This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PHP Cookbook, 2nd Edition
By David Sklar, Adam Trachtenberg

Publisher: O'Reilly

Pub Date: August 2006

Print ISBN-10: 0-596-10101-5
Print ISBN-13: 978-0-59-610101-5
Pages: 810

Conkhouk

Table of Contents | Index
Overview

When it comes to creating dynamic web sites, the open source PHP language is red-hot property: used on more than
20 million web sites today, PHP is now more popular than Microsoft's ASP.NET technology. With our Cookbook's
unique format, you can learn how to build dynamic web applications that work on any web browser. This revised new
edition makes it easy to find specific solutions for programming challenges.

PHP Cookbook has a wealth of solutions for problems that you'll face regularly. With topics that range from beginner
questions to advanced web programming techniques, this guide contains practical examples -- or "recipes" -- for
anyone who uses this scripting language to generate dynamic web content. Updated for PHP 5, this book provides
solutions that explain how to use the new language features in detail, including the vastly improved object-oriented
capabilities and the new PDO data access extension. New sections on classes and objects are included, along with
new material on processing XML, building web services with PHP, and working with SOAP/REST architectures. With
each recipe, the authors include a discussion that explains the logic and concepts underlying the solution.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PHP Cookbook, 2nd Edition
By David Sklar, Adam Trachtenberg

Publisher: O'Reilly

Pub Date: August 2006

Print ISBN-10: 0-596-10101-5
Print ISBN-13: 978-0-59-610101-5

Pages: 810

Table of Contents | Index

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Rarina R K | leinA Qtatir \/ariahlac

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Rarina 11 2 Pravantinn Qaccinn Fivatinn

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Rarina 1R 12 Qharinn Fnerrnuntad Nata with Annthar \Wah Qita

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Rarina 28 1 |l lcinn tha PFAR Inctallar

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PHP Cookbook™, Second Edition

by David Sklar and Adam Trachtenberg

Copyright © 2006, 2002 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800)
998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi

Production Editor: Adam Witwer

Copyeditor: Adam Witwer

Proofreader: Sada Preisch

Indexer: Joe Wizda

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:

November 2002: First Edition.

August 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
PHP Cookbook, the image of a Galapagos land iguana, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN-10: 0-596-10101-5
ISBN-13: 978-0-596-10101-5
M]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Preface

PHP is the engine behind millions of dynamic web applications. Its broad feature set, approachable syntax, and support
for different operating systems and web servers have made it an ideal language for both rapid web development and
the methodical construction of complex systems.

One of the major reasons for PHP's success as a web scripting language is its origins as a tool to process HTML forms
and create web pages. This makes PHP very web-friendly. Additionally, it is eagerly promiscuous when it comes to
external applications and libraries. PHP can speak to a multitude of databases, and it knows numerous Internet
protocols. PHP also makes it simple to parse form data and make HTTP requests. This web-specific focus carries over to
the recipes and examples in the PHP Cookbook.

This book is a collection of solutions to common tasks in PHP. We've tried to include material that will appeal to
everyone from newbies to wizards. If we've succeeded, you'll learn something (or perhaps many things) from PHP
Cookbook. There are tips in here for everyday PHP programmers as well as for people coming to PHP with experience in
another language.

PHP, in source code and binary forms, is available for download for free from http://www.php.net/. The PHP web site
also contains installation instructions, comprehensive documentation, and pointers to online resources, user groups,
mailing lists, and other PHP resources.

Who This Book Is For

This book is for programmers who need to solve problems with PHP. If you don't know any PHP, make this your second
PHP book. The first should be Learning PHP 5, also from O'Reilly.

If you're already familiar with PHP, this book helps you overcome a specific problem and get on with your life (or at
least your programming activities.) The PHP Cookbook can also show you how to accomplish a particular task in PHP,
such as sending email or writing a SOAP server, that you may already know how to do in another language.
Programmers converting applications from other languages to PHP will find this book a trusty companion.

What Is in This Book

We don't expect that you'll sit down and read this book from cover to cover (although we'll be happy if you do!). PHP
programmers are constantly faced with a wide variety of challenges on a wide range of subjects. Turn to the PHP
Cookbook when you encounter a problem you need to solve. Each recipe is a self-contained explanation that gives you
a head start toward finishing your task. When a recipe refers to topics outside its scope, it contains pointers to related
recipes and other online and offline resources.

If you choose to read an entire chapter at once, that's okay. The recipes generally flow from easy to hard, with example
programs that "put it all together" at the end of many chapters. The chapter introduction provides an overview of the
material covered in the chapter, including relevant background material, and points out a few highlighted recipes of
special interest.

The book begins with four chapters about basic data types. Chapter 1 covers details like processing substrings,
manipulating case, taking strings apart into smaller pieces, and parsing comma-separated data. Chapter 2 explains
operations with floating-point numbers, random numbers, converting between bases, and number formatting. Chapter
3 shows you how to manipulate dates and times, format them, handle time zones and daylight saving time, and find
time to microsecond precision. Chapter 4 covers array operations like iterating, merging, reversing, sorting, and
extracting particular elements.

Next are three chapters that discuss program building blocks. Chpater 5 covers notable features of PHP's variable
handling, such as default values, static variables, and producing string representations of complex data types. The
recipes in Chpater 6 deal with using functions in PHP: processing arguments, passing and returning variables by
reference, creating functions at runtime, and scoping variables. Chapter 7 covers PHP's object-oriented capabilities,
with recipes on OOP basics as well as PHP 5's new features, such as magic methods, destructors, access control, and
reflection.

After the data types and building blocks come six chapters devoted to topics that are central to web programming.
Chapter 8 covers cookies, headers, authentication, working with query strings, and other fundamentals of web
applications. Chapter 9 covers processing and validating form input, displaying multipage forms, showing forms with
error messages, and guarding against problems such as cross-site scripting and multiple submission of the same form.
Chapter 10 explains the differences between DBM and SQL databases and, using PHP 5's PDO database access
abstraction layer, shows how to connect to a database, assign unique ID values, retrieve rows, change data, escape
quotes, and log debugging information. Chapter 11 covers PHP's built-in sessions module, which lets you maintain
information about a user as he moves from page to page on your web site. This chapter also highlights some of the
security issues associated with sessions. Chapter 12 discusses all things XML: PHP 5's SimpleXML extension and
revamped DOM functions, using XPath and XSLT, and reading and writing both RSS and Atom feeds. Chapter 13
explores topics useful to PHP applications that integrate with external web sites and client-side JavaScript such as
retrieving remote URLs, cleaning up HTML, and responding to an Ajax request.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The next three chapters are all about network interaction. Chapter 14 details the ins and outs of consuming a web
service'using an external REST, SOAP, or XML-RPC service from within your code. Chapter 15 handles the other side of
the web services equation'serving up REST, SOAP, or XML-RPC requests to others. Both chapters discuss WSDL,
authentication, headers, and error handling. Chapter 16 discusses other network services such as sending email
messages, using LDAP, and doing DNS lookups.

The next section of the book is a series of chapters on features and extensions of PHP that help you build applications
that are robust, secure, user-friendly, and efficient. Chpater 17 shows you how to create graphics, with recipes on
drawing text, lines, polygons, and curves. Chapter 18 focuses on security topics such as avoiding session fixation and
cross-site scripting, working with passwords, and encrypting data. Chapter 19 helps you make your applications globally
friendly and includes recipes localizing text, dates and times, currency values, and images, as well as working with text
in different character encodings, including UTF-8. Chapter 20 goes into detail on error handling, debugging techniques,
and writing tests for your code. Chapter 21 explains how to compare the performance of two functions and provides tips
on getting your programs to run at maximum speed. Chapter 22 covers regular expressions, including capturing text
inside of HTML tags, calling a PHP function from inside a regular expression, and using greedy and nongreedy matching.

Chapters 23 and 24 cover the filesystem. Chapter 23 focuses on files: opening and closing them, using temporary files,
locking file, sending compressed files, and processing the contents of files. Chapter 24 deals with directories and file
metadata, with recipes on changing file permissions and ownership, moving or deleting a file, and processing all files in
a directory.

Last, there are two chapters on topics that extend the reach of what PHP can do. Chapter 25 covers using PHP outside
of web programming. Its recipes cover command-line topics such as parsing program arguments and reading
passwords. Chapter 26 covers PEAR (the PHP Extension and Application Repository) and PECL (the PHP Extension
Community Library). PEAR is a collection of PHP code that provides functions and extensions to PHP. PECL is a similar
collection, but of extensions to PHP written in C. We use PEAR and PECL modules throughout the book and Chapter 26
shows you how to install and upgrade them.

Other Resources

Web Sites

There is a tremendous amount of PHP reference material online. With everything from the annotated PHP manual to
sites with periodic articles and tutorials, a fast Internet connection rivals a large bookshelf in PHP documentary
usefulness. Here are some key sites:

The Annotated PHP Manual: http://www.php.net/manual

Available in 17 languages, this site includes both official documentation of functions and language features as
well as user-contributed comments.

PHP mailing lists: http://www.php.net/mailing-lists.php

There are many PHP mailing lists covering installation, programming, extending PHP, and various other topics. A

read-only web interface to the mailing lists is at http://news.php.net/.

PHP Presentation archive: http://talks.php.net

A collection of presentations on PHP given at various conferences.

PEAR: http://pear.php.net

PEAR calls itself "a framework and distribution system for reuseable PHP components." You'll find lots of useful
PHP classes and sample code there. Read more about PEAR in Chapter 26.

PECL: http://pecl.php.net

PECL calls itself "a repository for PHP Extensions, providing a directory of all known extensions and hosting
facilities for downloading and development of PHP extensions." Read more about PECL in Chapter 26.

PHP.net: A Tourist's Guide: http://www.php.net/sites.php

This is a guide to the various web sites under the php.net umbrella.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PHP Knowledge Base: http://php.fagts.com

Many questions and answers from the PHP community, as well as links to other resources.

PHP DevCenter: http://www.onlamp.com/php

A collection of PHP articles and tutorials with a good mix of introductory and advanced topics.

Planet PHP: http://www.planet-php.net
An aggregation of blog posts by PHP developers and about PHP.

Zend Developer Zone: http://devzone.zend.com

A regularly updated collection of articles, tutorials, and code samples.

SitePoint Blogs on PHP: http://www.sitepoint.com/blogs/category/php

A good collection of information about and exploration of PHP.

Books

This section lists books that are helpful references and tutorials for building applications with PHP. Most are specific to
web-related programming; look for books on MySQL, HTML, XML, and HTTP.

At the end of the section, we've included a few books that are useful for every programmer regardless of language of
choice. These works can make you a better programmer by teaching you how to think about programming as part of a
larger pattern of problem solving:

® | earning PHP 5 by David Sklar (O'Reilly)

® Upgrading to PHP 5 by Adam Trachtenberg (O'Reilly)

® programming PHP by Rasmus Lerdorf, Kevin Tatroe, and Peter MaclIntyre (O'Reilly)

® Fssential PHP Tools by David Sklar (Apress)

® Advanced PHP Programming by George Schlossnagle (Sams)

® Extending and Embedding PHP by Sara Golemon (Sams)

® HTML and XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly)
® Dynamic HTML: The Definitive Guide by Danny Goodman (O'Reilly)

® Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)

® XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O'Reilly)

® MySQL Reference Manual, by Michael "Monty" Widenius, David Axmark, and MySQL AB (O'Reilly); also available
at http://www.mysgl.com/documentation/

® MySQL, by Paul DuBois (New Riders)

® Web Security, Privacy, and Commerce by Simson Garfinkel and Gene Spafford (O'Reilly)
® HTTP Pocket Reference, by Clinton Wong (O'Reilly)

® The Practice of Programming, by Brian W. Kernighan and Rob Pike (Addison-Wesley)

® programming Pearls by Jon Louis Bentley (Addison-Wesley)

® The Mythical Man-Month, by Frederick P. Brooks (Addison-Wesley)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Conventions Used in This Book

Programming Conventions

The examples in this book were written to run under PHP version 5.1.4. Sample code should work on both Unix and
Windows, except where noted in the text. We've generally noted in the text when we depend on a feature added to PHP
after version 4.3.0 or 5.0.0.

We also call out when a feature will be available in an yet-to-be-unreleased version of PHP, including PHP 6. In those
cases, please double check our code, as things can change during the development cycle.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic

Used for file and directory names, email addresses, and URLs, as well as for new terms where they are defined.

Constant width

Used for code listings and for keywords, variables, functions, command options, parameters, class names, and
HTML tags where they appear in the text.

Constant width bold

Used to mark lines of output in code listings and command lines to be typed by the user.

Constant width italic

Used as a general placeholder to indicate items that should be replaced by actual values in your own programs.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/phpckbk2
To comment or ask technical questions about this book, send email to:

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

_ .
Acknowledgments

Most importantly, a huge thanks to everyone who has contributed their time, creativity, and skills to making PHP what it
is today. This amazing volunteer effort has created not only hundreds of thousands of lines of source code, but also
comprehensive documentation, a QA infrastructure, lots of add-on applications and libraries, and a thriving user
community worldwide. It's a thrill and an honor to add the PHP Cookbook to the world of PHP.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Thanks also to our reviewers: Wez Furlong, James Nash, and Mark Oglia.

Thanks to Chris Shiflett and Clay Loveless for their important contributions. Without Chris, Chapter 18 would be much
slimmer. Without Clay, there'd be no Chapters 11, 20, 21, or 26. A special thanks to our tireless editor Tatiana Apandi.
Her masterful synthesis of the iron fist and the velvet glove provided the necessary glue to orchestrate the successful

completion of this edition. Without Tatiana, this book would have ended up as a 27-page pamphlet completed sometime
in 2012.

David Sklar

Thanks once again to Adam. We've been working together (in one way or another) for 11 years and PHPing together for
10. There is no one with whom I'd rather have written this book (except, to be completely honest, maybe Ben Franklin,
if he could somehow be brought back to life).

Thanks to the folks at Ning for providing (among other things) an opportunity to do fun things with PHP.

To my parents and my sister'thank you for your steady support and love, as well as for being unwitting test subjects
when I need to try out explanations of technical things that I hope are intelligible to non-geeks.

For patience, inspiration, and a toad, thanks to Susannah, who continually amazes me.

Adam Trachtenberg

I can't believe I've been using PHP for 10 years. I still remember the first time I used the language formerly known as
PHP/FI. Writing web applications in PHP was so much easier than what I had used before that I immediately dumped
everything else. The defining moment for me was when writing text to the error log didn't require a complicated
sequence of steps involving file handles, but sending a string of text to function straightforwardly named error_log().
Genius.

A big shout out to David. I would not'and could not'have written this without him. I, and PHP Cookbook, owe you a big
debt of gratitude.

It's tough to complete with Ben Franklin. However, please know that I, too, support the turkey as the official animal of
PHP.

Thanks to everyone at eBay for providing me with such a great opportunity to work with so many amazing people that
make up the entire eBay community.

Thanks to my parents, family, and friends for their support and encouragement.

Thanks to Elizabeth Hondl. I love you so very much. Stay tuned for my next book, the Maritime Disaster Cookbook.

Clay Loveless

I would like to thank Adam Trachtenberg, David Sklar, Tatiana Apandi and the rest of the crew at O'Reilly for making
this book possible, and for including me in the process. Special thanks to my wife, Kendra, and my son, Wade, for
allowing the time for me to be included.

Chris Shiflett

Thanks to Adam and David for writing such a great book and for giving me the opportunity to contribute.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KX
Chapter 1. Strings

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.0. Introduction
Strings in PHP are sequences of bytes, such as "We hold these truths to be self-evident" or "Once upon a time" or even
"111211211." When you read data from a file or output it to a web browser, your data are represented as strings.

PHP strings are binary-safe (i.e., they can contain null bytes) and can grow and shrink on demand. Their size is limited
only by the amount of memory that is available to PHP.

Usually, PHP strings are ASCII strings. You must do extra work to handle non-ASCII data
w@ like UTF-8 or other multibyte character encodings, see Chapter 19.

Similar in form and behavior to Perl and the Unix shell, strings can be initialized in three ways: with single quotes, with
double quotes , and with the "here document" (heredoc) format. With single-quoted strings, the only special characters
you need to escape inside a string are backslash and the single quote itself. Example 1-1 shows four single-quoted
strings.

Single-quoted strings

print 'T have gone to the store.’;

print 'T\'ve gone to the store.’;

print 'Would you pay $1.75 for 8 ounces of tap water?';

print 'In double-quoted strings, newline is represented by \n';

Example 1-1 prints:

I have gone to the store.

I've gone to the store.

Would you pay $1.75 for 8 ounces of tap water?

In double-quoted strings, newline is represented by \n

Because PHP doesn't check for variable interpolation or almost any escape sequences in single-quoted strings, defining
strings this way is straightforward and fast.

Double-quoted strings don't recognize escaped single quotes, but they do recognize interpolated variables and the
escape sequences shown in Table 1-1.

Table 1-1. Double-quoted string escape sequences

Escape sequence Character
\n Newline (ASCII 10)
\r Carriage return (ASCII 13)
\t Tab (ASCII 9)
\\ Backslash
\$ Dollar sign
\" Double quotes
\0 through \777 Octal value
\x0 tHRough \xFF Hex value

Example 1-2 shows some double-quoted strings.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Double-quoted strings

print "I've gone to the store.";

print "The sauce cost \$10.25.";

$cost = '$10.25";

print "The sauce cost $cost.";

print "The sauce cost \$\061\060.\x32\x35.";

Example 1-2 prints:

I've gone to the store.

The sauce cost $10.25.
The sauce cost $10.25.
The sauce cost $10.25.

The last line of Example 1-2 prints the price of sauce correctly because the character 1 is ASCII code 49 decimal and
061 octal. Character 0 is ASCII 48 decimal and 060 octal; 2 is ASCII 50 decimal and 32 hex; and 5 is ASCII 53 decimal
and 35 hex.

Heredoc -specified strings recognize all the interpolations and escapes of double-quoted strings, but they don't require
double quotes to be escaped. Heredocs start with <<< and a token. That token (with no leading or trailing whitespace),
followed by semicolon a to end the statement (if necessary), ends the heredoc. Example 1-3 shows how to define a
heredoc.

Defining a here document

print <<< END
It's funny when signs say things like:
Original "Root" Beer
"Free" Gift
Shoes cleaned while "you" wait
or have other misquoted words.
END;

Example 1-3 prints:

It's funny when signs say things like:
Original "Root" Beer
"Free" Gift
Shoes cleaned while "you" wait

or have other misquoted words.

Newlines, spacing, and quotes are all preserved in a heredoc. By convention, the end-of-string identifier is usually all
caps, and it is case sensitive. Example 1-4 shows two more valid heredocs.

More here documents

print <<< PARSLEY
It's easy to grow fresh:
Parsley

Chives

on your windowsill
PARSLEY;

print <<< DOGS

If you like pets, yell out:
DOGS AND CATS ARE GREAT!
DOGS;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Heredocs are especially useful for printing out HTML with interpolated variables, since you don't have to escape the
double quotes that appear in the HTML elements. Example 1-5 uses a heredoc to print HTML.

Printing HTML with a here document

if ($remaining_cards > 0) {
$url = '/deal.php';
$text = 'Deal More Cards';
}else {
$url = '/new-game.php’;
$text = 'Start a New Game';

}

print <<< HTML

There are $remaining_cards left.
<p>

$text

HTML;

In Example 1-5, the semicolon needs to go after the end-of-string delimiter to tell PHP the statement is ended. In some
cases, however, you shouldn't use the semicolon. One of these cases is shown in Example 1-6, which uses a heredoc
with the string concatenation operator .

Concatenation with a here document

$html = <<< END

<div class="$divClass">
<ul class="$ulClass">

END

. $listltem . '</div>";

print $html;

Assuming some reasonable values for the $divClass, $ulClass, and $listitem variables, Example 1-6 prints:

<div class="class1">
<ul class="class2">
 The List Item </div>

In Example 1-6, the expression needs to continue on the next line, so you don't use a semicolon. Note also that in
order for PHP to recognize the end-of-string delimiter, the . string concatenation operator needs to go on a separate line
from the end-of-string delimiter.

Individual bytes in strings can be referenced with square brackets. The first byte in the string is at index 0. Example 1-7
grabs one byte from a string.

Getting an individual byte in a string

$neighbor = 'Hilda';
print $neighbor[3];

Example 1-7 prints:

You can also use curly braces to access individual byte in a string. That is, $neighbor{3} is the same as $neighbor[3]. The

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

curly brace syntax is a newer addition to PHP. It prdvides a visual distinction between string indexing and array
indexing.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.1. Accessing Substrings

1.1.1. Problem

You want to know if a string contains a particular substring. For example, you want to find out if an email address
contains a @.

1.1.2. Solution
Use strpos() , as in Example 1-8.

Finding a substring with strpos()

<?php
if (strpos($_POST['email'], '@") === false) {
print 'There was no @ in the e-mail address!’;

}

?>

1.1.3. Discussion

The return value from strpos() is the first position in the string (the "haystack") at which the substring (the "needle")
was found. If the needle wasn't found at all in the haystack, strpos() returns false. If the needle is at the beginning of
the haystack, strpos() returns 0, since position 0 represents the beginning of the string. To differentiate between
return values of 0 and false, you must use the identity operator (===) or the notidentity operator (!==) instead of regular
equals (==) or not-equals (!=). Example 1-8 compares the return value from strpos() to false using ===. This test only
succeeds if strpos returns false, not if it returns 0 or any other number.

1.1.4. See Also

Documentation on strpos() at http://www.php.net/strpos.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 1.2. Extracting Substrings

1.2.1. Problem

You want to extract part of a string, starting at a particular place in the string. For example, you want the first eight
characters of a username entered into a form.

1.2.2. Solution
Use substr() to select your substring, as in Example 1-9.

Extracting a substring with substr()

<?php

$substring = substr($string,$start, $length);
$username = substr($_GET['username'],0,8);
?>

1.2.3. Discussion

If $start and $length are positive, substr() returns s$length characters in the string, starting at $start. The first character in the
string is at position 0. Example 1-10 has positive $start and $length.

Using substr() with positive $start and $length

print substr(‘watch out for that tree',6,5);

Example 1-10 prints:

out f

If you leave out $length, substr() returns the string from $start to the end of the original string, as shown in Example 1-11.

Using substr() with positive start and no length

print substr(‘watch out for that tree',17);

Example 1-11 prints:

t tree

If $start is bigger than the length of the string, substr() returns false..

If $start plus $length goes past the end of the string, substr() returns all of the string from $start forward, as shown in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Using substr() with length past the end of the string

print substr(‘watch out for that tree',20,5);

Example 1-12 prints:

ree

If $start is negative, substr() counts back from the end of the string to determine where your substring starts, as shown in

Example 1-13.

Using substr() with negative start

print substr(‘watch out for that tree',-6);
print substr(‘watch out for that tree',-17,5);

Example 1-13 prints:

t tree
out f

With a negative $start value that goes past the beginning of the string (for example, if $start is -27 with a 20-character
string), substr() behaves as if $start is 0.

If $length is negative, substr() counts back from the end of the string to determine where your substring ends, as shown

in Example 1-14.

Using substr() with negative length

print substr(‘watch out for that tree',15,-2);
print substr('watch out for that tree',-4,-1);

Example 1-14 prints:

hat tr
tre

1.2.4. See Also

Documentation on substr() at http://www.php.net/substr.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 1.3. Replacing Substrings

1.3.1. Problem

You want to replace a substring with a different string. For example, you want to obscure all but the last four digits of a
credit card number before printing it.

1.3.2. Solution
Use substr_replace(), as in Example 1-15.

Replacing a substring with substr_replace()

// Everything from position $start to the end of $old_string
// becomes $new_substring
$new_string = substr_replace($old_string,$new_substring,$start);

// $length characters, starting at position $start, become $new_substring
$new_string = substr_replace($old_string,$new_substring, $start, $length);

1.3.3. Discussion

Without the $length argument, substr_replace() replaces everything from $start to the end of the string. If $length is
specified, only that many characters are replaced:

print substr_replace('My pet is a blue dog.',fish.',12);
print substr_replace('My pet is a blue dog.','green’,12,4);

$credit_card = '4111 1111 1111 1111%
print substr_replace($credit_card,'xxxx ',0,strlen($credit_card)-4);

My pet is a fish.

My pet is a green dog.
xxxx 1111

If $start is negative, the new substring is placed at $start characters counting from the end of $old_string, not from the
beginning:

print substr_replace('My pet is a blue dog.','fish.",-9);
print substr_replace('My pet is a blue dog.','green’,-9,4);

My pet is a fish.
My pet is a green dog.

If $start and $length are O, the new substring is inserted at the start of $old_string:
print substr_replace('My pet is a blue dog.','Title: *,0,0);

Title: My pet is a blue dog.

The function substr_replace() is useful when you've got text that's too big to display all at once, and you want to
display some of the text with a link to the rest. Example 1-16 displays the first 25 characters of a message with an
ellipsis after it as a link to a page that displays more text.

Displaying long text with an ellipsis

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$r = mysql_query("SELECT id,message FROM messages WHERE id = $id") or die();
$ob = mysql_fetch_object($r);
printf('%s",

$ob->id, substr_replace($ob->message,’ ...",25));

The more-text.php page referenced in Example 1-16 can use the message ID passed in the query string to retrieve the
full message and display it.

1.3.4. See Also

Documentation on substr_replace() at http://www.php.net/substr-replace.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.4. Processing a String One Byte at a Time

1.4.1. Problem

You need to process each byte in a string individually.
1.4.2. Solution
Loop through each byte in the string with for. Example 1-17 counts the vowels in a string .

Processing each byte in a string

<?php
$string = "This weekend, I'm going shopping for a pet chicken.";
$vowels = 0;

for ($i = 0, $j = strlen($string); $i < $j; $i++) {
if (strstr(‘aeiouAEIOU',$string[$i])) {
$vowels++;
}
}

>

1.4.3. Discussion

Processing a string a character at a time is an easy way to calculate the "Look and Say" sequence, as shown in Example
1-18.

The "Look and Say" sequence

<?php
function lookandsay($s) {
// initialize the return value to the empty string
$r="
// $m holds the character we're counting, initialize to the first
// character in the string

$m = $s[0];
// $n is the number of $m's we've seen, initialize to 1
$n=1;

for ($i = 1, $j = strlen($s); $i < $j; $i++)

// if this character is the same as the last one

if ($s[$i] == $m) {
// increment the count of this character
$n++;

Yelse {
// otherwise, add the count and character to the return value
$r.= $n.$m;
// set the character we're looking for to the current one
$m = $s[$i];
// and reset the count to 1
$n=1;

}

// return the built up string as well as the last count and character
return $r.$n.$m;

for ($i =0, $s = 1; $i < 10; $i++) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$s = lookandsay($s);
print "$s
\n";
}

Example 1-18 prints:

1

11

21

1211

111221

312211

13112221

1113213211
31131211131221
13211311123113112211

It's called the "Look and Say" sequence because each element is what you get by looking at the previous element and
saying what's in it. For example, looking at the first element, 1, you say "one one." So the second element is "11."
That's two ones, so the third element is "21." Similarly, that's one two and one one, so the fourth elementis "1211,"
and so on.

1.4.4. See Also

Documentation on for at http://www.php.net/for; more about the "Look and Say" sequence at
http://mathworld.wolfram.com/LookandSaySequence.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.5. Reversing a String by Word or Byte

1.5.1. Problem

You want to reverse the words or the bytes in a string.
1.5.2. Solution

Use strrev() to reverse by byte, as in Example 1-19.

Reversing a string by byte

<?php
print strrev('This is not a palindrome.");
?>

Example 1-19 prints:

.emordnilap a ton si sihT

To reverse by words, explode the string by word boundary, reverse the words, and then rejoin, as in Example 1-20.

Reversing a string by word

<?php

$s = "Once upon a time there was a turtle.";
// break the string up into words

$words = explode(' ',$s);

// reverse the array of words

$words = array_reverse($words);

// rebuild the string

$s = implode(' ',$words);

print $s;

?>

Example 1-20 prints:

turtle. a was there time a upon Once

1.5.3. Discussion
Reversing a string by words can also be done all in one line with the code in Example 1-21.

Concisely reversing a string by word

<?php
$reversed_s = implode(' ',array_reverse(explode(' ',$s)));
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.5.4. See Also

Recipe 23.7 discusses the implications of using something other than a space character as your word boundary;
documentation on strrev() at http://www.php.net/strrev and array_reverse() at http://www.php.net/array-reverse.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 1.6. Expanding and Compressing Tabs

1.6.1. Problem

You want to change spaces to tabs (or tabs to spaces) in a string while keeping text aligned with tab stops. For
example, you want to display formatted text to users in a standardized way.

1.6.2. Solution

Use str_replace() to switch spaces to tabs or tabs to spaces, as shown in Example 1-22.

Switching tabs and spaces

<?php

$r = mysql_query("SELECT message FROM messages WHERE id = 1") or die();
$ob = mysql_fetch_object($r);

$tabbed = str_replace(' ',"\t",$ob->message);

no

$spaced = str_replace("\t"," ',$ob->message);

print "With Tabs: <pre>$tabbed</pre>";
print "With Spaces: <pre>$spaced</pre>";
?>

Using str_replace() for conversion, however, doesn't respect tab stops. If you want tab stops every eight characters, a
line beginning with a five-letter word and a tab should have that tab replaced with three spaces, not one. Use the
pc_tab_expand() function shown in Example 1-23 into turn tabs to spaces in a way that respects tab stops.

pc_tab_expand()

<?php
function pc_tab_expand($text) {
while (strstr($text,"\t")) {
$text = preg_replace_callback('/~([M\E\n]*)(\t+)/m’,'pc_tab_expand_helper', $text);

return $text;

}

function pc_tab_expand_helper($matches) {
$tab_stop = 8;

return $matches[1] .
str_repeat(' ',strlen($matches[2]) *
$tab_stop - (strlen($matches[1]) % $tab_stop));

$spaced = pc_tab_expand($ob->message);
?>

You can use the pc_tab_unexpand() function shown in Example 1-24 to turn spaces back to tabs.

pc_tab_unexpand()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
function pc_tab_unexpand($text) {
$tab_stop = 8;
$lines = explode("\n",$text);
foreach ($lines as $i => $line) {
// Expand any tabs to spaces
$line = pc_tab_expand($line);
$chunks = str_split($line, $tab_stop);
$chunkCount = count($chunks);
// Scan all but the last chunk
for ($j = 0; $j < $chunkCount - 1; $j++) {
$chunks[$j] = preg_replace('/ {2,}$/',"\t",$chunks[$]]);

b

// If the last chunk is a tab-stop's worth of spaces

// convert it to a tab; Otherwise, leave it alone

if ($chunks[$chunkCount-1] == str_repeat(' ', $tab_stop)) {
$chunks[$chunkCount-1] = "\t";

// Recombine the chunks
$lines[$i] = implode(",$chunks);
}
// Recombine the lines
return implode("\n",$lines);

$tabbed = pc_tab_unexpand($ob->message);
?>

Both functions take a string as an argument and return the string appropriately modified.

1.6.3. Discussion

Each function assumes tab stops are every eight spaces, but that can be modified by changing the setting of the
$tab_stop variable.

The regular expression in pc_tab_expand() matches both a group of tabs and all the text in a line before that group of
tabs. It needs to match the text before the tabs because the length of that text affects how many spaces the tabs
should be replaced with so that subsequent text is aligned with the next tab stop. The function doesn't just replace each
tab with eight spaces; it adjusts text after tabs to line up with tab stops.

Similarly, pc_tab_unexpand() doesn't just look for eight consecutive spaces and then replace them with one tab

character. It divides up each line into eight-character chunks and then substitutes ending whitespace in those chunks
(at least two spaces) with tabs. This not only preserves text alignment with tab stops; it also saves space in the string.

1.6.4. See Also

Documentation on str_replace() at http://www.php.net/str-replace, on preg_replace_callback() at
http://www.php.net/preg_replace_callback, and on str_split() at http://www.php.net/str_split. Recipe 22.10 has more

information on preg_replace_callback() .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.7. Controlling Case

1.7.1. Problem

You need to capitalize , lowercase, or otherwise modify the case of letters in a string. For example, you want to
capitalize the initial letters of names but lowercase the rest.

1.7.2. Solution
Use ucfirst() or ucwords() to capitalize the first letter of one or more words, as shown in Example 1-25.

Capitalizing letters

<?php

print ucfirst("how do you do today?");
print ucwords("the prince of wales");
?>

Example 1-25 prints:

How do you do today?
The Prince Of Wales

Use strtolower() or strtoupper() to modify the case of entire strings, as in Example 1-26.

Changing case of strings

print strtoupper("i'm not yelling!");
// Tags must be lowercase to be XHTML compliant
print strtolower('one");

Example 1-26 prints:

I'M NOT YELLING!
one

1.7.3. Discussion

Use ucfirst() to capitalize the first character in a string:

<?php

print ucfirst('monkey face');
print ucfirst("l monkey face");
?>

This prints:

Monkey face
1 monkey face

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Note that the second phrase is not "1 Monkey face."

Use ucwords() to capitalize the first character of each word in a string:
<?php

print ucwords('1 monkey face');

print ucwords("don't play zone defense against the philadelphia 76-ers");
?>

This prints:

1 Monkey Face
Don't Play Zone Defense Against The Philadelphia 76-ers

As expected, ucwords() doesn't capitalize the "t" in "don't." But it also doesn't capitalize the "e" in "76-ers." For
ucwords(), a word is any sequence of nonwhitespace characters that follows one or more whitespace characters. Since
both ' and - aren't whitespace characters, ucwords() doesn't consider the "t" in "don't" or the "e" in "76-ers" to be
word-starting characters.

Both ucfirst() and ucwords() don't change the case of non-first letters:
<?php
print ucfirst('macWorld says I should get an iBook');

print ucwords(‘eTunaFish.com might buy itunaFish.Com!");
?>

This prints:

MacWorld says I should get an iBook
ETunaFish.com Might Buy ItunaFish.Com!

The functions strtolower() and strtoupper() work on entire strings, not just individual characters. All alphabetic
characters are changed to lowercase by strtolower() and strtoupper() changes all alphabetic characters to uppercase:

<?php
print strtolower("I programmed the WOPR and the TRS-80.");

print strtoupper("'since feeling is first" is a poem by e. e. cummings.');
?>

This prints:

i programmed the wopr and the trs-80.
"SINCE FEELING IS FIRST" IS A POEM BY E. E. CUMMINGS.

When determining upper- and lowercase, these functions respect your locale settings.

1.7.4. See Also

For more information about locale settings, see Chapter 19; documentation on ucfirst() at http://www.php.net/ucfirst,

ucwords() at http://www.php.net/ucwords, strtolower() at http://www.php.net/strtolower, and strtoupper() at
http://www.php.net/strtoupper.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 1.8. Interpolating Functions and Expressions Within Strings

1.8.1. Problem

You want to include the results of executing a function or expression within a string.

1.8.2. Solution

Use the string concatenation operator (.) , as shown in Example 1-27, when the value you want to include can't be
inside the string.

String concatenation

<?php

print 'You have ".($_REQUEST['boys'] + $_REQUEST['girls']).' children.";
print "The word '$word' is ".strlen($word).' characters long.';

print 'You owe '.$amounts['payment']." immediately';

print "My circle's diameter is ".$circle->getDiameter().' inches.";

?>

1.8.3. Discussion

You can put variables, object properties, and array elements (if the subscript is unquoted) directly in double-quoted
strings:

<?php

print "I have $children children.";

print "You owe $amounts[payment] immediately.";
print "My circle's diameter is $circle->diameter inches.";
?>

Interpolation with double-quoted strings places some limitations on the syntax of what can be interpolated. In the
previous example, $amounts['payment'] had to be written as $amounts[payment] so it would be interpolated properly. Use curly
braces around more complicated expressions to interpolate them into a string. For example:

<?php

print "I have less than {$children} children.";

print "You owe {$amounts['payment']} immediately.";

print "My circle's diameter is {$circle->getDiameter()} inches.";
?>

Direct interpolation or using string concatenation also works with heredocs. Interpolating with string concatenation in
heredocs can look a little strange because the closing heredoc delimiter and the string concatenation operator have to
be on separate lines:

<?php

print <<< END

Right now, the time is

END

. strftime("%c’) . <<< END

but tomorrow it will be

END

. strftime('%c',time() + 86400);
>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Also, if you're interpolating with heredocs, make sure to include appropriate spacing for the whole string to appear
properly. In the previous example, Right now the time has to include a trailing space, and but tomorrow it will be has to include
leading and trailing spaces.

1.8.4. See Also

For the syntax to interpolate variable variables (such as ${"amount_$i"}), see Recipe 5.4; documentation on the string
concatenation operator at http://www.php.net/language.operators.string.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.9. Trimming Blanks from a String

1.9.1. Problem

You want to remove whitespace from the beginning or end of a string. For example, you want to clean up user input
before validating it.

1.9.2. Solution

Use ltrim(), rtrim(), or trim(). ltrim() removes whitespace from the beginning of a string, rtrim() from the end of a
string, and trim() from both the beginning and end of a string:

<?php

$zipcode = trim($_REQUEST(['zipcode']);
$no_linefeed = rtrim($_REQUEST['text']);
$name = Itrim($_REQUEST['name']);

?>

1.9.3. Discussion

For these functions, whitespace is defined as the following characters: newline, carriage return, space, horizontal and
vertical tab, and null .

Trimming whitespace off of strings saves storage space and can make for more precise display of formatted data or text
within <pre> tags, for example. If you are doing comparisons with user input, you should trim the data first, so that
someone who mistakenly enters "98052" as their zip code isn't forced to fix an error that really isn't one. Trimming
before exact text comparisons also ensures that, for example, "salami\n" equals "salami." It's also a good idea to
normalize string data by trimming it before storing it in a database.

The trim() functions can also remove user-specified characters from strings. Pass the characters you want to remove
as a second argument. You can indicate a range of characters with two dots between the first and last characters in the
range:

<?php

// Remove numerals and space from the beginning of the line
print Itrim('10 PRINT A$',' 0..9");

// Remove semicolon from the end of the line

print rtrim("SELECT * FROM turtles;',";");

?>

This prints:

PRINT A$
SELECT * FROM turtles

PHP also provides chop() as an alias for rtrim(). However, you're best off using rtrim() instead because PHP's chop()
behaves differently than Perl's chop() (which is deprecated in favor of chomp() , anyway), and using it can confuse
others when they read your code.

1.9.4. See Also

Documentation on trim() at http://www.php.net/trim, /trim() at http://www.php.net/ltrim, and rtrim() at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 1.10. Generating Comma-Separated Data

1.10.1. Problem

You want to format data as comma-separated values (CSV) so that it can be imported by a spreadsheet or database.

1.10.2. Solution

Use the fputcsv() function to generate a CSV-formatted line from an array of data. Example 1-28 writes the data in
$sales into a file.

Generating comma-separated data

<?php

$sales = array(array('Northeast’,'’2005-01-01','2005-02-01',12.54),
array('Northwest','2005-01-01','2005-02-01',546.33),
array('Southeast’,'2005-01-01','2005-02-01',93.26),
array('Southwest','2005-01-01','2005-02-01',945.21),
array(‘All Regions','--','--',1597.34));

$fh = fopen('sales.csv','w') or die("Can't open sales.csv");
foreach ($sales as $sales_line) {
if (fputcsv($fh, $sales_line) === false) {
die("Can't write CSV line");
b

fclose($fh) or die("Can't close sales.csv");

?>

1.10.3. Discussion

To print the CSV-formatted data instead of writing it to a file, use the special output stream php://output , @as shown in

Example 1-29.

Printing comma-separated data

<?php

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),
array('Northwest','2005-01-01','2005-02-01',546.33),
array('Southeast’,'2005-01-01','2005-02-01',93.26),
array('Southwest','2005-01-01','2005-02-01',945.21),
array('All Regions','--','--',1597.34));

$fh = fopen('php://output’,'w");
foreach ($sales as $sales_line) {
if (fputcsv($fh, $sales_line) === false) {
die("Can't write CSV line");
¥

}
fclose($fh);
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To put the CSV-formatted data into a string instead of printing it or writing it to a file, combine the technique in

Example 1-29 with output buffering, as shown in Example 1-30.

Putting comma-separated data into a string

<?php

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),
array('Northwest','2005-01-01','2005-02-01',546.33),
array('Southeast','2005-01-01','2005-02-01',93.26),
array('Southwest','’2005-01-01','2005-02-01',945.21),
array('All Regions','--','--',1597.34));

ob_start();
$fh = fopen('php://output’,'w') or die("Can't open php://output™);
foreach ($sales as $sales_line) {
if (fputcsv($fh, $sales_line) === false) {
die("Can't write CSV line");
b

¥

fclose($fh) or die("Can't close php://output™);
$output = ob_get_contents();
ob_end_clean();

?>

1.10.4. See Also

Documentation on fputcsv() at http://www.php.net/fputcsv; Recipe 8.12 more information about output buffering.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.11. Parsing Comma-Separated Data

1.11.1. Problem

You have data in comma-separated values (CSV) format'for example, a file exported from Excel or a database'and you
want to extract the records and fields into a format you can manipulate in PHP.

1.11.2. Solution

If the CSV data is in a file (or available via a URL), open the file with fopen() and read in the data with fgetcsv() .
Example 1-31 prints out CSV data in an HTML table.

Reading CSV data from a file

<?php
$fp = fopen('sample2.csv','r") or die("can't open file");
print "<table>\n";
while($csv_line = fgetcsv($fp)) {
print '<tr>";
for ($i = 0, $j = count($csv_line); $i < $j; $i++) {
print '<td>".htmlentities($csv_line[$i]).'</td>";

print "</tr>\n";

print '</table>\n";
fclose($fp) or die("can't close file");
?>

1.11.3. Discussion

In PHP 4, you must provide a second argument to fgetcsv() that is a value larger than the maximum length of a line in
your CSV file. (Don't forget to count the end-of-line whitespace.) In PHP 5 the line length is optional. Without it,
fgetcsv() reads in an entire line of data. (Or, in PHP 5.0.4 and later, you can pass a line length of 0 to do the same
thing.) If your average line length is more than 8,192 bytes, your program may run faster if you specify an explicit line
length instead of letting PHP figure it out.

You can pass fgetcsv() an optional third argument, a delimiter to use instead of a comma (,). However, using a
different delimiter somewhat defeats the purpose of CSV as an easy way to exchange tabular data.

Don't be tempted to bypass fgetcsv() and just read a line in and explode() on the commas. CSV is more complicated
than that, able to deal with field values that have, for example, literal commas in them that should not be treated as
field delimiters. Using fgetcsv() protects you and your code from subtle errors.

1.11.4. See Also

Documentation on fgetcsv() at http://www.php.net/fgetcsv .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 1.12. Generating Fixed-Width Field Data Records

1.12.1. Problem
You need to format data records such that each field takes up a set amount of characters.

1.12.2. Solution

Use pack() with a format string that specifies a sequence of space-padded strings. Example 1-32 transforms an array
of data into fixed-width records.

Generating fixed-width field data records

<?php

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),
array('The Scarlatti Inheritance','Robert Ludlum',1971),
array('The Parsifal Mosaic','William Styron',1979));

foreach ($books as $book) {
print pack('"A25A15A4', $book[0], $book[1], $book[2]) . "\n";
}

?>

1.12.3. Discussion

The format string A25A14A4 tells pack() to transform its subsequent arguments into a 25-character space-padded string,
a l4-character space-padded string, and a 4-character space-padded string. For space-padded fields in fixed-width
records, pack() provides a concise solution.

To pad fields with something other than a space, however, use substr() to ensure that the field values aren't too long
and str_pad() to ensure that the field values aren't too short. Example 1-33 transforms an array of records into fixed-
width records with .-padded fields.

Generating fixed-width field data records without pack()

<?php

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),
array(‘The Scarlatti Inheritance','Robert Ludlum',1971),
array('The Parsifal Mosaic','William Styron',1979));

foreach ($books as $book) {
$title = str_pad(substr($book[0], 0, 25), 25, .");
$author = str_pad(substr($book[1], 0, 15), 15, '.");
$year = str_pad(substr($book[2], 0, 4), 4, .");
print "$title$author$year\n";

}

?>

1.12.4. See Also

Documentation on pack() at http://www.php.net/pack and on str_pad() at http://www.php.net/str_pad. Recipe 1.16

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

discusses pack() format strings in more detail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 1.13. Parsing Fixed-Width Field Data Records

1.13.1. Problem

You need to break apart fixed-width records in strings.

1.13.2. Solution
Use substr() as shown in Example 1-34.

Parsing fixed-width records with substr()

<?php

$fp = fopen('fixed-width-records.txt','r') or die ("can't open file");

while ($s = fgets($fp,1024)) {
$fields[1] = substr($s,0,10); // first field: first 10 characters of the line
$fields[2] = substr($s,10,5); // second field: next 5 characters of the line
$fields[3] = substr($s,15,12); // third field: next 12 characters of the line
// a function to do something with the fields
process_fields($fields);

fclose($fp) or die("can't close file");
?>

Or unpack() , as shown in Example 1-35.

Parsing fixed-width records with unpack()

<?php
$fp = fopen('fixed-width-records.txt','r') or die ("can't open file");
while ($s = fgets($fp,1024)) {
// an associative array with keys "title", "author", and "publication_year"
$fields = unpack('A25title/A14author/A4publication_year',$s);
// a function to do something with the fields
process_fields($fields);

fclose($fp) or die("can't close file");
?>

1.13.3. Discussion

Data in which each field is allotted a fixed number of characters per line may look like this list of books, titles, and
publication dates:

<?php

$booklist=<<<END

Elmer Gantry Sinclair Lewis1927
The Scarlatti InheritanceRobert Ludlum 1971
The Parsifal Mosaic Robert Ludlum 1982
Sophie's Choice William Styron1979
END;

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In each line, the title occupies the first 25 characters, the author's name the next 14 characters, and the publication
year the next 4 characters. Knowing those field widths, you can easily use substr() to parse the fields into an array:

<?php

$books = explode("\n",$booklist);

for($i = 0, $j = count($books); $i < $j; $i++) {
$book_array[$i]['title'] = substr($books[$i],0,25);
$book_array[$i]['author'] = substr($books[$i],25,14);
$book_array[$i]['publication_year'] = substr($books[$i],39,4);

?>

Exploding $booklist into an array of lines makes the looping code the same whether it's operating over a string or a series
of lines read in from a file.

