license.

The fi nal thing that you probably want to include in your XML fi le is the current version
information:

...
 <release>
 <version>0.1</version>
 <date>2009-12-12</date>
 <state>alpha</state>
 <notes>
 Taking a run at extension writing.
 </notes>
 </release>
...

Valid states for the release are stable, beta, alpha, devel, and snapshot. Once the extension
is past the fi rst version and onto version two you have a couple options. There can only be one
<release> tag in the main extension; however, you can use a <changelog> tag to include multiple
releases. The two approaches are to regenerate the extension when a new release comes out and
merge the code, or just edit the package.xml and package2.xml fi les directly.

Defi ning Functions

CodeGen_PECL has two different types of functions that can be defi ned. One is a public function
(the same as in ext_skel) and the other is an internal function, which you can use in the extension
and Zend engine which isn’t visible in PHP.

Defi ning a Public Function

Public functions are usable from within PHP. You can defi ne them in ext_skel and CodeGen_
PECL using the prototype fi le format (see the section “Using a Function Defi nitions File”) or in the
XML. You use the XML tag <function> for all function defi nitions. If you can’t think of all the
functions that you want to add to your extension, don’t worry, you can always add more functions
directly to the C code later.

563120c08.indd 316563120c08.indd 316 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

Creating an Extension with CodeGen_PECL ❘ 317

The function tag must have, at a minimum, a name and role. The role is always public for func-
tions that can be called from PHP. The function must also contain a prototype and optionally it can
include code directly in the XML fi le. For example:

<function name=”helloworld_say” role=”public”>
 <proto>void helloworld_say(string name [, bool return])</proto>
 <summary>Say hello to someone</summary>
 <description>Prints a hello message or returns a string.</description>
 <code>
 <[CDATA[
 /* C code goes here */
]]>
 </code>
</function>

The two attributes as well as the <proto> tag are required. Prototypes follow the same format as the
function prototype fi le in the ext_skel format. All the possible data types are the same and it fol-
lows the same format for optional parameters.

The code is completely optional. One thing to remember is that if you specify any code at all you
will lose the warning message output that says, “This function is not yet implemented.” Also,
because it is an XML document, standard XML practices should be applied, including enclosing the
code in a CDATA block to avoid having to escape special characters.

The description and summary document the function. Both are optional. The summary is a short
description and it appears in the actual code fi les. The description, on the other hand, can be longer
and appears in the generated documentation.

The documentation that CodeGen_PECL generated is different than the docu-
mentation generated by ext_skel. CodeGen_PECL uses DocBook XML for-
mat, which can easily be integrated into PHP documentation. ext_skel, on the
other, hand uses phpdoc format.

Defi ning Internal Functions

There are few differences between generating an internal function and a public one. The main dif-
ferences are that an internal function has the internal role and internal functions do not use proto-
types. The reason is that internal functions are predefi ned. They are called at various points during
the extension life cycle and have set function signatures.

The basic internal functions are MINIT, MSHUTDOWN, RINIT, and RSHUTDOWN. There is a fi fth function
but it is generated almost entirely automatically when using CodeGen_PECL. All fi ve are discussed
in more detail later in this chapter. To specify one of the internal functions just create a <function>
tag with the name attribute set to one of those functions.

563120c08.indd 317563120c08.indd 317 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

318 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

Defi ning Constants, INI Directives, and Globals

You have three basic ways to create values that are accessible by both PHP and your C extension.
They are constant, INI directives, and globals. They are all defi ned in the XML using similar pat-
terns, but each serves its own unique purpose.

Defi ning Constants

Constants are unchangeable values that can be referenced in PHP. By convention they are always
capitalized and they are often passed to functions that expect a fi nite set of values. You have probably
set a constant at one point or another using:

<?php
define(‘CONSTANT_NAME’, “value”);
?>

You can defi ne them in PHP extensions as well. In CodeGen_PECL it is just one XML tag per con-
stant. Constants can be strings, fl oating-point numbers, and integers. They must all be enclosed in a
<constants> tag:

<constants>
 <constant name=”MAX_BYTE” type=”int” value=”255”>
 The maximum value of a byte.
 </constant>
 <constant name=”GRAVITY_MPS2” type=”float” define=”yes” value=”9.81”>
 The value of gravity in m/s^2
 </constant>
 <constant name=”BOOK_NAME” type=”string” value=”Expert PHP and MySQL”>
 The name of this book.
 </constant>
 </constants>

The text inside the tags is used only for documentation. The second constant also has a #define
directive placed into the header fi le to make the constant available within the C code.

Defi ning INI Directives and Globals

Sometimes a constant is not enough. It is often necessary to have a confi guration value that has a
reasonable default but can be overridden on individual servers. For that, there are INI directives.

The INI directives fall under one of three types:

➤ system directives may be set in the php.ini fi le and cannot be changed once the server is
started.

➤ perdir or per-directory directives can be set on a directory basis via an .htaccess fi le pro-
vided that they are allowed by the Apache confi guration.

➤ user directives can be changed by the PHP code.

563120c08.indd 318563120c08.indd 318 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

Creating an Extension with CodeGen_PECL ❘ 319

If no type is specifi ed it is assumed that the value can be changed from anywhere. In most cases, the
default is acceptable. The format for the parameters is almost identical as with constant:

<globals>
 <phpini name=”greeting” type=”string” access=”perdir” value=”hello”>
 The way to greet someone.
 </phpini>
</globals>

The define attribute wouldn’t make any sense in the context of INI directives and the access attri-
bute is optional. The value of access can be any of the three values discussed earlier.

The full directive name in confi guration fi les is the name of the extension and the directive name
separated by a dot, so the previous example would be helloworld.greeting.

Globals and INI directives are similar and defi ned in much the same way. One difference is that
globals can be complex C types. So, for example, to specify a string you should use char * and not
string as you would with constants or INI directives.

The reason is that globals are actual PHP variables that can be accessed and changed at run time.
As such it is more important to worry about things like thread safety and other lower-level concepts.
Globals are covered in more detail later in the chapter. For now it is only important to know that
they are defi ned in the XML like this:

<globals>
 <global name=”foo” type=”char *” />
 <phpini name=”greeting” type=”string” access=”perdir” value=”hello”>
 The way to greet someone.
 </phpini>
</globals>

It is possible to specify text inside the global defi nition; however, it doesn’t affect documentation
in some versions of CodeGen_PECL. The previous example leaves in the INI directive from earlier
to show that they can be defi ned together. It also uses a data-type of char * for the global. Even
though the global tag can have a value attribute it does not have one here. The reason is that it
is recommended to do the initiation for the complex types manually. Later sections go into more
detail.

Defi ning Objects, Methods, and Properties

One of the largest benefi ts of the CodeGen_PECL package is that it supports PHP5-style object
defi nitions. If you have a choice, all new extensions should be object-oriented. Later sections in
the chapter do go into detail on how to defi ne objects from scratch; however, you can save a lot
of time by having the package do all the tedious heavy lifting so that you can concentrate on
implementation.

The only thing that a class requires is a name; however, that makes for a very boring class. Classes
in PHP extensions have most of the same abilities as classes in PHP itself.

563120c08.indd 319563120c08.indd 319 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

320 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

Defi ning Methods

The method defi nition format is much the same as the function defi nitions in earlier sections. Even
the tag name stays the same. The big difference is that they can now have three new attributes.

The access attribute defi nes the function as either public, private, or protected, and you can
set procedural to yes to indicate that the method can also be called in the procedural format.
For example, say a class called foo has a method bar. It can then be called using both of these
two formats:

$fooInstance->bar();
foo_bar($fooInstance);

See the class MySQLi for an example of a class that has both procedural and object-oriented
implementations.

The attributes abstract and final defi ne a method that doesn’t have a defi nition and a method
that cannot be overridden in descendant classes. Just like in PHP it doesn’t make any sense to have
both of those attributes on the same method.

Defi ning Properties

Properties are defi ned using the aptly named <property> tag. Property tags have type and value
attributes similar to INI directives and constants. However, properties have the additional type of
NULL. If you don’t specify a value it will default to NULL.

Variables types in PHP can change at any time and cannot be relied on to stay at the default type.
The exception is if the property is private and thus cannot be edited from other scopes or by descen-
dant classes.

Properties, just like methods, have an access type of public, private, or protected. They also
have an additional static attribute. If the property is marked as static it is shared among all
instances of the class.

An Example Class

All the properties and methods must be written inside of a <class> tag. The tag itself has a few
familiar attributes. The fi rst is that if you defi ne any abstract methods you will also want to defi ne
the entire class as abstract by using abstract=”yes”.

In addition, classes in extensions can inherit from other classes using the extends attribute. If you
choose to inherit the class from a class defi ned in another extension it is important that you include
that extension as a dependency. Dependencies are not covered in detail here. What is more common
is to inherit a class from within your own extension. PHP handles all the issues of polymorphism
and type hinting.

So if an abstract class called first has an abstract protected method bar, a concrete method foo,
and the property count, it would look something like this:

<class name=”first” abstract=”yes”>
 <function name=”foo” abstract=”yes” access=”protected”>
 <proto>int foo()</proto>
 </function>

563120c08.indd 320563120c08.indd 320 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

Variables in PHP Extensions ❘ 321

 <function name=”bar”>
 <proto>void bar()</proto>
 </function>

 <property name=”count” type=”int” visibility=”protected” value=”0” />
</class>

Now if you wanted to create a class that extends first and implements the function foo:

<class name=”second” extends=”first”>
 <function name=”foo” abstract=”yes” access=”protected”>
 <proto>int foo()</proto>
 </function>
</class>

Interfaces

Classes can also inherit interfaces. Interfaces, as you probably recall, are defi nitions that describe
the functions that a class needs to implement but does not implement any of the functionality itself.
Because they do not provide functionality, a class can implement any number of interfaces, pro-
vided, of course, that the class also implements all the functionality of each.

As you may have guessed, interfaces can be both defi ned and used inside of a PHP extension.
Interfaces are essentially stripped down versions of classes. An interface can extend another inter-
face and has a name, but that is about it. Also, method defi nitions are less detailed: prototype and
name only. Remember that methods inside interfaces are always static and public:

<interface name=”interface2” extends=”interface1”>
 <function name=”foo”>
 <proto>int foo()</proto>
 </function>
</class>

To implement an interface in a class you just need to add a new tag to your class defi nition:

<class name=”interfacetest”>
 <implements interface=”interface1” />
 <implements interface=”interface2” />
</class>

The rest of the chapter focuses on implementing the actual module, but it also goes over all the top-
ics covered earlier in more detail. From this point forward it is assumes that you are starting from a
bare-minimum module. However, in practical cases you will probably want to use one of the tools
already covered in this chapter.

VARIABLES IN PHP EXTENSIONS

Variables in PHP are loosely typed. They can change type at any time and can be evaluated in multiple
contexts. For that reason, they need a special variable type. That is where the zval comes into play.

563120c08.indd 321563120c08.indd 321 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

322 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

You need to be aware of a few structures, although you will rarely interact directly with them. Most
of the actual interaction is done through macros. The zval structure contains all the information
that the application needs (see Listing 8-1):

LISTING 8-1: /Zend/zend.h in the PHP source

struct _zval_struct {
 zvalue_value value;
 zend_uint refcount__gc;
 zend_uchar type;
 zend_uchar is_ref__gc;
};

The __gc values are for the garbage collector. The fi rst (refcount__gc) stores the number of refer-
ences to a variable. When the reference count hits zero the garbage collector frees up the memory.
The second (is_ref__gc) is either a 1 or a 0. The type can be one of these values:

➤ IS_NULL (0)

➤ IS_LONG (1)

➤ IS_DOUBLE (2)

➤ IS_BOOL (3)

➤ IS_ARRAY (4)

➤ IS_OBJECT (5)

➤ IS_STRING (6)

➤ IS_RESOURCE (7)

➤ IS_CONSTANT (8)

➤ IS_CONSTANT_ARRAY (9)

The data types are defi ned in the same header as the structures. The value of the type has an impact
on the values inside of the struct. The actual values are stored in a different struct:

typedef union _zvalue_value{
 long lval;
 double dval;
 struct{
 char *val;
 int len;
 } str;
 HashTable*ht;
 zend_object_value obj;
} zvalue_value

Managing these values can be extremely complicated. The two main complicating factors are that
variables can change type at any time and that the garbage collector needs to keep track of each of
them. For that reason the Zend engine defi nes many macros for setting the values, returning the val-
ues, and retrieving them.

563120c08.indd 322563120c08.indd 322 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

Variables in PHP Extensions ❘ 323

Setting and Testing zvals

Zend also includes macros for referencing, dereferencing, and getting the reference counts for vari-
ables. However, you will not use those very often in basic extensions.

Most of the more common macros are in zend_API.h. For example, to assign a value to a zval you
can use one of these macros:

➤ ZVAL_RESOURCE(z, l) will set the zval to a resource defi ned by the value of l.

➤ ZVAL_BOOL(z, b) expects a 1 or 0 as a Boolean value.

ZVAL_NULL(z)➤

➤ ZVAL_LONG(z, l) expects a long (integer).

➤ ZVAL_DOUBLE(z, d) expects a double (decimal value).

➤ ZVAL_STRING(z, s, dup) expects a character pointer (char *) as well as a 0 or 1 to indi-
cate whether to duplicate the string or reference the original string. Usually you will want to
duplicate.

➤ ZVAL_STRINGL(z, s, l, dup) is the same as the previous macro only you can specify the
length of the string. The result is that it is binary safe (can include null characters).

➤ ZVAL_ZVAL(z, zv, dup, dtor) expects a zval, a 1 or 0 indicating whether to duplicate the
zval or reference it, and a destructor for the zval.

Each macro accepts the zval to set as the fi rst parameter. If you studied the data structures from ear-
lier it may not surprise you that the ZVAL_BOOL macro expands to be this:

Z_TYPE_P(z) = IS_BOOL;
Z_LVAL_P(z) = ((b) != 0);

LVAL might be a strange term depending on your background. In this case it references the storage
space for long values (Booleans are stored internally as integers). The _P indicates that the value
being acted on is a pointer. It is very common in Zend to see double pointers. In those cases you will
see _PP at the end. Many macros that have one will also have the other, so you can see that the mac-
ros listed earlier for setting values expect to be passed a pointer to a zval (zval *).

Some useful shorthand macros include ZVAL_FALSE, ZVAL_TRUE, and ZVAL_EMPTY_STRING. Each
does what you would expect them to.

Because it is so easy for a variable to change type in PHP it is necessary to have a way to test the
type stored in a value. The Z_TYPE_P that was seen earlier in the expanded ZVAL_BOOL macro can
also be used to read the type. To test to see if a value is a double, you can do:

 if (Z_LVAL_P(z) == IS_DOUBLE) ...

Because the garbage collector in PHP/Zend is so important, it is necessary to pay special attention
to variable allocation. It can get particularly messy when you deal with strings and values passed to
functions. You have a few ways to allocate a new zval. The most direct is with the ALLOC_ZVAL macro.

563120c08.indd 323563120c08.indd 323 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

324 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

However, in practice it is best to use a higher-level macro instead. To allocate a new integer you can
do this:

zval *my_int;
MAKE_STD_ZVAL(my_int);
ZVAL_LONG(my_int, 3.14);

You may want to allocate a new zval for a few reasons. One of the more common reasons is to pass
it to another function. Incidentally, it is not very common to allocate zvals to return directly from a
function. For that, there are other macros, which are covered in the next sections.

Reading and Comparing zvals

Once you have a zval it is likely that you want to retrieve the value back out of it. For that there are
yet more macros:

Now is a good time to reiterate that you can do everything the macros are doing
by writing out the code the long way, but it is always better to use the mac-
ros. They optimize to the same thing during compilation and using the macros
ensures that if Zend or PHP change in the future your code will still work.

➤ Z_LVAL returns the integer part of zval.

➤ Z_BVAL returns a zend_bool.

➤ Z_DVAL returns the double value.

➤ Z_STRVAL and Z_STRLEN return a char pointer and the length of the string stored at the
pointer, respectively.

➤ Z_RESVAL returns a resource id.

Several other macros exist as well and these are covered in the sections on objects, hash tables, and
arrays. For now, the basic ones are listed here. In most cases you’ll work with a pointer to a zval so
you want to use the _P version of each.

In PHP it is easy to get accustomed to the automatic conversions of different values between strings
and numbers. It is important to note that the preceding macros do not change the content at all. For
example, if the zval is not already a string, the Z_STRVAL macro won’t have the desired result. For
that you use conversion functions. They are:

➤ convert_to_string

convert_to_long➤

convert_to_double➤

➤ convert_to_long_base (same as convert_to_long only it takes the base as a second
parameter. For example, 16 for hexadecimal.)

convert_to_null➤

563120c08.indd 324563120c08.indd 324 2/18/10 9:10:12 AM2/18/10 9:10:12 AM

Variables in PHP Extensions ❘ 325

convert_to_boolean➤

convert_to_array➤

convert_to_object➤

None of the functions return a value; instead they change the original zval. Also, some of the values
are not compatible with each other but in general it is safe to convert between strings and numbers
and back again. If you are not sure if a string is numeric it is easy to test. Given a value z that you
already know is a string:

if (is_numeric_string(Z_STRVAL_P(z), Z_STRLEN_P(z), NULL, NULL, 1) == 0)
 ...

The preceding code behaves exactly like the PHP is_numeric() function. In fact the actual PHP
function uses that same function. The third and fourth parameters can pass in zvals that store the
already converted string. The fi rst is for integers and the second is for doubles. You can tell which
one by checking the return value of the function. It is either 0 for “not numeric” or IS_LONG or
IS_DOUBLE. The last parameter is set to 1 to mimic PHP’s behavior of evaluating to true if the prefi x
is numeric even if the entire string is not. If the last parameter is 0, it is less forgiving and the whole
string must be numeric.

You can also convert directly to long or double using the function string_to_long or string_to_
double. Both take the string as the fi rst parameter and the length as the second, so if you want to
work directly with a zval, it is better to use the macros mentioned earlier.

One useful test is to see if a zval evaluates to true by using zval_is_true. Additional testing func-
tions compare the zval regardless of type. Here are some Zend functions with their PHP equivalent
above them in the comments:

// if ($op1 === $op2) ...
if (is_identical_function(result, op1, op2) == SUCCESS &&
 Z_LVAL_P(result) == 1) ...

// if ($op1 == $op2) ...
if (is_equal_function(result, op1, op2) == SUCCESS &&
 Z_LVAL_P(result) == 1) ...

// if ($op1 < $op2) ...
if (is_smaller_function(result, op1, op2) == SUCCESS &&
 Z_LVAL_P(result) == 1) ...

// if ($op1 <= $op2) ...
if (is_smaller_or_equal_function(result, op1, op2) == SUCCESS &&
 Z_LVAL_P(result) == 1) ...

// if ($op1 > $op2) ...
if (is_larger_function(result, op1, op2) == SUCCESS &&
 Z_LVAL_P(result) == 1) ...

// if ($op1 >= $op2) ...
if (is_larger_or_equal_function(result, op1, op2) == SUCCESS &&
 Z_LVAL_P(result) == 1) ...

563120c08.indd 325563120c08.indd 325 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

326 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

The functions is_not_equal_function and is_not_identical_function are also valid and may be
useful to create cleaner code. However, they are not strictly necessary. In fact, almost all the functions
in the list are just wrappers around the function compare_function, which return 0 if the values are
equal, -1 if the fi rst operator is smaller than the second, and 1 if the second is smaller. The two excep-
tions are the checks for identical values because the comparison function doesn’t check for type.

All the comparison functions expect zval pointers for each parameter.

Two other useful comparison functions are string_compare_function and numeric_compare_
function. Both convert the value to either a string or number before making the comparison.

Dealing with Strings as zvals

The Zend engine also provides numerous operations for dealing with strings. First, one of the most
common comments about getting started with PHP extension writing is to not use sprintf. You
should use spprintf or vsprintf instead, which is correct because both functions have better ways
of managing memory and preventing buffer overfl ow than the standard sprintf does. The second
function even accepts an array for the replacement list.

However, numerous other functions also exist for modifying strings from within an extension,
many of which provide the underlying implementation for standard PHP functions.

Manipulating and Comparing Strings

Anything you can do in PHP with a string you can also do in a PHP extension. The most common
actions are concatenating strings and converting to upper- and lowercase.

You have two ways to do a string concatenation on zvals in PHP extensions. The fi rst is useful if you
already know that both values are strings. The second is useful if you don’t know the type of either
of the values. They are:

zval result;
add_string_to_string(&result, str1, str2);
concat_function(&result, str1, str2);

Both str1 and str2 must be zval pointers. The result can also be a pointer to a zval that is being
passed as one of the other parameters. For example, if in either of these functions you were to change
&result to str1 you would end up with str1 changed to have the second string appended to it.

You may also fi nd yourself needing to convert strings to lowercase. For that, you can use three func-
tions which all perform different tasks. All three act on strings and not zvals. However, because a
zval string is stored in memory as a char * it is also possible to modify it directly. So if you want to
convert the contents of the string portion of a zval to lowercase you can use:

zend_str_tolower(Z_STRVAL_P(z), Z_STRLEN_P(z));

563120c08.indd 326563120c08.indd 326 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Variables in PHP Extensions ❘ 327

On the other hand, if you have an existing buffer already allocated or you want to create a duplicate
string you can use one of these:

zend_str_tolower_copy(dest, Z_STRVAL_P(z), Z_STRLEN_P(z));
dest = zend_str_tolower_copy(Z_STRVAL_P(z), Z_STRLEN_P(z));

The main difference between the two is that the fi rst expects the buffer (destination) to already be
created and returns a pointer back to the destination. The second creates a new buffer for you and
returns a pointer to that. In the latter case the buffer is created using emalloc (which is covered in
more detail a little later).

For any of the previous three functions you can, of course, pass an actual char * value rather than
reference a zval.

The functions to convert to lowercase are mainly used for case-sensitive comparisons. There aren’t any
functions in the Zend engine to convert to uppercase. This is mainly because the transformation to a
consistent case is usually used for case-insensitive comparison. In that case it doesn’t matter whether
you do upper- or lowercase, you only need one. However, looking at the code for the previous func-
tions you may fi nd that creating such a function would not be diffi cult. In addition, the standard PHP
extension — which has an exposed API — does have a function to convert to uppercase.

If you are converting to lowercase for the sole purpose of comparing a string it may be easier to just
use the string comparison function directly. The next two function calls are functionally identical:

result = zend_binary_zval_strcasecmp(str1, str2);
result = zend_binary_strcasecmp(Z_STRVAL_P(str1), Z_STRLEN_P(str1),
 Z_STRVAL_P(str2), Z_STRLEN_P(str2));

The word binary indicates that the function uses the given length to determine the end of the string
as opposed to using a null byte to terminate. Removing the word case from the preceding func-
tions results in a case-sensitive comparison. Also, adding the literal n after the literal str in any
of the functions (with or without case sensitivity) adds a fi nal parameter that takes the maximum
length to check for comparison. These are both valid:

// Case sensitive comparison
zend_binary_zval_strncmp(str1, str2);
// Check only the first n characters where n is a zval
zend_binary_zval_strncasecmp(str1, str2, n);

String management is one of the more common tasks in a PHP extension. However, sometimes val-
ues are not in a string format to begin with. In those cases it is necessary to do a conversion.

Converting to Strings

When converting a zval to a string you have two basic choices. The fi rst is to use the convert_to_
string method from before. The other is to use zend_make_printable_zval. Both produce very
similar results. This is what the two functions look like:

zval copy;
int use_copy;
zend_make_printable_zval(z, ©, &use_copy);

convert_to_string(z);

563120c08.indd 327563120c08.indd 327 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

328 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

The fi rst difference is that one makes a copy of the zval and the other — convert_to_string —
requires that you make a copy manually or risk destroying the original zval. The second difference is
how they handle objects. The Zend function attempts to do a conversion whereas the basic conver-
sion function just returns the literal string “Object” instead. The latter also throws warnings if you
try to convert an array, resource, or object because it can, after all, destroy data.

Advanced Memory Management

Another thing to worry about is allocating and freeing additional memory. If each function was guar-
anteed to execute undisrupted, it would not be much of a problem. Just make sure to free all the mem-
ory that you allocate by the time the function exits. The problem is that PHP has a concept of fatal
errors and also contains two very interesting functions: die() and exit(). All three things can imme-
diately terminate (bail out) a script causing your function to exit without freeing any of the memory.

To solve this problem and others, Zend has its own memory manager. The memory manager
(ZendMM) keeps track of all the allocated memory and makes sure to free it when bailing or when
the script fi nishes executing, but in order for it to work you’ll need to use the ZendMM allocation
functions. The ZendMM functions have the same name as their C counterparts only with a letter
“e” prepended to them, so malloc() becomes emalloc().

The result is that not only can Zend keep track of the memory but it can also enforce the memory
allocation limits imposed by the PHP confi guration. Be aware of double freeing of memory, though.
That is the main cause of the dreaded “segmentation fault” error.

Zend also provides a series of macros for persistent allocation. The persistent allocation basi-
cally calls the standard memory allocation functions if the value should be persistent or calls the
ZendMM functions if it shouldn’t. Just don’t forget to free the persistent variables before the exten-
sion exits or you will end up with memory leaks. Table 8-1 shows a full list of the memory alloca-
tion functions:

TABLE 8-1: Memory Allocation Functions

STANDARD C ZEND STANDARD ZEND PERSISTENT

malloc emalloc pemalloc

calloc ecalloc pecalloc

realloc erealloc perealloc

strdup estrdup pestrdup

free efree pefree

In each case the persistent version takes one extra parameter: a 1 or 0 indicating if the value is per-
sistent. The persistent macros are particularly useful if you are not sure at design time whether the
value should be persistent.

There isn’t any guarantee that the next execution of the script will happen on the same thread as the
fi rst, so it is not a good idea to rely on persistent values to always be there.

563120c08.indd 328563120c08.indd 328 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Using Functions in Extensions ❘ 329

It is important to free all the memory that you use once you are done with it. The exception is if it is
registered with the Zend engine or returned from a function. The two main functions that you need
to know about are zval_dtor and FREE_ZVAL. They should always be called in that order.

The FREE_ZVAL macro frees the memory used by the zval itself, but it won’t free the actual data in
memory used for complex variables. That includes objects, arrays, string, and resources. For that
you need to use zval_dtor (destructor). Both take a pointer to a zval as a sole parameter.

It is also good practice to call zval_dtor prior to setting a zval to something completely different.
That way the existing data is freed before the new data is put in. The function completely ignores
Booleans, longs, doubles, and of course nulls because none explicitly allocate blocks of memory.

You could guess that if there is a destructor there is a constructor; and you would be half right.
Previous sections showed how to allocate and assign to a zval, which will take care of all the hard
work for you. However, there is something called a copy constructor that creates a new zval that is
a copy of the original. For example, a developer could do this:

zval *foo;
MAKE_STD_ZVAL(foo);
*foo = *bar;

He could, but it would be incorrect to make a reference to another zval, and doing so has the poten-
tial to create havoc with the garbage collector. This is especially true if the zval bar contains an
object, array, resource, or strings. The copy constructor rectifi es the situation:

zval_copy_ctor(foo);

Note that the new value of foo is not a reference to bar but rather an exact copy of all the data.
Changes to a string (or any other data type) in one do not change the string in the other.

At this point, you know much of what there is to know about memory management and variables
within the Zend engine and PHP. The two largest things that haven’t come up yet are arrays and
objects. Those were intentionally left out but they are covered very soon.

USING FUNCTIONS IN EXTENSIONS

The fi rst part of this chapter explained how to add functions to an extension the easy way, through
ext_skel and CodeGen_PECL. Now that you have an understanding of variables in Zend, this sec-
tion covers defi ning functions manually.

Basic Defi nitions

Defi ning a function is actually quite easy. This is thanks to a number of Zend and PHP macros that
make it so that you don’t have to worry about naming conventions, data types, or thread safety
parameters. The engine takes care of all that for you.

There are three steps to defi ning a function. They can be done in any order so the starting place
might as well be the function body itself. Once you open up the extension’s main C fi le (the name
of your extension “.c”) you’ll see all the generated code from whichever script you chose to generate
your extension. Function implementations usually go at the end but before the editor defi nitions (the
part that tells text editors like Vim how to behave).

563120c08.indd 329563120c08.indd 329 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

330 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

The function always starts with a comment. The comment should always be two lines or more. The
fi rst line is function prototype and the rest consist of a brief description of what the function does. The
prototype should look familiar because it is the same one used by both CodeGen_PECL and ext_skel:

/* {{{ proto string helloworld_say(string name [, bool return])
 Say hello to a person */

Ignore the three opening brackets for now. The next step is to defi ne the function signature. This is
one of the parts that can be uncomfortable for people who have to know everything that is going on
because it is done via a macro instead of traditional function defi nitions. A PHP function defi nition
looks like this:

PHP_FUNCTION(helloworld_say)
{
...
}

Note that this style of defi nition is only for functions that should be available to PHP scripts. Other
functions are used differently and are covered soon. The defi nition ultimately expands to:

void zif_helloworld_say(int ht, zval *return_value, zval **return_value_ptr,
 zval *this_ptr, int return_value_used TSRMLS_DC)

A prefi x is added to the function to avoid name confl icts. Fortunately for everyone, Zend and PHP
abstract such defi nitions to avoid human error and increase productivity. However, it won’t hurt to
go over some of the parameters and what they do:

➤ The fi rst parameter stores the number of parameters passed to the function from the user (via
PHP). It can be retrieved by using ZEND_NUM_ARGS().

➤ The second and third are the return value and a pointer to the return value for returning ref-
erences (not recommended). At this point the return value is already initialized to IS_NULL.
There is more on return values in the coming sections.

➤ The this_ptr parameter is, as the name implies, the PHP variable that holds the value of the
current object. It is exactly the same as if you were to use $this inside of a PHP script. The
macro getThis() takes care of retrieving it for you.

➤ The fi nal integer is a fl ag indicating whether or not the return value is being used by the call-
ing function. If the return value isn’t being assigned to anything in PHP, this will be 0, which
could save some processing time.

➤ The fi nal macro at the end is used for thread safety. It will be touched on again when defi ning
internal functions and yet again later in the chapter.

For now, there is only one step left and the function body is defi ned. Close it with this after the fi nal
bracket: /* }}} */.

The brackets at the beginning and end help to do code folding and unfolding in editors like vim
and emacs. Even if you don’t use code folding yourself it is still a good idea to include them for the
benefi t of other people who might be editing your code. Even if you will be the only one using your
extension, you might be using code folding in the future.

563120c08.indd 330563120c08.indd 330 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Using Functions in Extensions ❘ 331

The fi nal two pieces are to add an entry to the functions table and add a prototype to the headers.
Adding the prototype to the header is easy. There is already a macro to expand function defi nitions
so there is just one simple line to add to the header:

PHP_FUNCTION(function_name);

The semicolon at the end is important because the macro is used both for prototypes in the header
and complete function defi nitions in the extension’s C code.

Assuming that you used one of the generator scripts, you already have a function table. For the
helloworld module it would be called helloworld_functions. If helloworld_say is the only
function in the extension, the table entry will look like this:

const zend_function_entry andrew_functions[] = {
 PHP_FE(helloworld_say, NULL)
 {NULL, NULL, NULL} /* Must be the last line in helloworld_functions[] */
};

The macro PHP_FE is for a function entry. The preceding one expands to this:

{ “helloworld_say”, “zif_helloworld_say”, NULL,
 (zend_uint) (sizeof(NULL)/sizeof(struct _zend_arg_info)-1), 0 },

You may recall the “zif_” value as a prefi x added by the PHP_FUNCTION macro. That is because the
PHP_FE macro actually uses other macros internally to do its job. One such macro is ZEND_FN, which
adds the prefi x.

The second parameter to the PHP_FE macro is the arg_info structure. This is covered in the section
“Defi ning Argument Information.”

Using Arguments

The previous section went over all the parameters to PHP function calls. However, they can all be
safely forgotten for most extensions. The fi rst step with any function is to parse the parameters into
usable values. For that there is a helper function.

The function zend_parase_parameters takes arguments specifying the number of parameters
to expect, the signature of the parameters, and pointers, and in turn stores all of them for easy
retrieval. Additionally, it has the ability to validate the parameters against data types. If the user
calls it with an invalid number of arguments or an argument of an incompatible type it will issue a
warning and return FAILURE.

The function looks like this:

char *name;
int name_len;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “s”,
 &name, &name_len) == FAILURE) {
 RETURN_NULL();
}

563120c08.indd 331563120c08.indd 331 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

332 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

You saw the ZEND_NUM_ARGS macro earlier. The second argument (actually, the third, but there will
be more on that later) is for the parameters. There is one character per parameter and it indicates
the type. For example, the preceding function accepts a string. If it were to accept two strings it
would look like “ss” instead.

The valid values are:

➤ Array (a) as zval **

➤ Boolean (b) as zend_bool *

➤ Double (d) as zval **

➤ Long (l) as zval **

➤ Object (o) as zval **

➤ Object of a specifi c class (O) as zval ** and zend_class_entry *

➤ String (s) as char ** and int *

➤ Zval (z) as zval **

➤ Zval reference (Z) as zval ***

Additionally, a few other options are available. It is easy to make arguments optional simply by
specifying a pipe. Everything after the pipe is optional. Now would be a good time to demonstrate
how to accept the arguments for the helloworld_say function that you have seen so many times in
this chapter:

char *name;
int name_len;
zend_bool do_return;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “s|b”,
 &name, &name_len, &do_return) == FAILURE) {
 ...
}

Return values from functions are covered later. You may have noticed that there are three remaining
parameters. They are used to store the values passed into the function. Strings take two variables (to
deal with binary data) while most others only take one.

All parameters are passed as pointers to the original zval. The Zend engine does not make copies
(or references) unless you explicitly ask it to. As a result, changes made to the zval will change the
original in PHP. In order to perform calculations on the value without affecting the outside data it is
necessary to make a copy.

Separation is the process of taking one zval and creating a new one that is initially a reference to the
fi rst; however, it will dereference and create a new value if you try to write to it. In PHP 5 it can be
done implicitly by fl agging the argument for separation. To fl ag a value for separation you can put a
slash (/) after it.

So what happens when you pass a value that isn’t a string to a function that only accepts “s” as
a type of value? There are two possible outcomes. If the value can be safely converted to a string

563120c08.indd 332563120c08.indd 332 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Using Functions in Extensions ❘ 333

without data loss, then PHP will do it. That includes longs, doubles, and Booleans. If it can’t be
converted without losing any data (object, arrays, and resources), PHP will print a warning and the
parameter parsing function will return FAILURE.

Alternatively, it is possible to accept a zval instead and convert to a string. Say that you have a func-
tion foo() that expected a string. You could do something like this:

zval *my_str;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “z”, &my_str) == FAILURE) {
 RETURN_NULL();
}
convert_to_string(my_str);

There are a few problems with this code. The fi rst is that convert_to_string issues a warning if you
pass an array — or anything else that can’t be converted to a string without data loss — to the function.
The second is that, because all values are passed to the extension as a pointer to the original variable in
PHP, the code will change the value of the variable in PHP. Take this code, for example:

<?php
$bar = array(1, 2, 3);
helloworld_foo($bar);
echo ‘$bar IS ‘.(is_array($bar) ? ‘’ : ‘NOT ‘).’an array.’;
?>

Using the parameter parsing code from before, this code will print $bar IS NOT an array. At that
point $bar is equal to the string literal Array instead of the original actual array.

That is where separation comes in. There are two ways to do separation of parameters in PHP5.
They both work fi ne; one is just newer and a little bit less code. The following pieces of code are
functionally identical. One way is:

zval **my_str;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “Z”, &my_str) == FAILURE) {
 RETURN_NULL();
}
SEPARATE_ZVAL_IF_NOT_REF(my_str);

Another way is:

zval *my_str;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “z/”, &my_str) == FAILURE) {
 RETURN_NULL();
}

The biggest difference is that one requires that the zval be a double pointer and the other method
requires a single pointer. Both options separate the value only if it is not a reference, which means
that if the user does this:

$foo = “world”;
helloworld_say(&$world);

it will not get separated. The end result is that any changes you make to the zval inside of the func-
tion still affect the original variable in memory. This is a problem that affects a good number of

563120c08.indd 333563120c08.indd 333 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

334 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

extensions and even some built-in functionality. The way to avoid that is by using the SEPARATE_
ZVAL macro instead of its conditional equivalent.

Defi ning Argument Information

The arg_info is the second argument to the PHP_FE macro. It provides information about the argu-
ments for a function, which in turn can be used with the PHP inspection APIs and is new in PHP 5.
As a result, ext_skel does not use it (as of PHP 5.3) but CodeGen_PECL does. So, if you were to
add arguments you would defi ne the argument list in the header fi le:

#if (PHP_MAJOR_VERSION >= 5)
ZEND_BEGIN_ARG_INFO_EX(helloworld_say_arg_info, ZEND_SEND_BY_VAL,
 ZEND_RETURN_VALUE, 1)
 ZEND_ARG_INFO(0, name)
 ZEND_ARG_INFO(0, return)
ZEND_END_ARG_INFO()
#else /* PHP 4.x */
#define helloworld_say_arg_info NULL
#endif

The arguments for the highlighted macro are, in order:

➤ The fi rst argument is the name of the variable to store the information in. Do not defi ne the
variable ahead of time because the macro does it for you.

➤ The second fl ag indicates how the user should pass the additional arguments in a variable
argument function. The most common and recommended value is ZEND_SEND_BY_VAL. You
also have ZEND_SEND_BY_REF and ZEND_SEND_BY_PREFER_REF; however, they are rarely
used and usually the sending by value is the right fl ag.

➤ The third is whether the return value is by value or reference. Just like the argument list there
is a way to return by reference but it is not used very often. If you are returning by reference,
odds are that you really want to create a new resource type.

➤ The fi nal argument is the number of required arguments. In the preceding example there are
two arguments, but only one is required.

After the argument information is started it is time to defi ne individual arguments using ZEND_ARG_
INFO. The macro is fairly self-explanatory. The fi rst is a 1 or 0 depending on whether the argument
should be passed by reference. The second is the name of the argument. The argument names should
not be quoted (the macro does that for you).

Documentation systems and some extensions rely on being able to inspect functions, so a valid argu-
ment list is very helpful. Once the list is complete it can be passed to the PHP_FE macro as the second
argument.

Returning Values

Once you have your function set up and your parameters are being passed, returning a value back
to PHP is the easy part. The return set of functions is analogous to the zval assignment macros. As a
general rule, if you can assign to a zval with a macro you can return a value with a similar macro.

563120c08.indd 334563120c08.indd 334 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Using Functions in Extensions ❘ 335

PHP return values are handled by changing the zval referenced by the return_value argument
passed to the function (see the previous section on defi ning functions). So what you are doing when
you return a double, for instance, is really this:

ZVAL_DOUBLE(return_value, 1.34);
return;

What you put in your code instead is:

RETURN_DOUBLE(1.34);

So, if you need to do calculations it is sometimes more effi cient to edit the return value directly
rather than do all the calculations in a temporary variable. That is particularly true when it comes
to arrays and hash tables, which are covered a little further on.

As you may expect, the value return functions are:

➤ RETURN_RESOURCE(l)

RETURN_BOOL(b)➤

RETURN_NULL()➤

RETURN_LONG(l)➤

RETURN_DOUBLE(d)➤

RETURN_STRING(s, dup)➤

RETURN_STRINGL(s, l, dup)➤

RETURN_ZVAL(z, dup, dtor)➤

RETURN_TRUE()➤

RETURN_FALSE()➤

That is all there is to returning values from a function in Zend.

Built-In Functions

An extension can optionally implement fi ve built-in functions. They are called at various points dur-
ing the extension’s life cycle:

➤ MINIT is called when the extension (module) is initialized. The module is initialized once per
thread so this is a good place to do things like register globals and INI entries, which are cov-
ered later in the chapter.

➤ MSHUTDOWN cleans up anything that was created during module initializations. This is where
INI entries and globals are cleaned up.

➤ RINIT is called when a request is initialized. Use this to set up any request variables.

➤ RSHUTDOWN should clean up any request variables so that the next request starts with a clean
slate.

➤ Finally, MINFO is called to print out information about a module.

563120c08.indd 335563120c08.indd 335 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

336 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

None of these can be defi ned using the standard methods of defi ning functions. Instead, each one of
them has its own macro to create the function names and signatures. They are:

PHP_MINIT_FUNCTION(extname) ...
PHP_SHUTDOWN_FUNCTION(extname) ...
PHP_RINIT_FUNCTION(extname) ...
PHP_RSHUTDOWN_FUNCTION(extname) ...
PHP_MINIT_FUNCTION(extname) ...

Like normal functions, a prototype must also be put into the header. Also, the functions must be
referenced in the function entry structure (inside of the C fi le). If you used a script to generate the
extension, this is all taken care of for you.

What you might want to do with the auto-generated fi les is get rid of functions that you don’t use.
The fi rst step is to remove the items from the function entry structure by putting NULL in their place.
After that, it is safe to remove the function prototype and implementation.

One fi nal note on the built-in functions is that they should always return either the SUCCESS or
FAILURE constant. Not doing so could result in undesirable effects.

Creating and Consuming PHP API Functions

PHP API functions are special types of functions that are usable by other modules. In general, if
there is functionally that you think other extensions may benefi t from, it is generally a good idea to
make an API version of it.

Consuming PHP APIs

In addition to producing API endpoints it is often a good idea to consume other extension APIs
rather than try to reinvent the wheel (no matter how easy that may seem).

Numerous extensions come with PHP. You can use APIs from any of the ones that provide them. The
catch is that if PHP is compiled without the extension enabled, you are out of luck. Some extensions
are more ubiquitous than others. This book references MySQL constantly and an extension later in the
chapter actually uses MySQLi objects. However, MySQLi is not enabled in the default confi guration.

The most common extension to hook into is the aptly named “standard” extension, which is located
in a subdirectory of that name within the ext directory. Most modules already depend on it because
it defi nes the API functions for use with MINFO. The standard extension includes exported API func-
tionality for:

➤ Math

Strings➤

MD5➤

Base64➤

Dynamic extension loading➤

Image mime-type detection➤

Shell execution➤

HTML escaping➤

563120c08.indd 336563120c08.indd 336 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Using Functions in Extensions ❘ 337

Random number generation➤

File operations➤

Serialization➤

Headers and cookies➤

SHA1➤

URL parsing and encoding➤

And, of course, PHP info functionality➤

It’s important to know that any function within PHP can be called from any extension. After all,
an extension should be able to do anything a PHP script can do. However, if there is an API func-
tion available and it is acceptable to have a dependency on that extension, you should use the API
instead. The API will always be faster and more effi cient.

Not all extensions have API calls available. Some interesting ones that do are:

➤ JavaScript Object Notation

DOM➤

XML➤

Refl ection➤

Session➤

MySQL Native Driver➤

In addition, the core PHP code also exports many functions for use by extension. This chapter uses
many of them. The most common ones are streams, networking, output buffering/control, and fi le
operations.

To consume an API, it is only necessary to include the headers and start calling functions. Because
there is not much by way of documentation for many of the API functions a very useful grep is:

grep -r PHPAPI /path/to/extension/*.h

From that you can see that the prototype for explode looks like this:

PHPAPI php_explode(zval *delim, zval *str, zval *return_value, long limit);

Not all API functions take zvals. Because they don’t have to be called from PHP, they can take regu-
lar data types like char * as well. Now that the prototype is known it can be called from within an
extension. First, include the header fi le at the top of the C fi les that need to access the API:

#include “ext/standard/php_string.h”

Once that is done it can be easily used within a function:

PHP_FUNCTION(andrew_explode_on_pipe) {
 zval *my_str, *delim;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

563120c08.indd 337563120c08.indd 337 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

338 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

 “z”, &my_str) == FAILURE) {
 RETURN_NULL();
 }

 MAKE_STD_ZVAL(delim);
 ZVAL_STRING(delim,”|”,0);

 array_init(return_value);
 php_explode(delim, my_str, return_value, 100);
}

This is one of the cases where setting the return_value variable directly is useful. The code also
initializes an array. Arrays are covered later in this chapter.

DEALING WITH DEPENDENCIES

Specifying dependencies for your application is important. In this case, the appli-
cation is dependent on the standard extension. However, in other cases it may be
dependent on others. Later in this chapter you see an extension that depends on
MySQLi to work.

You can specify dependencies with CodeGen_PECL by listing them in your XML
document like this:

<deps>
 <extension name=”standard”/>
 <extension name=”mysqli” type=”OPTIONAL”/>
 <extension name=”foo” type=”CONFLICTS”/>
</deps>

The preceding XML indicates a requirement for the standard library, an optional
dependency on MySQLi, and a confl ict with a fi ctional foo library. You can use
confl icts when the extension exposes an API method that is known to also be in
another library.

The code in the C source fi les looks a lot like the function tables:

/* {{{ cross-extension dependencies */

#if ZEND_EXTENSION_API_NO >= 220050617
static zend_module_dep helloworld3_deps[] = {
 ZEND_MOD_REQUIRED(“standard”)
 ZEND_MOD_OPTIONAL(“mysqli”)
 ZEND_MOD_CONFLICTS(“foo”)
 {NULL, NULL, NULL, 0}
};
#endif
/* }}} */

You also need to make entries into the package XML documents if you want to dis-
tribute your extension. In addition, you need to change the module entry structure to
support dependencies. The structure needs to have a STANDARD_MODULE_HEADER_EX
type, which brings with it two additional fi elds. The second new fi eld is the module’s
dependencies array.

563120c08.indd 338563120c08.indd 338 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

Using Functions in Extensions ❘ 339

Providing an API

If you think your extension would be useful for other extensions, a good next step is to make func-
tions available via an API. Providing functions for the API is much easier than creating PHP visible
functions (or even the helper functions that are covered next) because they are just traditional C
functions. All you need to do is put PHPAPI in front of it.

One benefi t of API functions is that they can return a value. However, doing things the PHP way —
by providing the return value via an argument as a pointer — is also possible. That is the way the
explode function from the previous section worked.

The other clear benefi t is that the arguments can be of any type. See the prototype for php_explode
in the previous section for an example.

You must also put the prototype (complete with PHPAPI in front) in the header. That is the only way
that other modules can reference it. Also, in addition to functions, you can specify structures as
being exported by the API.

More Notes and Creating Helper Functions

Helper and PHP API functions are almost the same thing. The difference is that API functions are
exported for other extensions to see and helper functions are declared as static instead.

Helper functions are intended for use within your extension only. As such, they do not need to be
defi ned in the header. C compilers will parse your source from top to bottom, though, so best prac-
tice is to put all the helper functions at the top of the C fi le or at least defi ne the prototype at the top.

You should know a few tricks for helper and API functions. The fi rst is that it is easy to pass all the
parameters from a PHP function straight through to a helper function. It is particularly useful if you
want to implement shared functionality across multiple PHP accessible functions.

The trim behavior for the standard string library works in this way. The PHP accessible function
takes all its calling data and passes it through to a helper function along with a fl ag indicating what
type of trim to perform. Passing through is necessary if you want to use built-in macros to parse
arguments and return values. The second function, callable from PHP, passes the arguments to the
fi rst helper function:

static void do_something_helper(INTERNAL_FUNCTION_PARAMETERS, int flags)
{
... parse parameters, set return value, etc. here ...
}

PHP_FUNCTION(do_something)
{
 do_something_helper(INTERNAL_FUNCTION_PARAMETERS_PASSTHRU, 3);
}

To get an idea of what exactly is passing through, refer back to the “Basic Defi nitions” section. It
is the exact same set of variables that are passed to functions when you defi ne them with the PHP_
FUNCTION macro.

That includes TSRMLS. It is used for thread-safe access to global variables and must be included if
you want access to the global variable pool.

563120c08.indd 339563120c08.indd 339 2/18/10 9:10:13 AM2/18/10 9:10:13 AM

340 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

However, it is possible to pass TSRMLS manually using some built-in defi nitions. You have already done
this in previous sections while parsing arguments. Following are four defi nitions to keep in mind:

➤ TSRMLS_D is used within function defi nitions.

➤ TSRMLS_DC is used within function defi nitions when there aren’t any other parameters.

➤ TSRMLS_C is for function calls.

➤ TSRMLS_CC, the counterpart to TSRMLS_C is for function calls when there aren’t any other
parameters.

The big difference is that two of them — the ones that end in DC and CC — each start with a comma
intended to separate them from the parameter in front. The section on global variables has much
more information on the TSRMLS family of defi nitions.

INPUT/OUTPUT

This chapter already covered input and output via function parameters and return values. This sec-
tion covers input and output from other sources. Specifi cally, standard output, errors and warnings,
and fi les and network connections the PHP way.

Standard Out

Up until now the chapter has focused on two methods of providing feedback to PHP. The fi rst was
through parameters passed by reference and the second was return values. Another method of pro-
viding feedback is through standard output.

Numerous functions are available for standard output. The one that you’ll likely use the most often
is php_printf, which behaves similarly to its PHP counterpart. For example:

php_printf(“The value of some_zval is: %s”, Z_STRVAR_P(some_zval));

The php_printf function takes all the same values as its PHP and C counterparts. Alternatively,
when variable substitution isn’t necessary you can use this instead:

php_write(Z_STRVAL_P(some_zval), Z_STRLEN_P(some_zval));

With those two functions it is possible to write anything to the standard output stream. But some-
times it is necessary to have more structured data in order to debug and see the current values of
variables. Such data can be diffi cult to format. Zend has some functions for those times:

➤ zend_print_zval takes a zval as the fi rst parameter and an indentation amount (long) as the
second. It outputs a fl at representation of the zval and prints text descriptions for complex
types that can’t be displayed elegantly.

➤ zend_print_zval_r prints the zval recursively. Its output is identical to print_r in PHP.

563120c08.indd 340563120c08.indd 340 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Input/Output ❘ 341

Files and Streams

Input and output should always be handled through PHP functions. One of the main reasons for
that is because PHP imposes limits on what type of streams the script can open. The restrictions can
easily be circumvented by a C script, which can introduce security issues.

The other big reason is that PHP has stream wrappers. Stream wrappers are what allow PHP to
transparently open a range of stream types from the fi le system to HTTP and FTP.

Basic Streams

All the PHP stream functions follow the pattern php_stream_. File I/O is probably one of the more
common tasks. A simple function that writes a zval to a fi le identifi ed by a user-supplied fi lename
looks like this:

char *filename;
int filename_len;
php_stream *stream;
zval *val;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “sz/”, &filename,
 &filename_len, &val) == FAILURE) {
 RETURN_FALSE;
}

stream = php_stream_open_wrapper_ex(filename, “w+”,
 ENFORCE_SAFE_MODE | REPORT_ERRORS, NULL, NULL);

if (stream) {
 convert_to_string(val);
 php_stream_write(stream, Z_STRVAL_P(val), Z_STRLEN_P(val));

 php_stream_close(stream);
}

It is very important to do validation on the stream before performing any operations on it, particu-
larly when closing the stream (which will cause a segmentation fault trying to free a fi le that isn’t
open).

The fl ags are highlighted in the preceding code sample. You can use fl ags to disable security features
or enable additional checking of the fi le. Some of the available fl ags are listed in Table 8-2:

TABLE 8-2: FLAGS IN BASIC STREAMS

FLAG DESCRIPTION

IGNORE_PATH Evaluates to 0 indicating that the search paths should not be

used. This fl ag is meaningless if combined with other fl ags; it

just makes the intention of the operation clearer.

continues

563120c08.indd 341563120c08.indd 341 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

342 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

FLAG DESCRIPTION

USE_PATH Indicates that the include search path should be used if the

fi le cannot be found in the relative path.

IGNORE_URL Ignores any paths that are URLs.

ENFORCE_SAFE_MODE Tells the engine whether or not to check against safe mode

restrictions.

REPORT_ERRORS Indicates that stream errors should be reported in the error

logs. Warnings are still sent to the standard output.

STREAM_MUST_SEEK Indicates that seeking is a requirement for the stream but writ-

ing to the stream is not.

STREAM_WILL_CAST Should be used if the stream is going to be cast to a FILE* or

socket. It turns off buff ering so if you don’t plan on casting the

stream, omitting the fl ag actually means better performance.

STREAM_OPEN_FOR_INCLUDE Used by require and include calls. It is unlikely that this is

needed in many extensions.

STREAM_USE_URL Uses only URLs. Attempting to open anything that isn’t a URL

results in an error.

STREAM_ONLY_GET_HEADERS Causes the stream to only return headers. It is only relevant

for wrappers that have headers such as HTTP.

STREAM_DISABLE_OPEN_BASEDIR Ignores restrictions on the base directory (PHP scripts are

normally not allowed to open fi les that aren’t under the base

directory).

STREAM_OPEN_PERSISTENT Creates or opens a persistent fi le stream.

STREAM_DISABLE_URL_

PROTECTION

Ignores any PHP confi gurations that may disable opening of

URLs via streams.

STREAM_ASSUME_REALPATH Indicates that the path given to open the fi le is indeed real and

does not try to calculate a real path or check the search paths.

The stream API implements the C Standard I/O library as well as many other functions to help
make development easier. Streams can also act on directories. All the basic stream functions are
listed in Table 8-3.

TABLE 8-2 (continued)

563120c08.indd 342563120c08.indd 342 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Input/Output ❘ 343

TABLE 8-3: Streams Functions

CREATING STREAMS COPYING (CONTINUED)

php_stream_open_wrapper php_stream_copy_tostream_ex

php_stream_open_wrapper_ex WRAPPERS

php_stream_from_persistent_id php_register_url_sream_wrapper

STREAM OPERATIONS php_unregister_url_stream_wrapper

php_stream_close php_register_url_stream_wrapper_volatile

php_stream_read php_unregister_url_stream_wrapper_volatile

php_stream_get_line php_stream_locate_url_wrapper

php_stream_get_record php_stream_wrapper_log_error

php_stream_write DIRECTORIES

php_stream_seek php_stream_mkdir

php_stream_tell php_stream_rmdir

php_stream_rewind php_stream_opendir

php_stream_eof php_stream_readdir

php_stream_getc php_stream_scandir

php_stream_putc CONTEXT FUNCTIONS

php_stream_fl ush php_stream_context_set

php_stream_puts php_stream_context_free

php_stream_stat php_stream_context_alloc

php_stream_set_options php_stream_context_get_option

php_stream_free php_stream_context_set_option

COPYING php_stream_context_get_link

php_stream_copy_to_mem php_stream_context_set_link

php_stream_copy_to_stream php_stream_context_del_link

Using Context

In addition the stream API also has some functions to make reading structured data a lot easier. A
large portion of that functionality deals with contexts. Contexts allow specifi c information to be
passed to wrappers.

563120c08.indd 343563120c08.indd 343 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

344 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

One use of contexts is to provide additional data for the HTTP stream wrapper. The next example
specifi es a user agent for a HTTP request using a context:

char *filename, *mode, *agent;
int filename_len, mode_len;
php_stream *stream;
php_stream_context *context = NULL;

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “s”,
 &filename, &filename_len, &mode, &mode_len) == FAILURE) {
 RETURN_FALSE;
}

MAKE_STD_ZVAL(mode);
ZVAL_STRING(mode,”r”,0);

MAKE_STD_ZVAL(agent);
ZVAL_STRING(agent,”Expert PHP and MySQL book”,0);

context = php_stream_context_alloc();
php_stream_context_set_option(context, “http”, “user_agent”, agent);

stream = php_stream_open_wrapper_ex(filename, mode,
 ENFORCE_SAFE_MODE | REPORT_ERRORS, NULL, context);

if (stream) {
 ...

 php_stream_close(stream);
 php_stream_context_free(context);
}

Different types of wrappers have different context options. The HTTP wrapper includes options for
setting headers, proxy, timeout, post data, and maximum number of redirects.

Wrappers also sometimes return data in addition to the main stream. The information for HTTP,
for instance, includes all the headers sent by the server. Because wrapper data often uses hash tables
it is covered in the “Arrays and Hash Tables” section.

Networking

Networking across platforms can be diffi cult. Fortunately, PHP already has a strong set of libraries
for TCP/IP communication. Combined with the stream API, a PHP extension can satisfy all its net-
working needs. The network APIs are used by the HTTP and FTP stream wrappers.

Building a Client

PHP is capable of being both a client and a server. Being a client is much more common. The fi rst step
in building a client is to create the socket. After that it is possible to get a stream from the socket.

This section builds a very simple client that connects fi rst to a port, then dumps a string and listens
for a response. It prints the response and then disconnects.

Before starting, be sure that php_network.h is included in the extension.

563120c08.indd 344563120c08.indd 344 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Input/Output ❘ 345

If you are using a Linux or UNIX system you can install the tcplisten appli-
cation and use that as a way to debug your client.

Connecting to a server returns a php_socket_t structure:

socklen_t size;
php_socket_t socket;
struct timeval tv;

tv.tv_sec = 10;
tv.tv_usec = 0;

socket = php_network_connect_socket_to_host(“localhost”, 7777, SOCK_STREAM,
 0, &tv, NULL, NULL, NULL, 0 TSRMLS_CC);
if (socket == -1) {
 /* could not connect */
}

The preceding example is hard coded, for simplicity, to connect to port 7777 on localhost. The
values can, of course, be variable. Once connected, it is time to get the stream from the socket. After
that, you can read and write as you would with a normal stream.

php_stream *stream;
stream = php_stream_sock_open_from_socket(socket, 0);
php_stream_write(“Ping\n”);
php_printf(“Pong: %s”, php_stream_get_line(stream, NULL, 0, NULL));

And, of course, it is necessary to close the stream and free the socket at the end of the script:

php_stream_close(stream);
closesocket(socket);

Building a Server

PHP is most often seen acting as a daemon on a local host. It is very rare to see PHP acting as a server
in either a web server or an Apache environment. It is also uncommon to see PHP acting as a server for
outside connections from the cloud. However, both are defi nitely possible.

The fi rst step is always to bind to a socket. After that, depending on the mode, it might be useful to
set the socket to non-blocking. PHP allows the socket to accept multiple connections. Each connec-
tion has its own socket and its own stream. The simple server in this section just accepts one con-
nection and could be used as a basic server for the client from the previous section.

The code to open the socket is straightforward:

php_socket_t server;

server = php_network_bind_socket_to_local_addr(“127.0.0.1”, 7777,
 SOCK_STREAM, NULL, &error
 TSRMLS_CC);
listen(server, 5);

563120c08.indd 345563120c08.indd 345 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

346 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

After that it is necessary to listen for a new connection. This is a blocking socket so it just waits
until a connection arrives and does everything in sequence. A non-blocking socket would create a
loop that simultaneously looks for new connections and reads data from existing connections.

socket = php_network_accept_incoming(server,
 NULL, NULL, NULL, NULL, &tv, NULL,
 &error TSRMLS_CC);

if (socket == -1) {
 closesocket(server);
 RETURN_NULL();
}

stream = php_stream_sock_open_from_socket(socket, 0);
php_stream_write(stream, “Ping\n”, 5);

char *pong;
int pong_len = spprintf(&pong, 0, “Pong: %s”,
 php_stream_get_line(stream, NULL, 0, NULL));
php_stream_write(stream, pong, pong_len);
efree(pong);

Note that you can get a lot more information about the client that is connecting to your server by
passing additional parameters to the php_network_accept_incomming function. For simplicity, the
preceding script uses all NULL.

Closing the sockets and freeing the streams work the same way as before. Just remember that you
may have more than one socket and many streams open at a time so be sure to close them all.

Errors and Warnings

All errors and warnings in PHP are output via the same function. The engine then decides how to
display the error and log it. You can log an error and display it to the standard output or web page
in one of the following ways:

php_error(E_WARNING, “Method %s not yet implemented.”, method_name);
php_error_docref(NULL TSRMLS_CC, E_ERROR, “Could not connect to server %s:%i.”,
 server_name, port_name);

The second and fourth arguments — the format strings bolded in the preceding example — are the
same as with printf so you can do replacements into it.

The second function also automatically takes care of putting the current function information in the
error if you pass the fi rst argument as NULL. It also highlights HTML when appropriate. Because of
the added features, the second is preferable in just about all cases. One notable exception is during
initialization and shutdown when there isn’t any active function or page.

Possible values for types of errors are:

➤ E_ERROR

E_WARNING➤

E_NOTICE➤

563120c08.indd 346563120c08.indd 346 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Arrays and Hash Tables ❘ 347

E_PARSE➤

E_CORE_ERROR➤

E_CORE_WARNING➤

E_USER_ERROR➤

E_USER_WARNING➤

E_USER_NOTICE➤

E_STRICT➤

E_RECOVERABLE_ERROR➤

E_DEPRECATED➤

E_USER_DEPRECATED➤

The fi rst three in the list are by far the most common from within extensions. It is also possible
(although not common or recommended) to output directly to the error log. That is done via the
php_error_log function:

php_error_log(0, “Message”, NULL, NULL TSRMLS_CC);

The error log function is identical to its PHP counterpart. It does not output anything to the screen
and does not contain any fi le or line information. The function also accepts all the same additional
parameters that allows for the error to be sent via email or output to a different log fi le.

The preceding example uses 0 to output to the error logs. Other possible options for the fi rst param-
eter are:

➤ A value of 1: Send via email. Use the third parameter as an email address string and the
fourth parameter as optional mail headers.

➤ A value of 2: Send via TCP/IP. The third parameter is a host:port pair.

➤ A value of 3: Save to the fi le specifi ed by the third parameter.

ARRAYS AND HASH TABLES

This chapter already covered Boolean, long, double, and string data types. Two big things that were
missing were arrays and hash tables. First, as you may have guessed, the two are the same. Arrays are
numerically indexed and pure hash tables act like associative arrays and can be referenced by keys.

Even though both are extremely similar and they share the same data types, they each have their
own set of useful functions to create, read, and modify them. Arrays are a tiny bit less complicated
so they are covered fi rst.

Building and Accessing Arrays

Many functions are available for building an array. The fi rst thing that is needed in all cases is to
get a handle to the array. There are two possible situations. One is that a zval already exists and it

563120c08.indd 347563120c08.indd 347 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

348 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

is necessary to get the hash table object, and the other is that a new hash table should be created.
Creating a new array/hash table in a zval looks like this:

zval *new_array;
array_init(new_array);

Accessing an existing hash table like the one just created based on a zval looks like this:

HashTable *hash;
hash = Z_ARRVAL_P(new_array);

This is the fi rst time you’re seeing the HashTable data type in this book. The array is being initial-
ized inside of the zval and then being retrieved and pointed to by the hash table. Once the hash table
is retrieved or created, new values can then be added or deleted. There are three basic situations
with arrays. They are:

➤ Adding at a specifi c index

Using a specifi c key➤

Adding to the next available index➤

The three functions are very similar:

add_assoc_double(new_array, “key_name”, 3.14);
add_index_double(new_array, 3 /* add at index 3 */, 3.14);
add_next_index_double(new_array, 3.14);

This code shows the double version of each of the functions. In addition to strings there are also
functions for all the other data types. The data types have already been mentioned several times in
this chapter, but just for review, they are:

➤ bool

double➤

long➤

null➤

resource➤

➤ string and stringl (takes a length)

zval➤

Additionally, each associative array function also has an extended version that takes an extra parameter
after the key for the length, thus allowing for binary safe keys. By now it should be clear that whenever
a function takes string length it is always passed as an integer immediately after the string.

All the functions that add a value to an array — with the exception of a zval directly — create a new
zval. It would be ineffi cient to add a value and then immediately try to fetch it. For the situations
where it is necessary to reference the created zval later there is another set of functions:

zval *new_item;
add_get_next_index_double(new_array, 3.14, new_item);

563120c08.indd 348563120c08.indd 348 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Arrays and Hash Tables ❘ 349

The add_get_* functions exist for every type of indexing and every type of data except zval, where
it wouldn’t make any sense. Extended versions also exist that allow string lengths to be specifi ed for
associative array keys.

The downloadable code for this book has some additional examples for using arrays.

Accessing and Modifying Hash Tables

As mentioned earlier, all arrays are hash tables, so by defi nition all the functions that work on hash
tables will also work on arrays. In fact, all of the functions from the previous section were just easy-
to-use wrappers around hash tables. However, it is often useful to access the hash table directly.

Hash tables have additional benefi ts such as the ability check if a key exists, and apply functions to
the entire hash at one time. However, perhaps the most useful feature is simulating a foreach loop.
After reviewing iterators in Chapter 2 this should be fairly familiar code:

HashTable *hash = ...
zval **data;

for (zend_hash_internal_pointer_reset_ex(hash, &pointer);
 zend_hash_get_current_data_ex(hash, (void **) &data, &pointer) == SUCCESS;
 zend_hash_move_forward_ex(hash, &pointer)) {

 /* the zval data is filled with the current hash value */

}

Note the double pointer for the data variable. Be sure when accessing it to use the _PP macros and
not the ones ending in simply _P. You can also get the number of elements in the hash by using
zend_hash_num_elements(hash).

It is not necessary to loop through the hash table to perform common operations such as looking up
the value associated with a key and checking if a key exists. Finding elements in a hash table if you
know the key is fairly simple:

zend_hash_find(hash, key, strlen(key), (void **)&data);

data is a double pointer to a zval just like before. Finding it if you know the index is similar:

zend_hash_index_find(hash, 3 /* index of 3 */, (void **)&data);

Finally, the code that checks if a key exists looks like this:

int exists;
exists = zend_hash_exists(hash, key, strlen(key));
exists = zend_hash_index_exists(hash, 3 /* index of 3 */);

Hash tables are used all over PHP. They are the core concepts used for everything from global val-
ues to the return values from many API functions, so it is very important to understand everything
about them.

563120c08.indd 349563120c08.indd 349 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

350 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

OBJECTS AND INTERFACES

The fi rst part of the chapter explained how to defi ne classes using the CodeGen_PECL utility. This
section explains how to create classes and interfaces from scratch.

Perhaps as important, this section reviews how to inspect a class, modify it at run time, and access
its properties and methods. By the end of this section you should be able to create an extension that
can access data directly from an object passed into a function.