The loop can be made more flexible by specifying the field names and widths in a separate array that can be passed to
a parsing function, as shown in the pc_fixed_width_substr() function in Example 1-36.

pc_fixed_width_substr()

<?php
function pc_fixed_width_substr($fields,$data) {
$r = array();
for ($i = 0, $j = count($data); $i < $j; $i++) {
$line_pos = 0;
foreach($fields as $field_name => $field_length) {
$r[$il[$field_name] = rtrim(substr($data[$i],$line_pos, $field_length));
$line_pos += $field_length;
}

return $r;

¥

$book_fields = array('title' => 25,
‘author' => 14,
'publication_year' => 4);

$book_array = pc_fixed_width_substr($book_fields,$books);
?>

The variable $line_pos keeps track of the start of each field and is advanced by the previous field's width as the code
moves through each line. Use rtrim() to remove trailing whitespace from each field.

You can use unpack() as a substitute for substr() to extract fields. Instead of specifying the field names and widths as
an associative array, create a format string for unpack(). A fixed-width field extractor using unpack() looks like the
pc_fixed_width_unpack() function shown in Example 1-37.

pc_fixed_width_unpack()

<?php

function pc_fixed_width_unpack($format_string,$data) {
$r = array();
for ($i = 0, $j = count($data); $i < $j; $i++) {
$r[$i] = unpack($format_string,$data[$i]);
b

return $r;

¥

$book_array = pc_fixed_width_unpack('A25title/A14author/A4publication_year',
$books);

>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Because the A format to unpack() means "space-padded string," there's no need to rtrim() off the trailing spaces.

Once the fields have been parsed into $book_array by either function, the data can be printed as an HTML table, for
example:

<?php
$book_array = pc_fixed_width_unpack('A25title/A14author/A4publication_year',
$books);
print "<table>\n";
// print a header row
print '<tr><td>";
print join('</td><td>',array_keys($book_array[0]));
print "</td></tr>\n";
// print each data row
foreach ($book_array as $row) {
print '<tr><td>";
print join('</td><td>',array_values($row));
print "</td></tr>\n";

b
print '</table>\n";
?>

Joining data on </td><td> produces a table row that is missing its first <td> and last </td>. We produce a complete table
row by printing out <tr><td> before the joined data and </td></tr> after the joined data.

Both substr() and unpack() have equivalent capabilities when the fixed-width fields are strings, but unpack() is the
better solution when the elements of the fields aren't just strings.

If all of your fields are the same size, str_split() is a handy shortcut for chopping up incoming data. Available in PHP 5,
it returns an array made up of sections of a string. Example 1-38 uses str_split() to break apart a string into 32-byte
pieces.

Chopping up a string with str_split()

<?php

$fields = str_split($line_of_data,32);
// $fields[0] is bytes 0 - 31

// $fields[1] is bytes 32 - 63

// and so on

1.13.4. See Also

For more information about unpack(), see Recipe 1.16 and http://www.php.net/unpack; documentation on str_split()
at http://www.php.net/str_split; Recipe 4.8 discusses join() .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 1.14. Taking Strings Apart

1.14.1. Problem

You need to break a string into pieces. For example, you want to access each line that a user enters in a <textarea> form
field.

1.14.2. Solution

Use explode() if what separates the pieces is a constant string:

<?php
$words = explode(' ','My sentence is not very complicated');
?>

Use split() or preg_split() if you need a POSIX or Perl-compatible regular expression to describe the separator:

<?php

$words = split(" +','This sentence has some extra whitespace in it.");
$words = preg_split('/\d\. /','my day: 1. get up 2. get dressed 3. eat toast');
$lines = preg_split('/[\n\r]+/',$_REQUEST['textarea']);

?>

Use spliti() or the /i flag to preg_split() for case-insensitive separator matching:

<?php

$words = spliti(' x ','31 inches x 22 inches X 9 inches');
$words = preg_split('/ x /i','31 inches x 22 inches X 9 inches');
?>

1.14.3. Discussion

The simplest solution of the bunch is explode(). Pass it your separator string, the string to be separated, and an
optional limit on how many elements should be returned:

<?php

$dwarves = 'dopey,sleepy,happy,grumpy,sneezy,bashful,doc’;
$dwarf_array = explode(’,',$dwarves);

?>

This makes $dwarf_array a seven-element array, so print_r($dwarf_array) prints:

Array

(
[0] => dopey
[1] => sleepy
[2] => happy

[3] => grumpy
[4] => sneezy
[5] => bashful
[6] => doc

If the specified limit is less than the number of possible chunks, the last chunk contains the remainder:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
$dwarf_array = explode(',',$dwarves,5);
print_r($dwarf_array);

?>

This prints:

Array

(
[0] => dopey
[1] => sleepy
[2] => happy

[3] => grumpy
[4] => sneezy,bashful,doc

The separator is treated literally by explode(). If you specify a comma and a space as a separator, it breaks the string
only on a comma followed by a space, not on a comma or a space.

With split(), you have more flexibility. Instead of a string literal as a separator, it uses a POSIX regular expression:

<?php

$more_dwarves = 'cheeky,fatso, wonder boy, chunky,growly, groggy, winky';
$more_dwarf_array = split(', ?',$more_dwarves);

?>

This regular expression splits on a comma followed by an optional space, which treats all the new dwarves properly. A

dwarf with a space in his name isn't broken up, but everyone is broken apart whether they are separated by "," or ",
print_r($more_dwarf_array) prints:

Array

(
[0] => cheeky
[1] => fatso

[2] => wonder boy
[3] => chunky

[4] => growly

[5] => groggy

[6] => winky
)

Similar to split() is preg_split(), which uses a Perl-compatible regular expression engine instead of a POSIX regular
expression engine. With preg_split(), you can take advantage of various Perl-ish regular expression extensions, as well
as tricks such as including the separator text in the returned array of strings:

<?php

$math="3+2/7-9"%

$stack = preg_split('/ *([+\-\/*]) */',$math,-1,PREG_SPLIT_DELIM_CAPTURE);
print_r($stack);

?>

This prints:

Array

(
[0]=>3
[1]=>+
[2] =>2
[3]1=>/
[4]=>7
5] => -
[6]=>9

)

The separator regular expression looks for the four mathematical operators (+, -, /, *), surrounded by optional leading or

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

trailingr spaces. The PREG_SPLIT_DELIM_CAPTURE flag tells preg_split() to include the matches as part of the separator)
regular expression in parentheses in the returned array of strings. Only the mathematical operator character class is in
parentheses, so the returned array doesn't have any spaces in it.

1.14.4. See Also

Regular expressions are discussed in more detail in Chapter 22; documentation on explode() at
http://www.php.net/explode, split() at http://www.php.net/split, and preg_split() at http://www.php.net/preg-split .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | NEXT B
Recipe 1.15. Wrapping Text at a Certain Line Length

1.15.1. Problem

You need to wrap lines in a string. For example, you want to display text in <pre>/</pre> tags but have it stay within a
regularly sized browser window.

1.15.2. Solution

Use wordwrap() :

<?php
$s = "Four score and seven years ago our fathers brought forth

on this continent a new nation, conceived in liberty and

al
dedicated to the proposition that all men are created equal.”;

print "<pre>\n".wordwrap($s)."\n</pre>";
?>

This prints:

<pre>
Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that

all men are created equal.

</pre>

1.15.3. Discussion

By default, wordwrap() wraps text at 75 characters per line. An optional second argument specifies different line
length:

<?php
print wordwrap($s,50);
>

This prints:

Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty and dedicated to the proposition that all

men are created equal.

Other characters besides \n can be used for line breaks. For double spacing, use "\n\n":
<?php

print wordwrap($s,50,"\n\n");
?>

This prints:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty and dedicated to the proposition that all

men are created equal.

There is an optional fourth argument to wordwrap() that controls the treatment of words that are longer than the
specified line length. If this argument is 1, these words are wrapped. Otherwise, they span past the specified line
length:

<?php
print wordwrap(‘jabberwocky',5);

print wordwrap(‘jabberwocky',5,"\n",1);
?>

This prints:
jabberwocky

jabbe
rwock

y

1.15.4. See Also

Documentation on wordwrap() at http://www.php.net/wordwrap .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 1.16. Storing Binary Data in Strings

1.16.1. Problem

You want to parse a string that contains values encoded as a binary structure or encode values into a string. For
example, you want to store numbers in their binary representation instead of as sequences of ASCII characters.

1.16.2. Solution

Use pack() to store binary data in a string:

<?php
$packed = pack('S4',1974,106,28225,32725);
?>

Use unpack() to extract binary data from a string:

<?php
$nums = unpack('S4',$packed);
?>

1.16.3. Discussion

The first argument to pack() is a format string that describes how to encode the data that's passed in the rest of the
arguments. The format string S4 tells pack() to produce four unsigned short 16-bit numbers in machine byte order from
its input data. Given 1974, 106, 28225, and 32725 as input on a little-endian machine, this returns eight bytes: 182, 7,
106, 0, 65, 110, 213, and 127. Each two-byte pair corresponds to one of the input numbers: 7 * 256 + 182 is 1974; 0
* 256 + 106 is 106; 110 * 256 + 65 = 28225; 127 * 256 + 213 = 32725.

The first argument to unpack() is also a format string, and the second argument is the data to decode. Passing a
format string of S4, the eight-byte sequence that pack() produced returns a four-element array of the original numbers.
print_r($nums) prints:

Array

(
[1] => 1974
[2] => 106
[3] => 28225
[4] => 32725

)

In unpack(), format characters and their count can be followed by a string to be used as an array key. For example:

<?php

$nums = unpack('S4num’,$packed);
print_r($nums);

?>

This prints:

Array

(
[num1] => 1974
[num2] => 106
[num3] => 28225
[num4] => 32725

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Multiple format characters must be separated with / in unpack():

<?php

$nums = unpack('S1a/S1b/S1c/S1d',$packed);
print_r($nums);

?>

This prints:

Array

(
[a] => 1974
[b] => 106
[c] => 28225
[d] => 32725

The format characters that can be used with pack() and unpack() are listed in Table 1-2.

Table 1-2. Format characters for pack() and unpack()

Format character Data type
a NUL-padded string
A Space-padded string
h Hex string, low nibble first
H Hex string, high nibble first
C signed char
C unsigned char
s signed short (16 bit, machine byte order)
S unsigned short (16 bit, machine byte order)
n unsigned short (16 bit, big endian byte order)
v unsigned short (16 bit, little endian byte order)

i signed int (machine-dependent size and byte order)

I unsigned int (machine-dependent size and byte order)

I signed long (32 bit, machine byte order)

L unsigned long (32 bit, machine byte order)

N unsigned long (32 bit, big endian byte order)

Vv unsigned long (32 bit, little endian byte order)

f float (machine-dependent size and representation)
d double (machine-dependent size and representation)
X NUL byte

Back up one byte

@ NUL-fill to absolute position

For a, A, h, and H, a number after the format character indicates how long the string is. For example, A25 means a 25-
character space-padded string. For other format characters, a following number means how many of that type appear
consecutively in a string. Use * to take the rest of the available data.

You can convert between data types with unpack(). This example fills the array $ascii with the ASCII values of each
character in $s:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

$s = 'platypus’;

$ascii = unpack('c*',$s);
print_r($ascii);

?>

This prints:

Array

(
[1]=> 112
[2] => 108
[3]=>97
[4] => 116
[5]=> 121
[6] => 112
[7]1=> 117
[8] => 115

1.16.4. See Also

Documentation on pack() at http://www.php.net/pack and unpack() at http://www.php.net/unpack .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 1.17. Program: Downloadable CSV File

Combining the header() function to change the content type of what your PHP program outputs with the fputcsv()
function for data formatting lets you send CSV files to browsers that will be automatically handed off to a spreadsheet
program (or whatever application is configured on a particular client system to handle CSV files). Example 1-39 formats
the results of an SQL SELECT query as CSV data and provides the correct headers so that it is properly handled by the
browser.

Downloadable CSV file

<?php

require_once 'DB.php';
// Connect to the database
$db = DB::connect('mysql://david:hax0r@localhost/phpcookbook’);

// Retrieve data from the database

$sales_data = $db->getAll('SELECT region, start, end, amount FROM sales');
// Open filehandle for fputcsv()

$output = fopen('php://output’,'w") or die("Can't open php://output");

$total = 0;

// Tell browser to expect a CSV file
header('Content-Type: application/csv');
header('Content-Disposition: attachment; filename="sales.csv");

// Print header row
fputcsv($output,array('Region’,'Start Date','End Date','Amount'));
// Print each data row and increment $total
foreach ($sales_data as $sales_line) {
fputcsv($output, $sales_line);
$total += $sales_line[3];
}
// Print total row and close file handle
fputcsv($output,array('All Regions','--','--',$total));
fclose($output) or die("Can't close php://output");

?>

Example 1-39 sends two headers to ensure that the browser handles the CSV output properly. The first header, Content-
Type, tells the browser that the output is not HTML, but CSV. The second header, Content-Disposition, tells the browser not
to display the output but to attempt to load an external program to handle it. The filename attribute of this header
supplies a default filename for the browser to use for the downloaded file.

If you want to provide different views of the same data, you can combine the formatting code in one page and use a
query string variable to determine which kind of data formatting to do. In Example 1-40, the format query string variable
controls whether the results of an SQL SELECT query are returned as an HTML table or CSV.

Dynamic CSV or HTML

<?php
$db = new PDO('sqlite:/usr/local/data/sales.db');

$query = $db->query('SELECT region, start, end, amount FROM sales', PDO::FETCH_NUM);
$sales_data = $db->fetchAll();

$total = 0;

$column_headers = array('Region’,'Start Date','End Date','Amount’);

// Decide what format to use

$format = $_GET['format’] == 'csv' ? 'csv' : 'html’;

// Print format-appropriate beginning
if ($format == "csv') {
$output = fopen('php://output’,'w") or die("Can't open php://output™);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

header('Content-Type: application/csv');
header('Content-Disposition: attachment; filename="sales.csv"");
fputcsv($output,$column_headers);

}else {
echo '<table><tr><th>";
echo implode('</th><th>', $column_headers);
echo '</th></tr>";

b

foreach ($sales_data as $sales_line) {
// Print format-appropriate line
if ($format == "csv') {
fputcsv($output, $sales_line);
}else {
echo '<tr><td>' . implode('</td><td>', $sales_line) . '</td></tr>";
b

$total += $sales_line[3];
$total_line = array('All Regions','--",'--',$total);

// Print format-appropriate footer
if ($format == "csv') {
fputcsv($output, $total_line);
fclose($output) or die("Can't close php://output™);
}else {
echo '<tr><td>" . implode('</td><td>', $total_line) . '</td></tr>";
echo '</table>";

}

>

Accessing the program in Example 1-40 with format=csv in the query string causes it to return CSV-formatted output. Any
other format value in the query string causes it to return HTML output. The logic that sets $format to CSV or HTML could
easily be extended to other output formats like XML. If you have many places where you want to offer for download the
same data in multiple formats, package the code in Example 1-40 into a function that accepts an array of data and a

format specifier and then displays the right results .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KX
Chapter 2. Numbers

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.0. Introduction

In everyday life, numbers are easy to identify. They're 3:00 P.M., as in the current time, or $1.29, as in the cost of a
pint of milk. Maybe they're like I, the ratio of the circumference to the diameter of a circle. They can be pretty large,
like Avogadro's number, which is about 6 x 1023, In PHP, numbers can be all these things.

However, PHP doesn't treat all these numbers as "numbers." Instead, it breaks them down into two groups: integers
and floating-point numbers. Integers are whole numbers, such as -4, 0, 5, and 1,975. Floating-point numbers are
decimal numbers, such as -1.23, 0.0, 3.14159, and 9.9999999999.

Conveniently, most of the time PHP doesn't make you worry about the differences between the two because it
automatically converts integers to floating-point numbers and floating-point numbers to integers. This conveniently
allows you to ignore the underlying details. It also means 3/2 is 1.5, not 1, as it would be in some programming
languages. PHP also automatically converts from strings to numbers and back. For instance, 1+"1" is 2.

However, sometimes this blissful ignorance can cause trouble. First, numbers can't be infinitely large or small; there's a

minimum size of 2.2e-308 and a maximum size of about 1.8e308.1 If you need larger (or smaller) numbers, you must
use the BCMath or GMP libraries, which are discussed in Recipe 2.14.

U These numbers are actually platform-specific, but the values are common because they are from the 64-bit IEEE standard 754.

Next, floating-point numbers aren't guaranteed to be exactly correct but only correct plus or minus a small amount.
This amount is small enough for most occasions, but you can end up with problems in certain instances. For instance,
humans automatically convert 6 followed by an endless string of 9s after the decimal point to 7, but PHP thinks it's 6
with a bunch of 9s. Therefore, if you ask PHP for the integer value of that number, it returns 6, not 7. For similar
reasons, if the digit located in the 200th decimal place is significant to you, don't use floating-point numbers'instead,
use the BCMath and GMP libraries. But for most occasions, PHP behaves very nicely when playing with numbers and lets
you treat them just as you do in real life.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

& Py | | NEXT # |
Recipe 2.1. Checking Whether a Variable Contains a Valid Number

2.1.1. Problem

You want to ensure that a variable contains a number, even if it's typed as a string. Alternatively, you want to check if a
variable is not only a number, but is also specifically typed as a one.

2.1.2. Solution

Use is_numeric() to discover whether a variable contains a humber:

<?php

if (is_numeric(5)) {/*true */}

if (is_numeric('5")) {/*true */}

if (is_numeric("05")) {/*true */}
if (is_numeric(‘five")) { /* false */ }

if (is_numeric(OXDECAFBAD)) { /* true */}
if (is_numeric("10e200")) { /* true */}
?>

2.1.3. Discussion

Numbers come in all shapes and sizes. You cannot assume that something is a number simply because it only contains
the characters 0 through 9. What about decimal points, or negative signs? You can't simply add them into the mix
because the negative must come at the front, and you can only have one decimal point. And then there's hexadecimal
numbers and scientific notation.

Instead of rolling your own function, use is_numeric() to check whether a variable holds something that's either an
actual number (as in it's typed as an integer or floating point), or it's a string containing characters that can be
translated into a number.

There's an actual difference here. Technically, the integer 5 and the string 5 aren't the same in PHP. However, most of
the time you won't actually be concerned about the distinction, which is why the behavior of is_numeric() is useful.

Helpfully, is_numeric() properly parses decimal numbers, such as 5.1; however, humbers with thousands separators,
such as 5,100, cause is_numeric() to return false.

To strip the thousands separators from your number before calling is_numeric(), use str_replace():
<?php

is_numeric(str_replace($number, ', "));
?>

To check if your number is a specific type, there are a variety of related functions with self-explanatory names: is_float(
) (or is_double() or is_real(); they're all the same) and is_int() (or is_integer() or is_long()).

To validate input data, use the techniques from Recipe 9.3 instead of is_numeric(). That recipe describes how to check
for positive or negative integers, decimal numbers, and a handful of other formats.

2.1.4. See Also

Recipe 9.3 for validating numeric user input; documentation on is_numeric() at http://www.php.net/is-numeric and
str_replace() at http://www.php.net/str-replace.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.2. Comparing Floating-Point Numbers

2.2.1. Problem

You want to check whether two floating-point numbers are equal.

2.2.2. Solution

Use a small delta value, and check if the numbers have a difference smaller than that delta:

<?php
$delta = 0.00001;

$a = 1.00000001;
$b = 1.00000000;

if (abs($a - $b) < $delta) { /* $a and $b are equal */ }
?>

2.2.3. Discussion

Floating-point numbers are represented in binary form with only a finite number of bits for the mantissa and the
exponent. You get overflows when you exceed those bits. As a result, sometimes PHP (just like some other languages)
doesn't believe that two equal numbers are actually equal because they may differ toward the very end.

To avoid this problem, instead of checking if $a == $b, make sure the first number is within a very small amount ($delta)
of the second one. The size of your delta should be the smallest amount of difference you care about between two
numbers. Then use abs() to get the absolute value of the difference.

2.2.4. See Also

for information on rounding floating-point numbers; documentation on floating-point numbers in PHP at

http://www.php.net/language.types.float.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 2.3. Rounding Floating-Point Numbers

2.3.1. Problem

You want to round a floating-point number, either to an integer value or to a set number of decimal places.

2.3.2. Solution

To round a number to the closest integer, use round() :

$number = round(2.4); // $number = 2

To round up, use ceil() :

$number = ceil(2.4); // $number = 3

To round down, use floor() :

$number = floor(2.4); // $number = 2

2.3.3. Discussion

If a number falls exactly between two integers, PHP rounds away from 0:

$number = round(2.5); // 3

$number = round(-2.5); // -3

You may remember from Recipe 2.2 that floating-point numbers don't always work out to exact values because of how
the computer stores them. This can create confusion. A value you expect to have a decimal part of "0.5" might instead
be ".499999...9" (with a whole bunch of 9s) or ".500000...1" (with many Os and a trailing 1).

PHP automatically incorporates a little "fuzz factor " into its rounding calculations, so you don't need to worry about
this.

To keep a set number of digits after the decimal point, round() accepts an optional precision argument. For example,
perhaps you are calculating the total price for the items in a user's shopping cart:

<?php

$cart = 54.23;

$tax = $cart * .05;

$total = $cart + $tax; // $total = 56.9415

$final = round($total, 2); // $final = 56.94
?>

To round a number down, use the floor() function:

$number = floor(2.1); // 2
$number = floor(2.9); // 2
$number = floor(-2.1); // -3

$number = floor(-2.9); // -3

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

While to round up, use the ceil() function:
$number = ceil(2.1); // 3
$number = ceil(2.9); // 3
$number = ceil(-2.1); // -2

$number = ceil(-2.9); // -2

These two functions are named because when you're rounding down, you're rounding "toward the floor," and when
you're rounding up, you're rounding "toward the ceiling."

2.3.4. See Also

Recipe 2.2 for information on comparing floating-point numbers; documentation on ceil() at http://www.php.net/ceil,
on floor() at http://www.php.net/floor, and on round() at http://www.php.net/round .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.4. Operating on a Series of Integers

2.4.1. Problem

You want to apply a piece of code to a range of integers.

2.4.2. Solution

Use a for loop:

<?php
for ($i = $start; $i <= $end; $i++) {
plot_point($i);

?>

You can increment using values other than 1. For example:

<?php
for ($i = $start; $i <= $end; $i += $increment) {
plot_point($i);

?>

If you want to preserve the numbers for use beyond iteration, use the range() method:

<?php
$range = range($start, $end);
?>

2.4.3. Discussion

Loops like this are common. For instance, you could be plotting a function and need to calculate the results for multiple
points on the graph. Or you could be a student counting down the number of seconds until the end of school.

The for loop method uses a single integer and you have great control over the loop, because you can increment and
decrement $i freely. Also, you can modify $i from inside the loop.

In the last example in the Solution, range() returns an array with values from $start to $end. The advantage of using
range() is its brevity, but this technique has a few disadvantages. For one, a large array can take up unnecessary
memory. Also, you're forced to increment the series one number at a time, so you can't loop through a series of even
integers, for example.

It's valid for $start to be larger than $end. In this case, the nhumbers returned by range() are in descending order. Also,
you can use it to retrieve character sequences:

<?php
print_r(range('l', 'p"));
?>
Array
(
[0] =>1
[1]=>m
[2]=>n
[31=>0
[4]=>p

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.4.4. See Also

for details on initializing an array to a range of integers; documentation on range() at

http://www.php.net/range.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.5. Generating Random Numbers Within a Range

2.5.1. Problem

You want to generate a random number within a range of numbers.

2.5.2. Solution

Use mt_rand():

// random number between $upper and $lower, inclusive
$random_number = mt_rand($lower, $upper);

2.5.3. Discussion

Generating random numbers is useful when you want to display a random image on a page, randomize the starting
position of a game, select a random record from a database, or generate a unique session identifier.

To generate a random number between two endpoints, pass mt_rand() two arguments:

$random_number = mt_rand(1, 100);

Calling mt_rand() without any arguments returns a number between 0 and the maximum random number, which is
returned by mt_getrandmax() .

Generating truly random numbers is hard for computers to do. Computers excel at following instructions methodically;
they're not so good at spontaneity. If you want to instruct a computer to return random numbers, you need to give it a
specific set of repeatable commands; the fact that they're repeatable undermines the desired randomness.

PHP has two different random number generators, a classic function called rand() and a better function called mt_rand(
). MT stands for Mersenne Twister , which is named for the French monk and mathematician Marin Mersenne and the
type of prime numbers he's associated with. The algorithm is based on these prime numbers. Since mt_rand() is less
predictable and faster than rand(), we prefer it to rand().

If you're running a version of PHP earlier than 4.2, before using mt_rand() (or rand()) for the first time in a script, you
need to seed the generator by calling mt_srand() (or srand()). The seed is a number the random function uses as the
basis for generating the random numbers it returns; it's used to solve the repeatable versus random dilemma
mentioned earlier. Use the value returned by microtime(), a high-precision time function, to get a seed that changes
very quickly and is unlikely to repeat'qualities desirable in a good seed. After the initial seed, you don't need to reseed
the randomizer. PHP 4.2 and later automatically handle seeding for you, but if you manually provide a seed before
calling mt_rand() for the first time, PHP doesn't alter it by substituting a new seed of its own.

If you want to select a random record from a database , an easy way is to find the total number of fields inside the
table, select a random number in that range, and then request that row from the database, as in Example 2-1.

Selecting a random row from a database

<?php
$sth = $dbh->query('SELECT COUNT(*) AS count FROM quotes');
if ($row = $sth->fetchRow()) {
$count = $row[0];
}else {
die ($row->getMessage());

$random = mt_rand(0, $count - 1);
$sth = $dbh->query("SELECT quote FROM quotes LIMIT $random,1");

while ($row = $sth->fetchRow()) {
print $row[0] . "\n";

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This snippet finds the total number of rows in the table, computes a random number inside that range, and then uses
LIMIT $random,1 to SELECT one line from the table starting at position $random.

Alternatively, if you're using MySQL 3.23 or above, you can do this:
$sth = $dbh->query('SELECT quote FROM quotes ORDER BY RAND() LIMIT 1');

while ($row = $sth->fetchRow()) {
print $row[0] . "\n";

In this case, MySQL randomizes the lines, and then the first row is returned.

2.5.4. See Also

Recipe 2.6 for how to generate biased random numbers; documentation on mt_rand() at http://www.php.net/mt-rand
and rand() at http://www.php.net/rand; the MySQL Manual on rand() is found at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.6. Generating Biased Random Numbers

2.6.1. Problem

You want to generate random numbers, but you want these numbers to be somewhat biased, so that numbers in
certain ranges appear more frequently than others. For example, you want to spread out a series of banner ad
impressions in proportion to the number of impressions remaining for each ad campaign.

2.6.2. Solution
Use the pc_rand_weighted() function shown in Example 2-2.

pc_rand_weighted()

<?php
// returns the weighted randomly selected key
function pc_rand_weighted($numbers) {
$total = 0;
foreach ($numbers as $number => $weight) {
$total += $weight;
$distribution[$number] = $total;

}

$rand = mt_rand(0, $total - 1);

foreach ($distribution as $number => $weights) {
if ($rand < $weights) { return $number; }

}

b

?>

2.6.3. Discussion

Imagine if instead of an array in which the values are the number of remaining impressions, you have an array of ads in
which each ad occurs exactly as many times as its remaining number of impressions. You can simply pick an
unweighted random place within the array, and that'd be the ad that shows.

This technique can consume a lot of memory if you have millions of impressions remaining. Instead, you can calculate
how large that array would be (by totaling the remaining impressions), pick a random number within the size of the
make-believe array, and then go through the array figuring out which ad corresponds to the number you picked. For
instance:
$ads = array(‘ford' => 12234, // advertiser, remaining impressions

'att' => 33424,

'ibm' => 16823);

$ad = pc_rand_weighted($ads);

2.6.4. See Also

Recipe 2.5 for how to generate random numbers within a range .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4 PrEy | NEXT B
Recipe 2.7. Taking Logarithms

2.7.1. Problem

You want to take the logarithm of a number.

2.7.2. Solution

For logs using base e (natural log), use log():

$log = log(10); // 2.30258092994

For logs using base 10, use log10():
$log10 = log10(10); //1

For logs using other bases, pass the base as the second argument to /og():

$log2 = log(10, 2); // 3.3219280948874

2.7.3. Discussion

Both /og() and log10() are defined only for numbers that are greater than zero. If you pass in a number equal to or
less than zero, they return NAN, which stands for "not a number."

2.7.4. See Also

Documentation on /og() at http://www.php.net/log and /og10() at http://www.php.net/log10.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.8. Calculating Exponents

2.8.1. Problem

You want to raise a number to a power.

2.8.2. Solution

To raise e to a power, use exp():

$exp = exp(2); /] 7.3890560989307

To raise it to any power, use pow():
$exp = pow(2, M_E); // 6.5808859910179
$pow = pow(2, 10); // 1024

$pow = pow(2, -2); //0.25

$pow = pow(2, 2.5); // 5.6568542494924
$pow = pow(-2, 10); // 1024

$pow = pow(2, -2); //0.25
$pow = pow(-2, -2.5); // NAN (Error: Not a Number)

2.8.3. Discussion

The built-in constant M_E is an approximation of the value of e. It equals 2.7182818284590452354. So exp($n) and
pow(M_E, $n) are identical.

It's easy to create very large numbers using exp() and pow(); if you outgrow PHP's maximum size (almost 1.8e308),

see Recipe 2.14 for how to use the arbitrary precision functions. With exp() and pow(), PHP returns INF (infinity) if the
result is too large and NAN (not a number) on an error.

2.8.4. See Also

Documentation on pow() at http://www.php.net/pow, exp() at http://www.php.net/exp, and information on
predefined mathematical constants at http://www.php.net/math.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.9. Formatting Numbers

2.9.1. Problem

You have a number and you want to print it with thousands and decimals separators. For example, you want to display
the number of people who have viewed a page, or the percentage of people who have voted for an option in a poll.

2.9.2. Solution

Use the number_format() function to format as an integer:

$number = 1234.56;
print number_format($number); // 1,235 because number is rounded up

Specify a number of decimal places to format as a decimal:

print number_format($number, 2); // 1,234.56

2.9.3. Discussion

The number_format() function formats a number by inserting the correct decimal and thousands separators for your
locale. If you want to manually specify these values, pass them as the third and fourth parameters:

$number = 1234.56;
print number_format($number, 2, '@', '#"); // 1#234@56

The third argument is used as the decimal point and the last separates thousands. If you use these options, you must
specify both arguments.

By default, number_format() rounds the number to the nearest integer. If you want to preserve the entire number, but
you don't know ahead of time how many digits follow the decimal point in your number, use this:

$number = 1234.56; // your number
list($int, $dec) = explode('., $number);
print number_format($number, strlen($dec));

The localeconv() function provides locale-specific data, including number format information. For example:

setlocale(LC_ALL, 'zh_CN");

print_r(localeconv());

Array

(
[decimal_point] =>.
[thousands_sep] =>,
[int_curr_symbol] => CNY
[currency_symbol] => ¥
[mon_decimal_point] =>.
[mon_thousands_sep] =>,
[positive_sign] =>
[negative_sign] => -
[int_frac_digits] => 0
[frac_digits] => 0
[p_cs_precedes] => 1
[p_sep_by_space] => 0
[n_cs_precedes] => 1
[n_sep_by_space] => 0

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[p_sign_posn] => 1

[n_sign_posn] =>4

[grouping] => Array

(
[0]=>3
[1]=>3
)

[mon_grouping] => Array
[0]=>3
[1]1=>3

)

Use the decimal_point, thousands_sep, and other settings to see how to format a number for that locale.

2.9.4. See Also

Chapter 19 for information on internationalization and localization; documentation on /ocaleconv() at

http://www.php.net/localeconv and number_format() at http://www.php.net/number-format.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 2.10. Formatting Monetary Values

2.10.1. Problem

You have a number and you want to print it with thousands and decimals separators. For instance, you want to display
prices for items in a shopping cart.

2.10.2. Solution

Use the money_format() function with the %n formatting option for a national currency format:
$number = 1234.56;

setlocale(LC_MONETARY, 'en_US'");
print money_format('%n’, $number); // $1,234.56

For an international format, pass %i:

print money_format('%i', $number); // USD 1,234.56

2.10.3. Discussion

The money_format() function formats a number by inserting the correct currency symbol, decimal, and thousands
separators for your locale. It takes a formatting string and a number to format.

For easy formatting, use the %n and %i specifiers, for in-country and international standard currency displays,
respectively.

To get the correct country format, change the locale, as shown in Example 2-3.

Displaying currency using standard formats

<?php

$number = 1234.56;

setlocale(LC_MONETARY, 'en_US');

print money_format('%n’, $number); // $1,234.56
print money_format('%i', $number); // USD 1,234.56

setlocale(LC_MONETARY, 'fr_FR");
print money_format('%n’, $number); // 1 234,56 Eu
print money_format('%i', $number); // 1 234,56 EUR

setlocale(LC_MONETARY, 'it_IT");

print money_format('%n’, $number); // Eu 1.235
print money_format('%i', $number); // EUR 1.235
?>

If your locale is not set, the function returns the same string you provide. For more on setting locales, see Chapter 19.

You can also use printf-like formatting options, including (to wrap negative numbers inside of parentheses, and ! to
suppress the currency symbol, as shown in Example 2-4.

Displaying currency using custom formats

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

$number = -1234.56;

setlocale(LC_MONETARY, 'en_US");

print money_format('%n’, $number); // -$1,234.56

print money_format('%(n', $number); // ($1,234.56)

print money_format('%!n', $number); //-1,234.56
?>

A complete list of options, including left and right precision, fill characters, and disabling grouping is available at

http://www.php.net/money-format.
This function uses the underlying Unix strfmon() system function , so it is unavailable on Windows machines.

For more on currency formatting, including a substitute algorithm for Windows, see Recipe 19.6.

2.10.4. See Also

Recipe 19.6; documentation on money_format() at http://www.php.net/money-format.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.11. Printing Correct Plurals

2.11.1. Problem

You want to correctly pluralize words based on the value of a variable. For instance, you are returning text that depends
on the number of matches found by a search.

2.11.2. Solution

Use a conditional expression:

$number = 4;
print "Your search returned $number " . ($number == 1 ? 'hit' : 'hits') . .";

Your search returned 4 hits.

2.11.3. Discussion

The line is slightly shorter when written as:

print "Your search returned $number hit" . ($number ==1?":'s")."";

However, for odd pluralizations, such as "person" versus "people," we find it clearer to break out the entire word rather
than just the letter.

Another option is to use one function for all pluralization, as shown in the pc_may_pluralize() function in Example 2-5.

pc_may_pluralize()

<?php
function pc_may_pluralize($singular_word, $amount_of) {

// array of special plurals
$plurals = array(
'fish' => 'fish’,
'person' => 'people’,

)

// only one

if (1 == $amount_of) {
return $singular_word;

}

// more than one, special plural
if (isset($plurals[$singular_word])) {
return $plurals[$singular_word];

}

// more than one, standard plural: add 's' to end of word
return $singular_word . 's";

Here are some examples:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$number_of fish = 1;
print "I ate $number_of_fish " . pc_may_pluralize('fish’, $number_of_fish) . ".";

$number_of_people = 4;
print 'Soylent Green is ' . pc_may_pluralize('person', $number_of _people) . "!";

I ate 1 fish.
Soylent Green is people!

If you plan to have multiple plurals inside your code, using a function such as pc_may_pluralize() increases readability.
To use the function, pass pc_may_pluralize() the singular form of the word as the first argument and the amount as
the second. Inside the function, there's a large array, $plurals, that holds all the special cases. If the $amount is 1, you
return the original word. If it's greater, you return the special pluralized word, if it exists. As a default, just add an "s"
to the end of the word.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.12. Calculating Trigonometric Functions

2.12.1. Problem

You want to use trigonometric functions, such as sine, cosine, and tangent.

2.12.2. Solution

PHP supports many trigonometric functions natively: sin(), cos(), and tan():

$cos = co0s(2.1232);

You can also use their inverses: asin(), acos(), and atan():

$atan = atan(1.2);

2.12.3. Discussion

These functions assume all angles are in radians, not degrees. (See Recipe 2.13 if this is a problem.)

The function atan2() takes two variables $x and $y, and computes atan($x/$y). However, it always returns the correct
sign because it uses both parameters when finding the quadrant of the result.

For secant, cosecant, and cotangent, you should manually calculate the reciprocal values of sin(), cos(), and tan():
$n =.707;
$secant =1/ sin($n);

$cosecant = 1/ cos($n);
$cotangent = 1 / tan($n);

You can also use hyperbolic functions: sinh(), cosh(), and tanh(), plus, of course, asin(), acosh(), and atanh(). The
inverse functions, however, aren't supported on Windows.

2.12.4. See Also

Recipe 2.13 for how to perform trig operations in degrees, not radians; documentation on sin(') at
http://www.php.net/sin, cos() at http://www.php.net/cos, tan() at http://www.php.net/tan, asin() at
http://www.php.net/asin, acos() at http://www.php.net/acos, atan() at http://www.php.net/atan, and atan2() at
http://www.php.net/atan2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.13. Doing Trigonometry in Degrees, Not Radians

2.13.1. Problem

You have numbers in degrees but want to use the trigonometric functions.

2.13.2. Solution

Use deg2rad() and rad2deg() on your input and output:
$cosine = cos(deg2rad($degree));

2.13.3. Discussion

By definition, 360 degrees is equal to 2[radians, so it's easy to manually convert between the two formats. However,
these functions use PHP's internal value of I, so you're assured a high-precision answer. To access this number for
other calculations, use the constant M_PI, which is 3.14159265358979323846.

There is no built-in support for radians. This is considered a feature, not a bug.

2.13.4. See Also

i for trig basics; documentation on deg2rad() at http://www.php.net/deg2rad and rad2deg() at
http://www.php.net/rad2deg .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 2.14. Handling Very Large or Very Small Numbers

2.14.1. Problem

You need to use numbers that are too large (or small) for PHP's built-in floating-point numbers.

2.14.2. Solution

Use either the BCMath or GMP libraries.
Using BCMath:
$sum = bcadd('1234567812345678', '8765432187654321");

// $sum is now the string '9999999999999999'
print $sum;

Using GMP:
$sum = gmp_add('1234567812345678', '8765432187654321");

// $sum is now a GMP resource, not a string; use gmp_strval() to convert
print gmp_strval($sum);

2.14.3. Discussion

The BCMath library is easy to use. You pass in your numbers as strings, and the function returns the sum (or difference,
product, etc.) as a string. However, the range of actions you can apply to numbers using BCMath is limited to basic
arithmetic.

Another option is the GMP library. While most members of the GMP family of functions accept integers and strings as
arguments, they prefer to pass numbers around as resources, which are essentially pointers to the numbers. So unlike
BCMath functions, which return strings, GMP functions return only resources. You then pass the resource to any GMP
function, and it acts as your number.

The only downside is when you want to view or use the resource with a non-GMP function, you need to explicitly
convert it using gmp_strval() or gmp_intval().

GMP functions are liberal in what they accept. For instance, see Example 2-6.

Adding numbers using GMP

<?php

$four = gmp_add(2, 2); // You can pass integers
$eight = gmp_add('4', '4"); // Or strings

$twelve = gmp_add($four, $eight); // Or GMP resources
print gmp_strval($twelve); // Prints 12

?>

However, you can do many more things with GMP numbers than addition, such as raising a number to a power,
computing large factorials very quickly, finding a greatest common divisor (GCD), and other fancy mathematical stuff,

as shown in Example 2-7.

Computing fancy mathematical stuff using GMP

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
// Raising a number to a power
$pow = gmp_pow(2, 10); /] 1024

// Computing large factorials very quickly
$factorial = gmp_fact(20); // 2432902008176640000

// Finding a GCD
$gcd = gmp_ged (123, 456); /] 3

// Other fancy mathematical stuff
$legdendre = gmp_legendre(1, 7); // 1
?>

The BCMath and GMP libraries aren't necessarily enabled with all PHP configurations. BCMath is bundled with PHP, so
it's likely to be available. However, GMP isn't bundled with PHP, so you'll need to download, install it, and instruct PHP
to use it during the configuration process. Check the values of function_defined('bcadd') and function_defined('gmp_init') to see if
you can use BCMath and GMP. If you're using Windows, you need to be running PHP 5.1 or higher to use GMP.

Another options for high-precision mathematics is PECL's big_int library, shown in Example 2-8.

Adding numbers using big_int

<?php

$two = bi_from_str('2'");

$four = bi_add($two, $two);

print bi_to_str($four) // Prints 4

// Computing large factorials very quickly
$factorial = bi_fact(20); // 2432902008176640000
?>

It's faster than BCMath, and almost as powerful as GMP. However, while the GMP is licensed under the LGPL, big_int is
under a BSD-style license.

2.14.4. See Also

Documentation on BCMath at http://www.php.net/bc, big_int at http://pecl.php.net/big_int, and GMP at
http://www.php.net/gmp.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.15. Converting Between Bases

2.15.1. Problem

You need to convert a number from one base to another.

2.15.2. Solution

Use the base_convert() function:

$hex = 'al’; // hexadecimal number (base 16)

// convert from base 16 to base 10
$decimal = base_convert($hex, 16, 10); // $decimal is now 161

2.15.3. Discussion

The base_convert() function changes a string in one base to the correct string in another. It works for all bases from 2
to 36 inclusive, using the letters a through z as additional symbols for bases above 10. The first argument is the number
to be converted, followed by the base it is in and the base you want it to become.

There are also a few specialized functions for conversions to and from base 10 and the most commonly used other
bases of 2, 8, and 16. They're bindec() and decbin(), octdec() and decoct(), and hexdec() and dechex() :

// convert to base 10
print bindec(11011); // 27
print octdec(33); // 27
print hexdec('1b"); // 27

// convert from base 10
print decbin(27); // 11011

print decoct(27); // 33
print dechex(27); // 1b

Another alternative is to use printf('), which allows you to convert decimal numbers to binary, octal, and hexadecimal
numbers with a wide range of formatting, such as leading zeros and a choice between upper- and lowercase letters for
hexadecimal numbers.

For instance, say you want to print out HTML color values:

printf(' #%02X%02X%02X, 0, 102, 204); // #0066CC

2.15.4. See Also

Documentation on base_convert() at http://www.php.net/base-convert and sprintf() formatting options at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.16. Calculating Using Numbers in Bases Other Than Decimal

2.16.1. Problem

You want to perform mathematical operations with numbers formatted not in decimal, but in octal or hexadecimal. For
example, you want to calculate web-safe colors in hexadecimal.

2.16.2. Solution

Prefix the number with a leading symbol, so PHP knows it isn't in base 10. The following values are all equal:

0144 // base 8
100 // base 10
0x64 // base 16

Here's how to count from decimal 1 to 15 using hexadecimal notation:

for ($i = 0x1; $i < 0x10; $i++) { print "$i\n"; }

2.16.3. Discussion

Even if you use hexadecimally formatted numbers in a for loop, by default all numbers are printed in decimal. In other
words, the code in the Solution doesn't print out "..., 8, 9, a, b," To print in hexadecimal, use one of the methods
listed in Recipe 2.15. Here's an example:

for ($i = 0x1; $i < 0x10; $i++) { print dechex($i) . "\n"; }

For most calculations, it's easier to use decimal. Sometimes, however, it's more logical to switch to another base'for
example, when using the 216 web-safe colors. Every web color code is of the form RRGGBB, where RR is the red color, GG
is the green color, and BB is the blue color. Each color is actually a two-digit hexadecimal number between 0 and FF.

What makes web-safe colors special is that RR, GG, and BB each must be one of the following six numbers: 00, 33, 66,
99, CC, or FF (in decimal: 0, 51, 102, 153, 204, or 255). So 003366 is web safe, but 112233 is not. Web-safe colors
render without dithering on a 256-color display.

When creating a list of these numbers, use hexadecimal notation in this triple-loop to reinforce the list's hexadecimal

basis, as shown in Example 2-9.

Printing out all the web-safe color codes

<?php
for ($rr = 0; $rr <= OxFF; $rr += 0x33)
for ($gg = 0; $gg <= OxFF; $gg += 0x33)
for ($bb = 0; $bb <= OxFF; $bb += 0x33)
printf("%02X%02X%02X\n", $rr, $gg, $bb);
?>

Here the loops compute all possible web-safe colors. However, instead of stepping through them in decimal, you use
hexadecimal notation, because it reinforces the hexadecimal link between the numbers. Print them out using printf() to
format them as uppercase hexadecimal numbers at least two digits long. One-digit numbers are printed with a leading
zero.

2.16.4. See Also

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.15 for details on converting between bases; Chapter 3, "Web Design Principles for Print Designers," in Web
Design in a Nutshell by Jennifer Niederst Robbins (O'Reilly) .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 2.17. Finding the Distance Between Two Places

2.17.1. Problem

You want to find the distance between two coordinates on planet Earth.
2.17.2. Solution

Use pc_sphere_distance, as shown in Example 2-10.

Finding the distance between two points

<?php
function pc_sphere_distance($lat1, $lon1, $lat2, $lon2, $radius = 6378.135) {
$rad = doubleval(M_PI/180.0);

$latl = doubleval($latl) * $rad;

$lonl = doubleval($lonl) * $rad;
$lat2 = doubleval($lat2) * $rad;
$lon2 = doubleval($lon2) * $rad;

$theta = $lon2 - $loni;
$dist = acos(sin($latl) * sin($lat2) + cos($latl) * cos($lat2) * cos($theta));
if ($dist < 0) { $dist += M_PI; }

return $dist = $dist * $radius; // Default is Earth equatorial radius in kilometers

¥

// NY, NY (10040)
$latl = 40.858704;
$lonl = -73.928532;

// SF, CA (94144)
$lat2 = 37.758434;
$lon2 = -122.435126;

$dist = pc_sphere_distance($latl, $lon1, $lat2, $lon2);
printf("%.2f\n", $dist * 0.621); // Format and convert to miles
?>

2570.18

2.17.3. Discussion

Since the Earth is not flat, you cannot get an accurate distance between two locations using a standard Pythagorean
distance formula. You must use a Great Circle algorithm instead, such as the one in pc_sphere_distance().