Creating a Class

Classes are created in much the same way as basic extensions and functions. They contain their own
methods table and have their own set of macros; however, most of them should seem familiar.

Class Defi nition, Inheritance, and Namespaces

At a minimum there needs to be a class entry pointer, a methods table, and initialization code. It is
best practice to put all the initialization in a function to call from the MINIT function but it is also
possible to put all the code in MINIT directly, as illustrated in the following steps:

1. Defi ne the class entry pointer in the C fi le:

static zend_class_entry *helloworld_ce_ptr = NULL;

The class entry is a structure that stores information about the class in order to be used
by the engine when initializing instances and accessing the object. It includes several hash
tables for methods and properties as well as special pointers especially for magic methods.

2. The next step is to defi ne the methods table, which bears a not-coincidental resemblance to
the extension function table. The methods table must be there even if it is empty. An empty
methods table looks like this:

static zend_function_entry helloworld_methods[] = {
 { NULL, NULL, NULL }
}

3. The class entry pointer was defi ned but it is empty right now. A simple initialization function
can be created and then called from MINIT. This is a very simple class but classes will only get
larger from here so it is always a good idea to separate out the functionality.

zend_class_entry ce;
INIT_CLASS_ENTRY(ce, “helloworld”, helloworld_method);
helloworld_ce_ptr = zend_register_internal_class(&ce);

The code is straightforward and simply registers the class so that Zend knows it exists and can
instantiate it. In the process it stores the pointer to the new class entry. Note that the returned class
entry is not the same in memory as the original passed into it.

There is also an extended version of the macro for binary strings that takes the length of the class name
as an argument after the class name. Ultimately all the macros end up expanding to the same one:

INIT_OVERLOADED_CLASS_ENTRY_EX(class_container, class_name,
 class_name_len, functions, handle_fcall, handle_propget, handle_propset,
 handle_propunset, handle_propisset)

563120c08.indd 350563120c08.indd 350 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Objects and Interfaces ❘ 351

There is also a macro INIT_OVERLOADED_CLASS_ENTRY (without the _EX) that takes all the param-
eters of its extended version except handle_propunset and handle_propisset. It also doesn’t
expect a length for the class name.

If you wanted to have your class inside of a namespace there are three macros
for that. Each macro is identical to its default namespace counterpart except
that it takes the namespace as the second argument:

INIT_NS_CLASS_ENTRY
INIT_OVERLOADED_NS_CLASS_ENTRY
INIT_OVERLOADED_NS_CLASS_ENTRY_EX

The handlers at the end of the overloaded macros are expecting to be defi ned with PHP_FUNCTION.
However, you can always defi ne a PHP_FUNCTION and not put it in the function table. If you don’t put it
in the function table for your extension (remember: PHP_FE) it won’t be callable from within PHP.

As you may have guessed, they correspond to the __call, __get, __set, __unset, and __isset
methods. All magic methods have dedicated pointers in the zend_class_entry structure; however
they can still be easily defi ned by creating a method of that name just as you would in PHP.

Inheriting from another class is as simple as using register_internal_class_ex instead of its
non-extended counterpart:

zend_register_internal_class_ex(&ce, NULL, “parent_class_name”);

The second parameter is the parent class entry and the third is the name of the parent class. You
should only use one or the other. The class does not need to be in the same extension as the child
class; however, if the parent class is specifi ed as a string and it is not found, you will end up with a
null class entry.

It is also possible to defi ne a class as abstract:

helloworld_ce_ptrn->ce_flags |= ZEND_ADD_EXPLICIT_ABSTRACT;

Remember to make changes to the class entry pointer after the class is registered. Changing the local
structure before registering it won’t have an effect.

Using Methods

Defi ning a method works much the same way as defi ning a function except the macro PHP_METHOD
should be used instead of PHP_FUNCTION (don’t forget to also put it in the header). The PHP_METHOD
macro also takes two arguments instead of one. The fi rst is the class name and the second is the
method name.

Also, PHP_FE becomes PHP_ME and must be put in the class function table instead of the global
function table. The PHP_ME macro takes visibility as its fi nal argument. The possible values for
visibility are:

➤ ZEND_ACC_PUBLIC

ZEND_ADD_PROTECTED➤

ZEND_ACC_PRIVATE➤

563120c08.indd 351563120c08.indd 351 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

352 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

You can also use a binary or operation to combine either of the three with ZEND_ACC_STATIC to
make the method statically accessible. As with many things when writing extensions, it doesn’t
make much sense to have a statically callable private method but public and protected are more use-
ful. Just like in PHP, a static method can be called either truly static or as if it were a real method.
Even so, it should only access other static properties and methods (never use “this”).

The method implementation is just like a function implementation except you will probably want to
get the value of $this at the top every time it is called, especially because the value should be passed
in for argument parsing:

PHP_METHOD(helloworld, method_name)
{
 zend_class_entry * _this_ce;
 zval * _this_zval = NULL;

 if (zend_parse_method_parameters(ZEND_NUM_ARGS() TSRMLS_CC, getThis(),
 “O”, &_this_zval, helloworld_ce_ptr) == FAILURE) {
 RETURN_NULL;
 }

 _this_ce = Z_OBJCE_P(_this_zval);

 ...
}

The value of the current object is always passed as a zval to the fi rst parameter. After parsing the
parameters it is often desirable to get the class entry structure from the object as well. At fi rst glance
it looks redundant. Although it doesn’t happen during typical use for most extensions, when you
deal with inheritance and polymorphism it is possible for the values of _this_zval to be different
than getThis() and _this_ce to be different than hello_ce_pointer.

At this point it may be natural to assume that the if method always takes the object as the fi rst argu-
ment it can then also be called procedurally like with MySQLi:

mysqli_query($mysqli_obj, “SELECT * FROM example”);

Close, but not quite there. It must be added to the extension method table as an alias in addition to
the entry in the methods table of the class:

PHP_MALIAS(parent, true, foo, NULL, ZEND_ACC_PUBLIC)

The main difference between the previous macro and the PHP_ME macro is that it accepts an alias
name that is different than the method name as the third argument. It is important to defi ne the
function and its implementation using the alias and not the method name. Also, in PHP the class
name is automatically prepended to the alias.

It is possible to make a method abstract. Because abstract methods don’t have an implementation it
is necessary to defi ne them in the function table a little differently. To do that it is necessary to dive
a little bit deeper into the macros. Both PHP_FE and PHP_ME eventually expand out to reveal that

563120c08.indd 352563120c08.indd 352 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Objects and Interfaces ❘ 353

they are shortcuts for the function ZEND_FENTRY. To defi ne an abstract method, the function entry
table ends up looking something like this:

ZEND_ACC_ABSTRACT(method_name, NULL, NULL, ZEND_ACC_PUBLIC)

For the previous code, consider:

➤ The fi rst argument is the method name but it is the second argument that references the
actual function implementation or, because there isn’t any implementation, a value of NULL
instead. The second parameter is automatically derived from the method name when using
PHP_ME or from the function name when using PHP_FUNCTION.

➤ The second argument is the new one. It is always NULL for abstract methods.

➤ The third argument is the argument info array, which is NULL because the sample method
here doesn’t have any arguments.

In all likelihood at some point it will be necessary to call a method of a class. There is a section on
that later.

Using Properties

Declaring a property should be done when the class is initialized (either in the MINIT function or in
a helper function like it was suggested in the previous section).

The declaration takes the class entry, the property name, the length of the string, the default value,
and the visibility:

zend_declare_property_string(helloworld_ce_ptr, “bar”, 3,
 “default value”, ZEND_ACC_PUBLIC TSRMLS_DC);

By now the meaning of the TSRMLS_DC constant should be clear. The preceding declaration is for
a string. Like in other parts of the API there are corresponding functions for the other data types.
However, it is possible for properties to change type (temporarily) at run time.

Setting and getting properties is similar to the way it is done with arrays. Setting a property to a
double is done with:

zend_update_property_double(_this_ce, _this_zval, property_name,
 strlen(property_name), l TSRMLS_CC)

Getting properties returns a zval so it will most likely be wrapped around something like Z_
VALSTR_P. The second to last parameter indicates whether a warning should be thrown if the prop-
erty doesn’t exist (1 for silent and 0 for verbose):

Z_LVAL_P(zend_read_property(_this_ce, _this_zval, property_name,
 strlen(property_name), 1 TSRMLS_CC))

Depending on how you generated your class there may be predefi ned macros in the header that wrap
common property getting functionality. Check the header to see if they exist for your extension. If not,
it is useful to defi ne some helpful macros because it can get tedious manually passing all the parameters.

563120c08.indd 353563120c08.indd 353 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

354 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

Of course, properties can be declared as static using ZEND_ACC_STATIC just like with methods.
The read and write functions for properties have static variants that don’t require an object zval
to be passed to them.

Using Class Constants

Classes can also have class-specifi c constants. As mentioned in Chapter 1, class constants are always
public and static. They are defi ned during class initialization:

zval *tmps;

tmp = (zval *) malloc(sizeof(zval));
INIT_PZVAL(tmp);
ZVAL_LONG(tmp, 255);
zend_symtable_update(&(helloworld_ce_ptr->constants_table), “MY_PI”,
 8, (void *) &tmp, sizeof(zval *), NULL);

The code directly references the symbol table for constants. Incidentally, symbol tables are also
used for a variety of other things including storing the variables that are available in the global PHP
scope. They are implemented behind the scenes using hash tables and can, in fact, be referenced just
like a normal hash table.

The symbol table expects a zval so one must be initialized prior to being inserted into the table. This
is one of the cases where malloc is appropriate to use instead of emalloc because the latter will
incorrectly get cleaned up by the garbage collector between requests.

Although there isn’t anything preventing it, it is not a good idea to change the constants after
initialization.

You have two ways to use the constant in your application:

➤ The simplest is to just defi ne it via the preprocessor and reference it in the code, which will
work fi ne because the constants should never change.

➤ Another approach would be to use zend_symtable_find:

 zend_symtable_fi nd(&(helloworld_ce_ptr->constants_table), key,
 strlen(key), (void **)&data);

The function behaves the same way as zend_hash_find which has special macros to handle
numeric symbol keys.

Creating an Interface

Interfaces are almost identical to classes in how they are defi ned. The difference lies in how they are
registered and how methods are defi ned. Also, as you probably know from PHP, an interface cannot
have properties. In addition, all interface methods are public and do not have implementations.

Follow these basic steps:

1. Defi ne the interface as you normally would for a class, except replace the call to zend_reg-
ister_internal_class to:

helloworld_ce = zend_register_internal_interface(&ce, TSRMLS_CC);

563120c08.indd 354563120c08.indd 354 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Objects and Interfaces ❘ 355

2. Interfaces can also extend other interfaces. The code to extend the class sheds some insight
into the inner workings of object-oriented programming in PHP. First attempt to fi nd the
class entry for the interface that is being extended and then, if it is found, extend it:

if (SUCCESS == zend_hash_fi nd(CG(class_table), “interface_to_extend”,
 8, (void **)&parent_ce)) {
 if (parent_ce) {
 zend_do_inheritance(new_interface_ce_ptr, *parent_ce TSRMLS_CC);
 }
}

3. Interface methods are abstract so defi ning one is very similar to defi ning an abstract method
in a traditional class. Enter it into the method table but don’t implement it:

ZEND_FENTRY(interfaceMethod, NULL, NULL,
 ZEND_ACC_ABSTRACT | ZEND_ACC_INTERFACE | ZEND_ACC_PUBLIC)

4. Implement the interface in a class. It is actually two steps; the second is to implement all the
methods in the interface — which by now should be clear — but fi rst the class must be speci-
fi ed as an implementation of the interface:

zend_class_entry **tmp;
if (SUCCESS == zend_hash_fi nd(CG(class_table), “interface_name”,
 8, (void **)&tmp)) {
 zend_class_implements(hellworld_ce_ptr TSRMLS_CC, 1, *tmp);
}

It is possible to implement more than one interface at once. The second to last parameter is the num-
ber of interfaces being implemented. The function itself is variable length.

As you may have guessed from the code, the interface does not need to be in the same extension as the
class. It will try to locate the interface at run time. Not having an interface affects polymorphism but it
does not affect any of the other functionality of the class, so if the interface is not found it is acceptable
to ignore it or issue a warning. However, it is still important to remember to indicate dependencies.

Interacting with Objects

All the classes are immediately available in PHP. Often it is useful, though, to access the class from
within a PHP extension. For the rest of the extension writing process, everything that can be done
in PHP can also be done in the extension.

Identifying Objects

Objects are identifi ed by class entries. If the object is local to the extension, there is a readily avail-
able pointer to the class entry. For objects of external or unknown types, ways exist to retrieve the
class entry:

zval *my_obj;
zend_class_entry *ce;
...
ce = zend_get_class_entry(my_obj TSRMLS_CC);

/* or */
ce = Z_OBJCE_P(my_obj);

563120c08.indd 355563120c08.indd 355 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

356 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

It is also possible to retrieve the class entry given only a class name:

zend_class_entry **ce;
ce = zend_lookup_class(class_name, strlen(class_name), &ce);

Once you have one or two class entries there is a lot you can do. One of the most useful things to do
is to identify and check for relationships between classes. The class entry and the zval can both be
used to retrieve the class name for string comparison or whatever else it may be needed for:

char *class_name;
chat *class_name_len;
zend_get_object_class_name(my_obj, &class_name, &class_name_len);

class_name = emalloc(class_entry->name_len*sizeof(char *));
memcpy(class_name, class_entry->name, class_entry->name_len);

The fi rst few lines of code get the class name given a zval, and the second few get the class name
given a class entry object. However, it is not a good idea to do testing on the class name directly.
After all, polymorphism comes into play. To properly check you can use instanceof instead:

zend_bool is_instance = instanceof_function(class_entry_1, class_entry_2);

It is necessary to test classes ahead of time in some cases to emulate type-hinting behavior and
throw a warning if the object is not appropriate for a specifi c situation.

Calling Methods

Calling methods on objects doesn’t actually require a class entry. Instead it only requires a zval for
the class. There are two main functions for calling methods — one is for methods with zero param-
eters and the other is for methods with one or more parameters:

zend_call_method_with_0_params(&my_obj, NULL, NULL, “method_name”, &return_val);

There are also macros for one, two, and three parameters. The return value is stored in the last
parameter (which is a zval pointer). The second parameter is for a class entry, which is used for
static methods, and the third is for a function proxy if you are using one.

Using all the tools from this chapter it is easy to accept a mysqli_result object and loop through
all the rows:

zval *result, *row;
...

zend_call_method_with_0_params(&result, NULL, NULL, “fetch_assoc”, &row);

while (Z_TYPE_P(row) != IS_NULL) {
 HashTable *realRow = Z_ARRVAL_P(row);

 /* do something with the row */

 zval_dtor(row);
 zend_call_method_with_0_params(&result, NULL, NULL, “fetch_assoc”, &row);
}

563120c08.indd 356563120c08.indd 356 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Constants, INI Directives, and Globals ❘ 357

CONSTANTS, INI DIRECTIVES, AND GLOBALS

Even though the code generators make it look easy, quite a few steps are required for defi ning con-
stants, INI directives, and globals. The following sections go into a little bit more detail about each
as well as demonstrate how to create them from scratch.

The previous sections also left out a very important part: how to access the values from within an
extension. This section covers that as well.

Constants

Constants are the simplest to deal with. Typically, because a constant doesn’t change, it is good
practice to defi ne the constant in the header. Preprocessor defi nitions in C, of course, look like this:

#define MY_PI 3.14

The next step is to register the constants. After everything in this chapter, something is fi nally going
to go into the module initialization function. In the MINIT call add this code:

REGISTER_DOUBLE_CONSTANT(“MY_PI”, 3.14, CONST_PERSISTENT | CONST_CS);

The third argument consists of the fl ags for creating the constant. Most of the time the fl ags are
identical to the previous example. The fl ags indicate that the constant is persistent and case sensi-
tive. If you were to have a non-persistent constant you want to register it in the request initialization
function instead.

It is also possible to register a constant within a PHP namespace. The macros are almost the same as
before, only the name is slightly different and the fi rst argument is now the namespace:

REGISTER_NS_DOUBLE_CONSTANT(“namespace_name”, “MY_PI”, 3.14,
 CONST_PERSISTENT | CONST_CS);

Finally, it is sometimes desirable to load the constant into a zval at run time. You have two ways to
do this. The fi rst is if you happened to defi ne the constant using a C preprocessor directive you can
allocate a new standard zval and populate it. The other option is to tell Zend to fetch it:

zval *my_const;
zend_get_constant(constant_name, strlen(constant_name), my_const);

That is all there is to constants. It is not necessary to free the constants when the extension exits.
Constants are actually stored in a global hash table, and the garbage collector will take care of free-
ing all the constants for you.

Globals and INI Directives

Globals and INI directives both have the same root methods of defi ning and accessing them. The
major difference is that INI directives must be registered with PHP and can easily be overridden and
accessed by the PHP scripts.

563120c08.indd 357563120c08.indd 357 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

358 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

Defi ning Globals and INI Directives

Each is stored in a structure that must be defi ned in the header of the extension using special mac-
ros. When using extension generating scripts the structure is probably already there. The ext_skel
script puts some dummy values in and CodeGen_PECL puts in and registers whatever values you
specifi ed in the XML fi le. The ext_skel structure looks like this:

ZEND_BEGIN_MODULE_GLOBALS(andrew)
 long global_value;
 char *global_string;
ZEND_END_MODULE_GLOBALS(andrew)

What the code is actually doing isn’t creating a structure in memory but rather a type of structure
that can be used to store the globals. That is very important later in the section.

They are always accessible from anywhere within your extension and they stick around for the
lifetime of your extension. If PHP is compiled with thread safety, the globals should also be thread-
specifi c.

If any of the variables also happen to be INI entries, it is necessary to register them as such some-
where in the C fi le:

#ifndef ZEND_ENGINE_2
#define OnUpdateLong OnUpdateInt
#endif

PHP_INI_BEGIN()
 STD_PHP_INI_ENTRY(“helloworld.greeting”, “default greeting”, PHP_INI_PERDIR,
 OnUpdateString, greeting, zend_helloworld_globals, helloworld_globals)
PHP_INI_END()

/* in MINIT */
REGISTER_INI_ENTRIES();

After all the globals are defi ned and the INI entries are registered it is time to initialize everything.
The initialization takes place in the module initialization function (MINIT). It is typical to also create
helper functions to initialize and free the globals:

ZEND_INIT_MODULE_GLOBALS(helloworld, php_helloworld_init_globals,
 php_helloworld_shutdown_globals);
REGISTER_INI_ENTRIES();

If you don’t have one or both of the helper functions you can simply pass NULL to the macro instead.

There isn’t any need to explicitly free the global values (although if there is any memory allocated
for the globals it should be freed in the shutdown_globals function). However, INI directives
require an additional step to deregister them:

UNREGISTER_INI_ENTRIES();

563120c08.indd 358563120c08.indd 358 2/18/10 9:10:14 AM2/18/10 9:10:14 AM

Constants, INI Directives, and Globals ❘ 359

Globals do stick around for the entire time that the extension is loaded. As a result, if PHP is run-
ning attached to a web server, changing a global in one request causes subsequent requests on that
thread to have the same value. However, you can easily change the default behavior.

As mentioned earlier in the chapter, RINIT is a function that is called at the beginning of every
request. To create a global that is reset at the beginning of the request it is necessary to set them in
that function.

Accessing Globals

Of course, having all these globals around is useless if they can’t be accessed. Globals can’t be
accessed from PHP unless you write a wrapper function or register them as an INI entry.

Although it is possible to access the globals directly, the name of the global structure is obscured
by macros and also, there are various threading issues to consider. Usually, accessing the globals is
also done through macros. The standard code to access the globals looks like this (assuming that the
extension name is helloworld):

TSRMG(helloworld_globals_id, zend_helloworld_globals *, global_name)

The actual meaning of the macros will make more sense soon. Remember that the globals are C
data types, not zvals, so if you wanted to return a global you would do something like this:

RETURN_LONG(HELLOWORLD_G(my_global_long));

…or if you want to write a value, simply:

HELLOWORLD_G(my_global_long) = 1234;

Globals are the only thread-safe way (without reinventing some wheels that Zend already made) to
store values.

True Globals and Thread Safety

The entire chapter up to this point has been brushing off some important concepts and then sav-
ing them for right now. The Zend engine handles all the thread safety in the application using an
abstraction layer called the Thread Safe Resource Management (TSRM) layer. You’ve already seen it
several times in this chapter, the most recent being at the end of the previous section.

It is all part of a package called Zend Thread Safety (ZTS). Of course, a good portion of servers are
not compiled with thread safety, so sometimes it is necessary to write two versions of code. That is
why there are so many macros dealing with thread safety. Revisiting previous macro defi nitions will
show #ifdef ZTS as a way of conditionally compiling depending on whether thread safety is enabled.

In actuality, if Zend is compiled thread safe, the global structures are initialized once per thread and
the TSRMG macro takes care of retrieving pointers to the value. The macro does, however, rely on the
variable tsrm_ls being defi ned. For that, it is necessary to recall the beginning of the chapter when
defi ning functions.

563120c08.indd 359563120c08.indd 359 2/18/10 9:10:15 AM2/18/10 9:10:15 AM

360 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

Hopefully, when you defi ned functions, it was clear that in one way or another one of the TSRMLS
values is passed to a function. Return to the section “Helper Functions” for some notes on how they
are used. Their only purpose is to pass global variable storage from one function call to another.
Forgetting to pass this value to a function causes the macro to retrieve the globals to break.

If for whatever reason tsrm_ls wasn’t sent into a function it is possible to fetch it explicitly using
the TSRMLS_FETCH macro, which evaluates to:

void ***tsrm_ls = (void ***) ts_resource_ex(0, NULL);

Of course, on occasion it is desirable to have a global that is available in all threads. For that, there
are static global variables. You won’t typically defi ne static global variables (sometimes referred to
as True Global Resources) in the header. Instead they are usually defi ned near the top of the C fi le:

static int hello_world_true_global = 0;

Simple globals are fairly problem free; however, as soon as a global gets more complex it runs
into problems. It is important to take proper care when using static global variables. The proper
approach is to designate a critical section using a mutex to lock a block of code.

Locking memory can become tricky, particularly because different operating systems have different
methods of doing it. Fortunately, Zend provides a convenient way of doing it with tsrm_mutex lock:

ifdef ZTS
tsrm_mutex_lock(example_mutex);
endif

/* Access to shared resources goes here */

ifdef ZTS
tsrm_mutex_unlock(example_mutex);
endif

And don’t forget to defi ne a static global variable for your mutex somewhere near the top of your C fi le:

ifdef ZTS
static MUTEX_T example_mutex = null;
endif

You must also allocate your mutex (normally in the MINIT function) and free it when the extension
is done with it (normally in MSHUTDOWN):

ifdef ZTS
example_mutex = tsrm_mutex_alloc();
endif
...

ifdef ZTS
tsrm_mutex_free(example_mutex);
endif

563120c08.indd 360563120c08.indd 360 2/18/10 9:10:15 AM2/18/10 9:10:15 AM

Describing an Extension ❘ 361

The mutex locking can only be done if ZTS is enabled so there is a little extra code to do the check-
ing. Locking manually — in the Zend engine, at least — is typically only needed for very specialized
tasks, many of which involve database servers. So before manually locking to access global static
variables ask, “Can this be done with Zend global variables instead?”

DESCRIBING AN EXTENSION

The easiest to overlook, but still important aspect of writing a PHP extension is implementing the
info function. You may recall from the CodeGen_PECL section and the section on adding functions
that there is one internal function that hasn’t been mentioned yet: MINFO.

The info function’s job is to output information about an extension. The function does this by using
built-in functions designed specifi cally for that purpose in addition to the standard output function-
ality. The biggest reason for the wrappers is that there are two possible places that the output from
the MINFO function can go:

➤ Via a call to <?php phpinfo() ?>

➤ On the command line with php --info

The built-in functions simplify the process of outputting to both types of media (terminal and
HTML).

Without implementing the function, users of the extension cannot quickly verify if the extension is
installed or fi nd out how it is confi gured. If the extension is part of a software distribution you also
miss an important branding opportunity.

If you plan on distributing your extension at all it is important to provide information about it.

Printing a Description

Although not all extensions do, they can print blocks of text in the PHP information output. Typical
information to display includes copyright information, credits, and descriptions of the extension.

The basic php_printf functionality works as expected even in a MINFO function. However, PHP
also provides ways to specify boxes around content. The CodeGen_PECL script generates a block
for you with information about the extension maintainers and basic version information; however,
adding new boxes manually is easy. They all follow the same basic format:

php_info_print_box_start(0);
php_printf(“<p>Content goes here…</p>”);
...
php_info_print_box_end();

The fi rst and only parameter passed to php_info_print_box_start is for the box type fl ag (differ-
ent boxes have different background colors). A value of zero produces a normal box with the same
background color as a table cell and a value of 1 produces a header box with the header background
color. It is rare to see a 1 in this parameter.

563120c08.indd 361563120c08.indd 361 2/18/10 9:10:15 AM2/18/10 9:10:15 AM

362 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

Building a Table

Tables with extension information are one of the particularly helpful uses of the information page.
Because the tables are printed differently in HTML and on the command line it is necessary to use
wrapper functions instead. The two fl avors of output look like this:

Extname Support => enabled
Extname Version => 0.1

…and, in the HTML format using phpinfo(), this:

<table border=”0” cellpadding=”3” width=”600”>
 <tr class=”h”><th>Extname support</th><th>enabled</th></tr>
 <tr><td class=”e”>Extname Version </td><td class=”v”>0.1 </td></tr>
</table>

By convention the fi rst line is always an indicator as to whether or not the extension is enabled and
it is always a header (<th> instead of <td>) row.

The rest of the rows are great for information about the module, such as what features are compiled
into it and which versions of third-party libraries it is linked against. The fi rst step is to start the
table and then print each row. Once you are done, you can close the table in much the same way
that it was opened:

php_info_print_table_start();
php_info_print_table_header(2, “Extname Enabled”, “enabled”);
php_info_print_table_row(2, “Extname Version”, “0.1”);
php_info_print_table_end();

The fi rst parameter is the number of columns to expect. The tables can be any number of columns,
but it is a good idea to stick with the same number throughout. The typical value is two (for a key/
value pair).

INI directives are slightly different. They have three columns instead: one for the label, one for the
master value of the INI directive, and one for the local value. Fortunately, it is very easy to print the
table for all of the INI directives:

DISPLAY_INI_ENTRIES();

That’s all there is to it. Be sure to take a look at the example extension for more information.

Specifying a Logo

It is not very common to specify a logo with a PHP extension. That may be because a lot of exten-
sions are small-time projects and don’t have their own logo or it may be because logos are very
tedious to implement manually.

The easiest way to create the logo code is by using a script like CodeGen_PECL; however, it is not
the only way. The source code that comes with this chapter has a simple script that generates the
encoded image data when given a fi lename.

563120c08.indd 362563120c08.indd 362 2/18/10 9:10:15 AM2/18/10 9:10:15 AM

Describing an Extension ❘ 363

The image needs to be stored in memory as binary data. The easiest way to specify that in C is to
convert the image to a comma-separated byte-array, which is then assigned to a variable.

The logo is then registered with a GUID (Globally Unique Identifi er). When handling a request
for an information page, PHP looks for a ?=GUID. When PHP encounters one it returns the image
directly instead of the requested fi le. You can use this same technique to display the PHP and Zend
logos on the info pages so each GUID must be unique at least to that degree.

Once all the pieces are there, you can follow these fi ve steps to get the logo to display:

1. Include the appropriate header fi les.

2. Store the image data in a variable.

3. Register the logo.

4. Make sure that the MINFO function prints out an image tag.

5. Unregister the logo.

Because the logo code is not in one of the standard extension headers it must be included with
#include “php_logos.h”. The header fi le includes a few basic functions. The fi rst needs to be put
in the extension’s MINIT code:

php_register_info_logo(“FULL_GUID_FOR_LOGO”, “”, my_logo, 1234);

Regarding this code:

➤ The fi rst parameter is the GUID. Either make one up or use a GUID generator script (the
second option is better). It will be used in a couple places so it may be a good idea to defi ne a
constant.

The second is the mime type. In this case the code is forcing the browser to auto-detect it.➤

➤ The third and fourth parameters are the actual image data followed by the size of the data.
These two are the most diffi cult pieces of information to get. Before getting past this step the
size needs to be correct and my_logo needs to be defi ned somewhere and initialized with the
image information. The next step is to make sure that the MINFO function prints the data:

php_printf(“<img src=\””);
if (SG(request_info).request_uri)
 php_printf(“%s”, SG(request_info).request_uri);
php_printf(“?=%s”, “FULL_GUID_FOR_LOGO”);
php_printf(“\” style=\”float: right; border: 0;\” alt=\”Hello World Logo\””);

When the module is shut down you must unregister the logo:

php_unregister_info_logo(“FULL_GUID_FOR_LOGO”);

Your extension should now have a logo fl oating off to the right when the PHP info page is loaded.

563120c08.indd 363563120c08.indd 363 2/18/10 9:10:15 AM2/18/10 9:10:15 AM

364 ❘ CHAPTER 8 WRITING PHP EXTENSIONS

SUMMARY

There is so much to writing PHP extensions and this chapter has only scratched the surface. Some
of the things not covered in this book include exception handling, variable argument functions, call-
back functions, closures, and debugging. However, this chapter should put you well on your way to
developing great PHP extensions.

The beginning of the chapter focused on scripts used to generate extensions. It is strongly recom-
mended that you use one. CodeGen_PECL is by far the more robust of the two; however, any good
code generator is useful for creating directory layouts and fi le structures that conform to the PECL
community standards.

Here are a few tips:

➤ Generated code is great but take it with a grain of salt. Always understand what the code is
doing and if something seems out of place, don’t hesitate to fi x it.

➤ Watch memory usage. Make sure to free any variables that you allocate, but don’t double
free any variables or free variables that you didn’t personally allocate. Doing that is almost
guaranteed to cause a segmentation fault.

➤ Don’t hesitate to explore the PHP and Zend source code. It is full of useful comments and the
bundled extensions have many examples of how to use certain functions.

The PECL web site is a great place to fi nd notes on coding standards and PECL specifi cations. It
also has notes on documentation as well, so it is a good place to go once you’re up on your feet and
you want to learn more.

The main PHP source directory also has numerous text documents on everything from confi gura-
tion to coding standards. When you feel ready, the PECL mailing list is a good place to discuss your
project or patches and the IRC chat room is fairly active.

563120c08.indd 364563120c08.indd 364 2/18/10 9:10:15 AM2/18/10 9:10:15 AM

Full-Text Searching

WHAT’S IN THIS CHAPTER?

➤ Understanding and using MySQL FULLTEXT indexes

➤ Installing, confi guring, and using the more effi cient Sphinx Full-Text

Search Index for full-text searching

Developing PHP applications that use Sphinx➤

Searching text is one of the most common functions of a web site and a must-have for
RDBMSs. Sometimes, developers will search text in the database using the LIKE operator, but
this is very ineffi cient, especially if there is a large data set involved. This is where full-text
search engines become a necessity.

This book covers two means of supporting full-text search functionality using MySQL:
FULLTEXT indexes, which are part of the functionality of MySQL, and the Sphinx Full-Text
Search Engine, an open-source project that is designed to work well with MySQL.

MYSQL FULLTEXT INDEXES

MySQL supports FULLTEXT indexes (which are pretty much b-tree indexes at least in terms of
behavior) that are created against columns containing text. These indexes are built by index-
ing words found in the text fi elds using a pointer to the word in the actual location where it
exists, thus eliminating stop words such as the, and, and so on. For a complete list of default
stop words see http://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html.

When the index is used in a search, the search term is matched against the index. The location
is known because the index provides a pointer to the text where the term is physically located.

9

563120c09.indd 365563120c09.indd 365 2/18/10 9:10:28 AM2/18/10 9:10:28 AM

366 ❘ CHAPTER 9 FULL-TEXT SEARCHING

Creating a FULLTEXT index is as easy as creating a regular index. You can specify it when you create
a table or when you use an existing table:

mysql> CREATE TABLE books_text (
 -> book_id int(8) NOT NULL DEFAULT 0,
 -> title varchar(64) DEFAULT ‘’,
 -> content text,
 -> PRIMARY KEY (book_id),
 -> FULLTEXT INDEX title (title),
 -> FULLTEXT INDEX content (content)) ENGINE=MyISAM;

FULLTEXT indexes are only supported with tables created using either the
MyISAM or Maria storage engines.

Or, alternatively:

mysql> CREATE FULLTEXT INDEX title ON books_text (title);
 mysql> CREATE FULLTEXT INDEX content ON books_text (content);

Once these indexes are created, they are ready for use.

To use FULLTEXT indexes, you utilize the FULLTEXT search function MATCH() ... AGAINST. Its syn-
tax usage is:

MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
 {
 IN BOOLEAN MODE
 | IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
 | WITH QUERY EXPANSION
 }

The search modifi er values are as follows:

➤ BOOLEAN MODE: Uses a search string that has its own syntax containing the terms to be
searched for. This syntax allows word weighting, negation, and/or, and so on, omitting
stop words.

➤ NATURAL LANGUAGE MODE: Uses a string as is, without special syntax, and searches for the
specifi ed string. Words that are present in more than 50 percent of the rows are not matched.

➤ NATURAL LANGUAGE MODE WITH QUERY EXPANSION: Basically the same as NATURAL
LANGUAGE MODE except the results from the search of the initial search terms aren’t returned
to the user, but are added to the original search terms, which are then searched again. These
results are then returned to the user. This is also known as bling query expansion. An exam-
ple of this is if the initial search term was database and returned results with MySQL and
Oracle, which then were searched to return results containing database, Oracle, or MySQL.

563120c09.indd 366563120c09.indd 366 2/18/10 9:10:28 AM2/18/10 9:10:28 AM

MySQL FULLTEXT Indexes ❘ 367

Using MySQL FULLTEXT Indexes

MySQL provides a sample database that you can load into any schema on your instance of MySQL.
It’s called sakila, and you can fi nd it on MySQL’s developer web site at http://dev.mysql.com/
doc/sakila/en/sakila.html.

This database contains a table, complete with data, called films_text, which has FULLTEXT indexes
used for demonstration of FULLTEXT indexes in this book.

The best way to see how to use FULLTEXT is to provide several examples of wacky fi lms as illustrated
in the next two sections.

Natural Language Mode

An example of Natural Language mode is as follows:

mysql> SELECT film_id, title FROM film_text
 -> WHERE MATCH(title,description)
 -> AGAINST(‘Frisbee’ IN NATURAL LANGUAGE MODE) LIMIT 5;
+---------+---------------+
| film_id | title |
+---------+---------------+
308	FERRIS MOTHER
326	FLYING HOOK
585	MOB DUFFEL
714	RANDOM GO
210	DARKO DORADO
+---------+---------------+

Boolean Mode

The following example matched term must have technical and writer:

mysql> SELECT film_id, title, description FROM film_text
 -> WHERE MATCH(title,description)
 -> AGAINST(‘technical +writer’ IN BOOLEAN MODE) LIMIT 5\G
*************************** 1. row ***************************
 film_id: 19
 title: AMADEUS HOLY
description: A Emotional Display of a Pioneer And a Technical
Writer who must Battle a Man in A Balloon
*************************** 2. row ***************************
 film_id: 43
 title: ATLANTIS CAUSE
description: A Thrilling Yarn of a Feminist And a Hunter
who must Fight a Technical Writer in A Shark Tank
*************************** 3. row ***************************
 film_id: 44
 title: ATTACKS HATE
description: A Fast-Paced Panorama of a Technical Writer
And a Mad Scientist
who must Find a Feminist in An Abandoned Mine Shaft
*************************** 4. row ***************************
 film_id: 67

563120c09.indd 367563120c09.indd 367 2/18/10 9:10:28 AM2/18/10 9:10:28 AM

368 ❘ CHAPTER 9 FULL-TEXT SEARCHING

 title: BERETS AGENT
description: A Taut Saga of a Crocodile And a Boy who
must Overcome a Technical
Writer in Ancient China
*************************** 5. row ***************************
 film_id: 86
 title: BOOGIE AMELIE
description: A Lacklusture Character Study of a Husband
And a Sumo Wrestler who must Succumb a Technical Writer
in The Gulf of Mexico

The following example uses the Boolean mode where the title or description must contain the term
technical but not writer:

mysql> SELECT film_id, title, description FROM film_text
 -> WHERE MATCH(title,description)
-> -> AGAINST(‘technical -writer’ IN BOOLEAN MODE) LIMIT 5\G
Empty set (0.00 sec)

In this Boolean mode, the title or description must contain the exact phrase “Fight a Pastry Chef”:

mysql> SELECT film_id, title, description FROM film_text
 -> WHERE MATCH(title,description)
 -> AGAINST(‘”Fight a Pastry Chef”’ IN BOOLEAN MODE) LIMIT 5\G
*************************** 1. row ***************************
 film_id: 11
 title: ALAMO VIDEOTAPE
description: A Boring Epistle of a Butler And a Cat who must Fight a Pastry Chef
in A MySQL Convention

MySQL FULLTEXT Index Issues

You should be aware of the various issues you might encounter when using FULLTEXT indexes. These
primarily have to do with performance. FULLTEXT indexes are very easy to use, and are part of
MySQL functionality, but they can also affect a table’s performance.

➤ FULLTEXT indexes minimum word length (ft_min_word_len) limit is 3. This can be frustrat-
ing if you wish to index on smaller words.

➤ Searching FULLTEXT indexes is limited to only the columns that you pre-grouped with an
index.

➤ FULLTEXT query language is limited when compared to more recent fulltext indexing
solutions

➤ FULLTEXT indexes can be used only with tables created using the MyISAM storage engine.
This is fi ne if you are using mostly MyISAM or if you have no problem with multiple stor-
age engine types for your database. However, if you want to use InnoDB as the sole storage
engine for all tables in a schema or an entire database, a FULLTEXT index prevents you from
doing so on the table or tables on which you want to have that index.

563120c09.indd 368563120c09.indd 368 2/18/10 9:10:28 AM2/18/10 9:10:28 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 369

For some implementations, the very table that contains text you want to search
is large and you might actually want the benefi ts that InnoDB provides, particu-
larly with regard to recovery time in case of a crash. Repairing MyISAM tables
can take a long time on large tables that are corrupt: phones will ring and bosses
will be unhappy while you have the table out of use during table repair! Given
this, you are faced with using FULLTEXT indexes but not InnoDB, or vice versa
for the table containing the text. This can be a limitation particularly if you
need to use InnoDB because it is a transactional table type.

➤ FULLTEXT indexes are updatable indexes. When a new record is inserted, updated, or deleted
from a table that is using FULLTEXT, the index must be modifi ed each time. This can slow
down performance of queries against this table — especially the larger the table gets — both
in terms of the time it takes to update the index and the fact that the table is locked for each
modifi cation, thus preventing other modifi cations from occurring.

➤ FULLTEXT indexes also do not work well with ideographic languages (such as Chinese,
Japanese, Korean, and so on). Because these languages do not have word delimiters it’s
impossible to determine where words begin and end.

A BETTER SOLUTION: THE SPHINX FULL-TEXT SEARCH ENGINE

Sphinx (an acronym for SQL Phrase Index) is a full-text search engine, distributed under GPL ver-
sion 2, developed by Andrew Aksyonoff. It closely integrates with MySQL, Drizzle, PostgreSQL,
MS SQL, Oracle, Firebird and any other database that supports ODBC.

Sphinx is a standalone search engine that provides fast, effi cient, and relevant searching. For its
data sources, it uses SQL databases (MySQL, Drizzle, PostgreSQL, or even any RDBMS that has
an ODBC interface) or XML pipe (reading in XML streams and creating indexes based off the con-
tent). Table 9-1 lists the several utilities and programs that come with it:

TABLE 9-1: Sphinx Utilities and Programs

UTILITY OR PROGRAM DESCRIPTION

Indexer The program that builds indexes using a data source such as MySQL.

Search A command-line utility program that searches an index directly. You use this

for testing searches and general index functionality.

Searchd The daemon that provides the search functionality for Sphinx clients, han-

dling inputs or search requests, searching indexes, and returning results of

searches. This daemon is what makes distributed indexes possible, which

are explained in more detail later.

continues

563120c09.indd 369563120c09.indd 369 2/18/10 9:10:28 AM2/18/10 9:10:28 AM

370 ❘ CHAPTER 9 FULL-TEXT SEARCHING

UTILITY OR PROGRAM DESCRIPTION

SphinxQL The combination of searchd now having support for the MySQL binary net-

working support as well as a small sub-set of SQL

Sphinxapi A set of searchd client API libraries for use with various scripting languages

(PHP, Perl, Python, Ruby).

Spelldump A command-line tool to extract the items from an ispell or MySpell (Open

Offi ce) format dictionary for index customization.

Indextool A command-line utility for dumping information pertaining to an index as

well as being able to check index consistency.

Sphinx has its own Sphinx API, which has bindings for various programming languages such
as PHP, Perl, Python, Java, and Ruby. Also, the Sphinx distribution contains the Sphinx Storage
Engine, which can be used internally with MySQL to provide even further integration with MySQL.

Unlike MySQL FULLTEXT indexes, the steps to retrieve data from the database after using the Sphinx
full-text index are a somewhat manual process. The index is separate from MySQL, being served out
with a network server, searchd, versus being a component of MySQL. The basic idea has been that
with Sphinx, you perform a search against an index that returns one or more IDs of the relevant docu-
ments, which corresponds to a record in the database. In previous versions of Sphinx, it would be this
list of IDs that you’d use to retrieve the actual string data from the database. You would also be able to
retrieve numeric columns from Sphinx. However, with the current release of Sphinx and later, you can
retrieve strings from Sphinx. In some cases, you can eliminate the need to touch the database.

Another difference in overall functionality between Sphinx and MySQL FULLTEXT indexes is that
Sphinx indexes are separate indexes from MySQL, generated by an indexer program rather than
being internal MySQL indexes, which are automatically created and updated upon the execution of
data-modifi cation statements (insert, update, delete). Not being an internal component to MySQL
might sound like a negative, but this actually works out as a positive; it allows the decoupling of
a fast database such as MySQL from full-text index generation or updates, which with FULLTEXT
indexes results in poor write performance. Sphinx also allows you to decouple the database sharding
from full-text index sharding. With Sphinx, the database can execute data-modifi cation statements
on a database table without the overhead of having to generate an index, hence better write perfor-
mance. This all makes full-text indexing much easier than before!

Sphinx Confi guration and Installation

Installing Sphinx is a very straightforward task.

In this book, just as a MySQL installation requires the setup of a mysql user and
group, the Sphinx installation described here utilizes a sphinx user and group.
This is not a requirement but a preference by the author and a way of organiz-
ing Sphinx into its own user-space.

TABLE 9-1 (continued)

563120c09.indd 370563120c09.indd 370 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 371

The steps are as follows:

1. Logged in as the root user or using sudo, create a sphinx user and group on the host:

root# groupadd sphinx

root# useradd -d /usr/local/sphinx -g sphinx -s /bin/bash -m sphinx

2. Download the latest Sphinx source code from the Sphinx web site (http://sphinxsearch
.com/downloads.html) and untar/gzip the downloaded fi le to the directory of choice for
building software:

shell> wget http://www.sphinxsearch.com/downloads/sphinx-0.9.9.tar.gz
shell> tar xvzf sphinx-0.9.9.tar.gz

3. Change into the newly created sphinx-version directory and run the confi gure script, specify-
ing the install prefi x as the home directory of the sphinx user; enabling the option --enable-
id64 allows Sphinx indexes to work with 64-bit document IDs (BIGINT UNSIGNED) in your
data source.

shell> cd sphinx-0.9.9
shell>./confi gure --prefi x=/usr/local/sphinx --enable-id-64

4. Compile and install Sphinx:

radha:sphinx-0.9.9 patg$ make

And if there are no errors during compile, run this:

radha:sphinx-0.9.9 patg$ sudo make install
radha:sphinx-0.9.9 patg$ sudo chown -R sphinx /usr/local/sphinx

5. Set up the sphinx.conf confi guration fi le. This requires that you sudo to the sphinx user,
which places you in the sphinx user’s home directory, /usr/local/sphinx, where Sphinx
was installed. In the sphinx user’s home directory, there is a subdirectory etc/, containing
several confi guration fi les. A copy of the fi le sphinx.conf.dist is used as a starting point so
copy sphinx.conf.dist to sphinx.conf:

radha: $ sudo su - sphinx

radha:sphinx sphinx$ ls etc
example.sql sphinx-min.conf.dist sphinx.conf.dist
radha:sphinx sphinx$ cp etc/sphinx.conf.dist etc/sphinx.conf

With the editor of choice, edit etc/sphinx.conf. This requires some explaining of the sphinx.conf
confi guration fi le.

Sphinx.conf Settings

The sphinx confi guration fi le comprises several sections, which the following sections discuss. This
confi guration fi le can be found in the code for this chapter as sphinx.conf.

563120c09.indd 371563120c09.indd 371 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

372 ❘ CHAPTER 9 FULL-TEXT SEARCHING

Sphinx Data Sources

The Sphinx confi guration fi le, sphinx.conf, contains various data sources. These sources are
defi ned as:

source src1 {
 sql_host = localhost
 sql_user = test
 sql_pass =
 sql_db = test
 sql_port = 9312
 sql_query = select id, content FROM foo_text;

 ... numerous other parameters, options ...

}

Data sources have an inheritance scheme. For instance, in this example, src1 is defi ned and has its
own options. You can have an inherited data source from src1, shown as:

source src1_delta : src1 {
 ... inherits options/parameters from parent unless otherwise specified ...

 sql_query = select id, content FROM foo_text WHERE id > (SELECT MAX(id) FROM
 index_counter WHERE index_name = ‘src1’);

}

The derived data source inherits all the parameters and options of its parent, unless otherwise over-
ridden. In this example, the entire SQL query was overridden, now additionally specifying the range.

The delta index is explained in further detail later in the section “Delta Indexes.”

Sphinx Indexes

The Sphinx confi guration fi le can contain various indexes. The actual Sphinx indexes (fi les) are
stored locally on the fi le system (in /var/data of the Sphinx installation directory). Just as with
data sources, indexes can also have inheritance. An example of an index section is:

index main_idx {
 ... numerous parameters, options ...
 source = src1
 path = /usr/local/sphinx/var/data/main_idx

}

index main_idx_stemmed : main_idx {
 ...(inherits everything from parent) ...

563120c09.indd 372563120c09.indd 372 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 373

 morphology = stem_en
}

index main_idx_delta : main_idx {
 source = src1_delta
}

In this example, three indexes are defi ned, two inheriting from main_idx. One, main_idx_stemmed,
only overrides the morphology value, causing the index to include word stemming. The other, main_
idx_delta, only overrides the data source, using src1_delta for the source that it is built from.

One of the best features of Sphinx is a distributed index. A distributed index is a distributed (think
clustered) index that includes one or more actual indexes, either locally or residing on any number
of remote Sphinx servers. searchd is the daemon that makes networked index querying possible and
makes it so you treat this distributed index as a single, logical, index. Figure 9-1 shows the concept
of a distributed index.

idx_A

idx_dist

idx_B

searchd

Server A

idx_C

idx_dist

idx_D

searchd

Server B

FIGURE 9-1

In Figure 9-1, each of the two servers has two indexes — idx_A, idx_B on ServerA and idx_C and
idx_D on ServerB. Also, each server has its own idx_delta distributed index. For instance, ServerA
has defi ned idx_dist, which includes its local indexes idx_A and idx_B which are on ServerA and
as well as the remote indexes idx_C and idx_D on ServerB. This enables you to search all six indexes
on each server from one index! This is a great way to have multiple, smaller, easier-to-manage
indexes and still be able to search all of them as one index.

The following is an example of how to defi ne a distributed index:

index idx_dist {
 type = distributed
 agent = ServerA:9312:idx_A
 agent = ServerA:9312:idx_B
 agent = ServerB:9312:idx_C
 agent = ServerB:9312:idx_D
}

563120c09.indd 373563120c09.indd 373 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

374 ❘ CHAPTER 9 FULL-TEXT SEARCHING

Indexer Options

The next section in the sphinx.conf is the indexer program, named interestingly enough
indexer. The indexer, as mentioned before, is the program that connects to the data source and
then builds the index as specifi ed in sphinx.conf. Its section appears as follows:

indexer {
 # maximum IO calls per second (for I/O throttling)
 # optional, default is 0 (unlimited)
 # max_iops = 40
 max_iosize = <according to your machine, in bytes>
}

The options for the indexer section are shown in Table 9-2.

TABLE 9-2: Indexer Options

OPTION DESCRIPTION

mem_limit Memory limit of the index buff er used by the indexer. Can be specifi ed in

kilobytes (K) or megabytes (M). Default is 32M (32 megabytes). Caveat:

mem_limit does NOT support 1 Gigabyte syntax and cannot be set to a

value exceeding 2047M (megabytes). This limitation is isn’t much of a

detriment because testing has shown little performance gain in increas-

ing the value from 1024M to 2047M.

max_iops Maximum IO calls per second. Used for throttling. Default is 0 (unlimited).

max_iosize Maximum IO call size. Used for throttling. Default is 0 (unlimited).

max_xmlpipe2_field Maximum xmlpipe2 fi eld size (for using XML Pipe as a data source).

write_buffer Maximum size of the write buff ers. These are buff ers that are allocated in

addition to the mem_limit setting.

searchd Options

searchd is the daemon that provides distributed indexing. searchd accepts search terms, searches
indexes — either locally or remotely through other searchd instances — and returns the results
of those searches, which in turn obtain the actual document content from the data source (the
database):

searchd {
 listen = 192.168.1.100:9312
 log = /usr/local/sphinx/var/log/searchd.log
 ... plus numerous other options/parameters ...
}

searchd options are shown in Table 9-3.

563120c09.indd 374563120c09.indd 374 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 375

TABLE 9-3: searchd Options

OPTION DESCRIPTION

listen The hostname, port or hostname:port or unix socket path that the

searchd daemon runs on.

log The searchd daemon log. Default is searchd.log.

query_log This log lists all search queries. Default empty, no query logging.

read_timeout Client read timeout, in seconds. Default is 5 seconds.

max_children Maximum number of children that will be spawned. Default is 0,

unlimited.

max_matches The maximum number of matches, per-index, kept in RAM. This is per-

query. Despite this limit, if you have two million matches and the value is

set to 1K matches, searchd still processes all the two million matches

and tracks the 1000 best matches at every given moment, but never

keeps two million matches in RAM at once. The point here is that max_

matches is not a detrimental setting. It only limits RAM use for those

matches.

seamless_rotate Whether or not to pre-open indexes upon index pickup. As of ver-

sion 0.9.9, new indexes can be picked up on the fl y, without restarting

searchd.

preopen-indexes Whether to pre-open all index fi les, or open them per each query.

Optional, default is 0 (do not pre-open).

unlink_old Whether or not to unlink old indexes upon index rotation.

attr_flush_period Timeout for fl ushing attribute updates to disk in seconds.

ondisk_dict_default Whether is not to use an on-disk dictionary. Default is 0, meaning the

setting is off , hence pre-caching dictionaries in RAM.

mva_updates_pool Size of shared pool for attribute updates, if set at all. This disables attri-

bute fl ushes.

max_packet_size Maximum packet size for both query packets from clients and

responses from agents. The default is 8MB.

crash_log_path If set, this specifi es the log that records queries that crash.

max_filters Maximum number of fi lters. The default is 256.

max_filter_values Maximum number of values per fi lter. The default is 4096.

listen_backlog Length of socket listen queue. The default is 5.

continues

563120c09.indd 375563120c09.indd 375 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

376 ❘ CHAPTER 9 FULL-TEXT SEARCHING

OPTION DESCRIPTION

read_buffer Read-buff er size, per-keyword. The default is 256K.

read_unhinted Un-hinted read size used when reading hits. The default is 32K.

Data Sources

A data source is what tells Sphinx where to obtain content from to build an index with the indexer. An
index can have multiple data sources. As mentioned, Sphinx has a number of data source types — both
database and XML pipe. For this example, using MySQL as a data source is the focus of discussion.

For a database source, an SQL query obtains the content from the database, which the indexer then
uses to build the index. An index can have multiple fi elds from which it creates full-text indexes.
You can also defi ne attributes, which are named values that are associated with each document
(in terms of a database, think column about the attribute, think row about the document) and are
used to sort, group, or fi lter a search. Attributes cannot themselves be searched because they are not
indexed. An example of a good use of attributes is in the case where you have a table containing web
pages and you indexed the fi elds content and title. That table might also have a category, date,
or URL that you would want to sort or fi lter on — these are the attributes and content and title
represent the full-text indexed fi elds.

The SQL query you defi ne in your data source can also make use of the special variables $start and
$stop. These values are set by Sphinx using the option sql_range_query. If set, the option obtains
the minimum and maximum values of a table. The idea of the range query is to obtain the result set
containing the min and max values you wanted indexed from the result set. You do this by querying the
table in batches, or increments instead of querying the whole table. You specify the number of records
per batch using sql_range_step. The main reason for query in batches is that querying an entire
table can mean a huge result set and can therefore be a resource hog on the database. This is vital for
Postgres, which returns the entire result set to the client side fi rst, then returns rows to the application.

You have a number of options to defi ne a data source, as shown in Table 9-4. In addition, the
default sphinx.conf that comes with Sphinx gives examples of how you can set each option.

TABLE 9-4: Data Source Options

OPTION DESCRIPTION

type The type of data source. The types of data sources used are mysql,

drizzle, pgsql, mssql, xmlpipe, xmlpipe2, and odbc.

sql_host The database host that Sphinx connects to.

sql_user The database user that Sphinx connects as; in the example, this is

connecting as the webuser.

TABLE 9-3 (continued)

563120c09.indd 376563120c09.indd 376 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 377

OPTION DESCRIPTION

sql_pass This is the MySQL password.

sql_db The schema/database that Sphinx will connect to.

sql_port The MySQL port; default is 9312.

sql_sock The MySQL socket fi le.

sql_query The database query that the indexer uses to build the index. The

table used for this data source is film_text as shown in the previ-

ous section on FULLTEXT indexes. The primary key (or a unique

index) must be the fi rst column specifi ed. This is because the

index has to have a unique identifi er for each “document” (mean-

ing row for the database query). Also, you obviously need your

text searches to have the same primary key ID as the row from the

database, which you use to retrieve data from the database after a

Sphinx index search. After the fi rst primary key column, other col-

umns can follow.

sql_query_info The query the utility search uses for obtaining the data from the

database, using the document IDs from the index after searching

the index.

mysql_connect_flags Diff erent connection fl ags to pass upon connecting to MySQL. For

instance, 32 would be to enable compression. Default is 0.

mysql_ssl_cert Path to the SSL certifi cate fi le for connecting to MySQL over SSL.

mysql_ssl_key Path to the SSL key fi le for connecting to MySQL over SSL.

mysql_ssl_ca Path to the SSL certifi cate authority fi le for connecting to MySQL

over SSL.

mssql_winauth Use logged-on user credentials to connect to the database if set to

1, when using MS SQL Server.

mssql_unicode Use Unicode, if set to 1, when using MS SQL Server.

odbc_dsn Data source name, if using ODBC.

sql_query_pre The query that is run prior to the primary SQL query.

sql_query_range The query used to obtain the minimum and maximum ID values of the

table, which utilizes minimum and maximum value boundaries if the

indexer is using a ranged query

sql_range_step The number of records per interval when you use a ranged query.

continues

563120c09.indd 377563120c09.indd 377 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

378 ❘ CHAPTER 9 FULL-TEXT SEARCHING

OPTION DESCRIPTION

sql_ranged_throttle If set, this option creates a delay between ranged queries, in

milliseconds.

sql_attr_uint Name of an unsigned integer column or columns that exist in the

result set from the sql_query to index on. Also allows for bit size

(foo:8) of the attribute.

sql_attr_bool Name(s) of a Boolean column to index. Formally, to store as an attri-

bute because attributes are not (yet) indexed.

sql_attr_bigint Name(s) of bigint column to index.

sql_attr_timestamp Name(s) of timestamp column to index.

sql_attr_str2ordinal Name(s) of string column to index.

sql_attr_float Floating-point column to index.

sql_attr_multi Multi-valued attribute (MVA) attribute declaration. Syntax is ATTR-

TYPE ATTR-NAME ‘from’ SOURCE-TYPE [;QUERY] [;RANGE-

QUERY]

An example would be:

uint tag from query; SELECT id, tag FROM tags

or ranged:

uint tag from ranged-query; \
 SELECT id, tag FROM tags WHERE id>=$start
AND id<=$end; \
 SELECT MIN(id), MAX(id) FROM tags

sql_query_post Query run after the main data gathering query. Can be used for a

task such as cleanup. Can have multiple queries specifi ed.

sql_query_post_index Query to run after the index is generated. This is especially useful

for updating the sphinx counter table. Can have multiple queries

specifi ed.

sql_query_killlist Fetches document IDs for the kill-list. The kill-list suppresses matches

from preceding indexes in the current query. The default for this

option is off .

unpack_zlib Columns to unpack on the index side when indexing multi-value,

using zlib compression.

unpack_mysqlcompress Columns to unpack on the index side when indexing multi-value,

using mysql compression.

TABLE 9-4 (continued)

563120c09.indd 378563120c09.indd 378 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 379

OPTION DESCRIPTION

unpack_mysqlcompress_

maxsize

Maximum unpack length when using MySQL compression.

xmlpipe_command Path to command that is used to pipe an XML fi le to the indexer.

xmlpipe_field Specifi es unique fi elds to be indexed when using XML pipe.

xmlpipe_attr_xxx Specifi es attributes to be indexed when you use XML pipe (same

types as sql_xx counterparts).

xmlpipe_fixup_utf8 Performs UTF-8 validation and fi lter out invalid codes. Default is 0 (off).

Defi ning the sakila_main Data Source

To set up a data source using Sphinx with the sakila schema, as shown in the previous section
using FULLTEXT indexes, start by defi ning the main data source:

source sakila_main
{
 sql_host = localhost
 sql_user = webuser
 sql_pass = mypass
 sql_db = sakila
 sql_port = 9312 # optional, default is 9312
 sql_sock = /tmp/mysql.sock
 sql_query = SELECT film_id, title, description FROM film_text
 sql_query_info = SELECT * FROM film_text WHERE film_id=$id
}

Defi ning the Indexes

Next, the main index is defi ned, film_main. The index is a data structure stored in a fi le on disk
that is the result of building an index. Available index options are shown in Table 9-5:

TABLE 9-5: Index Options

OPTION DESCRIPTION

source Name of the data source, as specifi ed in the source section.

path Path to the index fi le. Indexes are stored in the base sphinx direc-

tory under var/data.

docinfo Document attribute values storage method. Values are extern,

inline, and none.

mlock Determines whether to use memory locking for cached data.

continues

563120c09.indd 379563120c09.indd 379 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

380 ❘ CHAPTER 9 FULL-TEXT SEARCHING

OPTION DESCRIPTION

morphology Type of built-in preprocessors such as stem_en, stem_ru, soun-

dex, libstemmer_german, and so on. The default is none.

min_word_len Minimum length of words to index. For instance, MySQL’s FULLTEXT

min word length is 3, but Sphinx allows 1 (default, index everything).

min_stemming_len The minimum word length at which to enable stemming. Default is 1,

meaning stem everything.

stopwords Stop words fi les list.

wordforms wordforms fi le, in “mapfrom > mapto” plain text format.

exceptions Plain text, case-sensitive, space-insensitive, case-sensitive in map-

from part one “AT&T => TATT” entry per line. Being able to use

several tokens is a nice side eff ect.

charset_type The charset encoding type.

ignore_chars The ignored characters list.

min_prefix_len Minimum length of prefi x length to index. The default for this

option is 0.

min_infix_len Minimum word infi x length to index. The default is 0.

overshort_step This is the position on overshoot (words less than min_word_len).

Allowed values are 0 and 1 with the default being 1.

stopword_step The position increment on stop word. Values are 1 and 0 with the

default being 1.

prefix_fields The fi elds to prefi x.

infix_fields The fi elds to infi x.

index_exact_words Determines whether to index original keywords along with stemmed

versions. This enables the use of the =exactform operator to work.

enable_star This enables star syntax when you search prefi x/infi x indexes.

ngram_len The n-gram length to index.

ngram_chars The n-gram characters list for CJK indexing. The default is empty.

phrase_boundary The phrase boundary characters list. The default is empty.

phrase_boundary_step The phrase boundary word position increment.

TABLE 9-5 (continued)

563120c09.indd 380563120c09.indd 380 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 381

OPTION DESCRIPTION

html_strip Determines whether HTML is stripped out from documents being

indexed. The default is 0 (don’t strip).

html_remove_elements Determines what HTML elements to remove.

preopen Determines whether pre-open index fi les open upon restarting

searchd.

ondisk_dict Determines whether to keep dictionary (.spi) on disk, or cache it in

RAM. This is optional with the default being 0 (RAM only).

inplace_enable Determines whether in-place inversion is enabled (uses 2x less disk,

but at a cost of 5–10% indexing speed). This is optional with the

default being 0 (use separate temporary fi les), indexer-only.

Defi ning the fi lm_main and Its Inherited Indexes

To defi ne the indexes, follow these steps:

1. If you’re fi guring the sphinx.conf for several indexes, you defi ne the fi rst index film_text,
which is an index of the film_text table. Because film_text has a default character set of
UTF-8, you should set the value for charset_type to utf-8:

index fi lm_main
{
 source = sakila_main
 path = /usr/local/sphinx/var/data/fi lm_main
 charset_type = utf-8
}

2. Also, a stemmed index is shown. This index inherits from film_main and only overrides the
morphology option to be an English stemmed index:

index fi lm_main_stemmed : fi lm_main
{
 path =
 /usr/local/sphinx/var/data/fi lm_main_stemmed
 morphology = stem_en
}

3. A distributed index film_dist is defi ned, using only the local film_main index, but as an
agent (through searchd). This doesn’t really show you the full benefi t of distributed indexes
because it is only used on a single agent. However, the section “Starting Sphinx” discusses
distributed indexes.

index fi lm_dist
{
 type = distributed
 agent = localhost:9312:fi lm_main
}

563120c09.indd 381563120c09.indd 381 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

382 ❘ CHAPTER 9 FULL-TEXT SEARCHING

Specifying the Indexer Options

The option for the indexer, mem_limit, is set to 32 megabytes for this installation. This is the max-
imum amount of memory that the indexer is allowed to use.

indexer
{
 mem_limit = 32M
}

Specifying the searchd Options

searchd options are also defi ned:

➤ address: 127.0.0.1, localhost address will be used.

➤ port: searchd port 9312 (default port for searchd).

➤ searchd_log: The log that shows requests to the local instance of searchd.

➤ query_log: Shows what queries were run against indexes.

➤ max_children: The maximum number of search processes that can run.

➤ pid_file: The pid fi le used by searchd.

➤ max_matches: The maximum number of matches returned (1000).

➤ seamless_rotate: Set this to 1. This means searchd can be restarted without any effect on
applications using searchd.

searchd
{
 listen = 127.0.0.1
 port = 9312
 log = /usr/local/sphinx/var/log/searchd.log
 query_log = /usr/local/sphinx/var/log/query.log
 read_timeout = 5
 max_children = 30
 pid_fi le = /usr/local/sphinx/var/log/searchd.pid
 max_matches = 1000
 seamless_rotate = 1

}

Starting Sphinx

Now that the sphinx.conf is set up, and you have a running Sphinx system, you will need to run
the indexer and start the search daemon, searchd.

Running the Indexer

At this point, you have not yet run the indexer. When you do so, the indexer runs the queries you
specifi ed for your data sources and then builds the local indexes you specifi ed. Because they are dis-
tributed indexes, the distributed indexes are not and cannot be built by the indexer.

563120c09.indd 382563120c09.indd 382 2/18/10 9:10:29 AM2/18/10 9:10:29 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 383

To run the indexer for the fi rst time from within the main Sphinx directory (sphinx user home
directory in this example, /usr/local/sphinx) use the following code:

./bin/indexer --all
Sphinx 0.9.9-id64-release (r2117)
Copyright (c) 2001-2009, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
indexing index ‘film_main’...
collected 1000 docs, 0.1 MB
sorted 0.0 Mhits, 100.0% done
total 1000 docs, 108056 bytes
total 0.046 sec, 2339583 bytes/sec, 21651.58 docs/sec
indexing index ‘film_main_stemmed’...
collected 1000 docs, 0.1 MB
sorted 0.0 Mhits, 100.0% done
total 1000 docs, 108056 bytes
total 0.039 sec, 2746162 bytes/sec, 25414.25 docs/sec
distributed index ‘film_dist’ can not be directly indexed; skipping.
total 2 reads, 0.000 sec, 111.3 kb/call avg, 0.1 msec/call avg
total 10 writes, 0.000 sec, 55.6 kb/call avg, 0.0 msec/call avg

The line “distributed index ‘film_dist’ can not be directly indexed” simply means the
specifi ed distributed index, film_dist, cannot be indexed as a local fi le.

Starting the Search Daemon

To perform queries against your indexes and utilize distributed indexes, you need to have the search
daemon, searchd, running.

To start searchd:

./bin/searchd
Sphinx 0.9.9-id64-release (r2117)
Copyright (c) 2001-2009, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
listening on all interfaces, port=9312

You do not have to explicitly run searchd backgrounded because it automatically runs as a daemon
in the background.

Now the indexes are ready to be searched! Test searches (only against local indexes) can be per-
formed using the search utility. You can also use SphinxAPI (through PHP) or SphinxQL (more
about this in the section “Searching Sphinx”) to test.

Searching Sphinx

Sphinx has its own query language, similar to MySQL FULLTEXT indexes but it also offers options
for searching text.

563120c09.indd 383563120c09.indd 383 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

384 ❘ CHAPTER 9 FULL-TEXT SEARCHING

Search Modes

Sphinx has different search modes, which are specifi ed in the program and which you can set using
the Sphinx API. The search modes are shown in Table 9-6:

TABLE 9-6: Sphinx Search Modes

SEARCH MODE DESCRIPTION

SPH_MATCH_ALL Matches all query words. This mode is used by default.

SPH_MATCH_ANY Matches any of the query words.

SPH_MATCH_PHRASE Matches query as a phrase, requiring perfect match.

SPH_MATCH_BOOLEAN Matches query as a Boolean expression.

SPH_MATCH_EXTENDED An alias for SPH_MATCH_EXTENDED2.

SPH_MATCH_EXTENDED2 Matches the query using the second version of extended matching

mode (as of version 0.9.9). Matches query as an expression in the

Sphinx internal query language.

SPH_MATCH_FULLSCAN Matches the query forcibly using the full scan mode which means all

the indexed documents are considered as matching. Such queries

still apply fi lters, sorting, and group by, but do not perform any full-

text searching.

Sort Modes

Sphinx also allows you to see different sort modes. These modes set what type of sorting mecha-
nism Sphinx uses when it sorts search results.

TABLE 9-7: Sphinx Sort Modes

SORT MODE DESCRIPTION

SPH_SORT_RELEVANCE Sorts by relevance in descending order with best matches fi rst.

SPH_SORT_ATTR_DESC Sorts by an attribute in descending order with biggest attribute

values fi rst.

SPH_SORT_ATTR_ASC Sorts by attribute in ascending order, smallest attribute values fi rst.

SPH_SORT_TIME_SEGMENTS Sorts by time segments — last hour, day, week, etc — in descend-

ing order, and then by relevance in descending order.

SPH_SORT_EXTENDED Sorts by SQL-like combination of columns in ascending or descend-

ing order. This one is “king” according to Andrew, the creator of

Sphinx, allowing you do anything the legacy sort modes allow.

SPH_SORT_EXPR Sorts by arithmetic expression.

563120c09.indd 384563120c09.indd 384 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 385

Boolean Query Syntax

The Boolean query syntax is as follows:

➤ AND: Both terms must be found, anywhere in the source. It can be specifi ed either with a
space (implicit AND), or an ampersand (&). For example, both the terms technical and writer.

technical writer
technical & writer

OR➤ : One or both terms. Either technical or writer, or both.

technical | writer

➤ NOT: (the hyphen) Negation of the term. In this example, the term would have to have techni-
cal, but not writer.

technical -writer

➤ Grouping, so you can have multiple terms specifi ed: In this example you would specify both
technical and writer or database and administrator.

(technical writer) | (database administrator)

Extended Query Syntax

Boolean query syntax allows you to have proximity searching as well as specify fi elds to search
against.

➤ AND: Searches for technical and writer against only the title column.

@title technical writer

➤ Explicit AND: This searches title for technical and writer and searches for bhagavad
against the description fi eld:

@title technical writer & @description bhagavad

➤ Field position limit modifi er: Specifi es searching the fi rst 30 characters of the description
column for the term monty.

@description[30] monty

➤ Multiple fi eld search operator: The following would search for term andrew within the
description and title columns both.

@(title,description) andrew

➤ All fi eld search operator: In this example, the term Andrew would be searched for in all
columns.

@* andrew

➤ EXACT phrase: Only the exact phrase within the quotes would return a result.

“technical writer”

563120c09.indd 385563120c09.indd 385 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

386 ❘ CHAPTER 9 FULL-TEXT SEARCHING

➤ Proximity: Allows for no more than fi ve words in between the two terms. This means that
the phrase technical writer and the phrase technical expertise, database administration, novel
writer would both be found.

“technical writer”~5

➤ Strict order operator: This will only match words in the exact order. This example would
only match patram push toyam phalam in the exact order.

patram << pushpam << toyam << phalam

➤ Exact form modifi er: This makes it so that there will only be a match if the form of the term
is exactly as specifi ed. In the snippet below, The order of any match would require that
Sphinx, fulltext, and index be in that exact order.

=Sphinx is a =fulltext =index

➤ Field-start and fi eld-end modifi er: The fi rst example would match anything in the hello world
fi eld, but not Patrick says hello fi eld. The second example would search “Andrews FielD” or
even “Andrews?!! Field!!” but not the fi eld “Andrews football fi eld”

^hello
^Andrews field$

The Search Utility

Whether or not your index is working, the utility search is a useful tool for debugging — specifi cally
if you are trying to determine if there’s a problem with Sphinx and how you’ve generated an index,
or if there’s a problem with your application. It bypasses your application as well as searchd to
search the index directly.

The search utility does not work with distributed indexes because it searches
the index at a fi le-level versus performing the search through searchd. Other
ways to test your indexes include using a PHP program (which uses the
SphinxAPI) or SphinxQL.

search has the following options:

./bin/search
Sphinx 0.9.9-id64-release (r2117)
Copyright (c) 2001-2009, Andrew Aksyonoff

Usage: search [OPTIONS] <word1 [word2 [word3 [...]]]>

Options are:
-c, --config <file> use given config file instead of defaults
-i, --index <index> search given index only (default: all indexes)
-a, --any match any query word (default: match all words)
-b, --boolean match in boolean mode

563120c09.indd 386563120c09.indd 386 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 387

-p, --phrase match exact phrase
-e, --extended match in extended mode
-f, --filter <attr> <v> only match if attribute attr value is v
-s, --sortby <CLAUSE> sort matches by ‘CLAUSE’ in sort_extended mode
-S, --sortexpr <EXPR> sort matches by ‘EXPR’ DESC in sort_expr mode
-o, --offset <offset> print matches starting from this offset (default: 0)
-l, --limit <count> print this many matches (default: 20)
-q, --noinfo don’t print document info from SQL database
-g, --group <attr> group by attribute named attr
-gs,--groupsort <expr> sort groups by <expr>
--sort=date sort by date, descending
--rsort=date sort by date, ascending
--sort=ts sort by time segments
--stdin read query from stdin

This program (CLI search) is for testing and debugging purposes only;
it is NOT intended for production use.

For instance, to search for the terms technical and writer, limiting your results to only three, search
is run with the following options:

 ./bin/search -i film_main -e ‘technical writer’ -l 3
Sphinx 0.9.9-id64-release (r2117)
Copyright (c) 2001-2009, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
index ‘film_main’: query ‘technical writer ‘:
returned 76 matches of 76 total in 0.007 sec

displaying matches:
1. document=19, weight=2582
 film_id=19
 title=AMADEUS HOLY
 description=A Emotional Display of a Pioneer And a Technical Writer who must
 Battle a Man in A Baloon
2. document=43, weight=2582
 film_id=43
 title=ATLANTIS CAUSE
 description=A Thrilling Yarn of a Feminist And a Hunter who must Fight a
 Technical Writer in A Shark Tank
3. document=44, weight=2582
 film_id=44
 title=ATTACKS HATE
 description=A Fast-Paced Panorama of a Technical Writer And
 a Mad Scientist who must Find a Feminist in An
 Abandoned Mine Shaft

words:
1. ‘technical’: 76 documents, 76 hits
2. ‘writer’: 76 documents, 76 hits

As you can see, Sphinx not only fi nds results, but also gives you information about the search, such
as the weight of what was found, as well as a summary of all results found.

563120c09.indd 387563120c09.indd 387 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

388 ❘ CHAPTER 9 FULL-TEXT SEARCHING

Or, say you want to search only the title column for the exact phrase attacks hate, with no limit on
the results:

 ./bin/search -i film_main -e ‘@title(“attacks hate”)’
Sphinx 0.9.9-id64-release (r2117)
Copyright (c) 2001-2009, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
index ‘film_main’: query ‘@title(“attacks hate”) ‘:
returned 1 matches of 1 total in 0.001 sec

displaying matches:
1. document=44, weight=2697
 film_id=44
 title=ATTACKS HATE
 description=A Fast-Paced Panorama of a Technical Writer And a
 Mad Scientist who must Find a Feminist in An Abandoned
 Mine Shaft

words:
1. ‘attacks’: 3 documents, 3 hits
2. ‘hate’: 2 documents, 2 hits

The search utility handles taking the results from a search (the film_id values) and retrieving the
results from film_text using the query that was specifi ed in sphinx.conf by the parameter sql_
query_info, which is located in the sakila_main data source section.

SphinxQL

Just when you thought there couldn’t possibly be any more features to Sphinx, think again! As
of version 0.9.9, the searchd daemon had added to it the MySQL binary network protocol. This
makes it possible to use the MySQL client API to talk to Sphinx! This means you can use the
MySQL client, mysql, as well as any PHP MySQL client API to talk to Sphinx! In addition, Sphinx
has a tiny subset of SQL dubbed SphinxQL. This allows you to not only connect to searchd with
any MySQL client, but also run SQL-like queries against Sphinx!

In the following example, the query that searches for the words Small Business in proximity of one
and not with the word Big is performed, and it returns one record.

sphinx@hanuman:~$ mysql -h 127.0.0.1 -P 9312
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 0.9.9-rc2 (r1785)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> select * from url where match(‘@content “Small -Big business”~2’) ;
+------+--------+
| id | weight |
+------+--------+
| 487 | 1466 |
+------+--------+
1 row in set (0.01 sec)

563120c09.indd 388563120c09.indd 388 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 389

The id column is the ID value you use to retrieve the actual content from MySQL and the weight
column is how Sphinx weights the document relevancy.

To use SphinxQL, all you need to add to your sphinx.conf is another listen option line (shown
here after the original Sphinx listen option)

listen = localhost:9312
listen = localhost:9306:mysql41

This means that searchd answers on both ports 9306 and 9312, though 9312 is the only port you
can connect to searchd using a MySQL client.

One Last Step to Using Sphinx

You can perform one more step to use full-text searching as shown in the following code:

mysql> ALTER TABLE film_text DROP INDEX idx_title_description;

mysql> ALTER TABLE film_text ENGINE=InnoDB;

You can now use InnoDB if you want! Because Sphinx is an external index to MySQL, there is
no longer the need for the FULLTEXT index that was created on film_text, so the MyISAM-only
restriction no longer applies. You can use whatever storage engine you like with Sphinx. The only
requirement is that Sphinx can select data out of that table, as defi ned in the data sources section of
sphinx.conf.

Delta Indexes

As previously mentioned, Sphinx provides the functionality of distributed indexes. This makes it
possible for you to spread indexes across a cluster of machines. For instance, you could have mil-
lions of records of textual data. With Sphinx, you can arrange it so the entire range of data is spread
out over this cluster of machines.

Figure 9-2 is another illustration of distributed indexes, but the purpose of this example is to show,
for the sake of conversation, a simple arrangement of three servers, each running four searchd dae-
mons and each serving an index containing 250,000 records. The numbers listed represent the ID
values of the documents (database row IDs) that each index comprises. With distributed indexes, an
entire range from record 1 through record 2,999,999 is serviced from a distributed index.

2750000 –

2999999

2500000 –

2749999

2499999

250000 –2000000 –

2999999

Server C

1750000 –

1999999

1500000 –

1749999

1499999

1250000 –1000000 –

1249999

Server B

Distributed Index

750000 –

999999

50000 –

749999

250000 –

499999

1 –

249999

Server A

1 – 2999999

FIGURE 9-2

563120c09.indd 389563120c09.indd 389 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

390 ❘ CHAPTER 9 FULL-TEXT SEARCHING

What about new data that is incrementally added on a regular basis? Sphinx indexes are not auto-
matically updated as FULLTEXT indexes (which is one of the reasons FULLTEXT indexes are slow and
Sphinx indexes are so fast). How do you have some means to provide an updating functionality?
The answer to this question is using a delta index.

The realtime index backend is another means to update functionality and it will
be available by the time this book is printed.

A delta index is basically a smaller index that you regenerate more often. Sphinx indexes can be
generated very fast. However, you wouldn’t want to regenerate your entire data set on a regular
basis. The solution to this is to more regularly regenerate a relatively small index that is composed
of the most recent records that have been inserted into the database. Because a distributed index can
be treated as a logical index, the user (the application) of Sphinx has no idea that there is a smaller
underlying index being regenerated. Also, another feature is that the indexer program has the ability
to transparently restart searchd after completing the index regeneration.

Figure 9-3 shows just how a delta index works.

Delta indexServer X

1 – 1022343

1 –

249999

250000 –

499999

Distributed Index

500000 –

749999

750000 –

999999

1000000 –

1022343

FIGURE 9-3

Figure 9-3 shows that you have an arbitrary server with four primary indexes that are not regularly
regenerated and the delta index, which is generated for every given number of new records inserted
into the source table — as you recall, defi ned as a source the sphinx.conf. Each index would have
a common parent source, inheriting everything about the parent index except in the sql_query that
selects the specifi c range for the index to be built. The delta index, in this example, would select
everything from ID of 1000000 to the maximum ID value of the table.

The other component of the machinery to make delta indexes work is a counter table, in this case
called sphinx_counter. This table is for keeping track of the greatest ID value of an index. The ID
values from this table are used by the indexer to supply the ID value for the sql_query in the data
source of the index when querying MySQL to obtain the content for indexing. You can also use
timestamp columns to do this.

CREATE TABLE sphinx_counter (
 id int(11) NOT NULL,
 max_id int(11) NOT NULL,

563120c09.indd 390563120c09.indd 390 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 391

 index_name varchar(32) NOT NULL,
 PRIMARY KEY (id),
 KEY index_name (index_name)
) ENGINE=InnoDB

The indexer uses the positional information in the table sphinx_counter to obtain the maximum
and minimum IDs to determine what records are included in the indexes. The indexer uses this to
determine what data should be selected when indexing.

An example of a delta index and how you use the sphinx_counter table is if you have your main
url index that contains all records having an ID value less than the value of column max_id in the
table sphinx_counter. The delta index, url_delta, will contain records having their ID value
starting from the value of the column sphinx_counter.max_id and no upward limit.

Where the main index ends and the delta index starts is only set when the main index is re-indexed.
The delta index grows over time, and at some point, you merge the two them. The break point is set
to the maximum of the main index, which now contains what was previously in the delta, and the
delta is rebuilt with a starting point equal to the maximum of the newly merged index.

Each index has exactly one entry in this table and the position data is updated during indexing.

An example showing the positional data of a running setup is:

mysql> select * from sphinx_counter;
+----+--------+-----------+---------------------+
| id | max_id | index_name| last_updated |
+----+--------+-----------+---------------------+
| 1 | 1133 | url | 2009-03-02 11:05:30 |
| 2 | 1181 | url_delta | 2009-03-02 11:12:12 |
+----+--------+-----------+---------------------+

For example, the main index, url, contains records with the url.id value of 0 through 1133, and
the delta index, url_delta, contains records with the url.id value of 1134 through 1181.

The entry in the sphinx_counter counter table for the delta index is not necessary, but an added
informational benefi t to show you the state of what records your indexes represent. The single
entry for the main index is suffi cient to delineate the extents of the main and the delta indexes for
indexing.

To set up Sphinx to utilize a delta index, you would defi ne the data sources that will be used:

1. The fi rst source, url, is set to use the MySQL server running on localhost on port 9312. The
sql_query_pre option defi nes the query that is run prior to the main document fetching
query. In this case, the sphinx_counter table is updated with the max(id) value from the
url table, moving the positional information up to represent the index that is about to be
regenerated.

2. The sql_query option specifi es the main query that will run. The primary key or other
unique identifi er must always be the fi rst column specifi ed in this query. In this instance, it is
the id column of the url table. This makes it so when you perform a search against Sphinx,
you will obtain one or more values of the primary key id, which you will subsequently use to
retrieve the actual data from MySQL, making for a fast lookup.

563120c09.indd 391563120c09.indd 391 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

392 ❘ CHAPTER 9 FULL-TEXT SEARCHING

About this query: it performs a join of url with url_content to obtain the
actual content from the blob table as well as the other columns specifi ed after
the primary key value. These columns create a full-text index and are therefore
searchable. Sphinx has a very fl exible query language, allowing you to specify
on which columns to search. Also, this query uses a WHERE clause to select
records less than or equal to the value in the sphinx_counter table for the main
index. This is the mechanism that applies an extent to the data being gathered.

3. The option sql_query_info provides a query to the search command-line program, which
is good for running test queries against your index. Do note that this does not search against
Sphinx through the Sphinx search daemon, searchd — it searches on the index itself, so it
does not work with distributed indexes.

source url
{
 type = mysql
 sql_host = localhost
 sql_user = narada
 sql_pass = n@r@d@
 sql_db = narada
 sql_port = 9312
 sql_query_pre = UPDATE sphinx_counter SET max_id=
 (SELECT MAX(id) FROM url)
 WHERE index_name = ‘url’
 sql_query = SELECT id, content FROM url_content
 WHERE id <= (SELECT max_id
 FROM sphinx_counter
 WHERE index_name = ‘url’)
 sql_query_info = SELECT * FROM url_content WHERE id=$id
}

4. The source for the delta index, url_delta, is defi ned. The notation url_delta : url
means that url_delta will inherit every option from the data source URLs, unless otherwise
overridden. In this case, the options sql_query_pre and sql_query are overridden to spec-
ify a different range than is used with the url data source. For the url_delta data source,
all records greater than the max_id value for the data source url are specifi ed:

source url_delta : url
{
 sql_query_pre = UPDATE sphinx_counter SET max_id=
 (SELECT MAX(id) FROM url)
 WHERE index_name = ‘url_delta’
 sql_query = SELECT id, content FROM url_content
 WHERE id > (SELECT max_id
 FROM sphinx_counter
 WHERE index_name = ‘url’)
}

563120c09.indd 392563120c09.indd 392 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

A Better Solution: The Sphinx Full-Text Search Engine ❘ 393

5. The indexes are defi ned. The options shown here are the most important. The option source
defi nes the data source that is used to build this index, in this case the source url is used. The
option path specifi es the path and base name of the actual index fi les. Other index options
are omitted for the sake of brevity.

index url
{
 source = url
 path = /usr/local/sphinx/var/data/url
 ...
}

6. The delta index, url_delta, inherits everything from the index url, except path and source,
which it overrides. Because the source for url_delta is also called url_delta, this is the
data source that has a different range than url, hence url_delta is a smaller index com-
posed of a smaller range, the topmost records, of the database table url.

index url_delta : url
{
 source = url_delta
 path = /usr/local/sphinx/var/data/url_delta
}

7. Next, the distributed index dist_url is defi ned. This is the glue that makes the delta index
and main index work together as one index. Queries run against this distributed index with-
out the user ever knowing that the index is made up of parts.

index dist_url
{
 type = distributed
 agent = localhost:3312:url
 agent = localhost:3312:url_delta
 agent_connect_timeout = 1000
 agent_query_timeout = 3000
}

8. The fi nal piece in making delta indexes work is that the indexer has another feature — index
merging. This is the feature that you use at a given interval in which you merge the delta
index into the main index or indexes. For the sake of having fast index regeneration of the
delta index, you cannot allow your delta index to grow too large.

The indexer confi guration is simple enough, and the option mem_limit specifi es how much
memory is used for the indexer, when it runs, to generate indexes.

indexer
{
 # memory limit, in bytes, kilobytes (16384K) or megabytes (256M)
 # optional, default is 32M, max is 2047M, recommended is 256M to
 # 1024M
 mem_limit = 32M

}

563120c09.indd 393563120c09.indd 393 2/18/10 9:10:30 AM2/18/10 9:10:30 AM

394 ❘ CHAPTER 9 FULL-TEXT SEARCHING

9. The searchd daemon is confi gured in the following section. The listen option specifi es which
port or socket the daemon binds to. In this case, none are specifi ed, so all interfaces are used.
The log option specifi es the log for the searchd daemon — this log will log the status of
the searchd daemon. The query_log option specifi es a log used to log search queries run
against searchd.

The other options set timeout values, max number of children to run, a pid fi le, maximum number
of matches returned, and whether the searchd daemon can be restarted seamlessly after running
the indexer.

Also listed is the option seamless_rotate. As mentioned, this feature makes it possible to have the
delta index generated without users of the index noticing. When you run the indexer, searchd is
seamlessly restarted once the indexer completes (kill HUP).

searchd
{
 log = /usr/local/sphinx/var/log/searchd.log
 query_log = /usr/local/sphinx/var/log/query.log
 read_timeout = 5
 client_timeout = 300
 max_children = 30
 pid_file = /usr/local/sphinx/var/log/searchd.pid
 max_matches = 1000
 seamless_rotate = 1
 preopen_indexes = 0
 unlink_old = 1
 mva_updates_pool = 1M
 max_packet_size = 8M
 max_filters = 256
 max_filter_values = 4096
}

Merging Indexes

As mentioned already, you would have a primary index that you merge with a delta index on a par-
ticular frequency. In order to do this, you run the indexer program with the main and delta index
names, as shown in the following code example:

sphinx@hanuman:~$./bin/indexer --merge url url_delta --rotate
Sphinx 0.9.9-rc2 (r1785)
Copyright (c) 2001-2009, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
FATAL: no merge source index ‘url_detla’
sphinx@hanuman:~$./bin/indexer --merge url url_delta --rotate
Sphinx 0.9.9-rc2 (r1785)
Copyright (c) 2001-2009, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
merged 63.4 Kwords
merged in 0.424 sec
total 457 reads, 0.010 sec, 32.6 kb/call avg, 0.0 msec/call avg
total 60 writes, 0.051 sec, 246.2 kb/call avg, 0.8 msec/call avg
rotating indices: succesfully sent SIGHUP to searchd (pid=9238).

563120c09.indd 394563120c09.indd 394 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

Developing Applications That Use SPHINX ❘ 395

The --rotate argument simply means that searchd is restarted seamlessly after the index is fi n-
ished being merged.

DEVELOPING APPLICATIONS THAT USE SPHINX

In applications you write yourself, you have to implement the same type of functionality that the
search utility gives you, except you’ll use the Sphinx client API, whereas the search utility performs
the search on an index at a fi le-level. To use Sphinx, your application will perform a search against
Sphinx on whatever index you specify, obtaining the unique document or record IDs of the results
found in your search, and then you query MySQL against the table of the data source with those
IDs to obtain the results from the database. With these results, you can generate excerpts. As part
of the Sphinx API, Sphinx includes the means for generating excerpts — which are text with the
original search terms enclosed in HTML tags, such as bold, emphasis, and so on (..), to
highlight the original search terms.

Sphinx and PHP

The Sphinx source distribution comes with an API for PHP and is a pure PHP implementation for
the SphinxAPI. You can fi nd the main PHP API fi le in the api directory in the top-level source
directory as the fi le sphinxapi.php. Ensure this fi le is copied to a location where you put common
PHP library fi les. In this example, /usr/lib/php5 is used (Ubuntu). To begin using Sphinx with
PHP, a simple program, sphinx_ch09.php, is written that uses the sakila database and a distrib-
uted index called film_dist which is the full-text index of the sakila table film.

Like so many client APIs, the fi rst thing you need to do is to instantiate a client object and then con-
nect to a server or servers

require(‘/usr/lib/php5/sphinxapi.php’);

mysql options
$dbhost = ‘192.168.1.106’;
$dbuser = ‘sakila’;
$dbpass = ‘s@k1la’;
$dbschema = ‘sakila’;

connect to mysql
$dbh = new mysqli($dbhost, $dbuser, $dbpass, $dbschema);

sphinx host and port
$host = ‘192.168.1.106’;
$port = 9312;
instantiate a SphinxClient object
$sphinx= new SphinxClient();
connect to the server
$sphinx->SetServer($host, $port);
set match mode
$sphinx->SetMatchMode(SPH_MATCH_EXTENDED2);
set the sort mode
$sphinx->SetSortMode(SPH_SORT_ASC);

the index to perform searches against

563120c09.indd 395563120c09.indd 395 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

396 ❘ CHAPTER 9 FULL-TEXT SEARCHING

$search_index = ‘film_dist’;
the index to build excerpts against. Cannot be a distributed index
$excerpt_index = ‘film_main’;
the search term for this example
$search_term = ‘Ancient India’;
the search query
$search_query = “@description $search_term”;

perform the search
$search_results = $sphinx->Query($search_query, $search_index);

The result set of the search, $search_results, is a multi-dimensional array chock full of data for
the returned result. It contains the standard members shown in Table 9-8:

TABLE 9-8: $search_results Standard Members

MEMBER DESCRIPTION

error A string containing an error message, if any.

warning A string containing a warning message, if any.

Status The numeric status code returned from the search.

Fields An array containing the string names of each fi eld in the index.

Attrs An array of string attributes returned from the result set.

Matches The member of the result set that fetches the data from the database. matches is a

multi-dimensional array containing numeric key values pointing to arrays. The value

of the key is the document ID (the id value it was indexed by) for each matched

document. Each document id key value points to an array containing the members

with weight being the numeric weight of the match and attrs containing the attri-

butes for the match.

words A multi-dimensional array containing string key values, each being a word in the

search query. Each of these keys points to a two-member array. The array for each

word contains two members: docs, a numeric value for the total number of docu-

ments the word was found in, and matches, the total number of matches found for

that word, regardless of how many documents it was found in.

Next you want to obtain the actual document content for each match. As mentioned, the result
set member, matches, contains what you need to do this. The query in this example returned one
result set. To see what matches gives you, the following codes shows matches from the result set
$search_result that would be found in the search above:

var_dump($search_result[‘matches’]);

Produces:

array(20) {
 [8]=>
 array(2) {

563120c09.indd 396563120c09.indd 396 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

Developing Applications That Use SPHINX ❘ 397

 [“weight”]=>
 string(4) “2583”
 [“attrs”]=>
 array(0) {
 }
 }
 [29]=>
 array(2) {
 [“weight”]=>
 string(4) “2583”
 [“attrs”]=>
 array(0) {
 }
 }

…and many more matches…

The key value for the single array is 8 and is the ID value of the document corresponding to the pri-
mary key of the film table, film_id. You would then need to build a query obtaining the document
having a fi lm_id of 8:

base query, then use explode to build the IN list for film_id values
$query= ‘SELECT film_id, title, description from film WHERE film_id IN (‘
 . implode(“,”, array_keys($search_results[“matches”])) . ‘)’;

$db_results= $dbh->query($query);

At this point, you need to start constructing two arrays: one you pass to build excerpts which is
called $docs, and another array, called $results, combines the excerpts with the original data in
order for when you print the results.

$results = array();
$docs = array();

push each row into the $results array to maintain order
while ($row = $db_results->fetch_array())
{
 array_push($results, array(‘film_id’ => $row[“film_id”],
 ‘title’ => $row[“title”],
 ‘description’ => $row[“description”]));

 array_push($docs, $row[“description”]);

}

Now that $docs has all the descriptions for each match, you can obtain excerpts. An excerpt essen-
tially takes the original text that the index was built against and makes a smaller, printable para-
graph, which highlights the search term. There are a number of options you can set to pass to the
excerpt building method, BuildExcerpts(). Here these are set in the $options array.

Note: excerpt index used for building indexes must be an on-disk index
non-distributed index
$options = array(‘before_match’ => ‘’,
 ‘after_match’ => ‘’,
 ‘around’ => 3,

563120c09.indd 397563120c09.indd 397 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

398 ❘ CHAPTER 9 FULL-TEXT SEARCHING

 ‘single_passage’ => 0,
 ‘chunk_separator’ => ‘...’,
 ‘limit’ => 180);

obtain the excerpts. Notice passing $docs
$excerpts = $sphinx->BuildExcerpts($docs,
 $excerpt_index,
 $search_word,
 $options);

The options passed to BuildExcerpts() in this example are:

TABLE 9-9: Options Passed to BuildExcerpts()

OPTION DESCRIPTION

before_match The opening HTML tag to insert before the search term.

after_match The closing HTML tag to insert after the search term.

around The number of words to pick around each matching keywords (search

term) block. Default is 5.

single_passage Determines whether to extract single best passage only. Boolean, default

is false.

chunk_separator A string to insert between snippet chunks (passages). Default is “ ... “.

limit Maximum snippet size. Default is 256.

There are more options to you can use. For more information, please refer to the Sphinx manual
section 6.7.1, at the URL http://www.sphinxsearch.com/docs/manual-0.9.9.html#sources.

Now that you have excerpts, and because the order of $excerpts is the same as $results, you can
now print the results!

for ($x= 0; $x < count($results); $x++) {
 print “<p>” . $results[$x][“title”] . “</p>\n”;
 print “<p>” . $excerpts[$x] . “</p>\n”;
}

The output appears as:

<p>Moose vs. Monkey</p>
<p>A Epic Tale of a Moose And a Girl who must Confront a Monkey in
 Ancient India</p>
<p>ANTITRUST TOMATOES</p>
<p>A Fateful Yarn of a Womanizer And a Feminist who must Succumb a Database
 Administrator in Ancient India</p>
<p>BIRDCAGE CASPER</p>
<p>A Fast-Paced Saga of a Frisbee And a Astronaut who must Overcome a Feminist

563120c09.indd 398563120c09.indd 398 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

Summary ❘ 399

 in Ancient India</p>
<p>CALIFORNIA BIRDS</p>
<p>A Thrilling Yarn of a Database Administrator And a Robot who must Battle a
 Database Administrator in Ancient India</p>

…and more results…

This is very simple, plain HTML, but imagine — you could design as elaborate and aesthetically
pleasing a results page for a search engine website as you like. The important thing is that you have
the data, as well as the excerpts having the search terms within bold tags. The rest is icing on the
cake and is up to you!

Now you have been introduced to using PHP with Sphinx so you can add search functionality to
your PHP applications. This was a simple PHP program intended to introduce you to using Sphinx
and PHP. Chapter 10 has a more complete PHP application example using Sphinx.

For more information about the complete Sphinx PHP API, please consult the Sphinx manual, Sphinx
API reference at http://www.sphinxsearch.com/docs/manual-0.9.9.html#api-reference.

SUMMARY

This chapter introduced you to full-text search options available as a PHP programmer using MySQL.
Using the sakila database for search data, you were fi rst introduced to MySQL FULLTEXT indexes,
which were the traditional way you would have implemented search functionality in your PHP appli-
cations. Next, you were introduced, using the same sakila database, to the Sphinx full-text search
engine that offers a huge number of improvements over MySQL FULLTEXT indexes, some of these ben-
efi ts being that you can use any table type in MySQL with Sphinx as well as the benefi t of using distrib-
uted indexes.

You were shown how to obtain, compile, confi gure and use Sphinx, particularly how to set up a dis-
tributed index, delta index and a counter table for managing how the delta index is merged with the
main index. You saw how there are a number of ways to access Sphinx: SphinxQL, SphinxAPI (with
PHP), as well as the search utility. Finally, you were walked through writing a simple PHP program
that uses both Sphinx and MySQL that can be the core of a search application written in PHP.

563120c09.indd 399563120c09.indd 399 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

563120c09.indd 400563120c09.indd 400 2/18/10 9:10:31 AM2/18/10 9:10:31 AM

Multi-tasking in PHP and MySQL

WHAT’S IN THIS CHAPTER?

➤ Effi ciently multi-tasking in PHP

Using Gearman to multi-task and farm out work➤

➤ Seeing an application put Gearman and various other components

discussed in this book together to build a search application

How many times have you developed a web application that has some functionality which
requires running an external program or even forking a separate process? This is not some-
thing you generally like to do from your web application because you want to make it run as
fast and effi ciently as possible, yet you want to provide a lot of functionality for end users.
Thus the problem arises of how to get a fast but full-featured application that can process as
much as possible.

GEARMAN

Many years ago (in the Internet time line) a web site, livejournal.com, was facing a similar
dilemma. Users were uploading so many pictures to the web site that had to be processed into
their respective accounts. This included resizing functionality such as creating thumbnails or
reducing the raw image size to something more appropriate for the web site to display. These
pictures mostly consisted of kittens — millions of pictures of kittens — overloading the web
application that is Livejournal. Then the creative mind of Brad Fitzpatrick formulated a great
idea to deal with this overload: have a server that spawns processes that do things such as
processing pictures of kittens, outside of the web server application. Thus came the advent of
Gearman.

10

563120c10.indd 401563120c10.indd 401 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

402 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

WHAT IS GEARMAN?

Gearman comprises a client component, one or more job servers that assign jobs requested by cli-
ents, and worker programs that register themselves for work and then carry out those job requests.
It provides a distributed application framework. Gearman is used to farm out work to other
machines in a distributed fashion, dispatching function calls to machines that are better suited to
do work, to do work in parallel, to load balance many function calls, or to call functions between
languages (as described on the project site). Gearman is multi-threaded and is known to be able to
carry out 50 thousand jobs per-second. Hence, Gearman is the solution to splitting some functional-
ity from your web application and handling it separately. Gearman is the ultimate tool for making
this a reality. As Joe Stump from Digg put it:

“The way I like to think of Gearman is as a massively distributed, massively fault-tolerant
fork mechanism.”

Some of the well-known sites using the C version of Gearman are:

➤ Digg: 45+ servers, 400 thousand jobs a day

Yahoo: 120+ servers, 12 million jobs a day➤

➤ Livejournal, SixApart, DealNews, Xing.com, and others

Gearman was originally written in Perl, but the job servers and client API were recently rewritten
in C by Eric Day because he wanted better performance. The process gearmand is the actual job
server — it receives requests for jobs and then assigns them. The job server also keeps track of what
workers are available and which ones have been tasked with jobs. It then handles the results from a
worker, passing them back to the client that requested the job.

The basic Gearman setup consists of a client, a worker, and gearmand, the job server. The client cre-
ates a job request to send to the job server. The job server delegates the job to an appropriate worker
and returns a response to the client when assigned. Workers, when started, register themselves for a
particular kind of job, and when the job server receives a request for that type of job, it assigns the
appropriate worker to it. Workers can do anything that you want them to do — fetch documents off
the Web, cache data in memcached, stop and restart other servers — just about anything that you
can code. A worker is somewhat a server and somewhat a client. The worker runs in a continual
loop interestingly called work(), but has to connect to the job server to register itself and to await
assignment to a job.

A worker can be run either synchronously or asynchronously, depending on what task you need
done. For instance, think about the many web applications that you use to do something such as
upload an image or leave a message. Often, you don’t need this task done immediately and in fact
the web site will often have its application present a message that states “this thing you need done
will happen eventually.” This concept is known as eventual consistency — which means that some-
thing will indeed happen, just not right away, and the ability to run Gearman workers asynchro-
nously facilitates eventual consistency in your application.

If you think about it, many things in life are eventually consistent. For example, when you deposit
money into your bank account at night by dropping a payment into the drop box, you get a receipt

563120c10.indd 402563120c10.indd 402 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

What Is Gearman? ❘ 403

that you did this (a reply that the job was assigned!), but that deposited money doesn’t immediately
go into your account, though the act of depositing the money has been initiated and you have some
record for it. You accept this behavior because the money will eventually make its way into your
account. You have a contract there that says “yes, we will get this money from the drop box to
fund your account.” The same applies for checks eventually clearing and the actual monetary funds
transferring from the payer’s to the payee’s bank account. So, too, you have a variety of particular,
everyday actions on a dynamic web site where this eventually consistent behavior is considered sat-
isfactory. Consider when you post a comment on your Facebook account. Sometimes your comment
won’t immediately show up. Having your comment show up immediately is not a life or death situa-
tion so this behavior is suffi cient.

Another application where Gearman is well suited is for map/reduce operations, a model of distrib-
uted computing over a large number of computers, or cluster, introduced by Google (see http://
labs.google.com/papers/mapreduce.html). The idea is to take the large data set and break it
up into smaller pieces and distribute each to worker nodes that process those pieces — this is the
“map” stage. The “reduce” stage is to conglomerate the fractional results of the map stage and into
one consistent result — think federation. As you can imagine, because Gearman enables you to farm
out jobs to workers, it is well-suited for map/reduce.

Although this book is about PHP, Gearman clients and workers can be writ-
ten in other languages and for a number of environments and databases.
There are language bindings and database bindings for PHP/C, Perl/C,
MySQL (through UDFs), PostgreSQL, Java, JMS, Python/C, Twisted Python,
OCaml, and many others.

A web environment utilizing Gearman is shown in Figure 10-1.

Apache

PHP

Gearman

Server

Resize

Worker

Resize

Worker

Resize

Worker

Apache

PHP

Gearman

Server

MySQL

Gearman

UDF

File

Storage

FIGURE 10-1

563120c10.indd 403563120c10.indd 403 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

404 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

Figure 10-1 shows the type of setup you might use for image resizing. Traditionally, the image resiz-
ing would have been implemented completely within the web application. The user would upload an
image, and within the HTTP request to serve the page, the PHP code would have to run the image
conversion — perhaps even using imagemagick — to perform the resizing. The page load would not
be completed until the image resizing was completed. Now, with Gearman, the PHP web application
can request image resizing by way of a Gearman client to the Gearman job server, gearmand, which
would in turn tell a resize worker to perform the resizing operation. Now, the web application can
return immediately with a message stating that the image is being processed and results will soon
be provided, making the web application lighter weight than the traditional design. This changes
the whole concept of how web applications can be written into distributed applications that work in
concert instead of a single heavy-duty web application! With this in mind, you now have an applica-
tion that has no single point of failure and offers a tremendous amount of fl exibility.

Installing and Running Gearman

Installing the latest version of Gearman is a very straightforward task. You can obtain the latest
source on http://www.gearman.org/doku.php?id=download or visit https://launchpad.net/
gearmand. These sites include links to every component you would need to run Gearman, the job
server itself, and the Gearman MySQL UDFs.

gearmand Job Server Install

To install the Gearman job server, follow these steps:

1. Download the latest source distribution for gearmand into a directory where you usually
compile source code such as /usr/local/src (you can also use the bazaar revision control
system for the repository lp:gearmand). The fi rst thing is to unpack the source distribution:

tar xvzf gearmand-1.0.tar.gz

2. Enter the gearmand source distribution directory:

cd gearmand-1.0
./confi gure

3. Now build and install gearmand:

make
make install

At this point, gearmand is installed and ready to use.

PECL/Gearman

To install PECL/Gearman, consult the project page at http://pecl.php.net/package/gearman.
The steps are essentially:

cd gearman-0.6.0/
 phpize
./configure
make
 sudo make install

563120c10.indd 404563120c10.indd 404 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

What Is Gearman? ❘ 405

Then make sure to specify loading the shared library, gearman.so, in /etc/php5/conf.d/
gearman.ini (This is how it is done for Ubuntu. Other Linux distrubtions or UNIX variants
might possibly have a different setup.) with:

extension=”gearman.so”

Depending on OS, this may already be done for you. Another option is to add this line to your
php.ini. Refer to your OS manual.

Gearman MySQL UDF Install

Also available for use with Gearman are the Gearman MySQL user-defi ned functions, or UDFs.
In addition to the new C-based Gearman, Eric Day also wrote these UDFs. These UDFs offer even
more power when you use Gearman than with just using external programs. The UDFs are them-
selves client programs and run internally within the MySQL server. With these UDFs, you can add
jobs to the Gearman job server just as you do regular client programs, but from within MySQL
rather than using an external program or from within your application code. This may sound con-
fusing at fi rst — running a client within a server. However, if you recall from earlier chapters, both
the example Curl UDF http_get() and the memcached UDFs are also clients.

The Gearman MySQL UDFs enable you to request jobs of the Gearman job server from within
MySQL. This means you can have triggers on tables so that when an UPDATE, DELETE, or INSERT
occurs, a job can also be added. Think of the power this gives you!

To begin installation of the Gearman MySQL UDFs, follow these steps:

1. Download the latest UDF source, which you can fi nd on Launchpad at https://
launchpad.net/gearman-mysql-udf, into the same directory where you downloaded
the Gearman job server source code and untar/gzip the distribution fi le:

wget http://launchpad.net/gearman-mysql-udf/trunk/0.4/+download/gearman-mysql-udf-
0.4.tar.gz
tar xvzf gearman-mysql-udf-0.4.tar.gz

2. Enter the Gearman MySQL UDF source directory:

cd gearman-mysql-udf-0.4

3. Confi gure the package for compiling. The path you use depends on what distribution of
MySQL you have, source or binary, and so on. You need to locate the path where mysql_
config exists. You will probably have to install whatever MySQL development or commu-
nity development package (yum search mysql, apt-cache search mysql, yast, and so
on) is required.

On an Ubuntu system, it would be:

./confi gure --with-mysql=/usr/bin/mysql_confi g --libdir=/usr/lib/mysql/lib

--with-mysql is the argument that tells the confi guration program where to fi nd mysql_
config. --libdir is where the shared UDF libraries will be installed and this will have to
be a directory that MySQL can load the libraries from. You may have to add or edit /etc/
ld.so.conf.d/mysql.conf to make sure that the path is listed, and then run ldconfig.

563120c10.indd 405563120c10.indd 405 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

406 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

4. Next, build and install the UDF source code:

make
make install

5. To load the UDFs, you need to do so from within MySQL:

CREATE FUNCTION gman_do RETURNS STRING SONAME “libgearman_mysql_udf.so”;
CREATE FUNCTION gman_do_low RETURNS STRING SONAME “libgearman_mysql_udf.so”;
CREATE FUNCTION gman_do_high RETURNS STRING SONAME “libgearman_mysql_udf.so”;
CREATE FUNCTION gman_do_background RETURNS STRING SONAME “libgearman_mysql_udf.
so”;
CREATE FUNCTION gman_do_low_background RETURNS STRING SONAME “libgearman_mysql_
udf.so”;
CREATE FUNCTION gman_do_high_background RETURNS STRING SONAME “libgearman_mysql_
udf.so”;
CREATE AGGREGATE FUNCTION gman_sum RETURNS INTEGER SONAME “libgearman_mysql_udf.
so”;
CREATE FUNCTION gman_servers_set RETURNS STRING SONAME “libgearman_mysql_udf.so”;

At this point, the Gearman MySQL UDFs are installed.

Running the Gearman Job Server

Running gearmand, the Gearman job server, is the next thing you do to use it.

To start gearmand:

1. Run (whatever path it is installed in):

/usr/local/bin/gearmand –d

This tells gearmand to run detached in the background.

2. Now, run a worker. gearmand includes both some sample worker and client programs in
the examples/ directory of the source directory. To really do something, you need to run a
worker program. For testing out the gearmand (as well as both the workers and client to get
a concept of how Gearman as a whole works), use two windows to see what exactly it does.
In one window, start up the reverse worker. Do not background it by using &:

./reverse_worker

3. Run a client program. With the Gearman job server, you have two ways of requesting a job:

➤ Attached/callback, which will wait until the job that the server has delegated is com-
pleted and returns a return value of that worker.

➤ Detached/backgrounded, which lets the process run at its own volition, not waiting
for a return value of the worker.

For this example, the callback/attached client will run.

4. In another window, run the reverse_client_cb program:

./reverse_client_cb “This is a test”

Created: H:hanuman:929

563120c10.indd 406563120c10.indd 406 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

What Is Gearman? ❘ 407

Created: H:hanuman:930
Created: H:hanuman:931
Created: H:hanuman:932
Created: H:hanuman:933
Created: H:hanuman:934
Created: H:hanuman:935
Created: H:hanuman:936
Created: H:hanuman:937
Created: H:hanuman:938
Completed: H:hanuman:929 tset a si sihT
Completed: H:hanuman:930 tset a si sihT
Completed: H:hanuman:931 tset a si sihT
Completed: H:hanuman:932 tset a si sihT
Completed: H:hanuman:933 tset a si sihT
Completed: H:hanuman:934 tset a si sihT
Completed: H:hanuman:935 tset a si sihT
Completed: H:hanuman:936 tset a si sihT
Completed: H:hanuman:937 tset a si sihT
Completed: H:hanuman:938 tset a si sihT

If you look in the window there the worker is running:

Job=H:hanuman:929 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:930 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:931 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:932 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:933 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:934 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:935 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:936 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:937 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:938 Workload=This is a test Result=tset a si sihT

As you can see, the client requests a job from the job server, gearmand, to the reverse worker, which
was dispatched via job server to the workers, which in turn reversed the text and returned the result
of that reversal.

Using the Gearman MySQL UDFs

Another way to make job requests to the Gearman job server is to use the Gearman MySQL UDFs.
The UDFs that are offered are discussed in detail in the following sections.

gman_severs_set()

This UDF, which you must call before calling any other of the Gearman MySQL UDFs, sets the
server pool that will be used for any UDF call within the client session. It takes as its fi rst argument
one or more comma-separated servers, port optional — it will default to port 4730. The second
argument can be used to set a particular server to run a specifi c job!

gman_servers_set(“<server list>”, “<optional: job>”)

563120c10.indd 407563120c10.indd 407 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

408 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

An example of a single server is:

SELECT gman_servers_set(“192.168.1.33:7004”)

Here’s an example of assigning 192.168.1.33 to run the reverse worker:

SELECT gman_servers_set(“192.168.1.33:4730”, “reverse”);

Here’s an example of assigning two servers to run the indexer worker:

SELECT gman_servers_set(“192.168.1.88:4730,192.168.1.99:7004”, “indexer”);

Once your servers are set up, you can then request jobs from your UDF queries using the Gearman
MySQL UDFs.

gman_do()

These UDFs send job requests to the Gearman job server, gearmand:

gman_do(“<function name>”, “<input value>”)
gman_do_low(“<function name>”, “<input value>”)
gman_do_high(“<function name>”, “<input value>”)
gman_do_background(“<function name>”, “<input value>”)
gman_do_low_background(“<function name>”, “<input value>”)
gman_do_high_background(“<function name>”, “<input value>”)
<job name> should be <function name>

gman_do() runs a normal job, waiting for the job to fi nish before returning a result. If there
is one, gman_do_low|high() is a low/high priority job that waits as well, and gman_do_
background() and gman_do_background_low|high() run the job in the background
(asynchronous) at a normal, low, or high priority, returning only the host and job number
(job handle) that you can later query for the results.

If you want a job request to be made through a Gearman MySQL UDF using
a trigger, you need to call gman_do_background(). Otherwise, the INSERT
statement for the data being inserted into the table will not complete until the
job is done.

gman_sum()

This is an aggregate function used to run jobs in parallel. It is much faster than using sum(gman_
do(…)) because it runs the jobs simultaneously.

SELECT gman_sum(“wc”, Host) AS test FROM mysql.user;

563120c10.indd 408563120c10.indd 408 2/18/10 9:10:45 AM2/18/10 9:10:45 AM

What Is Gearman? ❘ 409

Usage Examples

Here are some examples of using the Gearman UDFs to submit a jobs to the Gearman job server to
assign work to the reverse worker you already started:

mysql> select gman_servers_set(‘127.0.0.1’);
+-------------------------------+
| gman_servers_set(‘127.0.0.1’) |
+-------------------------------+
| NULL |
+-------------------------------+

mysql> select gman_do(‘reverse’, ‘This is a test’);
+--------------------------------------+
| gman_do(‘reverse’, ‘This is a test’) |
+--------------------------------------+
| tset a si sihT |
+--------------------------------------+

mysql> select gman_do_background(‘reverse’, ‘This is a test’);
+---+
| gman_do_background(‘reverse’, ‘This is a test’) |
+---+
| H:hanuman:940 |
+---+

mysql> set @a = gman_do_background(‘reverse’, “XYZ”);

mysql> select @a;
+---------------+
| @a |
+---------------+
| H:hanuman:945 |
+---------------+

mysql> set @a = gman_do(‘reverse’, “XYZ”);

mysql> select @a;
+------+
| @a |
+------+
| ZYX |
+------+

As you can see from the output of gman_do_background(), it returns the name of the host and job
number.

PHP and Gearman

Using Gearman with PHP certainly makes for an ideal combination and is easy to use. You have a
Gearman client, which is usually in your application and is the code that sends jobs to the Gearman
job server. You also have the worker component, which uses the PHP Gearman worker library to
register itself as handling a named job and then specifi es the function name for the job.

563120c10.indd 409563120c10.indd 409 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

410 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

Writing Gearman-enabled PHP applications is amazingly simple, as shown in the following short
example.

First, a client, client.php:

<?

$client= new GearmanClient();
$client->addServer(‘127.0.0.1’);
for ($i = 0; $i <= 360; $i++) {
 print “sine $i: “ . $client->do(“sine”, $i) . “\n”;
}

?>

In this client example, a GearmanClient object is instantiated. Next, the Gearman client API
addServer() method is called to add a server to be used for the client connection. Multiple servers
could be added if desired. An empty argument would be the localhost, and here for clarity it was
explicitly specifi ed. A loop is initiated starting from 0 through 360 (degrees) and the Gearman client
API method is called for each iteration.

Next is the worker, worker.php. A GearmanWorker object is instantiated, and just like the client,
addServer() adds a server. Next, the worker adds a function — registers a function to be used for
work — to handle a job request for the “sine” job, and the “my_sine_function” function does the
work. The while loop runs the Gearman server API method work() until the worker is shut down
or killed. The function, my_sine_function(), was the name of the function specifi ed to handle
the “sine” job, and contains the implementation that passes the value from the Gearman server API
method workload(), which is the argument passed from the client when the client sent the job to
the job server. As you recall, for this test, it will be values from 0 to 360.

<?php

$worker= new GearmanWorker();
$worker->addServer(‘127.0.0.1’);
$worker->addFunction(“sine”, “my_sine_function”);
while ($worker->work());

function my_sine_function($job)
{
 return sin(deg2rad($job->workload()));
}

?>

To illustrate just how this works, Figure 10-2 shows the relation of the client, job server, and worker.

sine

client

Gearman

client API
4: 0.70710678

1: sine 45 Gearman

job

server 3: 0.70710678

2: 45

sine

worker

Gearman

worker

API

FIGURE 10-2

563120c10.indd 410563120c10.indd 410 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

What Is Gearman? ❘ 411

The fi rst step, the sine client sends a job ‘sine’ to the Gearman job server with the value of 45.
Next, the Gearman job server sends the value of 45 using the Gearman client API call (using PECL/
Gearman) do(), which the sine worker reads from the Gearman worker API call workload(). The
my_sine_function() returns the value of 0.70710678… to the Gearman job server, which the
Gearman job server then returns to the sine client via the Gearman client API.

The fi rst thing you need to make sure is that gearmand is running. Next, the worker is run in one
terminal:

patg@hanuman:~/wrox$ php worker.php

The client is run in another terminal:

patg@hanuman:~/wrox$ php client.php
sine 0: 0
sine 1: 0.0174524064373
…
sine 29: 0.484809620246
sine 30: 0.5
sine 31: 0.51503807491
…
sine 44: 0.694658370459
sine 45: 0.707106781187
sine 46: 0.719339800339
…
sine 89: 0.999847695156
sine 90: 1
sine 91: 0.999847695156
…
sine 209: -0.484809620246
sine 210: -0.5
sine 211: -0.51503807491
…
sine 269: -0.999847695156
sine 270: -1
sine 271: -0.999847695156
sine 359: -0.0174524064373

And it works!

You can also use this from a UDF:

mysql> select gman_do(‘sine’,45);
+-------------------+
| gman_do(‘sine’,45) |
+-------------------+
| 0.707106781187 |
+-------------------+

mysql> select gman_do(‘sine’,90);
+-------------------+
| gman_do(‘sine’,90) |
+-------------------+
| 1 |

563120c10.indd 411563120c10.indd 411 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

412 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

+-------------------+

mysql> select gman_do(‘sine’,361);
+--------------------+
| gman_do(‘sine’,361) |
+--------------------+
| 0.0174524064373 |
+--------------------+

And that also works.

So, by now you should probably understand just how simple using Gearman is. Also, you can see
that with the Gearman client and worker API in conjunction with the Gearman job server, schedul-
ing, management, and network communication are dealt with so you can focus on developing your
application. Now you can probably imagine just how many ways you might use it — the possibilities
are endless!

NARADA: A SEARCH ENGINE APPLICATION

Your curiosity should be sparked by what you just have read about regarding Gearman. Now
you will really see Gearman, along with MySQL, memcached, memached Functions for MySQL,
Sphinx, Apache, and PHP in action!

Search engines are applications most likely to have a lot of moving parts and functionality, which
are required to dispense information and make for a good example of a distributed application. In
a previous book by the author of this chapter, this idea was demonstrated in Perl. After the book
was published, Eric Day worked with the author to make this idea into an actual project, named
Narada, after the name of the divine sage from the Vedic tradition (India) who travels the universe
playing a Tambura and visiting distant worlds (“Lokas” in Sanskrit). This seemed to be a good
name for the search application because it needs to fetch remote content, sort of “traveling the uni-
verse,” in a sense.

Eric Day also convinced the author that it would be a fun to write this application in PHP to match
the Perl version as a good exercise in how Gearman really is language independent. This was in
response to the need to feature Narada at Java One which required that Narada needed to be re-
implemented in Java for the conference using the new Drizzle RDBMS as the data store. Sun wanted
to use Narada to demonstrate how it can be run in their cloud computing platform (http://www
.sun.com/solutions/cloudcomputing/index.jsp). Out of that, Narada was reimplemented on
both PHP and Java, although you could use any one of the parts interchangeably regardless of what
language it was implemented in.

Narada has a quite few moving parts — a bit like a Rube Goldberg contraption — but in a good
way! Narada is an excellent application to demonstrate just how useful all these new technologies —
particularly Gearman, Sphinx, and memcached — can be when used together to develop a distrib-
uted application. Narada is still a bit of a prototype, and is subject to change or better ideas that
people want to contribute. The main point in this demonstration is to show you how using Gearman
allows you to spread out processing to various jobs and across various servers, thus alleviating the
work that a web application has to perform.

563120c10.indd 412563120c10.indd 412 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 413

Obtaining Narada

The best way to obtain the source code for Narada is to visit https://launchpad.net/narada,
where you can obtain the source fi le or simply use the bazaar revision control system to check out
the source. From whatever directory within your document root you can run PHP in, type the
following:

bzr clone lp:narada

The code structure is basically four top-level directories — php, perl, sphinx, and sql. The php
directory contains all the source code you need to set up PHP-based Narada and you can copy
this to any directory in your document root for your web server. The sphinx directory contains
the sphinx.conf fi le, which you’ll copy to wherever you keep your sphinx.conf (/usr/local/
sphinx/etc). The sql directory contains the schema fi le, narada.sql, for creating the tables used
by Narada regardless of whether it is the PHP-based or Perl-based Narada. Make sure to create a
database/schema for Narada and grant permissions to whatever user you choose and then run this
schema fi le to create the tables.

Narada Components

This application has two major parts:

➤ A data gathering system for data retrieval, storage, and creating full-text indexes

A search engine user application➤

Narada consists of the components listed in Table 10-1.

TABLE 10-1: Narada Components

COMPONENT DESCRIPTION

Gearman gearmand running, along with workers and clients.

Narada.php Implements the Narada class, which contains the methods the index

page and the various workers use.

NaradaConf.php This is the global variables confi guration fi le. This provides global set-

tings used by the various workers.

index.php Displays the search page, allowing you to enter a URL to be fetched as

well as a search term for searching the content that has been indexed

by Sphinx.

NaradaFetch.php Given a URL, this retrieves the page at that URL and parses through the

document at that URL, calling the insert worker (NaradaInsert.php)

for any URLs found. Also, the indexer worker NaradaIndex is called and

checks if the Sphinx index should be regenerated. Finally, the fetched

content is stored in MySQL.

continues

563120c10.indd 413563120c10.indd 413 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

414 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

COMPONENT DESCRIPTION

NaradaInsert.php This worker is fi rst called either by the fetch worker (NaradaFetch.

php) or when a URL is inserted via the index page, index.php.

NaradaIndex.php When requested, this worker checks the value of a frequency counter,

corresponding to the number of web pages that have been stored,

and if the frequency counter exceeds the number you specify in

NaradaConf.php, it calls the Sphinx indexer program to re-index the

Sphinx index for the table containing the retrieved web pages.

NaradaSearch.php This worker is called by the index page, index.php, with search terms.

It then obtains the search results from Sphinx and obtains the content

from the cache (if cached) or MySQL and returns the results to the

index page as a JSON object.

NaradaIndexTimer.php Depending on the global setting from NaradaConf.php, this worker

simply requests the indexer worker NaradaIndex.php if the amount of

time specifi ed has been exceeded. This is to ensure the index is regen-

erated at some given interval.

MySQL Three tables: meta-data table, blob/text table, and a sphinx counter table.

A meta-data table url For storing information about the web page such as its URL, unique id,

date, and so on.

A blob/text table

url_content

Has a 1:1 relation to the meta-data table that stores the actual content

and title of the web page for the particular URL in a TEXT column.

Sphinx full-text index Built from the blob/text table containing the web pages.

memcached For caching searches so subsequent searches use memcached to

obtain the content versus retrieving the content from the database. The

more popular a search term, the more likely it will be cached!

The fl ow of how content is fetched from a web page, parsed, stored, and then indexed is as follows:

1. A user enters a URL value into the URL entry fi eld on the index page and the URL value is
stored in the url table. The index page calls the Narada class’s insert() method which in
turn requests that the URL be stored by the insert, NaradaInsert.php, through the Gearman
client API.

2. The insert worker, NaradaInsert.php, checks the validity of the URL specifi ed, then calls
the Narada method store(), which in turn inserts the URL into the url table and returns the
insert_id (value of the auto_increment id column returned from insert). This is the ID of
the URL. If an ID is returned, the insert worker then calls the Narada method fetch(), which
in turn results in a request to Gearman for a fetch of that URL, provided by the fetch worker,
NaradaFetch.php.

TABLE 10-1 (continued)

563120c10.indd 414563120c10.indd 414 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 415

3. The fetch worker, NaradaFetch.php, fetches the web page of the URL specifi ed and then
proceeds to parse any URLs in the content of the page. For any URLs found, it requests the
URL to be inserted using the Narada method insert(), which in turn results in the insert
worker inserting the URL and calling a fetch on that URL — so you can quickly see that both
the insert worker and the fetch worker feed on themselves and continue crawling and pars-
ing web pages without relent! The last thing, after requesting an insert of any URLs found,
is to request that the indexer be run by calling the Narada method index(), which in turn
requests the index worker, NaradaIndex.php, through gearmand.

4. The index worker, NaradaIndex.php, runs the Sphinx indexer if the count for indexing has
reached the value determined by the global variable $GLOBALS[‘NaradaIndexFrequency’].

5. The index timer is not a worker but a program that runs in perpetuity, sleeps for the duration
of the value of the global $GLOBALS[‘NaradaIndexTimer’], and then requests the indexer
to be run. This ensures that the indexer is run even when there is low activity and no event-
driven indexing resulting from documents being fetched.

The search functionality can be described as follows:

1. The user enters a search term on the main index page, index.php, which results in a request
of the search worker through the Narada method search(). This is a synchronous method
that returns the search results as JSON, which index.php de-serializes into a PHP search
results object.

2. The search worker performs a search against the Sphinx index by calling the Narada method
searchIndex() for the search term and then obtains the content for the document IDs (ids to
the url_content table) from either memcached, if already cached, or MySQL. The results are
then cached for subsequent searches for that term by calling the Narada method getContent().
The results are then returned as JSON to the caller, index.php in this case.

Database Tables for the Search Engine Application

When building a search engine, the fi rst thing to think about is how the data is stored. For this
application, as shown in Table 10-1, there will be four database tables which are as follows:

CREATE TABLE url (
 id int NOT NULL auto_increment,
 url_md5 varbinary(32) NOT NULL,
 url varchar(255) NOT NULL,
 created date default NULL,
 last_updated timestamp NOT NULL default CURRENT_TIMESTAMP on
 update CURRENT_TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE KEY url_md5_idx (url_md5)
) ENGINE=InnoDB ;

The url table will store the meta-data information for a web page retrieved. This includes column
such as the URL of the page itself, url, the unique MD5 value of the URL url_md5, last updated,
last_updated, and the created date, created, but not the actual web page content. It’s good

563120c10.indd 415563120c10.indd 415 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

416 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

practice to keep your BLOB or text data in a separate table so that any queries for meta-data type
values don’t have to be retrieved from a table containing TEXT or BLOBs; combining tables would
make these queries perform slower and would require more memory.

CREATE TABLE url_content (
 id int NOT NULL,
 title varchar(255) NOT NULL default ‘’,
 content blob NOT NULL,
 PRIMARY KEY (id)
) ENGINE=InnoDB;

The url_content table stores the title and the actual web page contents. It also has a primary key
id, which is a direct relation to the url table id column:

create table urls_queue (
 url_md5 char(32) NOT NULL default ‘’,
 url varchar(128) NOT NULL default ‘’,
 last_updated timestamp,
 primary key url_md5 (url_md5)
) ENGINE=InnoDB;

The sphinx_counter table is for keeping track of what the greatest ID value of an index is. The ID
(id) values from this table are used by the indexer to supply the ID value for the SQL query when
querying MySQL to obtain the content for indexing.

CREATE TABLE sphinx_counter (
 id int NOT NULL,
 max_id int NOT NULL,
 index_name varchar(32) NOT NULL,
 PRIMARY KEY (id),
 KEY index_name (index_name)
) ENGINE=InnoDB

Sphinx Setup

To index web pages stored in MySQL using the Sphinx full-text index, Sphinx also has to be set
up. This example uses a simple Sphinx setup with a single distributed index, which has two sphinx
agents: one for the main index, url, and one for the delta index, url_delta.

You have two indexes — one main large index and a smaller delta index — for good reason:
you don’t want to re-index a continually growing large data set too often in its entirety and have
changes, or deltas, added to it. Because Sphinx has distributed index functionality, you can treat
these two indexes as if they are a single index, and you only need to update the smaller delta index.
Then at some interval, you merge the delta index into the main index.

The fi rst thing to review is the MySQL table that will contain the positions of both the main and
delta indexes. The indexer uses this positional information in the sphinx_counter table to obtain
the limits or extents of what records the indexes has. The indexer uses this to determine what data
should be selected when indexing.

The main url index will contain all records having an id value less than the value of column max_id
in the table sphinx_counter. The delete index, url_delta, will contain records having their id
value starting from the value of the column sphinx_counter.max_id and no upward limit.

563120c10.indd 416563120c10.indd 416 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 417

Where the main index ends and the delta index starts is set only when the main index is re-indexed.
The delta index grows over time, and at some point, you merge the two them. The break point is set
to the maximum of the main index, which now contains what was previously in the delta, and the
delta is rebuilt with a starting point equal to the maximum of the newly merged index.

Each index has exactly one entry in this table and the position data is updated during indexing.

An example showing the positional data of a running setup is:

mysql> select * from sphinx_counter;
+----+--------+-----------+---------------------+
| id | max_id | index_name| last_updated |
+----+--------+-----------+---------------------+
| 1 | 1133 | url | 2009-03-02 11:05:30 |
| 2 | 1181 | url_delta | 2009-03-02 11:12:12 |
+----+--------+-----------+---------------------+

To use this to explain the topic further, the main index, url, will contain records with the url.id
value of 0 through 1133, and the delta index, url_delta, will contain records with the url.id value
of 1134 through 1181.

The entry in the sphinx_counter counter table for the delta index is not really necessary, but is an
added informational benefi t to show you the state of what record range (of IDs) your indexes are
searchable for. The single entry for the main index is suffi cient to delineate the extents of the main
and the delta indexes for indexing.

To set up Sphinx for Narada, follow these steps:

1. Defi ne the data sources to use. The fi rst source, url, is set to use the MySQL server running
on localhost on port 3306. The sql_query_pre directive defi nes the query that is run prior
to the main document fetching query. In this case, the sphinx_counter table is updated with
the max(id) value from the url table, moving the positional information up to represent the
index that is about to be regenerated.

2. The sql_query directive specifi es the main query that will run. The primary key or other
unique identifi er must always be the fi rst column specifi ed in this query. In this instance, it is
the id column of the url table. This makes it so when you perform a search against Sphinx,
you obtain one or more values of the primary key id that you will subsequently use to
retrieve the actual data from MySQL, making for a fast lookup.

The query specifi ed with the directive sql_query performs a join of url with
url_content to obtain the actual content from the blob table as well as the
other columns specifi ed after the primary key value. These columns create a
full-text index and are therefore searchable. Sphinx has a very fl exible language,
allowing you to specify which columns to search on. Also, this query uses a
WHERE clause to select records less than or equal to the value in the sphinx_
counter table for the main index. This is the mechanism that applies an extent
to the data being gathered.

563120c10.indd 417563120c10.indd 417 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

418 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

3. The directive sql_query_info provides a query to the search command-line program. This
is good for running test queries against your index. Note that search does not search against
Sphinx through the Sphinx search daemon, searchd — it searches on the index itself, so it
does not work with distributed indexes.

source url
{
 type = mysql
 sql_host = localhost
 sql_user = narada
 sql_pass = n@r@d@
 sql_db = narada
 sql_port = 3306
 sql_query_pre = UPDATE sphinx_counter SET max_id=
 (SELECT MAX(id) FROM url) WHERE index_name =
‘url’
 sql_query = SELECT id, content FROM url_content WHERE id <=
 (SELECT max_id FROM sphinx_counter WHERE index_
name = ‘url’)
 sql_query_info = SELECT * FROM url_content WHERE id=$id
}

4. The source for the delta index, url_delta, is defi ned. The notation url_delta : url
means that url_delta inherits every option/directive from the data source url, unless oth-
erwise overridden. In this case, the directives sql_query_pre and sql_query are overridden
to specify a different range than is used with the url data source. For the url_delta data
source, all records greater than the max_id value for the data source url are specifi ed.

source url_delta : url
{
 sql_query_pre = UPDATE sphinx_counter SET max_id=
 (SELECT MAX(id) FROM url) WHERE index_name =
‘url_delta’
 sql_query = SELECT id, content FROM url_content WHERE id >
 (SELECT max_id FROM sphinx_counter WHERE index_
name = ‘url’)
}

5. The indexes are defi ned. The directives shown here are the most important. The directive
source defi nes the data source that is used to build this index; in this case the source url is
used. The directive path specifi es the path and base name of the actual index fi les. docinfo
just specifi es the storage mode. min_word_len specifi es the minimum size of a word that is
indexed. The value of 1 specifi es all words. It’s important to point out that MySQL full-
text indexes have a limit of three, so this is yet another improvement over MySQL full-text
indexes.

index url
{
 source = url
 path = /usr/local/sphinx/var/data/url
 docinfo = extern
 mlock = 0

563120c10.indd 418563120c10.indd 418 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 419

 morphology = none
 min_word_len = 1
 charset_type = sbcs
}

6. The delta index, url_delta, inherits everything from the index url, except path and source,
which it overrides. Because the source for url_delta is url_delta, this is the data source
that has a different range than url, hence url_delta is a smaller index composed of a
smaller range — the topmost records — of the database table url.

index url_delta : url
{
 source = url_delta
 path = /usr/local/sphinx/var/data/url_delta
}

7. The distributed index dist_url is defi ned. This is the glue that makes the delta index and
main index work together as one index. Queries run against this distributed index. As far a
searching an index is concerned, the has no way of knowing that the index is composed of
partial, distributed indexes.

index dist_url
{
 type = distributed
 agent = localhost:3312:url
 agent = localhost:3312:url_delta
 agent_connect_timeout = 1000
 agent_query_timeout = 3000
}

8. The indexer is confi gured. The directive mem_limit specifi es how much memory is used for
the indexer, when it runs, to generate indexes.

indexer
{
 # memory limit, in bytes, kilobytes (16384K) or megabytes (256M)
 # optional, default is 32M, max is 2047M, recommended is 256M to 1024M
 mem_limit = 32M

}

9. The searchd daemon is confi gured. The listen directive specifi es which port or socket the
daemon will bind to. In this case none are specifi ed, so all interfaces are used. The log direc-
tive specifi es the log for the searchd daemon. This log incrementally logs the status of the
searchd daemon. The query_log directive specifi es a log that records search queries run
against searchd.