Pass in the latitude and longitude of your two points as the first four arguments. First come the latitude and longitude of
the origin, and then come the latitude and longitude of the destination. The value returned is the distance between
them in kilometers:

// NY, NY (10040)
$latl = 40.858704;
$lonl = -73.928532;

// SF, CA (94144)
$lat2 = 37.758434;
$lon2 = -122.435126;

$dist = pc_sphere_distance($lat1, $lon1, $lat2, $lon2);
printf("%.2f\n", $dist * 0.621); // Format and convert to miles

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This code finds the distance between New York City and San Francisco, converts the distance to miles, formats it to
have two decimal places, and then prints out the result.

Because the Earth is not a perfect sphere, these calculations are somewhat approximate and could have an error up to
0.5%.

pc_sphere_distance() accepts an alternative sphere radius as an optional fifth argument. This lets you, for example,
discover the distance between points on Mars:

$martian_radius = 3397;
$dist = pc_sphere_distance($lat1, $lon1, $lat2, $lon2, $martian_radius);
printf("%.2f\n", $dist * 0.621); // Format and convert to miles

2.17.4. See Also

Recipe 2.12 for trig basics; the Wikipedia entry on Earth Radius at http://en.wikipedia.org/wiki/Earth_radius; and the
article "Trip Mapping with PHP" at http://www.onlamp.com/pub/a/php/2002/11/07/php_map.html .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & Prcy |
Chapter 3. Dates and Times

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3.0. Introduction

Displaying and manipulating dates and times seems simple at first but gets more difficult depending on how diverse and
complicated your users are. Do your users span more than one time zone? Probably so, unless you are building an
intranet or a site with a very specific geographical audience. Is your audience frightened away by timestamps that look
like "2002-07-20 14:56:34 EDT" or do they need to be calmed with familiar representations like "Saturday July 20,
2000 (2:56 P.M.)"? Calculating the number of hours between today at 10 A.M. and today at 7 P.M. is pretty easy. How
about between today at 3 A.M. and noon on the first day of next month? Finding the difference between dates is
discussed in Recipes 3.5 and 3.6.

These calculations and manipulations are made even more hectic by daylight saving (or summer) time (DST). Because
of DST, there are times that don't exist (in most of the United States, 2 A.M. to 3 A.M. on a day in the spring) and times
that exist twice (in most of the United States, 1 A.M. to 2 A.M. on a day in the fall). Some of your users may live in
places that observe DST, some may not. Recipes 3.11 and 3.12 provide ways to work with time zones and DST.

Programmatic time handling is made much easier by two conventions. First, treat time internally as Coordinated
Universal Time (abbreviated UTC and also known as GMT, Greenwich Mean Time) , the patriarch of the time-zone family
with no DST or summer time observance. This is the time zone at 0 degrees longitude, and all other time zones are
expressed as offsets (either positive or negative) from it. Second, treat time not as an array of different values for
month, day, year, minute, second, etc., but as seconds elapsed since the Unix epoch: midnight on January 1, 1970
(UTC, of course). This makes calculating intervals much easier, and PHP has plenty of functions to help you move easily
between epoch timestamps and human-readable time representations.

The function mktime() produces epoch timestamps from a given set of time parts, while date(), given an epoch
timestamp, returns a formatted time string. Example 3-1 uses these functions to find on what day of the week New
Year's Day 1986 occurred.

Using mktime() and date()

<?php

$stamp = mktime(0,0,0,1,1,1986);
print date('l',$stamp);

?>

Example 3-1 prints:
Wednesday

In Example 3-1, mktime() returns the epoch timestamp at midnight on January 1, 1986. The | format character to
date() tells it to return the full name of the day of the week that corresponds to the given epoch timestamp. Recipe 3.4
details the many format characters available to date().

In this book, the phrase epoch timestamp refers to a count of seconds since the Unix epoch. Time parts (or date parts
or time and date parts) means an array or group of time and date components such as day, month, year, hour, minute,
and second. Formatted time string (or formatted date string, etc.) means a string that contains some particular
grouping of time and date parts'for example, "2002-03-12," "Wednesday, 11:23 A.M.," or "February 25."

If you used epoch timestamps as your internal time representation, you avoided any Y2K issues, because the difference
between 946702799 (1999-12-31 23:59:59 UTC) and 946702800 (2000-01-01 00:00:00 UTC) is treated just like the
difference between any other two timestamps. You may, however, run into a Y2038 problem. January 19, 2038 at
3:14:07 A.M. (UTC) is 2147483647 seconds after midnight January 1, 1970. What's special about 21474836477 It's 231
- 1, which is the largest integer expressible when 32 bits represent a signed integer. (The 32nd bit is used for the sign.)

The solution? At some point before January 19, 2038, make sure you trade up to hardware that uses, say, a 64-bit
quantity for time storage. This buys you about another 292 billion years. (Just 39 bits would be enough to last you until
about 10680, well after the impact of the Y10K bug has leveled the Earth's cold fusion factories and faster-than-light
travel stations.) The year 2038 might seem far off right now, but so did 2000 to COBOL programmers in the 1950s and
1960s. Don't repeat their mistake!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 3.1. Finding the Current Date and Time

3.1.1. Problem

You want to know what the time or date is.
3.1.2. Solution
Use strftime() or date() for a formatted time string, as in Example 3-2.

Finding the current date and time

<?php

print strftime('%c");
print "\n";

print date('r");

?>

Example 3-2 prints:

Wed May 10 18:29:59 2006
Wed, 10 May 2006 18:29:59 -0400

Use getdate() or localtime() if you want time parts. Example 3-3 shows how these functions work.

Finding time parts

<?php

$now_1 = getdate();

$now_2 = localtime();

print "{$now_1['hours']}:{$now_1['minutes']}:{$now_1['seconds']}\n";
print "$now_2[2]:$now_2[1]:$now_2[0]";

Example 3-3 prints:

18:23:45
18:23:45

3.1.3. Discussion

The functions strftime() and date() can produce a variety of formatted time and date strings. They are discussed in
more detail in Recipe 3.4. Both /ocaltime() and getdate(), on the other hand, return arrays whose elements are the
different pieces of the specified date and time.

The associative array getdate() returns the key/value pairs listed in Table 3-1.

Table 3-1. Return array from getdate()

Key Value

seconds Seconds

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

minutes Minutes

hours Hours

mday Day of the month

wday Day of the week, numeric (Sunday is 0, Saturday is 6)
mon Month, numeric

year Year, numeric (4 digits)

yday Day of the year, numeric (e.g., 299)

weekday Day of the week, textual, full (e.g., "Friday")

month Month, textual, full (e.g., "January")

0 Seconds since epoch (what time() returns)

Example 3-4 shows how to use getdate() to print out the month, day, and year.

Finding the month, day, and year

<?php

$a = getdate();

printf('%s %d, %d',$a['month'],$a['mday'],$a['year']);
?>

Example 3-4 prints:
May 5, 2007

Pass getdate() an epoch timestamp as an argument to make the returned array the appropriate values for local time at
that timestamp. The month, day, and year at epoch timestamp 163727100 is shown in Example 3-5.

getdate() with a specific timestamp

<?php

$a = getdate(163727100);

printf('%s %d, %d',$a['month'],$a['mday'],$a['year']);
?>

Example 3-5 prints:
March 10, 1975

The function /ocaltime() returns an array of time and date parts. It also takes an epoch timestamp as an optional first
argument, as well as a boolean as an optional second argument. If that second argument is true, /localtime() returns an
associative array instead of a numerically indexed array. The keys of that array are the same as the members of the
tm_struct structure that the C function localtime() returns, as shown in Table 3-2.

Table 3-2. Return array from localtime()
Numeric position Key Value

0 tm_sec Second

1 tm_min Minutes

2 tm_hour Hour

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3 tm_mday Day of the month

4 tm_mon Month of the year (January is 0)
5 tm_year Years since 1900

6 tm_wday Day of the week (Sunday is 0)

7 tm_yday Day of the year

8 tm_isdst Is daylight savings time in effect?

Example 3-6 shows how to use /ocaltime() to print out today's date in month/day/year format.

Using localtime()

<?php

$a = localtime();

$a[4] +=1;

$a[5] += 1900;

print "$a[4]/$a[3]/$a[5]";

Example 3-6 prints:
6/23/2006

The month is incremented by 1 before printing since localtime() starts counting months with 0 for January, but we
want to display 1 if the current month is January. Similarly, the year is incremented by 1900 because localtime() starts
counting years with 0 for 1900.

3.1.4. See Also

Documentation on strftime() at http://www.php.net/strftime, date() at http://www.php.net/date, getdate() at
http://www.php.net/getdate, and localtime() at http://www.php.net/localtime .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.2. Converting Time and Date Parts to an Epoch Timestamp

3.2.1. Problem

You want to know what epoch timestamp corresponds to a set of time and date parts.

3.2.2. Solution

Use mktime() if your time and date parts are in the local time zone, as shown in Example 3-7.

Getting a specific epoch timestamp

<?php

// 7:45:03 PM on March 10, 1975, local time
$then = mktime(19,45,3,3,10,1975);

?>

Use gmmktime() , as in Example 3-8, if your time and date parts are in GMT.

Getting a specific GMT-based epoch timestamp

<?php

// 7:45:03 PM on March 10, 1975, in GMT
$then = gmmktime(19,45,3,3,10,1975);
?>

3.2.3. Discussion

The functions mktime() and gmmktime() each take a date and time's parts (hour, minute, second, month, day, year)
and return the appropriate Unix epoch timestamp. The components are treated as local time by mktime(), while
gmmktime() treats them as a date and time in UTC. These functions return sensible results only for times within the
epoch. Most systems store epoch timestamps in a 32-bit signed integer, so "within the epoch"” means between 8:45:51
P.M. December 13, 1901 UTC and 3:14:07 A.M. January 19, 2038 UTC.

In Example 3-9, $stamp_future is set to the epoch timestamp for 3:25 P.M. on June 4, 2012. The epoch timestamp can be
fed back to strftime() to produce a formatted time string.

Working with epoch timestamps

<?php
$stamp_future = mktime(15,25,0,6,4,2012);

print $stamp_future;
print strftime('%c',$stamp_future);
?>

Example 3-9 prints:

1338837900
Mon Jun 4 15:25:00 2012

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Because the calls to mktime() in Example 3-9 were made on a computer set to EDT (which is four hours behind GMT),
using gmmktime() instead produces epoch timestamps that are 14,400 seconds (four hours) smaller, as shown in

Epoch timestamps and gmmktime()

<?php
$stamp_future = gmmktime(15,25,0,6,4,2012);

print $stamp_future;
print strftime('%c',$stamp_future);

Example 3-10 prints:

1338823500
Mon Jun 4 11:25:00 2012

Feeding a gmmktime()-generated epoch timestamp back to strftime() produces formatted time strings that are also
four hours earlier.

In versions of PHP before 5.1.0, mktime() and gmmktime() could accept an optional boolean seventh argument
indicating a DST flag (1 if DST is being observed, 0 if not). In PHP 5.1.0 and up, whether daylight savings time is being
observed is controlled by the currently active default time zone, set with date_default_timezone_set() .

3.2.4. See Also

Recipe 3.3 for how to convert an epoch timestamp back to time and date parts; documentation on mktime() at
: ime and gmmktime() at http://www.php.net/gmmktime, and on date_default_timezone_set()

at | | .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.3. Converting an Epoch Timestamp to Time and Date Parts

3.3.1. Problem

You want the set of time and date parts that corresponds to a particular epoch timestamp.
3.3.2. Solution

Pass an epoch timestamp to getdate(): $time_parts = getdate(163727100);.

3.3.3. Discussion

The time parts returned by getdate() are detailed in Table 3-1. These time parts are in local time. If you want time
parts in another time zone corresponding to a particular epoch timestamp, see Recipe 3.11.

3.3.4. See Also

Recipe 3.2 for how to convert time and date parts back to epoch timestamps; Recipe 3.11 for how to deal with time
zones; documentation on getdate() at http://www.php.net/getdate .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Recipe 3.4. Printing a Date or Time in a Specified Format

3.4.1. Problem

You need to print out a date or time formatted in a particular way.

3.4.2. Solution

Use date() or strftime(), as shown in Example 3-11.

Using date() and strftime()

<?php

?>

print strftime('%c");
print date('m/d/Y");

Example 3-11 prints something like:
Mon Dec 3 11:31:08 2007

12/03/2007

3.4.3. Discussion

Both date() and strftime() are flexible functions that can produce a formatted time string with a variety of

components. The formatting characters for these functions are listed in Table 3-3. The Windows column indicates
whether the formatting character is supported by strftime() on Windows systems.

Table 3-3. strftime() and date() format characters

Type strft)ime(da;:e(Description Range Windows
Hour %H H Hour, numeric, 24-hour clock 0023 Yes
Hour %]I h Hour, numeric, 12-hour clock 0112 Yes
Hour %k Hour, numeric, 24-hour clock, leading zero as space 023 No
Hour %l Hour, numeric, 12-hour clock, leading zero as space 112 No
Hour %p A A.M. or P.M. designation for current locale Yes
Hour %P a A.M. or P.M. designation for current locale No
Hour G Hour, numeric, 24-hour clock, leading zero trimmed 023 No
Hour g Hour, numeric, 12-hour clock, leading zero trimmed 01 No
Minute %M i Minute, numeric 0059 Yes
Second %S s Second, numeric 00610 Yes
Day %d d Day of the month, numeric 0131 Yes
Day %e Day of the month, numeric, leading zero as space 131 No

001366 for
Day %ij z Day of the year, numeric itzﬂnff); Yes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

UJ0D 1Ll
date()

Day %u Day of the week, numeric (Monday is 1) 17 No
Day %W Day of the week, numeric (Sunday is 0) 06 Yes
Day Day of the month, numeric, leading zero trimmed 131 No
Day English ordinal suffix for day of the month, textual ::ité:'""fré: No
Week %a Abbreviated weekday name, text for current /ocale Yes
Week %A Full weekday name, text for current locale Yes
Week %U dWaeyeIgfntl;:zS;tir\:\,g;i year, numeric, first Sunday is the first 0053 Yes

ISO 8601:1988 week number in the year, numeric, week 1
Week %V is the first week that has at least 4 days in the current 0153 No

year, Monday is the first day of the week
Week %W Z\;ilel;frllgr:zt:;tircvzgi year, numeric, first Monday is the first 0053 Yes
Month %B Full month name, text for current locale Yes
Month %b Abbreviated month name, text for current locale Yes
Month %h Same as %b No
Month %m Month, numeric 0112 Yes
Month Month, numeric, leading zero trimmed 112 No
Month Month length in days, numeric g?’ 29, 30, No
Year %C Century, numeric 0099 No
Year %g Like %G, but without the century 0099 No

ISO 8601 year with century; numeric; the four-digit year
Year %G corresp_onding to the ISO week number; same as %_y No

except if the ISO week number belongs to the previous or

next year, that year is used instead
Year %y Year without century, numeric 0099 Yes
Year %Y Year, numeric, including century Yes
Year Leap year flag (yes is 1) 0,1 No

Yes, but
Time zone | %z Hour offset from GMT, £tHHMM (e.g., -0400, +0230) -1200+1200 | acts like
%Z

Time zone Time zone offset including colon (e.g. -04:00, +02:30) ;1122:?000
Time zone | %Z Time zone, name, or abbreviation; textual Yes
Time zone Timezone identifier, e.g., America/New_York
Time zone Daylight savings time flag (yes is 1) 0,1 No
Time zone gillc_?ri\sds‘;g;f;stefrom GMT; west of GMT is negative, east of ;320043200 No
Compound | %c Standard date and time format for current locale Yes
Compound ISO 8601formatted date and time Yes
Compound | %D Same as %m/%d/%y No
Compound | %F Same as %Y-%m-%d No
Compound | %r Time in A.M. or P.M. notation for current locale No
Compound | %R Time in 24-hour notation for current locale No

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Compound | %T Time in 24-hour notation (same as %H:%M:%S) No
Compound | %x Standard date format for current locale (without time) Yes
Compound | %X Standard time format for current locale (without date) Yes
Compound . RFC 82"2formatted date (e.g., "Thu, 22 Aug 2002 16:01:07 No
+0200")
Other %s u Seconds since the epoch No
Other B Swatch Internet time No
Formatting | %% Literal % character Yes
Formatting | %n Newline character No
Formatting | %t Tab character No

I The range for seconds extends to 61 to account for leap seconds.

The c formatting character was added to date() in PHP 5.0.0. The N, o, and e characters were added to date() in PHP
5.1.0. The P character was added in PHP 5.1.3.

The first argument to each function is a format string, and the second argument is an epoch timestamp. If you leave
out the second argument, both functions default to the current date and time. While date() and strftime() operate
over local time, they each have UTC-centric counterparts (gmdate() and gmstrftime()).

In PHP 5.1.1 and later, there are some handy constants that represent the format string to be passed to date() for
common date formats. These constants are listed in Table 3-4.

Table Constants for use with date()

Constant | Value | Example Usage
Vem- 2010-12-03 | gection 3.3 of the Atom Syndication format
DATE_ATOM | j\Th:i:0 | T06:23:30- | (Dttp://www.atomenabled.org/developers/syndication/atom-format-
0500 spec.php#date.constructs)
Fri, 03 Dec
2010 f -
DATE_COOKIE a,._fj I_;I_Y H'I'I'I_’ Cookies (as defined at _
HHS 06:23:39 http://wp.netscape.com/newsref/std/cookie_spec.html)
EST
2010-12-03
Y-m- . i .
DATE_IS08601 A\TH:i:s0 | T06:23:39- ISO 8601 (as discussed at http://www.w3.org/TR/NOTE-datetime)
0500
Fri, 03 Dec
D, dmy |2010
DATE_RFC822 Hics T Email messages (as defined in http://www.fags.org/rfcs/rfc822.html)
o 06:23:39
EST
Friday, 03-
I, d-M-y Dec-10
DATE_RFC850 le_sT Usenet messages (as defined in http://www.faqgs.org/rfcs/rfc850.html)
o 06:23:39
EST
Friday, 03-
I, d-M-y Dec-10
DATE_RFC1036 | ...+ Usenet messages (as defined in http://www.fags.org/rfcs/rfc1036.html)
o 06:23:39
EST
Fri, 03 Dec
2010
DATE RFC1123 | D MY As defined in http://www.fags.org/rfcs/rfc1123.html
o 06:23:39
EST
Fri, 03 Dec
D dMY 2010
DATE_RFC2822 | 1., E-mail messages (as defined in http://www.fags.org/rfcs/rfc2822.html)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

UU.£0.07 -

0500
Fri, 03 Dec
2010
DATE_RSS B"ifjsl\'/er RSS feeds (as defined in http://blogs.law.harvard.edu/tech/rss)
i 06:23:39
EST
2010-12-03
Y-m-
DATE_W3C d\TH:i:sO | T06:23:39- Same as DATE_IS08601
0500

The formatting characters for date() are PHP-specific, but strftime() uses the C-library strftime() function. This may
make strftime() more understandable to someone coming to PHP from another language, but it also makes its behavior
slightly different on various platforms. Windows doesn't support as many strftime() formatting commands as most
Unix-based systems. Also, strftime() expects each of its formatting characters to be preceded by a % (think printf()),
so it's easier to produce strings with lots of interpolated time and date values in them.

For example, at 12:49 P.M. on July 15, 2002, the code to print out:

It's after 12 pm on July 15, 2002

with strftime() looks like:

print strftime("It's after %I %P on %B %d, %Y");

With date() it looks like:

print "It's after ".date('h a").' on ".date('F d, Y");

Non-date-related characters in a format string are fine for strftime(), because it looks for the % character to decide
where to interpolate the appropriate time information. However, date() doesn't have such a delimiter, so about the
only extras you can tuck into the formatting string are spaces and punctuation. If you pass strftime()'s formatting

string to date():

print date("It's after %I %P on %B%d, %Y");

you'd almost certainly not want what you'd get:

131'44 pmf31eMon, 15 Jul 2002 12:49:44 -0400 %1 %P 07 %742%15, %2002

To generate time parts with date() that are easy to interpolate, group all time and date parts from date() into one
string, separating the different components with a delimiter that date() won't translate into anything and that isn't
itself part of one of your substrings. Then, using explode() with that delimiter character, put each piece of the return
value from date() in an array, which is easily interpolated in your output string. Example 3-12 does this, using a |

character as a delimiter.

Using explode() with date()

<?php

?>

$ar = explode('|',date("h a|F d, Y"));
print "It's after $ar[0] on $ar[1]";

3.4.4. See Also

Documentation on date() at http://www.php.net/date and strftime() at http://www.php.net/strftime; on Unix-based

systems, man strftime for your system-specific strftime() options; on Windows, see

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

for

strftime() details.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 3.5. Finding the Difference of Two Dates

3.5.1. Problem

You want to find the elapsed time between two dates. For example, you want to tell a user how long it's been since she
last logged onto your site.

3.5.2. Solution

Convert both dates to epoch timestamps and subtract one from the other. Example 3-13 separates the difference into
weeks, days, hours, minutes, and seconds.

Calculating the difference between two dates

<?php

// 7:32:56 pm on May 10, 1965

$epoch_1 = mktime(19,32,56,5,10,1965);
// 4:29:11 am on November 20, 1962
$epoch_2 = mktime(4,29,11,11,20,1962);

$diff_seconds = $epoch_1 - $epoch_2;
$diff_weeks = floor($diff_seconds/604800);
$diff_seconds -= $diff_weeks * 604800;
$diff_days = floor($diff_seconds/86400);
$diff_seconds -= $diff_days * 86400;
$diff_hours = floor($diff_seconds/3600);
$diff_seconds -= $diff_hours * 3600;
$diff_minutes = floor($diff_seconds/60);
$diff_seconds -= $diff_minutes * 60;

print "The two dates have $diff_weeks weeks, $diff_days days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_seconds ";
print "seconds elapsed between them.";

?>

Example 3-13 prints:

The two dates have 128 weeks, 6 days, 14 hours, 3 minutes,
and 45 seconds elapsed between them.

Note that the difference isn't divided into larger chunks than weeks (i.e., months or years) because those chunks have
variable length and wouldn't give an accurate count of the time difference calculated.

3.5.3. Discussion

There are a few strange things going on here that you should be aware of. First of all, 1962 and 1965 precede the
beginning of the epoch. Fortunately, mktime() fails gracefully here and produces negative epoch timestamps for each.
This is okay because the absolute time value of either of these questionable timestamps isn't necessary, just the
difference between the two. As long as epoch timestamps for the dates fall within the range of a signed integer, their
difference is calculated correctly.

Next, a wall clock (or calendar) reflects a slightly different amount of time change between these two dates, because
they are on different sides of a DST switch. The result subtracting epoch timestamps gives is the correct amount of
elapsed time, but the perceived human time change is an hour off. For example, on the Sunday morning in April when
DST is activated, what's the difference between 1:30 A.M. and 4:30 A.M.? It seems like three hours, but the epoch
timestamps for these two times are only 7,200 seconds apart'two hours. When a local clock springs forward an hour (or
falls back an hour in October), the steady march of epoch timestamps takes no notice. Truly, only two hours have
passed, although our clock manipulations make it seem like three.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you want to measure actual elapsed time (and you usually do), this method is fine. If you're more concerned with the
difference in what a clock says at two points in time, use Julian days to compute the interval, as discussed in Recipe
3.6.

To tell a user the elapsed time since her last login, you need to find the difference between the login time and her last

login time, as shown in Example 3-14.

Finding elapsed time since last login

<?php

$db = new PDO('mysql:host=db.example.com’, $user, $password);

$epoch_1 = time();

$st = $db->prepare("SELECT UNIX_TIMESTAMP(last_login) AS login " .
"FROM user WHERE id = ?");

$st->execute(array($id));

$row = $st->fetch();

$epoch_2 = $row['login'];

$diff_seconds = $epoch_1 - $epoch_2;
$diff_weeks = floor($diff_seconds/604800);
$diff_seconds -= $diff_weeks * 604800;
$diff_days = floor($diff_seconds/86400);
$diff_seconds -= $diff_days * 86400;
$diff_hours = floor($diff_seconds/3600);
$diff_seconds -= $diff_hours * 3600;
$diff_minutes = floor($diff_seconds/60);
$diff_seconds -= $diff_minutes * 60;

print "You last logged in $diff_weeks weeks, $diff_days days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_seconds ago.";

3.5.4. See Also

Recipe 3.6 to find the difference between two dates with Julian days; Recipe 3.10 for adding to and subtracting from a
date; documentation on MySQL's UNIX_TIMESTAMP() function can be found at

http://www.mysql.com/doc/D/a/Date_and_time_functions.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.6. Finding the Difference of Two Dates with Julian Days

3.6.1. Problem

You want to find the difference of two dates measured by what a clock would say, not the actual elapsed time.

3.6.2. Solution

Use gregoriantojd() to get the Julian day for a set of date parts and then subtract one Julian day from the other to find
the date difference. Then, convert the time parts to seconds and subtract one from the other to find the time difference.
If the time difference is less than 0, decrease the date difference by one and adjust the time difference to apply to the

previous day. Example 3-15 shows how to do this.

Finding date differences with Julian days

<?php
$diff_date = gregoriantojd($date_1_mo, $date_1_dy, $date_1_yr) -
gregoriantojd($date_2_mo, $date_2_dy, $date_2_yr);
$diff_time = $date_1_hr * 3600 + $date_1_mn * 60 + $date_1_sc -
$date_2_hr * 3600 - $date_2_mn * 60 - $date_2_sc;
if ($diff_time < 0) {
$diff_date--;
$diff_time = 86400 - $diff_time;
¥

?>

3.6.3. Discussion

Finding differences with Julian days lets you operate outside the range of epoch seconds and also accounts for DST

differences.

Example 3-16 does the calculation with date parts from arrays.

Calculating difference with arrays of date parts

<?php

// 7:32:56 pm on May 10, 1965

list($date_1_yr, $date_1_mo, $date_1_dy, $date_1_hr, $date_1_mn, $date_1_sc)=
array(1965, 5, 10, 19, 32, 56);

// 4:29:11 am on November 20, 1962

list($date_2_yr, $date_2_mo, $date_2_dy, $date_2_hr, $date_2_mn, $date_2_sc)=
array(1962, 11, 20, 4, 29, 11);

$diff_date = gregoriantojd($date_1_mo, $date_1_dy, $date_1_yr) -
gregoriantojd($date_2_mo, $date_2_dy, $date_2_yr);
$diff_time = $date_1_hr * 3600 + $date_1_mn * 60 + $date_1_sc -
$date_2_hr * 3600 - $date_2_mn * 60 - $date_2_sc;
if ($diff_time < 0) {
$diff_date--;
$diff_time = 86400 - $diff_time;

}

$diff_weeks = floor($diff_date/7); $diff_date -= $diff_weeks * 7;
$diff_hours = floor($diff_time/3600); $diff_time -= $diff _hours * 3600;
$diff_minutes = floor($diff_time/60); $diff _time -= $diff_minutes * 60;

print "The two dates have $diff_weeks weeks, $diff date days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_time ";
print "seconds between them.";

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 3-16 prints:

The two dates have 128 weeks, 6 days, 15 hours, 3 minutes,
and 45 seconds between them.

This method produces a time difference based on clock time, which is why the result shows an hour more of difference
than in Recipe 3.5. May 10 is during DST, and November 20 is during standard time.

The function gregoriantojd() is part of PHP's calendar extension, and so is available only if that extension is loaded.
3.6.4. See Also

Recipe 3.5 to find the difference between two dates in elapsed time; Recipe 3.10 for adding and subtracting from a

date; documentation on gregoriantojd() at http://www.php.net/gregoriantojd; an overview of the Julian day system is
at http://tycho.usno.navy.mil/mjd.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

| 4 Py |
Recipe 3.7. Finding the Day in a Week, Month, or Year

3.7.1. Problem

You want to know the day or week of the year, the day of the week, or the day of the month. For example, you want to
print a special message every Monday, or on the first of every month.

3.7.2. Solution

Use the appropriate arguments to date() or strftime() , as shown in Example 3-17.

Finding days of the week, month, and year

<?php

?>

print strftime("Today is day %d of the month and %;j of the year.");
print 'Today is day '.date('d").' of the month and '.date('z")." of the year.";

3.7.3. Discussion

The two functions date() and strftime() don't behave identically. Days of the year start with 0 for date(), but with 1
for strftime(). Table 3-4 contains all the day and week number format characters date() and strftime() understand.

Table 3-4. Day and week number format characters

Type strft)lme(da;e(Description Range | Windows

Day | %d d Day of the month, numeric 0131 Yes

Day | %e Day of the month, numeric, leading zero as space 131 No
001366
for
stritime(

Day | %j z Day of the year, numeric); Yes
0365 for
date()

Day | %u N Day of the week, numeric (Monday is 1) 17 No

Day | %w w Day of the week, numeric (Sunday is 0) 06 Yes

Day j Day of the month, numeric, leading zero trimmed 131 No

Day S English ordinal suffix for day of the month, textual ..rs1té " .Fré.. No

Week | %a D Abbreviated weekday name, text for current locale Yes

Week | %A | Full weekday name, text for current locale Yes

Week | %U WeeI_(number in the year, numeric, first Sunday is the first day of 0053 Yes

the first week
ISO 8601:1988 week number in the year, numeric, week 1 is the

Week | %V w first week that has at least 4 days in the current year, Monday is 0153 No

the first day of the week

Week | 9w Weel.< number in the year, numeric, first Monday is the first day of 0053 Yes

the first week

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To print out something only on Mondays, use the w formatting character with date() or the %w string with strftime(),

as in Example 3-18.

Checking for the day of the week

<?php
if (1 == date('w")) {
print "Welcome to the beginning of your work week.";

b

if (1 == strftime('%w")) {
print "Only 4 more days until the weekend!";

¥

There are different ways to calculate week numbers and days in a week, so take care to choose the appropriate one.
The ISO standard (ISO 8601), says that weeks begin on Mondays and that the days in the week are numbered 1
(Monday) through 7 (Sunday). Week 1 in a year is the first week in a year with a Thursday in that year. This means the
first week in a year is the first week with a majority of its days in that year. These week numbers range from 01 to 53.

Other week number standards range from 00 to 53, with days in a year's week 53 potentially overlapping with days in
the following year's week 00.

As long as you're consistent within your programs, you shouldn't run into any trouble, but be careful when interfacing
with other PHP programs or your database. For example, MySQL's DAYOFWEEK() function treats Sunday as the first
day of the week, but numbers the days 1 to 7, which is the ODBC standard. Its WEEKDAY() function, however, treats
Monday as the first day of the week and numbers the days from 0 to 6. Its WEEK() function lets you choose whether
weeks should start on Sunday or Monday, but it's incompatible with the ISO standard.

3.7.4. See Also

Documentation on date() at http://www.php.net/date and strftime() at http://www.php.net/strftime; MySQL's
DAYOFWEEK(), WEEKDAY(), and WEEK() functions are documented at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 3.8. Validating a Date

3.8.1. Problem

You want to check if a date is valid. For example, you want to make sure a user hasn't provided a birthdate such as
February 30, 1962.

3.8.2. Solution

Use checkdate():

$valid = checkdate($month,$day,$year);

3.8.3. Discussion

The function checkdate() returns TRue if $month is between 1 and 12, $year is between 1 and 32767, and $day is between
1 and the correct maximum number of days for $month and $year. Leap years are correctly handled by checkdate(), and
dates are rendered using the Gregorian calendar.

Because checkdate() has such a broad range of valid years, you should do additional validation on user input if, for
example, you're expecting a valid birthdate. The longest confirmed human lifespan is 122 years old. To check that a
birthdate indicates that a user is between 18 and 122 years old, use the pc_checkbirthdate() function shown in

Example 3-19.

pc_checkbirthdate()

<?php
function pc_checkbirthdate($month,$day,$year) {
$min_age = 18;

$max_age = 122;

if (! checkdate($month,$day,$year)) {
return false;
¥

list($this_year,$this_month,$this_day) = explode(',",date('Y,m,d"));

$min_year = $this_year - $max_age;
$max_year = $this_year - $min_age;

print "$min_year,$max_year,$month,$day,$year\n";

if (($year > $min_year) && ($year < $max_year)) {
return true;
} elseif (($year == $max_year) &&
(($month < $this_month) ||
(($month == $this_month) && ($day <= $this_day)))) {
return true;
} elseif (($year == $min_year) &&
(($month > $this_month) ||
(($month == $this_month && ($day > $this_day))))) {
return true;
Yelse {
return false;
¥

}

// check December 3, 1974
if (pc_checkbirthdate(12,3,1974)) {
print "You may use this web site.";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}else {
print "You are too young to proceed.";
exit();

?>

The function first uses checkdate() to make sure that $month, $day, and $year represent a valid date. Various comparisons
then make sure that the supplied date is in the range set by $min_age and $max_age.

If $year is noninclusively between $min_year and $max_year, the date is definitely within the range, and the function returns
true. If not, some additional checks are required. If $year equals $max_year (e.g., in 2002, $year is 1984), $month must be
before the current month. If $month equals the current month, $day must be before or equal to the current day. If $year
equals $min_year (e.g., in 2002, $year is 1880), $month must be after the current month. If $month equals the current
month, $day must be after the current day. If none of these conditions are met, the supplied date is outside the
appropriate range, and the function returns false.

The function returns true if the supplied date is exactly $min_age years before the current date, but false if the supplied
date is exactly $max_age years after the current date. That is, it would let you through on your 18th birthday, but not on
your 123rd.

3.8.4. See Also

Documentation on checkdate() at http://www.php.net/checkdate; information about Jeanne Calment, the person with
the longest confirmed lifespan, is at http://en.wikipedia.org/wiki/Jeanne_Calment .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.9. Parsing Dates and Times from Strings

3.9.1. Problem

You need to get a date or time in a string into a format you can use in calculations. For example, you want to convert
date expressions such as "last Thursday" into an epoch timestamp.

3.9.2. Solution

The simplest way to parse a date or time string of arbitrary format is with strtotime(), which turns a variety of human-
readable date and time strings into epoch timestamps, as shown in Example 3-20.

Parsing strings with strtotime()

<?php

$a = strtotime('march 10"); // defaults to the current year
$b = strtotime('last thursday");

$c = strtotime('now + 3 months');

3.9.3. Discussion

The grammar strtotime() uses is both complicated and comprehensive. It uses the GNU Date Input Formats
specification, which is available at the following address:

The function strtotime() understands words about the current time:

<?php

$a = strtotime('now');
print strftime('%c',$a);
$a = strtotime('today");
print strftime('%c',$a);
?>

Mon Aug 12 20:35:10 2002
Mon Aug 12 20:35:10 2002

It understands different ways to identify a time and date:

<?php

$a = strtotime('5/12/1994');
print strftime('%c',$a);

$a = strtotime('12 may 1994');
print strftime('%c',$a);

?>

Thu May 12 00:00:00 1994
Thu May 12 00:00:00 1994

It understands relative times and dates:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

$a = strtotime('last thursday'); // On August 12, 2002
print strftime('%c',$a);

$a = strtotime('2001-07-12 2pm + 1 month');

print strftime('%c',$a);

?>

Thu Aug 8 00:00:00 2002
Mon Aug 12 14:00:00 2002

It understands time zones. When the following is run from a computer in EDT, it prints out the same time:

<?php

$a = strtotime('2002-07-12 2pm edt + 1 month');
print strftime('%c’,$a);

?>

Mon Aug 12 14:00:00 2002

However, when the following is run from a computer in EDT, it prints out the time in EDT when it is 2 P.M. in MDT (two
hours before EDT):

<?php

$a = strtotime('2002-07-12 2pm mdt + 1 month');
print strftime('%c',$a);

?>

Mon Aug 12 16:00:00 2002

If the date and time you want to parse out of a string are in a format you know in advance, instead of calling strtotime(
), you can build a regular expression that grabs the different date and time parts you need. Example 3-21 shows how to
parse "YYYY-MM-DD HH:MM:SS" dates, such as a MySQL DATETIME field.

Parsing a date with a regular expression

<?php

$date = '1974-12-03 05:12:56';

preg_match('/(\d{4})-(\d{2})-(\d{2}) (\d{2}):(\d{2}):(\d{2})/',$date,$date_parts);
?>

This puts the year, month, day, hour, minute, and second into $date_parts[1] tHRough $date_parts[6]. (preg_match() puts
the entire matched expression into $date_parts[0].)

You can use regular expressions to pull the date and time out of a larger string that might also contain other
information (from user input, or a file you're reading), but if you're sure about the position of the date in the string
you're parsing, you can use substr() to make it even faster, as shown in Example 3-22.

Parsing a date with substr()

$date_parts[0] = substr($date,0,4);
$date_parts[1] = substr($date,5,2);
$date_parts[2] = substr($date,8,2);
$date_parts[3] = substr($date,11,2);
$date_parts[4] = substr($date,14,2);
$date_parts[5] = substr($date,17,2);
?>

You can also use preg_split(), as in Example 3-23.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Parsing a date with preg_split()

<?php $ar = preg_split('/[- :]/',$date);
var_dump($ar);
?>

Example 3-23 prints:

array(6) {

[0]=>
string(4) "1974"
[1]=>
string(2) "12"
[2]=>
string(2) "03"
[3]1=>
string(2) "05"
[4]=>
string(2) "12"
[5]=>
string(2) "56"

Be careful: PHP converts between numbers and strings without any prompting, but numbers beginning with a 0 are
considered to be in octal (base 8). So 03 and 05 are 3 and 5, but 08 and 09 are not 8 and 9.

In PHP 5.1 and later, preg_match() is faster than strtotime() in parsing a date format such as "YYYY-MM-DD
HH:MM:SS." In earlier versions of PHP, strtotime() is slightly faster. If you need the individual parts of the date string,
preg_match() is more convenient, but strtotime() is obviously much more flexible.

3.9.4. See Also

Documentation on strtotime() at http://www.php.net/strtotime. The rules describing what strtotime() can parse are at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 3.10. Adding to or Subtracting from a Date

3.10.1. Problem

You need to add or subtract an interval from a date.

3.10.2. Solution

Depending on how your date and interval are represented, use strtotime() or some simple arithmetic.

If you have your date and interval in appropriate formats, the easiest thing to do is use strtotime(), as in Example 3-
24.

Calculating a date interval with strtotime()

<?php

$birthday = 'March 10, 1975";

$whoopee_made = strtotime("$birthday - 9 months ago");
?>

If your date is an epoch timestamp and you can express your interval in seconds, subtract the interval from the

timestamp, as in Example 3-25.

Calculating a date interval with epoch timestamps

<?php

$birthday = 163727100;

$gestation = 36 * 7 * 86400; // 36 weeks
$whoopee_made = $birthday - $gestation;
?>

3.10.3. Discussion

Using strtotime() is good for intervals that are of varying lengths, such as months. If you can't use strtotime(),
convert your date to an epoch timestamp and add or subtract the appropriate interval in seconds. This is mostly useful
for intervals of a fixed time, such as days or weeks. Example 3-26 adds seven days' worth of seconds to a timestamp.

Another date interval with epoch timestamps

<?php

$now = time();

$next_week = $now + 7 * 86400;
?>

Using this method, however, you can run into problems if the endpoints of your interval are on different sides of a DST
switch. In this case, one of your fixed-length days isn't 86,400 seconds long; it's either 82,800 or 90,000 seconds long,
depending on the season.

3.10.4. See Also

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.5 for finding the difference between two dates in elapsed time; Recipe 3.6 for finding the difference between
two dates in Julian days; documentation on strtotime() at http://www.php.net/strtotime.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 3.11. Calculating Time with Time Zones

3.11.1. Problem

You need to calculate times in different time zones. For example, you want to give users information adjusted to their
local time, not the local time of your server.

3.11.2. Solution

For simple calculations, you can explicitly add or subtract the offsets between two time zones, as in Example 3-27.

Simple time zone calculation

<?php

// If local time is EST

$time_parts = localtime();

// California (PST) is three hours earlier
$california_time_parts = localtime(time() - 3 * 3600);
?>

In PHP 5.1.0 and later, use date_default_timezone_set() to adjust the time zone that PHP uses. Example 3-28 prints
the current time twice'once as appropriate for New York and once for Paris.

Changing time zone with date_default_timezone_set()

<?php

$now = time();
date_default_timezone_set('America/New York');
print date('c, $now);
date_default_timezone_set('Europe/Paris');

print date('c', $now);

?>

On Unix-based systems with earlier versions of PHP, if you don't know the offsets between time zones, just set the Tz
environment variable to your target time zone, as in Example 3-29.

Changing time zone with an environment variable

<?php

putenv('TZ=PST8PDT'");
$california_time_parts = localtime();
?>

3.11.3. Discussion

Before we sink too deeply into the ins and outs of time zones, we want to pass along the disclaimer that the U.S. Naval
Observatory offers at http://tycho.usno.navy.mil/tzones.html. Namely, official worldwide time zone information is
somewhat fragile "because nations are sovereign powers that can and do change their timekeeping systems as they see
fit." So, remembering that we are at the mercy of the vagaries of international relations, here are some ways to cope
with Earth's many time zones.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The time and date functions were overhauled in PHP 5.1.0, and one of the best parts of that overhaul was greatly
improved time zone handling. The added date_default_timezone_get() and date_default_timezone_set() functions
make it a breeze to twiddle time zones to get appropriately formatted output. There is also a new configuration

directive, date.timezone, that sets the default time zone to use if you don't call date_default_timezone_set().

With these functions available, all you have to do before generating a formatted time or date string with date() or
strftime() is make sure that the currently set default time zone (either from date.timezone or date_default_timezone_set(
)) is the one you want to use. If you're building an app that is used by people in multiple time zones, a handy technique
is to make the default time zone GMT and then explicitly set the appropriate time zone (based, perhaps, on user
preference) before creating a date or time string. This makes it clear in your code that you're generating a time

zonespecific value.

The time zones that PHP understands are listed in Appendix H of the PHP Manual (http://www.php.net/timezones). The
names of these time zones'such as America/New_York, Europe/Paris, and Africa/Dar_es_Salaam'mirror the structure of the popular

zoneinfo database.

If you're using an earlier version of PHP, you have to do the time zone math yourself. For a relatively simple treatment
of offsets between time zones, use an array in your program that has the various time zone offsets from UTC. Once you
determine what time zone your user is in, just add that offset to the appropriate UTC time and the functions that print
out UTC time (e.g., gmdate(), gmstrftime()) can print out the correct adjusted time. Example 3-30 adjusts the time

from UTC to PST.

Adjusting time from UTC to another time zone

<?php
// Find the current time
$now = time();

// California is 8 hours behind UTC
$now += $pc_timezones['PST'];

// Use gmdate() or gmstrftime() to print California-appropriate time
print gmstrftime('%c',$now);
>

Example 3-30 uses the $pc_timezones array defined in Example 3-31, which contains offsets from UTC.

Offsets from UTC

// From Perl's Time::Timezone
$pc_timezones = array(

'GMT' => 0, // Greenwich Mean
'UTtc' => 0, // Universal (Coordinated)
'WET' => 0, // Western European

'WAT' => -1*3600, // West Africa

'AT" => -2*3600, // Azores

'NFT' => -3*3600-1800, // Newfoundland

'AST' => -4*3600, // Atlantic Standard

'EST' => -5*%3600, // Eastern Standard

'CST' => -6*3600, // Central Standard

'MST' => -7*3600, // Mountain Standard

'PST' => -8*3600, // Pacific Standard

'YST' => -9*3600, // Yukon Standard

'HST' =>-10*3600, // Hawaii Standard

'CAT' => -10*3600, // Central Alaska

'AHST' => -10*3600, // Alaska-Hawaii Standard
'NT' =>-11*3600, // Nome

'IDLW' => -12*3600, // International Date Line West
'CET" => +1*3600, // Central European

'MET' => +1%*3600, // Middle European

'MEWT' => +1*3600, // Middle European Winter
'SWT' => +1*3600, // Swedish Winter

'FWT' => +1*3600, // French Winter

'EET' => +42*3600, // Eastern Europe, USSR Zone 1
'BT" => +3*3600, //Baghdad, USSR Zone 2
'IT" => +3*3600+1800, // Iran

'ZP4' => +4*3600, // USSR Zone 3

'ZP5' => +5*3600, // USSR Zone 4

'IST" => +5*3600+1800, // Indian Standard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

'ZP6' => +6*3600, // USSR Zone 5

'SST' => +7*3600, // South Sumatra, USSR Zone 6
'WAST' => +7*3600, /] West Australian Standard

JT' => +7*3600+1800, // Java

'CCT" => +8*3600, // China Coast, USSR Zone 7
'JST" => +9*3600, // Japan Standard, USSR Zone 8
'CAST' => +9*3600+1800, // Central Australian Standard
'EAST' => +10*3600, // Eastern Australian Standard
'GST' => +10*3600, // Guam Standard, USSR Zone 9
'NZT' => +12*3600, // New Zealand

'NZST' => +12*3600, // New Zealand Standard

'IDLE' => +12*3600 // International Date Line East

)i

On Unix systems, you can use the zoneinfo library to do the conversions. This makes your code more compact and also
transparently handles DST , as discussed in Recipe 3.12.

To take advantage of zoneinfo in PHP, do all your internal date math with epoch timestamps. Generate them from time
parts with the pc_mktime() function shown in Example 3-32.

pc_mktime()

<?php

function pc_mktime($tz,$hr,$min,$sec,$mon,$day,$yr) {
putenv("TZ=$tz");
$a = mktime($hr,$min,$sec,$mon,$day,$yr);
putenv('TZ=EST5EDT"); // change EST5EDT to your server's time zone!
return $a;

¥

?>

Calling putenv() before mktime() fools the system functions mktime() uses into thinking they're in a different time
zone. After the call to mktime(), the correct time zone has to be restored. On the East Coast of the United States,
that's ESTSEDT. Change this to the appropriate value for your computer's location (see Table 3-5). Manipulating
environment variables, however, can cause problems in multithreaded environments. If you're using PHP with a
multithreaded web server, it is an extremely good idea to upgrade to at least PHP 5.1.0, so you can use
date_default_timezone_set().