The other directives set timeout values, max number of children to run, a pid fi le, maximum num-
ber of matches returned, and whether the searchd daemon can be restarted seamlessly after run-
ning the indexer.

563120c10.indd 419563120c10.indd 419 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

420 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

Also listed is the directive seamless_rotate. When you run the indexer, searchd is seamlessly
restarted once the indexer completes.

searchd
{
 log = /usr/local/sphinx/var/log/searchd.log
 query_log = /usr/local/sphinx/var/log/query.log
 read_timeout = 5
 client_timeout = 300
 max_children = 30
 pid_file = /usr/local/sphinx/var/log/searchd.pid
 max_matches = 1000
 seamless_rotate = 1
 preopen_indexes = 0
 unlink_old = 1
 mva_updates_pool = 1M
 max_packet_size = 8M
 max_filters = 256
 max_filter_values = 4096
}

The Narada Confi guration File

Various global variables work as settings that both the Narada class and the various workers use —
such as the database connection parameters, memcached server settings, Sphinx server settings, and
so on. NaradaConf.php is the fi le where you can control the overall behavior of the Narada applica-
tion by adjusting the settings to your own needs. This fi le is nicely littered with ample comments to
explain what each setting is for!

<?php
Narada Search Engine in PHP
Copyright (C) 2009 Eric Day, Patrick Galbraith
All rights reserved.

Use and distribution licensed under the BSD license. See
the COPYING file in this directory for full text.

This is the list of Gearman job servers to use. The format is:
‘SERVER[:PORT][,SERVER[:PORT]]...’
For example: ‘10.0.0.1,10.0.0.2:7003’
$NaradaGearmanServers= ‘127.0.0.1’;

DB connection options.
$NaradaDBHost= ‘127.0.0.1’;
$NaradaDBPort= 3306;
$NaradaDBUser= ‘narada’;
$NaradaDBPass= ‘n@r@d@’;
$NaradaDBType = ‘mysqli’;
$NaradaDB= ‘narada’;

$NaradaMemcachedPort= ‘11211’;
$NaradaMemcachedHost= ‘127.0.0.1’;

563120c10.indd 420563120c10.indd 420 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 421

Available options: DRIZZLE_CON_MYSQL
$NaradaDBOptions= 0;
Whether to enable debugging.
$NaradaDebug= true;

Insert Worker Configuration.
#

Name of the function the insert worker will register.
$NaradaInsertFunctionName= ‘NaradaInsert’;

Fetch Worker Configuration.
#

Name of the function the fetch worker will register.
$NaradaFetchFunctionName= ‘NaradaFetch’;

Whether to crawl (search and insert) other URLs when fetching pages.
$NaradaFetchCrawl= true;

Whether to limit crawling to URLs local to the original URL or not.
$NaradaFetchLocalURLs= true;

Index Worker Configuration.

Name of the function the index worker will register.
$NaradaIndexFunctionName= ‘NaradaIndex’;

How often the index should run, per number of documents.
$NaradaIndexFrequency= 10;

Command to execute when the indexer needs to run.
$NaradaIndexCommand= ‘/usr/local/sphinx/bin/indexer --rotate --all’;

How often the index timer should send a message to make sure unindexed
documents eventually get indexed.
$NaradaIndexTimer= 60;

Sphinx Configuration
#

Path to the Sphinx PHP API. This needs to be included before the other Sphinx
configuration in case API constants are used.
require(‘/usr/lib/php5/sphinxapi.php’);

Name of the function the search worker will register.
$NaradaSearchFunctionName= ‘NaradaSearch’;

Name of the index to search

563120c10.indd 421563120c10.indd 421 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

422 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

$NaradaSearchIndex= ‘dist_url’;

Name of the non-distributed excerpt index (for creating excerpts)
$NaradaExcerptIndex= ‘url’;

Name of the Sphinx host
$NaradaSearchHost= ‘localhost’;

Name of the Sphinx host
$NaradaSearchPort= 3312;

Sphinx search mode
$NaradaSearchMode= SPH_MATCH_EXTENDED2;

?>

The Narada Class

The next PHP code component of Narada is the Narada class. This class implements the bulk of the
functionality needed for Narada, containing many of the methods that the various PHP Gearman
workers — which are shown in the next section — will use.

First and foremost is the class defi nition:

<?php
Narada Search Engine in PHP
Copyright (C) 2009 Eric Day, Patrick Galbraith
All rights reserved.

Use and distribution licensed under the BSD license. See
the COPYING file in this directory for full text.

This is a helper/base class for all Narada components to use. It encapsulates
common configuration and initialization of things like Gearman clients and
workers.

require(‘NaradaConf.php’);

#if ($GLOBALS[‘NaradaDebug’])
error_reporting(E_ALL | E_NOTICE | E_STRICT);

class Narada
{
 private $gearmanServers;
 private $gearmanClient;
 private $dbh;
 private $dbhCon;
 private $sphinx;
 private $sphinxIndex;
 private $sphinxHost;
 private $sphinxPort;

563120c10.indd 422563120c10.indd 422 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 423

 private $sphinxMatchMode;
protected $functionName;
 protected $fetchFunctionName;
 protected $searchFunctionName;
 protected $insertFunctionName;
 protected $indexFunctionName;

The fi rst method is the constructor, which performs the following:

➤ Obtains the Gearman job server list, parsing and initializing the list

Sets the value of class variables for worker names➤

Sets the class variables for Sphinx index, excerpt index, host, port, and search mode➤

Connects to the memcached server pool➤

Connects to MySQL➤

public function __construct()
 {
 $servers= explode(‘,’, $GLOBALS[‘NaradaGearmanServers’]);
 foreach ($servers as $server)
 $this->gearmanServers[]= explode(‘:’, $server);

 $this->gearmanClient= new GearmanClient();

 foreach ($this->gearmanServers as $server)
 $this->gearmanClient->addServer($server[0], $server[1]);

 $this->fetchFunctionName= $GLOBALS[‘NaradaFetchFunctionName’];
 $this->searchFunctionName= $GLOBALS[‘NaradaSearchFunctionName’];
 $this->insertFunctionName= $GLOBALS[‘NaradaInsertFunctionName’];
 $this->indexFunctionName= $GLOBALS[‘NaradaIndexFunctionName’];

 $this->sphinx= NULL;
 $this->sphinxIndex= $GLOBALS[‘NaradaSearchIndex’];
 $this->sphinxExcerptIndex= $GLOBALS[‘NaradaExcerptIndex’];
 $this->sphinxHost= $GLOBALS[‘NaradaSearchHost’];
 $this->sphinxPort= $GLOBALS[‘NaradaSearchPort’];
 $this->sphinxMatchMode= $GLOBALS[‘NaradaSearchMode’];

 $this->memc= new Memcached();
 $this->memc->addServer($GLOBALS[‘NaradaMemcachedHost’],
 $GLOBALS[‘NaradaMemcachedPort’]);

 $this->dbh= new mysqli($GLOBALS[‘NaradaDBHost’],
$GLOBALS[‘NaradaDBUser’],
 $GLOBALS[‘NaradaDBPass’],
 $GLOBALS[‘NaradaDB’]);
 if ($GLOBALS[‘NaradaDBType’] == ‘mysqli’)
 $this->dbhCon= $this->dbh;
 }

563120c10.indd 423563120c10.indd 423 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

424 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

For the previous code, note the following:

➤ The debug() method simply prints the messages that were passed to it if
$GLOBALS[‘NaradaDebug’] is set. This method is useful for printing out various messages
or var_dump() of PHP arrays when you are debugging Narada, should you want to extend it
and submit the code to the project!

public function debug($msg)
 {
 if ($GLOBALS[‘NaradaDebug’])
 print “$msg\n”;
 }

➤ The insert() method performs an insert by way of requesting an insert job (backgrounded)
from the Gearman job server using the gearman client API method, doBackground().

public function insert($url)
 {
 $this->gearmanClient->doBackground($this->insertFunctionName, $url);
 }

➤ The search() method performs a search by way of the search worker, which it requests of the
Gearman job server. It returns the results of the search (non-backgrounded worker) using the
gearman client method do().

public function search($query)
 {
 return $this->gearmanClient->do($this->searchFunctionName, $query);
 }

➤ The fetch() method requests the retrieval of the content of a page for a given URL by way
of the fetch worker requested of gearmand as a background job.

protected function fetch($url)
 {
 $this->gearmanClient->doBackground($this>fetchFunctionName, $url);
 }

➤ The index() method requests that the Sphinx indexes are re-indexed by way of the index
worker requested of gearmand as a background worker.

 public function index()
 {
 $this->gearmanClient->doBackground($this->indexFunctionName, NULL);
 }

➤ The store() method, which is called by the insert worker, inserts the specifi ed URL. This
URL comes either from the initial submission on the index page of a URL or from a URL
parsed by the fetch worker.

563120c10.indd 424563120c10.indd 424 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

Narada: A Search Engine Application ❘ 425

It’s important to note that the store() method returns the insert id, which
is the primary key value that is used for the subsequent insertion of the page
content and title fetched from the page of the URL into the url_content table,
maintaining the 1:1 relation between the url and url_content tables.

protected function store($url)
 {
 $query= “INSERT INTO url (url_md5, url, created, last_updated)
“
 . “VALUES (‘” . md5($url) . “‘,’”
 . $this->dbh->real_escape_string($url) .
 “‘, now(), now())”;

 $result= @$this->dbhCon->query($query);
 if ($result)
 {
 $id= $this->dbhCon->insert_id;
 return $id;
 }

 return 0;
 }

➤ The storeContent() method is called by the fetch worker after the page content and
title are retrieved and parsed for a given URL. Note the useful application of the INSERT
INTO...ON DUPLICATE KEY UPDATE statement — explained more in Chapter 18 — which
essentially means if the record exists for a given record, update it instead; otherwise insert it.

protected function storeContent($id, $title, $content)
 {
 $query= “INSERT INTO url_content (id, title, content) VALUES ($id “ .
 “,’” . $this->dbh->real_escape_string($title) .
 “‘,’” . $this->dbh->real_escape_string($content) . “‘) “ .
 “ON DUPLICATE KEY UPDATE content=’” .
 $this->dbh->real_escape_string($content) . “‘”;

 $this->dbhCon->query($query);
 }

➤ The get() method is called by the fetch worker to obtain the URL, which is obtained using
the workload that happens to be the id value for the given URL.

protected function get($id)
 {
 $result= $this->dbhCon->query(“SELECT url FROM url WHERE id=$id”);
 if (!$result)

563120c10.indd 425563120c10.indd 425 2/18/10 9:10:46 AM2/18/10 9:10:46 AM

426 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

 return NULL;

 $row= $result->fetch_array();
 return $row[0];
 }

➤ The getContent() method obtains the content for the document ids (the id values for
records specifi ed in the query of the url and url_content tables). The array $search_
results contains the data from a Sphinx search, which includes the id values for the records
found ($search_results[‘matches’]). Next, a loop attempts to fi rst try to obtain the
content from memcached for each ID (id), and if found eliminates the id from the list,
which is inevitably passed to the database query to obtain the content from the url_content
table. Whatever id values remain are specifi ed in the IN list using implode(). The result
from the query is returned and if there is a result, each row of the result set is fetched and
pushed into the $results array with any results retrieved from memcached. The content,
found as $row[5] from the fetched row, is pushed into the $docs array. This $docs array
is passed to the Sphinx PHP API method BuildExcerpts(), which creates excerpts for the
term specifi ed, using to highlight the term in the excerpt. The $results array, which
contains everything about the search results except the excerpt for each document, is then
looped through and the excerpt for that result is added. Also within the loop, the document
is cached in memcached.

➤ $results is returned to the calling program, the search worker in this case, which the search
worker encodes the results as JSON and the index page displays the results.

protected function getContent($search_results, $search_term)
 {
 if (!is_array($search_results[“matches”]))
 return NULL;

 $docs= array ();
 $results= array();
 $to_cache = array();
 $cached = array();

 foreach (array_keys($search_results[“matches”]) as $match) {
 $doc_key = “docs:” . $match;

 $cached = array();
 $cached = $this->memc->get($doc_key);

 # if there is a match, then we’re happy and can use it
 if ($doc) {
 array_push($results, $cached);

 # since we have it already, take it out of list that
 # will be passed to DB
 unset($search_results[“matches”][$match]);
 }
 }
 $query= ‘SELECT id, url, created, last_updated, title, content ‘ .
 ‘FROM url JOIN url_content USING (id) ‘ .
 ‘WHERE id IN (‘ .

563120c10.indd 426563120c10.indd 426 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 427

 implode(“,”, array_keys($search_results[“matches”])) . ‘)’;

 $result= $this->dbhCon->query($query);

 if (result) {
 # Changed from earlier - push into array because we need to maintain
 # order, especially if we use Sphinx ordering/grouping
 while($row= $result->fetch_array())
 {
 array_push($results, array(‘id’ => $row[0],
 ‘url’ => $row[1],
 ‘url_created’ => $row[2],
 ‘url_last_updated’ => $row[3],
 ‘url_title’ => $row[4]));

 array_push($docs, $row[5]);

 }
 }
 # Note: excerpt index must be actual, not distributed index
 $options= array(‘before_match’ => ‘’,
 ‘after_match’ => ‘’,
 ‘around’ => 3,
 ‘single_passage’ => 0,
 ‘chunk_separator’ => ‘...’,
 ‘limit’ => 180);

 $excerpts= $this->sphinx->BuildExcerpts($docs, $this->sphinxExcerptIndex,
 $search_term, $options);

 for ($x= 0; $x < count($results); $x++) {
 $results[$x][“url_excerpt”] = $excerpts[$x];
 $doc_key= “docs:” . $results[$x][“id”];

 $this->memc->set($doc_key, $results[$x]);
 }

 return $results;
 }

➤ The searchIndex() method is used to pass a search query to Sphinx and retrieve the results
from that search. This method is called by the search worker. The results from searchIndex()
are what getContent() uses to obtain document content for the search results.

 protected function searchIndex($query)
 {
 if ($this->sphinx == NULL)
 {
 $this->sphinx= new SphinxClient();
 $this->sphinx->SetServer($this->sphinxHost, $this->sphinxPort);
 $this->sphinx->SetMatchMode($this->sphinxMatchMode);
 }

 return $this->sphinx->Query($query, $this->sphinxIndex);
 }

563120c10.indd 427563120c10.indd 427 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

428 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

➤ The method verify() verifi es if a URL is properly formed. If the URL value doesn’t contain
the scheme (http://) it adds it to the beginning of the URL.

protected function verify($url)
 {
 if (strstr($url, “://”))
 {
 if (substr($url, 0, 7) != “http://”
 && substr($url, 0, 8) != “https://”)
 return NULL;
 }
 else
 $url= “http://$url”;

 if (substr_count($url, “/”) == 2)
 $url= “$url/”;

 return $url;
 }

➤ The runWorker() method is the core of the work loop for each PHP worker. It sets which
Gearman job servers and callback functions are used and then starts the work() loop where
the worker awaits assignment to a job by the gearman job server.

Derived worker classes should set functionName, defi ne a callback member
 # function, and then call this.
 public function runWorker()
 {
 $worker= new GearmanWorker();

 foreach ($this->gearmanServers as $server)
 $worker->addServer($server[0], $server[1]);

 $worker->addFunction($this->functionName, “NaradaWorkerCallback”, $this);

 while ($worker->work());
 }
};

➤ The NaradaWorkerCallback() method is a generic method of sorts. It is passed as the call-
back method in the previously listed method runWorker(). Where this method differs in
implementation is how the worker implements the callback() function. The worker calls
runWorker(), which sets NaradaWorkerCallback() as the callback function. When the
callback function is called, it in turn calls the callback() method, using the implementation
details the worker has specifi ed.

Callback function for Gearman worker interface.
function NaradaWorkerCallback($job, &$narada)
{
 return $narada->callback($job);
}

?>

563120c10.indd 428563120c10.indd 428 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 429

Now that the details of the Narada class have been explained, you’ll be able to see how each worker
is implemented and what Narada methods each worker uses.

Gearman Workers

This application utilizes four workers that take care of various parts of the data retrieval, caching,
storage, and indexing of web pages. The following subsections discuss each one.

Insert Worker

The insert worker is the worker that starts the web page fetch process. The insert worker is called
by either the index page, index.php, or the fetch worker. The initial insertion of a URL results in
the insert worker inserting the URL in the database and then calling the fetch worker, which in turn
calls the insert worker for any URLs obtained in the web page content — hence implementing web-
crawling functionality for Narada.

As with all the workers, the insert worker is implemented as a subclass of Narada. The fi rst method
defi ned is the __construct() method, which sets the function name of the worker. This function
name is the job name registered with the gearman job server. The next method is the callback()
method. If you recall in the review of the Narada class’s details, the NaradaWorkerCallback()
method was the callback method specifi ed in the Gearman worker method addFunction().
NaradaWorkerCallback() then called callback(), which is what is implemented in each worker.
As you will see, the bulk of each workers’ functionality will be implemented in the callback()
method. For the insert worker, this involves taking the URL value and inserting it into the database
via the call to the method insert(). If the insert is successful, it returns the ID value of the URL,
and uses that id to call the fetch worker to fetch that URL.

The worker is initiated by instantiating a NaradaInsert object and then calling the method run-
Worker(), which runs the actual worker, as you saw in the Narada class explanation in the previous
section.

require(‘Narada.php’);
class NaradaInsert extends Narada
{
 public function __construct()
 {
 parent::__construct();
 $this->functionName= $this->insertFunctionName;
 }

 public function callback($job)
 {
 $url= $job->workload();

 $this->debug(“Insert URL: $url”);

 $url= $this->verify($url);
 if (!$url)
 {
 $this->debug(“Not a valid URL”);
 return “Invalid URL”;

563120c10.indd 429563120c10.indd 429 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

430 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

 }

 # Store the URL in the database, if it is unique, trigger the fetch.
 if (($id= $this->store($url)))
 $this->fetch($id);
 return $id;
 }
}

Now, actually run the index worker.
$insert= new NaradaInsert();
$insert->runWorker();

Fetch Worker

The fetch worker, implemented as NaradaFetch.php, accesses the URL specifi ed, parsing through
the requested remote document for other URLs. It calls the insert() method resulting in the insert
worker being requested, which inevitably results in the fetch worker being requested — essentially
a self-sustaining web page crawl. The fetch worker then stores the content of the web page and the
parsed title for the URL requested.

The implementation of the fetch worker follows this process:

➤ The implementation of the fetch worker begins as a derived class defi nition, inheriting from
the Narada class. The two private class variables are $crawl and $local. The worker uses the
variable $crawl to determine whether to iterate through the web page, parsing for URLs within
the page content. The variable $local determines whether or not to parse and process URLs
parsed in the web page content that are of the same domain of the URL requested. You can use
the variable to contain the crawling behavior to that particular domain. If set to 1 (true), only
“local” URLs are processed.

require(‘Narada.php’);

class NaradaFetch extends Narada
{
 private $crawl;
 private $local;

 public function __construct()
 {
 parent::__construct();
 $this->functionName= $this->fetchFunctionName;
 $this->crawl= $GLOBALS[‘NaradaFetchCrawl’];
 $this->local= $GLOBALS[‘NaradaFetchLocalURLs’];
 }

➤ The next method is the callback() method. If you recall in the review of the Narada
class’s details, the NaradaWorkerCallback() method was the callback method specifi ed
in the Gearman worker method addFunction(). NaradaWorkerCallback() then called
callback(), which is what is implemented in each worker. For the fetch worker, the call-
back method performs the bulk of the work. It fetches the web page content using the class
DomDocument’s loadHTMLFile() and uses DomXpath() to organize the web page content
into a DOM structure and the query() method to obtain all the HREF nodes. Depending on

563120c10.indd 430563120c10.indd 430 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 431

how you set $crawl, the fetcher worker parses URLs from HREF nodes. It ignores anchor
and mailto URLs. If a URL is found that is remote, it verifi es the validity of that URL and if
validated, adds that URL to the $new_url_list array.

➤ Next, the members of $new_url_list are reduced to unique URLs, then $new_url_list
is iterated over for each URL it contains. The URL is checked to determine if it is within the
same domain of the URL of the requested web page, and if so, the Narada insert() method
is called resulting in the insert worker inserting that URL. Otherwise, the URL is not of the
same domain and if the class variable $this->local is set, the URL is skipped. If $this-
>local is not set, the Narada insert() method is called for that URL.

➤ The title is then obtained from the title DOM node and the page content and title are stored
in the database using the method storeContent(). Finally, a job is sent to the job server for
the index worker through the call to the method index().

 public function callback($job)
 {
 $url= $this->get($job->workload());

 list($protocol, $domain, $path, $fi le)= $this->split($url);

 $this->debug(“Protocol: $protocol”);
 $this->debug(“Domain: $domain”);
 $this->debug(“Path: $path”);
 $this->debug(“File: $fi le”);

 # Fetch document.
 $doc = new DomDocument();
 @$doc->loadHTMLFile($url);

 if ($this->crawl)
 {
 # Extract the URLs from document object.
 $xpath = new DomXpath($doc);
 $res = $xpath->query(“//a/@href”);
 $new_url_list= array();
 foreach($res as $href)
 {
 if (strstr($href->nodeValue, “mailto:”))
 continue;
 else if (strstr($href->nodeValue, “://”))
 $new_url= $href->nodeValue;
 else if (substr($href->nodeValue, 0, 1) == “#”)
 continue;
 else if (substr($href->nodeValue, 0, 1) == “/”)
 $new_url= $domain . $href->nodeValue;
 else
 $new_url= $domain . $path . $href->nodeValue;

 # Remove local references.
 if (strstr($new_url, “#”))
 $new_url= substr($new_url, 0, -strlen(strstr($new_url, “#”)));

 $new_url= $this->verify($new_url);
 if ($new_url)

563120c10.indd 431563120c10.indd 431 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

432 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

 $new_url_list[]= $new_url;
}

 # Remove duplicate URLs.
 $url_list= array_unique($new_url_list);

 # Filter URL list into local and remote URLs.
 foreach ($url_list as $new_url)
 {
 if (strstr($new_url, $domain))
 {
 $this->debug(“Local URL: $new_url”);
 $this->insert($new_url);
 }
 else
 {
 if ($this->local)
 $this->debug(“Skipping Remote URL: $new_url”);
 else
 {
 $this->insert($new_url);
 $this->debug(“Remote URL: $new_url”);
 }
 }
 }
 }

 $nodes= $doc->getElementsByTagName(‘title’);
 $title= ‘’;
 foreach ($nodes as $node)
 $title .= $node->nodeValue;

 $this->debug(“Title: $title”);

 # Store the document in the database.
 $this->storeContent($job->workload(), $title, $doc->textContent);

 # Send a request to the indexer.
 $this->index();
 }

➤ The split() method is a helper function to parse the various components of a URL used in
the callback() method:

 private function split($url)
 {
 $path= strstr(substr($url, 8), “/”);
 $protocol= substr($url, 0, -(strlen(strstr($url, “://”)) - 3));
 $domain= substr($url, strlen($protocol), -strlen($path));
 $fi le= substr(strrchr($path, “/”), 1);
 if (strlen($fi le) > 0)

563120c10.indd 432563120c10.indd 432 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 433

 $path= substr($path, 0, -strlen($fi le));

 return array($protocol, $domain, $path, $fi le);
 }
}

➤ The fetch worker is fi nally run by instantiating a NaradaFetch object and calling
runWorker():

Now, actually run the fetch worker.
$fetch= new NaradaFetch();
$fetch->runWorker();

Search Worker

The search worker, NaradaSearch.php, is called by the index page, index.php, which calls the
search() method with the search term specifi ed in the form input fi eld of the index page. The
search worker is implemented as the NaradaSearch class, derived from the Narada class.

The fi rst method is the __construct() method, which simply sets the functionName class variable
that corresponds to the job name NaradaSearch (set in NaradaConf.php) that the worker registers
itself with the gearman job server as.

The callback() method implements the main functionality of the worker. The value of the search
query, $query, is obtained from the gearman worker API method workload(), and is then passed
to the call of the method searchIndex(). This method was defi ned in the previous section covering
the Narada class, which performs the search against Sphinx. Upon a search, Sphinx returns a result
object, $results, which contains the document IDs (these correspond to the id column of the url
and url_content tables). $results is then passed to the method getContent(), which obtains
from either memcached (if cached already from a previous search) or the database the excerpts and
titles for each page specifi ed by the IDs in the search results.

The worker is run by instantiating a NaradaSearch object and then calling the runWorker()
method, which results in the work() loop being entered.

require(‘Narada.php’);

class NaradaSearch extends Narada
{

 public function __construct()
 {
 parent::__construct();
 $this->functionName= $this->searchFunctionName;
 }

 public function callback($job)
 {
 $query= $job->workload();

563120c10.indd 433563120c10.indd 433 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

434 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

 $results= $this->searchIndex($query);

 if ($results == false)
 return;
 else
 {
 $this->debug($results[‘total’] . “ Documents matched ‘$query’”);

 $content= $this->getContent($results, $query);

 $this->debug($content);

 return json_encode($content);
 }
 }
}

Now, actually run the fetch worker.
$search= new NaradaSearch();
$search->runWorker();

Index Worker

The index worker, NaradaIndex.php, is an extremely simple worker. It is implemented as the
NaradaIndex class, derived from the Narada class. The index worker’s purpose in life is to rebuild
the Sphinx index urls (built from the query of a join of the urls and urls_content tables). There
are three private class variables: $command, $frequency, and $count:

➤ $command is the Sphinx indexer command (path and command fl ags).

➤ $frequency is how many times the index worker will be called before it actually runs the
Sphinx indexer. Because indexing is not something you want to run excessively, you would
want to adjust this variable to something commensurate for the amount of traffi c your web
site experiences.

➤ The construct method sets the private class variables with the values set in NaradaConf.php
with the corresponding $GLOBALS and resets the private $count variable to 0.

require(‘Narada.php’);

class NaradaIndex extends Narada
{
 private $command;
 private $frequency;
 private $count;

 public function __construct()
 {
 parent::__construct();
 $this->functionName= $this->indexFunctionName;
 $this->command= $GLOBALS[‘NaradaIndexCommand’];

563120c10.indd 434563120c10.indd 434 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 435

 $this->frequency= $GLOBALS[‘NaradaIndexFrequency’];
 $this->count= 0;
 }

 public function callback($job)
 {
 $this->count++;

 $this->debug(“Index Count: $this->count”);

 if ($this->count == $this->frequency)
 {
 $this->debug(“Running Index”);
 system($this->command);
 $this->count= 0;
 }
 }
}

Now, actually run the index worker.
$index= new NaradaIndex();
$index->runWorker();

Index Page

The index page, index.php, is the front-end entry point to Narada. This is where you either enter
a term to search the documents that you have indexed, or enter a URL to initiate the web page
retrieval through the insert and fetch workers. The index page is a gearman client in that it instanti-
ates a Narada object, which creates a connection to the gearman job server and will call either the
insert() method if a URL is entered and submitted from the URL fi eld or search() if a search
term is entered and submitted in the search query fi eld. With any web page, there is the HTML con-
tent of the page:

<html>
 <head>
 <title>Narada Search Engine, PHP Edition</title>
 <link type=”text/css” href=”search.css” rel=”stylesheet”>
 </head>
 <body>
 <div id=”header”>
 <h1 id=”resume-title”>Narada Search</h1>
 <p id=”description”>Narada Search</p>
 </div>
 <div id=”content”>
 <div id=”main”>
 <div id=”main2”>
 <form action=”<?php print $_SERVER[PHP_SELF]; ?>”
 method=”GET” name=”searchform” />
 <fieldset>
 <label>Search:</label>

563120c10.indd 435563120c10.indd 435 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

436 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

 <input type=”text” name=”q” size=”30” />
 <input type=”submit” name=”s” value=”Search”>

 <label>Submit URL:</label>
 <input type=”text” name=”u” size=”30” />
 <input type=”submit” name=”s” value=”Submit” />
 </fieldset>
 </form>

Next is the PHP code for the index page. First a check is made to see if the form parameters u or q
are supplied, and if so, a Narada object is instantiated.

if ($_GET[‘u’] || $_GET[‘q’])
{
 require(‘Narada.php’);
 $narada= new Narada();
}

If u does not contain an empty string, obviously the user specifi ed a URL to be inserted. With this
URL value, the insert() method is called, making a job request to the Gearman job server for an
insert job, handled by the insert worker, inevitably resulting in the fetch worker being called.

if ($_GET[‘u’] != ‘’)
{
 $narada->insert($_GET[‘u’]);
 print “Indexing URL: “ . $_GET[‘u’] . “</center>
\n”;
}

If q is set, the user is searching for a search term, which is then passed to the method search().
This results in a search request to the gearman job server, which the search worker is tasked with.
The search worker is not a backgrounded worker like the other workers because the results of the
search are required synchronously. These results are returned as a JSON object and immediately
decoded (de-serialized) into a PHP variable, $result. This result variable is an array of various
parameters such as id, title, excerpt, and the URL, which are then printed out. A message stating
there were no results is displayed if there weren’t any results.

if ($_GET[‘q’] != ‘’)
{
 $result= json_decode($narada->search($_GET[‘q’]), true);
 if ($result)
 {
 $x= 1;
 foreach ($result as $entry)
 {
 print ‘<div class=”post” id=”’ . $entry[‘id’] . ‘”>’;
 print ‘ <h3 class=”post-title”>’;
 print ‘ <a href=”’ . $entry[‘url’] . ‘” alt=”’. $entry[‘url’] . ‘” target=”_
new”>’ . $entry[‘url_title’];

563120c10.indd 436563120c10.indd 436 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 437

 print ‘ </h3>’;
 print ‘ <div class=”post-body”>’ . $entry[‘url_excerpt’] . ‘</div>’;
 print ‘ <h2 class=”date-header”>Last updated: ‘ . $entry[‘url_last_updated’] . “</
h2>”;
 print ‘</div>’;
$x++;
 }
 }
 else
 print “<center>No documents found!</center>
\n”;
}

?>
 </div>
 </div>
 </body>
</html>

The Narada index page, upon submitting the URL http://news.google.com, will appear as
shown in Figure 10-3.

FIGURE 10-3

Next, the index page is shown after searching for the term “audit the fed” (with quotes). You can see
the various results listed in Figure 10-4.

563120c10.indd 437563120c10.indd 437 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

438 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

FIGURE 10-4

One Other Tidbit of Code

There is one more piece of code to cover: a simple process that is run — and it runs in a loop —
called NaradaIndexTimer.php. This is not a worker but is a Gearman client by way of instantiating
a Narada object. All this script does is run the Sphinx indexer by requesting an indexer job to the
Gearman job server using the method index() . The interval for this script to call index() is deter-
mined by the global variable $GLOBALS[‘NaradaIndexTimer’] in NaradaConf.php. This script
essentially guarantees that the Sphinx index url is regenerated at some regularity.

require(‘Narada.php’);

$narada= new Narada();

while (1)

563120c10.indd 438563120c10.indd 438 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 439

{
 sleep($GLOBALS[‘NaradaIndexTimer’]);
 $narada->index();
}

The Big Picture

Figure 10-05 gives a good idea of how all the pieces of Narada fi t together. As you can see, everything
previously explained is listed in this fi gure to give you a overall conception of how Narada works.

URL Submission

– Send URL to insert worker

Index page

url table

id

url content

table

Document

tables

Given URL id, return

document content

Search Worker

– Send search requests to

Sphinx return document IDs

– Cache documents from

searches in memcached

– Fetch document from

MySQL or memcached

Memcached

– Cached documents from

searches, by URL id

Search

– Send request to search

worker

Index Worker

– Run Sphinx indexer

per number of document

inserts

Sphinx

– Full-text document

index, disk_url

– Returns document IDs

Fetch Worker

– Fetch URL

– Parse and store HTML

– Send parsed URLs to

insert worker

– call indexer

Insert Worker

– Insert URLs into urls table

– insert then

return insert id

URL

no

yes

In memcached?

FIGURE 10-5

Running Narada

For the Gearman job server, gearmand, to assign jobs to specifi c workers, you need to run these
workers. As stated before, these workers register themselves as being available for specifi cally named
jobs when the Gearman job server, when receiving a request for a job by a client, assigns them to
do the particular jobs. You can run these jobs either backgrounded (asynchronous) or not (synchro-
nous), depending on whether you are testing them — once you know they are working properly, you
would probably want to run them backgrounded. In the case of Narada, all the workers except the
search worker are backgrounded because the results of the search worker are needed.

563120c10.indd 439563120c10.indd 439 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

440 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

To run Narada, you need to run the following:

➤ A web server that can execute PHP

➤ Sphinx daemon searchd

➤ The Gearman job server, gearmand

memcached➤

The workers are quite simple to run. For instance, for the insert workers, simply run:

php NaradaInsert.php

For the index worker, depending on how you have Sphinx set up — for instance, if you have Sphinx
run as the sphinx system user — you may have to run the index worker as that user:

sudo su – sphinx
php NaradaIndex.php

You can also run the workers backgrounded, and probably want to run them backgrounded. To get
a feel for how to run Narada, set $NaradaDebug to true in NaradaConf.php and run the workers
without backgrounding them. Once you feel your system is working properly, you can turn off debug-
ging and run the workers backgrounded. You should see output from the workers depending on what
searches you are performing. For instance, if you search a term, you would see output such as:

php NaradaSearch.php
7 Documents matched ‘ron paul’
282 Documents matched ‘obama’
728 Documents matched ‘\”russia train\”’

For the insert worker, you would see:

php NaradaInsert.php
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Amos+Harel%22&scoring=n
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Avi+Issacharoff%22&scoring=n
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Chaim+Levinson%22&scoring=n
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=author%3A
 %22Barak+Ravid%22&scoring=n
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=author%3A
 %22Jack+Khoury%22&scoring=n
id from store() 255166
FETCH: 255166
Insert URL: http://news.google.com/news/
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Amos+Harel%22&cf=all&scoring=n&start=10
id from store() 255167
FETCH: 255167
Insert URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Amos+Harel%22&cf=all&scoring=n&start=20
id from store() 255168
FETCH: 255168

563120c10.indd 440563120c10.indd 440 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Narada: A Search Engine Application ❘ 441

For the fetch worker, you would see:

php NaradaFetch.php
Local URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Avi+Issacharoff%22&cf=all
Local URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Avi+Issacharoff%22&cf=all&scoring=d
Local URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Avi+Issacharoff%22&cf=all&scoring=n&nolr=1
Local URL: http://news.google.com/news/search?pz=1&ned=us&hl=en&q=
 author%3A%22Avi+Issacharoff%22
Skipping Remote URL: http://www.haaretz.com/hasen/spages/1131613.html
Local URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Amos+Harel%22&scoring=n
Local URL: http://news.google.com/news/search?pz=1&cf=all&ned=us&hl=en&q=
 author%3A%22Avi+Issacharoff%22&scoring=n
Skipping Remote URL: http://www.haaretz.com/hasen/spages/1131322.html
Skipping Remote URL: http://www.haaretz.com/hasen/spages/1131318.html

Once you have these workers all running, you can add URLs and search to your heart’s content!
You probably want to run more than one of each worker, too. The Gearman job server will use
whatever is available. The more workers there are to handle jobs, the more work that can be done.

To-Do List for Narada

As stated, Narada is an open source project, using the BSD license. You are welcome and even
encouraged to modify the code as much as you like. If you have some features, bug fi xes, enhance-
ments, or other modifi cations you would like to contribute the project, you are more than welcome
to contribute and gain some fame and appreciation! Or you can make as many changes as you like
for your own internal use for either yourself or the company you work for. Narada is a proof-of-
concept project to show you the power of using MySQL/Drizzle, memcached, Gearman, and Sphinx
together, and there are many other things you can do:

➤ The PHP fetch worker could clean up what it parses better. There are many non-alphanumeric
characters showing up in the result set. The Perl version of the fetch worker does numerous
regexes on the page content as opposed to using a DOM parsing method, as well as strips out
all the HTML and non-alphanumeric characters. The DOM concept that the PHP version of
the worker uses is certainly a cleaner way to do it, so perhaps some of the regex-fu from the Perl
worker could be migrated to the PHP worker.

➤ The PHP fetch worker could have more intelligence to remove non-pertinent parts of the
page and only obtain the actual core of the article that is contained in the page. For instance,
many of the web sites have a navigation sidebar that lists the the titles of the site’s news sto-
ries. This causes the page to be indexed with a lot of non-pertinent information.

➤ The index page could use pagination of results. The Perl version has a pagination method
that could easily be converted to PHP to do this.

➤ It would be useful to have some means to control how deep the document crawl recursion
goes. Right now, it is boundless, a bit like Vger from the fi rst Star Trek movie! This could be
done with some sort of global counter — perhaps using a memcached variable and the incre-
ment operation.

563120c10.indd 441563120c10.indd 441 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

442 ❘ CHAPTER 10 MULTI-TASKING IN PHP AND MYSQL

Those are just some ideas that would be interesting to develop for the PHP version. As with any
project, there is never an end to code evolution!

Other Job Server Systems

Other systems similar to Gearman are worth mentioning as well. These systems are similar in that
they provide the means to implement distributed computing.

➤ Beanstalk: This is a simple, fast workqueue system, much like Gearman. The server, bean-
stalkd, is C-based. There are clients for the various languages including PHP. The offi cial
website is http://kr.github.com/beanstalkd/.

➤ Hadoop: This is an Apache project written primarily in Java but can be used with PHP as
well. Hadoop includes various components such as:

➤ HBase: A distributed database that supports structured data storage for large data
sets.

➤ HDFS: A distributed fi le system.

➤ MapReduce: A software framework for distributed processing of large data sets on
compute clusters.

➤ ZooKeeper: A high-performance coordination service for distributed applications.

SUMMARY

In this chapter, you learned about multi-tasking with PHP applications. You saw how you could use
Gearman to handle functionality that was traditionally found in the web application. You can now
implement these externally from your web application and thus achieve better performance while
still supporting a lot of functionality in your application. The Narada application demonstrated the
concept of a distributed application using Gearman as well as various other components that have
been discussed in this book.

563120c10.indd 442563120c10.indd 442 2/18/10 9:10:47 AM2/18/10 9:10:47 AM

Rewrite Rules

WHAT’S IN THIS CHAPTER?

➤ Basic rewrite rules, taking into account the regular expressions

reviewed in Chapter 1

➤ Conditional rules to display or deny access to content depending on

the available data

Logging rewrite events and optimizing rules and conditions➤

➤ Using built-in rewrite maps where a one-to-one data relationship can

be used as a basis for altering URLs

Building a custom rewrite map using PHP➤

A strong understanding of rewriting web URLs is vitally important for almost any web appli-
cation. This chapter is one of the only chapters in this book that deals with concepts that are
Apache web server–specifi c. Compatible modules do exist for other web servers; however, they
are beyond the scope of this book.

The sections in the chapter include not only a traditional overview of mod_rewrite but also
cover extending the rewrite capabilities using PHP and MySQL.

Rewrite rules are one of the fi nal pieces of the PHP and MySQL puzzle and can be found in
almost every major application that uses PHP. Rewrite rules serve two major purposes:

➤ Hiding the underlying functionality of PHP and thus exposing less of the site internals

➤ Creating clean and readable URLs that are easier to remember and aid in search engine
optimization

11

563120c11.indd 443563120c11.indd 443 2/18/10 9:11:01 AM2/18/10 9:11:01 AM

444 ❘ CHAPTER 11 REWRITE RULES

It is important to use all available tools to have a coherent, easy to navigate, and easy to maintain
application. A fi rm grasp of mod_rewrite is a welcome addition to any toolbox. The perfect applica-
tion is one where a user can become an expert without ever knowing a thing about the workings of
the underlying system.

USING REWRITE RULES

Rewrite rules must be defi ned in either the Apache confi guration fi les or, if override is enabled, in
an .htaccess fi le in the path of the URL that is being rewritten. Numerous tutorials are available
on the Internet to set up rewrite rules and you are probably already somewhat familiar with them
by now. Debugging rewrite rules can be diffi cult. When you have trouble getting a rule to work,
it is often benefi cial to simplify the rule and then rebuild it until it is fully functional and has the
desired effect.

Understanding the Purpose and Structure of Rewrite Rules

Rewrite rules are most often used for masking otherwise complex URLs to improve search
engine optimization as well as making the URL easier to read. Search engines often look for
keywords in the URL of the document to help determine its relevance. In contrast, the query
string part of the URL is often ignored when the search engine is determining relevancy.
Consider these two URLs:

http://example.com/view.php?nodeid=123
http://example.com/2009/9/using-rewrite-rules/

The second URL is much easier to read and also contains keywords that a search engine can pick
up. It has the added benefi t of not exposing PHP to the client. By not directly exposing PHP, the
URL hides one potential point of entry for would-be attackers. However, that approach is useless if
view.php is still exposed directly by the web server and thus it provides only an illusion of security.
The following three lines of code can be placed in the .htaccess fi le to allow the reader to access
nodes through the friendly name but not directly through the view script:

RewriteEngine On
RewriteRule ^([0-9]{4})/([0-9]{0,2})/([^/]+)/$ /view.php?y=$1&m=$2&t=$4 [S]
RewriteRule ^view\.php - [F]

This example is typical of rewrite rules. Each line is called a directive. The fi rst directive turns
on the rewrite engine. The second directive matches the pattern to the URL (see Chapter 1 on
regular expressions) and, if the pattern matches, it rewrites the URL to the view script. The
third line detects if the URL is the view script and forces a 403 (Forbidden) response if the URL
matches the PHP fi le.

563120c11.indd 444563120c11.indd 444 2/18/10 9:11:01 AM2/18/10 9:11:01 AM

Using Rewrite Rules ❘ 445

When you use a per-directory rule, the URL will always have the base path
removed prior to evaluating the rules, then added back in when the engine com-
pletes. For example, if the URL for the fi le being requested is http://www
.example.com/states/ma/ and the rules exist for the directory states, the
string being evaluated is ma/ and the rest of the path is added back in once pro-
cessing is complete.

This behavior is important because it acts as a kind of sandbox. The application
does not need to know the full context of the URL to perform matching.

The base path can be changed using the RewriteBase directive. For example, if
RewriteBase is /, the new evaluated string becomes states/ma/ instead.

Rules behave differently on a per-server confi guration basis. If the rule is global
to the entire server, the entire URL (including the http://) is used for evalua-
tion of the patterns.

There are exceptions where the original path will not be prepended to the result-
ing URL:

➤ If the replacement string starts with http:// or https://, it is treated as a
redirect and executed immediately.

➤ If the replacement starts with a slash (like in the previous example), it is
treated as relative to the site root, not the current director.

Understanding and Controlling Rewrite Rule Flow

Rewrite directives are always executed in the order they are defi ned. For this reason, order does
matter. In addition, fl ags can be defi ned at the end of a rule to manipulate Apache, and most fl ags
are only read if the rule matches. The two fl ags used in the previous example are S and F.

The F fl ag is used to force a 403 (Forbidden) HTTP response. The fi rst directive matches valid node
viewing URLs and rewrites the URL to view.php. All subsequent rules will use this new URL to
match against instead of the original. As a result, the third directive executes and a 403 response is
generated. To prevent this, the S fl ag is used to skip the next directive if the pattern matches. In total
there are 15 fl ags, as listed in Table 11-1.

TABLE 11-1: Rewrite Flags

FLAG SHORTHAND USAGE

redirect R The rule is a redirect. The status code is 302 (Found) and the sec-

ond most common code is 301 (Moved Permanently), which can be

specifi ed by [R=301].

forbidden F Immediately returns a 403 (Forbidden) response and stops

processing.

continues

563120c11.indd 445563120c11.indd 445 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

446 ❘ CHAPTER 11 REWRITE RULES

FLAG SHORTHAND USAGE

gone G Returns a 410 (Gone) response. Used to indicate that a fi le no lon-

ger exists.

proxy P Indicates that the request is a proxy request and that the substitu-

tion is a valid URL. After this rule is encountered no further rules

are processed.

last L If the rule matches use last to indicate that no subsequent rules

should be processed.

next N Restarts the rewrite process from the fi rst rule with substitute URL.

This can easily create an infi nite loop if you’re not careful.

chain C Chains the current rule to the next. If the current rule is not

matched, the chain will be broken and the engine will skip to the

end of the chain. Any number of sequential rules can be chained.

type T Forces a particular mime type. For example: [T=application/

xml].

nosubreq NS Skips the rule if the current request is an internal sub-request and

not a direct HTTP request by the client.

nocase NC Indicates that the condition is case-insensitive.

qsappend QSA Appends the query string to the end of the new URL. More on

this later.

noescape NE Does not escape the output of the replacement. This is most often

used when the replacement URL is already escaped. Without this

fl ag characters such as % and $ are replaced with their hex code

equivalents.

passthrough PT Passes the new URL to the next Apache module. This allows multiple

modules that do URL translation or matching to work together. For

example: mod_rewrite and mod_alias. This should be used when

rewriting a URI to something that is known to be an alias.

skip S Skips the next rule if the current rule matches. Multiple rules can

also be skipped by specifying a number. For example: [S=2].

TABLE 11-1 (continued)

563120c11.indd 446563120c11.indd 446 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

Using Rewrite Rules ❘ 447

FLAG SHORTHAND USAGE

env E Sets an environmental variable, which can then be read by PHP.

[E=foo:bar] will set the variable foo to the value bar. This is the

only fl ag where it makes sense to have multiple occurrences in a

single rule. It is also the only one where regular expression back-

references can be used.

It is possible to have multiple fl ags for a single rewrite rule. For example, if you use both last and
qsappend, the fl ag would look like this:

[L,QSA]

The qsappend fl ag (Query String Append — seen in the previous example using shorthand notation)
is exceptionally common in web applications. It allows the entire query string to be passed through
to the destination URL. This allows for rewritten URLs to also accept query parameters. Consider
the difference in evaluating the URL /search/images?q=hello%20world between these two rules:

RewriteRule search/([a-z]+) /search.php?type=$1
RewriteRule search/([0-9]+) /search.php?type=$1 [QSA]

In the fi rst rule the value of q will be lost in the rewriting process. In the second rule it will be
appended to the query string. The second rule is much more useful. However, by appending the
query string, the application suddenly allows itself to be handed arbitrary input so all input must be
validated by the PHP as it would in any normal script.

Conditional Rules

Rewrite rules can be made conditional by using the RewriteCond directive. It takes two parameters:
the fi rst is the value to match and the second is either a pattern to match against or a conditional
fl ag. The conditionals allow for checks against variables that are otherwise impossible to do with
rewrite rules. There are 36 basic variables and four distinct categories as shown in Table 11-2.

TABLE 11-2: Rewrite Conditional Rules

HTTP HEADERS CONNECTION AND REQUEST

HTTP_USER_AGENT

HTTP_REFERER

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_PROXY_CONNECTION

HTTP_ACCEPT

REMOTE_ADDR

REMOTE_HOST

REMOTE_USER

REMOTE_IDENT

REQUEST_METHOD

SCRIPT_FILENAME

PATH_INFO

QUERY_STRING

AUTH_TYPE

continues

563120c11.indd 447563120c11.indd 447 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

448 ❘ CHAPTER 11 REWRITE RULES

INTERNAL TIME AND DATE

DOCUMENT_ROOT

SERVER_ADMIN

SERVER_NAME

SERVER_ADDR

SERVER_PORT

SERVER_PROTOCOL

SERVER_SOFTWARE

API_VERSION

THE_REQUEST

REQUEST_URI

REQUEST_FILENAME

IS_SUBREQ

TIME_YEAR

TIME_MON

TIME_DAY

TIME_HOUR

TIME_MIN

TIME_SEC

TIME_WDAY

TIME

Many of the variables have a PHP equivalent and should look familiar. They can be used for a vari-
ety of tasks such as redirecting the client based on user agent, time of day, accepted content types, or
IP address. For example, to allow access to the admin area of a web site only from the local intranet:

RewriteCond %{REMOTE_ADDR} !^192\.168\.1\.[0-9]+$
RewriteRule admin/ - [F]

The exclamation point at the beginning of the regular expression is specifi c to rewrite conditions
and is used to negate the expression, so the preceding example reads: “if the remote address does
not match the pattern and the URI matched the directory admin then return a forbidden message.”
In general it is best to use Apache-level IP security using the mod_access module. However, a more
practical example is to redirect mobile phones to the mobile version of the web site:

RewriteCond %{HTTP_USER_AGENT} ^(Android|BlackBerry) [OR]
RewriteCond %{HTTP_USER_AGENT} ^(Motorolla|Nokia|Samsung|SonyEricson) [OR]
RewriteCond %{HTTP_USER_AGENT} iP(hone|od)
RewriteRule (.*) http://m.example.com/$1 [R=301]

The [OR] fl ag at the end of a rewrite condition indicates that if the condition does not match it
should continue to fi nd a match using the next condition. If a match is found, the engine skips to
either the fi rst rewrite condition that is not preceded by another rewrite condition with an OR fl ag or
the fi rst rewrite rule. Without the fl ag the engine assumes that all rewrite conditions preceding a rule
must match in order for the rule to be evaluated.

You can use several more complex variables in addition to the simple variables listed in Table 11-1.
Two of the most useful are %{ENV:name} to access an environmental variable and %{HTTP:header_
name} to access an arbitrary HTTP header.

Rewrite maps, another form of pattern replacement in rewrite rules, can be used as ways to look up
data that is based on input found in the URL or a constant. Rewrite maps are small programs that
take a single input value and return exactly one value. They are covered in depth later in the chapter.

TABLE 11-2 (continued)

563120c11.indd 448563120c11.indd 448 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

Using Rewrite Rules ❘ 449

When using back-references in rewrite conditions, %n (where n is the index of
the capture group) should be used instead of the $n that is used in rewrite rules.
This has the benefi t of values captured in a rewrite condition also being able to
be referenced in the subsequent rules using a consistent syntax.

Besides testing for a pattern the rewrite condition can also check for other properties such as if a
fi le exists, if it is a directory, if it is a symbolic link, and if it is an empty fi le. One common use is to
cache thumbnail versions of an image and generate them if they do not exist:

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} -([0-9]+)x([0-9]+)\.(jpe?g|gif|png)$ [NC]
RewriteRule ^(.*)-(.+)x(.+)\.(.{3,4})$ /thumb.php?file=$1.$4&width=$2&height=$3

The fi rst directive matches if the fi le does not exist (because of the exclamation point). The second
directive matches if the fi lename ends in a dash followed by dimensions and an image fi le extension.
The following fi lename matches the pattern:

example-256x128.jpg

The value 256 is then passed to the thumbnail generation script as the new width of the thumbnail
and 128 is passed as the height. The second regular expression is less specifi c because at that point
the string is already known to match the fi rst expression. In this example, the PHP should never
blindly create the thumbnail but instead ensure that the client has permission to create new thumb-
nails. Otherwise a malicious user can very quickly and easily fi ll the server storage with thumbnails.

You can perform six tests to check a specifi c fi le or path, as described in Table 11-3.

TABLE 11-3: Tests to Check File or Path

CONDITIONAL USAGE

-d Assumes the test string is a path name and the condition passes only if the path

evaluates to a directory.

-f Used in the previous example. Assumes the test string is a path and the condition

passes if the path evaluates to a regular fi le.

-s Same as -f only it also checks to see if the fi le size is greater than zero. Empty fi les

do not pass the check (unless it is negated).

-l Assumes the test string is a path and the condition passes if the string evaluates to a

symbolic link.

-F Same as -f, only validity is checked via an internal sub-request and tests against

server access control. See the nosubreq fl ag for rewrite rules.

-U Uses an internal sub-request to test if a URL is accessible.

563120c11.indd 449563120c11.indd 449 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

450 ❘ CHAPTER 11 REWRITE RULES

In addition to the previous conditional tests and regular expressions, the test string is also evaluated
relative to other strings. Equality can be checked via =, >, and <. As mentioned earlier, any of the
conditionals in this section can be negated using an exclamation point.

Logging and Optimization

Logging is useful for debugging rewrite requests; however, it is known to slow down the server dra-
matically. It is a good exercise, when fi rst starting with advanced rewrite rules, to enable logging
and watch the output. Logs can also be used to fi nd ineffi ciencies in the rewrite rules. Turning on
logging consists of two steps; fi rst choose the location of the log fi le and then choose the log level:

RewriteLog “/usr/local/var/apache/logs/rewrite.log”
RewriteLogLevel 9

A log level of nine logs everything done by the rewrite engine. The log fi le can only be specifi ed per
server and per virtual host. It is impossible to specify a different path to log rewrite events in a spe-
cifi c directory as well as to change the log level on a per-directory basis. Logging comes with signifi -
cant overhead so it’s recommended that you turn off logging in production environments to improve
performance.

Other optimizations include using the [L] fl ag whenever possible in a rewrite rule when you know
that no additional rules will match. skip is also useful when you know that if a rule matches, then a
set number of subsequent rules are guaranteed to also not match.

The important thing to remember is that rewrite rules are executed on every
single HTTP request so even a small ineffi ciency can have a large impact on
busy servers. That does not mean that rewrite rules should not be used — to the
contrary they are the best way to optimize a web site for search engines and to
provide user-friendly URLs. However, care must be taken to not abuse them.

Also, if there is a better tool for the job than mod_rewrite: use it instead. Although it is possible to
do IP address–based restrictions via mod_rewrite, it is almost always better to use the Apache mod-
ule mod_access.

REWRITE MAPS

Rewrite maps are small programs that can be referenced in rewrite rules and conditions and return
a calculated result. The next couple of sections cover built-in mapping functionality and the fi nal
section demonstrates how to write a custom map with PHP and MySQL. You can also write maps
in C++ or any other programming language; however, only PHP is covered in this part of the book.

A map is referenced in a similar way that variable substitutions were used in previous sections.
Rewrite maps are always called using the following syntax:

${ map_name: key }

563120c11.indd 450563120c11.indd 450 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

Rewrite Maps ❘ 451

You can use several built-in internal rewrite maps to manipulate text and can use four types of maps
for custom-defi ned mappings. This chapter covers all the internal maps and shows how to defi ne
three of the custom maps.

You can have any number of maps in a server confi guration. You cannot defi ne them on a per-directory
basis; however, it is perfectly acceptable to set up a design policy where some rules are intended for use
only in certain directories or hosts.

Built-in Maps

You can use several built in maps to transform text. In most cases it is better to postpone text trans-
formation until the PHP script. However, it is sometimes desirable to do it in Apache before the PHP
is processed; for example, when you evaluate a rewrite condition. Although the maps are built in, it
is still necessary to defi ne them inside your application:

RewriteMap toupper int:tolower

The same syntax is used to defi ne maps later in the chapter. In this case int is the map type. It does
not indicate an integer. What it does indicate is that the map in use is an internal map. Then to
translate all image fi lenames to lowercase it becomes simple:

RewriteRule ^.*\.(jpe?g|png|gif) ${tolower:$0} [NC]

Predictably, there is also a touppercase internal map. The remaining two internal maps are escape
and unescape. Escaping encodes special characters using their hex codes, and unescape converts the
hex codes back to characters. They are tied in with the noescape fl ag for the RewriteRule directive.

Random and Text Lookups

Often, an application has a set of key/value pairs that you should use for writing a URL. For small
sets of data it is often practical to use a txt rewrite map. Text maps expect a fi le that contains key/
value pairs where the key and value are separated by white space and you can comment on them
using a hash character. An example data set may map directories that have moved to their new loca-
tion at a different domain:

documentation docs.example.com
faqs docs.example.com/faqs
api api.example.com

The map must then be defi ned and accessed:

RewriteMap moved txt:/maps/moved.txt
RewriteRule ^(.*)/(.*)$ http://${moved:$1}/$2 [R=301,QSA]

Remember, the map declaration must be in the server confi guration and the RewriteRule should be
in a per-directory confi guration (probably the root directory of the old site). For larger data sets, it
becomes necessary to store the fi le in DMB format. The DMB format allows for quicker lookup of
key/value pairs. Although this book does not cover the DMB format, in one of the next sections, you
use PHP in conjunction with rewrite maps to look up data from a MySQL database.

563120c11.indd 451563120c11.indd 451 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

452 ❘ CHAPTER 11 REWRITE RULES

Another type of basic map is rnd, which chooses a random value based on a key input. You often
see this type of map as an inexpensive form of load balancing. For example:

video 01|02|03|04|05
images 06|07
audio 08
downloads 09|10|11

The corresponding map defi nition and usage looks like this:

RewriteMap media rnd:/maps/media.txt
RewriteRule ^media/(.*)$ http://www${media:$1}.example.com/$2 [R,QSA]

Text and random rewrite maps are useful for small to medium amounts of data that do not change
often. However, it is often useful to rewrite URLs based on large or dynamic data sets. The example
in the next section is a simple but fully functional shortened URL application.

Using PHP and MySQL

Shortened URL applications are common to create addresses that take up less space. They are par-
ticularly useful with microblogging applications and text messages that put a limit on the length of
the message. In this next application, the URL will look like “/123” where 123 is the encoded index
to a MySQL table. A simple PHP script is provided in the code examples to output a shortened ver-
sion of a URL based on a command-line input.

First, you start with a short-URL class that encodes, decodes, and writes URLs to the database. The
class uses the singleton pattern from Chapter 1, as shown in Listing 11-1.

LISTING 11-1: UrlShortener.class.php

<?php

class UrlShortener {
 private $characterMap;
 private $base;
 const OFFSET = 512;

 public function __construct() {
 $this->characterMap = array(
 ‘q’, ‘w’, ‘r’, ‘t’, ‘y’, ‘p’, ‘s’, ‘d’,
 ‘f’, ‘g’, ‘h’, ‘j’, ‘k’, ‘L’, ‘m’, ‘n’,
 ‘3’, ‘2’, ‘1’, ‘z’, ‘x’, ‘c’, ‘v’, ‘b’,
 ‘4’, ‘5’, ‘9’, ‘6’, ‘8’, ‘7’
);
 $this->base = sizeof($this->characterMap);
 }

 public static function getInstance() {
 static $instance = null;
 if ($instance === null) {
 $instance = new UrlShortener();
 }

563120c11.indd 452563120c11.indd 452 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

Rewrite Maps ❘ 453

 return $instance;
 }

 public function shorten($conn, $url) {
 $escapedUrl = mysql_escape_string($url);

 $res = mysql_query(
 “SELECT `id` FROM urls WHERE `url` LIKE ‘$escapedUrl’”,
 $conn
);

 $row = mysql_fetch_row($res);
 mysql_free_result($res);

 if ($row)
 return $this->encode($row[0]+self::OFFSET);

 $res = mysql_query(
 “INSERT INTO `urls` (`url`) VALUES(‘$escapedUrl’)”,
 $conn
);
 return $this->encode(mysql_insert_id($conn)+self::OFFSET);
 }

 public function encode($value) {
 $value += 512;
 if ($value < $this->base)
 return $this->characterMap[$value];
 else
 return $this->encode(floor($value/$this->base)).
 $this->characterMap[$value % $this->base];
 }

 public function decode($value) {
 $decodeMap = array_flip($this->characterMap);
 $parts = array_reverse(str_split($value));

 $index = 0;
 $i = 0;
 foreach ($parts as $char) {
 $index += $decodeMap[$char] * pow($this->base, $i++);
 }
 return $index-512;
 }

 public function expand($conn, $index) {
 $id = $this->decode($index)-self::OFFSET;
 $res = mysql_query(“SELECT `url` FROM `urls` WHERE `id` = $id”, $conn);
 $value = (($row = mysql_fetch_row($res)) ? $row[0]: null);
 mysql_free_result($res);
 return $value;
 }
};

?>

563120c11.indd 453563120c11.indd 453 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

454 ❘ CHAPTER 11 REWRITE RULES

This class is a fully functional URL shortener. It contains a method to insert new URLs into the sys-
tem as well as a method for retrieving them. To prevent the URLs from being predictable, they are
encoded using a custom numbering system. Adding to the array in the constructor can easily expand
the character set used for encoding. The only rule is that a character cannot appear in the array
twice (doing so would introduce ambiguity when decoding). The offset 512 is also added to the base
index to prevent the fi rst few URLs from being too short.

The MySQL table for the short URLs is only two fi elds: the URL fi eld, which
can be a VARCHAR or TEXT; and the id fi eld, which is an auto-incrementing inte-
ger. You can fi nd the complete SQL fi le to re-create the database in the code list-
ings under UrlShortener.sql. There is also a test data fi le available.

The next step is to write the actual mapping program. External rewrite maps are of the type prg.
The new fi le will be very short because the UrlShortener class does most of the heavy lifting. The
completed rewrite map looks like Listing 11-2.

LISTING 11-2: ShortUrlMap.php

#!/usr/local/bin/php
<?php

include(“UrlShortener.class.php”);
$shortener = UrlShortener::getInstance();

set_time_limit(0);

$stdin = fopen(“php://stdin”,”r”);
while (true) {
 $index = trim(fgets($stdin));
 return $shortener->expand(getDb(), $index).”\n”;
}

function getDb() {
 static $db = null;

 if ($db == null || !mysql_ping($db)) {
 $db = mysql_connect(‘localhost’,’user’,’password’,true);
 mysql_select_db(‘shorturl’);
 }

 return $db;
}
?>

563120c11.indd 454563120c11.indd 454 2/18/10 9:11:02 AM2/18/10 9:11:02 AM

Rewrite Maps ❘ 455

The fi rst line of the script is a shebang. It tells UNIX- and Linux-based systems
where to fi nd the executable used to run the fi le. This should be the path to PHP
on your system. It is usually /usr/local/bin/php or /usr/bin/php. The fi le
must then be made executable by typing chmod +x ShortUrlMap.php on the
command line. It is also good practice to make the script owned by the same
user as the web server.

On Windows-based systems, you must remove the shebang and modify the
rewrite map directive to include the full path to the PHP executable. The direc-
tive can be enclosed in quotes to allow for spaces.

Because the ShortUrlMap.php script uses standard input, you can also use it
as a command-line tool to test URLs by simply running the script on the com-
mand line, typing the encoded part of the short URL, and then pressing Enter.

For more examples of command-line applications, see Chapter 15.

Rewrite maps are loaded into memory when the server starts or when new instances are needed. A
single instance of the script serves up many rewrite responses, and the script loops indefi nitely. A line
feed terminates each request, and the output is expected to be a single line feed terminated string per
request. There are a few things to be considered when writing maps:

➤ PHP has a timeout for scripts. The timeout must be turned off via the set_time_limit()
function.

➤ Each instance of the script will tie up exactly one connection to the database. If the map is
not often used, it may be a good idea to close the connection after each use.

➤ MySQL has a timeout for connections. For this reason the database handle is returned from a
function that checks for a valid database connection and creates a new one if the connection
is not valid. This saves hours of frustration when the map suddenly stops working after eight
hours (the default timeout).

The map will never be executed if it is not defi ned in the server confi guration. The defi nition for an
external map looks very much like the defi nition for any other map:

RewriteMap shorturl prg:/maps/ShorturlMap.php
RewriteRule ^(.+)$ http://${shorturl:$1} [R=301]

The map, although functional, is missing some key elements. For example, it is ineffi cient to hit the
MySQL database for every single request. This is especially true when considering the nature of
real-time social networks, where a URL is likely to get most of its traffi c in the fi rst few hours after
it is posted online. Performance could be greatly improved just by adding a simple local expiring
cache. For tips on caching to improve performance, refer to Chapter 4.

563120c11.indd 455563120c11.indd 455 2/18/10 9:11:03 AM2/18/10 9:11:03 AM

456 ❘ CHAPTER 11 REWRITE RULES

SUMMARY

The use of the rewrite engine is limited by the creativity of the developer. However, as with many
technologies, there can be too much of a good thing. The general best practices for deciding what
method to use to process URLs are:

➤ Use RewriteRule to clean up a URL if a PHP script takes several logical parameters via the
query string such as date, page number, and resource id.

➤ Use RewriteRule to deny access to a fi le if the mod_access module is not suffi cient.

➤ Use RewriteCondition if the application is already using rewrite rules but some rules should
only be executed if a certain condition has been met, such as if a fi le exists.

➤ Use a txt RewriteMap if there is a small and infrequently changing data set that has a
one-to-one relationship between what is passed in the URL and what should be in the fi nal
rewritten URL.

➤ Use a rnd RewriteMap to provide inexpensive software-based load balancing or to cycle
through content (for example, an advertising system).

➤ Use a custom PHP RewriteMap when working with large data sets that change frequently
and are also frequently accessed, or when some calculations are needed.

➤ Use an actual PHP script and skip mod_rewrite altogether if determining the type of content
requires signifi cant calculation, or the content is accessed so infrequently that keeping one or
more custom RewriteMaps loaded into memory is not justifi able.

Remember that data passed to a PHP script, even if it is through a rewrite rule, should not be
trusted. Make sure to sanitize all data that may come either directly or indirectly from user input.

The next chapter covers user authentication using PHP and MySQL.

563120c11.indd 456563120c11.indd 456 2/18/10 9:11:03 AM2/18/10 9:11:03 AM

User Authentication

WHAT’S IN THIS CHAPTER?

➤ Designing the MySQL database

Basic HTTP-based authentication➤

Digest HTTP-based authentication➤

Pure PHP authentication➤

Securing user information in cookies➤

Access Control Lists➤

PHP is particularly well suited for user authentication, and where PHP is used for authentica-
tion you will usually fi nd a MySQL database behind it. It doesn’t take long for an application
to grow to the point where it needs an authentication system, which will most likely include:

➤ User login and logout

User roles (administrator, guest, and so on)➤

User management➤

Similarly, it often isn’t long before built-in Apache or IIS authentication becomes insuffi cient.
In many cases, the authentication system is one of the fi rst scripts that a PHP programmer
attempts to write. Expert PHP programmers recognize that security — especially when it
comes to sensitive user information — is paramount, and if the developer is not careful, it is
easy to leave an application open to attacks such as session theft and replay attacks.

This chapter covers techniques and best practices for storing user account information,
authenticating users, and maintaining sessions.

The chapter fi nishes off with a brief overview of Access Control List (ACL).

12

563120c12.indd 457563120c12.indd 457 2/18/10 9:11:20 AM2/18/10 9:11:20 AM

458 ❘ CHAPTER 12 USER AUTHENTICATION

Two topics that are not covered in this chapter are OpenID and OAuth. Both
are methods for authenticating users with third-party login credentials. Each
method warrants discussion and is appropriate to use in many if not most appli-
cations. However, neither system is discussed in-depth in this book. For more
information visit the OpenID foundation website at http://www.openid.net/
or the OAuth website at http://www.oauth.net.

The start of any good authentication system is a strong database. The examples in this chapter build
a database schema that can be used to store user information and then build three different authen-
tication systems on top of it.

DESIGNING THE DATABASE

User authentication is one of the most used subsystems of an application. Because HTTP — the
most common mechanism for accessing PHP scripts — does not maintain state it is necessary to re-
evaluate user credentials on every page load. As a consequence, a database must not only be secure,
but also suffi ciently optimized.

This section fi rst defi nes the database table and then goes piece-by-piece over every column in the
table and defi nes the reasoning behind each. Listing 12-1 shows the create statement for the table:

LISTING 12-1: users.sql

CREATE TABLE `users` (
 `uid` INT AUTO_INCREMENT PRIMARY KEY,
 `username` VARCHAR(32) UNIQUE,
 `email` VARCHAR(128) UNIQUE,
 `password` VARCHAR(32),
 `created` DATETIME,
 `lastlogin` DATETIME
);

The uid fi eld (User ID) is used to store a unique key for the user. The username is also a unique
fi eld; however, it is desirable to use the auto-increment fi eld for the primary key. One of the main
reasons for doing so is to decouple the real user information from the key. Using an auto-increment
number means that customer service can change the username of a user without having to worry
about maintaining the referential integrity of the data. Using numeric keys can also result in a less
storage- and processor-intensive system.

The username is what the user actually types into the application in order to sign in. The length of a
username is quite arbitrary and depends on the developer’s discretion. The username must be unique
so it is fl agged as such in the database. An added benefi t of making the value into a unique key is
that unique keys are indexed, which improves lookup speed. The same is true for the next fi eld,

563120c12.indd 458563120c12.indd 458 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

Designing the Database ❘ 459

which is email. Email does not necessarily have to be unique, but requiring uniqueness solves a few
problems:

➤ It prevents an amateur attacker from easily signing up for many accounts. However, that is
only relative to the least sophisticated attacker. A more involved attack would include setting
up a mail server and creating an arbitrary number of mailboxes.

➤ Users often have accounts at many different services. Requiring a unique email means that
users can be warned when they accidentally try to sign up for another account. The warning
message may be something along the lines of “An account already exists with this email. Did
you forget your username or password?” If users forget their password and username, they
can be very quickly queried on the indexed email fi eld.

The fi nal piece of required information is the password. Although it is not uncommon to store the
password directly, this book does not recommend doing that. If it is absolutely necessary to store the
original password, it should never be stored in unencrypted plain text.

The best practice is to store the password, at a bare minimum, as a salted MD5 hash. Many systems
use just a simple MD5 hash, which maintains most of the effectiveness. The MD5 algorithm is a so-
called one-way hash because it is designed to return a unique value (hash) for almost any input and
that value cannot be decoded and returned back to the original. The hash is not, however, unique.
Collisions are extremely rare but they do exist. The probability of someone accidentally entering
another password that evaluates to the same hash or an attacker fi nding a password that evaluates
to the same hash are both very low. Also, an attacker would have to know which username that
password works for.

To add some additional security the application can use a different kind of hash such as SHA-1 in
place of MD5.

Several methods currently exist to decrypt an MD5. The most popular method is called rainbow
tables. Rainbow tables are lookup tables that allow someone to easily fi nd a value that is not likely
the same as the original password but evaluates to the same hash. That new string can then be used
in place of the user’s password to log in to websites without actually knowing the real password.

The worst-case scenario is if the user database is compromised and if the passwords gathered from
the database are used to gain access to sensitive data in the user account or to other sites where the
user is also registered (people tend to use the same password on multiple sites). Storing the MD5
hash instead of the actual password goes a long way. However, if the attacker simply fi nds another
string that evaluates to the same hash, he can still log in much the same way. To emphasize the dan-
gers, consider the following scenario:

➤ An ecommerce website’s database is compromised and the user table is exposed.

➤ The passwords are stored as MD5 hashes but the attacker fi nds another string — using a
rainbow table — that evaluates to the same hash.

The attacker then logs in to the system as the user.➤

➤ PHP, seeing this login as a legitimate user, decrypts the user’s credit card information and
allows items to be purchased by the attacker.

563120c12.indd 459563120c12.indd 459 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

460 ❘ CHAPTER 12 USER AUTHENTICATION

The solution is to add a salt to the end of the password before sending it to the database. The salt is
a string — usually private — that is known to the application. The new value in the database is actu-
ally the MD5 of the password concatenated the salt. Even if the attacker has both the salt and the
MD5 hash, it is extremely unlikely that he will fi nd another string that equates to the MD5 hash
when concatenated with the salt. You can use the same salt throughout the application. Another
alternative is to use the username as the salt so that it is unique for each user yet still easy to calcu-
late without multiple hits to the database.

The fi nal two fi elds in the table are nice to have but are not necessary from a purely technical stand-
point. When running reports it becomes important to graph user activity. The most common of
those activities are when the user signs in or signs up for new account. You can obtain a wealth of
information using just these two values, such as:

➤ How many users signed up but never returned to the site for a second visit

How many users have actively used the site for more than a month➤

How many users haven’t signed into the site in over a month➤

How many of the active users have been members for more than a year➤

Depending on the application it may be desirable to store even more information, such as how many
times the user has logged in as well as demographic information such as real name, birthday, and
location.

HTTP-BASED AUTHENTICATION

The HTTP standard provides two methods of authentication: basic and digest. Both methods have
commonality regarding both behavior and implementation.

In each method, a dialog box displays and prompts the user for the username and password. The
web browser controls the dialog box and the PHP script has very little infl uence over what is dis-
played in the box. The one aspect that the script can control is the realm, which is a hint in the dia-
log box that tells the user what she is logging in to and is also used internally by the browser/client
to differentiate between logins on the same host. This method is different than the HTML form-
based methods used in many PHP applications in that it takes the user out of the normal fl ow of the
application in order to request authentication.

Both methods of authentication are supported by Apache and Microsoft IIS
natively without the need to use PHP. However, using the native methods has its
disadvantages:

➤ Logout and session management is left up to the client so it can be unreli-
able at times and may behave differently from client to client.

➤ Extra server extensions are often required to integrate with user tables on
databases such as MySQL.

Application level features such as Access Control Lists (covered later) are lost.➤

563120c12.indd 460563120c12.indd 460 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

HTTP-Based Authentication ❘ 461

Both methods use the HTTP 401 response to prompt the user for login information. The code 401
is the “Unauthorized” response. It is possible to send just that code without a directive instruct-
ing the client what authentication method to use, in which case the client displays the body of the
response. Alternatively, a WWW-Authenticate header can be sent, which tells the client which of the
two authentication schemes to use.

Basic Authentication

Basic Authentication has been available since the early days of HTTP. The standard defi nes a
method for specifying login credentials as part of the URL as well as part of the HTTP headers.

Typically the username and password are only passed via the URL when a user clicks a link or book-
mark, or when doing very simple HTTP fetch scripts. Passing information via a URL looks like this:

http://username:password@example.com/

It is important to note that this practice is so insecure that Internet Explorer, and perhaps other
browsers, completely disabled its use, for two primary reasons, both revolving around the fact that
the URL is often logged:

➤ The username and password show up clearly in the web server logs. Even if you trust your
server administrators completely or you administer the logs yourself it is not a good idea to
have user passwords lying around in plain text.

➤ The URL also shows up in the client browser history. Anyone can then easily return to the
site that requires authentication. This one is particularly a problem on public computers.

The URL-based method should be avoided, even when using SSL, for those reasons. However, even
when the password is not passed via the URL it is not secure. When password is passed through the
HTTP Authorization request header it is sent as a base64-encoded string. Base64 is just another
way of representing binary data using only ASCII characters; it is similar to hexadecimal (base16).
In this case it is used primarily as a way of obscuring the data and ensuring proper handling if the
password or username contain binary characters. It only gives the illusion of added security, because
it can be easily decoded. But it is still better than having the username and password in the URL.

To force authentication, it is necessary to send the HTTP 401 response as well as the type of authen-
tication. This section creates a basic authentication class so each part is presented as a member
method. The following method forces the client to authenticate:

public function forceAuthentication() {
 header(‘WWW-Authenticate: Basic realm=”’.$this->realm.’”’);
 header(‘HTTP/1.0 401 Unauthorized’);
 die($this->unauthorizedNotice);
}

The method sends along the authentication type as well as the realm. The realm primarily displays
a friendly name to the user but, as mentioned earlier, it does have other users. The message, refer-
enced in the preceding code by the variable $unauthorizedNotice, displays when the user clicks
Cancel in the authentication dialog box. Because at that point the user is not authenticated, it is
desirable to end the execution of the script. The specifi cation does not limit the number of username

563120c12.indd 461563120c12.indd 461 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

462 ❘ CHAPTER 12 USER AUTHENTICATION

and password requests, so a complete application may also track the number of invalid password
attempts and display the notice when the limit is reached. To display the message without a prompt
for the password, just send the status header without the authentication header.

It is best practice to never send a 200 (Found) header when a user is not autho-
rized to view a page. Instead, send the 401 (Unauthorized) header. The same prac-
tice applies to data that cannot be found (404) and application errors (500 range).

Another method in the class can read in the server variables and validate them. The two vari-
ables available are PHP_AUTH_USER and PHP_AUTH_PW and both can be found in the $_SERVER
global array:

public function requireAuthentication() {
 if (array_key_exists(‘PHP_AUTH_USER’, $_SERVER) &&
 array_key_exists(‘PHP_AUTH_PW’, $_SERVER)) {

 session_start();

 $saltedPassword = md5($_SERVER[‘PHP_AUTH_PW’].’-’.$this->salt);

 if ($_SERVER[‘PHP_AUTH_USER’] != $_SESSION[‘user’] ||
 $saltedPassword != $_SESSION[‘password’]) {

 $conn = mysql_connect(self::$db_host,
 self::$db_user,
 self::$db_password);
 mysql_select_db(self::$database, $conn);

 $query = “SELECT * FROM `users` WHERE `username`=’%s’ AND “.
 “`password`=’%s’”;
 $query = sprinf($query, mysql_escape_string($_SERVER[‘PHP_AUTH_USER’]),
 $saltedPassword);

 $user = mysql_fetch_assoc(mysql_query($query));
 mysql_close($conn);

 if ($user) {
 $_SESSION[‘user’] = $_SERVER[‘PHP_AUTH_USER’];
 $_SESSION[‘password’] = $saltedPassword;
 } else {
 $this->forceAuthentication();
 }

 }

 } else {
 $this->forceAuthentication();
 }
}

563120c12.indd 462563120c12.indd 462 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

HTTP-Based Authentication ❘ 463

You’ve probably used sessions in the past. They are server-side data storage mech-
anisms that are linked to a particular client. They are usually keyed off of a cookie
but sometimes a value passed in through the query string is used instead. In this
case a session is used to store the logged in user and a hash of the password.

The method of storing sessions is customizable, as you will see later in the chapter.

The preceding example doesn’t have any error checking. This is so you can eas-
ily read it to see what is going on. A production application should be more
robust and have error checking in place.

The session in the preceding method stores the information for the authenticated user. It is not used
to directly determine whether the user is logged in because the client will send the authentication
header with every request. Instead, using the session is a more effi cient method than triggering a
database hit for each page view. If the username and password match the session, there is no need to
check the database. The session can also be used to store other regularly referenced calculated infor-
mation that may be expensive to retrieve later.

When using the Microsoft ISS web server, the PHP_AUTH variables are not set in older versions of
PHP. This sample authentication code does not account for that because it is assumed that the appli-
cation uses PHP 5 or higher. In the case of older versions, the HTTP_AUTHORIZATION server variable
contains the full contents of the header (including the authentication type). The PHP reference man-
ual contains an easy way to parse this data:

list($user, $pw) = explode(‘:’,
 base64_decode(substr($_SERVER[‘HTTP_AUTHORIZATION’], 6)));

The completed class contains confi guration variables for the database as well as the authentication
realm. Remember, basic authentication should be done over SSL if there is any sensitive informa-
tion on the website. Any unencrypted page can be used as a potential vector for attack because the
authentication data is sent with each request.

An alternative authentication method — one that does not send the password in plain text — is
digest authentication.

Digest Authentication

Digest authentication, unlike basic authentication, relies on creating a single-direction hash of vari-
ous data using a shared secret key. The secret key is the user’s password. This method makes it pos-
sible to authenticate the user without ever sending the password across the network.

The hash involves creating a long string based on data that both the client and the server know and
then using that string to create an MD5 hash along with the password. The server is not required to
store any of the public variables. They are, instead, passed along with each request. Several pieces of
data are used to create the hash:

➤ realm: The same as with basic authentication. It is simply a string to display to the user and
a way for the client to differentiate between multiple authentication areas. In digest authenti-
cation it is also used as part of the hash.

563120c12.indd 463563120c12.indd 463 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

464 ❘ CHAPTER 12 USER AUTHENTICATION

➤ domain: This directive is a value that is not used in the creation of the hash but allows you to
use the same authentication across multiple domains. It is a space-separated list of domains
that acts as a hint to the client. It is not a required value.

➤ nonce: Also known as “number used once.” You use this directive to prevent replay attacks.
A replay attack is when software on the user’s computer or a malicious machine on the net-
work records the user authentication information. That information is then later “replayed”
to gain access to the application as the user. Ensuring that the same nonce is not used for
multiple requests solves that problem. Nonce values are used in many forms of authentica-
tion including OpenID (a method for validating access to a website using credentials from a
different site). In its strictest form, a nonce should become invalid (or stale) after a single use.
It is also common to invalidate the nonce after a certain period of time.

The digest authentication specifi cation does not require that the nonce actually
be a number. It can, for example, be an encoded string that specifi es values,
such as when the nonce was created, which can later be decoded to determine
if the nonce is stale. It is also possible to have a non-expiring nonce. However,
that approach is not recommended because it provides absolutely no protection
against replay attacks. The example in this section uses a nonce that expires
after 120 seconds. More complicated methods of generating the nonce exist that
won’t be covered here.

➤ opaque: A string that should be passed unaltered back to the server. It can validate that the
realm being accessed is the same realm for which the hash was generated; however, it is easily
spoofed because it is not used to generate the hash.

➤ stale: The application can also pass a stale directive (set to TRUE) to the client indicating
that the nonce was valid at one point but is no longer valid. The server should check that the
hash is valid for the set nonce before sending this request. If the hash is not valid, the appli-
cation should not indicate it is stale because when encountering a stale response message,
the client has the option to simply regenerate the hash with the new nonce. Indicating that a
nonce is stale when the username or password is wrong will cause confusion.

➤ algorithm: This does not need to be specifi ed because it defaults to “MD5” (which is what
the next example uses).

➤ qop: A quoted string that specifi es the “quality of protection.” It is optional but should be
specifi ed for backwards compatibility with previous digest specifi cations. The two common
values are auth and auth-int (this book uses the former).

You can fi nd more details about the directives and the hash calcula-
tions in RFC2617 (HTTP Authentication) and RFC2069 (Digest Access
Authentication).

563120c12.indd 464563120c12.indd 464 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

HTTP-Based Authentication ❘ 465

The headers for digest authentication are very similar to those of basic authentication. However, in
digest authentication it is necessary to specify the directives that were listed earlier in this section.
The only part of the response header that changes is WWW-Authenticate:

header(‘WWW-Authenticate: Digest realm=”’.$this->realm.
 ‘“,qop=”auth”,nonce=”’.uniqid().’”,opaque=”’.md5($this->realm).
 ‘“‘.($stale ? ‘,stale=”TRUE”’));

A argument called $stale can now be passed to the requireAuthentication() call. Remember,
stale is used to tell the client that the authentication is correct but is too old to use anymore. The
client will likely respond by regenerating a hash using the same password without prompting the
user for a password a second time.

To verify the sent password, it is necessary to use the shared secret to generate the same string that
the client creates. If the strings do not match, the shared secret (the password) is wrong. This section
covers the MD5 algorithm, which is the simplest to implement. The RFC specifi es how to calculate
the three parts: A1, A2, and the fi nal result. Parts A1 and A2 are hashes of various directives con-
catenated together. The fi nal string is both A1 and A2 concatenated with the nonce and hashed.

The PHP documentation provides a very useful helper function to parse the string returned from
the client:

private function parseDigest($txt)
{
 // protect against missing data
 $needed_parts = array(‘nonce’=>1, ‘nc’=>1, ‘cnonce’=>1, ‘qop’=>1,
 ‘username’=>1, ‘uri’=>1, ‘response’=>1);
 $data = array();
 $keys = implode(‘|’, array_keys($needed_parts));

 preg_match_all(‘@(‘ . $keys . ‘)=(?:([\’”])([^\2]+?)\2|([^\s,]+))@’,
 $txt, $matches, PREG_SET_ORDER);

 foreach ($matches as $m) {
 $data[$m[1]] = $m[3] ? $m[3] : $m[4];
 unset($needed_parts[$m[1]]);
 }

 return $needed_parts ? false : $data;
}

This book usually uses / to wrap regular expressions. However, it is also possible to use @ as in the
preceding example, or any other character.

The code fetches all the parts of the string. If the array $needed_parts is not empty, some of the
information required by the RFC was missing. Using that utility function (which was derived from
an example at http://us2.php.net/manual/en/features.http-auth.php) it is then possible to
generate the various parts:

public function requireAuthentication() {
 if (!($directives = $this->parseDigest($_SERVER[‘PHP_AUTH_DIGEST’])))

563120c12.indd 465563120c12.indd 465 2/18/10 9:11:21 AM2/18/10 9:11:21 AM

466 ❘ CHAPTER 12 USER AUTHENTICATION

 $this->forceAuthentication();

 if ($this->getValidDigest($directives) != $directives[‘response’])
 $this->forceAuthentication();
}

private function getValidDigest($directives) {

 $conn = mysql_connect(self::$db_host,
 self::$db_user,
 self::$db_password);
 mysql_select_db(self::$database, $conn);

 $query = “SELECT * FROM `users` WHERE `username`=’%s’;”
 $query = sprinf($query, mysql_escape_string($directives[‘user’]));
 $user = mysql_fetch_assoc(mysql_query($query));
 mysql_close($conn);
 if (!$user) return false;

 $A1 = md5($directives[‘username’] . ‘:’ .
 $this->realm . ‘:’ . $user[‘password’]);
 $A2 = md5($_SERVER[‘REQUEST_METHOD’].’:’.$directives[‘uri’]);
 $validDigest = md5($A1.’:’.$directives[‘nonce’].’:’.
 $directives[‘nc’].’:’.$directives[‘cnonce’].’:’.
 $directives[‘qop’].’:’.$A2);
 return $validDigest;
}

The preceding example requires that the password used to calculate $A1 be plain
text. This is just to make it easier to follow and should not be done in produc-
tion applications. As mentioned earlier, it is not a good practice to store pass-
words in the database that way. Possible alternatives to storing the password
in plain text are to store the entire value of $A1 in the database (which will not
change so long as the realm does not change) or to encrypt the password data
using a bidirectional algorithm.

The most common method of authentication in PHP applications is to actually create an authenti-
cation system from scratch. Although the built-in HTTP authentication methods are useful, they
are not very customizable or fl exible and they do have security issues associated with them. For
instance, the login dialog box cannot be styled to meet the look and feel of the rest of the applica-
tion, and both authentication methods are susceptible to man-in-the-middle attacks.

PURE PHP AUTHENTICATION

Pure PHP authentication takes a different approach than the standard HTTP methods that you
have seen so far in this chapter. Instead of using standard HTTP headers, a pure PHP system typi-
cally displays a username and password form embedded within other content. Then, once the user

563120c12.indd 466563120c12.indd 466 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

Pure PHP Authentication ❘ 467

authenticates, a cookie is dropped that maintains the user session. You can also implement other
methods, such as OAuth and OpenID, in PHP; however, they do not prompt for a username and pass-
word but rather initiate a handshake between the application and an authentication server.

Without taking proper precautions it is easy to create an application where a malicious person can
hijack a user’s session. The two most common ways that this happens are as follows:

➤ The malicious user steals the user’s cookies by sniffi ng traffi c on the network or via an XSS
attack (which is covered in Chapter 14). The malicious user then mirrors the cookies on his
machine in order to appear to be the legitimate user.

➤ The malicious user sniffs the traffi c on the network and sees the username and password
transmitted in plain text in a cookie and uses that information to log in as the user.

The fi rst scenario is actually a form of replay attack and would require client fi ngerprinting or a
nonce to prevent. The second scenario is much easier to prevent, and most of the focus of this sec-
tion will be given to it. There are two methods for preventing the username and password from
being stolen. The fi rst is to use server-side sessions to store user information. The second is to store
all the credential information about the user in an encrypted cookie.

Using PHP Sessions

PHP sessions are a way to store information regarding the user on the server so that it does not
all need to be passed through on every request via cookies. Instead, only a session ID is stored in
a cookie, which then retrieves the complete session. Sessions in PHP are created and maintained
via the session API, which consists of many functions, the most common being session_start().
After the session is initialized the session data is stored in the $_SESSION global array. Changes
made to the array are refl ected in the session.

Sessions do not need to use cookies. The session ID can also be passed via GET
and POST variables. The behavior of session ID passing can be controlled in the
PHP confi guration.

The default session handling stores session data on disk. It is possible to overwrite the session han-
dling to use a different storage mechanism. The example in this section writes a class that stores ses-
sion data in a MySQL database. The table for this new database looks like this:

CREATE TABLE `session` (
 `sessionid` VARCHAR(128),
 `uid` INT,
 `data` MEDIUMBLOB,
 `timestamp` INT,
 `ip` VARCHAR(15),
 PRIMARY KEY (`sessionid`),
 KEY (`timestamp`, `sessionid`)
)

563120c12.indd 467563120c12.indd 467 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

468 ❘ CHAPTER 12 USER AUTHENTICATION

The last fi eld before the keys is added for a little extra security to prevent session theft. When the
session is opened the script checks that the IP matches the IP of the client and throws an excep-
tion if it does not. That way the session cookie becomes worthless if someone attempts to hijack it.
Unfortunately, that is only true if the attacker is not on the same network and therefore does not
have the same external IP address as the user. However, it does provide a fi ner grain of security.

The timestamp fi eld is used later to expire old sessions. There will be more on it later in this section.

To use custom session handlers, you must fi rst register them before the session starts. A good prac-
tice is to have a session.php fi le that is always included in the fi rst line of the script.

The method that registers new session I/O handlers is session_set_save_handler(). The method
takes six parameters, all of which are callback functions. Simple code to register the event handlers
looks like this:

session_set_save_handler(‘custom_session_open’, ‘custom_session_close’,
 ‘custom_session_read’, ‘custom_session_write’,
 ‘custom_session_destroy’, ‘custom_session_gc’);

The fi rst callback function is open, which in this example creates a connection to MySQL. The
open function has two parameters. The fi rst parameter is the path where the session should be
saved. In the simple MySQL-based example this is just ignored. The path is the directory where
the script is allowed to write session information. The fi lename typically consists of the session
name with a prefi x and extension. The session name is the second parameter and is used as the
primary key of the table.

The second function, the close function, is called when the script is done reading and writing to
the session and no longer plans to use it. It is important to note that sessions are locking. The same
session cannot be read from or written to by more than one script at once. Sometimes it is useful to
close the session ahead of time using session_write_close(). This method is discussed later in
greater detail while reviewing the CustomSession class.

The read and write functions are complementary. The session data is stored as a string. The con-
tent of the string is not consequential under normal usage so the read function just returns a string
unaltered from storage and the write function writes it to storage without altering or processing. In
this example the open function is the equivalent of a MySQL SELECT and the write function is the
INSERT / UPDATE query.

The destroy function is used only when the session is manually destroyed with session_
destroy(). Destroying a session only removes all data associated with it. It does not invalidate the
session ID or cookies. In the authentication system later in this chapter it will be necessary to unset
the session cookies as well.

Old sessions need to be periodically purged from the system. That is the job of the garbage collec-
tion. Note that it is not the same one you saw in Chapter 8. It is executed periodically just to clean
up old sessions. The probability of the collector being executed is a function of the php.ini vari-
ables: session.gc_maxlifetime, session.gc_probability, and session.gc_divisor. When the
garbage collector is executed it takes the maximum lifetime of a session and is expected to delete all
sessions that have exceeded that lifetime. The default is 24 minutes (or 1440 seconds).

563120c12.indd 468563120c12.indd 468 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

Pure PHP Authentication ❘ 469

If the timeout is not a key then deleting old sessions could be a costly operation,
especially when you have millions of sessions. However, making the value a key
has its own issues as well, mainly that all keys must be unique. The table design in
this chapter uses a compound key with both the timestamp and the session ID to
avoid collisions in situations where multiple users log in at the same second.

Chapter 3 covers callback functions in detail. This session class uses callback functions to refer-
ence session handling methods in a singleton session class. The basic session class looks like that in
Listing 12-2:

LISTING 12-2: CustomSession.class.php

<?php
class CustomSession {
 private static $db_host = “localhost”;
 private static $db_user = “sessions”;
 private static $db_password = “password”;
 private static $database = “sessions”;

 private $conn;

 public static function getInstance() {
 static $instance = null;
 if ($instance == null) {
 $instance = new CustomSession();
 }
 return $instance;
 }

 public function __construct() {
 session_set_save_handler(
 array($this,”open”), array($this,”close”),
 array($this,”read”), array($this,”write”),
 array($this,”destroy”), array($this,”gc”));
 }

 public function __destruct() {
 session_write_close();
 }

 public function open($path, $id) {
 $this->conn = mysql_connect(CustomSession::$db_host,
 CustomSession::$db_user,
 CustomSession::$db_password);
 mysql_select_db(CustomSession::$database, $this->conn);
 }

 public function close() {
 mysql_close($this->conn);

563120c12.indd 469563120c12.indd 469 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

470 ❘ CHAPTER 12 USER AUTHENTICATION

 }

 public function read($id) {
 $escaped_id = mysql_escape_string($id);
 $res = $this->query(“SELECT * FROM `session` WHERE `sessionid`=’$escaped_id’”);
 if ($row = mysql_fetch_assoc($res)) {
 $this->query(“UPDATE `session` “.
 “SET `timestamp` = UTC_TIMESTAMP() “.
 “WHERE `sessionid`=’$escaped_id’”);
 return $row[‘data’];
 }
 return “”;
 }

 public function write($id, $data) {
 $query = “REPLACE INTO `session` “.
 “(`sessionid`, `data`, `ip`, `timestamp`) “.
 “VALUES (‘%s’, ‘%s’, ‘%s’, UNIX_TIMESTAMP(UTC_TIMESTAMP()))”;
 $this->query(
 sprintf($query, mysql_escape_string($id),
 mysql_escape_string($data),
 $_SERVER[“REMOTE_ADDR”]));
 }

 public function destroy($id) {
 $escaped_id = mysql_escape_string($id);
 $res = $this->query(“DELETE FROM `session` WHERE `id`=’$escaped_id’”);
 return (mysql_affected_rows($res) == 1);
 }

 public function gc($lifetime) {
 $this->query(“DELETE FROM `session` WHERE “.
 “UNIX_TIMESTAMP(UTC_TIMESTAMP())-`timestamp` > $lifetime”
);
 }

 public function query($query) {
 $res = mysql_query($query, $this->conn);
 return $res;
 }

};
?>

There are several important things to note in the previous code. The least obvious is that sessions
are stored as serialized strings. Recall from Chapter 1 that serialized strings might contain binary
characters even if the data itself is not binary. Also, the session data itself can be binary. It is very
important, for this reason, to never use non-binary safe functions on the session data string. This
is also the reason why the data type for the session data is a blob. Using a blob means you cannot
query effi ciently on the session data (which this class does not do anyway) but it gains you effi cient
storage of binary data.

563120c12.indd 470563120c12.indd 470 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

Pure PHP Authentication ❘ 471

As of PHP 5.0.5, the session is automatically written and closed after the objects are already garbage
collected. This causes problems when using an object as a session handler like the preceding class
does. To fi x the problem, the class destructor calls session_write_close(), which causes the writ-
ing and closing to happen immediately. Although it is not a factor in this class, the same problem
also affects exception throwing because once all the objects are cleaned up it is impossible to create
new ones (which is necessary for exception handling).

The database design from earlier leaves room for storing the user ID with the session. By storing the
user ID with the session, the application can determine what users are currently active. Because ses-
sions expire it is safe to assume that any user with a row in the session table has recently viewed a
page on the site. That, however, would require that the session class have knowledge of the contents
of the session. That behavior is acceptable in most applications, but it is not ideal if the session class
can be used in a generic case.

Sessions do expire. Therefore they should not be used to store data that cannot be later recon-
structed. A session alone is not enough to determine the logged-in state of the user. It can contain
information such as calculated and cached data. For example, it would be undesirable for the users
of an ecommerce site to lose their shopping cart if they leave their computer unattended for 1440
seconds. One or more additional cookies can pass along user login credentials and other informa-
tion (such as the shopping cart).

Building Secure Cookies

User login credentials should never be stored in an application using plain text, which an attacker
can easily read or duplicate. The login cookie acts like a key that opens up all the functionality of a
web page as well as accesses potentially sensitive user data. This section lays out a system that you
can use to create hack- and hijack-resistant cookies. To accomplish that, the cookie must store some
basic information:

➤ User ID

Last known IP address of the user➤

A timestamp➤

The fi rst fi eld is self-explanatory. It is needed in order to tell which user is logged in. The second two
fi elds are there to add a little bit of extra security.

The last known IP address is used to compare to the IP address currently making the request to the
server. It can also be used to compare to the IP address fi eld in the session table. If the IP address
in the cookie does not match the IP address of the remote client, it is possible that the cookie was
hijacked. It is also possible that the user is simply using a laptop and walking between rooms with
different WiFi access points.

The timestamp is the date and time that the cookie was created. This serves dual purposes. The
fi rst is to determine how long the user has been logged in. An extremely long login time may mean
that the user has left the computer unattended. In that regard, the timestamp acts like a time-based
nonce. The second use of the timestamp is to ensure that the cookie generated on login is never the
same exact cookie twice. For example, if the user logs in once at noon and again at 3:00, the cookie

563120c12.indd 471563120c12.indd 471 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

472 ❘ CHAPTER 12 USER AUTHENTICATION

will be different both times. This simple technique makes it more diffi cult for attackers to see pat-
terns in the cookies and, when combined with expiration times, can close the window of opportu-
nity for replay attacks.

Three levels of trust can be represented using this cookie design:

➤ The most trusted: IP address matches and timestamp is recent.

➤ The second most trusted: IP address matches but the timestamp is old. The user may have left
the computer unattended.

➤ The least trusted: The IP address doesn’t match.

It is up to the application designer to determine what level of trust is needed for specifi c pieces of
data. For example, if all the page does is greet the currently logged-in user, it is not necessary to
have a high level of trust. If the application displays sensitive data or allows the user to make a pur-
chase, it becomes necessary to restrict access to only the most trusted sessions.

The user should not be automatically logged out in any of the preceding cases. Instead, the cor-
rect approach is to prompt the user for the password again. If the user enters the correct password,
the timestamp and IP are reset. This is the case when, for example, a user visits a store online and
decides to view her order history after spending some time shopping. The user may be prompted for
a password again because the timestamp is old; adding items to a cart may not require high trust but
viewing order history does.

None of the information is useful for security if it can easily be read or written to. To solve that
problem it becomes necessary to encrypt the cookie. Fortunately, PHP provides many methods of
encryption. The code to set an encrypted cookie may look like this:

$cookieData = serialize($user);
$iv_size = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_256, MCRYPT_MODE_CBC);
srand();
$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
$encryptedData = mcrypt_encrypt(MCRYPT_RIJNDAEL_256, $secret,
 $cookieData, MCRYPT_MODE_CBC, $iv);
setcookie(‘user’, base64_encode($encryptedData).’:’.$iv);

The code to decrypt the cookie is very similar:

list($encryptedData,$iv) = explode(‘:’, $_COOKIE[‘user’]);
$rawData = mycrypt_decrypt(MCRYPT_RIJNDAEL_256, $secret,
 base64_decode($encryptedData),
 MCRYPT_MODE_CBC, $iv);
$user = unserialize($rawData);

The secret is something that only the application knows. In extremely secure environments it may be
useful to have a dynamic secret based on which user is currently logged in. For that, an application
can use a system where the cookie data is actually three parts: a key, the initialization vector ($iv),
and the data. The key appends to the secret key to generate a new hybrid key and can be anything
from a user ID all the way to a random string.

563120c12.indd 472563120c12.indd 472 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

Access Control Lists ❘ 473

As a fi nal level of security it is useful to validate the user ID with the session data. This approach
requires that the user ID is actually set inside of the session. If the two do not match, something
is seriously wrong (most likely tampering) and both the session and the login cookie should be
destroyed. If there isn’t any session, it can be assumed that the session expired, in which case it may
be prudent to prompt for the password again before recalculating all the session data.

From a usability standpoint: Good software is not just functional and secure. It
is also easy to use.

Because the cookie contains the user ID number (uid) it is possible to deter-
mine the user login name. When re-prompting for a password after the session
becomes stale, the login name should be auto-populated with that value.

The end result is a cookie that cannot be spoofed by someone who is not within the same network
and cannot be easily decrypted to gain information about the user. It also provides multiple levels of
trust for accessing user data.

It might also be useful to store the username in this cookie to make displaying a login box even
easier as well as free of database lookups. The fi nal piece is to create a user class that accesses the
authenticated user.

ACCESS CONTROL LISTS

Access Control Lists (ACL) are vital once an application reaches any level of complexity. They allow
fi ne-grained control over who can perform what actions in the system. Anyone who has used a
Content Management System has probably used ACLs.

There are two levels of permissions in most ACL systems:

➤ Group Level: A users can belong to one or more of groups and each group has its own sets
of permissions. Groups can be anything but some common groups are anonymous, members,
premium subscribers, moderators, and administrators.

➤ User Level: User level permissions always override group level permissions. For example, in a
normal case only moderators and administrators can edit blog posts but you can give “Bob”
permission to edit blog posts directly.

Most ACLs act as a white list. If the permission exists anywhere for the user then the user can do it.
Otherwise, he can’t. Knowing that, consider these four tables:

CREATE TABLE `groups` (
 id INT AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(128)

563120c12.indd 473563120c12.indd 473 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

474 ❘ CHAPTER 12 USER AUTHENTICATION

);

CREATE TABLE `group_users` (
 `user_id` INT,
 `group_id` INT,
 KEY (`user_id`, `group_id`),
 KEY (`group_id`)
);

CREATE TABLE `group_permissions` (
 `group_id` INT,
 `permission` VARCHAR(50),
 KEY (`group_id`, `permission`),
 KEY (`permission`)
);

CREATE TABLE `user_permissions` (
 `user_id` INT,
 `permission` VARCHAR(50),
 KEY (`user_id`, `permission`),
 KEY (`permission`)
);

You can select all the permissions for a specifi c user by using a union of the two permission tables.
The query looks like this (replace USER_ID with the ID of the user either using code or by hand):

(SELECT `permission` FROM `group_permissions`
 WHERE `group_id IN (
 SELECT group_id FROM group_users WHERE user_id=USER_ID
))
UNION
(SELECT permission FROM user_permissions WHERE user_id=USER_ID)

The end result is a list of strings. Traditionally, permissions are stored a strings; however, it is
entirely possible to add another level of normalization and have a table of possible permissions that
has a numeric index. So granting a user permission to post a blog entry looks like this in SQL:

INSERT INTO `user_permissions` (`user_id`, `permission`)
 VALUES (USER_ID, “blog/add”);

The design in this section is the bare minimum ACL. In a complete web based
system you should also cache the ACL so that it is not necessary to hit the data-
base on every request. Just don’t forget to invalidate the cache when the user
permissions change. Refer back to Chapter 4 for more information on caching.

It is possible to customize the lists to meet your needs. This ACL is a white list
but you may want a black list in your application to ban a user from perform-
ing some actions.

563120c12.indd 474563120c12.indd 474 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

Summary ❘ 475

SUMMARY

This chapter covered all the pieces needed for end-to-end implementation of PHP authentication
allowing for basic HTTP-based authentication, digest authentication, and pure PHP-based authenti-
cation. The method used in a given application depends largely on the project requirements and it is
possible to mix and match between PHP and either of the two HTTP methods.

Digest authentication is the only of the three methods covered in this chapter that does not send the
password in plain text. However, it does require the password to be stored in the database, which
can cause security problems if the application is not designed correctly. A properly designed digest-
based system either stores the entire result of the A1 hash in the database instead of the password or
encrypts the password using a bi-directional algorithm.

The other two methods should almost always be used over SSL. The few exceptions are when the
user account does not contain any sensitive information, the application is a rapid prototype not
being released to the public yet, it is an example application for a book, or it is on a corporate intra-
net. The last point is only partially true because an attacker can also come from inside. In practice,
thousands of applications in use today do not take the proper steps to protect the users’ passwords.

Chapter 14 covers security in more depth and details how to protect your MySQL server from attack.

563120c12.indd 475563120c12.indd 475 2/18/10 9:11:22 AM2/18/10 9:11:22 AM

563120c12.indd 476563120c12.indd 476 2/18/10 9:11:23 AM2/18/10 9:11:23 AM

Understanding the
INFORMATION_SCHEMA

WHAT’S IN THIS CHAPTER?

➤ What tables exist in the INFORMATION_SCHEMA

How to retrieve information on your schemas and tables➤

How to list core MySQL metadata used for database objects➤

How to retrieve instrumentation on a running MySQL instance➤

➤ What extensions to INFORMATION_SCHEMA exist

The ANSI Standard SQL (e.g, SQL:2003 and SQL:2008) defi nes the support for a level of
database metadata using the concept of INFORMATION_SCHEMA. MySQL starting with version
5.0 has implemented the INFORMATION_SCHEMA, often referred to as I_S, to provide a level of
SQL access to information previously found in the popular but not SQL standard SHOW com-
mands. The metadata is a form of data dictionary that provides the user access to various
information including database objects such as TABLES, COLUMNS, and VIEWS; schema meta-
data such as CHARACTER_SETS; and internal MySQL operations including GLOBAL_STATUS,
GLOBAL_VARIABLES, and PROCESSLIST.

This chapter steps through the INFORMATION_SCHEMA tables from versions 5.0, 5.1, and the
5.4 alpha release. It also gives an example of the INFORMATION_SCHEMA extensions possible
using the InnoDB Plugin 1.0.4 and greater, which is available separately and now included in
MySQL starting with version 5.1.38.

13

563120c13.indd 477563120c13.indd 477 2/18/10 9:11:36 AM2/18/10 9:11:36 AM

478 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

USING THE INFORMATION_SCHEMA

The SHOW command can be used to retrieve information from the INFORMATION_SCHEMA tables. As you
can see, this 5.1 schema contains a number of tables, which are discussed in detail in this chapter:

SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| PROFILING |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+

One missing feature of the INFORMATION_SCHEMA is the lack of suffi cient permis-
sion restrictions necessary to limit viewing of the data. Though SELECT is the
only operation possible, you can, for example, view the code of stored proce-
dures and functions. If a user has USAGE permissions to connect to the MySQL
instance, he or she has permissions to retrieve data from the INFORMATION_
SCHEMA with exception for the TRIGGERS table.

Unless otherwise stated, the listed INFORMATION_SCHEMA tables in this chapter are available in ver-
sion 5.0. Tables that you will not fi nd in 5.0 include ENGINES, EVENTS, FILES, GLOBAL_STATUS,
PLUGINS, PROCESSLIST, REFERENTIAL_CONSTRAINTS, SESSION_STATUS, SESSION_VARIABLES.

For simplifi cation we will be using the commonly accepted abbreviation I_S for INFORMATION_SCHEMA.

563120c13.indd 478563120c13.indd 478 2/18/10 9:11:36 AM2/18/10 9:11:36 AM

Table Objects Tables ❘ 479

TABLE OBJECTS TABLES

We identify the following I_S tables as table objects tables as they hold valuable information on
database table objects. These are outlined in Table 13-1.

TABLE 13-1: I_S Tables That Hold Database Table Object Information

OBJECT DESCRIPTION

SCHEMATA Shows the details of all schemas (also called databases) within the

given MySQL instance.

TABLES Shows the details of all tables that exist in the instance schemas.

COLUMNS Shows the details of all columns for all tables.

PARTITIONS (5.4) Shows the details of table partitions.

TABLE_CONSTRAINTS Describes the tables that have constraints.

KEY_COLUMN_USAGE Describes which table columns have any constraints and includes

details for PRIMARY KEY, UNIQUE KEY, and FOREIGN KEY

constraints.

REFERENTIAL_CONSTRAINTS

(5.1)

Used in conjunction with KEY_COLUMN_USAGE and provides addi-

tional constraint information for foreign keys.

STATISTICS Shows details on the columns in table indexes including cardinal-

ity. These details are used by the MySQL optimizer for determining

the best indexes to use for queries.

Listing 13-1 shows a popular query to list all schemas including data and index size and number of
tables:

LISTING 13-1: schemas.sql

SELECT table_schema,
 SUM(data_length+index_length)/1024/1024 AS total_mb,
 SUM(data_length)/1024/1024 AS data_mb,
 SUM(index_length)/1024/1024 AS index_mb,
 COUNT(*) AS tables
FROM information_schema.tables
GROUP BY table_schema
ORDER BY 2 DESC;

+-----------------------+-----------+-----------+----------+--------+
| table_schema | total_mb | data_mb | index_mb | tables |
+-----------------------+-----------+-----------+----------+--------+
| xxxxxxx_xxx_xxxx_xx1 | 45314.477 | 38458.889 | 6855.587 | 2359 |
| xxxxxxx_xxx_xxxx_xx2 | 28758.386 | 24461.270 | 4297.116 | 275 |

563120c13.indd 479563120c13.indd 479 2/18/10 9:11:36 AM2/18/10 9:11:36 AM

480 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

xxxxxxx_xxx_xxxx_xx3	28732.414	24464.203	4268.211	368
xxxxxxx_xxx_xxxx_xx4	24586.482	20941.441	3645.041	302
xxxxxxx_xxx_xxxx_xx5	3128.635	2664.547	464.087	48
xxxxxxx_xxx_xxxx_xx6	2865.366	2440.443	424.922	265
xxxxxxx_xxx_xxxx_xx7	1635.165	1388.688	246.477	2034
xxxxxxx_xxx_xxxx_xx8	1442.157	1231.418	210.739	17
+-----------------------+-----------+-----------+----------+--------+

Listing 13-2 shows the top fi ve tables for the current schema by table size:

LISTING 13-2: tables.sql

SELECT table_schema,table_name,engine, table_rows, avg_row_length,
 (data_length+index_length)/1024/1024 as total_mb,
 (data_length)/1024/1024 as data_mb,
 (index_length)/1024/1024 as index_mb
FROM information_schema.tables
WHERE table_schema=DATABASE()
ORDER BY 7 DESC
LIMIT 5;

+------------+--------+--------+--------+----------+----------+----------+
| table_name | engine | rows | avg_row| total_mb | data_mb | index_mb |
+------------+--------+--------+--------+----------+----------+----------+
xxxxxxx	InnoDB	778523	314	658.3906	533.8437	124.5468
xxxxxxxxx	InnoDB	553266	846	472.2500	446.7500	25.5000
xxxxxxx	InnoDB	435892	884	392.2500	367.8125	24.4375
xxxxxxxxx	InnoDB	106547	65	133.2656	68.5937	64.6718
xxxxxxxxxx	InnoDB	58281	531	30.3437	29.5156	0.8281
+------------+--------+--------+--------+----------+----------+----------+

For the previous code, output has been reformatted for display purposes.

The INFORMATION_SCHEMA appears like normal tables when using SELECT statements; however,
these tables are internally generated metadata. These tables do not perform like normal tables. It is
also not possible to index data to improve performance for example. Queries that operate on these
I_S tables can be very expensive.

For InnoDB tables, the table_rows and subsequent avg_row_length calcula-
tion is approximate and can vary wildly. The data and index sizes are consid-
ered accurate.

563120c13.indd 480563120c13.indd 480 2/18/10 9:11:36 AM2/18/10 9:11:36 AM

Other Database Objects Tables ❘ 481

OTHER DATABASE OBJECTS TABLES

We identify the following I_S tables as Table Objects. The fi rst group of tables contain objects that
can be created with various CREATE SQL commands:

➤ ROUTINES: Provides information on the stored procedures and stored functions that are
defi ned. It does not include UDF functions. This table shows the full code of these stored rou-
tines in the ROUTINE_DEFINITION column.

➤ VIEWS: Provides information on the views defi ned with the database. It includes the canonical
defi nition in the VIEW_DEFINITION column. This may be different from the actual CREATE
VIEW command provided.

➤ TRIGGERS: Defi nes the details of database triggers. Unlike other tables, access to view this
table requires the TRIGGER user privilege.

➤ EVENTS: Provides information on all defi ned events and includes the full event code in the
EVENT_DEFINITION column.

The remaining tables contain details on nonstandard objects that are defi ned at compile or execu-
tion time:

➤ PLUGINS: Shows details of the currently installed plug-ins.

➤ ENGINES: Shows details of the currently installed and available storage engines that can be
used for tables.

➤ FILES: Provides information on disk-based fi les for the MySQL Cluster NDB storage engine.

A good overall query to keep regular statistics is the number of user-defi ned objects in the MySQL
database instance. This can be used as a very approximate way of determining the creation of unau-
thorized schema objects.

This query will not operate in MySQL 5.0 due to the EVENTS table.

LISTING 13-3: objects.sql

SELECT ‘Tables’, COUNT(*) AS cnt FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA NOT IN (‘INFORMATION_SCHEMA’,’MYSQL’)
UNION SELECT ‘Views’, COUNT(*) AS cnt FROM INFORMATION_SCHEMA.VIEWS
UNION SELECT ‘Procedures’, COUNT(*) AS cnt FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_TYPE = ‘PROCEDURE’
UNION SELECT ‘Functions’, COUNT(*) AS cnt FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_TYPE = ‘FUNCTION’
UNION SELECT ‘Events’, COUNT(*) AS cnt FROM INFORMATION_SCHEMA.EVENTS
UNION SELECT ‘Triggers’, COUNT(*) AS cnt FROM INFORMATION_SCHEMA.TRIGGERS;

563120c13.indd 481563120c13.indd 481 2/18/10 9:11:36 AM2/18/10 9:11:36 AM

482 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

+------------+-----+
| Views | cnt |
+------------+-----+
Tables	431
Views	0
Procedures	10
Functions	0
Events	0
Triggers	0
+------------+-----+

MYSQL STATUS TABLES

It is also possible to obtain database system status information from the INFORMATION_SCHEMA
through the tables presented in the following sections:

PROCESSLIST (5.1)

This table provides the same information as the command SHOW PROCESSLIST, except with
INFORMATION_SCHEMA, you can run queries and fi nd out specifi c user processes. The columns
of this table are:

ID➤ : The connection ID for a given process.

➤ USER: The name of the database user that a given process is running as.

➤ HOST: The host from where the process is being run.

DB➤ : The name of the schema for which the process is running.

➤ COMMAND: The command being run (QUERY, CONNECT, and so on).

➤ TIME: The amount of time the process has been running in seconds.

➤ STATE: The process state of the command (that is, executing, creating table, writing to net,
and so on). There are a large number of possible different thread states.

➤ INFO: Lists the actual query being run for this process.

The code is as follows:

select * from information_schema.processlist where USER = ‘patg’\G
*************************** 1. row ***************************
 ID: 6016
 USER: patg
 HOST: localhost
 DB: test
COMMAND: Query
 TIME: 0
 STATE: creating table
 INFO: create table bench_1224 (i int NOT NULL,d double,f float,
 s char(10),v varchar(100),primary key (i))
1 row in set (0.19 sec)
PROFILING

563120c13.indd 482563120c13.indd 482 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

MySQL Status Tables ❘ 483

The MySQL profi ler was originally written by Jeremy Cole from Proven Scaling (http://www
.provenscaling.com/). This is an invaluable diagnostic utility that allows you to analyze the exact
steps of the internal server execution of your queries. This can allow you to fi nd any ineffi ciencies
with your queries and in turn tune those queries to have better performance. The columns for this
table are listed in Table 13-2:

TABLE 13-2: Profi ling Table Columns

COLUMN DESCRIPTION

QUERY_ID The ID for the given query being profi led

SEQ The sequence or step number of the listed execution

STATE The process state of the command

DURATION The time the listed execution took, in seconds

CPU_USER The amount of time spent on the execution of the command (user

CPU time)

CPU_SYSTEM The amount of time the CPU spends on system calls for the kernel on

behalf of the process

CONTEXT_VOLUNTARY Not currently implemented

CONTEXT_INVOLUNTARY Not currently implemented

BLOCK_OPS_IN Not currently implemented

BLOCK_OPS_OUT Not currently implemented

MESSAGES_SENT Not currently implemented

MESSAGES_RECEIVED Not currently implemented

PAGE_FAULTS_MAJOR Not currently implemented

PAGE_FAULTS_MINOR Not currently implemented

SWAPS Not currently implemented

SOURCE_FUNCTION The source code function the particular execution was issued by.

SOURCE_FILE The source fi le from where the particular execution originated

SOURCE_LINE The line in the source fi le from where the particular execution originated

To use the profi ler and be able to utilize this table, you must fi rst issue:

set profiling = 1;

563120c13.indd 483563120c13.indd 483 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

484 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

From this point on, any queries you issue for your session will be captured by the profi ler and hence
viewable via the PROFILING table. You can issue queries against this table, such as how long it takes
for a given query to execute:

select sum(duration), sum(cpu_user), sum(cpu_system)
from information_schema.profiling where query_id = 3;
+---------------+---------------+-----------------+
| sum(duration) | sum(cpu_user) | sum(cpu_system) |
+---------------+---------------+-----------------+
| 0.795895 | 0.000362 | 0.003601 |
+---------------+---------------+-----------------+

You can also use the profi ler to fi nd out how MySQL processes a query and gain insight into how
MySQL works:

select distinct(source_function), source_file
from information_schema.profiling where query_id = 3;
+-----------------------+---------------+
| source_function | source_file |
+-----------------------+---------------+
NULL	NULL
open_tables	sql_base.cc
mysql_lock_tables	lock.cc
mysql_select	sql_select.cc
optimize	sql_select.cc
exec	sql_select.cc
mysql_execute_command	sql_parse.cc
mysql_parse	sql_parse.cc
log_slow_statement	sql_parse.cc
dispatch_command	sql_parse.cc
+-----------------------+---------------+

When you are done with using the profi ler, you can of course run:

set profiling = 0;

SESSION_STATUS/GLOBAL_STATUS (5.1)

These tables contain values of MySQL status variables for the given session or system, respectively.
Their columns are:

➤ VARIABLE_NAME: Name of the status variable.

➤ VARIABLE_VALUE: Value of the status variable.

For instance, you can fi nd out the SQL commands that have been executed on your MySQL
instance:

select * from information_schema.global_status
where variable_name like ‘COM%’
and variable_value > 0;
+----------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+----------------------+----------------+
| COM_ALTER_TABLE | 191 |

563120c13.indd 484563120c13.indd 484 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

MySQL Status Tables ❘ 485

COM_CREATE_INDEX	8
COM_CREATE_TABLE	30043
COM_DELETE	10147
COM_DROP_INDEX	8
COM_DROP_TABLE	60083
COM_INSERT	554780
COM_INSERT_SELECT	2
COM_SELECT	1740554
COM_SET_OPTION	6022
COM_SHOW_DATABASES	4
COM_SHOW_FIELDS	107
COM_SHOW_PROCESSLIST	1
COM_SHOW_STATUS	10
COM_SHOW_TABLES	11
COM_UPDATE	450773
+----------------------+----------------+

Or you could fi nd out index status variables for your given session:

select * from information_schema.session_status
where variable_name like ‘KEY%’;
+------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+------------------------+----------------+
KEY_BLOCKS_NOT_FLUSHED	0
KEY_BLOCKS_UNUSED	7245
KEY_BLOCKS_USED	7245
KEY_READ_REQUESTS	119528769
KEY_READS	1197779
KEY_WRITE_REQUESTS	7783921
KEY_WRITES	3869884
+------------------------+----------------+

SESSION_VARIABLES/GLOBAL_VARIABLES (5.1)

These tables contain the values of MySQL system variables for the given session or system, respec-
tively. The columns are:

➤ VARIABLE_NAME: The name of the variable.

➤ VARIABLE_VALUE: The value of the variable.

For instance, one query you could perform to fi nd out what features and/or storage engines are sup-
ported would be the following:

select * from information_schema.global_variables
where variable_name like ‘have_%’;
+-------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------------+----------------+
HAVE_CRYPT	YES
HAVE_OPENSSL	NO
HAVE_SYMLINK	YES
HAVE_CSV	YES
HAVE_GEOMETRY	YES

563120c13.indd 485563120c13.indd 485 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

486 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

HAVE_PARTITIONING	NO
HAVE_QUERY_CACHE	YES
HAVE_DYNAMIC_LOADING	YES
HAVE_SSL	NO
HAVE_NDBCLUSTER	NO
HAVE_COMMUNITY_FEATURES	YES
HAVE_INNODB	NO
HAVE_RTREE_KEYS	YES
HAVE_COMPRESS	YES
+-------------------------+----------------+

You could also fi nd out the location of various system directory locations by the following query:

select * from information_schema.global_variables
where variable_name like ‘%DIR%’;
+--------------------+--+
| VARIABLE_NAME | VARIABLE_VALUE |
+--------------------+--+
CHARACTER_SETS_DIR	/usr/local/maria/share/mysql/charsets/
BASEDIR	/usr/local/maria/
SLAVE_LOAD_TMPDIR	/var/tmp/
TMPDIR	/var/tmp/
MARIA_SYNC_LOG_DIR	NEWFILE
DATADIR	/usr/local/maria/var/
PLUGIN_DIR	/usr/local/maria/lib/mysql/plugin
+--------------------+--+

MYSQL META DATA TABLES

The INFORMATION_SCHEMA provides several tables that provide metadata information particularly
having to do with character sets and collation:

CHARACTER_SETS

This table lists the character sets that are available on your instance of MySQL. The columns are:

➤ CHARACTER_SET_NAME: The name of the character set. This is the value you would specify
when creating a table.

➤ DEFAULT_COLLATE_NAME: The default name of the collation of the character set. You will
see that collation names can end in _cs or _ci. This corresponds to case-sensitive or case-
insensitive.

➤ DESCRIPTION: A canonical description of the character set.

➤ MAXLEN: The length of the character set in bytes.

The code is as follows:

select * from information_schema.character_sets;
+-----------+----------------------+-----------------------------+--------+
| CHARACTER_| DEFAULT_COLLATE_NAME | DESCRIPTION | MAXLEN |
+-----------+----------------------+-----------------------------+--------+
| dec8 | dec8_swedish_ci | DEC West European | 1 |

563120c13.indd 486563120c13.indd 486 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

MySQL Meta Data Tables ❘ 487

cp850	cp850_general_ci	DOS West European	1
hp8	hp8_english_ci	HP West European	1
koi8r	koi8r_general_ci	KOI8-R Relcom Russian	1
latin1	latin1_swedish_ci	cp1252 West European	1
latin2	latin2_general_ci	ISO 8859-2 Central European	1
swe7	swe7_swedish_ci	7bit Swedish	1
ascii	ascii_general_ci	US ASCII	1
hebrew	hebrew_general_ci	ISO 8859-8 Hebrew	1
koi8u	koi8u_general_ci	KOI8-U Ukrainian	1
greek	greek_general_ci	ISO 8859-7 Greek	1
cp1250	cp1250_general_ci	Windows Central European	1
latin5	latin5_turkish_ci	ISO 8859-9 Turkish	1
armscii8	armscii8_general_ci	ARMSCII-8 Armenian	1
utf8	utf8_general_ci	UTF-8 Unicode	3
cp866	cp866_general_ci	DOS Russian	1
keybcs2	keybcs2_general_ci	DOS Kamenicky Czech-Slovak	1
macce	macce_general_ci	Mac Central European	1
macroman	macroman_general_ci	Mac West European	1
cp852	cp852_general_ci	DOS Central European	1
latin7	latin7_general_ci	ISO 8859-13 Baltic	1
cp1251	cp1251_general_ci	Windows Cyrillic	1
cp1256	cp1256_general_ci	Windows Arabic	1
cp1257	cp1257_general_ci	Windows Baltic	1
binary	binary	Binary pseudo charset	1
geostd8	geostd8_general_ci	GEOSTD8 Georgian	1
+-----------+----------------------+-----------------------------+--------+

COLLATIONS

This table lists the collations for the character sets available on your instance of MySQL. The col-
umns are:

➤ COLLATION_NAME: The name of the collation.

➤ CHARACTER_SET_NAME: The character set name.

ID➤ : The collation ID.

➤ IS_DEFAULT: Specifi es if the collation is default for the character set.

➤ IS_COMPILED: Specifi es whether the collation is compiled into your MySQL instance.

➤ SORTLEN: The amount of memory required for sorting strings using the character set.

For instance, a query that lists the default collations that are latin related character sets is as follows:

select character_set_name, collation_name
from information_schema.collations where is_default = ‘Yes’
and character_set_name like ‘latin%’;
+--------------------+-------------------+
| character_set_name | collation_name |
+--------------------+-------------------+
latin1	latin1_swedish_ci
latin2	latin2_general_ci
latin5	latin5_turkish_ci
latin7	latin7_general_ci
+--------------------+-------------------+

563120c13.indd 487563120c13.indd 487 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

488 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

COLLATION_CHARACTER_SET_APPLICABILITY

This table specifi es what character sets are applicable for what collation. The columns are:

➤ COLLATION_NAME: The name of the collation.

➤ CHARACTER_SET_NAME: The name of the applicable character set.

For instance, to fi nd out what collations are available for the latin1 character set, you would issue
the following query:

select collation_name
from information_schema.collation_character_set_applicability
where character_set_name = ‘latin1’;
+-------------------+
| collation_name |
+-------------------+
| latin1_german1_ci |
| latin1_swedish_ci |
| latin1_danish_ci |
| latin1_german2_ci |
| latin1_bin |
| latin1_general_ci |
| latin1_general_cs |
| latin1_spanish_ci |
+-------------------+

MYSQL ACL PERMISSIONS TABLES

The INFORMATION_SCHEMA has a number of privilege tables that provide information about which
objects given users have access to.

USER_PRIVILEGES

This table specifi es the global privileges of users and is derived from the mysql.user system schema
table. The columns are:

➤ GRANTEE: The user to which the privilege is granted. This is in user@host format.

➤ TABLE_CATALOG: This specifi es the catalog of the privilege, but is not used and is NULL.

➤ PRIVILEGE_TYPE: The type of privilege (INSERT, SELECT, DELETE, and so on).

➤ IS_GRANTABLE: If the privilege was given with WITH GRANT OPTION.

An example of displaying which global privilege the sakila user connecting on localhost is granted
would be:

select grantee,privilege_type
from information_schema.user_privileges
where grantee like ‘%sakila%’;
+----------------------+----------------+
| grantee | privilege_type |
+----------------------+----------------+
| ‘sakila’@’localhost’ | USAGE |
+----------------------+----------------+

563120c13.indd 488563120c13.indd 488 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

MySQL ACL Permissions Tables ❘ 489

SCHEMA_PRIVILEGES

This table specifi es privileges on a given schema to which a user has been granted access. The col-
umns are:

➤ GRANTEE: The user to which the privilege is granted. This is a user@host format.

➤ TABLE_CATALOG: This specifi es the catalog of the privilege, but is not used and is NULL.

➤ TABLE_SCHEMA: The schema name on which the privilege is granted.

➤ IS_GRANTABLE: If the privilege was given with the WITH GRANT OPTION specifi ed.

An example of listing the privileges and schema name of what the sakila user has been granted
would be:

select table_schema,privilege_type
from information_schema.schema_privileges
where grantee = “‘sakila’@’localhost’”;
+--------------+-------------------------+
| table_schema | privilege_type |
+--------------+-------------------------+
sakila	SELECT
sakila	INSERT
sakila	UPDATE
sakila	DELETE
sakila	CREATE
sakila	DROP
sakila	REFERENCES
sakila	INDEX
sakila	ALTER
sakila	CREATE TEMPORARY TABLES
sakila	LOCK TABLES
sakila	EXECUTE
sakila	CREATE VIEW
sakila	SHOW VIEW
sakila	CREATE ROUTINE
sakila	ALTER ROUTINE
sakila	EVENT
sakila	TRIGGER
+--------------+-------------------------+

TABLE_PRIVILEGES

This table specifi es the privileges granted to specifi c tables to a given user. The columns are:

➤ GRANTEE: The name of the grantee to which the privilege has been granted. This is in user@
host format.

➤ TABLE_CATALOG: Not used, NULL.

➤ TABLE_SCHEMA: The schema name of the table on which the privilege is granted.

➤ PRIVILEGE_TYPE: The type of privilege (SELECT, INSERT, DELETE, and so on).

➤ IS_GRANTABLE: If the privilege was given with the WITH GRANT OPTION specifi ed.

563120c13.indd 489563120c13.indd 489 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

490 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

For instance, if you had granted the user sally@localhost all privileges on the film table of the
sakila schema:

grant all privileges on sakila.film to ‘sally’@’localhost’
identified by ‘sakila’;

You could in turn view this privilege with the following query:

select table_schema,table_name,privilege_type
from information_schema.table_privileges
where grantee = “‘sally’@’localhost’”;
+--------------+------------+----------------+
| table_schema | table_name | privilege_type |
+--------------+------------+----------------+
sakila	film	SELECT
sakila	film	INSERT
sakila	film	UPDATE
sakila	film	DELETE
sakila	film	CREATE
sakila	film	DROP
sakila	film	REFERENCES
sakila	film	INDEX
sakila	film	ALTER
sakila	film	CREATE VIEW
sakila	film	SHOW VIEW
sakila	film	TRIGGER
+--------------+------------+----------------+

COLUMN_PRIVILEGES

This table specifi es the privileges granted on a column of a specifi c table to a given user. The col-
umns are:

➤ GRANTEE: The name of the grantee to which the privilege has been granted. This is in user@
host format.

➤ TABLE_CATALOG: Not used, NULL.

➤ TABLE_SCHEMA: The schema name of the table to which the privilege is granted.

➤ TABLE_NAME: The name of the table on which the privilege is granted.

➤ COLUMN_NAME: The name of the column on which the privilege is granted.

➤ PRIVILEGE_TYPE: The type of privilege (SELECT, INSERT, DELETE, and so on).

➤ IS_GRANTABLE: If the privilege was given with the WITH GRANT OPTION specifi ed.

For instance, if you granted select access to the user jason@localhost the film_id and title col-
umns of the film table in the sakila schema with the following:

grant select (film_id,title) on sakila.film
to ‘jason’@’localhost’ identified by ‘sakila’;

You could in turn view these grants with the following query:

select table_schema,table_name,column_name,privilege_type
from information_schema.column_privileges

563120c13.indd 490563120c13.indd 490 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

SHOW Cross Reference ❘ 491

where grantee = “‘jason’@’localhost’”;
+--------------+------------+-------------+----------------+
| table_schema | table_name | column_name | privilege_type |
+--------------+------------+-------------+----------------+
| sakila | film | title | SELECT |
| sakila | film | film_id | SELECT |
+--------------+------------+-------------+----------------+

INFORMATION_SCHEMA EXTENSIONS

MySQL provides the ability for software developers to extend the INFORMATION_SCHEMA. This
requires C programming skills and requires patching the MySQL source code. MySQL community
member Roland Bouman provides a detailed technical article at http://rpbouman.blogspot
.com/2008/02/mysql-information-schema-plugins-best.html.

Some examples of extensions included in current products are detailed in Table 13-3.