Time parts are turned into epoch timestamps by pc_mktime(). Its counterpart, which turns epoch timestamps into
formatted time strings and time parts, is pc_strftime(), shown in Example 3-33.

pc_strftime()

<?php
function pc_strftime($tz, $format, $timestamp) {
putenv("TZ=$tz");
$a = strftime($format, $timestamp);
putenv('TZ=EST5EDT'); // change EST5EDT to your server's time zone!
return $a;

b

?>

Example 3-33 uses the same system functionfooling pc_mktime() does to get the right results from strftime().

The great thing about these functions is that you don't have to worry about the offsets from UTC of different time
zones, whether DST is in effect, or any other irregularities of time zone differences. You just set the appropriate zone
and let your system libraries do the rest.

Note that the value of the $tz variable in both these functions should not be a time zone name but a zoneinfo zone.
zoneinfo zones are more specific than time zones because they correspond to particular places. Table 3-5 contains
mappings for appropriate zoneinfo zones for some UTC offsets. The last column indicates whether the zone observes
DST.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Table 3-5. zoneinfo zones

UTC offset (hours) UTC offset (seconds) zoneinfo zone DST?
-12 -43,200 Etc/GMT+12 No
-11 -39,600 Pacific/Midway No
-10 -36,000 US/Aleutian Yes
-10 -36,000 Pacific/Honolulu No
-9 -32,400 America/Anchorage Yes
-9 -32,400 Etc/GMT+9 No
-8 -28,800 PST8PDT Yes
-8 -28,800 America/Dawson_Creek No
-7 -25,200 MST7MDT Yes
-7 -25,200 MST No
-6 -21,600 CST6CDT Yes
-6 -21,600 Canada/Saskatchewan No
-5 -18,000 ESTSEDT Yes
-5 -18,000 EST No
-4 -14,400 America/Halifax Yes
-4 -14,400 America/Puerto_Rico No
-3.5 -12,600 America/St_Johns Yes
-3 -10,800 America/Buenos_Aires No
0 0 Europe/London Yes
0 0 GMT No
1 3,600 CET Yes
1 3,600 GMT-1 No
2 7,200 EET No
2 7,200 GMT-2 No
3 10,800 Asia/Baghdad Yes
3 10,800 GMT-3 No
3.5 12,600 Asia/Tehran Yes
4 14,400 Asia/Dubai No
4 14,400 Asia/Baku Yes
4.5 16,200 Asia/Kabul No
5 18,000 Asia/Tashkent No
5.5 19,800 Asia/Calcutta No
5.75 20,700 Asia/Katmandu No
6 21,600 Asia/Novosibirsk Yes
6 21,600 Etc/GMT-6 No
6.5 23,400 Asia/Rangoon No
7 25,200 Asia/Jakarta No
8 28,800 Hongkong No
9 32,400 Japan No
9.5 34,200 Australia/Darwin No
10 36,000 Australia/Sydney Yes
10 36,000 Pacific/Guam No
12 43,200 Etc/GMT-13 No

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12 43,200 Pacific/Auckland | Yes |

Countries around the world don't begin and end DST observance on the same days or at the same times. To calculate
time appropriately for an international DSTobserving location, pick a zoneinfo zone that matches your desired location
as specifically as possible.

3.11.4. See Also

Recipe 3.12 for dealing with DST; documentation on date_default_timezone_set() at
http://www.php.net/date_default_timezone_set, on date_default_timezone_get() at
http://www.php.net/date_default_timezone_get, on putenv() at http://www.php.net/putenv, on /ocaltime() at
http://www.php.net/localtime, on gmdate() at http://www.php.net/gmdate, and on gmstrftime() at
http://www.php.net/gmstrftime; the time zones that PHP knows about are listed at http://www.php.net/timezones;
zoneinfo zone names and longitude and latitude coordinates for hundreds of places around the world are available at
ftp://elsie.nci.nih.gov/pub/look for the most recent file whose name begins with tzdata; many links to historical and
technical information about time zones, as well as information on the zoneinfo database, can be found at the following

address: http://www.twinsun.com/tz/tz-link.htm.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 3.12. Accounting for Daylight Savings Time
3.12.1. Problem
You need to make sure your time calculations properly consider DST.
3.12.2. Solution

If you're using PHP 5.1.0 or later, set the appropriate time zone with date_default_timezone_set(). These time zones

are DST-aware. Example 3-34 uses date_default_timezone_set() to print out an appropriately DST-formatted time
string.

Handling DST with date_default_timezone_set()

<?php

// Denver, Colorado observes DST
date_default_timezone_set('America/Denver');
// July 4, 2008 is in the summer

$summer = mktime(12,0,0,7,4,2008);

print date('c', $summer) . "\n";

// Phoenix, Arizona does not observe DST
date_default_timezone_set('America/Phoenix");
print date('c', $summer) . "\n";

?>

Example 3-34 prints:

2008-07-04T12:00:00-06:00
2008-07-04T11:00:00-07:00

With an earlier version of PHP, you must use another method. The zoneinfo library calculates the effects of DST
properly. If you are using a Unix-based system, take advantage of zoneinfo with putenv(), as shown in Example 3-35.

Handling DST with zoneinfo

<?php

// Denver, Colorado observes DST
putenv('TZ=America/Denver');

// July 4, 2008 is in the summer
$summer = mktime(12,0,0,7,4,2008);
print date('c', $summer) . "\n";

// Phoenix, Arizona does not observe DST
putenv('TZ=America/Phoenix’);

print date('c', $summer) . "\n";

?>

If you can't use zoneinfo, you can modify hardcoded time zone offsets based on whether the local time zone is currently
observing DST. Use localtime() to determine the current DST observance status, as shown in Example 3-36.

Handling DST with explicit offsets

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
// Find the current UTC time
$now = time();

// California is 8 hours behind UTC
$now -= 8 * 3600;

// 1Is it DST?
$ar = localtime($now,true);
if ($ar['tm_isdst']) { $now += 3600; }

// Use gmdate() or gmstrftime() to print California-appropriate time
print gmstrftime('%c',$now);
?>

3.12.3. Discussion

Altering an epoch timestamp by the amount of a time zone's offset from UTC and then using gmdate() or gmstrftime()
to print out time zoneappropriate functions is flexible'it works from any time zone'but the DST calculations are slightly
inaccurate. For the brief intervals when the server's DST status is different from that of the target time zone, the results
are incorrect. For example, at 3:30 A.M. EDT on the first Sunday in April (after the switch to DST), it's still before the
switch (11:30 P.M.) in the Pacific time zone. A server in Eastern time using this method calculates California time to be
seven hours behind UTC, whereas it's actually eight hours. At 6:00 A.M. EDT (3:00 A.M. PDT), both Pacific and Eastern
time are observing DST, and the calculation is correct again (putting California at seven hours behind UTC).

3.12.4. See Also

Recipe 3.11 for dealing with time zones; documentation on date_default_timezone_set() at
http://www.php.net/date_default_timezone_set, on putenv() at http://www.php.net/putenv, localtime() at
http://www.php.net/localtime, gmdate() at http://www.php.net/gmdate, and gmstrft/me() at
http://www.php.net/gmstrftime; a detailed presentation on DST is at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.13. Generating a High-Precision Time

3.13.1. Problem

You need to measure time with finer than one-second resolution'for example, to generate a unique ID or benchmark a
function call.

3.13.2. Solution

Use microtime(true) to get the current time in seconds and microseconds. Example 3-37 uses microtime(true) to time how
long it takes to do 1,000 regular expression matches.

Timing with microtime()

<?php

$start = microtime(true);

for ($i = 0; $i < 1000; $i++) {
preg_match('/age=\d+/',$_SERVER['QUERY_STRING']);

$end = microtime(true);
$elapsed = $end - $start;

3.13.3. Discussion

Support for the optional argument microtime() was added in PHP 5.0.0. Without that argument, with an argument that
doesn't evaluate to true, or in an earlier version of PHP, microtime() returns a string that contains the microseconds
part of elapsed time since the epoch, a space, and seconds since the epoch. For example, a return value of 0.41644100
1026683258 means that 1026683258.41644100 seconds have elapsed since the epoch.

Time including microseconds is useful for generating unique IDs. When combined with the current process ID, it
guarantees a unique ID, as long as a process doesn't generate more than one ID per microsecond. Example 3-38 uses
microtime() (with its string return format) to generate just such an ID.

Generating an ID with microtime()

<?php

[list($microseconds,$seconds) = explode(' ',microtime());
$id = $seconds.$microseconds.getmypid();

?>

Note that the method in Example 3-38 is not as foolproof on multithreaded systems, where there is a non-zero (but
very tiny) chance that two threads of the same process could call microtime() during the same microsecond.

3.13.4. See Also

Documentation on microtime() at http://www.php.net/microtime. The unigid() function is good for generating unique
IDs.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.14. Generating Time Ranges

3.14.1. Problem

You need to know all the days in a week or a month. For example, you want to print out a list of appointments for a
week.

3.14.2. Solution

Identify your start date using time() and strftime(). If your interval has a fixed length, you can loop through that
many days. If not, you need to test each subsequent day for membership in your desired range.

For example, a week has seven days, so you can use a fixed loop to generate all the days in the current week, as in

Example 3-39.

Generating the days in a week

<?php
// generate a time range for this week
$now = time();

// If it's before 3 AM, increment $now, so we don't get caught by DST
// when moving back to the beginning of the week
if (3 < strftime('%H’, $now)) { $now += 7200; }

// What day of the week is today?
$today = strftime('%w', $now);

// How many days ago was the start of the week?
$start_day = $now - (86400 * $today);

// Print out each day of the week
for ($i = 0; $i < 7; $i++) {
print strftime('%c',$start_day + 86400 * $i);

?>

3.14.3. Discussion

A particular month or year could have a variable number of days, so you need to compute the end of the time range
based on the specifics of that month or year. To loop through every day in a month, find the epoch timestamps for the
first day of the month and the first day of the next month. In Example 3-40, the loop variable $day is incremented a day
at a time (86,400 seconds) until it's no longer less than the epoch timestamp at the beginning of the next month.

Generating the days in a month

<?php
// Generate a time range for this month
$now = time();

// If it's before 3 AM, increment $now, so we don't get caught by DST
// when moving back to the beginning of the month
if (3 < strftime('%H’, $now)) { $now += 7200; }

// What month is this?
$this_month = strftime('%m’,$now);

// Epoch timestamp for midnight on the first day of this month
$day = mktime(0,0,0,$this_month,1);
// Epoch timestamp for midnight on the first day of next month

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$month_end = mktime(0,0,0,$this_month+1,1);
while ($day < $month_end) {

print strftime('%c',$day);

$day += 86400;

?>

3.14.4. See Also

Documentation on time() at http://www.php.net/time and strftime() at http://www.php.net/strftime .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.15. Using Non-Gregorian Calendars

3.15.1. Problem

You want to use a non-Gregorian calendar, such as a Julian, Jewish, or French Republican calendar.

3.15.2. Solution

PHP's calendar extension provides conversion functions for working with the Julian calendar, as well as the French
Republican and Jewish calendars. To use these functions, the calendar extension must be loaded.

These functions use the Julian day count (which is different than the Julian calendar) as their intermediate format to
move information between them. cal_to_jd() converts a month, day, and year to a Julian day count value;
cal_from_jd() converts a Julian day count value to a month, day, and year in a particular calendar. Example 3-41
converts between Julian days and the familiar Gregorian calendar.

Converting between Julian days and the Gregorian calendar

<?php

// March 8, 1876

$jd = gregoriantojd(3,9,1876);
// $jd = 2406323

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
["date"]=>
string(8) "3/9/1876"
["month"]=>
int(3)
["day"]=>
int(9)
["year"]=>
int(1876)
["dow"]=>
int(4)
["abbrevdayname"]=>
string(3) "Thu"
["dayname"]=>
string(8) "Thursday"
["abbrevmonth"]=>
string(3) "Mar"
["monthname"]=>
string(5) "March"

*/

?>

The valid range for the Gregorian calendar is 4714 BCE to 9999 CE.
3.15.3. Discussion
To convert between Julian days and the Julian calendar, use the CAL_JULIAN constant, as shown in Example 3-42.

Using the Julian calendar

<?php
// February 29, 1900 (not a Gregorian leap year)
$jd = cal_to_jd(CAL_JULIAN, 2, 29, 1900);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// $id = 2415092

$julian = cal_from_jd($jd, CAL_JULIAN);
/* $julian is an array:
array(9) {
["date"]=>
string(9) "2/29/1900"
["month"]=>
int(2)
["day"]=>
int(29)
["year"]=>
int(1900)
["dow"]=>
int(2)
["abbrevdayname"]=>
string(3) "Tue"
["dayname"]=>
string(7) "Tuesday"
["abbrevmonth"]=>
string(3) "Feb"
["monthname"]=>
string(8) "February"

*/

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
["date"]=>
string(9) "3/13/1900"
["month"]=>
int(3)
["day"]=>
int(13)
["year"]=>
int(1900)
["dow"]=>
int(2)
["abbrevdayname"]=>
string(3) "Tue"
["dayname"]=>
string(7) "Tuesday"
["abbrevmonth"]=>
string(3) "Mar"
["monthname"]=>
string(5) "March"
b
*/

>

The valid range for the Julian calendar is 4713 BCE to 9999 CE, but since it was created in 46 BCE, you run the risk of
annoying Julian calendar purists if you use it for dates before that.

To convert between Julian days and the French Republican calendar, use the CAL_FRENCH constant , as shown in Example
3_43.

Using the French Republican calendar

<?php

// 13 Floréal XI

$jd = cal_to_jd(CAL_FRENCH, 8, 13, 11);
// $id = 2379714

$french = cal_from_jd($jd, CAL_FRENCH);
/* $french is an array:
array(9) {

["date"]=>

string(7) "8/13/11"

["month"]=>

int(8)

["day"]=>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

int(13)

["year"]=>

int(11)

["dow"]=>

int(2)
["abbrevdayname"]=>
string(3) "Tue"
["dayname"]=>
string(7) "Tuesday"
["abbrevmonth"]=>
string(7) "Floreal"
["monthname"]=>
string(7) "Floreal"

*/

// May 3, 1803 - sale of Louisiana to the US
$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
["date"]=>
string(8) "5/3/1803"
["month"]=>
int(5)
["day"]=>
int(3)
["year"]=>
int(1803)
["dow"]=>
int(2)
["abbrevdayname"]=>
string(3) "Tue"
["dayname"]=>
string(7) "Tuesday"
["abbrevmonth"]=>
string(3) "May"
["monthname"]=>
string(3) "May"

*/

?>

The valid range for the French Republican calendar is September 1792 to September 1806, which is small, but since the
calendar was only in use from October 1793 to January 1806, that's comprehensive enough. Note that the month
names that cal_from_jd() returns do not have proper accents'they are, for example, Floreal instead of Floréal.

To convert between Julian days and the Jewish calendar, use the CAL_JEWISH constant , as shown in Example 3-47.

Using the Jewish calendar

<?php

// 14 Adar 5761

$jd = cal_to_jd(CAL_JEWISH, 6, 14, 5761);
// $id = 2451978

$jewish = cal_from_jd($jd, CAL_JEWISH);
/* $jewish is an array:
array(9) {

["date"]=>

string(9) "6/14/5761"

["month"]=>

int(6)

["day"]=>

int(14)

["year"]=>

int(5761)

["dow"]=>

int(5)

["abbrevdayname"]=>

string(3) "Fri"

["dayname"]=>

string(6) "Friday"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

["abbrevmonth"]=>
string(5) "AdarI"
["monthname"]=>
string(5) "AdarI"

}
*/

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
["date"]=>
string(8) "3/9/2001"
["month"]=>
int(3)
["day"]=>
int(9)
["year"]=>
int(2001)
["dow"]=>
int(5)
["abbrevdayname"]=>
string(3) "Fri"
["dayname"]=>
string(6) "Friday"
["abbrevmonth"]=>
string(3) "Mar"
["monthname"]=>
string(5) "March"

*/

?>

The valid range for the Jewish calendar starts with 3761 BCE (year 1 on the Jewish calendar). Note that whether or not
it falls within a leap year, the month Adar is always returned as Adarl. In leap years, Adar II is returned as Adarll.

3.15.4. See Also

Documentation for the calendar functions at http://www.php.net/calendar; the history of the Gregorian calendar is

explained at http://scienceworld.wolfram.com/astronomy/GregorianCalendar.html .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 3.16. Using Dates Outside the Range of an Epoch Timestamp

3.16.1. Problem

You want to use dates that are outside the range of what a 32-bit epoch timestamp can handle: roughly before 1901 or
after 2038.

3.16.2. Solution

Use the PEAR Date_Calc class, which can handle dates from January 1, 1 CE to December 31, 9999 CE. Example 3-45
prints formatted dates for two days in the 9th century CE.

Using Date_Calc

<?php
require_once 'Date/Calc.php’;

// April 17, 1790
$date = Date_Calc::dateFormat(17, 4, 1790, '%A %B %e, %Y');

print "Benjamin Franklin died on $date.";
?>

Example 3-45 prints:
Benjamin Franklin died on Saturday April 17, 1790.

3.16.3. Discussion

Because Date_Calc uses its own internal representation for dates, it's not subject to the limits of storing an epoch
timestamp in a 32-bit integer. Its dateFormat() method works similarly to strftime()'it turns a format string into a
formatted date and time string. Table 3-7 lists the formatting characters that dateFormat() understands.

Table Formatting characters for Date_Calc::dateFormat()

Character Description
%d Day of month, with leading 0
%e Day of month, no leading 0
%W Day of week, no leading 0, Sunday is 0
%j Day of year, with leading 0
%E Day count according to internal Date_Calc epoch
%a Weekday name, short
%A Weekday name, full
%U Week number of current year
%m Month number, no leading 0, January is 1
%b Month name, short
%B Month name, long
%y Year, 2-digit with leading 0
%Y Year, 4-digit with leading 0

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

%n Newline
%t Tab
%% %

Date_Calc makes it easy to work with a wide range of Gregorian calendar dates, but it does not have comprehensive
knowledge of the religious, political, and cultural factors that have caused modification to the calendar over time.

3.16.4. See Also

The PEAR Date package at http://pear.php.net/package/Date. The tip of the calendar-changing-over-time-wackiness
iceberg is explored at http://en.wikipedia.org/wiki/Old_Style_and_New_Style_dates.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 3.17. Program: Calendar

The pc_calendar() function shown in Example 3-47 prints out a month's calendar, similar to the Unix cal program.
Example 3-46 shows how you can use the function, including default styles for its layout.

Using pc_calendar()

<style type="text/css">

.prev { text-align: left; }

.next { text-align: right; }

.day, .month, .weekday { text-align: center; }

.today { background: yellow; }

.blank { }

</style>

<?php

// print the calendar for the current month if a month

// or year isn't in the query string

$month = isset($_GET['month']) ? intval($_GET['month']) : date('m');
$year = isset($_GET['year']) ? intval($_GET['year']) : date('y');
?>

The pc_calendar() function prints out a table with a month's calendar in it. It provides links to the previous and next
month and highlights the current day, as shown in Example 3-47.

pc_calendar()

<?php
function pc_calendar($month,$year,$opts = ") {

// set default options

if (!is_array($opts)) { $opts = array(); }

if (! isset($opts['id'])) { $opts['id'] = 'calendar’; }

if (! isset($opts['month_link'])) {

$opts['month_link'] =
'%s";

$classes = array();
foreach (array('prev','month’,'next','weekday','blank’,'day','today") as $class) {
if (isset($opts[$class.'_class'])) {
$classes[$class] = htmlentities($opts[$class.'_class']);
Yelse {
$classes[$class] = $class;

b

list($this_month,$this_year,$this_day) = split(’,’,strftime('%m,%Y,%d"));
$day_highlight = (($this_month == $month) && ($this_year == $year));

list($prev_month,$prev_year) =
split(",',strftime('%m,%Y',mktime(0,0,0,$month-1,1,$year)));
$prev_month_link = sprintf($opts['month_link'],$prev_month,$prev_year,'«');

list($next_month,$next_year) =
split(",',strftime('%m,%Y',mktime(0,0,0,$month+1,1,$year)));
$next_month_link = sprintf($opts['month_link'],$next_month,$next_year,'»');

?>
<table id="<?php echo htmlentities($opts['id']) ?>">
<tr>
<td class="<?php echo $classes['prev'] ?>">
<?php print $prev_month_link ?>
</td>
<td class="<?php echo $classes['month'] ?>" colspan="5">
<?php print strftime('%B %Y',mktime(0,0,0,$month,1,$year)); ?>
</td>
<td class="<?php echo $classes['next'] ?>">

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php print $next_month_link ?>
</td>
</tr>
<?php
$totaldays = date('t',mktime(0,0,0,$month,1,$year));

// print out days of the week
print '<tr>";
$weekdays = array('Su','Mo','Tu','We','Th','Fr','Sa");
while (list($k,$v) = each($weekdays)) {
print '<td class="".$classes['weekday']."'>".$v.'</td>";

print '</tr><tr>";
// align the first day of the month with the right week day
$day_offset = date("w",mktime(0, 0, 0, $month, 1, $year));
if ($day_offset > 0) {
for ($i = 0; $i < $day_offset; $i++) {
print '<td class="".$classes['blank'].""> </td>";

b
b
$yesterday = time() - 86400;

// print out the days
for ($day = 1; $day <= $totaldays; $day++) {
$day_secs = mktime(0,0,0,$month,$day,$year);
if ($day_secs >= $yesterday) {
if ($day_highlight && ($day == $this_day)) {
print '<td class="". $classes['today'] ."">"' . $day . '</td>";
}else {
print '<td class=""'. $classes['day'] ."">" . $day . '</td>";

¥
Yelse {

print '<td class="'. $classes['day'] ."'>". $day .'</td>";
b
$day_offset++;

// start a new row each week //
if ($day_offset == 7) {
$day_offset = 0;
if ($day < $totaldays) { print "</tr>\n<tr>"; }

}
// fill in the last week with blanks //
if ($day_offset > 0) { $day_offset = 7 - $day_offset; }
if ($day_offset > 0) {
for ($i = 0; $i < $day_offset; $i++) {
print '<td class="".$classes['blank']."'> </td>";

}

print '</tr></table>";

The pc_calendar() function begins by checking options passed to it in $opts. You can pass a printf()-style format string
in $opts['month_link'] to change how the links to the previous and next months are printed as well as an id attribute for the
table. The id defaults to calendar if not specified.

Additionally, you can pass in class names to use for various elements in the layout. The option names for these classes
are prev_class, month_class, next_class, weekday_class, blank_class, day_class, and today_class. The default values are prev, month, next,
weekday, blank, day, and today. Example 3-46 includes styles that provide a basic pleasant layout for the table, including
highlighting the current day in yellow.

Next, the function sets $day_highlight to true if the month and year for the calendar match the current month and year.
The links to the previous month and next month are put into $prev_month_link and $next_month_link using the format string
in $opts['month_link'].

pc_calendar() then prints out the top of the HTML table that contains the calendar and a table row of weekday
abbreviations. Using the day of the week returned from strftime('%w'), blank table cells are printed so the first day of the
month is aligned with the appropriate day of the week. For example, if the first day of the month is a Tuesday, two
blank cells have to be printed to occupy the slots under Sunday and Monday in the first row of the table.

After this preliminary information has been printed, pc_calendar() loops through all the days in the month. It prints a
plain table cell for most days, but a table cell with a different background color for the current day. When $day_offset
reaches 7, a week has completed, and a new table row needs to start.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Once a table cell has been printed for each day in the month, blank cells are added to fill out the last row of the table.
For example, if the last day of the month is a Thursday, two cells are added to occupy the slots under Friday and
Saturday. Last, the table is closed, and the calendar is complete .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KX
Chapter 4. Arrays

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.0. Introduction

Arrays are lists: lists of people, lists of sizes, lists of books. To store a group of related items in a variable, use an array.
Like a list on a piece of paper, the elements in array have an order. Usually, each new item comes after the last entry in
the array, but just as you can wedge a new entry between a pair of lines already in a paper list, you can do the same
with arrays in PHP.

In many languages, there is only one type of array: this is called a numerical array (or just an array). In a numerical
array, if you want to find an entry, you need to know its position within the array, known as an index. Positions are
identified by numbers: they start at 0 and work upward one by one.

In some languages, there is also another type of array: an associative array, also known as a hash. In an associative
array, indexes aren't integers, but strings. So in a numerical array of U.S. presidents, "Abraham Lincoln" might have
index 16; in the associative-array version, the index might be "Honest." However, while numerical arrays have a strict
ordering imposed by their keys, associative arrays frequently make no guarantees about the key ordering. Elements are
added in a certain order, but there's no way to determine the order later.

In a few languages, there are both numerical and associative arrays. But usually the numerical array $presidents and the
associative array $presidents are distinct arrays. Each array type has a specific behavior, and you need to operate on it
accordingly. PHP has both numerical and associative arrays, but they don't behave independently.

In PHP, numerical arrays are associative arrays, and associative arrays are numerical arrays. So which kind are they
really? Both and neither. The line between them constantly blurs back and forth from one to another. At first, this can
be disorienting, especially if you're used to rigid behavior, but soon you'll find this flexibility an asset.

To assign multiple values to an array in one step, use array():

$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

Now, the value of $fruits[2] is 'Cantaloupes'.
array() is very handy when you have a short list of known values. The same array is also produced by:

$fruits[0] = 'Apples';
$fruits[1] = 'Bananas’;
$fruits[2] = 'Cantaloupes'’;
$fruits[3] = 'Dates';

and:

$fruits[] = 'Apples’;
$fruits[] = 'Bananas’;
$fruits[] = 'Cantaloupes';
$fruits[] = 'Dates’;

Assigning a value to an array with an empty subscript is shorthand for adding a new element to the end of the array. So
PHP looks up the length of $fruits and uses that as the position for the value you're assigning. This assumes, of course,
that $fruits isn't set to a scalar value, such as 3, and isn't an object. PHP complains if you try to treat a non-array as an
array; however, if this is the first time you're using this variable, PHP automatically converts it to an array and begins
indexing at 0.

An identical feature is the function array_push(), which pushes a new value on top of the array stack. However, the
$foo[] notation is the more traditional PHP style; it's also faster. But sometimes, using array_push() more accurately
conveys the stack nature of what you're trying to do, especially when combined with array_pop() , which removes the
last element from an array and returns it.

So far, we've placed integers and strings only inside arrays. However, PHP allows you to assign any data type you want
to an array element: booleans, integers, floating-point numbers, strings, objects, resources, NULL, and even other
arrays. So you can pull arrays or objects directly from a database and place them into an array:

while ($row = mysql_fetch_row($r)) {
$fruits[] = $row;

while ($obj = mysgl_fetch_object($s)) {
$vegetables[] = $obj;
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The first while statement creates an array of arrays; the second creates an array of objects. See Recipe 4.2 for more on
storing multiple elements per key.

To define an array using not integer keys but string keys, you can also use array(), but specify the key/value pairs with
=>

$fruits = array('red' => 'Apples’, 'yellow' => 'Bananas’,
'beige' => 'Cantaloupes', 'brown' => 'Dates');

Now, the value of $fruits['beige'] is 'Cantaloupes'. This is shorthand for:
$fruits['red'] = 'Apples';
$fruits['yellow'] = 'Bananas';

$fruits['beige'] = 'Cantaloupes';
$fruits['brown'] = 'Dates’;

Each array can only hold one unique value for each key. Adding:

$fruits['red'] = 'Strawberry';

overwrites the value of 'Apples'’. However, you can always add another key at a later time:

$fruits['orange'] = 'Orange’;

The more you program in PHP, the more you find yourself using associative arrays instead of numerical ones. Instead of
creating a numeric array with string values, you can create an associative array and place your values as its keys. If
you want, you can then store additional information in the element's value. There's no speed penalty for doing this, and
PHP preserves the ordering. Plus, looking up or changing a value is easy because you already know the key.

The easiest way to cycle though an array and operate on all or some of the elements inside is to use foreach:

$fruits = array('red' => 'Apples’, 'yellow' => 'Bananas’,
'beige' => 'Cantaloupes’, 'brown' => 'Dates');

foreach ($fruits as $color => $fruit) {
print "$fruit are $color.\n";

}

Apples are red.
Bananas are yellow.
Cantaloupes are beige.
Dates are brown.

Each time through the loop, PHP assigns the next key to $color and the key's value to ¢fruit. When there are no elements
left in the array, the loop finishes.

To break an array apart into individual variables, use list():

$fruits = array('Apples', 'Bananas', 'Cantaloupes’, 'Dates');

list($red, $yellow, $beige, $brown) = $fruits;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 4.1. Specifying an Array Not Beginning at Element 0

4.1.1. Problem

You want to assign multiple elements to an array in one step, but you don't want the first index to be 0.

4.1.2. Solution

Instruct array() to use a different index using the => syntax:

$presidents = array(1 => 'Washington', 'Adams', 'Jefferson', 'Madison');

4.1.3. Discussion

Arrays in PHP'like most, but not all, computer languages'begin with the first entry located at index 0. Sometimes,
however, the data you're storing makes more sense if the list begins at 1. (And we're not just talking to recovering
Pascal programmers here.)

In the Solution, George Washington is the first president, not the zeroth, so if you wish to print a list of the presidents,
it's simpler to do this:

foreach ($presidents as $number => $president) {
print "$number: $president\n";

¥

than this:

foreach ($presidents as $number => $president) {
$number++;
print "$number: $president\n";

¥

The feature isn't restricted to the number 1; any integer works:

$reconstruction_presidents = array(16 => 'Lincoln’, 'Johnson', 'Grant');

Also, you can use => multiple times in one call:

$whig_presidents = array(9 => 'Harrison’, 'Terr',[—l 12 => "Taylor', 'Fillmore');

PHP even allows you to use negative numbers in the array() call. (In fact, this method works for non-integer keys,
too.) What you'll get is technically an associative array, although as we said, the line between numeric arrays and
associative arrays is often blurred in PHP; this is just another one of these cases:

$us_leaders = array(-1 => 'George II', 'George III', 'Washington');

If Washington is the first U.S. leader, George III is the zeroth, and his grandfather George II is the negative-first.

Of course, you can mix and match numeric and string keys in one array() definition, but it's confusing and very rarely
needed:

$presidents = array(1 => 'Washington', 'Adams', 'Honest' => 'Lincoln', 'Jefferson');

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This is equivalent to:

$presidents[1] = '"Washington'; // Key is 1
$presidents[] = 'Adams’; /[Keyisl+1=>2
$presidents['Honest'] = 'Lincoln’; // Key is 'Honest'
$presidents[] = 'Jefferson’; //Keyis2+1=>3

4.1.4. See Also

Documentation on array() at http://www.php.net/array.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.2. Storing Multiple Elements Per Key in an Array

4.2.1. Problem

You want to associate multiple elements with a single key.

4.2.2. Solution

Store the multiple elements in an array:

$fruits = array('red' => array('strawberry','apple'),
'vellow' => array('banana’));

Or use an object:

while ($obj = mysql_fetch_object($r)) {
$fruits[] = $obj;
b

4.2.3. Discussion

In PHP, keys are unique per array, so you can't associate more than one entry in a key without overwriting the old
value. Instead, store your values in an anonymous array:

$fruits['red'][] = 'strawberry';

$fruits['red'][] = 'apple’;
$fruits['yellow'][] = 'banana’;

Or, if you're processing items in a loop:

while (list($color,$fruit) = mysql_fetch_array($r)) {
$fruits[$color][] = $fruit;

To print the entries, loop through the array:

foreach ($fruits as $color=>$color_fruit) {
// $color_fruit is an array
foreach ($color_fruit as $fruit) {
print "$fruit is colored $color.
";
}

}

Or use the pc_array_to_comma_string() function from Recipe 4.9.

foreach ($fruits as $color=>$color_fruit) {
print "$color colored fruits include " .
pc_array_to_comma_string($color_fruit) . "
";

In PHP 5.0.0 and above, you don't need pc_array_range(): just pass an increment to range() as a third argument:

$odd = range(1, 52, 2);
$even = range(2, 52, 2);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.2.4. See Also

Recipe 4.9 for how to print arrays with commas.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.3. Initializing an Array to a Range of Integers

4.3.1. Problem

You want to assign a series of consecutive integers to an array.

4.3.2. Solution

Use range($start, $stop):

$cards = range(1, 52);

4.3.3. Discussion

For increments other than 1, you can use:

function pc_array_range($start, $stop, $step) {
$array = array();

for ($i = $start; $i <= $stop; $i += $step) {
$array[] = $i;

return $array;

So for odd numbers:

$odd = pc_array_range(1, 52, 2);

And for even numbers:

$even = pc_array_range(2, 52, 2);

In PHP 5.0.0 and above, you don't need pc_array_range(): just pass an increment to range() as a third argument:

$odd = range(1, 52, 2);
$even = range(2, 52, 2);
4.3.4. See Also

Recipe 2.4 for how to operate on a series of integers; documentation on range() at http://www.php.net/range.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 4.4. Iterating Through an Array

4.4.1. Problem

You want to cycle though an array and operate on all or some of the elements inside.

4.4.2. Solution

Use foreach:

foreach ($array as $value) {
// Act on $value

}

Or to get an array's keys and values:

foreach ($array as $key => $value) {
// Act 11
¥

Another technique is to use for:

for ($key = 0, $size = count($array); $key < $size; $key++) {
/] Act III
b

Finally, you can use each() in combination with /ist() and while:
reset($array) // reset internal pointer to beginning of array
while (list($key, $value) = each ($array)) {
// Final Act
¥

4.4.3. Discussion

A foreach loop is the most concise to iterate through an array:

// foreach with values
foreach ($items as $cost) {

)

// foreach with keys and values
foreach($items as $item => $cost) {

)

With foreach, PHP iterates over a copy of the array instead of the actual array. In contrast, when using each() and for,
PHP iterates over the original array. So if you modify the array inside the loop, you may (or may not) get the behavior
you expect.

If you want to modify the array, reference it directly:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

reset($items);
while (list($item, $cost) = each($items)) {
if (! in_stock($item)) {
unset($items[$item]); // address the array directly

The variables returned by each() aren't aliases for the original values in the array: they're copies, so if you modify
them, it's not reflected in the array. That's why you need to modify $items[$item] instead of $item.

When using each(), PHP keeps track of where you are inside the loop. After completing a first pass through, to begin
again at the start, call reset() to move the pointer back to the front of the array. Otherwise, each() returns false.

The for loop works only for arrays with consecutive integer keys. Unless you're modifying the size of your array, it's
inefficient to recompute the count() of $items each time through the loop, so we always use a $size variable to hold the
array's size:

for ($item = 0, $size = count($items); $item < $size; $item++) {

}

If you prefer to count efficiently with one variable, count backward:

for ($item = count($items) - 1; $item >= 0; $item--) {

}

The associative array version of the for loop is:

for (reset($array); $key = key($array); next($array)) {

}

This fails if any element holds a string that evaluates to false, so a perfectly normal value such as 0 causes the loop to
end early.

Finally, use array_map() to hand off each element to a function for processing:

// lowercase all words
$lc = array_map('strtolower', $words);

The first argument to array_map() is a function to modify an individual element, and the second is the array to be
iterated through.

Generally, we find this function less flexible than the previous methods, but it is well-suited for the processing and
merging of multiple arrays.

If you're unsure if the data you'll be processing is a scalar or an array, you need to protect against calling foreach with a
non-array. One method is to use is_array():

if (is_array($items)) {

// foreach loop code for array
}else {

// code for scalar

}

Another method is to coerce all variables into array form using settype():

settype($items, 'array");
// loop code for arrays

This turns a scalar value into a one-element array and cleans up your code at the expense of a little overhead.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.4.4. See Also

Documentation on for at http://www.php.net/for, foreach at http://www.php.net/foreach, while at
http://www.php.net/while, each() at http://www.php.net/each, reset() at http://www.php.net/reset, and array_map(
http://www.php.net/array-map .

) at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.5. Deleting Elements from an Array

4.5.1. Problem

You want to remove one or more elements from an array.

4.5.2. Solution

To delete one element, use unset():

unset($array[3]);
unset($array['foo']);

To delete multiple noncontiguous elements, also use unset():

unset($array[3], $array[5]);
unset($array['foo'], $array['bar']);

To delete multiple contiguous elements, use array_splice():

array_splice($array, $offset, $length);

4.5.3. Discussion

Using these functions removes all references to these elements from PHP. If you want to keep a key in the array, but
with an empty value, assign the empty string to the element:

$array[3] = $array['foo'] = ";

Besides syntax, there's a logical difference between using unset() and assigning " to the element. The first says, "This
doesn't exist anymore," while the second says, "This still exists, but its value is the empty string."

If you're dealing with numbers, assigning 0 may be a better alternative. So if a company stopped production of the
model XL1000 sprocket, it would update its inventory with:

unset($products['XL1000']);

However, if the company temporarily ran out of XL1000 sprockets but was planning to receive a new shipment from the
plant later this week, this is better:

$products['XL1000'] = 0;

If you unset() an element, PHP adjusts the array so that looping still works correctly. It doesn't compact the array to
fill in the missing holes. This is what we mean when we say that all arrays are associative, even when they appear to be
numeric. Here's an example:

// create a "numeric" array

$animals = array(‘ant', 'bee’, 'cat’, 'dog', 'elk’, 'fox');
print $animals[1]; // prints 'bee’

print $animals[2]; // prints 'cat’

count($animals); // returns 6

// unset()
unset($animals[1]); // removes element $animals[1] = 'bee'
print $animals[1]; // prints " and throws an E_NOTICE error

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print $animals[2]; // still prints 'cat'
count($animals); // returns 5, even though $array[5] is 'fox'

// add new element

$animals[] = 'gnu’; // add new element (not Unix)

print $animals[1]; // prints ", still empty

print $animals[6]; // prints 'gnu’, this is where 'gnu’ ended up
count($animals); // returns 6

// assign "

$animals[2] = "; // zero out value

print $animals[2]; // prints "

count($animals); // returns 6, count does not decrease

To compact the array into a densely filled numeric array, use array_values():

$animals = array_values($animals);

Alternatively, array_splice() automatically reindexes arrays to avoid leaving holes:

// create a "numeric" array

$animals = array(‘ant’, 'bee’, 'cat’, 'dog’, 'elk’, 'fox");
array_splice($animals, 2, 2);

print_r($animals);

Array
[0] => ant
[1] => bee
[2] => elk
[3] => fox
)

This is useful if you're using the array as a queue and want to remove items from the queue while still allowing random
access. To safely remove the first or last element from an array, use array_shift() and array_pop(), respectively.

However, if you find yourself often running into problems because of holes in arrays, you may not be "thinking PHP."
Look at the ways to iterate through the array in Recipe 4.4 that don't involve using a for loop.

4.5.4. See Also

Recipe 4.4 for iteration techniques; documentation on unset() at http://www.php.net/unset, array_splice() at
http://www.php.net/array-splice, and array_values() at http://www.php.net/array-values .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 4.6. Changing Array Size

4.6.1. Problem

You want to modify the size of an array, either by making it larger or smaller than its current size.

4.6.2. Solution

Use array_pad() to make an array grow:

// start at three
$array = array(‘apple', 'banana’, 'coconut');

// grow to five
$array = array_pad($array, 5, ");

Now , count($array) is 5, and the last two elements, $array[3] and $array[4], contain the empty string.
To reduce an array, you can use array_splice():

// no assignment to $array
array_splice($array, 2);

This removes all but the first two elements from $array.

4.6.3. Discussion

Arrays aren't a predeclared size in PHP, so you can resize them on the fly.

To pad an array, use array_pad(). The first argument is the array to be padded. The next argument is the size and
direction you want to pad. To pad to the right, use a positive integer; to pad to the left, use a negative one. The third
argument is the value to be assigned to the newly created entries. The function returns a modified array and doesn't
alter the original.

Here are some examples:

// make a four-element array with 'dates' to the right
$array = array(‘apple', 'banana’, 'coconut');
$array = array_pad($array, 4, 'dates');
print_r($array);
Array
(

[0] => apple

[1] => banana

[2] => coconut

[3] => dates
)

// make a six-element array with 'zucchinis' to the left
$array = array_pad($array, -6, 'zucchini');
print_r($array);
Array
(

[0] => zucchini

[1] => zucchini

[2] => apple

[3] => banana

[4] => coconut

[5] => dates

Be careful: array_pad($array, 4, 'dates’) makes sure an $array is at least four elements long; it doesn't add four new elements.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this case, if $array was already four elements or larger, array_pad() would return an unaltered $array.
Also, if you declare a value for a fourth element, $array[4]:

$array = array(‘apple', 'banana’, 'coconut');
$array[4] = 'dates’;

you end up with a four-element array with indexes 0, 1, 2, and 4:

Array

(
[0] => apple
[1] => banana
[2] => coconut
[4] => dates

)

PHP essentially turns this into an associative array that happens to have integer keys.

The array_splice() function, unlike array_pad(), has the side effect of modifying the original array. It returns the
spliced-out array. That's why you don't assign the return value to $array. However, like array_pad(), you can splice from
either the right or left. So calling array_splice() with a value of -2 chops off the last two elements from the end:

// make a four-element array
$array = array(‘apple', 'banana’, 'coconut’, 'dates');

// shrink to three elements
array_splice($array, 3);

// remove last element, equivalent to array_pop()
array_splice($array, -1);

// only remaining fruits are apple and banana
print_r($array);

Array
(
[0] => apple
[1] => banana
)
4.6.4. See Also

Documentation on array_pad() at http://www.php.net/array-pad and array_splice() at http://www.php.net/array-
splice .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | NEXT B
Recipe 4.7. Appending One Array to Another

4.7.1. Problem

You want to combine two arrays into one.

4.7.2. Solution

Use array_merge():

$garden = array_merge($fruits, $vegetables);

4.7.3. Discussion

The array_merge() function works with both predefined arrays and arrays defined in place using array() :

$p_languages = array('Perl', 'PHP');
$p_languages = array_merge($p_languages, array(‘Python'));
print_r($p_languages);

Array
[0] => PHP
[1] => Perl
[2] => Python

Accordingly, merged arrays can be either preexisting arrays, as with $p_languages, or anonymous arrays, as with
array('Python").

You can't use array_push(), because PHP won't automatically flatten out the array into a series of independent
variables, and you'll end up with a nested array. Thus:

array_push($p_languages, array('Python"));
print_r($p_languages);

Array

(
[0] => PHP
[1] => Perl

[2] => Array
(

[0] => Python

Merging arrays with only numerical keys causes the arrays to get renumbered, so values aren't lost. Merging arrays
with string keys causes the second array to overwrite the value of any duplicated keys. Arrays with both types of keys
exhibit both types of behavior. For example:

$lc = array(‘a', 'b' =>'b"); // lower-case letters as values
$uc = array('A', 'b' => 'B'); // upper-case letters as values
$ac = array_merge($lc, $uc); // all-cases?

print_r($ac);

Array
[0]=>a
[b]=>B
[1]=>A

)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The uppercase A has been renumbered from index 0 to index 1, to avoid a collision, and merged onto the end. The
uppercase B has overwritten the lowercase b and replaced it in the original place within the array.

The + operator can also merge arrays. The array on the right overwrites any identically named keys found on the left. It
doesn't do any reordering to prevent collisions. Using the previous example:

print_r($uc + $lc);
print_r($lc + $uc);

Array
(
[0]=>a
[b]=>b
)
Array
(
[0]=>A
[b]=>B
)

Since a and A both have a key of 0, and b and B both have a key of b, you end up with a total of only two elements in
the merged arrays.

In the first case, $a + $b becomes just $b, and in the other, $b + $a becomes $a.

However, if you had two distinctly keyed arrays, this wouldn't be a problem, and the new array would be the union of
the two arrays.

4.7.4. See Also

Documentation on array_merge() at http://www.php.net/array-merge .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.8. Turning an Array into a String

4.8.1. Problem

You have an array, and you want to convert it into a nicely formatted string.

4.8.2. Solution

Use join():

// make a comma delimited list
$string = join(',', $array);

Or loop yourself:
$string = ";
foreach ($array as $key => $value) {

$string .= ",$value";

"

$string = substr($string, 1); // remove leading ",

4.8.3. Discussion

If you can use join(), do; it's faster than any PHP-based loop. However, join() isn't very flexible. First, it places a
delimiter only between elements, not around them. To wrap elements inside HTML bold tags and separate them with
commas, do this:

$left = '";
$right = '";

$html = $left . join("$right,$left", $html) . $right;

Second, join() doesn't allow you to discriminate against values. If you want to include a subset of entries, you need to
loop yourself:

$string = ";

foreach ($fields as $key => $value) {
// don't include password
if ('‘password' = $key) {
$string .= ",$value";
¥

}

$string = substr($string, 1); // remove leading ",

Notice that a separator is always added to each value and then stripped off outside the loop. While it's somewhat
wasteful to add something that will be subtracted later, it's far cleaner and efficient (in most cases) than attempting to
embed logic inside of the loop. To wit:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$string = ";
foreach ($fields as $key => $value) {
// don't include password
if ('password' = $value) {
if (lempty($string)) { $string .=","; }
$string .= "$value";

Now you have to check $string every time you append a value. That's worse than the simple substr() call. Also, prepend
the delimiter (in this case a comma) instead of appending it because it's faster to shorten a string from the front than
the rear.

4.8.4. See Also

Recipe 4.9 for printing an array with commas; documentation on join() at http://www.php.net/join and substr() at
http://www.php.net/substr.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.9. Printing an Array with Commas

4.9.1. Problem

You want to print out an array with commas separating the elements and with an "and" before the last element if there
are more than two elements in the array.

4.9.2. Solution

Use the pc_array_to_comma_string() function shown in Example 4-1, which returns the correct string.

pc_array_to_comma_string()

function pc_array_to_comma_string($array) {

switch (count($array)) {
case 0:
return ";

case 1:
return reset($array);

case 2:
return join(" and ', $array);

default:
$last = array_pop($array);
return join(', ', $array) . ", and $last";
}
}

4.9.3. Discussion

If you have a list of items to print, it's useful to print them in a grammatically correct fashion. It looks awkward to
display text like this:

$thundercats = array('Lion-O', 'Panthro', 'Tygra', 'Cheetara’, 'Snarf);
print 'ThunderCat good guys include ' . join(', ', $thundercats) . '.";
ThunderCat good guys include Lion-O, Panthro, Tygra, Cheetara, Snarf.

This implementation of this function isn't completely straightforward, since we want pc_array_to_comma_string() to
work with all arrays, not just numeric ones beginning at 0. If restricted only to that subset, for an array of size one, you
return $array[0]. But if the array doesn't begin at 0, $array[0] is empty. So you can use the fact that reset(), which resets
an array's internal pointer, also returns the value of the first array element.

For similar reasons, you call array_pop() to grab the end element, instead of assuming it's located at $array[count($array)-
1]. This allows you to use join() on $array.

Also note that the code for case 2 actually works correctly for case 1, too. And the default code works (though
inefficiently) for case 2; however, the transitive property doesn't apply, so you can't use the default code on elements
of size 1.

4.9.4. See Also

i for turning an array into a string; documentation on join() at http://www.php.net/join, array_pop() at
http://www.php.net/array-pop, and reset() at http://www.php.net/reset.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 4.10. Checking if a Key Is in an Array

4.10.1. Problem

You want to know if an array contains a certain key.

4.10.2. Solution

Use array_key_exists() to check for a key no matter what the associated value is:

if (array_key_exists('key', $array)) {
/* there is a value for $array['key'] */

}

Use isset() to find a key whose associated value is anything but null:

if (isset($array['key'])) { /* there is a non-null value for 'key' in $array */ }

4.10.3. Discussion

The array_key_exists() function completely ignores array values'it just reports whether there is an element in the
array with a particular key. isset(), however, behaves the same way on array keys as it does with other variables. A null
value causes isset() to return false. See the Introduction to Chapter 5 for more information about the truth value of
variables.

4.10.4. See Also

Documentation on isset() at http://www.php.net/isset and on array_key_exists() at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.11. Checking if an Element Is in an Array

4.11.1. Problem

You want to know if an array contains a certain value.

4.11.2. Solution

Use in_array():

if (in_array($value, $array)) {
// an element has $value as its value in array $array

}

4.11.3. Discussion

Use in_array() to check if an element of an array holds a value:

$book_collection = array('Emma’, 'Pride and Prejudice’, 'Northhanger Abbey');
$book = 'Sense and Sensibility';

if (in_array($book, $book_collection) {
echo 'Own it.";

}else {
echo 'Need it.";

}

The default behavior of in_array() is to compare items using the == operator. To use the strict equality check, ===,
pass true as the third parameter to in_array():

$array = array(1, '2', 'three');

in_array(0, $array); // true!
in_array(0, $array, true); // false
in_array(1, $array); // true
in_array(1, $array, true); // true
in_array(2, $array); // true
in_array(2, $array, true); // false

The first check, in_array(0, $array), evaluates to true because to compare the number 0 against the string tHRee, PHP casts
three to an integer. Since three isn't @ numeric string, as is 2, it becomes 0. Therefore, in_array() thinks there's a match.

Consequently, when comparing numbers against data that may contain strings, it's safest to use a strict comparison.

If you find yourself calling in_array() multiple times on the same array, it may be better to use an associative array,
with the original array elements as the keys in the new associative array. Looking up entries using in_array() takes
linear time; with an associative array, it takes constant time.

If you can't create the associative array directly but need to convert from a traditional one with integer keys, use
array_flip() to swap the keys and values of an array:

$book_collection = array('Emma’,
'Pride and Prejudice’,
‘Northhanger Abbey");

// convert from numeric array to associative array
$book_collection = array_flip($book_collection);
$book = 'Sense and Sensibility';

if (isset($book_collection[$book])) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo 'Own it.";
}else {

echo 'Need it.";
¥

Note that doing this condenses multiple keys with the same value into one element in the flipped array.

4.11.4. See Also

Recipe 4.12 for determining the position of a value in an array; documentation on in_array() at http://www.php.net/in-
array and array_flip() at the following address: http://www.php.net/array-flip.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.12. Finding the Position of a Value in an Array

4.12.1. Problem

You want to know if a value is in an array. If the value is in the array, you want to know its key.

4.12.2. Solution

Use array_search() . It returns the key of the found value. If the value is not in the array, it returns false:

$position = array_search($value, $array);
if ($position !== false) {
// the element in position $position has $value as its value in array $array

}

4.12.3. Discussion

Use in_array() to find if an array contains a value; use array_search() to discover where that value is located.
However, because array_search() gracefully handles searches in which the value isn't found, it's better to use
array_search() instead of in_array(). The speed difference is minute, and the extra information is potentially useful:

$favorite_foods = array(1 => 'artichokes', 'bread', 'cauliflower’, 'deviled eggs');
$food = 'cauliflower';
$position = array_search($food, $favorite_foods);

if ($position !== false) {

echo "My #$position favorite food is $food";
}else {

echo "Blech! I hate $food!";
b

Use the !'== check against false because if your string is found in the array at position 0, the if evaluates to a logical false,
which isn't what is meant or wanted.

If a value is in the array multiple times, array_search() is only guaranteed to return one of the instances, not the first
instance.

4.12.4. See Also

Recipe 4.11 for checking whether an element is in an array; documentation on array_search() at
- for more sophisticated searching of arrays using regular expression, see

http://www.php.net/array-search;
preg_replace(), which is found at http://www.php.net/preg-replace and Chapter 22.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 4.13. Finding Elements That Pass a Certain Test

4.13.1. Problem

You want to locate entries in an array that meet certain requirements.

4.13.2. Solution

Use a foreach loop:
$movies = array(...);

foreach ($movies as $movie) {
if ($movie['box_office_gross'] < 5000000) { $flops[] = $movie; }
b

Or array_filter():
$movies = array(...);

function flops($movie) {
return ($movie['box_office_gross'] < 5000000) ? 1 : 0;
¥

$flops = array_filter($movies, 'flops');

4.13.3. Discussion

The foreach loops are simple: you iterate through the data and append elements to the return array that match your
criteria.

If you want only the first such element, exit the loop using break:

foreach ($movies as $movie) {
if ($movie['box_office_gross'] > 200000000) { $blockbuster = $movie; break; }
b

You can also return directly from a function:

function blockbuster($movies) {
foreach ($movies as $movie) {
if ($movie['box_office_gross'] > 200000000) { return $movie; }

With array_filter(), however, you first create a callback function that returns TRue for values you want to keep and false
for values you don't. Using array_filter(), you then instruct PHP to process the array as you do in the foreach.

It's impossible to bail out early from array_filter(), so foreach provides more flexibility and is simpler to understand.
Also, it's one of the few cases in which the built-in PHP function doesn't clearly outperform user-level code.

4.13.4. See Also

Documentation on array_filter() at http://www.php.net/array-filter.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.14. Finding the Largest or Smallest Valued Element in an
Array

4.14.1. Problem

You have an array of elements, and you want to find the largest or smallest valued element. For example, you want to
find the appropriate scale when creating a histogram.

4.14.2. Solution

To find the largest element, use max():

$largest = max($array);

To find the smallest element, use min():

$smallest = min($array);

4.14.3. Discussion

Normally, max() returns the larger of two elements, but if you pass it an array, it searches the entire array instead.
Unfortunately, there's no way to find the index of the largest element using max(). To do that, you must sort the array
in reverse order to put the largest element in position 0:

arsort($array);

Now the value of the largest element is $array[0].
If you don't want to disturb the order of the original array, make a copy and sort the copy:

$copy = $array;
arsort($copy);

The same concept applies to min() but uses asort() instead of arsort().

4.14.4. See Also

Recipe 4.16 for sorting an array; documentation on max() at http://www.php.net/max, min() at
http://www.php.net/min, arsort() at http://www.php.net/arsort, and asort() at http://www.php.net/asort.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.15. Reversing an Array

4.15.1. Problem

You want to reverse the order of the elements in an array.

4.15.2. Solution

Use array_reverse():

$array = array('Zero', 'One’, 'Two');
$reversed = array_reverse($array);

4.15.3. Discussion

The array_reverse() function reverses the elements in an array. However, it's often possible to avoid this operation. If
you wish to reverse an array you've just sorted, modify the sort to do the inverse. If you want to reverse a list you're
about to loop through and process, just invert the loop. Instead of:

for ($i = 0, $size = count($array); $i < $size; $i++) {

.

do the following:

for ($i = count($array) - 1; $i >=0; $i--) {

}

However, as always, use a for loop only on a tightly packed array.

Another alternative would be, if possible, to invert the order elements are placed into the array. For instance, if you're
populating an array from a series of rows returned from a database, you should be able to modify the query to ORDER
DESC. See your database manual for the exact syntax for your database.

4.15.4. See Also

Documentation on array_reverse() at http://www.php.net/array-reverse.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 4.16. Sorting an Array

4.16.1. Problem

You want to sort an array in a specific way.

4.16.2. Solution

To sort an array using the traditional definition of sort, use sort():

$states = array('Delaware’, 'Pennsylvania’, 'New Jersey");
sort($states);

To sort numerically, pass SORT_NUMERIC as the second argument to sort():

$scores = array(1, 10, 2, 20);
sort($scores, SORT_NUMERIC);

This resorts the numbers in ascending order (1, 2, 10, 20) instead of lexicographical order (1, 10, 2, 20).

4.16.3. Discussion

The sort() function doesn't preserve the key/value association between elements; instead, entries are reindexed
starting at 0 and going upward. (The one exception to this rule is a one-element array; its lone element doesn't have its
index reset to 0. This is fixed as of PHP 4.2.3.)

To preserve the key/value links, use asort(). The asort() function is normally used for associative arrays, but it can
also be useful when the indexes of the entries are meaningful:

$states = array(1 => 'Delaware’, 'Pennsylvania’, 'New Jersey');
asort($states);

while (list($rank, $state) = each($states)) {
print "$state was the #$rank state to join the United States\n";

Use natsort() to sort the array using a natural sorting algorithm. Under natural sorting, you can mix strings and
numbers inside your elements and still get the right answer:

$tests = array('testl.php', 'test10.php', 'test11.php', 'test2.php');
natsort($tests);

The elements are now ordered 'testl.php', 'test2.php', 'test10.php', and 'testi1.php'. With natural sorting, the number 10 comes
after the number 2; the opposite occurs under traditional sorting. For case-insensitive natural sorting, use natcasesort(

).

To sort the array in reverse order, use rsort() or arsort(), which is like rsort() but also preserves keys. There is no
natrsort() or natcasersort(). You can also pass SORT_NUMERIC into these functions.

4.16.4. See Also

Recipe 4.17 for sorting with a custom comparison function and Recipe 4.18 for sorting multiple arrays; documentation
on sort() at http://www.php.net/sort, asort() at http://www.php.net/asort, natsort() at http://www.php.net/natsort,
natcasesort() at http://www.php.net/natcasesort, rsort() at http://www.php.net/rsort, and arsort() at
http://www.php.net/arsort.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 4.17. Sorting an Array by a Computable Field

4.17.1. Problem

You want to define your own sorting routine.

4.17.2. Solution

Use usort() in combination with a custom comparison function:

// sort in reverse natural order

function natrsort($a, $b) {
return strnatcmp($b, $a);

b

$tests = array('testl.php’, 'test10.php’, 'test11.php’, 'test2.php’);
usort($tests, 'natrsort’);

4.17.3. Discussion

The comparison function must return a value greater that O if $a > $b, 0 if $a == $b, and a value less than 0 if $a < $b. To
sort in reverse, do the opposite. The function in the Solution, strnatcmp(), obeys those rules.

To reverse the sort, instead of multiplying the return value of strnatcmp($a, $b) by -1, switch the order of the arguments to
strnatcmp($b, $a).

The sort function doesn't need to be a wrapper for an existing sort. For instance, the pc_date_sort() function, shown in

Example 4-2, shows how to sort dates.

pc_date_sort()

// expects dates in the form of "MM/DD/YYYY"
function pc_date_sort($a, $b) {
list($a_month, $a_day, $a_year) = explode('/', $a);
list($b_month, $b_day, $b_year) = explode('/', $b);

if ($a_year > $b_year) return 1;
if ($a_year < $b_year) return -1;

if ($a_month > $b_month) return 1;
if ($a_month < $b_month) return -1;

if (fa_day > $b_day) return 1;
if ($a_day < $b_day) return -1;

return 0;

b

$dates = array('12/14/2000', '08/10/2001', '08/07/1999");
usort($dates, 'pc_date_sort');

While sorting, usort() frequently recomputes the sort function's return values each time it's needed to compare two
elements, which slows the sort. To avoid unnecessary work, you can cache the comparison values, as shown in

pc_array_sort() in Example 4-3.

pc_array_sort()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function pc_array_sort($array, $map_func, $sort_func = ") {
$mapped = array_map($map_func, $array); // cache $map_func() values

if (" == $sort_func) {

asort($mapped); // asort() is faster then usort()
} else {

uasort($mapped, $sort_func); // need to preserve keys
}
while (list($key) = each($mapped)) {

$sorted[] = $array[$key]; // use sorted keys
}

return $sorted;

To avoid unnecessary work, pc_array_sort() uses a temporary array, $mapped, to cache the return values. It then sorts
$mapped, using either the default sort order or a user-specified sorting routine. Importantly, it uses a sort that preserves
the key/value relationship. By default, it uses asort() because asort() is faster than vasort(). (Slowness in uasort() is
the whole reason for pc_array_sort() after all.) Finally, it creates a sorted array, $sorted, using the sorted keys in
$mapped to index the values in the original array.

For small arrays or simple sort functions, usort() is faster, but as the number of computations grows, pc_array_sort()
surpasses usort(). The following example sorts elements by their string lengths, a relatively quick custom sort:

function pc_u_length($a, $b) {
$a = strlen($a);
$b = strlen($b);
if ($a == $b) return 0;

if ($a > $b) return 1;
return -1;
b

function pc_map_length($a) {
return strlen($a);

¥

$tests = array(‘one’, 'two', 'three’, 'four', 'five’,
'six', 'seven’, 'eight’, 'nine’, 'ten’);

// faster for < 5 elements using pc_u_length()
usort($tests, 'pc_u_length');

// faster for >= 5 elements using pc_map_length()
$tests = pc_array_sort($tests, 'pc_map_length');

Here, pc_array_sort() is faster than usort() once the array reaches five elements.

4.17.4. See Also

Recipe 4.16 for basic sorting and Recipe 4.18 for sorting multiple arrays; documentation on usort() at
http://www.php.net/usort, asort() at http://www.php.net/asort, and array_map() at http://www.php.net/array-map .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 4.18. Sorting Multiple Arrays

4.18.1. Problem

You want to sort multiple arrays or an array with multiple dimensions.

4.18.2. Solution

Use array_multisort():
To sort multiple arrays simultaneously, pass multiple arrays to array_multisort():

$colors = array('Red’, 'White', 'Blue");
$cities = array('Boston’, 'New York', 'Chicago');

array_multisort($colors, $cities);
print_r($colors);
print_r($cities);

Array
[0] => Blue
[1] => Red
[2] => White

)

Array

[0] => Chicago

[1] => Boston

[2] => New York
)

To sort multiple dimensions within a single array, pass the specific array elements:

$stuff = array('colors' => array('Red', 'White', 'Blue'),
‘cities' => array('Boston’, 'New York', 'Chicago'"));

array_multisort($stuff['colors'], $stuff['cities']);
print_r($stuff);
Array

[colors] => Array

[0] => Blue

[1] => Red

[2] => White
)

[cities] => Array
[0] => Chicago
[1] => Boston

[2] => New York
)

To modify the sort type, as in sort(), pass in SORT_REGULAR, SORT_NUMERIC, or SORT_STRING after the array. To modify the
sort order, unlike in sort(), pass in SORT_ASC or SORT_DESC after the array. You can also pass in both a sort type and a
sort order after the array.

4.18.3. Discussion

The array_multisort() function can sort several arrays at once or a multidimensional array by one or more dimensions.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The arrays are treated as columns of a table to be sorted by rows. The first array is the main one to sort by; all the
items in the other arrays are reordered based on the sorted order of the first array. If items in the first array compare
as equal, the sort order is determined by the second array, and so on.

The default sorting values are SORT_REGULAR and SORT_ASC, and they're reset after each array, so there's no reason to
pass either of these two values, except for clarity:

$numbers = array(0, 1, 2, 3);

$letters = array('a’, 'b', 'c', 'd");

array_multisort($numbers, SORT_NUMERIC, SORT_DESC,
$letters, SORT_STRING , SORT_DESC);

This example reverses the arrays.

4.18.4. See Also

Recipe 4.16 for simple sorting and Recipe 4.17 for sorting with a custom function; documentation on array_multisort()
at http://www.php.net/array-multisort .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 4.19. Sorting an Array Using a Method Instead of a Function

4.19.1. Problem

You want to define a custom sorting routine to order an array. However, instead of using a function, you want to use an
object method.

4.19.2. Solution

Pass in an array holding a class name and method in place of the function name:

usort($access_times, array(‘dates', 'compare'));

4.19.3. Discussion

As with a custom sort function, the object method needs to take two input arguments and return 1, 0, or -1, depending
if the first parameter is larger than, equal to, or less than the second:

class pc_sort {
// reverse-order string comparison
function strrcmp($a, $b) {
return strcmp($b, $a);

b
b

usort($words, array('pc_sort', 'strrcmp'));

4.19.4. See Also

Chapter 7 for more on classes and objects; Recipe 4.17 for more on custom sorting of arrays.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.20. Randomizing an Array

4.20.1. Problem
You want to scramble the elements of an array in a random order.

4.20.2. Solution

Use shuffle():

shuffle($array);

4.20.3. Discussion

It's suprisingly tricky to properly shuffle an array. In fact, up until PHP 4.3, PHP's shuffle() routine wasn't a truly
random shuffle. It would mix elements around, but certain combinations were more likely than others.

Therefore, you should use PHP's shuffle() function whenever possible.

4.20.4. See Also

Documentation on shuffle() at http://www.php.net/shuffle.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.21. Removing Duplicate Elements from an Array

4.21.1. Problem

You want to eliminate duplicates from an array.

4.21.2. Solution

If the array is already complete, use array_unique(), which returns a new array that contains no duplicate values:

$unique = array_unique($array);

If you create the array while processing results, here is a technique for numerical arrays:

foreach ($_REQUEST(['fruits'] as $fruit) {
if (lin_array($array, $fruit)) { $array[] = $fruit; }

Here's one for associative arrays:

foreach ($_REQUEST['fruits'] as $fruit) {
$array[$fruit] = $fruit;
b

4.21.3. Discussion

Once processing is completed, array_unique() is the best way to eliminate duplicates. But if you're inside a loop, you
can eliminate the duplicate entries from appearing by checking if they're already in the array.

An even faster method than using in_array() is to create a hybrid array in which the key and the value for each
element are the same. This eliminates the linear check of in_array() but still allows you to take advantage of the array
family of functions that operate over the values of an array instead of the keys.

In fact, it's faster to use the associative array method and then call array_values() on the result (or, for that matter,
array_keys() , but array_values() is slightly faster) than to create a numeric array directly with the overhead of
in_array().

4.21.4. See Also

Documentation on array_unique() at http://www.php.net/array-unique.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | NEXT B
Recipe 4.22. Applying a Function to Each Element in an Array

4.22.1. Problem

You want to apply a function or method to each element in an array. This allows you to transform the input data for the
entire set all at once.

4.22.2. Solution

Use array_walk():

function escape_data(&$value, $key) {
$value = htmlentities($value, ENT_QUOTES);
b

$names = array('firstname' => "Baba",
'lastname’ => "O'Riley");

array_walk($names, 'escape_data');

foreach ($names as $name) {
print "$name\n";

}

Baba
0'Riley

For nested data, use array_walk_recursive():

function escape_data(&$value, $key) {
$value = htmlentities($value, ENT_QUOTES);
b

$names = array('firstnames' => array("Baba", "Bill"),
'lastnames' => array("O'Riley", "O'Reilly"));

array_walk_recursive($names, 'escape_data');

foreach ($names as $nametypes) {
foreach ($nametypes as $name) {
print "$name\n";
b
b

Baba

Bill
0&4#039;Riley
0&4+#039;Reilly

4.22.3. Discussion

It's frequently useful to loop through all the elements of an array. One option is to foreach tHRough the data. However,
an alternative choice is the array_walk() function.

This function takes an array and the name of a callback function, which is the function that processes the elements of
the array. The callback function takes two parameters, a value and a key. It can also take an optional third parameter,
which is any additional data you wish to expose within the callback.

Here's an example that ensures all the data in the $names array is properly HTML encoded. The callback function,
escape_data(), takes the array values, passes them to htmlentities() to encode the key HTML entities, and assigns the
result back to $value:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function escape_data(&$value, $key) {
$value = htmlentities($value, ENT_QUOTES);
b

$names = array('firstname' => "Baba",
'lastname’ => "O'Riley");

array_walk($names, 'escape_data');

foreach ($names as $name) {
print "$name\n";

Baba
0'Riley

Since array_walk operates in-place instead of returning a modified copy of the array, you must pass in values by
reference when you want to modify the elements. In those cases, as in this example, there is an & before the
parameter name. However, this is only necessary when you wish to alter the array.

When you have a series of nested arrays, use the array_walk_recursive() function:

function escape_data(&$value, $key) {
$value = htmlentities($value, ENT_QUOTES);
¥

$names = array('firstnames' => array("Baba", "Bill"),
'lastnames’ => array("O'Riley", "O'Reilly"));

array_walk_recursive($names, 'escape_data');

foreach ($names as $nametypes) {
foreach ($nametypes as $name) {
print "$name\n";
}
b

Baba

Bill
0'Riley
O'Reilly

The array_walk_recursive() function only passes non-array elements to the callback, so you don't need to modify a
callback when switching from array_walk().

4.22.4. See Also

Documentation on array_walk() at http://www.php.net/array-walk, array_walk_recursive() at
http://www.php.net/array_walk_recursive, and htmlentities() at http://www.php.net/htmlentities .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.23. Finding the Union, Intersection, or Difference of Two
Arrays

4.23.1. Problem

You have a pair of arrays, and you want to find their union (all the elements), intersection (elements in both, not just
one), or difference (in one but not both).

4.23.2. Solution

To compute the union:

$union = array_unique(array_merge($a, $b));

To compute the intersection:

$intersection = array_intersect($a, $b);

To find the simple difference:

$difference = array_diff($a, $b);

And for the symmetric difference:

$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

4.23.3. Discussion

Many necessary components for these calculations are built into PHP; it's just a matter of combining them in the proper
sequence.

To find the union, you merge the two arrays to create one giant array with all of the values. But array_merge() allows
duplicate values when merging two numeric arrays, so you call array_unique() to filter them out. This can leave gaps

between entries because array_unique() doesn't compact the array. It isn't a problem, however, as foreach and each()
handle sparsely filled arrays without a hitch.

The function to calculate the intersection is simply named array_intersection() and requires no additional work on your
part.

The array_diff() function returns an array containing all the unique elements in $old that aren't in $new. This is known as
the simple difference:

$old = array('To', 'be', 'or', 'not', 'to', 'be");
$new = array('To', 'be', 'or', 'whatever");
$difference = array_diff($old, $new);

$old = array('To', 'be', 'or', 'not’, 'to', 'be');
$new = array('To', 'be', 'or', 'whatever");
$difference = array_diff($old, $new);

Array
(
[3] => not
[4] =>to
)

The resulting array, $difference contains 'not' and 'to' because array_diff() is case-sensitive. It doesn't contain 'whatever'
because it doesn't appear in $old.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

To get a reverse difference, or in other words, to find the unique elements in $new that are lacking in $old, flip the
arguments:

$old = array('To', 'be', 'or', 'not’, 'to', 'be');
$new = array('To', 'be', 'or', 'whatever');
$reverse_diff = array_diff($new, $old);
$old = array('To', 'be', 'or', 'not’, 'to', 'be');
$new = array('To', 'be', 'or', 'whatever');
$reverse_diff = array_diff($new, $old);
Array

[3] => whatever

The $reverse_diff array contains only 'whatever'.
If you want to apply a function or other filter to array_diff(), roll your own diffing algorithm:

// implement case-insensitive diffing; diff -i

$seen = array();
foreach ($new as $n) {
$seen[strtolower($n)]++;

}

foreach ($old as $0) {
$0 = strtolower($0);

if (1$seen[$0]) { $diff[$0] = $o; }
b

The first foreach builds an associative array lookup table. You then loop through $old and, if you can't find an entry in
your lookup, add the element to $diff.

It can be a little faster to combine array_diff() with array_map():

$diff = array_diff(array_map('strtolower’, $old), array_map('strtolower’, $new));

The symmetric difference is what's in $a but not $b, and what's in $b but not $a:

$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

Once stated, the algorithm is straightforward. You call array_diff() twice and find the two differences. Then you merge
them together into one array. There's no need to call array_unique() since you've intentionally constructed these
arrays to have nothing in common.

4.23.4. See Also

Documentation on array_unique() at http://www.php.net/array-unique, array_intersect() at
http://www.php.net/array-intersect, array_diff() at http://www.php.net/array-diff, array_merge() at
http://www.php.net/array-merge, and array_map() at http://www.php.net/array-map .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 4.24. Making an Object Act like an Array

4.24.1. Problem

You have an object, but you want to be able to treat it as an array. This allows you to combine the benefits from an
object-oriented design with the familiar interface of an array.

4.24.2. Solution

Implement SPL's ArrayAccess interface:

class FakeArray implements ArrayAccess {
private $elements;

public function __construct() {
$this->elements = array();

}

public function offsetExists($offset) {
return isset($this->elements[$offset]);

public function offsetGet($offset) {
return $this->elements[$offset];
¥

public function offsetSet($offset, $value) {
return $this->elements[$offset] = $value;
b

public function offsetUnset($offset) {
unset($this->elements[$offset]);
}
b

$array = new FakeArray;

// What's Opera, Doc?
$array['animal'] = 'wabbit’;

// Be very quiet I'm hunting wabbits
if (isset($array['animal']) &&
// Wabbit tracks!!!
$array['animal'] == 'wabbit") {

// Kill the wabbit, kill the wabbit, kill the wabbit
unset($array['animal']);
// Yo ho to oh! Yo ho to oh! Yo ho...

b

// What have I done?? I've killed the wabbit....
// Poor little bunny, poor little wabbit...
if (lisset($array['animal'])) {
print "Well, what did you expect in an opera? A happy ending?\n";

b
Well, what did you expect in an opera? A happy ending?

4.24.3. Discussion

The ArrayAccess interface allows you to manipulate data in an object using the same set of conventions you use for
arrays. This allows you to leverage the benefits of an object-oriented design, such as using a class hierarchy or
implementing additional methods on the object, but still allow people to interact with the object using a familiar
interface. Alternatively, it allows you create an "array" that stores its data in an external location, such as shared
memory or a database.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

An implementation of ArrayAccess requires four methods: offsetExists(), which indicates whether an element is defined;
offsetGet(), which returns an element's value; offsetSet() , which sets an element to a new value; and offsetUnset(),
which removes an element and its value.

This example stores the data locally in an object property:

class FakeArray implements ArrayAccess {
private $elements;

public function __construct() {
$this->elements = array();

b

public function offsetExists($offset) {
return isset($this->elements[$offset]);

public function offsetGet($offset) {
return $this->elements[$offset];

b

public function offsetSet($offset, $value) {
return $this->elements[$offset] = $value;

¥

public function offsetUnset($offset) {
unset($this->elements[$offset]);

The object constructor initializes the $elements property to a new array. This provides you with a place to store the keys
and values of your array. That property is defined as private, so people can only access the data through one of the
accessor methods defined as part of the interface.

The next four methods implement everything you need to manipulate an array. Since offsetExists() checks if an array
element is set, the method returns the value of isset($this->elements[$offset]).

The offsetGet() and offsetSet() methods interact with the $elements property as you would normally use those features
with an array.

Last, the offsetUnset() method simply calls unset() on the element. Unlike the other three methods, it does not return
the value from its operation. That's because unset() is a statement, not a function, and doesn't return a value.

Now you can instantiate an instance of FakeArray and manipulate it like an array:
$array = new FakeArray;

// What's Opera, Doc?
$array['animal'] = 'wabbit’;

// Be very quiet I'm hunting wabbits
if (isset($array['animal'l) &&
// Wabbit tracks!!!
$array['animal'] == 'wabbit') {

// Kill the wabbit, kill the wabbit, kill the wabbit
unset($array['animal']);
// Yo ho to oh! Yo ho to oh! Yo ho...

}

// What have I done?? I've killed the wabbit....
// Poor little bunny, poor little wabbit...
if (lisset($array['animal'])) {
print "Well, what did you expect in an opera? A happy ending?\n";

Well, what did you expect in an opera? A happy ending?

Each operation calls one of your methods: assigning a value to $array['animal'] triggers offsetSet(), checking
isset($array['animal']) invokes offsetExists(), offsetGet() comes into play when you do the comparison $array['animal'] ==
'wabbit', and offsetUnset() is called for unset($array['animal']).

As you can see, after all this, the wabbit is "dead."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.24.4. See Also

More on objects in Chapter 7; the ArrayAccess reference page at
http://www.php.net/~helly/php/ext/spl/interfaceArrayAccess.html; and the Wikipedia entry on "What's Opera, Doc?" at
http://en.wikipedia.org/wiki/What%?27s_Opera%2C_Doc .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4 PrEy | NEXT B
Recipe 4.25. Program: Printing a Horizontally Columned HTML Table

Converting an array into a horizontally columned table places a fixed number of elements in a row. The first set goes in
the opening table row, the second set goes in the next row, and so forth. Finally, you reach the final row, where you
might need to optionally pad the row with empty table data cells.

The function pc_grid_horizontal(), shown in Example 4-4, lets you specify an array and number of columns. It assumes
your table width is 100%, but you can alter the $table_width variable to change this.

pc_grid_horizontal()

function pc_grid_horizontal($array, $size) {

// compute <td> width %ages
$table_width = 100;
$width = intval($table_width / $size);

// define how our <tr> and <td> tags appear

// sprintf() requires us to use %% to get literal %
$tr = '<tr align="center">";

$td = "<td width=\"$width%%\">%s</td>";

// open table
$grid = "<table width=\"$table_width%%)\">$tr";

// loop through entries and display in rows of size $sized
// $i keeps track of when we need a new table tow
$i=0;
foreach ($array as $e) {

$grid .= sprintf($td, $e);

$i++;

// end of a row
// close it up and open a new one
if (1($i % $size)) {
$grid .= "</tr>$tr";
¥
}

// pad out remaining cells with blanks
while ($i % $size) {
$grid .= sprintf($td, ' ');
$i++;

b

// add </tr>, if necessary

$end_tr_len = strlen($tr) * -1;

if (substr($grid, $end_tr_len) != $tr) {
$grid .= "'</tr>";

}else {
$grid = substr($grid, 0, $end_tr_len);

// close table
$grid .= '</table>";

return $grid;

The function begins by calculating the width of each <td> as a percentage of the total table size. Depending on the
number of columns and the overall size, the sum of the <td> widths might not equal the <table> width, but this shouldn't
affect the displayed HTML in a noticeable fashion. Next, define the <td> and <tr> tags, using printf-style formatting
notation. To get the literal % needed for the <td> width percentage, use a double %%.

The meat of the function is the foreach loop through the array in which we append each <td> to the $grid. If you reach the
end of a row, which happens when the total number of elements processed is a multiple of the nhumber of elements in a
row, you close and then reopen the <tr>.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Once you finish adding all the elements, you need to pad the final row with blank or empty <td> elements. Put a non-
breaking space inside the data cell instead of leaving it empty to make the table render properly in the browser. Now,
make sure there isn't an extra <tr> at the end of the grid, which occurs when the number of elements is an exact
multiple of the width (in other words, if you didn't need to add padding cells). Finally, you can close the table.

For example, let's print the names of the 50 U.S. states in a six-column table:

// establish connection to database

$dsn = 'mysql://user:password@localhost/table’;
$dbh = DB::connect($dsn);

if (DB::isError($dbh)) { die ($dbh->getMessage()); }

// query the database for the 50 states
$sql = "SELECT state FROM states";
$sth = $dbh->query($sql);

// load data into array from database

while ($row = $sth->fetchRow(DB_FETCHMODE_ASSOC)) {
$states[] = $row['state'];

// generate the HTML table
$grid = pc_grid_horizontal($states, 6);

// and print it out
print $grid;

When rendered in a browser, it looks like Figure 4-1.

The United States of America

Because 50 doesn't divide evenly by 6, there are four extra padding cells in the last row .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KX
Chapter 5. Variables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

5.0. Introduction

Along with conditional logic, variables are the core of what makes computer programs powerful and flexible. If you think
of a variable as a bucket with a name that holds a value, PHP lets you have plain old buckets, buckets that contain the
name of other buckets, buckets with numbers or strings in them, buckets holding arrays of other buckets, buckets full
of objects, and just about any other variation on that analogy you can think of.

A variable is either set or unset. A variable with any value assigned to it, TRue or false, empty or nonempty, is set. The
function isset() returns true when passed a variable that's set. To turn a variable that's set into one that's unset, call
unset() on the variable or assign null to the variable. Scalars, arrays, and objects can all be passed to unset(). You can
also pass unset() multiple variables to unset them all:

unset($vegetables);
unset($vegetables[12]);
unset($earth, $moon, $stars);

If a variable is present in the query string of a URL, even if it has no value assigned to it, it is set. Thus:

http://www.example.com/set.php?chimps=&monkeys=12

sets $_GET['monkeys'] to 12 and $_GET['chimps'] to the empty string.

All unset variables are also empty . Set variables may be empty or nonempty. Empty variables have values that
evaluate to false as a boolean: the integer 0, the double 0.0, the empty string, the string "0", the boolean false, an array
with no elements, an object with no properties (in versions of PHP prior to PHP 5) and NULL. Everything else is
nonempty. This includes the string "00", and the string " ", containing just a space character.

Variables evaluate to either true or false. The values listed earlier that evaluate to false as a boolean are the complete set
of what's false in PHP. Every other value is true. The distinction between empty and false is that emptiness is only possible
for variables.

Constants and return values from functions can be false, but they can't be empty. For example, Example 5-1 shows a
valid use of empty() because $first_name is a variable.

Correctly checking if a variable is empty

if (empty($first_name)) { .. }

On the other hand, the code in Example 5-2 returns parse errors because 0 (a constant) and the return value from
get_first_name() can't be empty.

Incorrectly checking if a constant is empty

if (empty(0)) { .. }
if (empty(get_first_name())) { .. }

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 5.1. Avoiding == Versus = Confusion

5.1.1. Problem

You don't want to accidentally assign values when comparing a variable and a constant.

5.1.2. Solution

Use:

if (12 == $dwarves) { ... }

instead of:

if ($dwarves == 12){ ... }

Putting the constant on the left triggers a parse error with the assignment operator. In other words, PHP complains
when you write:

if (12 = $dwarves) { ... }

but:
if ($dwarves = 12){ ... }

silently executes, assigning 12 to the variable $dwarves, and then executing the code inside the block. ($dwarves = 12
evaluates to 12, which is true.)

5.1.3. Discussion

Putting a constant on the left side of a comparison coerces the comparison to the type of the constant. This causes
problems when you are comparing an integer with a variable that could be an integer or a string. 0 == $dwarves is true
when $dwarves is 0, but it's also true when $dwarves is sleepy. Since an integer (0) is on the left side of the comparison, PHP
converts what's on the right (the string sleepy) to an integer (0) before comparing. To avoid this, use the identity
operator, 0 === $dwarves, instead.

5.1.4. See Also

Documentation for = at http://www.php.net/language.operators.assignment.php and for == and === at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 5.2. Establishing a Default Value

5.2.1. Problem

You want to assign a default value to a variable that doesn't already have a value. It often happens that you want a
hardcoded default value for a variable that can be overridden from form input or through an environment variable.

5.2.2. Solution

Use isset() to assign a default to a variable that may already have a value:

if (! isset($cars)) { $cars = $default_cars; }

Use the ternary (a? b: c) operator to give a new variable a (possibly default) value:

$cars = isset($_REQUEST['cars']) ? $_REQUEST['cars'] : $default_cars;

5.2.3. Discussion

Using isset() is essential when assigning default values. Without it, the nondefault value can't be 0 or anything else that
evaluates to false. Consider this assignment:

$cars = $_REQUEST(['cars'] ? $_REQUEST['cars'] : $default_cars;

If $_REQUEST['cars'] is 0, $cars is set to $default_cars even though 0 may be a valid value for $cars.
An alternative syntax for checking arrays is the array_key_exists() function:

$cars = array_key_exists('cars', $_REQUEST) ? $_REQUEST['cars'] : $default_cars;

The one difference between isset() and array_key_exists() is that when a key exists but its value is null, then
array_key_exists() returns true, while isset() returns false:

$vehicles = array('cars' => null);
array_key_exists('cars', $vehicles); // true
isset($vehicles['cars']); // false

You can use an array of defaults to set multiple default values easily. The keys in the defaults array are variable names,
and the values in the array are the defaults for each variable:

$defaults = array('emperors' => array('Rudolf II','Caligula’),
'vegetable' => 'celery’,
‘acres' =>15);

foreach ($defaults as $k => $v) {
if (! isset($GLOBALS[$k])) { $GLOBALS[$k] = $v; }
b

Because the variables are set in the global namespace, the previous code doesn't work for setting function-private
defaults. To do that, use variable variables:

foreach ($defaults as $k => $v) {
if (! isset($$K)) { $$k = $v; }
¥

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this example, the first time through the loop, $k is emperors, so $$k is $emperors.

5.2.4. See Also

Documentation on isset() at http://www.php.net/isset.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 5.3. Exchanging Values Without Using Temporary Variables

5.3.1. Problem

You want to exchange the values in two variables without using additional variables for storage.

5.3.2. Solution

To swap $a and $b:
list($a,$b) = array($b,$a);

5.3.3. Discussion

PHP's list() language construct lets you assign values from an array to individual variables. Its counterpart on the right
side of the expression, array(), lets you construct arrays from individual values. Assigning the array that array()
returns to the variables in the /ist() lets you juggle the order of those values. This works with more than two values, as
well:

list($yesterday, $today,$tomorrow) = array($today,$tomorrow,$yesterday);

This method isn't faster than using temporary variables, so you should use it for clarity, but not speed.

5.3.4. See Also

Documentation on /ist() at http://www.php.net/list and array() at http://www.php.net/array.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 5.4. Creating a Dynamic Variable Name

5.4.1. Problem

You want to construct a variable's name dynamically. For example, you want to use variable names that match the field
names from a database query.

5.4.2. Solution

Use PHP's variable variable syntax by prepending a $ to a variable whose value is the variable name you want:

$animal = 'turtles’;
$turtles = 103;
print $$animal;

103

5.4.3. Discussion

Placing two dollar signs before a variable name causes PHP to de-reference the right variable name to get a value. It
then uses that value as the name of your "real" variable. For example:

$animal = 'turtles’;
$turtles = 103;
print $$animal;

103

This prints 103. Because $animal = 'turtles', $$animal is $turtles, which equals 103.
Using curly braces , you can construct more complicated expressions that indicate variable names:

$stooges = array('Moe','Larry','Curly');
$stooge_moe = 'Moses Horwitz';
$stooge_larry = 'Louis Feinberg';
$stooge_curly = 'Jerome Horwitz';

foreach ($stooges as $s) {
print "$s's real name was ${'stooge_".strtolower($s)}.\n";
b
Moe's real name was Moses Horwitz.
Larry's real name was Louis Feinberg.
Curly's real name was Jerome Horwitz.

PHP evaluates the expression between the curly braces and uses it as a variable name. That expression can even have
function calls in it, such as strtolower().

Variable variables are also useful when iterating through similarly named variables. Say you are querying a database
table that has fields named title_1, title_2, etc. If you want to check if a title matches any of those values, the easiest way
is to loop through them like this:

for ($i = 1; $i <= $n; $i++) {
$t = "title_$i";
if ($title == $$t) { /* match */ }

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Of course, it would be more straightforward to store these values in an array, but if you are maintaining old code that
uses this technique (and you can't change it), variable variables are helpful.

The curly brace syntax is also necessary in resolving ambiguity about array elements. The variable variable $$donkeys[12]
could have two meanings. The first is "take what's in the 12th element of the $donkeys array and use that as a variable
name." Write this as: ${$donkeys[12]}. The second is "use what's in the scalar $donkeys as an array name and look in the
12th element of that array." Write this as: ${$donkeys}[12].

You are not limited by two dollar signs. You can use three, or more, but in practice it's rare to see greater than two
levels of indirection.

5.4.4. See Also

http://www.php.net/language.variables.variable for documentation on variable variables.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 5.5. Using Static Variables

5.5.1. Problem

You want a local variable to retain its value between invocations of a function.

5.5.2. Solution

Declare the variable as static:

function track_times_called() {
static $i = 0;
$i++;
return $i;

b

5.5.3. Discussion

Declaring a variable static causes its value to be remembered by a function. So, if there are subsequent calls to the
function, you can access the value of the saved variable. The pc_check_the_count() function shown in Example 5-3
uses static variables to keep track of the strikes and balls for a baseball batter.

pc_check_the_count()

<?php

function pc_check_the_count($pitch) {
static $strikes = 0;
static $balls = 0;

switch ($pitch) {
case 'foul':
if (2 == $strikes) break; // nothing happens if 2 strikes
// otherwise, act like a strike
case 'strike":
$strikes++;
break;
case 'ball":
$balls++;
break;

¥

if (3 == $strikes) {
$strikes = $balls = 0;
return 'strike out';

}

if (4 == $balls) {
$strikes = $balls = 0;
return 'walk’;

return 'at bat’;

}
$what_happened = pc_check_the_count($pitch);
?>

In pc_check_the_count(), the logic of what happens to the batter depending on the pitch count is in the switch
statement inside the function. You can instead return the number of strikes and balls, but this requires you to place the
checks for striking out, walking, and staying at the plate in multiple places in the code.

While static variables retain their values between function calls, they do so only during one invocation of a script. A static

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

variable accessed in one request doesn't keep its value for the next request to the same page.

5.5.4. See Also

Documentation on static variables at http://www.php.net/language.variables.scope.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 5.6. Sharing Variables Between Processes

5.6.1. Problem

You want a way to share information between processes that provides fast access to the shared data.

5.6.2. Solution

Use one of the two bundled shared memory extensions, shmop or System V shared memory.

With shmop, you create a block and read and write to and from it, as shown in Example 5-4.

Using the shmop shared memory functions

<?php
// create key
$shmop_key = ftok(__FILE__, 'p");
// create 16384 byte shared memory block
$shmop_id = shmop_open($shmop_key, "c", 0600, 16384);
// retrieve the entire shared memory segment
$population = shmop_read($shmop_id, 0, 0);
// manipulate the data
$population += ($births + $immigrants - $deaths - $emigrants);
// store the value back in the shared memory segment
$shmop_bytes_written = shmop_write($shmop_id, $population, 0);
// check that it fit
if ($shmop_bytes_written != strlen($population)) {
echo "Can't write the all of: $population\n";

¥

// close the handle
shmop_close($shmop_id);
?>

With System V shared memory, you store the data in a shared memory segment, and guarantee exclusive access to the
shared memory with a semaphore, as shown in Example 5-5.

Using the System V shared memory functions

<?php

$semaphore_id = 100;

$segment_id = 200;

// get a handle to the semaphore associated with the shared memory
// segment we want

$sem = sem_get($semaphore_id,1,0600);

// ensure exclusive access to the semaphore
sem_acquire($sem) or die("Can't acquire semaphore");

// get a handle to our shared memory segment

$shm = shm_attach($segment_id,16384,0600);

// retrieve a value from the shared memory segment
$population = shm_get_var($shm,'population’);

// manipulate the value

$population += ($births + $immigrants - $deaths - $emigrants);
// store the value back in the shared memory segment
shm_put_var($shm,'population’,$population);

// release the handle to the shared memory segment
shm_detach($shm);

// release the semaphore so other processes can acquire it
sem_release($sem);

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

5.6.3. Discussion

A shared memory segment is a slice of your machine's RAM that different processes (such as the multiple web server
processes that handle requests) can access. These two extensions solve the similar problem of allowing you to save
information between requests in a fast and efficient manner, but they take slightly different approaches and have
slightly different interfaces as a result.

The shmop functions have an interface similar to the familiar file manipulation. You can open a segment, read in data,
write to it, and close it. Like a file, there's no built-in segmentation of the data, it's all just a series of consecutive
characters.

In Example 5-4, you first create the shared memory block. Unlike a file, you must pre-declare the maximum size. In
this example, it's 16,384 bytes:

// create key

$shmop_key = ftok(__FILE__, 'p");

// create 16384 byte shared memory block

$shmop_id = shmop_open($shmop_key, "c", 0600, 16384);

Just as you distinguish files by using filenames, shmop segments are differentiated by keys. Unlike filenames, these
keys aren't strings but integers, so they're not easy to remember. Therefore, it's best to use the ftok() function to
convert a human-friendly name, in this case the filename in the form of _FILE__, to a format suitable for shmop_open(
). The ftok() function also takes a one-fscharacter "project identifier." This helps you avoid collisions in case you
accidently reuse the same string. Here it's p, for PHP.

Once you have a key, pass it to shmop_create(), along with the "flag" you want, the file permissions (in octal), and the
block size. See Table 5-1 for a list of suitable flags.

These permissions work just like file permissions, so 0600 means that the user that created the block can read it and
write to it. In this context, user doesn't just mean the process that created the semaphore but any process with the
same user ID. Permissions of 0600 should be appropriate for most uses, in which web server processes run as the same

user.
Table 5-1. shmop_open() flags
Flag Description
a Opens for read-only access.
c Creates a new segment. If it already exists, opens it for read and write access.
w Opens for read and write access.
n Creates a new segment, but fails if one already exists. Useful to avoid race conditions.