TABLE 13-3: Examples of Extensions

PRODUCT EXTENSION FOR MORE INFORMATION

InnoDB Plugin INNODB_CMP

INNODB_CMP_RESET

INNODB_CMPMEM

INNODB_CMPMEM_RESET

INNODB_TRX

INNODB_LOCKS

INNODB_LOCK_WAITS

Refer to http://www.innodb.com/

doc/innodb_plugin-1.0/innodb-

information-schema.html.

Falcon FALCON_RECORD_CACHE_SUMMARY

FALCON_SYSTEM_MEMORY_DETAIL

FALCON_TABLESPACE_IO

FALCON_SYSTEM_MEMORY_SUMMARY

FALCON_VERSION

FALCON_TRANSACTION_SUMMARY

FALCON_SERIAL_LOG_INFO

FALCON_SYNCOBJECTS

FALCON_TRANSACTIONS

FALCON_RECORD_CACHE_DETAIL

For more information refer to http://

dev.mysql.com/doc/refman/6.0/

en/se-falcon-stats.html.

SHOW CROSS REFERENCE

MySQL provides a set of SHOW commands (see Table 13-4) that give valuable information. The SHOW
command was available before version 5.0 when the INFORMATION_SCHEMA was introduced. The dis-
advantages of the SHOW commands are they do not follow an ANSI SQL standard syntax, and also
do not allow for any restriction or subset of information, which is possible via a WHERE clause when
selecting data from tables.

563120c13.indd 491563120c13.indd 491 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

492 ❘ CHAPTER 13 UNDERSTANDING THE INFORMATION_SCHEMA

TABLE 13-4: Show Command Cross Reference

SHOW COMMAND INFORMATION_SCHEMA TABLE(S)

SHOW CHARACTER SETS CHARACTER_SETS

SHOW COLLATION COLLATIONS

SHOW COLUMNS COLUMNS

SHOW CREATE DATABASE SCHEMATA

SHOW CREATE EVENT EVENTS

SHOW CREATE FUNCTION ROUTINES

SHOW CREATE PROCEDURE ROUTINES

SHOW CREATE TABLE TABLES, COLUMNS

SHOW CREATE TRIGGER TRIGGERS

SHOW CREATE VIEW VIEWS

SHOW DATABASES|SCHEMAS SCHEMATA

SHOW ENGINES ENGINES

SHOW EVENTS EVENTS

SHOW FUNCTION CODE ROUTINES

SHOW FUNCTION STATUS ROUTINES

SHOW INDEX TABLE_CONSTRAINTS, KEY_COLUMN_USAGE, STATISTICS

SHOW PLUGINS PLUGINS

SHOW [GLOBAL|SESSION] STATUS SESSION_STATUS

SHOW TALBLE STATUS TABLES

SHOW TABLES TABLES

SHOW TRIGGERS TRIGGERS

SHOW [GLOBAL|SESSION] VARIABLES GLOBAL_VARIABLES, SESSION_VARIABLES

SUMMARY

This chapter covered the various tables in the INFORMATION_SCHEMA and showed how you can uti-
lize each to obtain useful information about your MySQL instance — such as information that you
can use to learn more about how MySQL works, where system fi les are located, and how to identify
performance issues.

563120c13.indd 492563120c13.indd 492 2/18/10 9:11:37 AM2/18/10 9:11:37 AM

Security

WHAT’S IN THIS CHAPTER?

➤ Identifying the limitations of default MySQL security

Learning best practices for providing a more secure MySQL installation➤

Identifying the ideal privileges for client access to the database➤

Encrypting and decrypting data using PHP➤

Creating secure hash values using PHP➤

➤ Preventing common exploits including cross-site scripting, SQL injec-

tion, as well as some lesser-known exploits

Security is a critical component of any application software. It’s often overlooked and imple-
mented insuffi ciently due to lack of time or commitment which can translate into a less robust
and secure option. Yet it only takes one weak link to destroy a site or brand’s reputation.

To ensure that best practices are part of the solution to a secure product, adequate data secu-
rity must be a prerequisite to commencing development. In fact, it’s imperative that applica-
tions follow all the rules and best practices outlined in this chapter. This chapter creates a
path to securing an application; you’ll looks at hardening your MySQL server, encrypting and
decrypting data in PHP, and some techniques for overcoming common vulnerabilities.

HARDENING YOUR MYSQL SERVER

A default MySQL installation fails to provide adequate best practices in database security. This
section discusses these limitations and then various means of improving security including:

➤ Operating system security

MySQL security permissions➤

14

563120c14.indd 493563120c14.indd 493 2/18/10 9:11:50 AM2/18/10 9:11:50 AM

494 ❘ CHAPTER 14 SECURITY

➤ Database privileges

Other security options➤

Installation Defaults

When installed, MySQL enables any user with physical permissions to the server to connect to
MySQL as an unauthenticated users. MySQL also provides complete access to all SUPER user privi-
leges via the ‘root’ user with no default password.

The following lists the default users for a new installation:

$ mysql -uroot
mysql> SELECT host,user,password FROM mysql.user;
+--------------+------+---+
| host | user | password |
+--------------+------+---+
localhost	root	
server.local	root	
127.0.0.1	root	
localhost		
server.local		
+--------------+------+---

What you see here are two types of users.

➤ The ‘root’ user which has MySQL super user privileges for your server or ‘localhost’ connec-
tions with no password.

Unauthenticated users indicated by the blank ‘user’ column.➤

MySQL does, however, provide an optional command for immediate improvements in default secu-
rity with mysql_secure_installation command. When running this command, you’re prompted
for the following options — the output has been trimmed for presentations purposes.

$ mysql_secure_installation

Enter current password for root (enter for none):
Set root password? [Y/n] y
New password:
Re-enter new password:
Remove anonymous users? [Y/n] Y
Disallow root login remotely? [Y/n] Y
Remove test database and access to it? [Y/n] Y
Reload privilege tables now? [Y/n] Y

If you revisit permissions now, you’ll see what you would expect from a more initially secure
installation.

mysql> SELECT host,user,password FROM mysql.user;
+-----------+------+---+
| host | user | password |
+-----------+------+---+
| localhost | root | *FDAF706717E70DB8DDAD0C5214B13770E1A80B0E |
+-----------+------+---+

563120c14.indd 494563120c14.indd 494 2/18/10 9:11:50 AM2/18/10 9:11:50 AM

Hardening Your MySQL Server ❘ 495

Operating System Security

Having performed the most basic improvements to accessing MySQL, it’s time to present the operat-
ing system security process with the following recommendations:

➤ Install software as ‘root’ OS user. The fi le permissions of all MySQL binary and support fi les
are to be owned by ‘root’.

➤ Restrict access to the ‘root’ OS user via sudo privileges. Be diligent by only granting access in
limited form.

➤ Confi gure an OS ‘mysql’ user, but do not allow direct login access to this user. The mysqld
process does not run as the ‘root’ OS user.

Set permissions of the MySQL data directory to OS ‘mysql’ user for example:➤

chmod 700/mysql/datadir

Ensure the MySQL data directory only contains data, and InnoDB transactional logs only.➤

➤ The MySQL error, slow and general logs should be in a separate directory. This allows for
permissions of the ‘mysql’ group to view logs. Grant group ‘mysql’ access when necessary.

The MySQL socket fi le needs to be in a world readable directory. The pid fi le does not.➤

➤ You can provide additional constraints on the MySQL port, e.g. 3306 at a fi rewall level.
Ideally, your database should not be world accessible. Access should be restricted to the
application or monitoring servers only.

These can be best achieved when using the MySQL tar binary installation rather than an Operating
System packaged version. However, the same rules can apply.

MySQL Security Permissions

After securing MySQL at the Operating System level, you can improve security for MySQL client
access with the following recommendations:

➤ Always set a MySQL ‘root’ user password.

Change the MySQL ‘root’ user id to a different name, e.g. ‘dba’.➤

➤ Only enable SUPER privileges to dba accounts, and only ever for ‘localhost’.

Application user permissions should be as restrictive as possible.➤

➤ Never use ‘%’ for a hostname.

➤ Never use ALL TO *.*.

➤ Ideally the application should have at least two types of users, a read/write user and a
read user.

563120c14.indd 495563120c14.indd 495 2/18/10 9:11:50 AM2/18/10 9:11:50 AM

496 ❘ CHAPTER 14 SECURITY

About the MySQL Security Model

MySQL users have three attributes for the identifi cation component. These are:

➤ username

password➤

host identifi er➤

A user is then granted permissions to objects. The valid types of objects include:

➤ database schemas

schema tables➤

table columns➤

The list of valid permissions for MySQL 5.1 are:

➤ ALTER, ALTER ROUTINE

CREATE, CREATE ROUTINE, CREATE TEMPORARY TABLES, CREATE USER, CREATE VIEW➤

DELETE, DROP, EVENT, EXECUTE, FILE, INDEX➤

INSERT, LOCK TABLES, PROCESS, RELOAD➤

REPLICATION CLIENT, REPLICATION SLAVE➤

SELECT, SHOW DATABASES, SHOW VIEW, SHUTDOWN➤

TRIGGER, UPDATE, USAGE➤

SUPER➤

ALL➤

GRANT OPTION➤

This chapter discusses the users, objects and privileges in more detail as it reviews the commands
used to manage MySQL security.

You use the CREATE USER command to defi ne the username, password and host for a user. It is pos-
sible to create a user without a password; however you should never do this.

The host component defi nes the accessible connection options for the given username and password.
This may be either DNS names or IP addresses. MySQL also allows the use of the ‘%’ wildcard to
provide a greater mask of security. Some examples include:

CREATE USER nopass@localhost;
CREATE USER withpass@localhost IDENTIFIED BY ‘password’;
CREATE USER userbyhostname@%.example.com IDENTIFIED BY ‘password’;
CREATE USER userbyip@192.168.100.% IDENTIFIED BY ‘password’;

563120c14.indd 496563120c14.indd 496 2/18/10 9:11:50 AM2/18/10 9:11:50 AM

Hardening Your MySQL Server ❘ 497

Improving performance involves using IP addresses because it eliminates the need to perform an
internal DNS lookup. This can be user confi gured with the --skip-name-resolve my.cnf or mysqld
startup option because it tells MySQL to not perform DNS lookups.

Using a host of ’%’ is not recommended because it provides global access from any
accessible server that can see the MySQL server. For a publically accessible server,
this provides opportunity for a brute force password attack on your server.

You can optionally create a user. It is possible to grant permissions to a user that does not exist and
this results in the user being created by default.

When you refer to a user for subsequent commands, a user represents a given username, password
and host.

GRANT

You use the GRANT command to give permissions to a specifi c user. The grant command is broken
down into four components:

➤ privilege(s)

database objects➤

user➤

WITH GRANT OPTION➤

Some example GRANT commands include:

GRANT SELECT,INSERT,UPDATE,DELETE ON db.* TO appuser@192.168.100.%;
GRANT SELECT ON db.* TO appreadonly@192.168.100.%;
GRANT CREATE,CREATE VIEW, DROP ON db.* TO appdba@localhost;

The SHOW GRANTS command can be run to provide a GRANT compatible syntax for permissions for
specifi ed users. You can also query the mysql.user table for specifi c details.

REVOKE

The REVOKE command, as the name indicates, removes privileges given by the GRANT command. For
example:

REVOKE DELETE ON db.* FROM appuser@192.168.100.%;

As you can see, it is possible to provide a subset of granted permissions.

DROP USER

You can remove a user and all permissions with the DROP USER command.

563120c14.indd 497563120c14.indd 497 2/18/10 9:11:50 AM2/18/10 9:11:50 AM

498 ❘ CHAPTER 14 SECURITY

It is possible to manipulate the MySQL security model manually via normal
DDL commands against the mysql meta data schema. While this is possible, it
is strongly recommended you refrain from this historical process and use the
GRANT and REVOKE commands.

Now that you understand how to manage permissions, the rest of this section discusses the MySQL
security recommendations.

The Security Backdoor

You need to restrict shutdown and restart permissions on the mysql server because the mysql server
can be started with the --skip-grants option. This option not only bypasses all security, it lets you
change existing security. There is no way to remove this functionality from the mysql server.

Change Default ‘root’ User

MySQL provides a feature over other commercial database products because you can replace the
default supplied super user ‘root’ with any user you defi ne. The advantage here is to reduce any
brute force password attempts on a publically accessible mysql server. You have two ways to achieve
this, the correct GRANT way, and the hack mysql security way.

For example, if you want to replace the ‘root’ user with a ‘dba’ user, you would use the following
SQL statements:

$ mysql –uroot -p
CREATE USER dba@localhost IDENTIFIED BY ‘somepass’;
GRANT ALL on *.* TO dba@localhost WITH GRANT OPTION;

$mysql -udba -p
SHOW GRANTS;
+--
| Grants for dba@localhost
+--
| GRANT ALL PRIVILEGES ON *.* TO ‘dba’@’localhost’ IDENTIFIED BY PASSWORD
 ‘*13883BDDBE566ECECC0501CDE9B293303116521A’ WITH GRANT OPTION
+--

DROP USER root@localhost;
SELECT host, user,password
FROM mysql.user
WHERE super_priv=’Y’ OR grant_priv=’Y’;
+-----------+------+---+
| host | user | password |
+-----------+------+---+
| localhost | dba | *13883BDDBE566ECECC0501CDE9B293303116521A |
+-----------+------+---+

563120c14.indd 498563120c14.indd 498 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

Hardening Your MySQL Server ❘ 499

The incorrect way is as follows.

$ mysql –uroot -p
mysql> (before “UPDATE”) UPDATE mysql.user SET user=’dba’ WHERE user=’root’;
mysql> (before “FLUSH”) FLUSH PRIVILEGES;

Using Privileges Appropriately

The lazy approach is to grant the ALL privilege for a single application user. Permissions should
always be restricted to the purpose of the user only. There should also be multiple users for the dif-
ferent roles, further allowing for greater security. By default, application users would fall into at
least two categories:

➤ Those operations that require permissions to read and write application data

Those operations that require read only permissions to application data➤

You should only grant the SELECT, INSERT, UPDATE, DELETE privileges when needed. Only add
additional privileges when needed, for example EXECUTE for stored routines, or CREATE VIEW
for dba’s.

Defi ning User Host Permissions

The lazy approach is to grant user permissions to a ‘%’ host. Ideally hosts should be restricted to
specifi c IP address or submask, e.g. 192.168.100.1 or 192.168.100.%. You may use DNS names or
IP addresses; however, MySQL can elect to ignore DNS entries based on confi guration options.

A DBA account with SUPER privileges should be restricted to a host string of ‘localhost’ especially
when WITH GRANT OPTION is also specifi ed. This requires a DBA to physically connect to the database
server fi rst and provides a separate level of security that you can manage better via OS specifi c user
security such as LDAP, yellow pages or RSA tokens, for example.

Be careful when you add multiple permissions to varying host strings when
using wildcards. There is an order of precedence and adding more restric-
tive global permissions may override other permissions. Refer to the MySQL
Reference Manual for specifi c details at http://dev.mysql.com/doc/
refman/5.1/en/privilege-system.html.

Ideal Application Security

What is an ideal permission model for your application? Ideally you should have the following:

➤ A dba user for database administration operations only. This includes operations such as cre-
ating users, schemas and permissions for daemon administration. This user is restricted to the
host of ‘localhost’.

➤ An app_dba user for a different level of DBA administration that only has permission on the
respective application schemas to create and drop objects. Ideally this is restricted to the host
of ‘localhost’.

563120c14.indd 499563120c14.indd 499 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

500 ❘ CHAPTER 14 SECURITY

➤ An app_rw user that has INSERT,UPDATE,DELETE,SELECT privileges to the respective appli-
cation schemas.

➤ An app_readonly user that has SELECT privileges to the respective application schemas.

You need to realize that MySQL security is checked for every executed SQL
statement. Having a complex privilege model increases the overhead of valida-
tion for every SQL statement. While security is important, you should use a
moderated approach as detailed in this chapter.

Additional Database Security

In addition to MySQL user security there are other practical approaches to hardening your MySQL
environment and the data recorded.

➤ When the application server accessing the database resides on the same server as your data-
base, disable access externally with the --skip-networking option.

➤ MySQL by default will bind to all IP addresses of the server and accept connections on the
specifi ed port, the default of 3306. You can restrict MySQL to a specifi ed IP address with the
--bin-address option. This can also enable you to run multiple versions of MySQL on the
same default port of 3306 on the same server with the use of multiple IP addresses.

➤ You can confi gure MySQL to operate with SSL keys; however, this only provides encryption
of the communication between the client and the server.

➤ The use of sql_mode=NO_AUTO_CREATE_USER to ensure that users must always have
passwords.

The use of Referential Integrity, e.g. Foreign Keys.➤

➤ The use of check constraints such as NOT NULL, UNSIGNED and ENUM.

Don’t store passwords in clear text in the database.➤

Auditing

MySQL provides no means of system auditing. This is a signifi cant shortcoming in important secu-
rity environments such as fi nancial and banking.

Your only option is to enable binary logging. This provides the only audit trail option of SQL com-
mands possible with a standard mysql installation that logs all DML and DDL by default. It is pos-
sible to confi gure the binary log to ignore operations on a per schema and table basis which negates
its complete view of all operations.

563120c14.indd 500563120c14.indd 500 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

Encoding Data ❘ 501

You also have the option to disable commands from being reported in the binary log, but this
only further highlights this method as insuffi cient as a true audit trail. The process only works
for honest people.

You can monitor the occurrence of any admin, alter, or drop commands via SHOW GLOBAL STATUS
variables. You can then use the mysqlbinlog tool to review these commands.

ENCODING DATA

Encoding data so that it cannot be easily read or guessed is one of the key tenets of security. A prop-
erly designed system not only takes measures to prevent data from being exposed but also makes
sure that the damage is limited should the worst happen and the data is compromised. The MySQL
portion of the chapter covered precautionary steps that you can take on the MySQL side. This sec-
tion covers the PHP side of things.

Two types of encoding are covered in this section:

➤ Bi-directional methods encode the data in such a way as to make it possible to retrieve the
original value as long as you know the key.

➤ Single-directional or one-way methods calculate values that you can then compare against a
known pre-calculated value.

Both methods have their place in security. The bi-directional methods are covered fi rst.

Bi-directional Encoding

Two types of bi-directional encoding are available to you, one being a subset of the other:

➤ The superset, simply referred to here as encoding, is the process of changing the representa-
tion of data to another equivalent but distinct representation. Some basic encoding methods
include base-conversion in numbering systems, URL encoding, Json encoding (the process of
converting an object to JavaScript Object Notation), serialization and others. Such methods
provide convenient ways to use the same data across multiple mediums but do not provide
any security.

➤ One subset of encoding is referred to as encryption. Encryption encodes the data in such a way
that it cannot be easily decoded without a key that both the encoder and the decoder know.

The XOR Cipher

There are numerous very basic forms of encryption. The simplest involves a lookup table of keys
and values and translating every value in a string. Another basic encoding method is referred to as
an XOR Cipher. XOR encoding is easy to do in PHP and can be used in applications where weak
encryption is suffi cient (more on why, later). PHP does not provide a single function to XOR encode
data but it does provide the binary manipulation method (XOR — short for Exclusive OR — or
sometimes Exclusive Disjunction) needed to produce the encoded string.

563120c14.indd 501563120c14.indd 501 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

502 ❘ CHAPTER 14 SECURITY

A cipher is a reproducible set of instructions used to encode and decode the data.
XOR may be confusing for developers who do not have a computer science
background.

XOR is a logical bitwise operation, which means that it is performed on a single
bit and always produces the same results. XOR is represented in computer science
as a plus sign (the symbol for OR) surrounded by a circle. The rules are simple:

A ⊕ 0 = A

0 ⊕ 1 = 1

1 ⊕ 1 = 0

In simplest terms: the result will be one iff (if and only if) exactly one of the
bits is 1.

In the XOR Cipher the application has a single shared key. The key can be any length. Performing
an XOR operation on every byte in the source data generates the encrypted data. For example:

 01000011 01110101 01110010 01101001 01101111 01110011 01101111

⊕ 01000001 01101110 01100100 01110010 01100101 01110111
 00000010 00011011 00010100 00011011 00001010 00000100 00101110

Note the bolded byte. If there are not enough bytes in the shared key (if the key is shorter than the
source string) then the key will wrap around. The last byte in the encrypted data is the last byte in
the source data XORed with the fi rst byte in the key. Longer keys are more secure. The code to per-
form the encryption in PHP looks like this:

Function xorCipher($source, $key=”sample-key!”) {
 $source = “Expert PHP and MySQL”;
 $output = “”;
 for($i=0; $i<strlen($source);) {
 for($j=0; $j<strlen($key); $j++,$i++)
 $output .= $source{$i} ^ $key{$j};
 }
 return $output;
}

The data returned can be binary; as such it is not suitable for screen display. Encoding the data in
base-64 using base64_encode() is a good solution.

Because of the nature of XOR it is possible to decode data using the exact same function used to
encode it. This feature is simultaneously the thing that makes XOR Ciphers very easy to implement
and the thing that makes them easy to decipher by malicious users. Mathematically it is possible,
given any two parts, to easily get the third part. So if someone has both the encoded and decoded
value they can easily get the key.

In theory, a method called one-time pad encryption can be used along with XOR to create a
near unbreakable encryption system. However, one-time pads are diffi cult to implement because
they require that both the sender and the receiver agree to a series of one-time use keys. Then the
question arises on how to securely agree on the keys. The easy availability of public/private key

563120c14.indd 502563120c14.indd 502 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

Encoding Data ❘ 503

encryption has made such methods largely unnecessary. However, XOR Ciphers are still useful in
the event that security is not one of the primary business goals and it has the added benefi t of the
encrypted version not taking up any more space than the original string.

Using the mcrypt Extension

The PHP mcrypt extension is compiled into many installations of PHP and provides an easy way to
encrypt and decrypt data. Although mcrypt supports many different ciphers, they are typically more
secure than a cipher like XOR because the key cannot be easily determined even if a malicious user
has both the encrypted and decrypted values to use as reference.

Note that the mcrypt library will not be reviewed in detail in this chapter (it contains over 20 func-
tions) but the basics of encrypting and decrypting data with the library are. For a practical example
of using mycrpt refer back to Chapter 12.

In addition to the key and the source data, it is also necessary to decide on a cipher to use, a mode
of encoding, and occasionally an initialization vector depending on the cipher used. The mycrypt
library (on which the extension is built) supports many different encryption methods. This book
does not go into each one in-depth; however, they include those shown in Table 14-1.

TABLE 14-1: Encryption Methods That mycrypt Library Supports

cast-128 gost rijndael-128

cast-256 loki97 rijndael-192

blowfi sh-compat serpent xtea

des, rijndael-256 rc2 tripledes

twofi sh blowfi sh wake

saferplus arcfour enigma

Each has different benefi ts and disadvantages when it comes to speed, security, and interoperability. The
classes later on in this chapter use RIJNDAEL-246 as the default. Sometimes the encryption method
may be predetermined by the application but sometimes the choice does not make much of a difference.

The mcrypt manual page can be useful for fi nding a complete list of supported methods on a partic-
ular system as well as descriptions. Simply type man mcrypt on a system that has mcrypt installed.
Mycrpt also supports eight modes of encryption:

➤ STREAM: Similar to the XOR cipher and as such you should avoid using the same key twice
(since, again, having any two parts to an XOR Cipher can lead to the third part being easily
determined). The difference is that the key string for the XOR is generated using the cipher
chosen from the previous list. It does have the benefi t of having an output that is equal in
length to the input.

➤ ECB (Electronic Code Book): The simplest block encryption mode. It also has weaknesses
largely because it does not require an initialization vector.

563120c14.indd 503563120c14.indd 503 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

504 ❘ CHAPTER 14 SECURITY

➤ CBC (Cipher Block Chaining): Created blocks that are dependent on previous blocks. The
fi rst block is the initialization vector. Subsequent blocks are the result of an XOR or the ini-
tialization vector and the previous block.

➤ CFB (Cipher-Feedback Mode): A stream cipher and therefore does not use block encoding. It
does, however, require an initialization vector, which primes the XOR string.

➤ OFB (Output-Feedback Mode): Similar to CFB only it uses blocks instead of a stream. Both
methods use 8-bit so they are not usually the best choice. The manual pages for mcrypt
explicitly say that OFB was included just for completeness.

➤ nCFB and nOFB: Similar to CFB and OFB. The difference is in the number of bits used for
the encryption. The n stands for the block size.

➤ CTR (Counter Mode): A block-mode encryption method that uses the initialization vector
to start the counter. The counter is then incremented for each block and XORed with each
block.

Using these methods is easy. An example of using the encryption and decryption functions was
already seen in Chapter 12. However, Listing 14-1 is a simple encryption and decryption class:

LISTING 14-1: SimpleEncryption.class.php

<?php
class SimpleEncryption {
 protected $mode;
 protected $cipher;
 protected $secret = “tHiS-1s-a-SeCret!”;

 public function __construct($cipher=MCRYPT_RIJNDAEL_256,
 $mode=MCRYPT_MODE_CBC) {
 $this->cipher = $cipher;
 $this->mode = $mode;
 }

 public function getIV() {
 static $iv = false;
 if ($iv !== false) return $iv;
 $iv_size = mcrypt_get_iv_size($this->cipher, $this->mode);
 srand();
 $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
 return $iv;
 }

 public function encrypt($source) {
 return mcrypt_encrypt($this->cipher, $this->secret,
 $source, $this->mode, $this->getIV());

 }

 public function decrypt($data) {
 return mcrypt_decrypt($this->cipher, $this->secret, $data,

563120c14.indd 504563120c14.indd 504 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

Encoding Data ❘ 505

 $this->mode, $this->getIV());
 }
};
?>

Depending on the method of encryption that you use, the mcrypt library may pad extra white space
onto the end of the string before encoding. The purpose of the padding is to make the string length
into a multiple of the block side. When you decode the string, that extra padding is still there. In
most cases it is a null character so you can get rid of it with: rtrim($string, “\0”).

Keep in mind that in the modes that use the initialization vector (CBC, CFB, and OFB), you must
use the same initialization vector for both encryption and decryption. Because the initialization vec-
tor does not need to be a secret (it can safely be transmitted over the network) it can be stored in a
cookie-like in the authentication example or stored in the database. It is not a good idea to use the
same initialization vector for everything. Instead, the application should generate a new random one
for everything it encrypts.

Although this chapter covers many types of strong encryption, the methods pre-
sented may not meet certain military or governmental requirements. Make sure
to check the appropriate regulations before attempting encryption at that level.

There is much more that can be done with the mcrypt library. Read through the PHP documenta-
tion for more information. Sometimes it is not necessary to use bi-direction encoding (and some-
times it is also undesirable) but it is still important to protect the application information. In those
cases, single directional encoding can be used instead.

Single-Directional Encoding

Single directional encoding is often known as hashing because it produces a non-unique but repro-
ducible output given a set input (useful for hash tables). It is very useful under two main circum-
stances, both covered in Chapter 12, and they are:

➤ Storing a value against which you need to test and which is sensitive, but never needs to be
retrieved — such as a password.

➤ Comparing a calculated value on multiple nodes based on a shared secret. For example, when
you test to see if a value is valid without ever actually sending the value over the network.

Basic hashing is simple: md5($value). However, a basic hash is not very secure. An attacker can —
through various means, such as rainbow tables — fi nd another value that calculates to the same
hash. If the hash is used for something like a password — which it often is — that calculated value
can be used as if it were the actual password. Using a salt creates a part of the source data that can-
not be controlled through user input.

For example, say that hash of the password is stored in $x and a malicious user determined that
for md5($y) == $x he or she can use $y as if it were the password. But when a salt is introduced it
becomes md5($y.$salt). Because the malicious user does not know the salt it is impossible to guess

563120c14.indd 505563120c14.indd 505 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

506 ❘ CHAPTER 14 SECURITY

a value of $y that would generate the correct hash. Even if the value of $salt is compromised it is
still less likely to fi nd a collision value than it is with a hash that does not use a salt. There isn’t any
excuse for an application to not salt the hashes.

PHP also provides a hashing function that can be used for other forms of hashes (MD5 has been
broken and is considered weak but is still widely used). The complete list of hashing functions can
be retrieved using hash_algos(). Some of the basic ones are:

➤ md5 as well as the deprecated md2 and md4. md5 and md3 should not be used for anything
other than verifying data integrity. Likewise, md5 allows for predictable collisions and, as
described earlier, is not ideal for security because of that. However, md2 and md4 can be use-
ful when dealing with legacy protocols and formats.

➤ sha1, sha256, sha384 and sha512 are signifi cantly stronger hashes than md5. sha1 is by far
the most widely adopted of the sha family of hash functions. However, the other functions
are mandatory for some military and governmental applications. It is worth noting that the
sha() function will behave in the same way as passing sha1 to the hash function.

➤ The crc32 and crc32b hashes (cyclic redundancy check) are useful for providing lightweight
checks for data integrity. They are absolutely not suitable for things like password checking;
however, they are useful for checking to make sure that data has not been tampered with.

➤ Other alternative hashing functions include whirlpool (an open and free algorithm), gost,
adler32, as well as the ripemd, tiger, and haval family of hashes. The variety of hash
functions allows for an appropriate hash for most applications (legacy and otherwise).

It is most common to see sha, md5, and crc32; however it is important to take time to choose the
right one.

PHP SECURITY RECIPES

This chapter closes with some examples of real-world security situations starting with the manda-
tory SQL injection and then continuing with other methods of exploitations. Security is only as
strong as the weakest link and the best encryption in the world is useless if bypassing the encryption
or executing functions on the user’s behalf can compromise the data.

Protecting against SQL Injection

SQL injection is the exploit that everyone knows about and everyone knows how to prevent so it
will be covered only briefl y here.

SQL injection always starts with some form of user input either through forms, query strings (or data
passed to query strings via rewrite rules), or even in uploaded fi les. Every place that accepts user input
(directly or indirectly), which is then passed into the database, is fair game for a malicious user.

One form of SQL injection involves terminating the current query and executing a new one. For
example:

The original query
SELECT * FROM `users` WHERE `id`= USER INPUT

563120c14.indd 506563120c14.indd 506 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

PHP Security Recipes ❘ 507

The user input
0; DROP `users`
The resulting query
SELECT * FROM `users` WHERE `id`=0; DROP `users`;

However, any of the libraries that use prepare() will auto-escape the data. The standard MySQL
functions do not, but they won’t execute multiple semicolon separated queries (mysql_query()
needs to be executed multiple times) so that type of injection isn’t possible under most circum-
stances. However, you can also use sub-queries for injection as well as to bypass authentication and
ACL. For example, take this SQL statements:

SELECT * FROM `reports` WHERE `user_id`= USER INPUT

Given the proper user input they can become:

SELECT * FROM `reports` WHERE `user_id`= 1234 OR true

A simple page that lists all reports from a user suddenly lists all reports by any user anywhere in the
system. The bottom line is to escape all input with mysql_real_escape_string() before passing it
into a query.

The mysql_escape_string() function is deprecated and will be removed
from later versions of PHP. Always use mysql_real_escape_string(), which
requires a database connection but also takes into account the character encod-
ing on the MySQL server.

Protecting against Replay Attacks

A replay attack is when an intruder takes a packet that a user sends and then retransmits it to
the server. The end result is that if the captured packet contained authentication information, the
intruder can then masquerade as that user, thus compromising the user’s data.

What Do Replay Attacks Look Like?

When done right replay attacks look exactly like the original request from the user. An application
that does not take precautions can easily fall victim to an attack. Worse, it is diffi cult to know if an
attack ever took place.

HTTP does provide a method, known as Digest Authentication, for authentication that prevents
replay attacks. Digest Authentication is covered in great detail in Chapter 12 on authentication. The
basic elements of a replay attack are this:

➤ The user sends a request that requires authentication.

Another system on the network sniffs that request and stores it for later.➤

➤ Later comes and the attacker replays the packet, thus gaining access to the authenticated data
any time that they want.

563120c14.indd 507563120c14.indd 507 2/18/10 9:11:51 AM2/18/10 9:11:51 AM

508 ❘ CHAPTER 14 SECURITY

Replay attacks have symptoms very similar to a common accidental action that can be taken by the
user: duplicate form submittal. Incidentally, the steps to protect against it are the same. Although dupli-
cate form submittal is not a security risk it does provide a bad user experience (not limited to duplicate
posts on a forum or a credit card being charged twice!).

Protecting against replay attacks will not prevent the attacker from stealing the actual password if it
is transited over plain text. Thus, it is important to always perform login over an encrypted connec-
tion where sensitive user data is involved.

The Code

Preventing replay attacks was already covered briefl y in Chapter 12. A nonce or “number used
once” is a way to prevent a replay attack. The server will create a nonce and then send it to the cli-
ent. The client then creates a hash that includes both the nonce and a shared secret that the user
provides (the password).

There are two types of nonce values. Those that:

➤ Expire immediately after use

Are good only for a short period of time➤

Both have benefi ts and drawbacks.

Immediately expiring a nonce can be implemented in one of two ways:

➤ One requires a database of nonces that have been previously used. However, the database
can be pruned periodically. That is the way that OAuth and OpenID work.

➤ A second way can be used in HTTP based connections. A session can be used to store the
current nonce for the user, which is updated on each use.

In essence, they are the same. However, sessions remove the need for manually managing the nonce.
A session-based nonce may look like Listing 14-2.

LISTING 14-2: SessionNonce.class.php

<?php
class SessionNonce {
 private $salt;

 public function __construct($salt = “abc123”) {
 session_start();
 $this->salt = $salt;
 if (!array_key_exists(‘nonce’,$_SESSION))
 $this->generate();
 }

 public function consume($nonce) {
 if ($nonce == $_SESSION[‘nonce’])
 $this->generate();

563120c14.indd 508563120c14.indd 508 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

PHP Security Recipes ❘ 509

 else
 throw new Exception(“Invalid nonce”);
 }

 private function generate() {
 $_SESSION[‘nonce’] = MD5(uniqid().$salt.rand(1,1000));
 }

}
?>

The problem with this method is that the user cannot submit more than one form simultaneously. The
fi rst form will succeed while the second will fail. An advanced system might generate multiple nonce
values depending on the content.

However, this “defect” can also be an advantage. For example, if the application is a wiki, this kind
of nonce prevents not only replay attacks but also helps protects the user from overwriting content
with an older version.

A time-based nonce requires no storage overhead because it is decoded at validation time but it does
create a period where replay attacks can occur. It is also not practical when user input is involved
because giving more time for the user to enter their input also means giving more time for an attack
to happen.

In a time-based expiring nonce, instead of calculating a random nonce, the current time is used.
A time-based nonce can then be decoded to determine the time that the nonce was created. If the
nonce is older than a set time then it is considered stale. At that point the client would have to resub-
mit the request.

Both the immediately expiring and time-based methods involve inserting the nonce into a form that
is submitted by the user. The function that accepts the form would then consume the nonce. If the
nonce is invalid, an exception is thrown. Both methods also have disadvantages. One opens up a
window in which attacks can occur and the other cannot manage multiple simultaneous requests
from the same session without some additional hacking.

Nonces also have the added disadvantage of inhibiting both automated unit testing and load test-
ing. Unit tests need to be able to handle session cookies. The load-testing problem is more diffi cult.
In most situations a load test is indistinguishable from a replay attack since it does exactly the same
thing as a replay attack (records sessions then retransmits them to the server. The load testing prob-
lem needs to be considered on a per-application basis.

Again, for more information on preventing replay attacks be sure to go back and re-read the chapter
on authentication.

Protecting against XSS

Cross-site scripting attacks (XSS) are very common and there have been several high-profi le cases
where they were executed on websites with huge user-bases. Unlike some other attacks in this chap-
ter: XSS attacks are exclusive to web-based PHP applications and have little bearing on types of
PHP applications that are not accessible via the Internet.

563120c14.indd 509563120c14.indd 509 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

510 ❘ CHAPTER 14 SECURITY

What Does XXS Look Like?

An XSS attack is very closely related to SQL injection. Both occur because user input is not prop-
erly sanitized. SQL injection occurs when a fi eld includes malicious SQL while XSS occurs when a
fi eld contains malicious scripts. The scripts are then run on the client’s computer. Any tag that can
load content from a remote source is vulnerable; the three most common are: <script>, , and
<embed>. Alternatively, you can use <meta> for cookie manipulation and <base> to rewrite every
embedded image or script on a page.

XSS can range from the basic to the extremely complex. The most basic form is to just include a
<script> tag in the form input:

<script src=”http://example.com/attack.js”></script>

Other forms of attack include executing a code that is obfuscated in order to avoid automatic detec-
tion by poorly written XSS detection scripts. There are several things to remember when trying to
detect an XSS attack:

➤ Parameters in HTML do not need to be enclosed in quotes. Alternatively they can be
enclosed in: single quotes, double quotes, or grave accents. That last one is lesser known and
therefore not checked by many detection scripts. It is the back tick used to enclose tables and
columns in MySQL queries.

➤ Embedded content can have AllowScriptAccess set to true, which allows Flash and SVG
images to access JavaScript.

HTML comments can be in most places in a document and can easily confuse XSS detection.➤

URLs can contain JavaScript and VBScript.➤

You can fi nd many resources on the Internet for learning more about XSS attacks. Preventing XSS
attacks could cover several chapters. Be sure to check out this book’s web page o n www.wrox.com
for more information on XSS.

The Code

Because XSS is so complicated there is really only one easy way to prevent it. That is to encode all
HTML using htmlentities() which will cause any HTML in the user’s input to be displayed ver-
batim on the output page. The second best approach is to strip all HTML from the input entirely,
thus avoiding the ugly raw output.

Both methods have their fl aws. The largest one is that neither will work in applications where
HTML is actually allowed (such as when the input is rich text). The second method (stripping the
HTML) is also fl awed because there are numerous techniques to trick code into leaving HTML in
the data. A good HTML stripping function will know about and try to prevent all of them. A good
alternative is a combination of them both:

$html = preg_replace(
 ‘/<script(?:\s(?:([“`\’])(?:\\\1|[^\1])*?\1|[^>])*)?’.
 ‘>(?:.*?<\/script\s*>)?/g’
 ‘’, $html);
$html = preg_replace(‘/<[^\s>]+(?:\s(?:([“`\’])(?:\\\1|[^\1])*?\1|[^>])*)?>/g’,
 ‘’,$html);

563120c14.indd 510563120c14.indd 510 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

PHP Security Recipes ❘ 511

$html = htmlentities($html);

// Input:
// <script type=”text/javascript”>alert(‘hello’);</script>
// world >
// Output:
// world >

In this code, the fi rst regular expression replaces all script tags as well as the content inside of
them. The second expression replaces all other tags while preserving the content inside of them.
Alternatively, the second expression can replace all but a special white list of tags. The new preg_
replace() call may look something like this:

$whitelist = array(‘strong’,’b’,’i’,’u’,’s’,’em’,’del’,’p’,’br’,’br\/’);
$html = preg_replace(/<(?!\/?(?:’.implode(‘|’,$whitelist).
 ‘))[^\s>]+(?:\s(?:([“`’])(?:\\\1|[^\1])*?\1|[^>])*)?>/’,’’,$html);

The
 tag is included twice because it is the only one on the list that can be self-closing.
The script uses a negative lookahead to make sure that none of the white listed tags are used.
Lookaheads are covered in-depth in Chapter 1. If the white list includes any tag that has a src or
href such as , be sure to make sure that the source does not have the “javascript:” prefi x.

Another popular approach to preventing XSS is to entity encode the entire string and disallow
HTML altogether but also provide an alternative means of formatting. Such systems include wiki
syntax and BBCode. It is likely that most developers have seen one of the other at some point. Here
is an example of bolded text in each method. First BBCode then wiki code:

[b]Bolded text[/b]
‘’’Bolded text’’’

Wiki syntax is not standardized. Different wikis use different formatting rules.
It is highly likely that if the XSS prevention code is treated as a side-project and
not a dedicated task, there will be exploits. For that reason, it is recommended
that applications use third party libraries for XSS prevention and/or HTML
cleansing.

One of the most common uses of XSS attacks is to steal a user’s authentication information by
reading the cookie with JavaScript. The setcookie function in PHP offers one fi nal level of protec-
tion against that type of XSS attacks. The last parameter to the function is the often-overlooked
httpOnly. Setting the cookie to use HTTP only means that JavaScript cannot read it. Do not rely on
this option though; it is not supported in all browsers.

Protecting against CSRF

One of the most overlooked security vulnerabilities is the cross-site request forgery. It is abbreviated
as CSRF and often pronounced as “sea-surf” and can have devastating effects on users’ data. This
type of attack is HTTP specifi c (but independent of format) and is unfortunately quite common
because when developers design forms, they often don’t think of the fact that an HTTP request can
come from anywhere.

563120c14.indd 511563120c14.indd 511 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

512 ❘ CHAPTER 14 SECURITY

What Does a CSRF Look Like?

A CSRF attack works on the premise that users remain logged into web pages via cookies. As such,
any form submission to the website will appear to come from the currently logged in user. A would-
be attacker tricks the user’s browser into requesting a site that requires authentication.

The attacker has no way of knowing if the person has an account on the target site. So the prob-
ability of an attack being successful grows as the number of visitors to your website increases as a
percentage of the total number of people with Internet access.

However, it is also possible to target individuals specifi cally by tricking them into visiting a link that
contains an attack. Social networks have played a role in spreading an attack by acting as a traffi c
driver for the malicious website.

Things that seemed harmless in HTML suddenly take on new meaning when dealing with CSRF.
For example, one vector of attack is when a site allows for embedded images or HTML.

The fi rst rule of preventing CSRF attacks is: never use a GET request to modify data. Consider this
hypothetical situation. A website allows users to delete their account by going to the URL: /users/
delete.php?confirm=yes. That page can then be invoked from an attacker’s website (or the site
itself if the site allows embedding of remote images!) using any of the following:

<script src=”http://www.example.com/users/delete.php?confim=yes”></script>
<iframe src=”http://www.example.com/users/delete.php?confim=yes”></iframe>
<link rel=”stylesheet” type=”text/css”
 href=”http://www.example.com/users/delete.php?confim=yes” />
<embed src=”http://www.example.com/users/delete.php?confim=yes” />

Other methods include actual frames or JavaScript to write any of the above tags. An alternative
method that allows for the POST method looks like this:

<form method=”POST” id=”csrf_form” action=”http://www.example.com/users/delete”>
 <input type=”hidden” name=”confirm” value=”yes” />
</form>
<script type=”text/javascript” language=”javascript”>
 settimeout(function() { document.getElementById(“csrf_form”).submit(); }, 500);
</script>

A more elaborate script might put the form inside of an iframe where it can be submitted without
the user ever knowing a thing. Deleting an account is one example of an action that could be taken.
Other actions may include transferring money from one bank account to another, changing a pass-
word then using the site’s private messaging service to send a note to the attacker alerting them of
the compromise, or any number of actions that can be done via forms or via clicking a link.

It is worth noting that CSRF is not click-jacking. Click-jacking is an attack that is possible now that
most web-browsers have robust support for DHTML and iframes. It involves one of two techniques:

➤ Making a submit button look like it is part of the website when it’s actually a cleverly
placed iframe.

➤ Positioning an iframe with a button so that it is always directly below a user’s cursor but set-
ting the opacity to zero so that the user cannot see it until they’ve already clicked.

563120c14.indd 512563120c14.indd 512 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

PHP Security Recipes ❘ 513

The security measures in this chapter cannot prevent click-jacking.

The Code

There are two methods for preventing CSRF attacks. Make sure to use both, although either one
will do. One good thing about CSRF attacks is that they are relatively easy to track back to their
origin. This is because most modern browsers send a referrer string that contains either the page in
which the content is embedded, the page that the user was linked to the content from, or the page
where the form was embedded.

The fi rst method of prevention, checking the referrer, relies on this fact. It is very simple. In each
page that modifi es data (which should only be post requests!), include this:

define(SITE,example.com’);
$referer = $_SERVER[‘HTTP_REFERER’];
if ($referer != “” &&
 !preg_match(‘/^https?:\/\/([^/]+\.)?’.preg_replace(‘.’,’\.’,SITE).’(\/|$)/’))
 die(‘Invalid referer!’);

At this point, it might also be a good idea to log the attempted attack. The regular expression seems
a little bit more complicated than it needs to be. A few reasons for that are:

➤ It needs to account for secure and non-secure connections.

➤ It needs to make sure that the site is at the start of the string and is followed by either a slash
or the end of the string.

Otherwise one or both of these may match:

http://example.com.example.org
http://example.org/example.com

In both the previous examples, the site example.org is the attacker’s website. As an added bonus,
the regular expression also allows for forms submitted from any (or no) sub-domain of the main
site. However, a close look at the code reveals the check to make sure that the referrer is not empty.
If the referrer is empty, the security check passes. This is not ideal, but it prevents legitimate users
from being rejected. After all, not all browsers send referrer strings.

The second preventative measure is to use a token. The token is similar to the nonce discussed ear-
lier. However, it is not necessary to keep the token a secret and it doesn’t need to change as often.
The most effi cient way to use the token is store it in a cookie. Checking that the token is valid is as
simple as comparing it with the cookie. In this system the page that renders the form looks some-
thing like this:

<?php
if (!array_key_exist(“form_token”,$_COOKIE)) {
 $_COOKIE[‘form_token’] = uniqid().rand(1000);
 set_cookie(‘form_token’, $_COOKIE[‘form_token’]);
}
?>
<form method=”POST” action=”/doAction.php”>
 ...

563120c14.indd 513563120c14.indd 513 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

514 ❘ CHAPTER 14 SECURITY

 <input type=”hidden” name=”form_token”
 value=”<?php echo $_COOKIE[‘form_token’] ?>” />
 ...
</form>

The page that accepts the form request looks like this:

<?php
if ($_COOKIE[‘form_token’] != $_POST[‘form_token’])
 die(“Invalid token”);
...

Again, now might be a good time to log the potential attack. Using a combination of the two meth-
ods above all but guarantees that the site is protected from CSRF attacks. Just remember the three
basic rules: always change data with POST and never GET, check the referrer, and use a token.

Automation Attacks

Automation attacks or exploits occur when a website is accessed by something other than a human.
Everyone knows what these attacks look like and how they are typically prevented.

A Turing Test is designed to determine if someone or something is a person or machine. It gener-
ally involves putting the person/computer in one room and a person in the other. The person then
goes to ask whatever/whoever is in the next room a series of questions. The computer passes the test
if it can answer all the questions so well that the person on the other end cannot tell the difference
between it and a human.

A web version of this is known as CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart), which is an attempt to take the person asking the questions out
of the picture. After all, it would be ineffi cient to have a person on staff all day administering non-
automated Turing Tests.

The problem is that as CAPTCHAs become more complicated the computer programs that read
them get more and more sophisticated. A lot of money is to be had, particularly by spammers want-
ing to create thousands of free email accounts, by breaking CAPTCHAs. The result is that most
tests are almost completely unreadable to humans while the computers seem to continue to have no
problem.

Other test method such as “click on the three dogs in this 6x6 grid of fl uffy animals” or “answer
this simple math problem” have failed to gain adoption. The latter is a very effective way of making
sure only smart humans can use your website and the fi rst is an effective way of locking out visually
impaired individuals.

Since CAPTCHAs are such a diffi cult problem and their use is a constantly evolving fi eld, the offi -
cial stance in this book is that developers should use a third party library or distributed solution
(such as reCAPTCHA) rather than try to roll their own. However, this section creates a really quick
CAPTCHA just to show the basics. The form for the CAPTCHA could look like this:

<form method=”POST” action=”signup.php”>
 <p>
 Username: <input type=”text” name=”username” />

563120c14.indd 514563120c14.indd 514 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

PHP Security Recipes ❘ 515

 Password: <input type=”password” name=”password” />

 <input type=”text” name=”captcha” />

 <input type=”submit” name=”Sign Up” />
 </p>
</form>

The fi le captcha.php then uses the GD library to generate the CAPTCHA image (see Listing 14-3):

LISTING 14-3: captcha.php

<?
 session_start();

 $img = imagecreate(400,100);
 $captcha = “”;
 for ($i=rand(5,7); $i >= 0; $i--)
 $captcha .= chr(rand(ord(‘A’),ord(‘Z’)));

 $white = imagecolorallocate($img, 255, 255, 255);
 $black = imagecolorallocate($img, 0, 0, 0);

 imagestring($img, 5, 3, 3, $captcha, $black);

 header(“Content-type:image/jpeg”);
 imagejpeg($img);

 $_SESSION[‘captcha’] = $captcha;
?>

The form processing page then checks the value of $_SESSION[‘captcha’] against the value given
in the form.

The system has a few fl aws, not the least of which is that it is impossible to have more than one form
with a CAPTCHA open at once and still have them both work. The other thing that should become
glaring once the code is executed is that this CAPTCHA is extremely easy to read with traditional
OCR (Optical Character Recognition) techniques. It is meant to serve only as an example.

Some really easy ways to improve the example include:

➤ Using a True Type Font (TTF) instead of the default GD font.

➤ Making the letters touch and/or put non-straight lines through some of the letters to make it
more diffi cult to pick the letters out from each other.

Adding some color.➤

Varying the font size and position on the Y-axis on a per-letter basis.➤

563120c14.indd 515563120c14.indd 515 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

516 ❘ CHAPTER 14 SECURITY

SUMMARY

You can take various steps to harden a MySQL server. The most important is to only grant neces-
sary permissions to users. You should never see, for example:

➤ Application users with SUPER permissions.

➤ Application users with CREATE permissions.

Anybody with access to mysql meta schema.➤

➤ MySQL user hostname of ‘%’ allowing access from the world.

Additionally, there are many features of PHP that allow for better security in applications including
strong support for encryption and many different hashing algorithms. However, none of that is any
use if the site is not protected against common (and even uncommon) exploits. Some of the exploits
covered in this chapter are:

➤ SQL injection

Replay attacks➤

Cross-site scripting (XSS)➤

Cross-site request forgeries (CSRF)➤

Automation➤

It is important to understand each of the exploits. However, the most important thing to understand
is that it is not always the best path to develop security custom to an application. Some problems
such as CAPTCHAs and XSS attack prevention are solved problems and libraries provide easy ways
to implement features and fi xes without reinventing the wheel or writing tons of code.

563120c14.indd 516563120c14.indd 516 2/18/10 9:11:52 AM2/18/10 9:11:52 AM

Command-Line and Web Services

WHAT’S IN THIS CHAPTER?

➤ Building command-line services

Creating recurring jobs➤

Describing web services with WSDL➤

Building RESTful web services➤

Building a web service with SOAP➤

There is more to PHP and MySQL than just consumer-facing web sites. They are capable of
so much more. To this point, this book has covered using PHP as a Gearman worker and as a
tool for rewriting URLs. This chapter explores some more of the less traditional uses of PHP,
expanding on topics expressed in previous chapters.

This chapter also talks about using PHP to create web services, which are endpoints for com-
munication between two parties. Those parties can be the application and another server, the
application and the user, or even the application and any third party that could benefi t from
gaining access to some of the application information.

CREATING COMMAND-LINE SCRIPTS

PHP is not the fi rst language that comes to mind when the subject of command-line scripts comes
up. Although it’s as common to use PHP for this purpose as it is to use other languages, PHP is
extremely powerful. This section covers how to create a command-line script using the PHP CLI
(Command Line Interface). The chapter focuses mostly on UNIX/Linux; however, many of the
concepts do translate well to Windows.

15

563120c15.indd 517563120c15.indd 517 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

518 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

The fi rst step in creating command-line scripts is to create a stand-alone executable fi le. This was
covered in Chapter 11 when you created a dynamic rewrite map. The CLI doesn’t care if the fi le-
name ends in PHP so the fi le can have any extension (a common aproach is to have no extension at
all). What is important is that the fi le is launched one of two ways:

➤ Via a parameter to php: php ./filename

➤ Directly: ./filename

Although the second method is preferred, it is more work to set up due to two requirements. The
fi rst is that the top line of the fi le must be a shebang — an instruction to the shell to use a specifi c
program to execute the fi le. The shebang for PHP usually looks like:

#!/usr/bin/php

The shebang will never be read if the shell does not know that the fi le is executable. Thus the second
requirement is that the fi le has the correct permissions. On UNIX/Linux that is as simple as:

chmod +x ./filename

Most fi le versioning systems will maintain the executable state. Once that is done, the fi le can be
executed just by typing ./filename from the command line. It might be a good idea to put <?=
“hello world”; ?> or something in there. Otherwise it will just launch and immediately exit.

This section builds a command-line class that can be extended for any command-line application.
Each piece of functionality extends the base class. At the end of the command-line section, you will
have a listing of the completed base class. But fi rst, the application must be able to read user input.

Reading Command-Line Input

The base class does most of the diffi cult work of handling parameters. The descendant class regis-
ters each of the parameters. The Using registration method means you do not act on the parameters
directly, ensuring that you can have multiple levels of inheritance that all work together.

Chapter 14 covered encryption and security, which is used again in this very simple application and
which will accept data to be encoded. The data is read from the command line. Additionally, you
can specify a cipher, secret, encoding mode, and initialization vector.

The registration function in the new class takes several parameters:

➤ The short version of the option fl ag

The long version of the option fl ag➤

A Boolean specifying whether the fl ag is supposed to be followed by a value➤

A help string for that fl ag➤

A validation callback function➤

Only the short fl ag is actually required. The fi rst registration function looks like this:

$this->registerParameter(“c”, “cipher”, true,
 “The cipher to use. Use the -l option to list all valid ciphers.”,
 array($this,”isValidCipher”));

563120c15.indd 518563120c15.indd 518 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

Creating Command-Line Scripts ❘ 519

The preceding registration line would accept input that takes either of these two forms:

./phpcrypt -c=DES “text to encrypt”

./phpcrypt --cipher=DES “text to encrypt”

It validates the input using the member method, isValidCipher(). For more on using callback
functions, see Chapter 1. A good place to register all these switches is in the constructor. The con-
structor for your new class looks like this:

public function __construct() {

 parent::__construct();

 $this->registerParameter(“c”, “cipher”, true,
 “The cipher to use. Use the -l option to list all valid ciphers.”,
 array($this, “isValidCipher”));

 $this->registerParameter(“m”, “mode”, true, “The encoding mode to use.”,
 array($this, “isValidMode”));

 $this->registerParameter(“I”, “iv”, true, “The initialization vector to use.”,
 array($this, “isValidIV”));

 $this->registerParameter(“s”, “secret”, true, “The secret key to use.”,
“strlen”);

 $this->registerParameter(“i”, “interactive”,false, “Use interactive
encryption.”);

 $this->registerParameter(“l”, “list”, false, “Lists all valid encoding modes.”);

}

The order of the registration does matter for validation. For instance, to make sure the initialization
vector is valid, it’s important to fi rst have the encryption cipher set because different ciphers require
different length vectors.

The validation methods look like this:

public function isValidIV($iv) {
 return (strlen($iv) != mcrypt_get_iv_size($this->cipher, $this->mode));
}

public function isValidCipher($cipher) {
 return in_array($cipher, mcrypt_list_algorithms());
}

public function isValidMode($mode) {
 return in_array($mode, mcrypt_list_modes());
}

Behind the scenes, it is accessing the parameters via the variables $argc and $argv. The $argc variable
contains the number of arguments passed via the command-line. The variable $argv contains an array
of those arguments. The fi lename of the script is always counted as the fi rst argument so at a minimum
there will always be one argument when executing a script via the CLI.

563120c15.indd 519563120c15.indd 519 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

520 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

The base class takes care of validating the input as well as displaying the help if the input is
invalid. The utility also calls for an interactive mode that will prompt the user for input. To
accomplish that, it’s necessary to read from standard input.

Prompting for Input

Two types of input can come into an application from the standard input stream. The fi rst is piped
data and the second is direct user input. The base class takes care of the piped data so for now it is
just necessary to handle the interactive mode (for when the user types ./phpcrypt --interactive
or ./phpcrypt -i).

PHP automatically opens a handle to the standard input stream, standard output stream, and standard
error stream when using PHP CLI. They are referenced via the STDIN, STDOUT, and STDERR, respec-
tively. Alternatively the stream can be manually opened. For example, to get a handle to standard input:

$stdin = fopen(‘php://stdin’, ‘r’);

Reading a line from standard input is as easy as $this->readln() when using the base class in
this chapter. To help out even further, the base class has a method called prompt() that asks for
input and then reads a line or sets a default if the input is empty. Interactive mode reads the values
of the cipher, secret, mode, and source string from standard input. The resulting run() method (the
method called when executing the command-line application) looks like this:

public function run() {
 parent::run();

 if ($this->interactive)
 $this->runInteractiveMode();
 else
 echo $this->crypt();
}

private function runInteractiveMode() {
 $defaultCipher = $this->cipher;
 do {
 $this->cipher = $this->prompt(“Choose a cipher”,$defaultCipher);
 } while (!$this->isValidCipher($this->cipher));

 $defaultMode = $this->mode;
 do {
 $this->mode = $this->prompt(“Choose an encoding mode”,$defaultMode);
 } while (!$this->isValidMode($this->mode));

 $defaultSecret = $this->secret;
 do {
 $this->secret = $this->prompt(“Choose an encryption key/secret”,
 $defaultSecret);
 } while (strlen($this->secret) == 0);

 while (count($this->data) == 0) {
 $data = $this->prompt(“Enter the data that you would like to encrypt: “);
 if ($data) $this->data = array($data);

563120c15.indd 520563120c15.indd 520 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

Creating Command-Line Scripts ❘ 521

 }

 $this->crpyt();
}

private function crypt() {
 if ($this->iv == null) {
 $iv_size = mcrypt_get_iv_size($this->cipher, $this->mode);
 srand();
 $this->iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
 }

 if ($this->decrypt) return $this->doDecrypt($this->data);
 else return $this->doEncrypt($this->data);
}

private function doEncrypt($source) {
 return mcrypt_encrypt($this->cipher, $this->secret,
 $source, $this->mode, $this->getIV());

}

private function doDecrypt($data) {
 return mcrypt_decrypt($this->cipher, $this->secret, $data,
 $this->mode, $this->iv);
}

The base class automatically puts anything that is not part of a fl ag into the $data member variable
as an item in an array. Just like the command line, data can also be enclosed in quotes to keep it all
in one piece.

Chapter 11, “Rewrite Rules,” uses a command-line application to constantly read values and spit
out the results. This class would be useful for that but because of the simplicity of the application
(no command-line parameters, no interactivity, and so on) it is more effi cient to just write it from
scratch.

Completed Classes

Two complete classes are defi ned in this section:

➤ The base class: Defi nes basic functionality of a command-line application.

➤ The application class: You use this to do the encryption and decryption.

The base class needs to perform two functions: input and high-level output. To facilitate input, the
class has utility functions that make it easy to read and register command-line options as well as
prompt for input. The class fi rst reads in all the command-line parameters and then calls the run()
method.

The base class is too large to list inline in the book. It is also probably unnecessary to review basic
string parsing and array handling. However, here are some key concepts to remember:

➤ The $argv variable, as mentioned earlier, stores a vector (array) of arguments, passed
through the command line. The fi rst argument at index zero is always the path to the script.

563120c15.indd 521563120c15.indd 521 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

522 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

The variable $argc stores the count of the arguments. PHP CLI takes care of all the hard
work of dealing with quotations, but it is up to the script to gain meaning from the command
line.

➤ php://stdin can be read from and written to like any other fi le on the system. It benefi ts
from a concept called protocol wrappers, which allow different protocols to act as a stan-
dard fi le handle in PHP.

The next step is to take a command-line program, which is already quite useful, and make it even
more useful by running it on a schedule.

Setting Up Cron Jobs

A cron job is a recurring task on a Linux/UNIX server and is very useful for cleanup operations,
messaging, or any number of actions that you periodically need to take care of. It can be set up to
run at specifi c intervals ranging from once a minute to annually. You cannot create jobs that run
more frequently than a minute — for that, it’s probably best to set up a daemon.

A daemon, besides being a supernatural being, is a program on a UNIX/Linux
system that runs in the background. Usually that means that it runs indefi nitely
until it is shut down or restarted. Although not covered in this chapter, it is pos-
sible to write a daemon in PHP. The Rewrite Map code from earlier acted as a
type of daemon. The key is one line of code:

set_time_limit(0);

The list of cron jobs is edited by a program called crontab (again, the system must be UNIX or
Linux). To enter the crontab editor, type:

crontab -e

Once there, it’s possible to create cron jobs. There can be one job per line, which consists of two
main parts: the timing indicators and the command to be executed. The command should be a PHP
fi le that is set up properly with executable permissions and a shebang in place. A job that runs every
hour on the hour would look like this:

0 * * * * /some/php/script

The fi ve dots, in order, represent minutes, hours, day of month, month, and day of week. Minutes,
hours, and day of week are zero-based. Day of month and the month itself are one-based. So, if a
job were to run once a year at the very start of the year, it would look like this:

0 0 1 1 * /happy/new/year

The last star is intentionally left in this code. A star indicates every time. For instance, a star for min-
utes means that the script will run once per minute. If that last star were changed to a 0 it means the
script will only execute if the fi rst day of the year also happens to align with the fi rst day of the week.

563120c15.indd 522563120c15.indd 522 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

Creating Command-Line Scripts ❘ 523

It is also possible to have a job run only at specifi c increments, for example once every fi fteen min-
utes. To do this it’s necessary to represent the time as a fraction (an asterisk over the delta):

*/15 * * * * /some/php/script

Bonus: Output in Color

Command lines are not all black and white (or black and green, or whatever your settings may be).
They come in a range of colors. Colors are useful for providing emphasis or for design but they
are only easily accessible in Bash-compatible shells (which is fi ne for most Linux but not Windows
users). The section shows how to switch colors on the fl y.

You create colored text using special escape sequences (called ANSII control codes) in the output.
They always start with a null byte, followed by an ASCII 33 and then the color number (in decimal)
followed by the letter m. For example, to make text red:

echo “\033[31mThis text will be red”;

Why the number 31? That is the code for a red foreground. Table 15-1 shows the complete color table:

TABLE 15-1: Output Color Table

COLOR FOREGROUND VALUE BACKGROUND VALUE

Black 30 40

Red 31 41

Green 32 42

Brown 33 43

Yellow 33 43

Blue 34 44

Purple 35 45

Cyan 36 46

Grey 37 47

It doesn’t take much to notice a pattern in the colors. The background color code is always exactly
10 higher than the foreground color code. You can combine multiple color codes by separating them
with a semicolon. For instance, to get gray text on a black background:

echo “\033[37;40mThis text will grey on a red background”;

There are also several codes that have special effects on the text. The text can start blinking just by
adding a “;5” to the end. Normal (0) returns the text back to its default state (including color and
background). Light or bold (1) make the text stick out compared to other text. There are more but
they are less useful and not honored by all console emulators and terminals.

563120c15.indd 523563120c15.indd 523 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

524 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

Once you’ve implemented the command-line services to modify and access the data, it may become
necessary to create services that allow third parties to access the content. The next section covers
web services.

CREATING WEB SERVICES

Web services provide a standard way for third parties to access and potentially modify data on the
application server. They are also useful for communicating between application servers. This section
covers the two most common types of web services: RESTful and SOAP. Both have distinct advan-
tages and disadvantages. Which method an application uses is up to the developer.

RESTful Web Services

REST stands for Representational State Transfer and it is more than just a service protocol, it is
a software architecture. It is based on two main concepts: resources (subjects) and verbs. A client
application can request that an action be executed on a resource and then “rest” for a while as the
user consumes that resource before the application optionally makes another request. The applica-
tion does not maintain a constant connection between client and server but it can store data to send
with each request (cookies). An application that follows this model is often referred to as RESTful.

Millions of users use RESTful systems every day. The most common one is HTTP. If developers are
not familiar with rest they will still likely recognize the terms GET and POST, which are the two
main verbs for HTTP. Although a RESTful service does not have to be based on HTTP, PHP and
HTTP do make a natural pair, so it’s only fi tting to build a restful service on top of the two.

HTTP has several RESTful verbs and each is associated with a specifi c action on a resource. It is
best practice to obey these guidelines:

➤ GET: Used solely for retrieving data. A GET request should never modify any of the data on
the server. Doing so both violates the architecture conventions and opens the application up
to security holes (see Chapter 14, specifi cally regarding CSRF attacks).

➤ HEAD: The corresponding verb HEAD can be used to retrieve just the header information
but none of the content. It too should never modify content.

➤ PUT: The opposite of GET. It should only be used to do inline editing of a resource. A cli-
ent might “PUT” new data onto the server. A similar, but different, verb called POST can be
used to both edit and create new resources.

➤ DELETE: This is fairly self-explanatory. It removes a resource.

OPTIONS, TRACE, and ECHO are less common and are not well sup-
ported. They are not covered in this book. With the exception of PUT,
DELETE, and POST, none of the methods should modify any data at all.
They are the “safe” methods.

563120c15.indd 524563120c15.indd 524 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

Creating Web Services ❘ 525

There are a few steps that are common when creating any RESTful system with PHP:

➤ Defi ne the resources.

Defi ne and create a controller to handle requests.➤

Test to make sure everything works.➤

Write the fi rst consumer of the RESTful service using PHP.➤

Defi ning Resources

Each resource must have a unique identifi er (its URN). In most RESTful systems the resource URN
is the type of resource followed by the username. For example, to access a company named MyVBO
you would use the URL: http://www.example.com/companies/myvbo.xml.

The highlighted part is the URN. Performing a GET request on that URL might return a resource
in the XML format that contains the company name and address. POSTing data to that URL with a
company name and address will modify it (if the user has the proper permission).

It is typical for a RESTful system to have numerous supported data formats. They are usually repre-
sented using mime-types in the “content-type” header variables. Some common content encoding for-
mats for REST are Json, XML, and RDF (based on XML). However, it is possible to use any format. It
wouldn’t make much sense to have a company resource defi ned by an image mime-type (the logo would
be a different resource) but it might make sense to provide the company information via HTML.

At a bare minimum the application should support Json (JavaScript Object Notation) and XML.
Those two formats are both widely recognized; however, in some systems one is more accessible
than the other, so the best bet is to provide both.

Defi ning the Controller

This chapter does not attempt to create a full MVC design pattern but rather implements a simple
controller that handles a request and passes it to a class. However, it is extremely easy to implement
a RESTful system in most MVC frameworks. For example, in CakePHP you can simply add one line
to the route:

Router::mapResources(‘company’);

After that, all GET, POST, and DELETE requests are forwarded to the appropriate method. The
example in this chapter does something similar. The fi rst job of the controller is to detect the request
type. In this example, you defi ne the controller as RestController and place the methods into it.

Detecting the type of request is relatively easy. It is stored in the REQUEST_METHOD server vari-
able. The RestController class can use that variable to dispatch to the appropriate method. It
is sometimes desirable to emulate REST requests so the constructor will take parameters and the
application can use a getInstance() method to retrieve an instance using automatically detected
parameters. The new constructor and method to get an instance looks like this:

public function __construct($method, $urn, $query, $post) {
 $this->_method = $method;

563120c15.indd 525563120c15.indd 525 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

526 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

 $this->_urn = $urn;
 $this->_query = $query;
 $this->_post = $post;

 $matches = array();
 preg_match(‘/([^\/]+)(?:\/([^.])\.(json|xml))?/’, $urn, $matches);
 $this->resource = new $parts[1]($parts[2]);
 $this->_format = $parts[3];
}

public static function getInstance() {
 $method = $_SERVER[‘REQUEST_METHOD’];
 $urn = $_GET[‘_urn’);
 return new RestController($method, $urn, $_GET, $_POST);
}

This approach makes testing easier without having to resort to generating fake requests. The particular
class in this chapter only accepts Json and XML requests. Once the request method and data are deter-
mined they must be dispatched to the appropriate object. You can do this in an execute() command:

public function execute() {
 $parameters = array();

 switch ($this->_method) {
 case ‘GET’:
 $method = ‘view’;
 break;
 case ‘DELETE’:
 $method = ‘delete’;
 break;
 case ‘POST’:
 case ‘GET’:
 $method = ‘edit’;
 $parameters = array($this->_post);
 break;
 default:
 header(‘HTTP/1.1 404 Method Not Allowed’);
 header(‘Allow: GET, POST, PUT, DELETE’);
 exit;
 }

 try {
 $response = call_user_func_array(array($this->resource, $method),
 $parameters);
 return $this->resource->format($response, $this->_format);
 } catch (RestException $e) {
 header(“HTTP/1.1 {$e->code} {$e->string}”);
 echo $e->message;
 exit;
 } catch (Exception $e) {
 header(‘HTTP/1.1 500 Internal Server Error’);
 exit;
 }
}

563120c15.indd 526563120c15.indd 526 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

Creating Web Services ❘ 527

The execute method expects that the resource class has a view(), delete(), edit(), and format()
method. It fi rst gets the response to the specifi c action in a display-neutral format and then passes
it to the formatting method. In this case, the formatting method should also output the appropri-
ate status code. The status codes should be familiar to any web developer, but they are covered here
as a refresher in Tables 15-2 through 15-4. The remaining status codes are somewhat less useful
although they can be used in extremely complete implementations of a RESTful service. The imple-
mentation in this book uses only a few of the status codes.

TABLE 15-2: The 200 Range — Success

RESPONSE DESCRIPTION

200 OK Returns in response to a successful GET request or a POST request that

modifi ed existing data.

200 Created The data was created using a POST or PUT request.

202 Accepted The request was received but has not been acted on yet. It is useful for

things such as video transcoding that could take a while.

203 Non-Authoritative The resource being served is made up of a copy of the original data set

and a more authoritative set does exist.

204 No Content The response does not have a body and the client should not change the

view from the one originally used to submit the request.

205 Reset Content This is related to the 204 No Content response. It indicates that the client

should reset the form and prepare to make another request of the same type.

206 Partial Content Only a range of the response is being returned. The 206 message is rarely

useful for REST.

TABLE 15-3: The 300 Range — Valid URN with the Actual Resource Existing Elsewhere

RESPONSE DESCRIPTION

200 Multiple

Choices

May be given if the clients do not specify the format in which they want the

result. The body of the response would include the URI of all possible format-

ting choices.

301 Moved

Permanently

307 Moved

Temporarily

302 Found

303 See Other

All ways of indicating that the client should redirect the user. With the excep-

tion of the 303 they all mean that the resource is no longer at the location

specifi ed. 303 indicates that the request was successful but there is another

resource that the client should be directed to afterwards. All four diff er

greatly in how caching is handled.

continues

563120c15.indd 527563120c15.indd 527 2/18/10 9:12:03 AM2/18/10 9:12:03 AM

528 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

RESPONSE DESCRIPTION

304 Not Modifi ed Useful in REST to return the appropriate response if GET request is made

contingent on the resource having changed.

305 Use Proxy Useful to force the client to use a proxy to make the call. Now is a good time

to go over how to send HTTP statuses:

<?php
header(“HTTP 1.1 301 Moved Perminently”);
header(“Location: /new/uri.xml”);
?>

If a header is sent more than once, only the most recent one is used. Just like
cookies in PHP, the headers cannot be sent after any output has been sent to the
client. That is the nature of HTTP.

TABLE 15-4: 400 Range — Request Cannot Be Fullfi lled

RESPONSE DESCRIPTION

404 File Not Found Very familiar.

405 Method Not Allowed The controller class uses this to respond to requests that are not one

of the four allowed methods for the controller.

401 Unauthorized Denies access to a resource. This response has a dedicated response

code, which is covered in detail in the authentication chapter.

402 Payment Required This has been “reserved for future use” for quite some time and it is

not clear whether it is acceptable to use.

Once a RESTful application is set up (see the example code for this chapter for an example implementa-
tion) it becomes necessary to test requests. To do that, you can use a command-line utility called cURL.

Testing Using cURL

cURL is a command-line tool that is useful for making HTTP/S requests. It can also perform
requests over several other protocols (including FTP and LDAP), which are not covered here. cURL
also runs on all major operating systems, which makes testing universal across all systems.

The simplest kind of request is a GET request. It is a good start for demonstrating the basic syntax
for cURL. The fi rst step is to get the company from earlier. Type this into the terminal/console:

curl http://www.example.com/companies/myvbo.xml

TABLE 15-3 (continued)

563120c15.indd 528563120c15.indd 528 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Creating Web Services ❘ 529

Remember, the GET request should never modify any data. To delete the data it is as simple as set-
ting the –X argument, which specifi es the method (verb) to use. DELETE does not take any param-
eters so it is barely more complicated than before:

curl –X DELETE http://www.example.com/companies/myvbo.xml

You can also attach data to the request. The particular controller from earlier did not distinguish
between PUT and POST. When using either method it is necessary to URL-encode the data. So to
edit the company MyVBO it would be as simple as:

curl -X POST –d “name=MyVBO&website=http%3A%2F%2Fwww.myvbo.com%2F” \
 http://www.example.com/companies/myvbo.xml

Changing it to a PUT request should be self-explanatory. To switch the response from XML to Json it
is only necessary to change the extension. It should be noted that PUT and POST requests are expected
to return the new object. Usually this is the same as the original object but with missing fi elds fi lled in
(either default values — on create — or values from the database on edit) as well as any primary key
fi elds. The latter is particularly necessary when creating new data because the client will need the ID in
order to reference the object later. Alternatively, the POST data can come from a fi le instead of the com-
mand line:

curl -X POST -d “@/path/to/file.txt”

The important part to notice is that at (@) symbol in front of the path. The contents of the fi le
must be URL encoded prior to being passed into cURL the same was as if they were passed via
the command line.

cURL has functionality for authentication as well as cookies. It can also spoof the user agent. These
factors together make it the only tool needed to test RESTful applications.

Making REST Requests from PHP

PHP has functionality to use libcurl (the library that is used by the cURL command-line utility)
from within any PHP script. The ease of posting data makes it a natural choice for consuming
RESTful APIs. But fi rst, PHP has a very simple way of making GET requests without libcurl, which
is sometimes useful when just a quick proof of concept is needed:

$data = json_decode(
 file_get_contents(“http://www.example.com/companies/myvbo.json”)
);

For security reasons URL protocol wrappers are sometimes disabled. This most
commonly happens on a shared hosting environment. The reasoning is that
developers don’t always know about the wrapper functionality and may inad-
vertently allow a user to trick the script into making a request to a remote server
or worse — executing code that came from a remote server.

The bottom line is, always keep this in mind when you’re passing any variable
from user input to any fi le I/O functions. And always fi lter user input.

The previous example won’t work on servers that explicitly disable the URL
opening behavior.

563120c15.indd 529563120c15.indd 529 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

530 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

This is made possible by using PHP’s protocol wrappers to load content via HTTP as if it were a
local fi le. This, of course, is only useful for making GET requests and it does not provide much more
than BASIC authentication. For a more complete request it becomes necessary to use libcurl. The
equivalent libcurl commands look like this:

<?php
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, “http://www.example.com/companies/myvbo.json”);
curl_setopt($ch, CURLOPT_HEADER, false);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$data = json_decode(curl_exec($ch));
curl_close($ch);
?>

The CURLOP_RETURNTRANSFER option causes the data to be returned by the curl_exec() function.
An alternative option is to write the output to a fi le. It is also possible to return the headers as well
as the body of the response. This can be particularly useful to auto-detect output formats and other
functions. These simple examples only require retrieving the body of the response.

Posting data is also simple; cURL accepts several ways to post data, the easiest being as an array
of key/value pairs, which avoids the need to URL-encode the values. The PHP version of the POST
request from the previous section is as follows:

<?php
$postData = array(
 “name” => “MyVBO”,
 “website” => “http://www.myvbo.com/”
);

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, “http://www.example.com/companies/myvbo.json”);
curl_setopt($ch, CURLOPT_HEADER, false);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $postData);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$data = json_decode(curl_exec($ch));
curl_close($ch);
?>

The DELETE request is slightly different. The PHP interface to libcurl only has options explicitly
for GET and POST. It can, however, create any type of request by specifying a custom type. In this
case, the DELETE action doesn’t add much more complexity:

<?php
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, “http://www.example.com/companies/myvbo.json”);
curl_setopt($ch, CURLOPT_HEADER, false);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, “DELETE”);
$data = json_decode(curl_exec($ch));
curl_close($ch);
?>

563120c15.indd 530563120c15.indd 530 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Creating Web Services ❘ 531

Although it is not diffi cult to use REST through PHP and libcurl, it is useful to create a class to do
all the hard work. The four basic events (create, edit, get, and delete) can be called from a wrapper
class. The new class can then be reused in any application.

<?php

class RESTRequestProxy {

 public $service;
 public $resource;

 public function __construct($service_url, $resource) {
 $this->service = $service_url;
 $this->resource = $resource;
 }

 public function create($data) {
 return $this->exec(null, “POST”, $data);
 }

 public function edit($id, $data) {
 return $this->exec($id, “PUT”, $data);
 }

 public function delete($id) {
 return $this->exec($id, “DELETE”);
 }

 public function get($id) {
 return $this->exec($id, “GET”);
 }

 private function exec($id=null, $method=”GET”, $post=false) {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL,
 “{$this->service}/{$this->resource}/”.($id? “$id.json” : “”));
 curl_setopt($ch, CURLOPT_HEADER, false);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_CUSTOMREQUEST, $method);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $post);
 $data = json_decode(curl_exec($ch));
 curl_close($ch);
 return $data;
 }

};
?>

REST, although popular, is not the only type of service. SOAP is an extremely popular, but heavier
weight, solution to web services.

563120c15.indd 531563120c15.indd 531 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

532 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

SOAP Web Services

SOAP is a standard messaging protocol for accessing objects over an existing application protocol
such as HTTP. It was previously an acronym for Simple Object Access Protocol but is now ref-
erenced as a single technology. The stated goals of SOAP — according to the W3C recommenda-
tion — are “simplicity and extensibility,” and as such you can get SOAP up and running quickly but
you can also build on it and thus perform many complex tasks.

Unlike REST, the SOAP protocol is designed as an RPC (Remote Procedure Call) protocol and is
not resource-oriented by default. As such, an “object” in SOAP will have an endpoint on the server
and any number of procedures can be called on that endpoint. The methods do not have to be the
read, update, insert, and delete actions from REST.

For example, a SOAP application might perform simple math operations. The request is always
wrapped in an envelope and is broken into two parts: the header and the body. A multiplication
operation may look like this:

<?xml version=”1.0”?>
<soapenv:Envelope
 xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://schemas.xmlsoap.org/soap/envelope/
 http://schemas.xmlsoap.org/soap/envelope/”>
 <soapenv:Body>
 <math:multiply xmlns:req=”http://example.com/services/math/”>
 <math:terms>
 <math:term>123</math:term>
 <math:term>456</math:term>
 </math:terms>
 </math:multiply>
 </soapenv:Body>
</soapenv:Envelope>

Because the request is XML, it requires that XML conventions must be followed. Specifi cally, it
is possible to defi ne a new XML namespace within the request. However, make certain that the
namespace is properly described and documented. The response might look like this:

<?xml version=”1.0”?>
<soapenv:Envelope
 xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://schemas.xmlsoap.org/soap/envelope/
 http://schemas.xmlsoap.org/soap/envelope/”>
 <soapenv:Body>
 <math:multiply xmlns:req=”http://example.com/services/math/”>
 <math:result>56088</math:result>
 </math:multiply>
 </soapenv:Body>
</soapenv:Envelope>

Of course doing math with SOAP isn’t very practical (unless of course the math problem is very
complex and diffi cult to calculate client-side). This section uses the simplifi ed company data set from
before and translates it over to SOAP.

563120c15.indd 532563120c15.indd 532 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Creating Web Services ❘ 533

One last thing: RESTful systems based on HTTP have a built-in set of error codes. SOAP, on the
other hand, is intentionally ignorant of the way HTTP works. After all, the two are independent of
each other. Instead, SOAP has carefully crafted fault messages that tell the client exactly what went
wrong. For example, if the client tries to use the math service from before and one of the terms is
not a number, the result may look like this:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:math=”http://www.example.org/math”
 xmlns:xml=”http://www.w3.org/XML/1998/namespace”>
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>math:NaN</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang=”en”>Term is not a number.</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>

The preceding envelope is the bare minimum SOAP fault plus the optional sub-code for the fault.
More complex faults can be defi ned by adding node, role, and detailed information. Notice how the
main code value is in the SOAP-envelope namespace whereas the sub-code is in the custom math
namespace. See the W3C recommendation for more information.

Rather than try to parse SOAP natively using the PHP DOM object (which is, indeed, easily
achieved but unnecessary) this book uses a SOAP client and server library.

Getting Started with the SOAP Library

There is a lot to worry about in a typical SOAP server so the best choice is to let a library do all
the work. PHP ships with a SOAP extension but it is enabled only if PHP is compiled with the
--enable-soap option. Most servers are likely to already have this confi guration.

The SOAP library can also be used as a client. This chapter goes over both. But fi rst, it is desirable
to defi ne a WSDL for the service.

Defi ning the WSDL

WSDL is the Web Service Descriptor Language. It is not specifi c to SOAP; however, it does work
best with SOAP. There are two versions of WSDL: version 2.0 and version 1.1. Unfortunately, PHP’s
SOAP extension only supports the older of the two and they are not backwards compatible. For that
reason, this book covers WSDL 1.1.

Even though it is not supported by the PHP SOAP implementation it is useful to learn the WSDL 2.0
format. The two formats are not compatible but it is easy to detect which one is used. WSDL 2.0
can be found as a WSC recommendation.

563120c15.indd 533563120c15.indd 533 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

534 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

WSDL fi les are written in XML. It is not strictly necessary to have a WSDL fi le, but it makes con-
suming the service easier.

The WSDL is broken up into fi ve parts:

➤ The fi rst part defi nes the data types used by the web service.

The second defi nes messages, which effectively describe the type of data that the service expects.➤

The third part is port types that can be used to describe what methods the service has.➤

➤ The fi nal two sections consist of bindings, which tell the client how to execute a specifi c
request, and a service description.

A typical WSDL fi le will follow this structure:

<definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:tns=”http://example.com/companies”
 targetNamespace=”http://example.com/companies”>
 <types>
 ...
 </types>

 <message>
 ...
 </message>

 <portType>
 ...
 </portType>

 <binding>
 ...
 </binding>

 <service>
 ...
 </service>

</definitions>

A fair number of namespaces are also involved in the document. The main ones are:

➤ XSD: An XML schema language used to defi ne XML document content. It is used in the
“types” section to defi ne each data type that can be found in any of the requests. It can also
be used in the messages section for primitive data types.

➤ TNS: The target namespace, which should be the same as the targetNamespace attribute of
the root element. It is a namespace that, by convention, refers to the current document.

➤ SOAP: This is not the namespace for SOAP itself but rather one specifi c to the WSDL. The
SOAP namespace is used when defi ning bindings. As mentioned earlier, bindings are what
expose the method calls to the outside world. If the endpoint is not written to use SOAP, that
namespace will be different.

563120c15.indd 534563120c15.indd 534 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Creating Web Services ❘ 535

WSDL Types

First, the “types.” The company type is rather simple because the examples in this chapter include
only a name and web site. But it is ironically defi ned as a complex type inside of the WSDL fi le. This
means it’s a type that consists of more than one part. It may be useful to look at it as an object:

<types>
 <xsd:schema>
 <xsd:complexType name=”company”>
 <xsd:all>
 <xsd:element name=”name” type=”xsd:string”/>
 <xsd:element name=”website” type=”xsd:anyURI”/>
 </xsd:all>
 </xsd:complexType>
 </xsd:schema>
</types>

XSD is extremely fl exible. Both examples in this section use <xsd:all> to specify that each element
must occur once (unless specifi ed otherwise like it is next). Other possibilities include:

➤ <xsd:sequence> which means that all elements must appear in the order that they are
defi ned.

➤ <xsd:choice> indicates that either one element or the other must be present (not both/all).

➤ <xsd:group> can be used to create logical groupings of elements, which can be combined
with any one of the previous indicators.

Of course, there can be more than one type in a schema. Each type must have a unique name, in
this case the one and only type is “company.” In a different example case it might be useful to defi ne
a schema that allows for more than one of an element. The math example from before, which can
have multiple terms, would look like this:

<types>
 <xsd:schema>
 <xsd:complexType name=”terms”>
 <xsd:all>
 <xsd:element name=”term” type=”xsd:decimal”
 minOccurs=”1” maxOccurs=”unbounded” />
 </xsd:all>
 </xsd:complexType>
 </xsd:schema>
</types>

You can use many types with XSD in addition to the ones listed here. A quick look at the XSD specifi -
cation should clarify. The data types that are most common are string, integer, decimal, date, and
time. The company example also uses anyURI, which indicates that the value can be any valid URI.

Other possible numeric values include byte, int, long, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, short, unsignedLong, unsignedShort, unsignedByte,
float, and double.

563120c15.indd 535563120c15.indd 535 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

536 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

A few things to remember about the numeric types:

➤ In XSD the number zero (0) is neither negative nor positive. So positiveInteger starts at zero
and nonNegativeInteger outwardly sounds like the same thing but starts at one (1) instead.

➤ Byte, short, int, and long (and their unsigned counterparts) are limited by size. A byte is
the largest integer that can fi t in 8-bits; short is 16-bits; int is 32-bits; and long is 64-bits.

➤ The maximum value of an unsigned byte is 28 – 1 or 255. The signed variation uses the high-
est order bit to indicate whether the variable is positive or negative so it loses a bit but gains
the ability to have negative numbers. Signed bytes range from –127 to +127.

Additional data types are boolean, base64Binary, and hexBinary. Several other types of strings
aren’t covered here because they are rarely used in SOAP requests. However, when using XSD to
defi ne arbitrary documents they may come in handy. Just don’t forget to append the namespace to
the front of the type like so: xsd:boolean.

Defi ning the Message

Now that the data types/schema is defi ned it is time to specify the messages. In WSDL 2.0, the mes-
sages element no longer exists in favor of referring directly to the schema. The 1.1 specifi cation is
signifi cantly more complex.

Messages defi ne what parts are needed for the request and response. In the context of an RPC it
may be helpful to think of them as parameter lists and responses. Alternatively, you might want to
think of the message as something that goes into the envelope. Only four message types are needed
to handle all the company examples in this section:

<message name=”CompanyInputOutput”>
 <part name=”id” type=”xsd:integer”/>
 <part name=”company” type=”tns:company”/>
</message>

<message name=”ReferenceCompanyInput”>
 <part name=”id” type=”xsd:integer”/>
</message>

<message name=”CreateCompanyInput”>
 <part name=”company” type=”tns:company”/>
</message>

<message name=”DeleteCompanyOutput”>
 <part name=”result” type=”xsd:boolean”/>
</message>

Remember the custom complex type that was defi ned earlier in the chapter? It is used here in the
fi rst two message defi nitions.

Both deletion and retrieval operations take the same input so only one message is needed for them
both. Likewise, creating and editing the company both use the same output format.

563120c15.indd 536563120c15.indd 536 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Creating Web Services ❘ 537

Specifying Ports

Once the messages are defi ned it is time to specify the ports. Ports defi ne the input and the output
in terms of what type of messages they produce or consume and as such are the function defi ni-
tions. The two types of operations that are commonly used are one-way and request-response. All
the functions defi ned in the company WSDL fi le are request-response although a one-way function
would just exclude the “output” tag.

Because all the functions are somewhat similar, it is unnecessary to list each one. The completed WSDL
fi le in the example code has each port (function) defi ned. The defi nition for the GetCompany port is as
follows:

<portType name=”CompanyPortType”>
 <operation name=”GetCompany”>
 <input message=”tns:ReferenceCompanyInput”/>
 <output message=”tns:CompanyInputOutput”/>
 </operation>
</portType>

It is possible and desirable to defi ne multiple operations inside of a single port. However, keep in
mind that the port type is used next as the type attribute for the bindings and there can only be one
type per binding.

Defi ning Bindings

The next step is to defi ne the bindings. When doing so, remember that HTTP is not the only proto-
col that SOAP can be transmitted over so the fi rst step is to defi ne the transport type and style of the
binding. The examples in this chapter all use RPC style, which is the most common:

<binding name=”CompanyBinding” type=”tns:CompanyPortType”>
 <soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”GetCompany”>
 <soap:operation soapAction=”http://example.com/GetCompany” />
 <input><soap:body use=”literal”/></input>
 <output><soap:body use=”literal”/></output>
 </operation>
</binding>

The soapAction attribute of the binding tag is one of the most confusing in the SOAP world
because it seems completely redundant. After all, the type of action is specifi ed in the body of the
SOAP request. To better illustrate, here is the request that is made using the preceding binding (with
the headers included at the top):

Content-Type: text/xml
Soapaction: http://example.com/GetCompany
Host: example.com

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

563120c15.indd 537563120c15.indd 537 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

538 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

 <soap:Body>
 <companies:GetCompany xmlns:companies=”http://example.com/companies”>
 <id xsi:type=”xsd:integer”></id>
 </companies:GetCompany>
 </soap:Body>
</soap:Envelope>

The two bolded areas both indicate which action is being taken. In fact, the PHP SOAP extension
ignores the soap-action header. Likewise, the soap-action is not used unless the transport protocol is
HTTP. So why is it there? Three reasons:

➤ It is possible to use SOAP in a more RESTful way that does not necessarily have the action in
the body.

➤ The HTTP header can be read by network appliances and used for optimization (load bal-
ancing, caching, and so on). It is much easier to read and fi lter based on the header than to
parse the SOAP request.

➤ The action can also be included in web server logs. In Apache using the CustomLog directive
does this. For example: CustomLog logs/soap_log “%t %f $a > %{Soapaction}i”.

The soap-action is required to be passed as-is to the client. Although it takes the form of a URI, it is
not required to be resolvable. The client shouldn’t make any attempts at transforming the action at
all. That includes, but is not limited to, expanding relative URNs to be fully-qualifi ed.

Defi ning the Endpoint

The fi nal step in creating the WSDL is to defi ne a service. You can use the service to group similar
functionality or to defi ne an endpoint for the service. Unlike with soap-action, the endpoint for the
service must be a valid URI because the client uses it to connect.

 <service name=”CompanyService”>
 <port name=”CompanyPort” binding=”tns:CompanyBinding”>
 <soap:address location=”http://example.com/companies/”/>
 </port>
 </service>

By combining everything explained in the previous six sections it is possible to make a valid WSDL
1.1 fi le, which can be read by any SOAP client.

Setting up a SOAP Server

Once you have the WSDL, setting up the SOAP server in PHP is very easy with the SOAP library.
Indeed, creating the WSDL for the fi rst time can seem like more work than actually implementing
the procedure calls in PHP.

Two approaches exist to creating a SOAP server. Both require creating a new PHP fi le (in the same
location as the endpoint) and initializing a new server object. One is object oriented and the other is

563120c15.indd 538563120c15.indd 538 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Creating Web Services ❘ 539

procedural. For the sake of dealing with legacy systems, the procedural method is detailed fi rst. The
procedural code for the GetCompany function looks like this:

<?php
$server = new SoapServer(‘company.wsdl’);

$companyConnection = mysql_connect(“localhost”, “username”, “password”);
mysql_select_db(“companies”, $companyConnection);

function GetCompany($id) {
 global $companyConnection;

 $res = mysql_query(“SELECT * FROM `companies` WHERE `id`=”.(int)$id,
 $companyConnection);

 if ($row = mysql_fetch_assoc($res)) {
 $company = new Company();
 $company->name = $row[“name”];
 $company->website = $row[“website”];

 return array($id, $company);

 } else {
 throw new SoapFault(“Server”, “Company not found.”);
 }
}

$server->addFunction(“GetCompany”);
$server->handle();

?>

The call to handle() at the end actually processes the SOAP request. It does all the tedious work
of reading in the standard input and HTTP headers. The code also throws a SoapFault exception
when the company is not found. The SoapFault class extends from Exception so it can be used like
any other type of exception.

Of course, it would be better to create a class to handle the procedure calls instead. It would de-clutter
the main variable scope, making the code more readable. Fortunately, the PHP SOAP extension pro-
vides a way to register a class. Every public method in the class is then automatically added to the inter-
face. Private and protected methods are kept private and protected. The new object-oriented code looks
like this:

<?php
$server = new SoapServer(‘company.wsdl’);

class CompanySoap {

 protected function _getDatabase() {
 static $conn = false;
 if ($conn === false) {
 $conn = mysql_connect(“localhost”, “username”, “password”);

563120c15.indd 539563120c15.indd 539 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

540 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

 mysql_select_db(“companies”, $conn);
 }
 return $conn;
 }

 function GetCompany($id) {
 $res = mysql_query(“SELECT * FROM `companies` WHERE `id`=”.(int)$id,
 $this->_getDatabase());

 if ($row = mysql_fetch_assoc($res)) {
 $company = new StdClass();
 $company->name = $row[“name”];
 $company->website = $row[“website”];

 return array($id, $company);

 } else {
 throw new SoapFault(“Server”,”Company not found.”);
 }
 }
}

$server->setClass(“CompanySOAP”);
$server->handle();
?>

That is all there is to creating a SOAP server in PHP. Once again, the completed classes are part of
the sample code that comes with this book. The next step is to set up a SOAP client.

Setting Up a Soap Client

Setting up a soap client in PHP is even more straightforward than setting up a server — assuming,
of course, that the WSDL is valid. Setting up a client takes two steps: instantiating the object and
making the request.

The SoapClient class acts as a proxy (referring all the way back to Chapter 1). Calling a method on
the client class is the same as calling it on the server. Thus, making a call to GetCompany is intuitive:

<?php
$client = new SoapClient(“company.wsdl”);
$company = $client->GetCompany($id);
?>

The output for the SOAP call should seem familiar. It is an associative array that looks like this:

Array
(
 [id] => 123
 [company] => stdClass Object
 (
 [name] => MyVBO
 [website] => http://www.MyVBO.com/
)

)

563120c15.indd 540563120c15.indd 540 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Summary ❘ 541

It is almost the same as the return value from the procedure call on the PHP server. The main differ-
ence is that the server put in the key values for “id” and “company” automatically. Incidentally, it is
possible to manually specify those keys on the server as well.

Passing an object (such as the one that is needed for CreateCompany and EditCompany) is easy as
well. Simply create an instance of StdClass and set the appropriate variables. Of course, it is pos-
sible to create a new predefi ned class and instantiate that instead.

The PHP SOAP extension is designed to be object oriented from the ground up. For that reason,
it has some signifi cant benefi ts, not the least of which is that the server class, client class, and fault
classes can all be extended to create brand new classes. The PHP manual has an excellent class that
extends SoapClient and can be used to call procedures on a local SOAP server without needing
to go over the network. Here are some other things that you can do by extending the client or the
server:

➤ Use memcached or APC to transparently cache the output of the server so that the result does
not need to be recalculated every time.

➤ Cache the response from the server on the client-side to reduce load on the server and lessen
the delays caused by high latency between the client and server.

Log SOAP requests.➤

Perform access control and authentication across the board.➤

There are numerous ways to create robust SOAP services. However, if the PHP SOAP extension is
lacking for a particular job, you have multiple alternatives. The two more popular alternatives are
NuSOAP and the SOAP Pear library. However, the packaged PHP Extension should be enough to
get started using all the services on the Internet that make use of SOAP and create useful SOAP
services.

SUMMARY

This chapter covered creating applications with PHP and MySQL that go above and beyond what
you normally use them for. Because you’re nearing the end of the book, hopefully you won’t fi nd
it diffi cult to think up exciting and novel uses for the technologies in this chapter and the chapters
leading up to it.

For example, using the technologies covered in this book, you could possibly create a service that
takes input via SOAP and then passes the processing of the input off to Gearman. The client can
then make periodic requests to see if the job has fi nished running.

Hopefully, at this point, it’s also obvious how important security is. The techniques in the authenti-
cation and security (Chapters 12 and 14) can and should be applied to anything that changes data.
That includes the services in this chapter.

So, as a quick review, this chapter covered:

➤ Creating command-line scripts that can read from user input

Turning those scripts into cron jobs➤

563120c15.indd 541563120c15.indd 541 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

542 ❘ CHAPTER 15 COMMAND-LINE AND WEB SERVICES

➤ Creating RESTful web services

Defi ning a WSDL to describe a web service➤

Writing a SOAP client➤

Writing a SOAP server➤

SOAP and REST both have their benefi ts and disadvantages. SOAP is lightweight but not as light-
weight as REST. A RESTful application also focuses more on resources and less on procedure. The
benefi ts of each can also be disadvantages in some situations. You should choose the one that best
fi ts the application. If the application deals mainly with storing, editing, and retrieving resources,
REST is probably the best bet. If the application provides a service that does calculations or lookups
and returns the result directly to the user, SOAP is a good choice.

An application can always support both.

Be sure to download the code that comes with this book for completed RESTful and SOAP control-
lers and clients as well as more examples of how to use cURL.

563120c15.indd 542563120c15.indd 542 2/18/10 9:12:04 AM2/18/10 9:12:04 AM

Optimization and Debugging

WHAT’S IN THIS CHAPTER?

➤ Using PHP back-traces

Learning what you need to review SQL performance➤

➤ Understanding how to review SQL statements with EXPLAIN

Learning about diff erent index optimizations➤

No matter how well thought out or planned an application is, there are always problems and
they can creep up at any moment. Ranging from performance issues to functionality fl aws,
you may feel it’s completely impossible to fi nd and diagnose them.

Fortunately PHP and MySQL have tools to help deal with such situations. This chapter
covers the tools of the trade and best practices for debugging and optimizing PHP and
MySQL. It starts with advanced PHP debugging — including ways to fi nd hidden perfor-
mance bottlenecks — and then gets into the details on how to make slow queries run fast.

DEBUGGING PHP

For simple applications it is possible to get away with just basic debugging techniques. Some of
the most common are using print_r() to recursively display the contents of an array or class
or var_dump() when a little bit more information is needed.

For more complex applications, basic debugging is simply not enough. It becomes necessary to
closely inspect the state of the application. This section reviews methods for inspecting state,
injecting code into the application at run time, and profi ling the application to achieve perfor-
mance boosts.

16

563120c16.indd 543563120c16.indd 543 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

544 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

Creating Stack Traces

One of the most basic forms of PHP debugging is the debug back-trace, which produces an associa-
tive array of information about the current state of the application. Also, it provides information
about the application’s stack.

The stack is the method of storing the state of the application. Every time a function call is made,
the current scope is pushed onto the stack and a new scope is created, which is why stack overfl ow
errors can occur, particularly when you use recursive functions. When the function returns, the cur-
rent scope is popped off the end of the stack and the application returns to the previous scope.

The debug back-trace is a way to inspect the application stack. It provides a wealth of information
including the line numbers and fi lenames all the way down the stack. It is very useful for tracking
where a function call came from.

The code for doing a debug back-trace is one line:

$debug = debug_backtrace();

The return value is an array of associative arrays. The fi rst item in the array (index 0) is the current
state of the stack, and subsequent items are states that are further down the stack. One of the most
useful times to do a back-trace is when an exception is thrown. It is possible to isolate specifi c infor-
mation from the back-trace and use it in the error logs.

The array items format changes depending on the context that the back-trace function is called in.
You may encounter four basic types of output depending on the context. The possible contexts are:

➤ The global scope

Inside of an included fi le➤

Inside of a function call➤

Inside of a method call (function inside of a class)➤

Depending on the scope and context, one or more of the following keys may be present:

➤ function: Contains the function name as a string. It is only present if the current scope is
inside of a function call.

➤ args: Contains an array used to store the arguments passed to the current function. If the
scope is not inside of a function call then args is not present. In the case of a fi le inclusion,
you’ll have one argument: the function name used to include the fi le.

➤ class: Contains the name of the current class (if any). If there is a class, there may also be an
object key, which is a reference to the instance of the class. However, it is possible that the
method call was static, in which case you won’t have any object.

➤ type: A more reliable way to test if a method call was static or invoked on an object. The
type variable will be -> for a normal method call or :: for static. Of course, if current scope
is not within a class, it will not be present.

➤ fi le and line: contain the current fi le and line number. They are always present.

563120c16.indd 544563120c16.indd 544 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

Optimizing Queries ❘ 545

It is important to note that each of the keys is relative to the scope at that point in the stack. Back-
traces are useful for producing custom logs and even auto-recovering from errors.

OPTIMIZING QUERIES

Whereas designing your database tables and writing SQL statements are important for your applica-
tion’s functionality, optimizing your queries is necessary for your application’s operation and perfor-
mance. This section discusses the various options of optimizing your SQL queries.

Reducing SQL

Surprisingly the best way to optimize a query is actually quite simple. Eliminate it. When reviewing
your SQL statements, identify if the statement is indeed required; can the query be combined with
another query or can the query be cached?

The next step is to try and reduce SQL statements, especially statements that are repeated. Are
you running the same query multiple times in the page request? In a well-tuned high-performance
application, it is not the slow query that is diffi cult to address, it is the very quick queries that are
executed at a high frequency. Can these queries be combined?

The longest component of a SQL statement execution can be the network latency to pass the SQL
statement from the application server to the database server, and to then return the packets of infor-
mation back to the application server. Reducing the number of SQL statements can improve per-
formance. Reducing the amount of necessary information, for example unnecessary columns, can
improve performance. Stored procedures are an option here.

Identifying SQL Statements

Before optimization can really begin, you need to identify the SQL statements that you need to opti-
mize. In a well-engineered development practice, you may like to apply the following principles to
all SQL statements.

The focus of SQL statements to review should include a balance of slow SQL statements, SQL state-
ments from important business logic, and SQL statements from high frequency business functional-
ity in use with your application.

Capturing all SQL statements can be more complex than necessary. Though all DML statements are
easily obtained from the MySQL binary log when enabled, capturing all SELECT statements in a pro-
duction environment can be hard.

The default MySQL option is the general query log. Prior to MySQL 5.1 the only way to enable this
was to defi ne the log option in your my.cnf confi guration fi le and to restart your MySQL server.
You would then need to repeat this to turn the option off. In a production environment, this is
impractical. Starting with MySQL 5.1, you can enable and disable logging dynamically with the fol-
lowing syntax.

SET GLOBAL general_log = ON;
SET GLOBAL general_log = OFF

563120c16.indd 545563120c16.indd 545 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

546 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

With MySQL 5.1, you also have the ability to defi ne the output of the general query log to a fi le,
table or both when you specify with the confi guration fi le option log-output=TABLE,FILE.

Although this helps to gather all SQL statements, it’s a broadsword approach with the only granu-
larity being on and off. The other disadvantage with the general query log is that the granularity of
time may not be suffi cient.

The following alternative options are more advanced and do not require you to restart MySQL;
however, they require other components to be installed for use and analysis:

➤ MySQL proxy is a great option. It is very fl exible, and using the supplied histogram.lua
example with MySQL proxy and a PHP application, you can effectively enable iptables rules
to capture SQL for any time slice, for example, 2 seconds, 1 minute, and so on. You can then
have access to the captured information in an aggregated manner as well as get microsecond
execution granularity. You can refer to the MySQL Proxy download page at http://dev
.mysql.com/downloads/mysql-proxy/ and the MySQL forge information page at: http://
forge.mysql.com/wiki/MySQL_Proxy for more detailed information about MySQL Proxy.

➤ Another option, requiring no moving parts, is the monitoring of the TCP/IP packets sent to the
MySQL server directly. Historically, it’s been a black art to understand these network packets;
however, the Maatkit mk-query-digest available from http://maatkit.org is an excellent
option to provide valuable human-readable information and aggregated information and this
also can provide microsecond execution granularity. For more information on example usage
see http://ronaldbradford.com/blog/take-a-look-at-mk-query-digest-2009-10-08.

Having gathered your SQL statements to optimize, you can now start analyzing.

Optimizing SELECT

When optimizing SELECT SQL statements, the following is a checklist of information that you
should ideally gather:

➤ The Query Execution Plan (QEP)

The table structures, including indexes➤

Index cardinality➤

The query execution time➤

The number of rows returned➤

The total size of the result set➤

You should also consider additional information that can affect your results over time, including:

➤ The date and time

The MySQL variables➤

The database table data and index size➤

The essential command you will use is EXPLAIN. The syntax is to include this keyword before the
SQL statement you want to analyze.

563120c16.indd 546563120c16.indd 546 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

Optimizing Queries ❘ 547

For the following examples, you’re going to use the sakila test database that is provided by MySQL.
Refer to the MySQL documentation at http://dev.mysql.com/doc/ for instructions to download
and install this database.

The EXPLAIN syntax

To use EXPLAIN, add the command as a prefi x to a SELECT statement. For example:

mysql> EXPLAIN SELECT id FROM example_table WHERE id=1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: example_table
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra: Using index

The most effi cient EXPLAIN plan is one that uses an index defi ned in the key column, uses 1 row, and
specifi es in the Extra column the value Using Index as shown above.

mysql> EXPLAIN SELECT * FROM example_table\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: example_table
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 59
 Extra:

Conversely, a query that uses no key, and that processes a large number of rows is the worst case.
This is referred to as a full table scan.

The following list describes the more important columns in the EXPLAIN output.

➤ key: This column defi nes the index that is used for the given table. By default, MySQL uses
only one index per table. There are a small number of exceptions; however, it is best to
design your queries to use one optimal index per table.

➤ type: The type of index match that is being used. A few common values include:

➤ const: An exact index match

➤ ref: An index reference scan

➤ range: An index range scan

➤ ALL: A full table scan

563120c16.indd 547563120c16.indd 547 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

548 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

➤ eq_ref: An equals reference on join tables

➤ unique_subquery: A subquery

➤ extra: This includes various pieces of information including:

➤ Using index: This actually means that the index is all that is needed to satisfy the
resultant columns of the SELECT. This is the most optimal solution.

➤ Using temporary: This indicates that MySQL needed to create an internal tempo-
rary table. It does not indicate a memory or on disk table.

➤ Using fi lesort: This indicates that MySQL has to internally sort the results.

After gathering information on the QEP you need to know the details of the indexes that exist
for the table, and also the cardinality of indexes. You obtain this information with the following
commands:

➤ SHOW CREATE TABLE [tablename];

SHOW INDEXES FROM [tablename];➤

Example Queries

The sakila schema which is available for download from http://dev.mysql.com/doc is highly
optimized for indexes. The following query may not be an ideally executed query; however, it’s used
as an example to show missing indexes:

EXPLAIN SELECT a.first_name, a.last_name
FROM actor a
INNER JOIN film_actor fa USING (actor_id)
INNER JOIN film f USING (film_id)
WHERE a.first_name = ‘JOE’
AND f.release_year=2008\G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: a
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 200
 Extra: Using where
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: fa
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY
 key_len: 2

563120c16.indd 548563120c16.indd 548 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

Optimizing Queries ❘ 549

 ref: sakila.a.actor_id
 rows: 1
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: f
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.fa.film_id
 rows: 1
 Extra: Using where

In this query, you see that the actor table has a full table scan with key = NULL and type = ALL.

You can review the actual indexes of the table with the SHOW CREATE TABLE command.

mysql> SHOW CREATE TABLE actor\G
*************************** 1. row ***************************
 Table: actor
Create Table: CREATE TABLE `actor` (
 `actor_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
 `first_name` varchar(45) NOT NULL,
 `last_name` varchar(45) NOT NULL,
 `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`actor_id`),
 KEY `idx_actor_last_name` (`last_name`)
) ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8

Identifying Indexes

After fi nding a table within a query that does not include an index or an effi cient index, you add or
change the index with the ALTER TABLE command. In the preceding SELECT example, you are select-
ing based on first_name, yet no index exists. You could consider an index on first_name; the best
way to confi rm is to test and verify:

ALTER TABLE actor ADD INDEX (first_name);

If you rerun the EXPLAIN, you’ll now observe the index is used on the actor table:

explain SELECT a.first_name, a.last_name
FROM actor a
INNER JOIN film_actor fa USING (actor_id)
INNER JOIN film f USING (film_id)
WHERE a.first_name = ‘JOE’ AND f.release_year=2008\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: a
 type: ref
possible_keys: PRIMARY,first_name

563120c16.indd 549563120c16.indd 549 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

550 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

 key: first_name
 key_len: 137
 ref: const
 rows: 1
 Extra: Using where

In this example, you may be able to further improve this index by defi ning a multi-column index on
first_name and last_name that is also called covering index. For example:

ALTER TABLE actor DROP INDEX first_name, ADD INDEX (first_name, last_name);

explain SELECT a.first_name, a.last_name
FROM actor a
INNER JOIN film_actor fa USING (actor_id)
INNER JOIN film f USING (film_id)
WHERE a.first_name = ‘JOE’ AND f.release_year=2008\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: a
 type: ref
possible_keys: PRIMARY,first_name
 key: first_name
 key_len: 137
 ref: const
 rows: 1
 Extra: Using where; Using index
. . .

Adding an index does not mean the performance of your system will improve.
Looking at SQL statements in isolation and not looking at all SQL statements
against the tables in question could produce a loss of performance elsewhere.
Adding indexes to tables also increases the time to perform writes. In a high
write environment, adding an index to improve a query, which is not executed
frequently, may not offset the loss in performance of writes.

About Cardinality

As previously mentioned, the SHOW INDEXES command can be used to provide an estimation of
index cardinality. Cardinality is a measure of the uniqueness of values tracked by an index. A higher
cardinality number indicates a greater level of uniqueness. In the following example you will see
that the higher number of the cardinality shows a higher uniqueness of values. The PRIMARY key is
the best cardinality.

mysql> SHOW INDEXES FROM rental;
+--------+------------+---------------------+----+--------------+-------------+
| Table | Non_unique | Key_name | Seq| Column_name | Cardinality |
+--------+------------+---------------------+----+--------------+-------------+
| rental | 0 | PRIMARY | 1 | rental_id | 16291 |
| rental | 0 | rental_date | 1 | rental_date | 16291 |

563120c16.indd 550563120c16.indd 550 2/18/10 9:12:15 AM2/18/10 9:12:15 AM

Optimizing Queries ❘ 551

rental	0	rental_date	2	inventory_id	16291
rental	0	rental_date	3	customer_id	16291
rental	1	idx_fk_inventory_id	1	inventory_id	16291
rental	1	idx_fk_customer_id	1	customer_id	1253
rental	1	idx_fk_staff_id	1	staff_id	3
+--------+------------+---------------------+----+--------------+-------------+

This output has been trimmed for presentation style.

As you can see, the staff_id index has very poor cardinality.

Better Index Types

The following are some tips on improving your indexes:

➤ Defi ne index columns where possible as NOT NULL: If the column does not contain NULL values,
change the data type to NOT NULL to avoid possible double scans of a nullable column index.

➤ Use UNIQUE INDEX: If the column contains unique values, you can defi ne a unique key to
both improve relational integrity and improve the optimizer to not require an index range
scan in comparison to a regular index.

➤ Use PRIMARY KEY: A primary key is a specifi c form of UNIQUE KEY. In InnoDB, for example,
a PRIMARY KEY is a clustered index — that is, an index where data is ordered on disk. This
can be a great improvement when data is retrieved in primary key order.

➤ Too many indexes can be detrimental: If possible_keys lists more than three indexes, for
example, the MySQL optimizer has too much information to determine the best index to use.
This is also an indication of possible ineffective or unused indexes.

➤ Use the smallest data type possible for in index: For instance, the author has seen cases
where a schema was created by developers who created an index on a VARCHAR(100) (or
even greater!) column. One improvement to this would be creating an additional column and
index on an additional CHAR(32) column that contains an MD5 of the larger VARCHAR(100)
column. Even better is to use a BIGINT column that contains a numeric representation of the
MD5 value, giving you an even more effi cient numeric index using the following tip demon-
strated by a Flickr developer at the 2008 MySQL user’s conference:

select conv(substr(md5(‘this is a test’),1,16),16, 10);
+---+
| conv(substr(md5(‘this is a test’),1,16),16, 10) |
+---+
| 6102594702268822184 |
+---+

Flickr certainly has a requirement of great uniqueness, so this is a great way to obtain a numeric
representation of the MD5 value of text for a column you would rather not create an index on!

563120c16.indd 551563120c16.indd 551 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

552 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

Optimizing Indexes

While creating an index on a single column can generally improve performance of certain SQL
statements, optimizing indexes can provide additional improved in performance. The following are
three popular tips to multiple your index performance:

➤ When possible, defi ne indexes with multiple columns if these columns can be used. When an
index has multiple columns, and you use multiple columns in your SELECT statements, your
goal is to get the best cardinality on the fi rst column; that is, the greatest number of unique
rows is generally the best.

➤ A covering index is an ideal index. A covering index includes all required columns and does
not require individual data pages to be read. What exactly does a covering index mean? Well,
it means that the values specifi ed in the WHERE clause of the query result in MySQL compar-
ing the values contained in the index are used to locate the record or records versus reading
the values of the data store. For MyISAM table types, this means that only the index fi le is
read to obtain the record in question. For InnoDB, the indexes and data are in the same fi le,
yet this is still more effi cient because only the index is read.

➤ A partial index is optimized for performance. Rather than defi ning an index on a large
character column, you defi ne a smaller left portion of the index. Though a query may need
to scan the index for additional rows, the reduction in index size can dramatically improve
performance.

These index descriptions are described in greater detail in the following post at http://ronald-
bradford.com/blog/understanding-different-mysql-index-implementations-2009-07-22/.

When Indexes Are Not Used

Two common problems where an index should have been used but is not are when your starting
character is a wildcard meta character or when you use a scalar function on the indexed column.
For example:

SELECT * FROM actor WHERE last_name LIKE ‘%smith’;
SELECT * FROM actor WHERE UPPER(last_name) = ‘SMITH’;

In more recent versions of MySQL, the use of scalar functions can utilize a defi ned index; however
this requires a full index scan.

Common INDEX Mistakes

In the years of reviewing schemas for performance improvements, the authors have seen some com-
mon mistakes, or assumptions, about how indexes are used. One is when too many single column
indexes are created for each column specifi ed in a WHERE clause that would otherwise be better
served by utilizing a multi-column index. Always use EXPLAIN to make sure you have created a
table with a covering index on the columns that are specifi ed in the WHERE clause of the query. For
instance, if your query is:

SELECT * FROM geeks WHERE username = ‘sakila’ AND state = ‘CA’ WHERE age < 30;

563120c16.indd 552563120c16.indd 552 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Optimizing Queries ❘ 553

you would want to have a covering index on (username, state, age) versus each column sepa-
rately. Now, if your query were:

SELECT * FROM geeks WHERE state = ‘CA’;

that query would not utilize the multi-part index because the column in the WHERE you are specify-
ing was the second column specifi ed (this is called a key-part). In this case, if both queries were
the ones most commonly used, you would want to have the covering index specify state fi rst (state,
username, age). The rule is this: for a covering index to be used, the fi rst column specifi ed in the
covering index is the only column you can specify by itself in a WHERE clause and has to be contained
in the WHERE clause specifying the other two indexes for those to be covered by the multi-column
index. The following EXPLAIN listing hammers this concept home. In the fi rst example, all columns
are listed in the WHERE clause and the covering index age_state_name is used:

explain select *
from users
where name = ‘Chaintanya Mahaprabhu’
and age = 28
and state = ‘HI’\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: users
 type: ref
possible_keys: age_state_name
 key: age_state_name
 key_len: 50
 ref: const,const,const
 rows: 1
 Extra: Using where

Next, only the fi rst column of the name_state_age index is used, resulting in the index being used:

explain select * from users where name = ‘Chaintanya Mahaprabhu’\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: users
 type: ref
possible_keys: age_state_name
 key: age_state_name
 key_len: 42
 ref: const
 rows: 1
 Extra: Using where
1 row in set (0.00 sec)

Only the age and state columns are specifi ed in the WHERE clause, but the index is not used:

mysql> explain select * from users where age = 28 and state = ‘HI’\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE

563120c16.indd 553563120c16.indd 553 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

554 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

 table: users
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 8
 Extra: Using where

In this case, you would want another covering index but only on (age, state). So, whenever in doubt,
use EXPLAIN.

Other Commands

This chapter doesn’t go into great detail about the SHOW PROFILE command; however this can also
be a valuable and fi ne-grained tool for query analysis. This can show micro-second breakdown of
SQL statements by individual components within the MySQL kernel, and can provide some hints as
to where to tune your query. To use profi ling, all you have to do is set profi ling to true with the fol-
lowing statement:

mysql> set profiling=1;

The following code shows the breakdown of the internal operations for executing a query:

SELECT user,host,password FROM mysql.user;
SHOW PROFILE;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
starting	0.000078
Opening tables	0.000015
System lock	0.000007
Table lock	0.000008
init	0.000031
optimizing	0.000016
statistics	0.000062
preparing	0.000018
executing	0.000005
Sending data	0.000075
end	0.000006
query end	0.000004
freeing items	0.000031
logging slow query	0.000004
cleaning up	0.000005
+--------------------+----------+

For the source code savvy developer, the SOURCE option even provides the source fi le and line number
so you can delve into the MySQL source code (if available) to review the code. If you add to the previ-
ous query SOURCE, you can see what source fi le and line the particular operation originated from:

SELECT user,host,password FROM mysql.user;
SHOW PROFILE SOURCE\G

563120c16.indd 554563120c16.indd 554 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Optimizing Queries ❘ 555

*************************** 1. row ***************************
 Status: starting
 Duration: 0.000078
Source_function: NULL
 Source_file: NULL
 Source_line: NULL
*************************** 2. row ***************************
 Status: Opening tables
 Duration: 0.000015
Source_function: open_tables
 Source_file: sql_base.cc
 Source_line: 4501
*************************** 3. row ***************************
 Status: System lock
 Duration: 0.000007
Source_function: mysql_lock_tables
 Source_file: lock.cc
 Source_line: 258
. . .

In this example, the \G ending is used because there are so many columns in the output that it’s eas-
ier to view this way, as well as a LIMIT 3 put on the query to save a couple trees! You can be more
selective of the columns you want to display by simply using the INFORMATION_SCHEMA, PROFILING
table which contains the same exact data that the SHOW command does:

select state, source_file, source_line, duration
from information_schema.profiling
limit 1;
+--------------------+---------------+-------------+----------+
| state | source_file | source_line | duration |
+--------------------+---------------+-------------+----------+
starting	NULL	NULL	0.000078
Opening tables	sql_base.cc	4501	0.000015
System lock	lock.cc	258	0.000007
Table lock	lock.cc	269	0.000008
init	sql_select.cc	2386	0.000031
optimizing	sql_select.cc	781	0.000016
statistics	sql_select.cc	963	0.000062
preparing	sql_select.cc	973	0.000018
executing	sql_select.cc	1657	0.000005
Sending data	sql_select.cc	2226	0.000075
end	sql_select.cc	2431	0.000006
query end	sql_parse.cc	4915	0.000004
freeing items	sql_parse.cc	5942	0.000031
logging slow query	sql_parse.cc	1648	0.000004
cleaning up	sql_parse.cc	1615	0.000005
+--------------------+---------------+-------------+----------+

By using a query from the INFORMATION_SCHEMA, you can display information in any arrangement
while with the SHOW command you are restricted to a set format.

563120c16.indd 555563120c16.indd 555 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

556 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

Optimizing UPDATE

To optimize an UPDATE, look at the WHERE clause. If you are using the PRIMARY KEY, no further anal-
ysis is necessary. If you are not, it is of benefi t to rewrite your UPDATE statement as a SELECT state-
ment and obtain a QEP as previously detailed to ensure optimal indexes are used. For example:

UPDATE t
SET c1 = ‘x’,
 c2 = ‘y’,
 c3 = 100
WHERE c1 = ‘x’
AND d = CURDATE()

You can rewrite this UPDATE statement as a SELECT statement for using EXPLAIN:

EXPLAIN
SELECT c1, c2, c3
FROM t
WHERE c1 = ‘x’
AND d = CURDATE()

You should now apply the same principles as detailed in optimizing SELECT statements.

Optimizing DELETE

You should refer to the “Optimizing UPDATE” section and apply the same principles to optimize
DELETE statements. The next example shows that is a common delete query run on a table (child
table) that has a relation to a parent table where there are “orphaned” records — which means that
some records exist in the child table without a corresponding parent record.

For instance, if you have a parent table with four parent records:

mysql> select * from parent;
+----+---------+
| id | name |
+----+---------+
1	parentA
2	parentB
3	parentC
4	parentD
+----+---------+

and a child table with some orphaned records (those with parent_id values not existing in the par-
ent table):

mysql> select * from child;
+-----------+----------+
| parent_id | child_id |
+-----------+----------+
1	1
2	2
3	3
1	4

563120c16.indd 556563120c16.indd 556 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Optimizing Queries ❘ 557

1	5
2	6
0	7
0	8
10	9
5	10
+-----------+----------+

one common way to delete these orphaned records is to use a subselect in the DELETE statement:

delete from child where parent_id not in (select id from parent);
Query OK, 4 rows affected (0.00 sec)

But a more effi cient way to do this is to use a join because it avoids the subquery, which is an extra
query the deletion must internally perform to obtain the list of parent_id values to in turn fi nd
which of the child records don’t have matches. You can test this idea before you actually run the
delete statement by using a join query. This query obtains a list of orphaned records to verify what
you want to delete. The following code shows how to use profi ling, which utilizes a join and results
in faster execution and fewer internal operations:

set profiling = 1;
select *
from child
where parent_id not in (select id from parent);
+-----------+----------+
| parent_id | child_id |
+-----------+----------+
0	7
0	8
10	9
5	10
+-----------+----------+	
select parent_id, child_id	
from child	
left join parent on (parent.id = child.parent_id)	
where parent.id is NULL;	
+-----------+----------+	
parent_id	child_id
+-----------+----------+	
0	7
0	8
10	9
5	10
+-----------+----------+	
select query_id,count(*) as ‘# ops’, sum(duration)	
from information_schema.profiling	
group by query_id;	
+----------+-------+---------------+	
query_id	# ops
+----------+-------+---------------+	
1	18
2	15
+----------+-------+---------------+

563120c16.indd 557563120c16.indd 557 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

558 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

The preceding code shows that both queries give the same results; however, the optimizer shows
that the second query uses fewer operations and executes faster. With this list, you can now delete
these records using the join in a DELETE statement:

delete from child using child left join parent on (parent.id = child.parent_id)
where parent.id is NULL;
Query OK, 4 rows affected (0.00 sec)

And the four rows were deleted!

Optimizing INSERT

Generally, no optimization is necessary for an INSERT because the result of your SQL is one inserted
row. You can, however, optimize multiple INSERT statements on the same table using multiple
VALUES clauses, otherwise known as a bulk insert. This can actually save you time when you insert
multiple records in a single operation. For example:

INSERT INTO t1(c1,c2,c3,d) VALUES (‘a’,’b’,’c’,CURDATE());
INSERT INTO t1(c1,c2,c3,d) VALUES (‘1’,’2’,’3’,CURDATE());
INSERT INTO t1(c1,c2,c3,d) VALUES (‘x’,’y’,’z’,CURDATE());

This is actually three individual INSERT statements, which incur three network round trips to the
database. If you rewrite as shown in the previous code, you actually reduce this network communi-
cations from three to one network round trip. The other benefi t of this optimization is that MySQL
only needs to produce one execution plan for the INSERT statement. It can then utilize that same
execution plan for multiple values. One caveat when you work with bulk inserts: if the single insert
fails, all the records specifi ed in the multiple VALUES clauses will also fail to be inserted.

INSERT INTO t1(c1,c2,c3,d) VALUES
(‘a’,’b’,’c’,CURDATE()),
(‘1’,’2’,’3’,CURDATE()),
(‘x’,’y’,’z’,CURDATE());

Optimizing REPLACE

The MySQL REPLACE command is actually implemented internally as a DELETE and an INSERT. The
REPLACE command, however, can cause fragmentation at the disk data level due to the unexpected
DELETE operation. If possible, you should consider using alternative means of inserting or updating
your data, as shown next with the INSERT ... ON DUPLICATE KEY UPDATE statement.

INSERT ... ON DUPLICATE KEY UPDATE

As stated, REPLACE is ineffi cient because it is internally implemented using a DELETE and INSERT.
You have another way to have a replace-like functionality when you use the INSERT ... ON
DUPLICATE KEY UPDATE statement. This statement results in a record being updated if the record
exists for the primary key value and any of the record’s columns’ values are different than the exist-
ing specifi ed record. If the record does not yet exist, it is inserted. If the record exists but none of the
values have changed, nothing happens. This behavior is preferable to using REPLACE which deletes
the record and then re-inserts it.

563120c16.indd 558563120c16.indd 558 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Optimizing Queries ❘ 559

Using the sakila database, which — to say the least — contains interesting geek-humor for data,
and, in particular, the film table — which contains records for fi lms — an existing record demon-
strates the use of the INSERT … ON DUPLICATE KEY UPDATE statement:

mysql> select * from film where film_id = 500\G
*************************** 1. row ***************************
 film_id: 500
 title: KISS GLORY
 description: A Lacklusture Reflection of a Girl And a Husband who must
 Find a Robot in The Canadian Rockies
 release_year: 2006
 language_id: 1
original_language_id: NULL
 rental_duration: 5
 rental_rate: 4.99
 length: 163
 replacement_cost: 11.99
 rating: PG-13
 special_features: Trailers,Commentaries,Behind the Scenes
 last_update: 2006-02-15 05:03:42

In the following query, you see what appears to be a regular insert, but with the additional speci-
fi cation to update the record if the unique key (the primary key film_id) is a value of an existing
record, you will see that this record is updated:

INSERT INTO film (film_id, description, title)
VALUES (500,
‘Epic story featuring Krishna and Arjuna on the battlefield of Kurukshetra’,
‘Mahabarata’)
ON DUPLICATE KEY UPDATE
film_id = 500,
title = ‘Mahabarata’,
description = ‘Epic story featuring Krishna and Arjuna on the Battlefield
of Kurukshetra’;
Query OK, 2 rows affected, 1 warning (0.01 sec)

Note that two rows have been affected and a warning issued. This is because a SET value for lan-
guage_id was not specifi ed and language_id does not have a default value specifi ed in the table
defi nition, as the SHOW WARNINGS output shows in the following code.

mysql> show warnings;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1364 | Field ‘language_id’ doesn’t have a default value |
+---------+------+--+

Next, a query shows that the record was indeed updated:

mysql> select * from film where film_id = 500\G
*************************** 1. row ***************************
 film_id: 500
 title: Mahabarata
 description: Epic story featuring Krishna and Arjuna on the Battlefield
 of Kurukshetra

563120c16.indd 559563120c16.indd 559 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

560 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

 release_year: 2006
 language_id: 1
original_language_id: NULL
 rental_duration: 5
 rental_rate: 4.99
 length: 163
 replacement_cost: 11.99
 rating: PG-13
 special_features: Trailers,Commentaries,Behind the Scenes
 last_update: 2009-11-23 16:40:56

DEBUGGING MYSQL

You can debug MySQL in a number of ways. In this section, you see that when you use the various
logs, view process lists, and use the Gnu Debugger, gdb, you can receive all the information you
could ever need to debug a problem. You can get useful information in order to report a crash to the
developer community.

Error Log

Whenever you have an issue, you fi rst want to view the error log. This is specifi ed by the log-error
directive in the my.cnf, or if not specifi ed, you’ll most likely fi nd the error log in your data directory
where the data fi les for MySQL are stored, and the error log is often named using the hostname of
your server:

ls /usr/local/mysql/var/*err
/usr/local/mysql/var/patrick-galbraiths-macbook-pro.local.err

In this log fi le, you can see normal operations such as startup and shutdown as well as possible
problems. The startup and shutdown messages appear as:

091119 1:54:28 [Note] /usr/local/mysql/libexec/mysqld: Normal shutdown
091119 01:54:34 mysqld_safe mysqld restarted
091119 1:54:34 [Warning] Setting lower_case_table_names=2 because file system for
 /usr/local/maria/var/ is case insensitive
091119 1:54:34 [Note] Event Scheduler: Loaded 0 events
091119 1:54:34 [Note] /usr/local/mysql/libexec/mysqld: ready for connections.
Version: ‘5.1.35-maria-beta1’ socket: ‘/tmp/mysql.sock’
port: 3306 Source distribution

You’ll also see various errors from time to time. For example, the following output shows an error
loading the Memcached Functions for MySQL (UDFs). The particular problem is due to the UDF
plugin shared library not being installed correctly, resulting in this error message:

091118 10:56:53 [ERROR] Can’t open shared library
‘libmemcached_functions_mysql.so’ (errno: 0 dlopen(/usr
/local/maria/lib/mysql/plugin/libmemcached_functions_mysql.so, 2): Symbol not
found: _memcached_pool_behavior_get

Or in the case of a crash, you can see this unwanted but useful message:

091023 8:54:34 - mysqld got signal 11 ;
This could be because you hit a bug. It is also possible that this binary

563120c16.indd 560563120c16.indd 560 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Debugging MySQL ❘ 561

or one of the libraries it was linked against is corrupt, improperly built,
or misconfigured. This error can also be caused by malfunctioning hardware.
We will try our best to scrape up some info that will hopefully help diagnose
the problem, but since we have already crashed, something is definitely wrong
and this may fail.

key_buffer_size=8384512
read_buffer_size=131072
max_used_connections=1max_threads=153
threads_connected=0
It is possible that mysqld could use up to
key_buffer_size + (read_buffer_size + sort_buffer_size)*max_threads = 342071 K
bytes of memory
Hope that’s ok; if not, decrease some variables in the equation.

thd: 0x0
Attempting backtrace. You can use the following information to find out
where mysqld died. If you see no messages after this, something went
terribly wrong...stack_bottom = 0x0 thread_stack 0x48000
0 mysqld 0x0032db8d my_print_stacktrace + 40
1 mysqld 0x000ce0c1 handle_segfault + 10252
 libSystem.B.dylib 0x932bf2bb _sigtramp + 43
3 ??? 0xffffffff 0x0 + 4294967295
4 ha_federatedx.so 0x00d4cd08 _ZN13ha_federatedx5closeEv + 72
5 mysqld 0x0012d464 _Z8closefrmP8st_tableb + 244
6 mysqld 0x00127181 _Z11lock_tablesP3THDP10TABLE_LIS
 TjPb + 1809
7 mysqld 0x003232ee my_hash_delete + 711
8 mysqld 0x00129c9c
 _Z19close_cached_tablesP3THDP10TABLE_LISTbbb + 588
9 mysqld 0x0012a10c _Z16table_cache_freev + 76
10 mysqld 0x000cbee4 print_signal_warning + 324
11 mysqld 0x000d3609
 _Z34create_thread_to_handle_connectionP3THD + 2121
12 mysqld 0x000d3632 kill_server_thread + 18
13 libSystem.B.dylib 0x93284155 _pthread_start + 321
14 libSystem.B.dylib 0x93284012 thread_start + 34
The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains
information that should help you find out what is causing the crash.

As much as you don’t want to see a message like this, it is very useful because it contains a crash
trace that you can send to MySQL developers.

Slow Query Log

If you turn on the slow query log, any slow queries — queries that take an excessive amount of
time — are logged to this fi le, which is extremely useful to identify badly written queries — poten-
tial queries to optimize. To specify the slow query log, you can add to your my.cnf:

log-slow-queries = /var/log/mysql/mysql-slow.log
long_query_time = 2
log-queries-not-using-indexes

563120c16.indd 561563120c16.indd 561 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

562 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

Notice here that you specify the log, as well as the long_query_time, which is the number of sec-
onds a query takes to execute, as well as logging any queries where indexes aren’t used. The entries
in the log contain useful information about these slow queries:

Query_time: 3 Lock_time: 0 Rows_sent: 140 Rows_examined: 280
SELECT acl_actions .*, acl_roles_actions.access_override
 FROM acl_actions
 LEFT JOIN acl_roles_users ON acl_roles_users.user_id = ‘’
AND acl_roles_users.deleted = 0
 LEFT JOIN acl_roles_actions ON acl_roles_actions.role_id =
acl_roles_users.role_id AND acl_roles_actions.action_id = acl_actions.id AND
acl_roles_actions.deleted=0
 WHERE acl_actions.deleted=0 ORDER BY category,name;
Time: 091125 11:23:07# User@Host: root[root] @ localhost []
Query_time: 2 Lock_time: 0 Rows_sent: 0 Rows_examined: 67
select * from leads where account_name like ‘%foo%’;

This code shows how long a query took, how long the table was locked, and the number of rows
sent from the query, as well as the number of rows examined to produce the result.