Once you have a handle, you can read from the segment using shmop_read() and manipulate the data:

// retrieve the entire shared memory segment

$population = shmop_read($shmop_id, 0, 0);

// manipulate the data

$population += ($births + $immigrants - $deaths - $emigrants);

This code reads in the entire segment. To read in a shorter amount, adjust the second and third parameters. The
second parameter is the start, and the third is the length. As a shortcut, you can set the length to 0 to read to the end
of the segment.

Once you have the adjusted data, store it back with shmop_write() and release the handle with shmop_close():

// store the value back in the shared memory segment
$shmop_bytes_written = shmop_write($shmop_id, $population, 0);
// check that it fit
if ($shmop_bytes_written != strlen($population)) {

echo "Can't write the all of: $population\n";

¥
// close the handle
shmop_close($shmop_id);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Since shared memory segments are of a fixed length, if you're not careful, you can try to write more data than you
have room. Check to see if this happened by comparing the value returned from shmop_write() with the string length
of your data. They should be the same. If shmop_write() returned a smaller value, then it was only able to fit that
many bytes in the segment before running out of space.

In constrast to shmop, the System V shared memory functions behave similar to an array. You access slices of the
segment by specifying a key, such as population, and manipulate them directly. Depending on what you're storing, this
direct access can be more convenient.

However, the interface is more complex as a result, and System V shared memory also requires you to do manage
locking in the form of semaphore.

A semaphore makes sure that the different processes don't step on each other's toes when they access the shared
memory segment. Before a process can use the segment, it needs to get control of the semaphore. When it's done with
the segment, it releases the semaphore for another process to grab.

To get control of a semaphore, use sem_get() to find the semaphore's ID. The first argument to sem_get() is an
integer semaphore key. You can make the key any integer you want, as long as all programs that need to access this
particular semaphore use the same key. If a semaphore with the specified key doesn't already exist, it's created; the
maximum number of processes that can access the semaphore is set to the second argument of sem_get() (in this
case, 1); and the semaphore's permissions are set to sem_get()'s third argument (0600). Permissions here behave like
they do with files and shmop. For example:

$semaphore_id = 100;

$segment_id = 200;

// get a handle to the semaphore associated with the shared memory
// segment we want

$sem = sem_get($semaphore_id,1,0600);

// ensure exclusive access to the semaphore

sem_acquire($sem) or die("Can't acquire semaphore");

sem_get() returns an identifier that points to the underlying system semaphore. Use this ID to gain control of the
semaphore with sem_acquire(). This function waits until the semaphore can be acquired (perhaps waiting until other
processes release the semaphore) and then returns true. It returns false on error. Errors include invalid permissions or
not enough memory to create the semaphore. Once the semaphore is acquired, you can read from the shared memory
segment:

// get a handle to our shared memory segment

$shm = shm_attach($segment_id,16384,0600);

// retrieve a value from the shared memory segment
$population = shm_get_var($shm,'population’);

// manipulate the value

$population += ($births + $immigrants - $deaths - $emigrants);

First, establish a link to the particular shared memory segment with shm_attach(). As with sem_get(), the first
argument to shm_attach() is an integer key. This time, however, it identifies the desired segment, not the semaphore.
If the segment with the specified key doesn't exist, the other arguments create it. The second argument (16384) is the
size in bytes of the segment, and the last argument (0600) is the permissions on the segment. shm_attach(200,16384,0600)
creates a 16K shared memory segment that can be read from and written to only by the user who created it. The
function returns the identifier you need to read from and write to the shared memory segment.

After attaching to the segment, pull variables out of it with shm_get_var($shm, 'population’). This looks in the shared memory
segment identified by $shm and retrieves the value of the variable called population. You can store any type of variable in
shared memory. Once the variable is retrieved, it can be operated on like other variables.
shm_put_var($shm,'population’,$population) puts the value of $population back into the shared memory segment as a variable
called population.

You're now done with the shared memory statement. Detach from it with shm_detach() and release the semaphore
with sem_release() so another process can use it:

// release the handle to the shared memory segment
shm_detach($shm);

// release the semaphore so other processes can acquire it
sem_release($sem);

Shared memory's chief advantage is that it's fast. But since it's stored in RAM, it can't hold too much data, and it
doesn't persist when a machine is rebooted (unless you take special steps to write the information in shared memory to
disk before shutdown and then load it into memory again at startup).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You cannot use System V shared memory under Windows, but the shmop functions work fine. Besides these two
bundled extensions, another option is to use the APC extension, which beyond its main purpose of caching and
optimization support for PHP, also provides a way to store data.

5.6.4. See Also

APC at http://pecl.php.net/apc; documentation on shmop at http://www.php.net/shmop and System V shared memory
and semaphore functions at http://www.php.net/sem .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| 4 Py | | MEXT # |
Recipe 5.7. Encapsulating Complex Data Types in a String

5.7.1. Problem

You want a string representation of an array or object for storage in a file or database. This string should be easily
reconstitutable into the original array or object.

5.7.2. Solution

Use serialize() to encode variables and their values into a textual form:

$pantry = array('sugar' => '2 Ibs.",'butter' => '3 sticks');
$fp = fopen('/tmp/pantry','w") or die ("Can't open pantry");
fputs($fp,serialize($pantry));

fclose($fp);

To recreate the variables, use unserialize():

$new_pantry = unserialize(file_get_contents('/tmp/pantry'));

5.7.3. Discussion

The serialized string that is reconstituted into $pantry looks like:

a:2:{s:5:"sugar";s:6:"2 Ibs.";s:6:"butter";s:8:"3 sticks";}

This stores enough information to bring back all the values in the array, but the variable name itself isn't stored in the
serialized representation.

When passing serialized data from page to page in a URL, call urlencode() on the data to make sure URL
metacharacters are escaped in it:

$shopping_cart = array('Poppy Seed Bagel' => 2,
'Plain Bagel' => 1,
'Lox' => 4);
print 'Next";

The magic_quotes_gpc and magic_quotes_runtime configuration settings affect data being passed to unserialize(). If
magic_quotes_gpc is on, data passed in URLs, POST variables, or cookies must be processed with stripslashes() before it's
unserialized:

$new_cart = unserialize(stripslashes($cart)); // if magic_quotes_gpc is on
$new_cart = unserialize($cart); // if magic_quotes_gpc is off

If magic_quotes_runtime is on, serialized data stored in a file must be processed with addslashes() when writing and
stripslashes() when reading:

$fp = fopen('/tmp/cart,'w');
fputs($fp,addslashes(serialize($a)));
fclose($fp);

// if magic_quotes_runtime is on

$new_cart = unserialize(stripslashes(file_get_contents(‘/tmp/cart")));
// if magic_quotes_runtime is off

$new_cart = unserialize(file_get_contents('/tmp/cart’));

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Serialized data read from a database must also be processed with stripslashes() when magic_quotes_runtime is on:

mysql_query(
"INSERT INTO cart (id,data) VALUES (1,".addslashes(serialize($cart)).")");

$r = mysql_query('SELECT data FROM cart WHERE id = 1');
$ob = mysql_fetch_object($r);

// if magic_quotes_runtime is on

$new_cart = unserialize(stripslashes($ob->data));

// if magic_quotes_runtime is off

$new_cart = unserialize($ob->data);

Serialized data going into a database always needs to have addslashes() called on it (or, better yet, the database-
appropriate escaping method) to ensure it's saved properly.

When you unserialize an object, PHP automatically invokes its __wakeUp() method. This allows the object to
reestablish any state that's not preserved across serialization, such as database connection. This can alter your
environment, so be sure you know what you're unserializing. See Recipe 7.18 for more details.

5.7.4. See Also

Recipe 10.9 for information on escaping data for a database.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 5.8. Dumping Variable Contents as Strings

5.8.1. Problem

You want to inspect the values stored in a variable. It may be a complicated nested array or object, so you can't just
print it out or loop through it.

5.8.2. Solution

Use print_r() or var_dump():

$array = array("name" => "frank", 12, array(3, 4));

print_r($array);
Array

[name] => frank
[0] => 12
[1] => Array
(
[0]=>3
[1]1=>4
)

var_dump($array);
array(3) {
["name"]=>
string(5) "frank"
[0]=>
int(12)
[1]=>
array(2) {
[0]=>
int(3)
[1]=>
int(4)

5.8.3. Discussion

The output of print_r() is more concise and easier to read. The output of var_dump(), however, gives data types and
lengths for each variable.

Since these functions recursively work their way through variables, if you have references within a variable pointing
back to the variable itself, you can end up with an infinite loop. Both functions stop themselves from printing variable
information forever, though. Once print_r() has seen a variable once, it prints *RECURSION* instead of printing
information about the variable again and continues iterating through the rest of the information it has to print.
var_dump() prints a variable twice before printing *RECURSION* and skipping it. Consider the arrays $user_1 and $user_2,
which reference each other through their friend elements:

$user_1 = array('name' => 'Max Bialystock',
'username' => 'max’);

$user_2 = array('name' => 'Leo Bloom',
'username' => 'leo");

// Max and Leo are friends
$user_2['friend'] = &$user_1;
$user_1['friend'] = &$user_2;

// Max and Leo have jobs
$user_1["job'] = 'Swindler’;
$user_2["job'] = 'Accountant’;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The output of print_r($user_2) is:

Array
(
[name] => Leo Bloom
[username] => leo
[friend] => Array
(

[name] => Max Bialystock
[username] => max
[friend] => Array

[name] => Leo Bloom

[username] => leo

[friend] => Array
RECURSION

[job] => Accountant

[job] => Swindler

[job] => Accountant

)

When print_r() sees the reference to $user_1 the second time, it prints *RECURSION* instead of descending into the array.
It then continues on its way, printing the remaining elements of $user_1 and $user_2.

Confronted with recursion, var_dump() behaves differently:

array(4) {
["name"]=>
string(9) "Leo Bloom"
["username"]=>
string(3) "leo"
["friend"]=>
&array(4) {
["name"]=>
string(14) "Max Bialystock"
["username™"]=>
string(3) "max"
["friend"]=>
Rarray(4) {
["name"]=>
string(9) "Leo Bloom"
["username"]=>
string(3) "leo"
["friend"]=>
Rarray(4) {
["name"]=>
string(14) "Max Bialystock"
["username"]=>
string(3) "max"
["friend"]=>
&array(4) {
["name"]=>
string(9) "Leo Bloom"
["username"]=>
string(3) "leo"
["friend"]=>
RECURSION
["job"]=>
string(10) "Accountant”

¥
[job"]=>
string(8) "Swindler"

¥
["job"]=>
string(10) "Accountant”

b
["job"]=>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

string(8) "Swindler"
b
[job"]=>
string(10) "Accountant”
b

It's not until the third appearance of the reference to $user_1 that var_dump() stops recursing.

Even though print_r() and var_dump() print their results instead of returning them, you can capture the data without
printing it in one of two ways.

First, you can pass TRue as the second parameter to print_r():

$output = print_r($user, true);

This does not work with var_dump(); however, you can use output buffering instead:

ob_start();
var_dump($user);

$dump = ob_get_contents();
ob_end_clean();

This puts the results of var_dump($user) in $dump.

5.8.4. See Also

Output buffering is discussed in Recipe 8.12; documentation on print_r() at http://www.php.net/print-r and var_dump(
) at http://www.php.net/var-dump .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 6. Functions

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.0. Introduction

Functions help you create organized and reusable code. They allow you to abstract out details so your code becomes
more flexible and more readable. Without functions, it is impossible to write easily maintainable programs because
you're constantly updating identical blocks of code in multiple places and in multiple files.

With a function you pass a number of arguments in and get a value back:

// add two numbers together
function add($a, $b) {
return $a + $b;

$total = add(2, 2); // 4

Declare a function using the function keyword, followed by the name of the function and any parameters in parentheses.
To invoke a function, simply use the function name, specifying argument values for any parameters to the function. If
the function returns a value, you can assign the result of the function to a variable, as shown in the previous example.

You don't need to predeclare a function before you call it. PHP parses the entire file before it begins executing, so you
can intermix function declarations and invocations. You can't, however, redefine a function in PHP. If PHP encounters a
function with a name identical to one it's already found, it throws a fatal error and dies.

Sometimes, the standard procedure of passing in a fixed number of arguments and getting one value back doesn't quite
fit a particular situation in your code. Maybe you don't know ahead of time exactly how many parameters your function
needs to accept. Or you do know your parameters, but they're almost always the same values, so it's tedious to
continue to repass them. Or you want to return more than one value from your function.

This chapter helps you use PHP to solve these types of problems. We begin by detailing different ways to pass
arguments to a function. Recipes 6.1 through 6.5 cover passing arguments by value, reference, and as named
parameters; assigning default parameter values; and functions with a variable number of parameters.

The four recipes after 6.5 are all about returning values from a function. Recipe 6.6 describes returning by reference;
Recipe 6.7 covers returning more than one variable; Recipe 6.8 describes how to skip selected return values; and
Recipe 6.9 talks about the best way to return and check for failure from a function. The final three recipes show how to
call variable functions, deal with variable scoping problems, and dynamically create a function. If you want a variable to
maintain its value between function invocations, see Recipe 5.5.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.1. Accessing Function Parameters

6.1.1. Problem

You want to access the values passed to a function.

6.1.2. Solution

Use the names from the function prototype:

function commercial_sponsorship($letter, $number) {
print "This episode of Sesame Street is brought to you by ";
print "the letter $letter and number $number.\n";

}

commercial_sponsorship('G', 3);
commercial_sponsorship($another_letter, $another_number);

6.1.3. Discussion

Inside the function, it doesn't matter whether the values are passed in as strings, numbers, arrays, or another kind of
variable. You can treat them all the same and refer to them using the names from the prototype.

Unless specified, all non-object values being passed into and out of a function are passed by value, not by reference.
(By default, objects are passed by reference.) This means PHP makes a copy of the value and provides you with that
copy to access and manipulate. Therefore, any changes you make to your copy don't alter the original value. Here's an
example:

function add_one($number) {
$number++;
b

$number = 1;
add_one($number);
print "$number\n";
1

If the variable was passed by reference, the value of $number would be 2.

In many languages, passing variables by reference has the additional benefit of being significantly faster than passing
them by value. While the passing-by-reference is faster in PHP, the speed difference is marginal. For that reason, we
suggest passing variables by reference only when actually necessary and never as a performance-enhancing trick.

6.1.4. See Also

Recipe 6.3 to pass values by reference and Recipe 6.6 to return values by reference.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.2. Setting Default Values for Function Parameters

6.2.1. Problem

You want a parameter to have a default value if the function's caller doesn't pass it. For example, a function to draw a
table might have a parameter for border width, which defaults to 1 if no width is given.

6.2.2. Solution

Assign the default value to the parameters inside the function prototype:
function wrap_html_tag($string, $tag = 'b') {

return "<$tag>$string</$tag>";
b

6.2.3. Discussion

The example in the Solution sets the default tag value to b, for bold. For example:

$string = 'T am some HTML';
wrap_html_tag($string);

returns:

I am some HTML

This example:

wrap_html_tag($string, 'I');

returns:

<i>I am some HTML</i>

There are two important things to remember when assigning default values. First, all parameters with default values
must appear after parameters without defaults. Otherwise, PHP can't tell which parameters are omitted and should take
the default value and which arguments are overriding the default. So wrap_html_tag() can't be defined as:

function wrap_html_tag($tag = 'i', $string)

If you do this and pass wrap_html_tag() only a single argument, PHP assigns the value to $tag and issues a warning
complaining of a missing second argument.

Second, the assigned value must be a constant, such as a string or a number. It can't be a variable. Again, using
wrap_htm|_tag(), such as our example, you can't do this:

$my_favorite_html_tag = "i';
function wrap_html_tag($string, $tag = $my_favorite_html_tag) {

)

If you want to assign a default of nothing, one solution is to assign the empty string to your parameter:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function wrap_html_tag($string, $tag = ") {
if (empty($tag)) return $string;
return "<$tag>$string</$tag>";

}

This function returns the original string, if no value is passed in for the $tag. Or if a (nonempty) tag is passed in, it
returns the string wrapped inside of tags.

Depending on circumstances, another option for the $tag default value is either 0 or NULL. In wrap_html_tag(), you don't
want to allow an empty-valued tag. However, in some cases, the empty string can be an acceptable option. For
instance, join() is often called on the empty string, after calling file(), to place a file into a string. Also, as the following
code shows, you can use a default message if no argument is provided but an empty message if the empty string is
passed:

function pc_log_db_error($message = NULL) {
if (is_null($message)) {
$message = 'Couldn't connect to DB';

b

error_log("[DB] [$message]");
b

6.2.4. See Also

Recipe 6.5 on creating functions that take a variable number of arguments.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.3. Passing Values by Reference

6.3.1. Problem

You want to pass a variable to a function and have it retain any changes made to its value inside the function.

6.3.2. Solution

To instruct a function to accept an argument passed by reference instead of value, prepend an & to the parameter name
in the function prototype:

function wrap_html_tag(&$string, $tag = 'b") {
$string = "<$tag>$string</$tag>";

Now there's no need to return the string because the original is modified in place.

6.3.3. Discussion

Passing a variable to a function by reference allows you to avoid the work of returning the variable and assigning the
return value to the original variable. It is also useful when you want a function to return a boolean success value of TRue
or false, but you still want to modify argument values with the function.

You can't switch between passing a parameter by value or reference; it's either one or the other. In other words,
there's no way to tell PHP to optionally treat the variable as a reference or as a value.

Also, if a parameter is declared to accept a value by reference, you can't pass a constant string (or number, etc.), or
PHP will die with a fatal error.

6.3.4. See Also

Recipe 6.6 on returning values by reference.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.4. Using Named Parameters

6.4.1. Problem

You want to specify your arguments to a function by name, instead of simply their position in the function invocation.

6.4.2. Solution

Have the function use one parameter but make it an associative array:

function image($img) {
$tag = '<imgsrc="". $img['src’]. ™ ";
$tag .= ‘alt="". ($img['alt] ? $img['alt] : ") .">";
return $tag;

$image = image(array('src' => 'cow.png', 'alt' => 'cows say moo'));
$image = image(array('src' => 'pig.jpeg"));

6.4.3. Discussion

While using named parameters makes the code inside your functions more complex, it ensures the calling code is easier
to read. Since a function lives in one place but is called in many, this makes for more understandable code.

When you use this technique, PHP doesn't complain if you accidentally misspell a parameter's name, so you need to be
careful because the parser won't catch these types of mistakes. Also, you can't take advantage of PHP's ability to assign
a default value for a parameter. Luckily, you can work around this deficit with some simple code at the top of the
function:

function image($img) {
if (! isset($img['src'])) { $img['src'] = 'cow.png’; }
if (Iisset($img['alt'])) { $img['alt'] = 'milk factory'; }
if (! isset($img['height'])) { $img['height'] = 100; }
if (! isset($img['width'])) { $img['width'] = 50; }

Using the isset() function, check to see if a value for each parameter is set; if not, assign a default value.
Alternatively, you can write a short function to handle this:

function pc_assign_defaults($array, $defaults) {
$a = array();
foreach ($defaults as $d => $v) {
$a[$d] = isset($array[$d]) ? $array[$d] : $v;

return $a;
This function loops through a series of keys from an array of defaults and checks if a given array, $array, has a value set.

If it doesn't, the function assigns a default value from $defaults. To use it in the previous snippet, replace the top lines
with:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function image($img) {
$defaults = array('src’ => 'cow.pngd’,
alt' => 'milk factory’,
'height' => 100,
'width' => 50

)i
$img = pc_assign_defaults($img, $defaults);
)

This is nicer because it introduces more flexibility into the code. If you want to modify how defaults are assigned, you
only need to change it inside pc_assign_defaults() and not in hundreds of lines of code inside various functions. Also,
it's clearer to have an array of name/value pairs and one line that assigns the defaults instead of intermixing the two
concepts in a series of almost identical repeated lines.

6.4.4. See Also

Recipe 6.5 on creating functions that accept a variable number of arguments.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.5. Creating Functions That Take a Variable Number of
Arguments

6.5.1. Problem

You want to define a function that takes a variable number of arguments.

6.5.2. Solution

Pass an array and place the variable arguments inside the array:

// find the "average" of a group of numbers
function mean($numbers) {

// initialize to avoid warnings

$sum = 0;

// the number of elements in the array
$size = count($numbers);

// iterate through the array and add up the numbers
for ($i = 0; $i < $size; $i++) {
$sum += $numbers[$i];

¥

// divide by the amount of numbers
$average = $sum / $size;

// return average
return $average;
b

$mean = mean(array(96, 93, 97));

6.5.3. Discussion

There are two good solutions, depending on your coding style and preferences. The more traditional PHP method is the
one described in the Solution. We prefer this method because using arrays in PHP is a frequent activity; therefore, all
programmers are familiar with arrays and their behavior.

So while this method creates some additional overhead, bundling variables is commonplace. It's done in Recipe 6.4 to
create named parameters and in Recipe 6.7 to return more than one value from a function. Also, inside the function,
the syntax to access and manipulate the array involves basic commands such as $array[$i] and count($array).

However, this can seem clunky, so PHP provides an alternative and allows you direct access to the argument list, as

shown in Example 6-1.

Accessing function parameters without using the argument list

// find the "average" of a group of numbers
function mean() {

// initialize to avoid warnings

$sum = 0;

// the number of arguments passed to the function
$size = func_num_args();

// iterate through the arguments and add up the numbers

for ($i = 0; $i < $size; $i++) {
$sum += func_get_arg($i);
}

// divide by the amount of numbers

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$average = $sum / $size;

// return average
return $average;

¥

$mean = mean(96, 93, 97);

This example uses a set of functions that return data based on the arguments passed to the function they are called
from. First, func_num_args() returns an integer with the number of arguments passed into its invoking function'in this
case, mean(). From there, you can then call func_get_arg() to find the specific argument value for each position.

When you call mean(96, 93, 97), func_num_args() returns 3. The first argument is in position 0, so you iterate from 0 to 2,
not 1 to 3. That's what happens inside the for loop where $i goes from 0 to less than $size. As you can see, this is the
same logic used in Example 6-1 in which an array was passed. If you're worried about the potential overhead from
using func_get_arg() inside a loop, don't be. This version is actually faster than the array passing method.

There is a third version of this function that uses func_get_args() to return an array containing all the values passed to
the function. It ends up looking like a hybrid between the previous two functions, as shown in Example 6-2.

Accessing function parameters without using the argument list

// find the "average" of a group of numbers
function mean() {

// initialize to avoid warnings

$sum = 0;

// load the arguments into $numbers
$numbers = func_get_args();

// the number of elements in the array
$size = count($numbers);

// iterate through the array and add up the numbers
for ($i = 0; $i < $size; $i++) {
$sum += $numbers[$i];

3

// divide by the amount of numbers
$average = $sum / $size;

// return average
return $average;

}

$mean = mean(96, 93, 97);

Here you have the dual advantages of not needing to place the numbers inside a temporary array when passing them
into mean(), but inside the function you can continue to treat them as if you did. Unfortunately, this method is slightly
slower than the first two.

6.5.4. See Also

Recipe 6.7 on returning multiple values from a function; documentation on func_num_args() at

http://www.php.net/func-num-args, func_get_arg() at http://www.php.net/func-get-arg, and func_get_args() at
http://www.php.net/func-get-args.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.6. Returning Values by Reference

6.6.1. Problem

You want to return a value by reference, not by value. This allows you to avoid making a duplicate copy of a variable.

6.6.2. Solution

The syntax for returning a variable by reference is similar to passing it by reference. However, instead of placing an &
before the parameter, place it before the name of the function:

function &pc_array_find_value($needle, &$haystack) {
foreach ($haystack as $key => $value) {
if ($needle == $value) {
return $haystack[$key];
b
3
¥

Also, you must use the =& assignment operator instead of plain = when invoking the function:

$html =& pc_array_find_value('The Doors', $artists);

6.6.3. Discussion

Returning a reference from a function allows you to directly operate on the return value and have those changes
directly reflected in the original variable.

For instance, Example 6-3 searches through an array looking for the first element that matches a value. It returns the
first matching value. For instance, you need to search through a list of famous people from Minnesota looking for Prince,
so you can update his name.

Returning an array value from a function by reference

function &pc_array_find_value($needle, &$haystack) {
foreach ($haystack as $key => $value) {
if ($needle == $value) {
return $haystack[$key];
b
¥
}

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald', 'Prince', 'Charles Schultz');
$prince =& pc_array_find_value('Prince', $minnesota);
$prince = 'O(+>"; // The ASCII version of Prince's unpronounceable symbol

print_r($minnesota);
Array
(
[0] => Bob Dylan
[1] => F. Scott Fitzgerald
[2] => O(+>
[3] => Charles Schultz
)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Without the ability to return values by reference, you would need to return the array key and then re-reference the
original array:

function pc_array_find_value($needle, &$haystack) {
foreach ($haystack as $key => $value) {
if ($needle == $value) {
return $key;

b
by

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald', 'Prince', 'Charles Schultz');
$prince =& pc_array_find_value('Prince’, $minnesota);

$minnesota[$prince] = 'O(+>"; // The ASCII version of Prince's unpronounceable symbol

When returning a reference from a function, you must return a reference to a variable, not a string. For example, this is
not legal:

function &pc_array_find_value($needle, &$haystack) {
foreach ($haystack as $key => $value) {

if ($needle == $value) {
$match = $haystack[$key];
}

¥

return "$match is found in position $key";

}

That's because "$match is found in position $key" is a string, and it doesn't make logical sense to return a reference to non-
variables. As of PHP 5, you're warned when you do this.

Unlike passing values into functions, in which an argument is either passed by value or by reference, you can optionally
choose not to assign a reference and just take the returned value. Just use = instead of =&, and PHP assigns the value
instead of the reference.

6.6.4. See Also

Recipe 6.3 on passing values by reference.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 6.7. Returning More Than One Value

6.7.1. Problem

You want to return more than one value from a function.

6.7.2. Solution

Return an array and use /ist() to separate elements:

function averages($stats) {

return array($median, $mean, $mode);

list($median, $mean, $mode) = averages($stats);

6.7.3. Discussion

From a performance perspective, this isn't a great idea. There is a bit of overhead because PHP is forced to first create
an array and then dispose of it. That's what is happening in this example:

function time_parts($time) {
return explode(':', $time);

list($hour, $minute, $second) = time_parts('12:34:56");

You pass in a time string as you might see on a digital clock and call explode() to break it apart as array elements.
When time_parts() returns, use list() to take each element and store it in a scalar variable. Although this is a little
inefficient, the other possible solutions are worse because they can lead to confusing code.

One alternative is to pass the values in by reference. However, this is somewhat clumsy and can be nonintuitive since it
doesn't always make logical sense to pass the necessary variables into the function. For instance:

function time_parts($time, &$hour, &minute, &$second) {
list($hour, $minute, $second) = explode(":', $time);

}

time_parts('12:34:56', $hour, $minute, $second);

Without knowledge of the function prototype, there's no way to look at this and know $hour, $minute, and $second are, in
essence, the return values of time_parts().

You can also use global variables, but this clutters the global namespace and also makes it difficult to easily see which
variables are being silently modified in the function. For example:

function time_parts($time) {
global $hour, $minute, $second;
list($hour, $minute, $second) = explode(":', $time);

¥

time_parts('12:34:56'");

Again, here it's clear because the function is directly above the call, but if the function is in a different file or written by
another person, it'd be more mysterious and thus open to creating a subtle bug.

Our advice is that if you modify a value inside a function, return that value and assign it to a variable unless you have a
very good reason not to, such as significant performance issues. It's cleaner and easier to understand and maintain.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.7.4. See Also

Recipe 6.3 on passing values by reference and Recipe 6.11 for information on variable scoping.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 6.8. Skipping Selected Return Values

6.8.1. Problem

A function returns multiple values, but you only care about some of them.

6.8.2. Solution

Omit variables inside of list():

// Only care about minutes
function time_parts($time) {
return explode(':', $time);

list(, $minute,) = time_parts('12:34:56');

6.8.3. Discussion

Even though it looks like there's a mistake in the code, the code in the Solution is valid PHP. This is most frequently
seen when a programmer is iterating through an array using each(), but cares only about the array values:

while (list(,$value) = each($array)) {
process($value);

However, this is more clearly written using foreach:

foreach ($array as $value) {
process($value);
b

To reduce confusion, don't use this feature; but if a function returns many values, and you only want one or two of
them, this technique can come in handy. One example of this case is if you read in fields using fgetcsv(), which returns
an array holding the fields from the line. In that case, you can use the following:

while ($fields = fgetcsv($th, 4096)) {
print $fields[2] . "\n"; // the third field
¥

If it's an internally written function and not built-in, you could also make the returning array have string keys, because
it's hard to remember, for example, that array element 2 is associated with 'rank':

while ($fields = read_fields($filename)) {
$rank = $fields['rank']; // the third field is now called rank
print "$rank\n";

¥

However, here's the most efficient method:

while (list(,,$rank,,) = fgetcsv($fh, 4096)) {
print "$rank\n"; // directly assign $rank
¥

Be careful you don't miscount the amount of commas; you'll end up with a bug.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.8.4. See Also

Recipe 1.11 for more on reading files using fgetcsv().

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.9. Returning Failure

6.9.1. Problem

You want to indicate failure from a function.

6.9.2. Solution

Return false:

function lookup($name) {
if (empty($name)) { return false; }

)

if (false '== lookup($name)) { /* act upon lookup */ } else { /* log an error */ }

6.9.3. Discussion

In PHP, non-true values aren't standardized and can easily cause errors. As a result, your functions should return the
defined false keyword because this works best when checking a logical value.

Other possibilities are " or 0. However, while all three evaluate to non-true inside an if, there's actually a difference
among them. Also, sometimes a return value of 0 is a meaningful result, but you still want to be able to also return
failure.

For example, strpos() returns the location of the first substring within a string. If the substring isn't found, strpos()
returns false. If it is found, it returns an integer with the position. Therefore, to find a substring position, you might
write:

if (strpos($string, $substring)) { /* found it! */ }

However, if $substring is found at the exact start of $string, the value returned is 0. Unfortunately, inside the if, this
evaluates to false, so the conditional is not executed. Here's the correct way to handle the return value of strpos():

if (false '== strpos($string, $substring)) { /* found it! */ }

Also, false is always guaranteed to be false in the current version of PHP and forever more. Other values may not
guarantee this. For example, in PHP 3, empty('0') was true, but it changed to false in PHP 4.

6.9.4. See Also

The introduction to Chapter 5 for more on the truth values of variables; documentation on strpos() at

http://www.php.net/strpos and empty(') at http://www.php.net/empty.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.10. Calling Variable Functions

6.10.1. Problem

You want to call different functions depending on a variable's value.

6.10.2. Solution

Use call_user_func():

function get_file($filename) { return file_get_contents($filename); }

$function = 'get_file';
$filename = 'graphic.png’;

// calls get_file("graphic.png')
call_user_func($function, $filename);

Use call_user_func_array() when your functions accept differing argument counts:

function get_file($filename) { return file_get_contents($filename); }
function put_file($filename, $data) { return file_put_contents($filename, $data); }

if ($action == 'get') {
$function = 'get_file';
$args = array('graphic.png');
} elseif ($action == "put') {
$function = 'put_file’;
$args = array('graphic.png', $graphic);

// calls get_file('graphic.png')
// calls put_file('graphic.png', $graphic)
call_user_func_array($function, $args);

6.10.3. Discussion

The call_user_func() and call_user_func_array() functions are a little different from your standard PHP functions. Their
first argument isn't a string to print, or a number to add, but the name of a function that's executed. The concept of
passing a function name that the language invokes is known as a callback, or a callback function.

The prototype of call_user_func_array() comes in quite handy when you're invoking a callback inside a function that
can accept a variable number of arguments. In these cases, instead of embedding the logic inside your function, you
can grab all the arguments directly using func_get_args():
// logging function that accepts printf-style formatting
// it prints a time stamp, the string, and a new line
function logf() {

$date = date(DATE_RSS);

$args = func_get_args();

return print "$date: " . call_user_func_array('sprintf', $args) . "\n";
logf('%s','http://developer.ebay.com’,'eBay Developer Program');

Sat, 23 Sep 2006 18:32:51 PDT:
eBay Developer Program

The logf() function has the same interface as the printf family: the first argument is a formatting specifier and the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

remairiinf_:j arguments are data that's interpolated into the string based on the formatting codes. Since there could be
any number of arguments following the formatting code, you cannot use call_user_func().

Instead, you grab all the arguments in an array using func_get_args() and pass that array to sprintf using
call_user_func_array().

In this particular example, you can also use vsprintf(), which is a version of sprintf() that, like call_user_func_array(),
accepts an array of arguments:

// logging function that accepts printf-style formatting
// it prints a time stamp, the string, and a new line
function logf() {

$date = date(DATE_RSS);

$args = func_get_args();

$format = array_shift($args);

return print "$date: " . vsprintf($format, $args) . "\n";
b

If you have more than two possibilities to call, use an associative array of function names:

$dispatch = array(
‘add' => 'do_add',
'‘commit' => 'do_commit,
'checkout' => 'do_checkout',
'update' => 'do_update'

)i

$cmd = (isset($_REQUEST['command']) ? $_REQUEST['command'] : ");

if (array_key_exists($cmd, $dispatch)) {
$function = $dispatch[$cmd];
call_user_func($function); // call function
}else {
error_log("Unknown command $cmd");

This code takes the command name from a request and executes that function. Note the check to see that the
command is in a list of acceptable commands. This prevents your code from calling whatever function was passed in
from a request, such as phpinfo(). This makes your code more secure and allows you to easily log errors.

Another advantage is that you can map multiple commands to the same function, so you can have a long and a short
name:

$dispatch = array(
'add’ =>'do_add',
‘commit’ => 'do_commit', 'ci' => 'do_commit',
'checkout' => 'do_checkout', 'co' => 'do_checkout’,
'update’ => 'do_update', 'up'=> 'do_update'

)i

6.10.4. See Also

Documentation on array_key_exists() at http://www.php.net/array-key-exists, call_user_func() at
http://www.php.net/call-user-func, call_user_func_array() at http://www.php.net/call-user-func-array, and isset() at
http://www.php.net/isset.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.11. Accessing a Global Variable Inside a Function

6.11.1. Problem

You need to access a global variable inside a function.

6.11.2. Solution

Bring the global variable into local scope with the global keyword:

function eat_fruit($fruit) {
global $chew_count;

for ($i = $chew_count; $i > 0; $i--) {

b
¥

Or reference it directly in $GLOBALS:

function eat_fruit($fruit) {
for ($i = $GLOBALS['chew_count']; $i > 0; $i--) {

b
¥

6.11.3. Discussion

If you use a number of global variables inside a function, the global keyword may make the syntax of the function easier
to understand, especially if the global variables are interpolated in strings.

You can use the global keyword to bring multiple global variables into local scope by specifying the variables as a
comma-separated list:

global $age,$gender,shoe_size;

You can also specify the names of global variables using variable variables:

$which_var = 'age’;
global $$which_var; // refers to the global variable $age

However, if you call unset() on a variable brought into local scope using the global keyword, the variable is unset only
within the function. To unset the variable in the global scope, you must call unset() on the element of the $GLOBALS
array:

$food = 'pizza’;
$drink = 'beer’;

function party() {
global $food, $drink;

unset($food); // eat pizza

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

unset($GLOBALS['drink']); // drink beer
b
print "$food: $drink\n";
party();
print "$food: $drink\n";

pizza: beer
pizza:

You can see that $food stayed the same, while $drink was unset. Declaring a variable global inside a function is similar to
assigning a reference of the global variable to the local one:

$food = &GLOBALS['food'];

6.11.4. See Also

Documentation on variable scope at http://www.php.net/variables.scope and variable references at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 6.12. Creating Dynamic Functions

6.12.1. Problem

You want to create and define a function as your program is running.

6.12.2. Solution

Use create_function():
$add = create_function('$i,$j', 'return $i+$j;");

$add(1, 1); // returns 2

6.12.3. Discussion

The first parameter to create_function() is a string that contains the arguments for the function, and the second is the
function body. Using create_function() is exceptionally slow, so if you can predefine the function, it's best to do so.

The most frequently used case of create_function() in action is to create custom sorting functions for usort() or
array_walk():

// sort files in reverse natural order
usort($files, create_function('$a, $b', 'return strnatcmp($b, $a);"));

6.12.4. See Also

Recipe 4.17 for information on usort(); documentation on create_function() at http://www.php.net/create-function
and on usort() at http://www.php.net/usort .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KX
Chapter 7. Classes and Objects

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7.0. Introduction

PHP 5 has significantly improved support for object-oriented programming (OOP). This is a major change and a key
reason to upgrade your code from PHP 4. If you're a fan of OOP, you will be very happy with the tools PHP 5 provides
you.

Early versions of PHP were strictly procedural: you could define functions, but not objects. PHP 3 introduced an
extremely rudimentary form of objects, written as a late-night hack. Back in 1997, nobody expected the explosion in
the number of PHP programmers, or that people would write large-scale programs in PHP. Therefore, these limitations
weren't considered a problem.

Over the years, PHP gained additional object-oriented features; however, the development team never redesigned the
core OO code to gracefully handle objects and classes. As a result, although PHP 4 improved overall performance,
writing complex OO programs with it is still difficult, if not nearly impossible.

PHP 5 fixes these problems by using Zend Engine 2 (ZE2). ZE2 enables PHP to include more advanced object-oriented
features, while still providing a high degree of backward compatibility to the millions of PHP scripts already written.

If you don't have experience with object-oriented programming outside of PHP, then you're in for a bit of a surprise.
While some of the new features allow you to do things more easily, many features don't let you do anything new at all.
In many ways, they restrict what you can do.

Even though it seems counterintuitive, these limitations actually help you quickly write safe code because they promote
code reuse and data encapsulation. These key OO programming techniques are explained throughout the chapter. But
first, here's an introduction to object-oriented programming, its vocabulary, and its concepts.

A class is a package containing two things: data and methods to access and modify that data. The data portion consists
of variables; they're known as properties. The other part of a class is a set of functions that can use its
properties'they're called methods.

When you define a class, you don't define an object that can be accessed and manipulated. Instead, you define a
template for an object. From this blueprint, you create malleable objects through a process known as instantiation. A
program can have multiple objects of the same class, just as a person can have more than one book or many pieces of
fruit.

Classes also live in a defined hierarchy. Each class down the line is more specialized than the one above it. These
specialized classes are called child classes, while the class they're modifying is called the parent class. For example, a
parent class could be a building. Buildings can be further divided into residential and commercial. Residential buildings
can be further subdivided into houses and apartment buildings, and so forth. The top-most parent class is also called
the base class.

Both houses and apartment buildings have the same set of properties as all residential buildings, just as residential and
commercial buildings share some things in common. When classes are used to express these parent-child relationships,
the child class inherits the properties and methods defined in the parent class. This allows you to reuse the code from
the parent class and requires you to write code only to adapt the new child to its specialized circumstances. This is
called inheritance and is one of the major advantages of classes over functions. The process of defining a child class
from a parent is known as subclassing or extending.

Objects play another role in PHP outside their traditional OO position. Since PHP can't use more than one namespace,
the ability for a class to package multiple properties into a single object is extremely helpful. It allows clearly
demarcated separate areas for variables.

Classes in PHP are easy to define and create:

class guest_book {

public $comments;

public $last_visitor;

function update($comment, $visitor) {

}

The class keyword defines a class, just as function defines a function. Properties are declared using the public keyword.
Method declaration is identical to function definition.

The new keyword instantiates an object:

$gb = new guest_book;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Object instantiation is covered in more detail in Recipe 7.1.

Inside a class, you can optionally declare properties using public. There's no requirement to do so, but it is a useful way
to reveal all the variables of the class. Since PHP doesn't force you to predeclare all your variables, it's possible to
create one inside a class without PHP throwing an error or otherwise letting you know. This can cause the list of
variables at the top of a class definition to be misleading, because it's not the same as the list of variables actually in
the class.

In PHP 4, you declared a property using var instead of public. You can still use var, but public was added as a synonym
because PHP 5 actually offers three different types of properties: public, protected, and private properties. Public
properties are identical to properties in PHP 4, but the other two types behave differently. This is explained in more

detail in Recipe 7.4.
Besides declaring a property, you can also assign it a value:

public $last_visitor = 'Donnan’;

You can assign constant values only using this construct:

public $last_visitor = 'Donnan'; // okay
public $last_visitor = 9; // okay

public $last_visitor = array(‘Jesse'); // okay
public $last_visitor = pick_visitor(); // bad
public $last_visitor = 'Chris' . '9'; // bad

If you try to assign something else, PHP dies with a parse error.
To assign a non-constant value to a variable, do it from a method inside the class:

class guest_book {
public $last_visitor;

public function update($comment, $visitor) {
if (lempty($comment)) {
array_unshift($this->comments, $comment);
$this->last_visitor = $visitor;
}
¥
b

If the visitor left a comment, you add it to the beginning of the array of comments and set that person as the latest
visitor to the guest book. The variable $this is a special variable that refers to the current object. So to access the
$last_visitor property of an object from inside that object, refer to $this->last_visitor.

To assign nonconstant values to variables upon instantiation, assign them in the class constructor. The class constructor
is a method automatically called when a new object is created, and it is named ___construct(), as shown in Example 7-
1.

Assigning values to properties within a class constructor

class guest_book {
public $comments;
public $last_visitor;

public function __construct($user) {
$dbh = mysqli_connect('localhost’, 'username’, 'password', 'sites');
$user = mysqli_real_escape_string($dbh, $user);
$sql = "SELECT comments, last_visitor FROM guest_books WHERE user="$user";
$r = mysqli_query($dbh, $sql);

if ($obj = mysqli_fetch_object($dbh, $r)) {
$this->comments = $obj->comments;
$this->last_visitor = $obj->last_visitor;
¥
b
}

$gb = new guest_book('stewart');

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Constructors are covered in Recipe 7.2. Note that in PHP 4, constructors had the same name as the class. In this
example, that would be guest_book.

Be careful not to mistakenly type $this->$size. This is legal, but it's not the same as $this->size. Instead, it accesses the
property of the object whose name is the value stored in the $size variable. More often than not, $size is undefined, so
$this->$size appears empty. For more on variable property names, see Recipe 5.4.

Besides using -> to access a method or member variable, you can also use :: . This syntax accesses static methods in a
class. These methods are identical for every instance of a class, because they can't rely on instance-specific data.
There's no $this in a static method. For example:

class convert {
// convert from Celsius to Fahrenheit

public static function c2f($degrees) {
return (1.8 * $degrees) + 32;

b
$f = convert::c2f(100); // 212

To implement inheritance by extending an existing class, use the extends keyword:

class xhtml extends xml {
/] ...
¥

Child classes inherit parent methods and can optionally choose to implement their own specific versions, as shown in

Example 7-2.

Overriding parent methods

class DB {
public $result;

function getResult() {
return $this->result;

by

function query($sql) {
error_log("query() must be overridden by a database-specific child");
return false;

}

}

class MySQL extends DB {
function query($sql) {
$this->result = mysql_query($sql);
¥
b

The MySQLclass above inherits the getResult()method unchanged from the parent DB class, but has its own MySQL-
specific query()method.

Preface the method name with parent:: to explicitly call a parent method, as shown in Example 7-3.

Calling parent methods explicitly

function escape($sql) {

$safe_sql = mysql_real_escape_string($sql); // escape special characters
$safe_sql = parent::escape($safe_sql); // parent method adds " around $sql
return $safe_sql;

¥

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7-14 covers accessing overridden methods.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.1. Instantiating Objects

7.1.1. Problem

You want to create a new instance of an object.

7.1.2. Solution

Define the class, then use new to create an instance of the class:
class user {

function load_info($username) {
// load profile from database

}

$user = new user;
$user->load_info($_GET['username']);

7.1.3. Discussion

You can instantiate multiple instances of the same object:

$adam = new user;
$adam->load_info(‘adam’);

$dave = new user;
$dave->load_info(‘adam');

These are two independent objects that happen to have identical information. They're like identical twins; they may
start off the same, but they go on to live separate lives.

7.1.4. See Also

Recipe 7.10 for more on copying and cloning objects; documentation on classes and objects at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.2. Defining Object Constructors

7.2.1. Problem

You want to define a method that is called when an object is instantiated. For example, you want to automatically load
information from a database into an object upon creation.

7.2.2. Solution

Define a method named ___construct():

class user {
function __construct($username, $password) {

)
}

7.2.3. Discussion

The method named ___construct() (that's two underscores before the word construct) acts as a constructor, as shown in

Example 7-4.

Defining an object constructor

class user {
public $username;

function __construct($username, $password) {
if ($this->validate_user($username, $password)) {
$this->username = $username;
}
}
}

$user = new user('Grif', 'Mistoffelees"); // using built-in constructor

In PHP 4, constructors had the same name as the class, as shown in Example 7-5.

Defining object constructors in PHP 4

class user {
function user($username, $password) {

}

For backward compatibilty, if PHP 5 does not find a method named __ construct(), but does find one with the same
name as the class (the PHP 4 constructor naming convention), it will use that method as the class constructor.

Having a standard name for all constructors, such as what PHP 5 implements, makes it easier to call your parent's
constructor (because you don't need to know the name of the parent class) and also doesn't require you to modify the
constructor if you rename your class.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7.2.4. See Also

for more on calling parent constructors; documentation on object constructors at

http://www.php.net/oop.constructor.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.3. Defining Object Destructors

7.3.1. Problem

You want to define a method that is called when an object is destroyed. For example, you want to automatically save
information from a database into an object when it's deleted.

7.3.2. Solution

Objects are automatically destroyed when a script terminates. To force the destruction of an object, use unset(), as

shown in Example 7-6.

Deleting an object

$car = new car; // buy new car

unset($car); // car wreck

To make PHP call a method when an object is eliminated, define a method named __ destruct(), as shown in Example
7-7.

Defining an object destructor

class car {
function __destruct() {
// head to car dealer
}
}

7.3.3. Discussion

It's not normally necessary to manually clean up objects, but if you have a large loop, unset() can help keep memory
usage from spiraling out of control.

PHP 5 supports object destructors. Destructors are like constructors, except that they're called when the object is
deleted. Even if you don't delete the object yourself using unset(), PHP still calls the destructor when it determines that
the object is no longer used. This may be when the script ends, but it can be much earlier.

You use a destructor to clean up after an object. For instance, the Database destructor would disconnect from the
database and free up the connection. Unlike constructors, you cannot pass information to a destructor, because you're
never sure when it's going to be run.

Therefore, if your destructor needs any instance-specific information, store it as a property, as shown in Example 7-8.

Accessing instance-specific data within a destructor

// Destructor
class Database {
function __destruct() {
db_close($this->handle); // close the database connection

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Destructors are executed before PHP terminates the request and finishes sending data. Therefore, you can print from
them, write to a database, or even ping a remote server.

You cannot, however, assume that PHP will destroy objects in any particular order. Therefore, you should not reference
another object in your destructor, as PHP may have already destroyed it. Doing so will not cause a crash, but it will
cause your code to behave in an unpredictable (and buggy) manner.

There are no backward compatibility issues with destructors, because they aren't available in PHP 4. However, that

doesn't mean people didn't try to recreate them using other language features. If you emulated destructors, you will
want to port your code, because PHP 5's destructors are more efficient and easier to use.

7.3.4. See Also

Documentation on unset() at http://www.php.net/unset.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| 4 Py | | HEXT # |
Recipe 7.4. Implementing Access Control

7.4.1. Problem

You want to assign a visibility to methods and properties so they can only be accessed within classes that have a
specific relationship to the object.

7.4.2. Solution
Use the public, protected, and private keywords, as shown in Example 7-9.

Class using access control

class Person {
public $name; // accesible anywhere
protected $age; // accesible within the class and child classes
private $salary; // accesible only within this specific class

public function __construct() {
/] .
¥

protected function set_age() {
/] ..
b

private function set_salary() {
/] ..
b

7.4.3. Discussion

PHP allows you to enforce where you can access methods and properties. There are three levels of visibility:

® public
® protected
® private

Making a method or property public means anyone can call or edit it. This is the same behavior as versions of PHP before
PHP 5.

You can also label a method or property as protected, which restricts access to only the current class and any child
classes that extend that class.

The final visibility is private, which is the most restrictive. Properties and methods that are private can only be accessed
within that specific class.

If you're unfamiliar with this concept, access control can seem like an odd thing. However, when you use access
control, you can actually create more robust code because it promotes data encapsulation, a key tenet of OO
programming.

Inevitably, whenever you write code, there's some part'the way you store the data, what parameters the functions
take, how the database is organized'that doesn't work as well as it should. It's too slow, too awkward, or doesn't allow
you to add new features, so you clean it up.

Fixing code is a good thing, unless you accidently break other parts of your system in the process. When a program is
designed with a high degree of encapsulation, the underlying data structures and database tables are not accessed
directly. Instead, you define a set of functions and route all your requests through these functions.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For example, you have a database table that stores names and email addresses. A program with poor encapsulation
directly accesses the table whenever it needs to fetch a person's email address, as shown in Example 7-10.

Selecting an email address

$name = 'Rasmus Lerdorf";

$db = mysqli_connect();

$result = mysqli_query($db, "SELECT email FROM users
WHERE name LIKE '$name");

$row = mysqli_fetch_assoc($db, $r);

$email = $row['email'];

A better encapsulated program uses a function instead, as shown in Example 7-11.

Selecting an email address using a function

function getEmail($name) {
$db = mysqli_connect();
$result = mysqli_query($db, "SELECT email FROM users
WHERE name LIKE '$name"');
$row = mysqli_fetch_assoc($db, $r);
$email = $row['email'];
return $email

}

$email = getEmail('Rasmus Lerdorf');

Using getEmail() has many benefits, including reducing the amount of code you need to write to fetch an email
address. However, it also lets you safely alter your database schema because you only need to change the single query
in getEmail() instead of searching through every line of every file, looking for places where you SELECT data from the
users table.

It's hard to write a well-encapsulated program using functions , because the only way to signal to people "Don't touch
this!" is through comments and programming conventions.

Objects allow you to wall off implementation internals from outside access. This prevents people from relying on code
that may change and forces them to use your functions to reach the data. Functions of this type are known as
accessors, because they allow access to otherwise protected information. When redesigning code, if you update the
accessors to work as before, none of the code will break.

Marking something as protected or private signals that it may change in the future, so people shouldn't access it or they'll
violate encapsulation.

This is more than a social convention. PHP actually prevents people from calling a private method or reading a private
property outside of the class. Therefore, from an external perspective, these methods and properties might as well not
exist because there's no way to access them.

In object-oriented programming, there is an implicit contract between the author and the users of the class. The users
agree not to worry about the implementation details. The author agrees that as long as a person uses public methods
they'll always work, even if the author redesigns the class.

When deciding between protected and private, both provide protection against usage outside of the class. Therefore, the
decision to choose one visibility versus the other really comes down to a judgement call'do you expect someone will
need to invoke that method in a child class?

Since it's hard to come up ahead of time with a complete list, it's best to lean toward using protected over private unless
you're 110 percent sure that private is the right choice, and there's really no reason someone should ever need that
method.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.5. Preventing Changes to Classes and Methods

7.5.1. Problem

You want to prevent another developer from redefining specific methods within a child class, or even from subclassing
the entire class itself.

7.5.2. Solution

Label the particular methods or class as final:

final public function connect($server, $username, $password) {
// Method definition here
b

And:

final class MySQL {
// Class definition here

}

7.5.3. Discussion

Inheritance is normally a good thing, but it can make sense to restrict it.

The best reason to declare a method final is that a real danger could arise if someone overrides it. For example, data
corruption, a race condition, or a potential crash or deadlock from forgetting (or forgetting to release) a lock or a
semaphore.

Another common reason to declare a method final is that the method is "perfect." When you believe there's no way to
update the method to make it better, declare it using the final keyword. This prevents subclasses from ruining it by
reimplementing the method in an inferior manner.

However, think hard before you choose final in this case. It's impossible to come up with all the reasons someone may
need to override a method. If you're distributing a third-party library (such as a PEAR package), you will cause a real
headache if you incorrectly mark a method as final.

Make a method final by placing the final keyword at the beginning of the method declaration, as shown in Example 7-12.

Defining a final method

final public function connect($server, $username, $password) {
// Method definition here
}

This prevents someone from subclassing the class and creating a different connect() method.

To prevent subclassing of an entire class, don't mark each method final. Instead, make a final class as shown in Example
7-13.

Defining a final class

final class MySQL {
// Class definition here
}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A final class cannot be subclassed. This differs from a class in which every method is final because that class can be
extended and provided with additional methods, even if you cannot alter any of the preexisting methods.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.6. Defining Object Stringification

7.6.1. Problem

You want to control how PHP displays an object when you print it.
7.6.2. Solution
Implement a __toString() method, as shown in Example 7-14.

Defining a class's stringification

class Person {
// Rest of class here

public function __toString() {
return "$this->name <$this->email>";
}
}

7.6.3. Discussion
PHP provides objects with a way to control how they are converted to strings. This allows you to print an object in a
friendly way without resorting to lots of additional code.

PHP calls an object's __toString() method when you echo or print the object by itself, as shown in Example 7-15.

Defining a class's stringification

class Person {
protected $name;
protected $email;

public function setName($name) {
$this->name = $name;

b

public function setEmail($email) {
$this->email = $email;

}

public function __toString() {
return "$this->name <$this->email>";
¥

¥

You can write:

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf");
$rasmus->setEmail(‘rasmus@php.net');
print $rasmus;

Rasmus Lerdorf <rasmus@php.net>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This causes PHP to invoke the __toString() method behind the scenes and return the stringified version of the object.

Your method must return a string; otherwise, PHP will issue an error. While this seems obvious, you can sometimes get
tripped up by PHP's auto-casting features, which do not apply here.

For example, it's easy to treat the string '9' and the integer 9 identically, since PHP generally switches seamlessly
between the two depending on context, almost always to the correct result.

However, in this case, you cannot return integers from __toString(). If you suspect you may be in a position to return
a non-string value from this method, consider explicitly casting the results, as shown in Example 7-16.

Casting the return value

class TextInput {
// Rest of class here

public function __toString() {
return (string) $this->label;
¥

¥

By casting $this->label to a string, you don't need to worry if someone decided to label that text input with a number.

The __toString() feature has a number of limitations in versions of PHP prior to PHP 5.2. For example, it does not work
for interpolated or concatenated strings (see Example 7-17).

Invoking __ toString()

print "PHP was created by $rasmus";
print 'PHP was created by '. $rasmus;
printf('PHP was created by %s', $rasmus);

The one exception is a dusty corner of PHP that uses echo and a comma (,) instead of period (.) to combine items, as

shown in Example 7-18.

Invoking object stringification and concateination

echo 'PHP was created by ', $rasmus;
PHP was created by Rasmus Lerdorf <rasmus@php.net>

Earlier version of PHP 5 will also not autoconvert objects to strings when you pass them to a function that requires a
string argument. You should call __toString() on them instead (see Example 7-19).

Invoking __ toString() directly

print htmlentities($rasmus); // bad
print htmlentities($rasmus->__toString()); // good

This also applies when you:

® Place the object inside double quotes or a heredoc

® Concatenate with the object using dot (.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® Cast the object to a string using (string) or strval()
® Treat the object as a string in printf() by indicating it should be formatted with %s

Therefore, if you're using __toString() heavily in your code, it's best to use PHP 5.2 or greater.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.7. Specifying Interfaces

7.7.1. Problem

You want to ensure a class implements one or more methods with specific names, visibilities, and prototypes.

7.7.2. Solution

Define an interface and declare that your class will implement that interface:

interface Nameable {
public function getName();
public function setName($name);

}

class Book implements Nameable {
private $name;

public function getName() {
return $this->name;

b

public function setName($name) {
return $this->name = $name;
}
¥

The Nameable interface defines two methods necessary to name an object. Since books are nameable, the Book class says
it implements the Nameable interface, and then defines the two methods in the class body.

7.7.3. Discussion

In object-oriented programming, objects must work together. Therefore, you should be able to require a class (or more
than one class) to implement methods that are necessary for the class to interact properly in your system.

For instance, an e-commerce application needs to know a certain set of information about every item up for sale. These
items may be represented as different classes: Book, CD, DVD, etc. However, at the very minimum you need to know that
every item in your catalog has a name, regardless of its type. (You probably also want them to have a price and maybe
even an ID, while you're at it.)

The mechanism for forcing classes to support the same set of methods is called an interface. Defining an interface is

similar to defining a class (see Example 7-20).

Defining an interface

interface Nameable {
public function getName();
public function setName($name);

¥

Instead of using the keyword class, an interface uses the keyword interface . Inside the interface, define your method
prototypes, but don't provide an implementation.

This creates an interface named Nameable. Any class that's Nameable must implement the two methods listed in the
interface: getName() and setName().

When a class supports all the methods in the interface, it's said to implement the interface. You agree to implement an
interface in your class definition (see Example 7-21).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Implementing an interface

class Book implements Nameable {
private $name;

public function getName() {
return $this->name;

¥

public function setName($name) {
return $this->name = $name;
¥
¥

Failing to implement all the methods listed in an interface, or implementing them with a different prototype, causes PHP

to emit a fatal error.

A class can agree to implement as many interfaces as you want. For instance, you may want to have a Listenable
interface that specifies how you can retrieve an audio clip for an item. In this case, the CD and DVD classes would also
implement Listenable, whereas the Book class wouldn't. (Unless, of course, it is an audio book.)

When you use interfaces, it's important to declare your classes before you instantiate objects. Otherwise, when a class
implements interfaces, PHP 5 can sometimes become confused. To avoid breaking existing applications, this

requirement is not enforced, but it's best not to rely on this behavior.

To check if a class implements a specific interface, use class_implements(), as shown in Example 7-25.

Checking if a class implements an interface

class Book implements Nameable {
// .. Code here
¥

$interfaces = class_implements('Book');
if (isset($interfaces['Nameable'])) {

// Book implements Nameable
¥

You can also use the Reflection classes, shown in Example 7-23.

Checking if a class implements an interface using the Reflection classes

class Book implements Nameable {
// .. Code here

$rc = new ReflectionClass('Book");
if ($rc->implementsInterface('Nameable')) {
print "Book implements Nameable\n";

¥

7.7.4. See Also

Recipe 7.19 for more on the Reflection classes; documentation on class_implements() at

http://www.php.net/class_implements and interfaces at http://www.php.net/interfaces.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.8. Creating Abstract Base Classes

7.8.1. Problem

You want to create an "abstract" class, or, in other words, one that is not directly instantiable, but acts as a common
base for children classes.

7.8.2. Solution

Label the class as abstract:

abstract class Database {
/] ..
b

Do this by placing the abstract keyword before the class definition.

You must also define at least one abstract method in your class. Do this by placing the abstract keyword in front of the
method definition:

abstract class Database {
abstract public function connect();
abstract public function query();
abstract public function fetch();
abstract public function close();

}

7.8.3. Discussion

Abstact classes are best used when you have a series of objects that are related using the "is a" relationship. Therefore,
it makes logical sense to have them descend from a common parent. However, while the children are tangible, the
parent is abstract.

Take, for example, a Database class. A database is a real object, so it makes sense to have a Database class. However,
although Oracle, MySQL, Postgres, MSSQL, and hundreds of other databases exist, you cannot download and install a
generic database. You must choose a specific database.

PHP provides a way for you to create a class that cannot be instantiated. This class is known as an abstract class. For
example, see the Database class in Example 7-24.

Defining an abstract class

abstract class Database {
abstract public function connect();
abstract public function query();
abstract public function fetch();
abstract public function close();

}

Mark a class as abstract by placing the abstract keyword before class.

Abstract classes must contain at least one method that is also marked abstract. These methods are called abstract
methods. Database contains four abstract methods: connect(), query(), fetch(), and close(). These four methods are
the basic set of functionality necessary to use a database.

If a class contains an abstract method, the class must also be declared abstract. However, abstract classes can contain
non-abstract methods (even though there are no regular methods in Database).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Abstract methods, like methods listed in an interface, are not implemented inside the abstract class. Instead, abstract
methods are implemented in a child class that extends the abstract parent. For instance, you could use a MySQL class, as

shown in Example 7-25.

Implementing a class based on an abstract class

class MySQL extends Database {
protected $dbh;
protected $query;

public function connect($server, $username, $password, $database) {
$this->dbh = mysqli_connect($server, $username,
$password, $database);
b

public function query($sql) {
$this->query = mysqli_query($this->dbh, $sql);

public function fetch() {
return mysqli_fetch_row($this->dbh, $this->query);
¥

public function close() {
mysqli_close($this->dbh);

If a subclass fails to implement all the abstract methods in the parent class, then it itself is abstract and another class
must come along and further subclass the child. You might do this if you want to create two MySQL classes: one that
fetches information as objects and another that returns arrays.

There are two requirements for abstract methods:

® Abstract methods cannot be defined private, because they need to be inherited.
® Abstract methods cannot be defined final, because they need to be overridden.

Abstract classes and interfaces are similar concepts, but are not identical. For one, you can implement multiple
interfaces, but extend only one abstract class. Additionally, in an interface you can only define method prototypes'you
cannot implement them. An abstract class, in comparison, needs only one abstract method to be abstract, and can have
many non-abstract methods and even properties.

You should also use abstract classes when the "is a" rule applies. For example, since you can say "MySQL is a

Database," it makes sense for Database to be abstract class. In constrast, you cannot say, "Book is a Nameable" or "Book
is a Name," so Nameable should be an interface.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 7.9. Assigning Object References

7.9.1. Problem

You want to link two objects, so when you update one, you also update the other.

7.9.2. Solution

Use = to assign one object to another by reference:

$adam = new user;
$dave = $adam;

7.9.3. Discussion

When you do an object assignment using =, you don't create a new copy of an object, but a reference to the first. So,
modifying one alters the other.

This is different from how PHP 5 treats other types of variables, where it does a copy-by-value. It is also different from
PHP 4, where all variables are copied by value, regardless of their type.

So where you used to use =& in PHP 4 to make two objects point at each other, you can now use only =:

$adam = new user;
$adam->load_info(‘adam’);

$dave = $adam;

Now $dave and $adam are two names for the exact same object.

7.9.4. See Also

Recipe 7.10 for more on cloning objects; documentation on references at http://www.php.net/references.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.10. Cloning Objects

7.10.1. Problem

You want to copy an object.

7.10.2. Solution

Copy objects by reference using =:

$rasmus = $zeev;

Copy objects by value using clone:

$rasmus = clone $zeev;

7.10.3. Discussion

PHP 5 copies objects by reference instead of value. When you assign an existing object to a new variable, that new
variable is just another name for the existing object. Accessing the object by the old or new name produces the same
results.

To create an independent instance of a value with the same contents, otherwise known as copying by value, use the
clone keyword. Otherwise, the second object is simply a reference to the first.

This cloning process copies every property in the first object to the second. This includes properties holding objects, so
the cloned object may end up sharing object references with the original.

This is frequently not the desired behavior. For example, consider the aggregated version of Person that holds an Address

object in Example 7-26.

Using an aggregated class

class Address {
protected $city;
protected $country;

public function setCity($city) { $this->city = $city; }
public function getCity() { return $this->city; }
public function setCountry($country) { $this->country = $country; }
public function getCountry() { return $this-> country;}
¥

class Person {
protected $name;
protected $address;

public function __construct() { $this->address = new Address; }

public function setName($name) { $this->name = $name; }

public function getName() { return $this->name; }

public function __call($method, $arguments) {
if (method_exists($this->address, $method)) {
return call_user_func_array(array($this->address, $method), $arguments);
b

¥

}

An aggregated class is one that embeds another class inside in a way that makes it easy to access both the original and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

embedded classes. The key point to remember is that the $address property holds an Address object.

With this class, Example 7-27 shows what happens when you clone an object.

Cloning an aggregated class

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf");
$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;
$zeev->setName('Zeev Suraski');
$zeev->setCity('Tel Aviv'");

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . .";
print $zeev->getName() . ' lives in ' . $zeev->getCity() . '.";

Rasmus Lerdorf lives in Tel Aviv.

Zeev Suraski lives in Tel Aviv.

Interesting. Calling setName() worked correctly because the $name property is a string, so it's copied by value.
However, since $address is an object, it's copied by reference, so getCity() doesn't produce the correct results, and you
end up relocating Rasmus to Tel Aviv.

This type of object cloning is known as a shallow clone or a shallow copy. In contrast, a "deep clone" occurs when all
objects involved are cloned. This is PHP 4's cloning method.

Control how PHP 5 clones an object by implementing a ___clone() method in your class. When this method exists, PHP
allows ___clone() to override its default behavior, as shown in Example 7-28.

Properly implementing cloning in aggregated classes

class Person {

// ... everything from before

public function __clone() {
$this->address = clone $this->address;
b

}

Inside of __clone(), you're automatically presented with a shallow copy of the variable, stored in $this, the object that
PHP provides when ___clone() does not exist.

Since PHP has already copied all the properties, you only need to overwrite the ones you dislike. Here, $name is okay,
but $address needs to be explicitly cloned.

Now the clone behaves correctly, as shown in Example 7-29.

Cloning an aggregated class

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf");
$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;
$zeev->setName('Zeev Suraski');
$zeev->setCity('Tel Aviv');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . .";
print $zeev->getName() . ' lives in ' . $zeev->getCity() . ".";

Rasmus Lerdorf lives in Sunnyvale.

Zeev Suraski lives in Tel Aviv.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Using the clone operator on objects stored in properties causes PHP to check whether any of those objects contain a
__clone() method. If one exists, PHP calls it. This repeats for any objects that are nested even further.

This process correctly clones the entire object and demonstrates why it's called a deep copy.

7.10.4. See Also

Recipe 7.9 for more on assigning objects by reference.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.11. Overriding Property Accesses

7.11.1. Problem

You want handler functions to execute whenever you read and write object properties. This lets you write generalized
code to handle property access in your class.

7.11.2. Solution

Use the magical methods __get() and __set() to intercept property requests.

To improve this abstraction, also implement __isset() and __unset() methods to make the class behave correctly
when you check a property using isset() or delete it using unset().

7.11.3. Discussion
Property overloading allows you to seamlessly obscure from the user the actual location of your object's properties and
the data structure you use to store them.

For example, the Person class shown in Example 7-30 stores variables in an array, $__data.

Implementing magic accessor methods

class Person {
private $__data = array();

public function __get($property) {
if (isset($this->__data[$property])) {
return $this->__data[$property];
}else {
return false;
b
b

public function __set($property, $value) {
$this->__data[$property] = $value;
¥

¥

Example 7-31 shows how to use the Person class.

Using magic accessor methods

$johnwood = new Person;

$johnwood->email = 'jonathan@wopr.mil'; // sets $user->__data['email']
print $johnwood->email; // reads $user->__data['email']
jonathan@wopr.mil

When you set data, __set() rewrites the element inside of $__data. Likewise, use __get() to trap the call and return the
correct array element.

Using these methods and an array as the alternate variable storage source makes it less painful to implement object
encapsulation. Instead of writing a pair of accessor methods for every class property, you use __get() and __set().

With __get() and __set(), you can use what appear to be public properties, such as $johnwood->name, without violating
encapsulation. This is because the programmer isn't reading from and writing to those properties directly, but is instead
being routed through accessor methods.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The __get() method takes the property name as its single parameter. Within the method, you check to see whether
that property has a value inside $__data. If it does, the method returns that value; otherwise, it returns false.

When you read $johnwood->name, you actually call __get('name') and it's returning
$__data['name'], but for all external purposes that's irrelevant.

The __set() method takes two arguments: the property name and the new value. Otherwise, the logic inside the
method is similar to __get().

Besides reducing the number of methods in your classes, these magical methods also make it easy to implement a
centralized set of input and output validation.

Additionally, Example 7-32 shows how you can also enforce exactly what properties are legal and illegal for a given
class.

Enforcing property access using magic accessor methods

class Person {
// list person and email as valid properties
protected $__data = array('person’, 'email');

public function __get($property) {
if (isset($this->__data[$property])) {
return $this->__data[$property];
}else {
return false;
b
b

// enforce the restriction of only setting
// pre-defined properties
public function __set($property, $value) {
if (isset($this->__data[$property])) {
return $this->__data[$property] = $value;
Yelse {
return false;
b
}
¥

In this updated version of the code, you explicitly list the object's valid properties names when you define the $_ data
property. Then, inside __set(), you use isset() to confirm that all property writes are going to allowable names.

Preventing rogue reads and writes is why the visibility of the $__data property isn't public, but protected. Otherwise,
someone could do this:

$person = new Person;
$person->__data['fake_property'] = 'fake_data’;

because the magical accessors aren't used for existing properties.

Pay attention to this important implementation detail. In particular, if you're expecting people to extend the class, they
could introduce a property that conflicts with a property you're expecting to handle using __get() and __set(). For that
reason, the property in Example 7-32 is called $__data with two leading underscores.

You should consider prefixing all your "actual" properties in classes where you use magical accessors to prevent
collisions between properties that should be handled using normal methods and ones that should be routed through
__get()and __set().

There are three downsides to using ___get() and __set(). First, these methods only catch missing properties. If you
define a property for your class, __get() and __set() are not invoked by PHP when that property is accessed.

This is the case even if the property you're trying to access isn't visible in the current scope (for instance, when you're
reading a property that exists in the class but isn't accessible to you, because it's declared private). Doing this causes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PHP to emit a fatal error:

PHP Fatal error: Cannot access private property...

Second, these methods completely destroy any notion of property inheritance. If a parent object has a ___get() method
and you implement your own version of __get() in the child, your object won't function correctly because the parent's
__get() method is never called.

You can work around this by calling parent::__get(), but it is something you need to explicitly manage instead of
"getting for free" as part of OO design.

The illusion is incomplete because it doesn't extend to the isset() and unset() methods. For instance, if you try to
check if an overloaded property isset(), you will not get an accurate answer, as PHP doesn't know to invoke __get().

You can fix this by implementing your own version of these methods in the class, called __isset() and __unset(),

shown in Example 7-33.

Implementing magic methods for isset() and unset()

class Person {
// list person and email as valid properties
protected $data = array('person’, 'email’);

public function __get($property) {
if (isset($this->data[$property])) {
return $this->data[$property];
}else {
return false;
b
b

// enforce the restriction of only setting
// pre-defined properties
public function __set($property, $value) {
if (isset($this->data[$property])) {
return $this->data[$property] = $value;
Yelse {
return false;
b
}

public function __isset($property) {
if (isset($this->data[$property])) {
return true;
}else {
return false;

3

public function __unset($property) {
if (isset($this->data[$property])) {
return unset($this->data[$property]);
} else {
return false;
b
¥
}

The __isset() method checks inside the $data element and returns true or false depending on the status of the property
you're checking.

Likewise, __unset() passes back the value of unset() applied to the "real" property, or false if it's not set.

Implementing these two methods isn't required when using __get() and __set(), but it's best to do so as it's hard to
predict how you may use object properties. Failing to code these methods will lead to confusion when someone
(perhaps even yourself) doesn't know (or forgets) that this class is using magic accessor methods.

However, the __isset() and __unset() methods are only available as of PHP 5.1.

Other reasons to consider not using magical accessors are:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® They're relatively slow. They're both slower than direct property access and explicitly writing accessor methods
for all your properties.

® They make it impossible for the Reflection classes and tools such as phpDocumentor to automatically document
your code.

® You cannot use them with static properties.

7.11.4. See Also

Documentation on magic methods found at http://www.php.net/manual/en/language.oop5.magic.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.12. Calling Methods on an Object Returned by Another
Method

7.12.1. Problem
You need to call a method on an object returned by another method.
7.12.2. Solution

Call the second method directly from the first:

$orange = $fruit->get('citrus')->peel();

7.12.3. Discussion

PHP is smart enough to first call $fruit->get('citrus') and then invoke the peel() method on what's returned.
This is an improvement over PHP 4, where you needed to use a temporary variable:

$orange = $fruit->get('citrus');
$orange->peel();

Another victory for PHP 5!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 7.13. Aggregating Objects

7.13.1. Problem

You want to compose two or more objects together so that they appear to behave as a single object.

7.13.2. Solution

Aggregate the objects together and use the ___call() magic method to intercept method invocations and route them
accordingly:

class Address {
protected $city;

public function setCity($city) {
$this->city = $city;
3

public function getCity() {
return $this->city;
¥

}

class Person {
protected $name;
protected $address;

public function __construct() {
$this->address = new Address;
b

public function setName($name) {
$this->name = $name;

}

public function getName() {
return $this->name;

b

public function __call($method, $arguments) {
if (method_exists($this->address, $method)) {
return call_user_func_array(
array($this->address, $method), $arguments);
}

b
b

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity(‘Sunnyvale');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . ".";
Rasmus Lerdorf lives in Sunnyvale.

An instance of the Address object is created during the construction of every Person. When you invoke methods not
defined in Person, the ___call() method catches them and, when applicable, dispatches them using call_user_func_array(

).
7.13.3. Discussion

In this recipe, you cannot say a Person "is an" Address or vice versa. Therefore, it doesn't make sense for one class to
extend the other.

However, it makes sense for them to be separate classes so that they provide maximum flexibility and reuse, as well as
reduced duplicated code. So you check if another rule'the "has a" rule'applies. Since a Person "has an" Address, it makes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sense to aggregate the classes together.

With aggregation, one object acts as a container for one or more additional objects. This is another way of solving the
problem of multiple inheritance because you can easily piece together an object out of smaller components.

For example, a Person object can contain an Address object. Clearly, People have addresses. However, addresses aren't
unique to people; they also belong to businesses and other entities. Therefore, instead of hardcoding address
information inside of Person, it makes sense to create a separate Address class that can be used by multiple classes.

Example 7-34 shows how this works in practice.

Aggregating an address object

class Address {
protected $city;

public function setCity($city) {
$this->city = $city;
b

public function getCity() {
return $this->city;
}
}

class Person {
protected $name;
protected $address;

public function __construct() {
$this->address = new Address;

b

public function setName($name) {
$this->name = $name;

b

public function getName() {
return $this->name;

3

public function __call($method, $arguments) {
if (method_exists($this->address, $method)) {
return call_user_func_array(
array($this->address, $method), $arguments);

The Address class stores a city and has two accessor methods to manipulate the data, setCity() and getCity().

Person has setName() and getName(), similar to Address, but it also has two other methods: __construct() and __call(

).

Its constructor instantiates an Address object and stores it in a protected $address property. This allows methods inside Person
to access $address, but prevents others from talking directly to the class.

Ideally, when you call a method that exists in Address, PHP would automatically execute it. This does not occur, since
Person does not extend Address. You must write code to glue these calls to the appropriate methods yourself.

Wrapper methods are one option. For example:

public function setCity($city) {
$this->address->setCity($city);
b

This setCity() method passes along its data to the setCity() method stored in $address. This is simple, but it is also
tedious because you must write a wrapper for every method.

Using __call() lets you automate this process by centralizing these methods into a single place, as shown in Example 7-

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Centralizing method invocation using __call()

public function __call($method, $arguments) {
if (method_exists($this->address, $method)) {
return call_user_func_array(
array($this->address, $method), $arguments);

The __call() method captures any calls to undefined methods in a class. It is invoked with two arguments: the name of
the method and an array holding the parameters passed to the method. The first argument lets you see which method
was called, so you can determine whether it's appropriate to dispatch it to $address.

Here, you want to pass along the method if it's a valid method of the Address class. Check this using method_exists() ,
providing the object as the first parameter and the method name as the second.

If the function returns TRue, you know this method is valid, so you can call it. Unfortunately, you're still left with the
burden of unwrapping the arguments out of the $arguments array. That can be painful.

The seldom used and oddly named call_user_func_array() function solves this problem. This function lets you call a

user function and pass along arguments in an array. Its first parameter is your function name, and the second is the

array of arguments.

In this case, however, you want to call an object method instead of a function. There's a special syntax to cover this

situation. Instead of passing the function name, you pass an array with two elements. The first element is the object,
and the other is the method name.

This causes call_user_func_array() to invoke the method on your object. You must then return the result of
call_user_func_array() back to the original caller, or your return values will be silently discarded.

Here's an example of Person that calls both a method defined in Person and one from Address:
$rasmus = new Person;

$rasmus->setName('Rasmus Lerdorf");

$rasmus->setCity(‘Sunnyvale');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . .";
Rasmus Lerdorf lives in Sunnyvale.

Even though setCity() and getCity() aren't methods of Person, you have aggregated them into that class.

You can aggregate additional objects into a single class, and also be more selective as to which methods you expose to
the outside user. This requires some basic filtering based on the method name.

7.13.4. See Also

Documentation on magic methods at http://www.php.net/manual/en/language.cop5.magic.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 7.14. Accessing Overridden Methods

7.14.1. Problem

You want to access a method in the parent class that's been overridden in the child.

7.14.2. Solution

Prefix parent:: to the method name:

class shape {
function draw() {
// write to screen
b
b

class circle extends shape {
function draw($origin, $radius) {
// validate data
if ($radius > 0) {
parent::draw();
return true;

¥

return false;

b
b

7.14.3. Discussion

When you override a parent method by defining one in the child, the parent method isn't called unless you explicitly
reference it.

In the Solution, we override the draw() method in the child class, circle, because you want to accept circle-specific
parameters and validate the data. However, in this case, we still want to perform the generic shape::draw() action,
which does the actual drawing, so we call parent::draw() inside your method if $radius is greater than 0.

Only code inside the class can use parent::. Calling parent::draw() from outside the class gets you a parse error. For
example, if circle::draw() checked only the radius, but you also wanted to call shape::draw(), this wouldn't work:[1

UIn fact, it fails with the error unexpected T_PAAMAYIM_NEKUDOTAYIM, which is Hebrew for "double-colon."

$circle = new circle;
if ($circle->draw($origin, $radius)) {
$circle->parent::draw();

}

This also applies to object constructors, so it's quite common to see the following:

class circle {
function __construct($x, $y, $r) {
// call shape's constructor first
parent::__construct();
// now do circle-specific stuff
3
b

The simplicity of invoking a parent constructor is one advantage of PHP 5's consistent naming scheme for constructors,
as you need to jump through all sorts of hoops to implement this in PHP 4 in a non-brittle way.fs

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7.14.4. See Also

Recipe 7.2 for more on object constructors; documentation on class parents at http://www.php.net/keyword.parent and
on get_parent_class() at http://www.php.net/get-parent-class.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.15. Using Method Polymorphism

7.15.1. Problem

You want to execute different code depending on the number and type of arguments passed to a method.

7.15.2. Solution

PHP doesn't support method polymorphism as a built-in feature. However, you can emulate it using various type-
checking functions. The following combine() function uses is_numeric(), is_string() , is_array(), and is_bool():

// combine() adds numbers, concatenates strings, merges arrays,
// and ANDs bitwise and boolean arguments
function combine($a, $b) {
if (is_int($a) && is_int($b)) {
return $a + $b;
}

if (is_float($a) && is_float($b)) {
return $a + $b;
}

if (is_string($a) && is_string($b)) {
return "asb";
¥

if (is_array($a) && is_array($b)) {
return array_merge($a, $b);
}

if (is_bool($a) && is_bool($b)) {
return $a & $b;
3

return false;

7.15.3. Discussion

Because PHP doesn't allow you to declare a variable's type in a method prototype, it can't conditionally execute a
different method based on the method's signature, as Java and C++ can. You can, instead, make one function and use
a switch statement to manually recreate this feature.

For example, PHP lets you edit images using GD. It can be handy in an image class to be able to pass in either the

location of the image (remote or local) or the handle PHP has assigned to an existing image stream. Example 7-36
shows a pc_Image class that does just that.

pc_Image class

class pc_Image {
protected $handle;

function ImageCreate($image) {
if (is_string($image)) {
// simple file type guessing

// grab file suffix

$info = pathinfo($image);

$extension = strtolower($info['extension']);
switch ($extension) {

case 'jpg":

case 'jpeg'":

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

$this->handle = ImageCreateFromJPEG($image);
break;

case 'png':
$this->handle = ImageCreateFromPNG($image);
break;

default:
die('Images must be JPEGs or PNGs.");

} elseif (is_resource($image)) {

$this->handle = $image;
Yelse {

die('Variables must be strings or resources.");
b

In this case, any string passed in is treated as the location of a file, so we use pathinfo() to grab the file extension.
Once we know the extension, we try to guess which ImageCreateFrom() function accurately opens the image and
create a handle.

If it's not a string, we're dealing directly with a GD stream, which is a type of resource. Since there's no conversion
necessary, we assign the stream directly to $handle. Of course, if you're using this class in a production environment,
you'd be more robust in your error handling.

Method polymorphism also encompasses methods with differing numbers of arguments. The code to find the number of
arguments inside a method is identical to how you process variable argument functions using func_num_args(). This is

discussed in Recipe 6.5.
7.15.4. See Also

Recipe 6.5 for variable argument functions; documentation on is_string() at http://www.php.net/is-string, is_resource(
) at http://www.php.net/is-resource, and pathinfo() at http://www.php.net/pathinfo .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.16. Defining Class Constants

7.16.1. Problem

You want to define constants on a per-class basis, not on a global basis.

7.16.2. Solution

Define them like class properties, but use the const label instead:

class Math {
const pi = 3.14159; // universal
const e = 2.71828; // constants

}

$area = math::pi * $radius * $radius;

7.16.3. Discussion

PHP reuses its concept of global constants and applies them to classes. Essentially, these are final properties.
Declare them using the const label:

class Math {
const pi = 3.14159; // universal
const e = 2.71828; // constants
)

$area = math::pi * $radius * $radius;

Like static properties, you can access constants without first instantiating a new instance of your class, and they're
accessed using the double colon (::) notation. Prefix the word self:: to the constant name to use it inside of a class.

Unlike properties, constants do not have a dollar sign ($) before them:

class Circle {
const pi = 3.14159;
protected $radius;

public function __construct($radius) {
$this->radius = $radius;

¥

public function circumference() {
return 2 * self::pi * $this->radius;
b
)

$c = new circle(1);
print $c->circumference();
6.28318

This example creates a circle with a radius of 1 and then calls the circumference method to calculate its circumference. To
use the class's pi constant, refer to it as circumference; otherwise, PHP tries to access circumference value of the global pi
constant:

define('pi', 10); // global pi constant

class Circle {
const pi = 3.14159; // class pi constant
protected $radius;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public function __construct($radius) {
$this->radius = $radius;
}

public function circumference() {
return 2 * pi * $this->radius;
3

¥
$c = new circle(1);

print $c->circumference();
20

Oops! PHP has used the value of 10 instead of 3.14159, so the new answer is 20 instead of 6.28318.

Although it's unlikely that you will accidentally redefine N (you'll probably use the built-in M_PI constant anyway), this
can still slip you up.

You cannot assign the value of an expression to a constant, nor can they use information passed into your script:
// invalid
class permissions {

const read =1<<2;

const write =1<<1;

const execute = 1 << 0;

b
// invalid and insecure
class database {

const debug = $_REQUEST['debug'];
b

Neither the constants in permissions nor the debug constant in database are acceptable because they are not fixed. Even the
first example, 1 << 2, where PHP does not need to read in external data, is not allowed.

Since you need to access constants using an explicit name, either self:: or the name of the class, you cannot dynamically
calculate the class name during runtime. It must be declared beforehand. For example:

class Constants {
const pi = 3.14159;

// rest of class here

b
$class = 'Constants';

print $class::pi;

This produces a parse error, even though this type of construct is legal for non-constant expressions, such as $class->pi.

7.16.4. See Also

Documentation on class constants is available at http://www.php.net/manual/en/language.oop5.constants.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 7.17. Defining Static Properties and Methods

7.17.1. Problem

You want to define methods in an object, and be able to access them without instantiating a object.

7.17.2. Solution

Declare the method as static:

class Format {
public static function number($number, $decimals = 2,
$decimal ="',', $thousands =".") {
return number_format($number, $decimals, $decimal, $thousands);
}
b

print Format::number(1234.567);
1,234.57

7.17.3. Discussion

Occasionally, you want to define a collection of methods in an object, but you want to be able to invoke those methods
without instantiating a object. In PHP 5, declaring a method static lets you call it directly:

class Format {
public static function number($number, $decimals = 2,
$decimal ="',', $thousands =".") {
return number_format($number, $decimals, $decimal, $thousands);
¥
¥

print Format::number(1234.567);
1,234.57

Since static methods don't require an object instance, use the class name instead of the object. Don't place a dollar sign
($) before the class name.

Static methods aren't referenced with an arrow (->), but with double colons (::)'this signals to PHP that the method is
static. So in the example, the number() method of the Format class is accessed using Format::number().

Number formatting doesn't depend on any other object properties or methods. Therefore, it makes sense to declare this
method static. This way, for example, inside your shopping cart application, you can format the price of items in a pretty
manner with just one line of code and still use an object instead of a global function.

Static methods do not operate on a specific instance of the class where they're defined. PHP does not "construct" a
temporary object for you to use while you're inside the method. Therefore, you cannot refer to $this inside a static
method, because there's no $this on which to operate. Calling a static method is just like calling a regular function.

PHP 5 also has a feature known as static properties. Every instance of a class shares these properties in common. Thus,
static properties act as class-namespaced global variables.

One reason for using a static property is to share a database connection among multiple Database objects. For efficiency,
you shouldn't create a new connection to your database every time you instantiate Database. Instead, negotiate a
connection the first time and reuse that connection in each additional instance, as shown in Example 7-37.

Sharing a static method across instances

class Database {
private static $dbh = NULL;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public function __construct($server, $username, $password) {
if (self::$dbh == NULL) {
self::$dbh = db_connect($server, $username, $password);
}else {
// reuse existing connection
¥
}
}

$db = new Database('db.example.com’, 'web', ‘jsdéw@2d');
// Do a bunch of queries

$db2 = new Database('db.example.com’, 'web', 'jsdéw@2d');
// Do some additional queries

Static properties, like static methods, use the double colon notation. To refer to a static property inside of a class, use
the special prefix of self. self is to static properties and methods as $this is to instantiated properties and methods.

The constructor uses self::$dbh to access the static connection property. When $db is instantiated, dbh is still set to NULL, so
the constructor calls db_connect() to negotiate a new connection with the database.

This does not occur when you create $db2, since dbh has been set to the database handle.

7.17.4. See Also

Documentation on the static keyword at http://www.php.net/manual/en/language.oop5.static.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 7.18. Controlling Object Serialization

7.18.1. Problem

You want to control how an object behaves when you serialize() and unserialize() it. This is useful when you need to
establish and close connections to remote resources, such as databases, files, and web services.

7.18.2. Solution
Define the magical methods __sleep() and __wakeUp(), as shown in Example 7-38.

Controlling serialization using __sleep() and ___wakeUp()

<?php

class LogFile {
protected $filename;
protected $handle;

public function __construct($filename) {
$this->filename = $filename;
$this->open();

¥

private function open() {
$this->handle = fopen($this->filename, 'a');
}

public function __destruct($filename) {
fclose($this->handle);

// called when object is serialized
// should return an array of object properties to serialize
public function __sleep() {

return array('filename');

// called when object is unserialized
public function __wakeUp() {
$this->open();

7.18.3. Discussion

When you serialize an object in PHP, it preserves all your object properties. However, this does not include connections
or handles that you hold to outside resources, such as databases, files, and web services.

These must be reestablished when you unserialize the object, or the object will not behave correctly. You can do this
explicitly within your code, but it's better to abstract this away and let PHP handle everything behind the scenes.

Do this through the __sleep() and __wakeUp() magic methods. When you call serialize() on a object, PHP invokes
__sleep(); when you unserialize() it, it calls __wakeUp().

The LogFile class in Example 7-38 has five simple methods. The constructor takes a filename and saves it for future
access. The open() method opens this file and stores the file handle, which is closed in the object's destructor.

The __sleep() method returns an array of properties to store during object serialization. Since file handles aren't
preserved across serializations, it only returns array(‘filename') because that's all you need to store.

That's why when the object is reserialized, you need to reopen the file. This is handled inside of __wakeUp(), which
calls the same open() method used by the constructor. Since you cannot pass arguments to __wakeUp(), it needs to

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

get the filename from somewhere else. Fortunately, it's able to access object proberties, which is why the filename is
saved there.

It's important to realize that the same instance can be serialized multiple times in a single request, or even continued to
be used after its serialized. Therefore, you shouldn't do anything in __sleep() that could prevent either of these two
actions. The __sleep() method should only be used to exclude properties that shouldn't be serialized because they take
up too much disk space, or are calculated based on other data and should be recalculated or otherwise made fresh
during object unserialization.

That's why the call to fclose() appears in the destructor and not in __sleep().

7.18.4. See Also

Documentation on magic methods at http://www.php.net/manual/en/language.oop5.magic.php; the unserialize()

function at http://www.php.net/unserialize and the serialize() function is found at :

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 7.19. Introspecting Objects

7.19.1. Problem

You want to inspect an object to see what methods and properties it has, which lets you write code that works on any
generic object, regardless of type.

7.19.2. Solution

Use the Reflection classes to probe an object for information.
For a quick overview of the class, call Reflection::export():

// learn about cars
Reflection::export(new ReflectionClass('car'));

Or probe for specific data:

$car = new ReflectionClass('car');
if ($car->hasMethod('retractTop")) {
// car is a convertible

¥

7.19.3. Discussion

It's rare to have an object and be unable to examine the actual code to see how it's described. Still, with the Reflection
classes, you can programmatically extract information about both object-oriented features, such as classes, methods,
and properties, but also non-00 features, such as functions and extensions.

This is useful for projects you want to apply to a whole range of different classes, such as creating automated class
documentation, generic object debuggers, and state savers, like serialize().

To help show how the Reflection classes work, Example 7-39 contains an example Person class that uses many of PHP
5's OO features.

Person class

class Person {
public $name;
protected $spouse;
private $password;

public function __construct($name) {
$this->name = $name

b

public function getName() {
return $name;

b

protected function setSpouse(Person $spouse) {
if (lisset($this->spouse)) {
$this->spouse = $spouse;
b
¥

private function setPassword($password) {
$this->password = $password;

}

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For a quick overview of the class, call Reflection::export():

Reflection::export(new ReflectionClass('Person'));
Class [<user> class Person] {
@@ /www/reflection.php 3-25

- Constants [0] {
>

- Static properties [0] {
by

- Static methods [0] {
>

- Properties [3] {
Property [<default> public $name]
Property [<default> protected $spouse]
Property [<default> private $password]

- Methods [4] {
Method [<user> <ctor> public method _ _construct] {
@@ /www/reflection.php 8 - 10

- Parameters [1] {
Parameter #0 [$name]
>
>

Method [<user> public method getName] {
@@ /www/reflection.php 12 - 14

Method [<user> protected method setSpouse] {
@@ /www/reflection.php 16 - 20

- Parameters [1] {
Parameter #0 [Person or NULL $spouse]
>
b

Method [<user> private method setPassword] {
@@ /www/reflection.php 22 - 24

- Parameters [1] {
Parameter #0 [$password]
}
by
>
>

The Reflection: :export() static method takes an instance of the ReflectionClass class and returns a copious amount of
information. As you can see, it details the number of constants, static properties, static methods, properties, and
methods in the class. Each item is broken down into component parts. For instance, all the entries contain visibility
identifiers (private, protected, or public), and methods have a list of their parameters underneath their definition.

Reflection: :export() not only reports the file where everything is defined, but even gives the line numbers! This lets
you extract code from a file and place it in your documentation.

Example 7-40 shows a short command-line script that searches for the filename and starting line number of a method
or function.

Using reflection to locate function and method definitions

<?php
if ($argc < 2) {
print "$argv[0]: function/method, classes1.php [, ... classesN.php]\n";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

exit;

}

// Grab the function name
$function = $argv[1];

// Include the files

foreach (array_slice($argv, 2) as $filename) {
include_once $filename;

}

try {
if (strpos($function, "::")) {
// It's a method
list ($class, $method) = explode("::', $function);
$reflect = new ReflectionMethod($class, $method);
}else {
// It's a function
$reflect = new ReflectionFunction($function);

b

$file = $reflect->getFileName();
$line = $reflect->getStartLine();

printf ("%s | %s | %d\n", "$function()", $file, $line);

} catch (ReflectionException $e) {
printf ("%s not found.\n", "$function()");
¥

?>

Pass the function or method name as the first argument, and the include files as the remaining arguments. These files
are then included, so make sure they don't print out anything.

The next step is to determine whether the first argument is a method or a function. Since methods are in the form
class::method, you can use strpos() to tell them apart.

If it's a method, use explode() to separate the class from the method, passing both to ReflectionMethod. If it's a function,
you can directly instantiate a ReflectionFunction without any difficulty.

Since ReflectionMethod extends ReflectionFunction, you can then call both getFileName() and getStartLine() of either class.
This gathers the information that you need to print out, which is done via printf().

When you try to instantiate a ReflectionMethod or ReflectionFunction with the name of an undefined method, these classes
throw a ReflectionException. Here, it's caught and an error message is displayed.

A more complex script that prints out the same type of information for all user-defined methods and functions appears
in Recipe 7.23.

If you just need a quick view at an object instance, and don't want to fiddle with the Reflection classes, use either
var_dump(), var_export(), or print_r() to print the object's values. Each of these three functions prints out
information in a slightly different way; var_export() can optionally return the information, instead of displaying it.

7.19.4. See Also

Recipe 5.8 for more on printing variables; documentation on Reflection at
http://www.php.net/manual/en/language.oop5.reflection.php, var_dump() at http://www.php.net/var-dump,
var_export() at http://www.php.net/var-export, and print_r() at http://www.php.net/print-r .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.20. Checking if an Object Is an Instance of a Specific Class

7.20.1. Problem

You want to check if an object is an instance of a specific class.

7.20.2. Solution

To check that a value passed as a function argument is an instance of a specific class, specify the class name in your
function prototype:

public function add(Person $person) {
// add $person to address book

In other contexts, use the instanceof operator:

<?php
$media = get_something_from_catalog();
if ($media instanceof Book) {
// do bookish things
} else if ($media instanceof DVD) {
// watch the movie

¥

?>

7.20.3. Discussion

One way of enforcing controls on your objects is by using type hints. A type hint is a way to tell PHP that an object
passed to a function or method must be of a certain class.

To do this, specify a class nhame in your function and method prototypes. As of PHP 5.1, you can also require that an
argument is an array, by using the keyword array. This only works for classes and arrays, though, not for any other
variable types. You cannot, for example, specify strings or integers.

For example, to require the first argument to your AddressBook class's add() method to be of type Person:

class AddressBook {

public function add(Person $person) {
// add $person to address book

Then, if you call add() but pass a string, you get a fatal error:
$book = new AddressBook;
$person = 'Rasmus Lerdorf";

$book->add($person);
PHP Fatal error: Argument 1 must be an object of class Person in...

Placing a type hint of Person in the first argument of your function declaration is equivalent to adding the following PHP
code to the function:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public function add($person) {
if (!($person instanceof Person)) {
die("Argument 1 must be an instance of Person");
b

The instanceof operator checks whether an object is an instance of a particular class. This code makes sure $person is a
Person.

PHP 4 does not have an instanceof operator. You need to use the is_a() function, which is deprecated in PHP 5.

The instanceof operator also returns true with classes that are subclasses of the one you're comparing against. For
instance:

class Person { /* ... */ }
class Kid extends Person { /* ... */ }
$kid = new Kid;

if ($kid instanceof Person) {
print "Kids are people, too.\n";

¥

Kids are people, too.

Last, you can use instanceof to see if a class has implemented a specific interface:

interface Nameable {
public function getName();
public function setName($name);

}

class Book implements Nameable {
private $name;

public function getName() {
return $this->name;

¥

public function setName($name) {
return $this->name = $name;
b
¥

$book = new Book;
if ($book instanceof Book) {
print "You can name a Book.\n";

}

You can name a Book

Type hinting has the side benefit of integrating API documentation directly into the class itself. If you see that a class
constructor takes an Event type, you know exactly what to provide the method. Additionally, you know that the code and
the "documentation" must always be in sync, because it's baked directly into the class definition.

You can also use type hinting in interface definitions, which lets you further specify all your interface details.

However, type hinting does come at the cost of less flexibility. There's no way to allow a parameter to accept more than
one type of object, so this places some restrictions on how you design your object hierarchy.

Also, the penalty for violating a type hint is quite drastic'the script aborts with a fatal error. In a web context, you may
want to have more control over how errors are handled and recover more gracefully from this kind of mistake.
Implementing your own form of type checking inside of methods lets you print out an error page if you choose.

Last, unlike some languages, you cannot use type hinting for return values, so there's no way to mandate that a
particular function always returns an object of a particular type.

7.20.4. See Also

Documentation on type hints at http://www.php.net/manual/language.oop5.typehinting.php and instanceof at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.php.net/manual/language.operators.type.php

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.21. Autoloading Class Files upon Object Instantiation

7.21.1. Problem

You don't want to include all your class definitions within every page. Instead, you want to dynamically load only the
ones necessary in that page.

7.21.2. Solution

Use the __autoload() magic method:

function __autoload($class_name) {
include "$class_name.php";

}

$person = new Person;

7.21.3. Discussion

When you normally attempt to instantiate a class that's not defined, PHP dies with a fatal error because it can't locate
what you're looking for. Therefore, it's typical to load in all the potential classes for a page, regardless of whether
they're actually invoked.

This has the side effect of increasing processing time, as PHP must parse every class, even the unused ones. One
solution is to load missing code on the fly using the __autoload() method, which is invoked when you instantiate
undefined classes.

For example, here's how you include all the classes used by your script:

function __autoload($class_name) {
include "$class_name.php";

}

$person = new Person;

The __autoload() function receives the class name as its single parameter. This example appends a .php extension to
that name and tries to include a file based on $class_name. So when you instantiate a new Person, it looks for Person.php
in your include_path.

When __autoload() fails to successfully load a class definition for the object you're trying to instantiate, PHP fails with a
fatal error, just as it does when it can't find a class definition without autoload.

If you adopt the PEAR-style naming convention of placing an underscore between words to reflect the file hierarchy, use

the code in Example 7-41.

Autoloading classes using PEAR naming conventions

function __autoload($package_name) {
// split on underscore
$folders = split("_', $package_name);
// rejoin based on directory structure
// use DIRECTORY_SEPARATOR constant to work on all platforms
$path = join(DIRECTORY_SEPARATOR, $folders);
// append extension
$path .= ".php’;

include $path;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With the code in Example 7-41, you can do the following:

$person = new Animals_Person;

If the class isn't defined, Animals_Person gets passed to __autoload(). The function splits the class name on underscore (
_) and joins it on DIRECTORY_SEPARATOR. This turns the string into Animals/Person on Unix machines (and Animals\Person on
Windows).

Next, a .php extension is appended, and then the file Animals/Person.php is included for use.

While using __autoload() slightly increases processing time during the addition of a class, it is called only once per
class. Multiple instances of the same class does not result in multiple calls to __autoload().

Before deploying __autoload(), be sure to benchmark that the overhead of opening, reading, and closing the multiple
files necessary isn't actually more of a performance penalty than the additional parsing time of the unused classes.

In particular if you're using an opcode cache, such as APC or Zend Accelerator, using __autoload() and include_once can
hurt performance. For best results, you should include all your files at the top of the script and make sure you don't
reinclude a file twice.

7.21.4. See Also

Documentation on autoloading is available at http://www.php.net/manual/language.oop5.autoload.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 7.22. Instantiating an Object Dynamically

7.22.1. Problem

You want to instantiate an object, but you don't know the name of the class until your code is executed. For example,
you want to localize your site by creating an object belonging to a specific language. However, until the page is
requested, you don't know which language to select.

7.22.2. Solution

Use a variable for your class name:

$language = $_REQUEST['language'];

$valid_langs = array(‘en_US' => 'US English’,
'en_UK' => 'British English’,
'es_US' => 'US Spanish’,
'fr_CA' => 'Canadian French");

if (isset($valid_langs[$language]) && class_exists($language)) {
$lang = new $language;

}

7.22.3. Discussion

Sometimes you may not know the class name you want to instantiate at runtime, but you know part of it. For instance,
to provide your class hierarchy a pseudonamespace, you may prefix a leading series of characters in front of all class
names; this is why we often use pc_ to represent PHP Cookbook or PEAR uses Net_ before all networking classes.
However, while this is legal PHP:

$class_name = 'Net_Ping';
$class = new $class_name; // new Net_Ping

This is not:

$partial_class_name = 'Ping’;
$class = new "Net_$partial_class_name"; // new Net_Ping

This, however, is okay:

$partial_class_name = 'Ping’;
$class_prefix = 'Net_';

$class_name = "$class_prefix$partial_class_name";
$class = new $class_name; // new Net_Ping

So you can't instantiate an object when its class name is defined using variable concatenation in the same step.
However, because you can use simple variable names, the solution is to preconcatenate the class name.

7.22.4. See Also

Documentation on class_exists() at http://www.php.net/class-exists.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 7.23. Program: whereis

While tools such as phpDocumentor provide quite detailed information about an entire series of classes, it can be useful
to get a quick dump that lists all the functions and methods defined in a list of files.

The program in Example 7-42 loops through a list of files, includes them, and then uses the Reflection classes to gather
information about them. Once the master list is compiled, the functions and methods are sorted alphabetically and
printed out.

whereis

<?php

if ($argc < 2) {
print "$argv[0]: classesl.php [, ...]\n";
exit;

}

// Include the files
foreach (array_slice($argy, 1) as $filename) {
include_once $filename;

}

// Get all the method and function information
// Start with the classes
$methods = array();
foreach (get_declared_classes() as $class) {
$r = new ReflectionClass($class);
// Eliminate built-in classes
if ($r->isUserDefined()) {
foreach ($r->getMethods() as $method) {
// Eliminate inherited methods
if ($method->getDeclaringClass()->getName() == $class) {
$signature = "$class::" . $method->getName();
$methods[$signature] = $method;
¥
¥
}
}

// Then add the functions

$functions = array();

$defined_functions = get_defined_functions();

foreach ($defined_functions['user'] as $function) {
$functions[$function] = new ReflectionFunction($function);

// Sort methods alphabetically by class

function sort_methods($a, $b) {
list ($a_class, $a_method) = explode('::', $a);
list ($b_class, $b_method) = explode('::', $b);

if ($cmp = strcasecmp($a_class, $b_class)) {
return $cmp;
¥

return strcasecmp($a_method, $b_method);
}
uksort($methods, 'sort_methods");

// Sort functions alphabetically

// This is less complicated, but don't forget to

// remove the method sorting function from the list
unset($functions['sort_methods']);

// Sort 'em

ksort($functions);

// Print out information
foreach (array_merge($functions, $methods) as $name => $reflect) {
$file = $reflect->getFileName();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$line = $reflect->getStartLine();
printf ("%-25s | %-40s | %6d\n", "$name()", $file, $line);

?>

This code uses both the Reflection classes and also a couple of PHP functions, get_declared_classes() and
get_declared_functions(), that aren't part of the Reflection classes, but help with introspection.

It's important to filter out any built-in PHP classes and functions; otherwise, the report will be less about your code and
more about your PHP installation. This is handled in two different ways. Since get_declared_classes() doesn't
distinguish between user and internal classes, the code calls ReflectionClass: :isUserDefined() to check. The
get_defined_function() call, on the other hand, actually computes this for you, putting the information in the user array
element.

Since it's easier to scan the output of a sorted list, the script sorts the arrays of methods and functions. Since multiple
classes can have the same method, you need to use a user-defined sorting method, sort_methods(), which first
compares two methods by their class names and then by their method names.

Once the data is sorted, it's a relatively easy task to loop though the merged arrays, gather up the filename and
starting line numbers, and print out a report.

Here's the results of running the PEAR HTTP class through the script:

HTTP::Date() | /usr/lib/php/HTTP.php | 38
HTTP::head() | /usr/lib/php/HTTP.php | 144
HTTP::negotiateLanguage() | /usr/lib/php/HTTP.php | 77
HTTP::redirect() | /usr/lib/php/HTTP.php | 186

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KX
Chapter 8. Web Basics

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

8.0. Introduction

Web programming is probably why you're reading this book. It's why the first version of PHP was written and what
continues to make it so popular today. With PHP, it's easy to write dynamic web programs that do almost anything.
Other chapters cover various PHP capabilities, like graphics, regular expressions, database access, and file I/O. These
capabilities are all part of web programming, but this chapter focuses on some web-specific concepts and organizational
topics that will make your web programming stronger.

Recipes 8.1, 8.2, and 8.3 show how to set, read, and delete cookies. A cookie is a small text string that the server
instructs the browser to send along with requests the browser makes. Normally, HTTP requests aren't "stateful"; each
request can't be connected to a previous one. A cookie, however, can link different requests by the same user. This
makes it easier to build features such as shopping carts or to keep track of a user's search history.

Recipe 8.4 shows how to redirect users to a different web page than the one they requested. Discovering the features
of a user's browser is shown in Recipe 8.5. Recipe 8.13 shows the details of constructing a URL that includes a get query
string, including proper encoding of special characters and handling of HTML entities. Similarly, Recipe 8.7 provides
information on reading the data submitted in the body of a post request. Recipe 8.8 discusses a common web formatting
need: displaying rows of an HTML table such that alternating rows have different colors or styles.

The next three recipes demonstrate how to use authentication, which lets you protect your web pages with passwords.
PHP's special features for dealing with HTTP Basic authentication are explained in Recipe 8.9. Sometimes it's a better
idea to roll your own authentication method using cookies, as shown in Recipe 8.10.

The three following recipes deal with output control. Recipe 8.11 shows how to force output to be sent to the browser.
Recipe 8.12 explains the output buffering functions. Output buffers enable you to capture output that would otherwise
be printed or delay output until an entire page is processed. Automatic compression of output is shown in Recipe 8.13.

The next two recipes show how to interact with external variables: environment variables and PHP configuration
settings. Recipes 8.14 and 8.15 discuss environment variables. If Apache is your web server, you can use the
techniques in Recipe 8.16 to communicate with other Apache modules from within your PHP programs.

This chapter also includes two programs that demonstrate some of the concepts in the recipes. Recipe 8.17 validates
user accounts by sending an email message with a customized link to each new user. If the user doesn't visit the link
within a week of receiving the message, the account is deleted. Recipe 8.18 is a small example of a Wiki'a system that
makes any page on your web site editable from within the web browser.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.1. Setting Cookies

8.1.1. Problem

You want to set a cookie so that your web site can recognize subsequent requests from the same web browser.

8.1.2. Solution

Call setcookie() with a cookie name and value, as in Example 8-1.

Setting a cookie

<?php
setcookie('flavor','chocolate chip');
?>

8.1.3. Discussion

Cookies are sent with the HTTP headers, so if you're not using output buffering, setcookie() must be called before any
output is generated.

Pass additional arguments to setcookie() to control cookie behavior. The third argument to setcookie() is an expiration
time, expressed as an epoch timestamp. For example, the cookie set in Example 8-2 expires at noon GMT on December
3, 2004.

Setting an expiring cookie

<?php
setcookie('flavor','chocolate chip',1259841600);
?>

If the third argument to setcookie() is missing (or empty), the cookie expires when the browser is closed. Also, many
systems can't handle a cookie expiration time greater than 2147483647, because that's the largest epoch timestamp
that fits in a 32-bit integer, as discussed in the introduction to Chapter 3.

The fourth argument to setcookie() is a path. The cookie is sent back to the server only when pages whose path begin

with the specified string are requested. For example, the cookie set in Example 8-3 is sent back only to pages whose
path begins with /products/.

Setting a cookie with a path restriction

<?php
setcookie('flavor','chocolate chip',",'/products/");
?>

The page that's setting the cookie in Example 8-3 doesn't have to have a URL whose path component begins with
/products/, but the cookie is sent back only to pages that do.

The fifth argument to setcookie() is a domain. The cookie is sent back to the server only when pages whose hostname
ends with the specified domain are requested. For example, the first cookie in Example 8-4 is sent back to all hosts in
the example.com domain, but the second cookie is sent only with requests to the host jeannie.example.com.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Setting a cookie with a domain restriction

<?php

setcookie('flavor','chocolate chip',",",'.example.com');
setcookie('flavor','chocolate chip',",",'jeannie.example.com’);
?>

If the first cookie's domain was just example.com instead of .example.com, it would be sent only to the single host
example.com (and not www.example.com or jeannie.example.com). If a domain is not specified when setcookie() is
called, then the browser sends back the cookie only with requests to the same hostname as the request in which the
cookie was set.

The last optional argument to setcookie() is a flag that, if set to true, instructs the browser only to send the cookie over
an SSL connection. This can be useful if the cookie contains sensitive information, but remember that the data in the
cookie is stored as unencrypted plain text on the user's computer.

Different browsers handle cookies in slightly different ways, especially with regard to how strictly they match path and

domain strings and how they determine priority between different cookies of the same name. The setcookie() page of
the online manual has helpful clarifications of these differences.

8.1.4. See Also

Recipe 8.2 shows how to read cookie values; Recipe 8.3 shows how to delete cookies; Recipe 8.12 explains output
buffering; documentation on setcookie() at http://www.php.net/setcookie; an expanded cookie specification is detailed
in RFC 2965 at http://www.fags.org/rfcs/rfc2965.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.2. Reading Cookie Values

8.2.1. Problem

You want to read the value of a cookie that you've previously set.
8.2.2. Solution
Look in the $_COOKIE auto-global array, as shown in Example 8-5.

Reading a cookie value

<?php
if (isset($_COOKIE['flavor'])) {

print "You ate a {$_COOKIE['flavor']} cookie.";
}

?>

8.2.3. Discussion

A cookie's value isn't available in $_COOKIE during the request in which the cookie is set. In other words, the setcookie()
function doesn't alter the value of $_COOKIE. On subsequent requests, however, each cookie sent back to the server is
stored in $_COOKIE. If register_globals is on, cookie values are also assigned to global variables.

When a browser sends a cookie back to the server, it sends only the value. You can't access the cookie's domain, path,
expiration time, or secure status through $_COOKIE because the browser doesn't send that to the server.

To print the names and values of all cookies sent in a particular request, loop through the $_COOKIE array, as in Example
8-6.

Reading all cookie values

<?php
foreach ($_COOKIE as $cookie_name => $cookie_value) {
print "$cookie_name = $cookie_value
";

b

?>

8.2.4. See Also

Recipe 8.1 shows how to set cookies; Recipe 8.3 shows how to delete cookies; Recipe 8.12 explains output buffering;
Recipe 9.15 for information on register_globals.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.3. Deleting Cookies

8.3.1. Problem

You want to delete a cookie so a browser doesn't send it back to the server. For example, you're using cookies to track
whether a user is logged in to your web site, and a user logs out.

8.3.2. Solution

Call setcookie() with no value for the cookie and an expiration time in the past, as in Example 8-7.

Deleting a cookie

<?php
setcookie('flavor',",1);
?>

8.3.3. Discussion

It's a good idea to make the expiration time a long time in the past, in case your server and the user's computer have
unsynchronized clocks. For example, if your server thinks it's 3:06 P.M. and a user's computer thinks it's 3:02 P.M., a
cookie with an expiration time of 3:05 P.M. isn't deleted by that user's computer even though the time is in the past for
the server.

The call to setcookie() that deletes a cookie has to have the same arguments (except for value and time) that the call
to setcookie() that set the cookie did, so include the path, domain, and secure flag if necessary.

8.3.4. See Also

Recipe 8.1 shows how to set cookies; Recipe 8.2 shows how to read cookie values; Recipe 8.12 explains output
buffering; documentation on setcookie() at http://www.php.net/setcookie.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 8.4. Redirecting to a Different Location

8.4.1. Problem

You want to automatically send a user to a new URL. For example, after successfully saving form data, you want to
redirect a user to a page that confirms that the data has been saved.

8.4.2. Solution

Before any output is printed, use header() to send a Location header with the new URL, and then call exit() so that
nothing else is printed. Example 8-8 shows how to do this.

Redirecting to a different location

<?php

header('Location: http://www.example.com/confirm.html');
exit();

?>

8.4.3. Discussion
If you want to pass variables to the new page, you can include them in the query string of the URL, as in Example 8-9.

Redirecting with query string variables

<?php

header('Location: http://www.example.com/?monkey=turtle');
exit();

>

Redirect URLs should include the protocol and hostname. They shouldn't be just a pathname. Example 8-10 shows a
good Location header and a bad one.

Good and bad Location headers

<?php
// Good Redirect
header('Location: http://www.example.com/catalog/food/pemmican.php');

// Bad Redirect
header('Location: /catalog/food/pemmican.php');
?>

The URL that you are redirecting a user to is retrieved with get. You can't redirect someone to retrieve a URL via post.
With JavaScript, however, you can simulate a redirect via post by generating a form that gets submitted (via post)
automatically. When a (JavaScript-enabled) browser receives the page in Example 8-11, it will immediately post the
form that is included.

Redirecting via a posted form

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<html>
<body onload="document.getElementById('redirectForm").submit()">
<form id="redirectForm' method='POST" action='/done.html'>
<input type='hidden' name="'status' value='complete'/>
<input type="'hidden' name='id' value="0u812'/>
<input type="submit' value='Please Click Here To Continue'/>
</form>
</body>
</html>

The form in Example 8-11 has an id of redirectForm, so the code in the <body/> element's onload attribute submits the form.

The onload action does not execute if the browser has JavaScript disabled. In that situation, the user sees a Please Click
Here To Continue button.

8.4.4. See Also

Documentation on header() at http://www.php.net/header.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 8.5. Detecting Different Browsers

8.5.1. Problem

You want to generate content based on the capabilities of a user's browser.

8.5.2. Solution

Use the object returned by get_browser() to determine a browser's capabilities, as shown in Example 8-17.

Getting browser information

<?php
$browser = get_browser();
if ($browser->frames) {

// print out a frame-based layout
} elseif ($browser->tables) {

// print out a table-based layout
}else {

// print out a boring layout
}

?>

8.5.3. Discussion

The get_browser() function examines the environment variable (set by the web server) and compares it to browsers
listed in an external browser capability file. Due to licensing issues, PHP isn't distributed with a browser capability file.

The "Obtaining PHP" section of the PHP FAQ (http://www.php.net/faq.obtaining) lists
http://www.garykeith.com/browsers/downloads.asp

as a source for a browser capability file. Download the
php_browscap.ini file from that site.

Once you download a browser capability file, you need to tell PHP where to find it by setting the browscap configuration
directive to the pathname of the file. If you use PHP as a CGI, set the directive in the php.ini file, as in Example 8-13.

Setting browscap in php.ini

browscap=/usr/local/lib/php_browscap.ini

Many of the capabilities get_browser() finds are shown in Table 8-1. For user-configurable capabilities such as javascript
or cookies, though, get_browser() just tells you if the browser can support those functions. It doesn't tell you if the user
has disabled the functions. If JavaScript is turned off in a JavaScript-capable browser or a user refuses to accept
cookies when the browser prompts him, get_browser() still indicates that the browser supports those functions.

Table 8-1. Browser capability object properties

Property Description
platform Operating system the browser is running on (e.g., Windows, Macintosh, Unix, Win32, Linux, MacPPC)
version Full browser version (e.g., 5.0, 3.5, 6.0b2)
majorver Major browser version (e.g., 5, 3, 6)
minorver Minor browser version (e.g., 0, 5, 02)
frames 1 if the browser supports frames
tables 1 if the browser supports tables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

cookies

1 if the browser supports cookies

backgroundsounds

1 if the browser supports background sounds with <embed> or <bgsound>

vbscript

1 if the browser supports VBScript

javascript

1 if the browser supports JavaScript

javaapplets

1 if the browser can run Java applets

activexcontrols

1 if the browser can run ActiveX controls

8.5.4. See Also

Documentation on get_browser() at http://www.php.net/get-browser.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.6. Building a Query String

8.6.1. Problem

You need to construct a link that includes name/value pairs in a query string.

8.6.2. Solution
Use the http_build_query() function, as in Example 8-14.

Building a query string

<?php

$vars = array(‘'name' => 'Oscar the Grouch',
'color' => 'green’,
‘favorite_punctuation' => '#");

$query_string = http_build_query($vars);

$url = '/muppet/select.php?' . $query_string;

?>

8.6.3. Discussion

The URL built in Example 8-14 is:

/muppet/select.php?name=0scar+the+Grouch&color=green&favorite_punctuation=%23

The query string has spaces encoded as +. Special characters such as # are hex encoded as %23 because the ASCII
value of # is 35, which is 23 in hexadecimal.

Although the encoding that http_build_query() does prevents any special characters in the variable names or values
from disrupting the constructed URL, you may have problems if your variable names begin with the names of HTML
entities. Consider this partial URL for retrieving information about a stereo system:

/stereo.php?speakers=12&cdplayer=52&=10

The HTML entity for ampersand (&) is ∓ so a browser may interpret that URL as:

/stereo.php?speakers=12&cdplayer=52&=10

To prevent embedded entities from corrupting your URLs, you have three choices. The first is to choose variable names
that can't be confused with entities, such as _amp instead of amp. The second is to convert characters with HTML entity
equivalents to those entities before printing out the URL. Use htmlentities():

$url = '/muppet/select.php?' . htmlentities($query_string);

The resulting URL is:

/muppet/select.php?name=0scar+the+Grouch&color=green&favorite_punctuation=%23

Your third choice is to change the argument separator from & to & by setting the configuration directive
arg_separator.input to ∓. Then, http_build_query() joins the different name=value pairs with &:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/muppet/select.php?name=0scar+the+Grouch&color=green&favorite_punctuation=%23

8.6.4. See Also

Documentation on http_build_query() at http://www.php.net/http_build_query and htmlentities() at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.7. Reading the Post Request Body

8.7.1. Problem

You want direct access to the body of a post request, not just the parsed data that PHP puts in $_POST for you. For
example, you want to handle an XML document that's been posted as part of a web services request.

8.7.2. Solution
Read from the php://input stream, as in Example 8-15.

Reading the post request body

<?php
$body = file_get_contents('php://input’);
?>

8.7.3. Discussion

The auto-global array $_POST is great when you just need access to submitted form variables, but it doesn't cut it when
you need raw, uncut access to the whole request body. That's where the php://input stream comes in. Read the entire
thing with file_get_contents(), or if you're expecting a large request body, read it in chunks with fread().

If the configuration directive always_populate_raw_post_data is on, then raw post data is also put into the global variable
$HTTP_RAW_POST_DATA. But to write maximally portable code, you should use php://input instead'that works even when
always_populate_raw_post_data is turned off.

8.7.4. See Also

Documentation on php://input at http://www.php.net/wrappers and on always_populate_raw_post_data at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.8. Generating HTML Tables with Alternating Row Styles

8.8.1. Problem

You want to display a table of information with alternating rows having different visual appearance. For example, you
want to have even-numbered rows in a table have a white background and odd-numbered rows have a gray
background.

8.8.2. Solution

Switch back and forth between two CSS styles as you generate the HTML for the table. Example 8-16 uses this
technique with data retrieved from a database.

Generating an HTML table with alternating row styles

<style type="text/css">
.even-row {
background: white;

.odd-row {
background: gray;

}

</style>

<table>

<tr><th>Quantity</th><th>Ingredient</th></tr>

<?php

$styles = array('even-row','odd-row');

$db = new PDO('sqlite:altrow.db');

foreach ($db->query('SELECT quantity, ingredient FROM ingredients') as $i => $row) { ?>

<tr class="<?php echo $styles[$i % 2]; ?>">
<td><?php echo htmlentities($row['quantity']) ?></td>
<td><?php echo htmlentities($row['ingredient']) ?></td></tr>

<?php } ?>

</table>

8.8.3. Discussion

The key to the concise code in Example 8-16 is the array of CSS class names in $styles and the use of %, PHP's
"remainder" operator. The remainder operator returns the remainder after dividing two numbers. The remainder when
dividing something by two (in this case, the row number in the result set's$i) is either 0 or 1. This provides a handy way
to alternate between the first and second elements of the $styles array.

8.8.4. See Also

Documentation on PHP's arithmetic operators at http://www.php.net/language.operators.arithmetic.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 8.9. Using HTTP Basic or Digest Authentication

8.9.1. Problem

You want to use PHP to protect parts of your web site with passwords. Instead of storing the passwords in an external
file and letting the web server handle the authentication, you want the password verification logic to be in a PHP
program.

8.9.2. Solution

The $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] global variables contain the username and password supplied
by the user, if any. To deny access to a page, send a WWW-Authenticate header identifying the authentication realm as
part of a response with status code 401, as shown in Example 8-17.

Enforcing Basic authentication

<?php

header("WWW-Authenticate: Basic realm="My Website™");
header('HTTP/1.0 401 Unauthorized');

echo "You need to enter a valid username and password.";
exit();

?>

8.9.3. Discussion

When a browser sees a 401 header, it pops up a dialog box for a username and password. Those authentication
credentials (the username and password), if accepted by the server, are associated with the realm in the www-
Authenticate header. Code that checks authentication credentials needs to be executed before any output is sent to the
browser, since it might send headers. For example, you can use a function such as pc_validate(), shown in Example 8-
18.

pc_validate()

<?php
function pc_validate($user,$pass) {
/* replace with appropriate username and password checking,
such as checking a database */
$users = array(‘david' => 'fadj&32',
'adam' => '8HEj838'");

if (isset($users[$user]) && ($users[$user] == $pass)) {
return true;

}else {
return false;

b

b

?>

Example 8-19 shows how to use pc_validate().

Using a validation function

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
if (! pc_validate($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW'])) {
header("WWW-Authenticate: Basic realm="My Website");
header("HTTP/1.0 401 Unauthorized');
echo "You need to enter a valid username and password.";
exit;
}

?>

Replace the contents of the pc_validate() function with appropriate logic to determine if a user entered the correct
password. You can also change the realm string from "My Website" and the message that gets printed if a user hits
"cancel" in her browser's authentication box from "You need to enter a valid username and password."

PHP 5.1.0 and later support Digest authentication in addition to Basic authentication. With Basic authentication,
usernames and passwords are sent in the clear on the network, just minimally obscured by Base64 encoding. With
Digest authentication, however, the password itself is never sent from the browser to the server. Instead, only a hash
of the password with some other values is sent. This reduces the possibility that the network traffic could be captured
and replayed by an attacker. The increased security provided by Digest authentication means that the code to
implement is more complicated than just a simple password comparison. Example 8-20 provides functions that compute
digest authentication as specified in RFC 2617.

Using Digest authentication

<?php

/* replace with appropriate username and password checking,
such as checking a database */
$users = array('david' => 'fadj&32’,
'‘adam' => '8HEj838');
$realm = 'My website';

$username = pc_validate_digest($realm, $users);

// Execution never reaches this point if invalid auth data is provided
print "Hello, " . htmlentities($username);

function pc_validate_digest($realm, $users) {
// Fail if no digest has been provided by the client
if (! isset($_SERVER['PHP_AUTH_DIGEST"])) {
pc_send_digest($realm);

b
// Fail if digest can't be parsed
$username = pc_parse_digest($_SERVER['PHP_AUTH_DIGEST'], $realm, $users);
if ($username === false) {
pc_send_digest($realm);

// Valid username was specified in the digest
return $username;

¥

function pc_send_digest($realm) {
header("HTTP/1.0 401 Unauthorized');
$nonce = md5(uniqid());
$opaque = md5($realm);
header("WWW-Authenticate: Digest realm=\"$realm\" qop=\"auth\" ".
"nonce=\"$nonce\" opaque=\"$opaque\"");
echo "You need to enter a valid username and password.";
exit;

¥

function pc_parse_digest($digest, $realm, $users) {
// We need to find the following values in the digest header:
// username, uri, qop, cnonce, nc, and response
$digest_info = array();
foreach (array(‘'username’,'uri','nonce’,'cnonce’,'response') as $part) {
// Delimiter can either be ' or " or nothing (for qop and nc)
if (preg_match('/".$part.'=([\""1?)(.*?)\1/', $digest, $match)) {
// The part was found, save it for calculation
$digest_info[$part] = $match[2];
Yelse {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// If the part is missing, the digest can't be validated;
return false;
b
b
// Make sure the right qop has been provided
if (preg_match('/qop=auth(,|$)/', $digest)) {
$digest_info['qop'] = 'auth’;
}else {
return false;

// Make sure a valid nonce count has been provided

if (preg_match('/nc=([0-9a-f{8})(,|$)/", $digest, $match)) {
$digest_info['nc'] = $match[1];

}else {
return false;

}

// Now that all the necessary values have been slurped out of the

// digest header, do the algorithmic computations necessary to

// make sure that the right information was provided.

/1

// These calculations are described in sections 3.2.2, 3.2.2.1,

// and 3.2.2.2 of RFC 2617.

// Algorithm is MD5

$A1 = $digest_info['username'] . ":" . $realm . ":' . $users[$digest_info['username']];
// qop is 'auth’

$A2 = $_SERVER['REQUEST_METHOD'] . ":' . $digest_info['uri'];
$request_digest = md5(implode(':', array(md5($A1), $digest_info['nonce'],

$digest_info['nc'],
$digest_info['cnonce'], $digest_info['qop'], md5($A2))));

// Did what was sent match what we computed?
if ($request_digest = $digest_info['response']) {
return false;

b

// Everything's OK, return the username
return $digest_info['username'];

If you're not using PHP 5.1.0 or later but are using PHP as an Apache module, you can use Digest authentication with
code such as the HTTPDigest class by Paul James, which is available at

http://www.peej.co.uk/projects/phphttpdigest.html.

Neither HTTP Basic nor Digest authentication can be used if you're running PHP as a CGI program. If you can't run PHP
as a server module, you can use cookie authentication, discussed in Recipe 8.10.

Another issue with HTTP authentication is that it provides no simple way for a user to log out, other than to exit his
browser. The PHP online manual has a few suggestions for log out methods that work with varying degrees of success

with different server and browser combinations at http://www.php.net/features.http-auth.

There is a straightforward way, however, to force a user to log out after a fixed time interval: include a time calculation
in the realm string. Browsers use the same username and password combination every time they're asked for
credentials in the same realm. By changing the realm name, the browser is forced to ask the user for new credentials.
Example 8-21 uses Basic authentication and forces a log out every night at midnight.

Forcing logout with Basic authentication

<?php
if (! pc_validate($_SERVER['PHP_AUTH_USER'],$_SERVER['PHP_AUTH_PW'])) {
$realm = 'My Website for '.date("Y-m-d");
header("WWW-Authenticate: Basic realm="".$realm."");
header("HTTP/1.0 401 Unauthorized');
echo "You need to enter a valid username and password.";
exit;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can also have a user-specific timeout without changing the realm name by storing the time that a user logs in or
accesses a protected page. The pc_validate2() function in Example 9-10 stores login time in a database and forces a

logout if it's been more than 15 minutes since the user last requested a protected page.

pc_validate2()

<?php
function pc_validate2($user,$pass) {
$safe_user = strtr(addslashes($user),array('_' => "_', '%' => "\%"));
$r = mysql_query("SELECT password,last_access
FROM users WHERE user LIKE '$safe_user");

if (mysqgl_numrows($r) == 1) {
$ob = mysql_fetch_object($r);
if ($ob->password == $pass) {
$now = time();
if (($now - $ob->last_access) > (15 * 60)) {
return false;
}else {
// update the last access time
mysql_query("UPDATE users SET last_access = NOW()
WHERE user LIKE '$safe_user™);
return true;

}

¥
}else {

return false;
}

¥

8.9.4. See Also

Recipe 8.10; the HTTP Authentication section of the PHP online manual at http://www.php.net/features.http-auth.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.10. Using Cookie Authentication

8.10.1. Problem

You want more control over the user login procedure, such as presenting your own login form.

8.10.2. Solution

Store authentication status in a cookie or as part of a session. When a user logs in successfully, put her username in a
cookie. Also include a hash of the username and a secret word so a user can't just make up an authentication cookie

with a username in it, as shown in Example 8-23.

Using cookie authentication

<?php
$secret_word = 'if i ate spinach’;
if (pc_validate($_POST['username'],$_POST['password'])) {
setcookie('login’,
$_POST['username'].’,".md5($_POST['username'].$secret_word));

8.10.3. Discussion
When using cookie authentication, you have to display your own login form, such as the form in Example 8-24.

Sample cookie authentication login form

<form method="POST" action="login.php">

Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Log In">

</form>

You can use the same pc_validate() function from Example 8-18 to verify the username and password. The only
difference is that you pass it $_POST['username'] and $_POST['password'] as the credentials instead of $_SERVER['PHP_AUTH_USER']
and $_SERVER['PHP_AUTH_PW']. If the password checks out, send back a cookie that contains a username and a hash of the
username, and a secret word. The hash prevents a user from faking a login just by sending a cookie with a username in
it.

Once the user has logged in, a page just needs to verify that a valid login cookie was sent in order to do special things
for that logged-in user. Example 8-25 shows one way to do this.

Verifying a login cookie

<?php
unset($username);
if ($_COOKIE['login']) {
list($c_username,$cookie_hash) = split(',',$_COOKIE['login']);
if (md5($c_username.$secret_word) == $cookie_hash) {
$username = $c_username;
Yelse {
print "You have sent a bad cookie.";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

b
b

if ($username) {

print "Welcome, $username.";
}else {

print "Welcome, anonymous user.";
}

?>

If you use the built-in session support, you can add the username and hash to the session and avoid sending a separate
cookie. When someone logs in, set an additional variable in the session instead of sending a cookie, as shown in

Example 8-26.

Storing login info in a session

<?php
if (pc_validate($_POST['username'],$_POST['password'])) {
$_SESSION['login'] =
$_POST['username'].’,".md5($_POST['username'].$secret_word));

The verification code, shown in Example 8-27, is almost the same; it just uses $_SESSION instead of $_COOKIE.

Verifying session info

<?php
unset($username);
if (isset($_SESSION['login'])) {
list($c_username,$cookie_hash) = explode(',',$_SESSION['login']);
if (md5($c_username.$secret_word) == $cookie_hash) {
$username = $c_username;
}else {
print "You have tampered with your session.";
}
¥

?>

Using cookie or session authentication instead of HTTP Basic authentication makes it much easier for users to log out:
you just delete their login cookie or remove the login variable from their session. Another advantage of storing
authentication information in a session is that you can link users' browsing activities while logged in to their browsing
activities before they log in or after they log out. With HTTP Basic authentication, you have no way of tying the requests
with a username to the requests that the same user made before they supplied a username. Looking for requests from
the same IP address is error prone, especially if the user is behind a firewall or proxy server. If you are using sessions,
you can modify the login procedure to log the connection between session ID and username using code such as that in

Example 8-28.

Connecting logged-out and logged-in usage

<?php
if (pc_validate($_POST['username'],$_POST['password'])) {
$_SESSION['login'] =
$_POST['username'].!,".md5($_POST['username'].$secret_word));
error_log('Session id ".session_id()." log in as '.$_REQUEST['username']);

¥

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Example 8-28 writes a message to the error log, but it could just as easily record the information in a database that you
could use in your analysis of site usage and traffic.

One danger of using session IDs is that sessions are hijackable. If Alice guesses Bob's session ID, she can masquerade
as Bob to the web server. The session module has two optional configuration directives that help you make session IDs
harder to guess. The session.entropy_file directive contains a path to a device or file that generates randomness, such as
/dev/random or /dev/urandom. The session.entropy_length directive holds the number of bytes to be read from the entropy
file when creating session IDs.

No matter how hard session IDs are to guess, they can also be stolen if they are sent in clear text between your server
and a user's browser. HTTP Basic authentication also has this problem. Use SSL to guard against network sniffing, as
described in Recipe 18.13.

8.10.4. See Also

Recipe 8.9; Recipe 8.9 discusses logging errors; Recipe 20.9 discusses verifying data with hashes; documentation on
setcookie() at http://www.php.net/setcookie and on md5() at http://www.php.net/md5.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.11. Flushing Output to the Browser

8.11.1. Problem

You want to force output to be sent to the browser. For example, before doing a slow database query, you want to give
the user a status update.

8.11.2. Solution
Use flush(), as in Example 8-29.

Flushing output to the browser

<?php
print 'Finding identical snowflakes...";
flush();
$sth = $dbh->query(
'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');
?>

8.11.3. Discussion

The flush() function sends all output that PHP has internally buffered to the web server, but the web server may have
internal buffering of its own that delays when the data reaches the browser. Additionally, some browsers don't display
data immediately upon receiving it, and some versions of Internet Explorer don't display a page until it has received at
least 256 bytes. To force IE to display content, print blank spaces at the beginning of the page, as shown in Example 8-
30.

Forcing IE to display content immediately

<?php
print str_repeat(' ',300);
print 'Finding identical snowflakes...';
flush();
$sth = $dbh->query(
'SELECT shape,COUNT(*) AS ¢ FROM snowflakes GROUP BY shape HAVING c > 1');
?>

8.11.4. See Also

Recipe 23.13; documentation on flush() at http://www.php.net/flush.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.12. Buffering Output to the Browser

8.12.1. Problem

You want to start generating output before you're finished sending headers or cookies.

8.12.2. Solution

Call ob_start() at the top of your page and ob_end_flush() at the bottom. You can then intermix commands that
generate output and commands that send headers. The output won't be sent until ob_end_flush() is called. This is

demonstrated in Example 8-31.

Buffering output

<?php ob_start(); ?>

I haven't decided if I want to send a cookie yet.
<?php setcookie('heron','great blue'); ?>

Yes, sending that cookie was the right decision.

<?php ob_end_flush(); ?>

8.12.3. Discussion

You can pass ob_start() the name of a callback function to process the output buffer with that function. This is useful
for postprocessing all the content in a page, such as hiding email addresses from address-harvesting robots. Such a

callback is shown in Example 8-32.

Using a callback with ob_start()

<?php
function mangle_email($s) {
return preg_replace('/([*@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',

'<$1@...>",
$s);
¥
ob_start('mangle_email');
?>

I would not like spam sent to ronald@example.com!

<?php ob_end_flush(); ?>

The mangle_email() function transforms the output to:

I would not like spam sent to <ronald@...>!

The output_buffering configuration directive turns output buffering on for all pages:

output_buffering = On

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Similarly, output_handler sets an output buffer processing callback to be used on all pages:

output_handler=mangle_email

Setting an output_handler automatically sets output_buffering to on.

8.12.4. See Also

Documentation on ob_start() at http://www.php.net/ob-start, ob_end_flush() at http://www.php.net/ob-end-flush,
and output buffering at http://www.php.net/outcontrol.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 8.13. Compressing Web Output

8.13.1. Problem

You want to send compressed content to browsers that support automatic decompression.

8.13.2. Solution

Add this setting to your php.ini file:

zlib.output_compression=1

8.13.3. Discussion

Browsers tell the server that they can accept compressed responses with the Accept-Encoding header. If a browser sends
Accept-Encoding: gzip or Accept-Encoding: deflate, and PHP is built with the z/ib extension, the zlib.output_compression configuration
directive tells PHP to compress the output with the appropriate algorithm before sending it back to the browser. The
browser uncompresses the data before displaying it.

You can adjust the compression level with the zlib.output_compression_level configuration directive:

; minimal compression
zlib.output_compression_level=1

; maximal compression
zlib.output_compression_level=9

At higher compression levels, less data needs to be sent from the server to the browser, but more server CPU time
must be used to compress the data.

8.13.4. See Also

Documentation on the z/ib extension at http://www.php.net/zlib.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 8.14. Reading Environment Variables

8.14.1. Problem

You want to get the value of an environment variable.

8.14.2. Solution
Read the value from the $_ENV auto-global array as shown in Example 8-33.

Reading an environment variable

<?php
$name = $_ENV['USER'];
?>

8.14.3. Discussion

Environment variables are named values associated with a process. For instance, in Unix, you can check the value of
$_ENV['HOME'] to find the home directory of a user, as shown in Example 8-37.

Reading another environment variable

<?php
print $_ENV['HOME']; // user's home directory
?>

Early versions of PHP automatically created PHP variables for all environment variables by default. As of 4.1.0, php.ini-
recommended disables this because of speed considerations; however, php.ini-dist continues to enable $_ENV for
backward compatibility.

The $_ENV array is created only if the value of the variables_order configuration directive contains E. If $_ENV isn't available,
use getenv() to retrieve an environment variable, as shown in Example 8-35.

Using getenv()

<?php
$path = getenv('PATH');
?>

The getenv() function isn't available if you're running PHP as an ISAPI module.

8.14.4. See Also

Recipe 8.15 on setting environment variables; documentation on getenv() at http://www.php.net/getenv; information
on environment variables in PHP at http://www.php.net/reserved.variables.php#reserved.variables.environment.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.15. Setting Environment Variables

8.15.1. Problem

You want to set an environment variable in a script or in your server configuration. Setting environment variables in
your server configuration on a host-by-host basis allows you to configure virtual hosts differently.

8.15.2. Solution
To set an environment variable in a script, use putenv(), as in Example 8-36.

Setting an environment variable

<?php
putenv('ORACLE_SID=0RACLE"); // configure oci extension
?>

To set an environment variable in your Apache httpd.conf file, use SetEnv as shown in Example 8-37. Note that variables
set this way show up in the PHP auto-global array $_SERVER, not $_ENV.

Setting an environment variable in Apache configuration

<?php
SetEnv DATABASE_PASSWORD password
?>

8.15.3. Discussion

An advantage of setting variables in httpd.conf is that you can set more restrictive read permissions on it than on your
PHP scripts. Since PHP files need to be readable by the web server process, this generally allows other users on the
system to view them. By storing passwords in httpd.conf, you can avoid placing a password in a publicly available file.
Also, if you have multiple hostnames that map to the same document root, you can configure your scripts to behave
differently based on the hostnames.

For example, you could have members.example.com and guests.example.com. The members version requires
authentication and allows users additional access. The guests version provides a restricted set of options, but without
authentication. Example 8-38 shows how this could work.

Adjusting behavior based on an environment variable

<?php
$version = $_SERVER['SITE_VERSION'];

// redirect to http://guest.example.com, if user fails to sign in correctly
if (‘'members' == $version) {
if (lauthenticate_user($_POST['username'], $_POST['password'])) {
header('Location: http://guest.example.com/");
exit;

b

include_once "${version}_header"; // load custom header

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

8.15.4. See Also

Recipe 8.14 on getting the values of environment variables; documentation on putenv() at

http://www.php.net/putenv; information on setting environment variables in Apache at
http://httpd.apache.org/docs/mod/mod_env.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.16. Communicating Within