Processlist

Some tools you will want in your arsenal are SHOW PROCESSLIST and the even more verbose SHOW
FULL PROCCESSLIST, which gives you a listing of the queries running within MySQL. The listing
includes the following:

➤ Query id

Username running the query➤

Host the query is initiated from➤

Database/schema the query is running against➤

Command➤

Time the command has been running➤

➤ Query being executed and full text of the query if FULL is specifi ed

The following shows the output:

mysql> show full processlist\G

*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 650731
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 139282

563120c16.indd 562563120c16.indd 562 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Debugging MySQL ❘ 563

 User: dbuser
 Host: 192.168.0.99:62623
 db: NULL
Command: Binlog Dump
 Time: 595445
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL
*************************** 3. row ***************************
 Id: 184194
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 2
 State: Has read all relay log; waiting for the slave I/O thread to update it
 Info: NULL
 < output truncated to save trees >
*************************** 122. row ***************************
 Id: 14608817
 User: exporter
 Host: 192.168.0.50:22012
 db: export?
 Command: Query
 Time: 130
 State: NULL
 Info: LOAD DATA LOCAL INFILE ‘data/data_info99.txt’ REPLACE?INTO TABLE
carexport.extraint_results_sets FIELDS TERMINATED BY ‘|’ (rcust_id,
 user_id, dept_id, all_constraints, passed,
failed, addedby) SET dateadded = NOW() ***************************
123. row *************************** Id:
 Id: 14160644
 User: uioda
 Host: 192.168.1.5:42241
 db: ioda?
 Command: Query
 Time: 0
 State: Sending data
 Info: SELECT count(distinct books.book_id) from books.publish_queue pbq
WHERE books.book_id = ‘8953’ AND (book.status = ‘review’ OR book.status =
‘sold’) AND book.type = ‘technical’ AND (book_id IS NULL OR book_id !=
‘30497’)

As you can see, the output shows a lot of useful information to spot a troublesome query that’s taking
a lot of time to execute, which in some cases would affect the PHP application’s overall performance.
Whenever an application is taking a while to display or load data, you want to display the processlist
to see if there’s something obvious that you can fi x. Also, if a process is hung, you can kill it:

*************************** 7. row ***************************
 Id: 1245
 User: cacti
 Host: localhost
 db: cacti
Command: Sleep
 Time: 93

563120c16.indd 563563120c16.indd 563 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

564 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

 State:
 Info: NULL
7 rows in set (0.00 sec)

mysql> kill 1245;
Query OK, 0 rows affected (0.00 sec)

which in this case killed a sleeping process. But in some cases it could be a query that has been run-
ning for minutes resulting in a blank page for one of your users!

Other Commands

You have a number of other commands at your disposal but detailing them is beyond the scope of
this book. Here a quick list:

➤ SHOW STATUS/SHOW GLOBAL STATUS: Shows the complete status of a given session or data-
base as a whole, and provides a wealth of information pertaining to the running status of
your MySQL instance.

➤ SHOW TABLE STATUS: Shows the status of tables on your MySQL instance.

➤ SHOW INNODB STATUS: Shows the status of the InnoDB storage engine. For any tables where
you are using InnoDB, this provides information pertaining to how those tables function.

➤ SHOW MASTER STATUS: Shows you the status of your binary log, if turned on.

➤ SHOW SLAVE STATUS: Shows you the status of the slave — information such as which relay
log the SQL slave thread is reading and which binary position the IO slave thread is reading
on the master, and the lag that exists between the slave and master, as well as other informa-
tion pertaining to the running state of replication.

Do remember that you can fi nd all SHOW commands information in the INFORMATION_
SCHEMA database. For more complete information, please consult with the MySQL user’s manual
at http://dev.mysql.com/.

Using a Debugger with MySQL

Another tool that really shows how MySQL functions as well as tracks down the cause of bugs (if
you want to become a MySQL hacker yourself!) is GDB — the GNU Debugger. To really make use
of this, you need to install GDB and the source distribution of MySQL. For more information, refer
to your operating system information and the MySQL user’s manual. You can also fi nd information
by joining mailing lists and IRC channels #mysql, #mysql-dev on Freenode.

To use GDB to track down a crash, you would fi nd the process id of your running MySQL instance
as root or the mysql user:

yourhost:~ root# ps auxww|grep mysqld|grep -v mysqld_safe|grep -v grep
_mysql 26456 0.0 0.3 109232 14624 s003 S 10:18AM 0:00.08
/usr/local/mysql/libexec/mysqld --basedir=/usr/local/maria
--datadir=/usr/local/mysql/var --user=mysql
--log-error=/usr/local/mysql/var/yourhost.local.err
--pid-file=/usr/local/mysql/var/yourhost.local.pid

563120c16.indd 564563120c16.indd 564 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

Summary ❘ 565

In this case, the process ID is 26456. You can attach to this process with GDB:

yourhost:~ root# gdb /usr/local/maria/libexec/mysqld 26456
<extra text removed>
Attaching to program: `/usr/local/maria/libexec/mysqld’, process 26456.
Reading symbols for shared libraries ++++....
(gdb)

At the (gdb) prompt, you type continue to tell MySQL to continue running:

 (gdb) continue
Continuing.

If, for instance, there’s a query that’s causing MySQL to crash, you run that query in another win-
dow. Then you will see something like this appear in GDB:

Program received signal SIGUSR1, User defined signal 1.
[Switching to process 26456 thread 0x2507]
0x932532ce in semaphore_wait_signal_trap ()
To see what caused the problem and have something you could submit to a mailing
list, you can run backtrace:
(gdb) backtrace
#0 0x932532ce in semaphore_wait_signal_trap ()
#1 0x9325ada5 in pthread_mutex_lock ()
#2 0x0032e74f in thr_end_alarm ()
#3 0x0025b437 in mysql_real_connect ()
#4 0x00d53ef0 in federatedx_io_mysql::actual_query ()
#5 0x00d54846 in federatedx_io_mysql::query ()
#6 0x00d4da3d in test_connection ()
#7 0x00d4fcf9 in ha_federatedx::create ()
#8 0x001d1610 in ha_create_table ()
#9 0x0019512c in rea_create_table ()
#10 0x001ddc39 in mysql_create_table_no_lock ()
#11 0x001de1be in mysql_create_table ()
#12 0x000e6cde in mysql_execute_command ()
#13 0x000e7626 in mysql_parse ()
#14 0x000e8135 in dispatch_command ()
#15 0x000e9079 in do_command ()
#16 0x000d7834 in handle_one_connection ()
#17 0x93284155 in _pthread_start ()
#18 0x93284012 in thread_start ()
(gdb)

The code shows that there is something wrong with the FederatedX storage engine. This is the type
of trace you could provide the developer of the FederatedX storage engine (one of the authors of this
book, Patrick Galbraith!). Or if you feel adventurous and greatly hailed in the open source commu-
nity, you could even fi x this bug!

SUMMARY

Performance is a key characteristic of a successful application. By using the techniques to optimize
your queries and inspecting state in your PHP code, your application will operate faster and more
effi ciently and lead to higher throughput.

563120c16.indd 565563120c16.indd 565 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

566 ❘ CHAPTER 16 OPTIMIZATION AND DEBUGGING

This chapter detailed a number of great tools that you can use to analyze the status of and debug
MySQL. You have many different ways to debug MySQL — many more than could fi t in this
book — but this chapter should point you in the right direction to diagnose any MySQL problem.

Understanding and knowing the EXPLAIN output and PHP profi ling output are essential skills for an
expert PHP and MySQL developer.

Using these skills and the other skills outlined in this book, you can create fi nely tuned and robust
applications with PHP and MySQL.

563120c16.indd 566563120c16.indd 566 2/18/10 9:12:16 AM2/18/10 9:12:16 AM

567

INDEX

[] (square brackets) in regular expressions, 50

A

abstract keyword, 3
abstract methods, 353
access permissions, views, 223–224
aCFB encryption, 504
ACID, 238

atomicity
non-transactional tables, 238–239
transactional tables, 239–240

consistency, 240–241
durability, 247–250
foreign keys, 38
isolation, 242

levels, 247
READ_COMMITTED, 244–245
READ_UNCOMMITTED, 245–246
REPEATABLE_READ, 242–244
replication, 247
SERIALIZABLE, 246–247

relational integrity, 35
ACLs (Access Control Lists), 473–474
Aksyonoff, Andrew, 369
algorithms, UDFs, 277
aliases, MySQL, 22
ALTER ROUTINE privilege, 230
alternation in regular expressions, 51
AND operator (MySQL), 33
anonymous functions, 78
ANSII control codes, 523
APC (Alternative PHP Cache), 132

confi guration, 132–133
installation, 132–133
serialization, 135
when to use, 138

appending, memcached, 166–167
application sample view, 67–69

Archive storage engine, 109–110
args key, 544
arguments

checking for string, 285
functions, in extensions, 331–334
type, checking, 274
UDFs, 192

ArrayAccess interface, 77–78
arrays

accessing, 347–349
associative, 70, 348
building, 347–349
tracking unlinks, 77

associative arrays, 70, 348
atomicity (ACID)

non-transactional tables, 238–239
transactional tables, 239–240

auditing, 500–501
authorization, memcached, 140
autoconf, 292

macros, 292
automation attacks, 514–515

B

b-tree indexes, 365
back-references in regular expressions, 53
basic authentication, 461–463
Beanstalk, 442
bi-directional encoding

mycrypt extension, 503–505
XOR Cipher, 501–503

binary, defi nition, 327
binary logging, 500

fi le analysis, 256–257
replication and, 251

bindings (SOAP), 537–538
bison, 308
Blackhole storage engine, 108–109

563120bindex.indd 567563120bindex.indd 567 2/18/10 9:12:26 AM2/18/10 9:12:26 AM

568

blocking sockets – code

blocking sockets, 346
BlogEntry class, polymorphism, 2
Boolean query syntax, 385
boundary characters in regular expressions, 49
breaking replication, 261–262
breakpoints in debugging, 302–303
built-in functions, 335–336
built-in rewrite maps, 451
bytecode caching, 132

C

C
C++ and, 308
UDFs, 273
Zend engine, 308

C++
C and, 308
UDFs, 273

C-libraries, UDFs and, 272
cache replication, 145
caching, 180–188

bytecode, 132
cache locality, 171–173
cache replication, 145
cache status, checking, 135–138
catalogue table, 142
deterministic, 144
fi le system, 145
introduction, 131
LRU (Least Recently Used), 140
memcached, 138–140

authorization, 140
consistent hashing, 140
replication, 140

non-deterministic, 144
opcode, 132
page, 145
partial page, 145
proactive, 145
read-through, 141, 216–219
session, 145
state, 145
strategies, 144–145
user, enabling, 133
write-back, 142
write-through caching, 141

_call() magic method, 11
callback functions, lambda functions, 78

Callback parameter, 81
callbacks, read-through caching callback, 165
calling methods, 356
_callStatic() magic method, 11
CAPTCHA (Complete Automated Public Turing test to

tell Computers and Humans Apart), 514
cardinality, 550–551
CAS (check and set), 174–176, 201–202
case sensitivity, joins (MySQL), 26–27
catalogue table, 142
CBC (Cipher Block Chaining) encryption, 504
CentOS, memcached installation, 145–146
CFB (Cipher-Feedback Mode) encryption, 504
character classes (MySQL), 60
character sets, 486–487

collations, 487–488
ciphers, 502
C10K problem, 132
class entry, 350
class key, 544
CLASS magic constant, 8
classes

CodeGen_PECL, example, 320–321
command-line scripts, 521–522
constants, 354
defi nition, 350–351
EmailValidator, 56–57
FileLog, 9–10
ForumTopic, 4
inheritance, 350–351
interfaces

implementing, 7
inheritance, 7

LoggingProxy, 13–14
methods, magic, 9–11
MultitonExample, 12–13
namespaces, 350–351
Node, defi ning, 3–4
Pagination, 75–76
SingletonExample, 11–12
variables, 3

CLI (Command Line Interface), 312
command-line scripts, 517

clients
memcached, 153
PECL/memcached, 162–163

_clone() magic method, 11
clone keyword, 12
closures, 81–83
code, critical section, 360

563120bindex.indd 568563120bindex.indd 568 2/18/10 9:12:26 AM2/18/10 9:12:26 AM

569

CodeGen_PECL – data types

CodeGen_PECL, 314
classes, example, 320–321
constants, defi ning, 318
dependencies, 338
extensions, as XML documents, 314
functions, defi ning, 316–317
globals, 318–319
INI directives, 318–319
interfaces, 321
methods, defi ning, 320
objects, defi ning, 319
properties, defi ning, 320
XML fi les, creating, 314–316

Cole, Jeremy, 483
collations of character sets, 487–488
colored text, 523–524
column privileges, 490–491
command-line scripts

classes, 521–522
CLI, 517
color, 523–524
creating, 517–524
cron jobs, 522–523
input

prompting for, 520–521
reading, 518–520

shebang, 518
commands
CREATE USER, 496
DROP USER, 497–498
GRANT, 268, 497
mysql_secure_installation, 494
replication, 261
REVOKE, 268, 497
SHOW, 491–492
SHOW TABLE STATUS, 92
SHOW.ENGINES, 89–90

comments
functions, 330
regular expressions, 49, 54

COMMIT command, implied, 250
complex joins (MySQL), 27
complex subqueries (MySQL), 47–49
compressed tables, MyISAM storage engine, 96
concrete decorators, 16
CONDITION clause, 229–230
conditional rewrite rules, 447–450

exclamation point, 448
testing for patterns, 449
testing to check fi le or path, 449

conditions, 229–230
config.m4 fi le, 310
config.w32 fi le, 310
consistency (ACID), 240–241
consistent hashing, 140
constants, 354

CodeGen_PECL, defi ning, 318
magic, 8–9
MINIT function, 357

constraints, 35
NOT NULL, 35–36
UNIQUE KEY, 37
UNSIGNED, 36

constructors, copy constructors, 329
contexts, 343–344
cookies, 471–473
copy constructor, 329
correlated subqueries (MySQL), 46
count() method, 73
countable interface, 73–74
CREATE ROUTINE privilege, 230
CREATE USER command, 496
CREATE VIEW privilege, 223
CREDITS fi le, 310
critical section, 360
cron jobs, 522–523
crontab, 522
CSRF attack, 511–514
CSV (Comma Separated Value), 112
CSV storage engine, 112
CTR (Counter Mode) encryption, 504
cURL, 528–529
current() method, 72
cursors, 229
.cvsignore fi le, 310

D

\d shorthand character, 50
Danga Interactive, 139
data capture

MySQL, 61
regular expressions, 53–54

data persistence, Memory storage engine, 103
data sources, Sphinx, 376–379
data storage, disk, 275
data types
ENUM, 36–37
function defi nitions fi le, 312–313
SET, 36–37

563120bindex.indd 569563120bindex.indd 569 2/18/10 9:12:26 AM2/18/10 9:12:26 AM

570

data warehousing – encryption

data warehousing
InfiniDB, 124
Infobright, 125
views, 225

databases, user authentication, 458
Day, Eric, 412
db_bytes() function, 283, 287
db_bytes_deinit() function, 284
db_bytes_init() function, 284
DealNews, 402
debug back-trace, 544
debuggers

gdb, 273
attaching to running process, 301–302

Microsoft debugger, 273
MySQL and, 564–565
UDFs, 273

debugging, 543
breakpoints, 302–303
debug back-trace, 544
literal values and, 304
MySQL

commands, 564
error log, 560–561
PROCESSLIST, 562–564
slow query log, 561–562

stack traces, creating, 544–545
stepping through code, 302–303
UDFs, 300–301

DECLARE clause, 229
decorating objects, 14
decorator pattern, 14–16
decrementing, memcached, 168–169
default users, new installation, 494
defi ning, interfaces, 7
delete() method, 168
DELETE command, triggers, 235–236
DELETE statement, 556–558
delta indexes, 389–394
dependencies, CodeGen_PECL, 338
dependent queries, 45
derived tables (MySQL), 46–47
deriving interfaces, 7
design patterns

decorator, 14–16
façade, 13–14
multiton, 11–13
observer, 18–19

proxy, 13–14
publisher/subscriber, 18–19
singleton, 11–13

destructors, 5
deterministic cache, 144
Digest Authentication, 507
digest authentication, 463–466
Digg, 402
DIR magic constant, 9
directives, rewrite rules, 444
RewriteCond, 447

directories
ext, 308
main, 308
project directory organization, 281–283
Zend, 308

disk space, InnoDB storage engine, 99–100
disk storage, 275
distributed indexes, 373
DML statements, Blackhole storage engine, 108
drivers, MySQL, 88
Drizzle, 124, 126
DROP USER command, 497–498
dumb server, 140
durability (ACID), 247–250

E

eAccelerator, 132
confi guration, 133–134
installation, 133–134
opcode, optimizer, 134
serialization, 135
when to use, 138

eBay Memory storage engine, 127
ECB (Electronic Code Book) encryption, 503
elements, unsetting, 77
EmailValidator class, 56–57
encoding

bi-directional
mycrypt extension, 503–505
XOR Cipher, 501–503

single-directional, 505–506
encryption

aCFB, 504
CBC, 504
CFB, 504
CTR, 504

563120bindex.indd 570563120bindex.indd 570 2/18/10 9:12:26 AM2/18/10 9:12:26 AM

571

ENFORCE_SAFE_MODE fl ag – foreign keys

ECB, 503
mycrypt extension, 503–505
nOFB, 504
OFB, 504
STREAM, 503

ENFORCE_SAFE_MODE fl ag, 342
engines, Zend, 308
ENUM data type, 36–37
envelopes, SOAP requests, 532
error handling, memcached, 178–179
error log, debugging MySQL, 560–561
errors, stack overfl ow, 544
errors/warnings, 346–347

values, 346–347
escaping quotes, 80
events

altering, 267–268
creating, 265–266
cron and, 264
disabling, 267–268
dropping, 267–268
event scheduler, enabling, 267
meta data, 269–270
privileges, 268
re-enabling, 268

eventual consistency, 402
excerpts, 395
expert regular expressions, 52–54
EXPERIMENTAL fi le, 310
EXPLAIN statement, 547–549
EXPLAIN syntax, 102
expressions. See regular expressions
ext directory, 308
extensibility, Federated storage engine, 113
extensions, 307

CodeGen_PECL, 314
as XML documents, 314
XML fi les, 314–316

ext_skel, 309
functions in

arguments, 331–334
built-in functions, 335–336
comments, 330
defi nitions, 329–331
helper functions, 339–340
returning values, 334–335
standard output, 340

printing, 361
source code, 308
UNIX/Linux, 308

variables in, 321–329
zval, 321–328

ext_skel, 309
funtion defi nitions fi le, 309

F

façade design pattern, 13–14
factory methods, 17
Falcon storage engine

overview, 118
parameters, 119
tables, 119–120

Federated storage engine
characteristics, 113–114
Federated Server, 116–117
fi les, 117
read operations, 112
standards, 113
table creation, 114–115
write statements, 112

feet_to_meters() function, 274
feet_to_meters_deinit() function, 274
feet_to_meters_init() function, 274
fetch method, 134
fetch worker (Gearman), 430–433
fetchall_hash_result() method, 299
file key, 544
FILE magic constant, 8
fi le system caching, 145
FileLog class, 9–10
fi les
config.m4, 310
config.w32, 310
CREDITS, 310
.cvsignore, 310
EXPERIMENTAL, 310
help, generating, 313
LICENSE, 316

final keyword, 3
Fitzpatrick, Brad, 139, 401
fl ags in streams, 341–342
fl ex, 308
fl ow control (MySQL), 34–35, 230
CASE function, 34
IF() function, 34
IFNULL() function, 35
NULLIF() function, 35

foreign keys, 37–40

563120bindex.indd 571563120bindex.indd 571 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

572

ForumTopic class – GearmanClient object

ForumTopic class, 4
polymorphism, 2

fstat() function, 275
FULLTEXT indexes, 365

Boolean mode, 367–368
creating, 366
issues, 368–369
Natural Language mode, 367
searches, 366

modifi er values, 366
function defi nitions fi le
ext_skel, 309
using, 312–313

function key, 544
Function magic constant, 9
functions

anonymous functions, 78
closures, 81–83
CodeGen_PECL, defi ning, 316–317
creating dynamically, 79
db_bytes(), 283, 287
db_bytes_deinit(), 284
db_bytes_init(), 284
extensions

arguments, 331–334
built-in functions, 335–336
comments, 330
defi nitions, 329–331
helper functions, 339–340
returning values, 334–335

feet_to_meters(), 274
feet_to_meters_deinit(), 274
feet_to_meters_init(), 274
fstat(), 275
hashing functions, 506
helper functions, 339–340
init(), 285
lambda functions, 65, 78
lambda-style, 78–81
lstat(), 290
MATCH(), 366
memcached, 191–192
MINIT, 350, 357
PHP API functions, consuming, 336–338
php_printf, 340, 361
serialize(), 9
setToCache(), 184
sprintf(), 290
standard output, 340
stat(), 275

stored, 226
stream functions, 341–343
thread-safe, 273
user defi ned (See UDFs (user defi ned functions))
zend_parase_parameters, 334

G

gcc, 308
gdb debugger, 273

running process, attaching to, 301–302
GDB (GNU Debugger), 564
Gearman, 142, 144

DealNews, 402
Digg, 402
eventual consistency, 402
Gearman MySQL UDFs, 407–409

gman_do(), 408
gman_servers_set(), 407–408
gman_sum(), 408–409

gearmand
installation, 404
running, 406–407

installation
Gearman MySQL UDFs, 405–406
gearmand, 404
job server, 404
PECL/Gearman, 404–405

job server, running, 406–407
language independence, 412
Livejournal and, 401, 402
map/reduce operations, 403
Narada and, 412
overview, 402–404
PHP and, 409–412
SixApart, 402
workers

fetch, 430–433
index, 434–435
insert, 429–430
running, 440
search, 433–434

Xing.com, 402
Yahoo!, 402

Gearman MySQL UDFs, 272
gman_do(), 408
gman_servers_set(), 407–408
gman_sum(), 408–409
installation, 405–406

GearmanClient object, 410

563120bindex.indd 572563120bindex.indd 572 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

573

GearmanWorker object – InnoDB storage engine

GearmanWorker object, 410
_get() magic method, 10
get method, 134
get_class() method, 6
getDelayedByKey() method, 173–174
get_fields() method, 299
getFromCache() method, 183
getMulti() method, 169–170
getServers() method, 178
globals, 357

accessing, 359
CodeGen_PECL, defi ning, 318–319
critical section, 360
defi ning, 358–359
thread safety, 359–361
True Global Resources, 360

gman_do() UDF, 408
gman_servers_set() UDF, 407–408
gman_sum() UDF, 408–409
GNU General Public License, 133
GPL (General Public License), 316
GRANT command, 268, 497
GROUP BY (MySQL), 30–31
GUID (Globally Unique Identifi er), 363

H

Hadoop, 442
HANDLER clause, 229–230
handlers, 229–230
hash tables

accessing, 348, 349
looping through, 349
modifying, 349

hashing, 505–506
hashing functions, 506
HashTable data type, 348
HAVING clause (MySQL), 32
help fi les, generating, 313
helper functions, 339–340
host permissions, 499
HTTP-based user authentication, 460

basic, 460, 461–463
digest, 460, 463–466

human readability, 222

I

IGNORE_PATH fl ag, 341
IGNORE_URL fl ag, 342

implementation, interfaces, 7
implied COMMIT, 250
incrementing, memcached, 168–169
index workers (Gearman), 434–435
indexes

common mistakes, 552–554
identifying, 549–550
optimizing, 552
types, 551

indexing
attributes, 376
b-tree indexes, 365
columns, 376
delta indexes, 389–394
distributed indexes, 373
fi elds, 376
FULLTEXT indexes, 365

Boolean mode, 367–368
creating, 366
issues, 368–369
Natural Language mode, 367

inherited, Sphinx, 381
merging indexes, 394–395
searches, 365–366
Sphinx, 372–373

Narada, 416–417
TokuDB, 124–125

InfiniDB, 124
Infobright, 125
INFORMATION_SCHEMA. See I_S
INFORMATION_SCHEMA schema, 289–292
inheritance, 350–351

classes inheriting interfaces, 7
inherited indexes, 381
INI directives, 357

CodeGen_PECL, defi ning, 318–319
defi ning, 358–359

init() function, 285
initialization, lazy initialization, 12
inner joins (MySQL), 21–23
ON, 22
syntax, 22–23
USING, 22

InnoDB storage engine, 97–98
disk space, 99–100
MyISAM comparison, 99–102
parameters, 98
primary key order, 100
SQL optimization, 102–103
tables, 98–99

563120bindex.indd 573563120bindex.indd 573 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

574

INSERT command – joins

INSERT command, triggers, 233–234
INSERT statement, 558

triggers, 233
insert worker (Gearman), 429–430
INSERT...ON DUPLICATE KEY UPDATE statement,

558–560
installation

APC, 132–133
eAccelerator, 133–134
Gearman, 404–407
libmemcached, 155
memcached

CentOS, 145–146
OpenSolaris, 147
from source, 147–148
testing, 151–152
Ubuntu, 146–147

Memcached Functions for MySQL, 193–196
Sphinx, 370–371
UDFs, 294–295

checking, 289–292
instanceof keyword, 6
instances, memcached, 160
instantiation, 2–6

interfaces, 7
integer values, incrementing/decrementing, 204–206
integration points for triggers, 232
interface keyword, 7
interfaces, 7–8
ArrayAccess, 77–78
CodeGen_PECL, 321
countable, 73–74
creating, 354–355
defi ning, 7
deriving, 7
implementing, 7
inheritance, 7
instantiation, 7
Iterator interface, 69–73
methods, 70
ReadableNode, 7
SeekableIterator, 75–76
testing variables against, 7

internal maps, 451
_invoke() magic method, 11
I_S

character sets, 486–487
collations, 487–488

column privileges, 490–491

extensions, 491
metadata, 486
MySQL

status variables, 484–485
system variables, 485–486

privilege tables, 488
profi ling table columns, 483–484
schema privileges, 489
SHOW command, 478
SHOW_PROCESSLIST, 482
status tables, 482
table objects, 479, 481–482
table privileges, 489–490
tables, 478, 479–480
user privileges, 488

isolation (ACID), 242
levels, 247
READ_COMMITTED, 244–245
READ_UNCOMMITTED, 245–246
REPEATABLE_READ, 242–244
replication, 247
SERIALIZABLE, 246–247

_isset() magic method, 10
isValidCipher() method, 519
Iterator interface, 69–73
IteratorIterator, 75
iterators, 67

actions, 70
IteratorIterator, 75
methods, 71
rewinding, 71

J

job servers, Gearman, 142
joins (MySQL), 19–21

aliases, 22
case sensitivity, 26–27
complex, 27
inner joins, 21–23

ON, 22
syntax, 22–23
USING, 22

left joins, 25
multiple tables, 20
outer joins, 23–24
right joins, 24–25
syntax, 25–27

563120bindex.indd 574563120bindex.indd 574 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

575

Kasindorf – maps

K

Kasindorf, Alan, 140
key() method, 72, 77
keywords
abstract, 3
clone, 12
final, 3
instanceof, 6
interface, 7
parent, 2
private, 3
protected, 3
public, 3
WITH ROLLUP, 31–32
static, 3, 12

Kickfi re storage engine, 128

L

lambda functions, 65, 78
lambda-style functions, 78–81
lazy initialization, 12
lazy processing, 143
left joins (MySQL), 25
libgearman, UDFs, 272
libmemcached, 153–154

features, 154
installation, 155
Memcached Functions for MySQL, 193
UDFs, 272
utility programs, 154

memcat, 155–156
memcp, 156
memerror, 158
memfl ush, 156
memrm, 157
memslap, 157–158
memstat, 157

libmysql, 88
LIB_MYSQLUDF_PREG library, 61
libraries

interfacing PHP with MySQL, 88
LIB_MYSQLUDF_PREG, 61
MySQL Stored Routines Library, 231

library dependencies, modules, compiling, 311
LICENSE fi le, 316
line key, 544
LINE magic constant, 8

literal values, 304
Livejournal, 402

Gearman and, 401
load() method, 182
loggin, rewrite rules, 450
LoggingProxy class, 13–14
logic operators (MySQL), 33–34
logos, 362–363
lookaheads, 52–53
lookbehinds, 52–53
lookups

random, 451–452
text, 451–452

loops, 65–67
hash tables, 349
iterators, 67

LRU (Least Recently Used) cache, 140
lstat() function, 290

M

Maesaka, Turo, 140
magic constants, 8–9
CLASS, 8
DIR, 9
FILE, 8
Function, 9
LINE, 8
METHOD, 9
NAMESPACE, 9

magic methods, 8
_call(), 11
_callStatic(), 11
classes, 9–11
_clone(), 11
_get(), 10
_invoke(), 11
_isset(), 10
_set(), 10
_set_state(), 11
_sleep(), 9
_unset(), 10
_wakeup(), 9

main directory, 308
map/reduce operations, 403
maps

internal, 451
rewrite maps, 450–455

built-in, 451

563120bindex.indd 575563120bindex.indd 575 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

576

Maria storage engine – Memcached Functions for MySQL

Maria storage engine, 120–121
MariaDB, 126
MATCH() function, 366
materialized view, 225
mcrypt extension, 503–505
mcrypt library, white space, 505
md5 hash, decrypting, 459
member variables

private, serialization, 10
visibilities, 3

memcached, 138–140. See also PECL/memcached
add method, 163
appending, 166–167
authorization, 140
cache locality, 171–173
CAS (check and swap), 174–176
class methods, 163–166
clients, 153
consistent hashing, 140
decrementing, 168–169
delete() method, 168
dumb server, 140
error handling, 178–179
functions, 191–192
get method, 164–165
getDelayedByKey() method, 173–174
getMulti() method, 169–170
getServers() method, 178
-h switch, 148
incrementing, 168–169
installation

CentOS, 145–146
OpenSolaris, 147
from source, 147–148
testing, 151–152
Ubuntu, 146–147

instances, 140, 160
mailing list, 140
memcapable key-value stores, 186
moxi proxy, 185–186
multi-get, 169–170
multi-set, 170–171
Narada and, 412
prepending, 166–167
read-through caching, 141
replace method, 164
replication, 140

servers
connecting to, 197–198
connection, 160–161

set method, 164
starting, 148–149
startup scripts, 149

Debian-based, 150
OpenSolaris, 151
Redhat-based, 150–151

statistics, 176–178
Tokyo Tyrant, 187–188
user contract, 140
using, 141–144
values, storing, 198–199
write-back caching, 142
write-through caching, 141

Memcached Functions for MySQL, 191–192
behavioral functions

memc_behavior_get, 207
memc_behavior_set, 207–208
memc_list_behaviors, 206–207
memc_list_distribution_types, 209
memc_list_hash_types, 209

data fetching functions, 204
data setting functions

memc_add, 200
memc_append, 202–203
memc_cas, 201
memc_delete, 203
memc_prepend, 202
memc_replace, 200–201
memc_set, 198–199
memc_set_by_key, 199–200

incrementing/decrementing
memc_decrement, 205–206
memc_increment, 204–205

installation
building source, 194
confi guring source, 194
func table, 196
installing UDF, 195

libmemcached, 196–197
Perl install utility, 195
source distribution directory, 212–214
statistical functions, 209–210

memc_stat_get_keys, 211
memc_stat_get_value, 211
memc_stats, 210–211

563120bindex.indd 576563120bindex.indd 576 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

577

memc_add function – MyISAM storage engine

triggers, 212
execution, 214–216

values, 272
version functions, 211

memc_libmemcached_version, 212
memc_udf_version, 212

memc_add function, 200
memc_append function, 202–203
memcat, 155–156
memc_behavior_get function, 207
memc_behavior_set function, 207–208
memc_cas function, 201
memc_decrement function, 205–206
memc_delete function, 203
memc_get function, 204
memc_increment function, 204–205
memc_libmemcached_version function, 212
memc_list_behaviors function, 206–207
memc_list_distribution_types function, 209
memc_list_hash_types function, 209
memcp, 156
memc_prepend function, 202
memc_replace function, 200–201
memc_server_count, 198
memc_servers_set, 197–198
memc_set function, 198–199
memc_set_by_key function, 199–200
memc_stat_get_keys function, 211
memc_stat_get_value function, 211
memc_stats function, 210–211
memc_udf_version function, 212
memerror, 158
memfl ush, 156
memory management, 328–329
Memory storage engine

data persistence, 103
parameters, 103
table-level locking, 104
table size maximum, 104
table usage, 103–107

memrm, 157
memslap, 157–158
memstat, 157
Merge storage engine, 110–111
merging indexes, 394–395
metadata, 477

events, 269–270
I_S, 486
stored routines, 230–231

METHOD magic constant, 9
methods, 351–353

abstract, defi ning, 353
calling, 356
CodeGen_PECL, defi ning, 320
count(), 73
current(), 72
factory methods, 17
fetch, 134
fetchall_hash_result(), 299
get, 134
get_class(), 6
get_fields(), 299
getFromCache(), 183
interface, 70
isValidCipher(), 519
iterator methods, 71
key(), 72, 77
load(), 182
magic, 8

classes, 9–11
next(), 73
print_r(), 543
rewind(), 71, 76
save(), 182
seek(), 75–76
set, 134
setMulti(), 170–171
touchPage(), 77
type hinting, 6
unlink(), 78
unset(), 78
valid(), 72
var_dump(), 543
visibilities, 3

Microsoft debugger, 273
MINIT function, 350, 357
moxi (memcached proxy), 185–186
MTA (Mail Transfer Agent), 55
multiton design patterns, 11–13
MultitonExample class, 12–13
MVCC (multiversion concurrency control), 242
MX (Mail Exchange), 55
MyISAM storage engine, 90–91, 93–94

compressed tables, 96
high read environment, 97
high write environment, 97
InnoDB comparison, 99–102
Merge storage engine and, 110–111

563120bindex.indd 577563120bindex.indd 577 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

578

MySQL – MySQL

MySQL instance crashes, 97
parameters, 94
row formats, 94–95
version, 96
when to use, 97

MySQL
binaries, custom, 89
character classes, 60
character sets, 486–487

collations, 487–488
connecting/disconnecting, 296–297
constraints, 35
debuggers, 564–565
debugging

commands, 564
error log, 560–561
PROCESSLIST, 562–564
slow query log, 561–562

drivers, 88
fl ow control, 32, 34–35

CASE function, 34
IF() function, 34
IFNULL() function, 35
NULLIF() function, 35

FULLTEXT indexes, 365
HAVING clause, 32
joins, 19–21

aliases, 22
case sensitivity, 26–27
complex, 27
inner joins, 21–23
left joins, 25
multiple tables, 20
outer joins, 23–24
right joins, 24–25
syntax, 25–27

libraries, interfacing with PHP, 88
logic operators, 33–34
logical operations, 32
logical operators

AND, 33
NOT, 33
OR, 33
XOR, 33

Memcached Functions for MySQL (See Memcached
Functions for MySQL)

privilege tables, 488

queries
dependent queries, 45
GROUP BY, 30–31
subqueries, 45–46

regular expressions, 59–62
data capture, 61
query fi lters, 62
replacing strings, 62

relational integrity, 35
replication

benefi ts, 264
binary log fi le analysis, 256–257
breaking, 261–262
commands, 261
confi guration options, 260
issues with, 263–264
master analysis, 255–256
selective, 262–263
slave analysis, 257–258
testing, 254–255, 259

security model, 496–497
SELECT statements, 28–29
server, hardening, 493–501
silent column changes, 45
status tables, I_S, 482
status variables, 484–485
storage engines, 87, 89

Archive, 109–110
available engines, 89–90
Blackhole, 108–109
CSV, 112
default, 93
defi ning, 90–91
Falcon, 118–120
features, 89
Federated, 112–118
information, 89–92
InnoDB, 97–103
Maria, 120–121
Memory, 103–107
Merge, 110–111
MyISAM, 93–97
non-transactional, 89–90
table, confi rming, 91–92
transactional, 89–90

system variables, 485–486
tables, derived tables, 46–47

563120bindex.indd 578563120bindex.indd 578 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

579

MySQL Native Driver – parameters

unauthenticated users, 494
UNION, 28–29
user privileges, 488

MySQL Native Driver (for PHP), 88
MySQL Stored Routines Library, 231
MySQLi Result objects, 307
mysqlnd, 88

as native PHP extension, 88
mysql_secure_installation command, 494

N

names, views, 225
NAMESPACE magic constant, 9
namespaces, 350–351
Narada

components, 413–415
confi guration fi le, 420–422
database tables, 415–416
downloading, 413
fl ow chart depiction, 439
Gearman and, 412

workers, running, 440
index page, 435–438
memcached and, 412
Narada class, 422–429

get() method, 425
getContent() method, 426
NaradaWorkerCallback() method, 428
runWorker() method, 428
searchIndex() method, 427
storeContent() method, 425
verify() method, 428

NaradaIndexTimer.php, 438–439
open source, 441–442
overview, 412
running, 439–441
Sphinx and, 412

setup, 416–429
Sun and, 412

Natural Language mode, 367
NDB storage engine, 127
networking

clients, building, 344–345
servers, building, 345–346

next() method, 73
NitroEDB storage engine, 127

Node class
defi ning, 3–4
polymorphism, 2

nOFB encryption, 504
non-blocking sockets, 346
non-deterministic cache, 144
non-transactional tables, 238–239
Norbye, Trond, 140
NOT NULL constraint, 35–36
NOT operator (MySQL), 33

O

object-oriented PHP, 2–19
interfaces, 7–8
magic constants, 8–9

objects
CodeGen_PECL, defi ning, 319
decorating, 14
identifying, 355–356
methods, 351–353
permissions, 496
properties, 353–354
table objects, creating, 223–224

observer pattern, 18–19
OFB (Output-Feedback Mode) encryption, 504
opcode caching, 132
open source projects

creating, 281–283
Narada, 441–442
subdirectories, 282
top-level directories, 282–283

open source UDFs, 272
OpenSolaris, memcached installation, 147
operating system, security, 495
optimization, SQL, InnoDB storage engine and,

102–103
OR operator (MySQL), 33
Our Delta patches, 126
outer joins (MySQL), 23–24

P

page caching, 145
Pagination class, 75–76
parameters
Callback, 81

563120bindex.indd 579563120bindex.indd 579 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

580

parent keyword – quote syntax in regular expressions

Memory storage engine, 103
MyISAM storage engine, 94
stored functions, 226–227
stored procedures, 226–227

parent keyword, 2
parsing, quoted strings, 80
partial page caching, 145
passwords

salts, 460
SHA-1 hash, 459

PBXT (Primebase Transaction) storage engine, 122–123
PEAR packages, 314
PECL extensions, 132
PECL/Gearman, installation, 404–405
PECL/memcached, 158–159

client behavior, 162–163
operations, 159–160
putting and retrieving data, 163–166

PECL (PHP Extension Community Library), 309
Percona builds for storage engine patches, 125
Perl, install utility, 195
permissions, 495–497

host permissions, 499
objects, 496
restarting, 498
triggers, 237
valid, 496
views, 223–224

PHP
Gearman and, 409–412
libraries, interfacing with MySQL, 88
pure authentication, 466–473

cookies, 471–473
sessions, user authentication and, 467–471
Sphinx and, 395–399

PHP API functions, consuming, 336–338
PHP license, 316
PHP_FE, 351
phpize program, 312
PHP_ME, 351
PHP_METHOD, 351
php_network.h, 344–345
php_printf function, 340, 361
php_socket_t, 345
php_stream, 341
polymorphism, 2–6
BlogEntry class, 2
ForumTopic class, 2
Node class, 2

ports, 537
prepending, memcached, 166–167
primary keys, InnoDB storage engine, 100
printing, extensions, 361
print_r() method, 543
private keyword, 3
private member variables, serialization, 10
privilege tables (I_S), 488
privileges

appropriate use, 499
column privileges, 490–491
event privileges, 268
removing, 497
schema privileges, 489
stored routines, 230–231
table privileges, 489–490
user privileges, 488

proactive caching, 145
PROCESSLIST, 562–564
project directory organization, 281–283
properties, 353–354

CodeGen_PECL, defi ning, 320
protected keyword, 3
protocol wrappers, 522

disabled, 529
prototyping, query builder and, 83–85
Proven Scaling, 483
proxy design pattern, 13–14
PSEA (pluggable storage engine architecture), 89
InnoDB Plugin, 121–122
PBXT, 122–123
XtraDB, 123

public keyword, 3
publisher/subscriber pattern, 18–19

Q

QEP (Query Execution Plan), 102
quantifi ers in regular expressions, 50
queries (MySQL)

dependent queries, 45
derived tables, 46–47
fi ltering, 62
GROUP BY, 30–31
subqueries

complex, 47–49
correlated subqueries, 46

query builder, prototyping, 83–85
quote syntax in regular expressions, 51

563120bindex.indd 580563120bindex.indd 580 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

581

quoted strings – rewrite rules

quoted strings, parsing, 80
quotes, escaping, 80

R

rainbow tables, 459
random lookups, 451–452
read operations, Federated storage engine, 112
read-through caching, 141, 216–219
read-through caching callback, 165
ReadableNode interface, 7
READ_COMMITTED, 244–245
READ_UNCOMMITTED, 245–246
records

returning, 72–73
seeking specifi c, 75–76
validating, 72–73

regular expressions
[] (square brackets), 50
alternation, 51
back-references, 53
boundary character, 49
comments, 49, 54
data capture, 53–54
exclamation point, 448
expert, 52–54
general patterns, 49–51
MySQL, 59–62
Perl-style, 54
POSIX-style, 54
quantifi ers, 50
quote syntax, 51
replacing strings, 58–59

relational integrity (MySQL), 35
REPEATABLE_READ, 242–244
REPLACE command, triggers, 232, 236–237
REPLACE statement, 558
replacing strings

MySQL, 62
regular expressions, 58–59

replay attacks, 507–509
replication

benefi ts, 264
binary log fi le analysis, 256–257
binary logging, 251
Blackhole storage engine, 108
breaking, 261–262
commands, 261
confi guration, options, 260

isolation (ACID), 247
issues with, 263–264
master analysis, 255–256
memcached, 140
purposes, 250–251
selective, 262–263
setup

master confi guration, 251–252
slave confi guration, 252
slave operation, 253

slave analysis, 257–258
testing, 254–255, 259

REPORT_ERRORS fl ag, 342
REST (Representational State Transfer), 524–531

controller, 525–526
cURL, 528–529
error codes, 533
requests, 529–531
resources, 525
status codes, 527–528
verbs, 524

result set array, returning, 297–300
returning records, 72–73
REVOKE command, 268, 497
rewind() method, 71, 76
rewinding an iterator, 71
rewrite maps, 450–455

built-in, 451
rewrite rules

conditional, 447–450
exclamation point, 448
testing for patterns, 449
testing to check fi le or path, 449

directives, 444
RewriteCond, 447

fl ags
chain, 446
env, 447
forbidden, 445
gone, 446
last, 446
multiple, 447
next, 446
nocase, 446
noescape, 446
nosubreq, 446
passthrough, 446
proxy, 446
qsappend, 446

563120bindex.indd 581563120bindex.indd 581 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

582

RewriteCond directive – SOAP

redirect, 445
skip, 446
type, 446

fl ow, 445–447
logging, 450
optimization, 450
purposes, 443, 444–445
random lookups, 451–452
structure, 444–445

RewriteCond directive, 447
right joins (MySQL), 24–25
root user, 494

changing, 498–499
routines, 226
RPCs (Remote Procedure Calls), 532

S

\s shorthand character, 50
Sallings, Dustin, 140
save() method, 182
scaling out, 138
schema privileges, 489
search engines, Narada, 412–442
search worker (Gearman), 433–434
searchd (Sphinx), 374–376
searches
FULLTEXT indexes, 366
indexes, 365–366
modifi er values, 366
Sphinx, 369, 383

Boolean query syntax, 385
extended query syntax, 385–386
search modes, 384
search utility, 386–388
sort modes, 384

security
additional, 500
auditing, 500–501
automation attacks, 514–515
backdoor, 498
bypassing, 498
CSRF, 511–514
ideal, 499–500
introduction, 493
operating system, 495
permissions, 495–497
replay attacks, protecting against, 507–509

SQL injection, protecting against, 506–507
XSS (cross-site scripting) attacks, 509–511

seek() method, 75–76
SeekableIterator interface, 75–76
seeking specifi c records, 75–76
SELECT statement, 217, 546–555
SELECT statements (MySQL), 28–29
selective replication, 262–263
SERIALIZABLE, 246–247
serialization, 9

APC, 135
eAccelerator, 135
private member variables, 10

serialize() function, 9
Server SQL, modes, 40–44
servers, memcached, connecting to, 197–198
session caching, 145
_set() magic method, 10
SET data type, 36–37
set method, 134
setMulti() method, 170–171
_set_state() magic method, 11
setToCache() function, 184
SHA-1 hash, 459
shebang, 518
shortened URL applications, 452–455
shorthand characters, 50
SHOW command, 478, 491–492
SHOW MASTER STATUS command, 256
SHOW TABLE STATUS command, 92
SHOW.ENGINES command, 89–90
SHOW_PROCESSLIST, 482
shutdown, restricting, 498
silent column changes in MySQL, 45
single-directional encoding, 505–506
singleton design patterns, 11–13
SingletonExample class, 11–12
SixApart, 402
skeleton code

compiling, 309–312
creating, 309–312

--skip-grants option, 498
_sleep() magic method, 9
slow query log, 561–562
SOAP (Simple Object Access Protocol)

bindings, 537–538
client, setup, 540–541
library, WSDL, 533–534

563120bindex.indd 582563120bindex.indd 582 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

583

socket pointers – storage engine

requests, envelopes, 532
server, setup, 538–540
web services, 532–533

socket pointers, valid, 55–56
sockets, blocking, 346
source distribution directory (Memcached Functions for

MySql), 212–214
Sphinx (SQL Phrase Index)

Aksyonoff, Andrew, 369
applications using, 395–399
data sources, 372, 376–379
delta indexes, 391–394
distributed indexes, 373
indexer, 374
indexer options, 382
indexes, 372–373

attributes, 376
columns, 376
defi ning, 379–381
fi elds, 376
inherited, 381

installation, 370–371
Narada and, 412, 416–417
PHP and, 395–399
programs, 369–370
sakila_main data source, 379
searchd, 374–376
searchd options, 382
searches, 383

Boolean query syntax, 385
extended query syntax, 385–386
modes, 384
search utility, 386–388
sort modes, 384

Sphinx.conf, 371–382
SphinxQL, 388–389
starting

running indexer, 382–383
searchd, 383

utilities, 369–370
sphinx_counter, 390
sprintf() function, 290
SQL injection, protecting against, 506–507
sql-mode-traditional-mylsam-sql, 42–43
sql-mode-traditional.sql, 42
SQL (Structured Query Language)
DELETE statement, 556–558
EXPLAIN statement, 547–549

indexes
common mistakes, 552–554
identifying, 549–550
optimizing, 552
types, 551

INSERT statement, 558
INSERT...ON DUPLICATE KEY UPDATE statement,

558–560
optimization, InnoDB storage engine and, 102–103
queries, optimizing, 545–558
REPLACE statement, 558
SELECT statement, 546–555
statements

identifying, 545–546
reducing, 545
UDFs, 300

UPDATE statement, 556
sql_mode=NO_ENGINE_SUBSTITUTION, 43–44
sql_mode=TRADITIONAL, 43
square brackets ([]) in regular expressions, 50
stack overfl ow errors, 544
stack traces

creating, 544–545
keys, 544

standalone storage engines, 124–125
standard output from functions, 340
stat() function, 275
state caching, 145
statement blocks, 228
statements
DELETE, 556–558
EXPLAIN, 547–549
INSERT, 558
INSERT...ON DUPLICATE KEY UPDATE, 558–560
REPLACE, 558
SELECT, 546–555
UPDATE, 556

static keyword, 3, 12
statistics, memcached, 176–178
stepping through code, 302–303
storage engine
eBay Memory, 127
integrity, 44–45
Kickfi re, 128
MySQL, 87, 89

Archive, 109–110
available engines, 89–90
Blackhole, 108–109

563120bindex.indd 583563120bindex.indd 583 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

584

stored functions – STREAM_USE_URL fl ag

CSV, 112
default, 93
defi ning, 90–91
Falcon, 118–120
features, 89
Federated, 112–118
information, 89–92
InnoDB, 97–103
Maria, 120–121
Memory, 103–107
Merge, 110–111
MyISAM, 93–97
non-transactional, 89–90
table, confi rming, 91–92
transactional, 89–90

NDB, 127
NitroEDB, 127
patch products

Our Delta, 126
Percona builds, 125

PSEA
InnoDB Plugin, 121–122
PBXT, 122–123
XtraDB, 123

standalone products, 124
Virident, 128

stored functions, 226
characteristics, 228
parameters, 226–227

stored procedures, 226
characteristics, 228
parameters, 226–227

stored routines
conditions, 229–230
disadvantages, 231
extending, 231
fl ow control, 230
handlers, 229–230
logic

cursors, 229
variables, 228–229

meta data, 230–231
MySQL Stored Routines Library, 231
privileges, 230–231

STREAM encryption, 503
stream functions, 341–343
php_register_url_stream_wrapper, 343
php_register_url_stream_wrapper_

volatile, 343
php_stream_close, 343

php_stream_context_alloc, 343
php_stream_context_del_link, 343
php_stream_context_free, 343
php_stream_context_get_link, 343
php_stream_context_get_option, 343
php_stream_context_set, 343
php_stream_context_set_link, 343
php_stream_context_set_option, 343
php_stream_copy_to_mem, 343
php_stream_copy_to_stream, 343
php_stream_copy_tostream_ex, 343
php_stream_eof, 343
php_stream_flush, 343
php_stream_free, 343
php_stream_from_persistent_id, 343
php_stream_getc, 343
php_stream_get_line, 343
php_stream_get_record, 343
php_stream_locate_url_wrapper, 343
php_stream_mkdir, 343
php_stream_opendir, 343
php_stream_open_wrapper, 343
php_stream_open_wrapper_ex, 343
php_stream_putc, 343
php_stream_puts, 343
php_stream_read, 343
php_stream_readdir, 343
php_stream_rewind, 343
php_stream_rmdir, 343
php_stream_scandir, 343
php_stream_seek, 343
php_stream_set_options, 343
php_stream_stat, 343
php_stream_tell, 343
php_stream_wrapper_log_error, 343
php_stream_write, 343
php_unregister_url_stream_wrapper, 343
php_unregister_url_stream_wrapper_

volatile, 343
STREAM_ASSUME_REALPATH fl ag, 342
STREAM_DISABLE_OPEN_BASEDIR fl ag, 342
STREAM_DISABLE_URL_PROTECTION fl ag, 342
STREAM_MUST_SEEK fl ag, 342
STREAM_ONLY_GET_HEADERS fl ag, 342
STREAM_OPEN_FOR_INCLUDE fl ag, 342
STREAM_OPEN_PERSISTENT fl ag, 342
streams

fl ags, 341–342
validation, 341

STREAM_USE_URL fl ag, 342

563120bindex.indd 584563120bindex.indd 584 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

585

STREAM_WILL_CAST fl ag – UDFs

STREAM_WILL_CAST fl ag, 342
strings

converting to, 327–328
quoted, parsing, 80
replacing

MySQL, 62
regular expressions, 58–59

as zvals, 326–328
subqueries (MySQL), 45–46

complex, 47–49
correlated subqueries, 46
derived tables, 46–47

Sun, Narada and, 412
syntax

joins, 25–27
triggers, 233

T

table-level locking, 104
table objects, creating, 223–224
table privileges, 489–490
table storage engines (MySQL), confi rming, 91–92
tables

building, 362
non-transactional, 238–239
transactional, 239–240

tables InnoDB storage engine, 98–99
tables (MySQL)

aliases, 22
derived tables, 46–47

terminal types, 6
testing

memcached installation, 151–152
replication, 254–255, 259
unit testing, factory methods, 17
variables against interfaces, 7
zval, 323–324

tests fi le, 310
text lookups, 451–452
thread-safe functions, 273
thread safety, globals, 359–361
TokuDB, 124–125
Tokyo Tyrant, 187–188
touchPage() method, 77
tracking, unlinks, 77
transactional tables, 239–240

transactions, 237–238
isolation level, 242

transparency, Federated storage engine, 113
triggers

defi ning, 232
DELETE command, 235–236
INSERT command, 233–234
integration points, 232
Memcached Functions for MySQL, 212

execution, 214–216
permissions, 237
REPLACE command, 236–237
syntax, 233
UPDATE statement, 234–235

True Global Resources, 360
TSRM (Thread Safe Resource Management), 359
tsrm_mutex, 360
Turck MMCache, 133
Turing Test, automation attacks, 514
type hinting, 6
type key, 544

U

Ubuntu, memcached installation, 146–147
UDFs (user defi ned functions), 191, 231, 271

algorithms, 277
arguments, 192
building, 292–294
C-libraries, 272
coding, 281
debuggers, 273
debugging, 300–301

breakpoints, 302–303
gdb, 301–302
literal values and, 304
stepping through code, 302–303

design, high-level, 275–277
developing, requirements, 273–274
example, 274–275
installation, 294–295

checking, 289–292
open source, 272

project creation, 281–283
overview, 272–273
PHP and, 296–300
required functions, 274

563120bindex.indd 585563120bindex.indd 585 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

586

unauthenticated users – WSDL

result set array, returning, 297–300
running, 295–296
source code implementation, 283–289
SQL statements, 300
thread-safe functions, 273

unauthenticated users, 494
UNION (MySQL), 28–29
UNIQUE KEY constraint, 37
unit testing, factory methods, 17
unlink() method, 78
unlinks, tracking, 77
_unset() magic method, 10
unset() method, 78
unsetting elements, 77
UNSIGNED constraint, 36
UPDATE statement, 219–220, 556

triggers, 234–235
updating, views, 225
URLs

rewrite rules, 444
shortened, applications, 452–455

USE_PATH fl ag, 342
user authentication

database, 458
HTTP-based, 460

basic, 460, 461–463
digest, 460, 463–466

need for, 457
password, as salted md5 hash, 459
pure PHP authentication, 466–473

cookies, 471–473
sessions, 467–471

unauthenticated users, 494
username, 458–459

user caching
enabling, 133
storage, 134

user privileges (I_S), 488
users

default, new installation, 494
root, 494

changing, 498–499
utilities, libmemcached, 154

memcat, 155–156
memcp, 156
memerror, 158
memfl ush, 156
memrm, 157

memslap, 157–158
memstat, 157

V

valid() method, 72
valid permissions, 496
validation

records, 72–73
streams, 341

values, returning, 334–335
var_dump() method, 543
variables, 228–229

classes, 3
confi guration, default values, 266
extensions, 321–329

zval, 321–328
member, serialization, 10
testing against interfaces, 7

views, 221–222
access permissions, 223–224
data warehousing, 225
materialized, 225
names, 225
updating, 225

Virident storage engine, 128
visibilities, 3

W

\w shorthand character, 50
Waffl egrid, 129
_wakeup() magic method, 9
warnings, 346–347
web services, 517

REST (Representational State Transfer), 524–531
SOAP, 532–533

WITH ROLLUP keyword, 31–32
write-back caching, 142
write statements, Federated storage engine, 112
write-through caching, 141
WSDL (Web Service Descriptor Language), 533–534

defi ning service, 538
messages, defi ning, 536
ports, 537
types, 535–536

complex, 535

563120bindex.indd 586563120bindex.indd 586 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

587

Xing.com – zvals

X

Xing.com, 402
XML documents

creating, 314–316
extensions as, 314

XOR Cipher, 501–503
XOR operator (MySQL), 33
XSS (cross-site scripting) attacks, 509–511
XtraDB storage engine, 123

Y

Yahoo!, 402

Z

Zend directory, 308
Zend engine, 308

memory management, 328–329
zend_parase_parameters function, 334
ZTS (Zend Thread Safety), 359
zval, 321–322

comparing, 324–326
reading, 324–326
setting, 323–324
testing, 323–324

zvals, strings as, 326–328

563120bindex.indd 587563120bindex.indd 587 2/18/10 9:12:27 AM2/18/10 9:12:27 AM

Programmer to ProgrammerTM

Take your library
wherever you go.

Now you can access complete Wrox books online, wherever
you happen to be! Every diagram, description, screen capture,
and code sample is available with your subscription to the
Wrox Reference Library. For answers when and where you need
them, go to wrox.books24x7.com and subscribe today!

Find books on

www.wrox.com

563120badvert.indd 590563120badvert.indd 590 2/18/10 9:12:42 AM2/18/10 9:12:42 AM

Related Wrox Books

Beginning PHP5, Apache, and MySQL Web Development
ISBN: 978-0-7645-7966-0
PHP, Apache, and MySQL are the three key open source technologies that form the basis for most active web servers. This
book guides you through the entire process of setting up your own site and walks you through every step, from the installation
of PHP, Apache, and MySQL to database management, security, and integration with other technologies. The multi-platform
approach addresses installation and usage on both Linux® and Windows®, and two common-themed, reusable web sites are
examined. Upon completion of this book, you’ll be able to create well designed, dynamic web sites using open source tools.

Beginning PHP 5.3
ISBN: 978-0-470-41396-8
As one of the most popular open-source web-programming languages in use today, PHP is an ideal server-side scripting language
that connects HTML-based web pages to a backend database for dynamic content. It allows you to create anything from a simple
form-to-email script to a web forum application, a blogging platform, or a content management system. This guide introduces
the PHP language and shows you how to write powerful web applications using PHP.

Professional PHP 5
ISBN: 978-0-7645-7282-1
This book has a pragmatic focus on how to use PHP in the larger scheme of enterprise-class software development. It covers
UML modeling and presents objects and object hierarchies that, when completed, comprise a robust toolkit that developers will
be able to reuse on future projects. This book is designed to arm you with the sort of constructs that are available out of the
box with platforms such as Java and .NET — from simple utility classes like Collection and Iterator, to more complex constructs
like Model/View/Controller architectures and state machines.

Professional PHP Design Patterns
ISBN: 978-0-470-49670-1
This book bridges the gap between the PHP and the older programming language by applying those tried and tested Design
Patterns to native PHP applications. It starts with an introduction to Design Patterns, describes their use and importance, and
details where you’ve seen them already. The book continues through a host of Design Patterns with code examples and explanations.
Finally, an in-depth case study shows you how to plan your next application using Design Patterns, how to program those patterns
in PHP, and how to revise and refactor an existing block of code using Design Patterns from the book. The author approaches
the concepts in technical yet usable formats that are familiar to both programmers who are self-taught and those with more
extensive formal education.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.comPrepared for TOM ZASKI/ email0 tzaski38@bellsouth.net Order number0 57462538 This PDF is for the purchaser’s personal use in accordance

with the Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit
www.wrox.com to purchase your own copy.

Andrew Curioso, Ronald Bradford, Patrick Galbraith

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

PHP and
MySQL®

Expert

Curioso
et al.

 $44.99 USA
 $53.99 CANProgramming Languages / PHP

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters, and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As the world’s most popular, general purpose, open source scripting
language, PHP is frequently used with MySQL to create high-traffic,
mission-critical applications. This indispensable book shares proven,
author-tested best practices and expert techniques that can be applied
to even the most demanding MySQL-driven PHP apps. You’ll explore
ways to extend MySQL with user-defined functions, write PHP
extensions, and solve problems when PHP and MySQL alone are not
enough and other techniques or third-party tools are necessary.

Expert PHP and MySQL:

• Reviews essential techniques, such as design patterns, complex
queries, and advanced regular expression

• Addresses advanced PHP concepts, such as iterators and closures

• Demonstrates using Gearman for multitasking in your web applications

• Discusses caching using memcached with MySQL and your PHP
web applications

• Discusses ways to create PHP Extensions and MySQL User Defined Functions

• Shows how to use Sphinx for search functionality in your PHP
web applications

Andrew Curioso is a senior software engineer at MyVBO (Virtual Business Office)
creating an innovative and scalable infrastructure for Rich Internet Applications using
PHP and MySQL.

Ronald Bradford is a technology strategist and advisor specializing in MySQL, Drizzle
and related web technologies. With a primary focus on architecture, design,
performance analysis and scalability of web applications, his consulting portfolio
ranges from Internet startups to Fortune 500 companies.

Patrick Galbraith is a principal software engineer at Lycos, adding new PHP and MySQL
offerings for Tripod Users, switching remaining apps using Oracle to MySQL as well as
other interesting projects.

Wrox Expert books present the wisdom accumulated by an experienced
author team who is recognized as experts by the programming community.
These experts challenge professional developers to examine their current
practices in pursuit of better results.

Best practices and expert techniques
for today’s most demanding apps Expert

PH
P and M

ySQ
L

®

	Wiley - Wrox Expert PHP and MySQL
	ABOUT THE AUTHORS
	ABOUT THE TECHNICAL EDITORS
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	Chapter 1: Techniques Every Expert Programmer Needs to Know
	OBJECT-ORIENTED PHP
	USING MYSQL JOINS
	MYSQL UNIONS
	GROUP BY IN MYSQL QUERIES
	LOGICAL OPERATIONS AND FLOW CONTROL IN MYSQL
	MAINTAINING RELATIONAL INTEGRITY
	SUBQUERIES IN MYSQL
	USING REGULAR EXPRESSIONS
	SUMMARY

	Chapter 2: Advanced PHP Concepts
	A PROBLEM THAT NEEDS SOLVING
	ITERATORS AND THE SPL
	LAMBDA FUNCTIONS AND CLOSURES
	SUMMARY

	Chapter 3: MySQL Drivers and Storage Engines
	MYSQL DRIVERS
	ABOUT MYSQL STORAGE ENGINES
	DEFAULT STORAGE ENGINES
	OTHER MYSQL SUPPLIED ENGINES
	PLUGGABLE ENGINES
	ENGINES AS STANDALONE PRODUCTS
	OTHER MYSQL OFFERINGS
	SUMMARY

	Chapter 4: Improving Performance through Caching
	EACCELERATOR AND APC
	MEMCACHED
	INSTALLING MEMCACHED
	STARTING MEMCACHED
	LIBMEMCACHED
	LIBMEMCACHED UTILITY PROGRAMS
	PECL/MEMCACHED
	PRACTICAL CACHING
	SUMMARY

	Chapter 5: memcached and MySQL
	THE MEMCACHED FUNCTIONS FOR MYSQL
	HOW THE MEMCACHED FUNCTIONS FOR MYSQL WORK
	INSTALLING THE MEMCACHED FUNCTIONS FOR MYSQL
	USING THE MEMCACHED FUNCTIONS FOR MYSQL
	SUMMARY

	Chapter 6: Advanced MySQL
	VIEWS
	STORED PROCEDURES AND FUNCTIONS
	TRIGGERS
	TRANSACTIONS
	REPLICATION
	EVENTS
	SUMMARY

	Chapter 7: Extending MySQL with User-Defined Functions
	INTRODUCTION TO UDFS
	DEVELOPING A UDF
	A PRACTICAL UDF EXAMPLE
	USING A UDF WITH PHP
	OTHER UDF SQL STATEMENTS
	DEBUGGING A UDF
	SUMMARY

	Chapter 8: Writing PHP Extensions
	SETTING UP THE BUILD ENVIRONMENT
	CREATING AN EXTENSION WITH EXT_SKEL
	CREATING AN EXTENSION WITH CODEGEN_PECL
	VARIABLES IN PHP EXTENSIONS
	USING FUNCTIONS IN EXTENSIONS
	INPUT/OUTPUT
	ARRAYS AND HASH TABLES
	OBJECTS AND INTERFACES
	CONSTANTS, INI DIRECTIVES, AND GLOBALS
	DESCRIBING AN EXTENSION
	SUMMARY

	Chapter 9: Full-Text Searching
	MYSQL FULLTEXT INDEXES
	A BETTER SOLUTION: THE SPHINX FULL-TEXT SEARCH ENGINE
	DEVELOPING APPLICATIONS THAT USE SPHINX
	SUMMARY

	Chapter 10: Multi-tasking in PHP and MySQL
	GEARMAN
	WHAT IS GEARMAN?
	NARADA: A SEARCH ENGINE APPLICATION
	SUMMARY

	Chapter 11: Rewrite Rules
	USING REWRITE RULES
	REWRITE MAPS
	SUMMARY

	Chapter 12: User Authentication
	DESIGNING THE DATABASE
	HTTP-BASED AUTHENTICATION
	PURE PHP AUTHENTICATION
	ACCESS CONTROL LISTS
	SUMMARY

	Chapter 13: Understanding the INFORMATION_SCHEMA
	USING THE INFORMATION_SCHEMA
	TABLE OBJECTS TABLES
	OTHER DATABASE OBJECTS TABLES
	MYSQL STATUS TABLES
	MYSQL META DATA TABLES
	MYSQL ACL PERMISSIONS TABLES
	INFORMATION_SCHEMA EXTENSIONS
	SHOW CROSS REFERENCE
	SUMMARY

	Chapter 14: Security
	HARDENING YOUR MYSQL SERVER
	ENCODING DATA
	PHP SECURITY RECIPES
	SUMMARY

	Chapter 15: Command-Line and Web Services
	CREATING COMMAND-LINE SCRIPTS
	CREATING WEB SERVICES
	SUMMARY

	Chapter 16: Optimization and Debugging
	DEBUGGING PHP
	OPTIMIZING QUERIES
	DEBUGGING MYSQL
	SUMMARY

	INDEX

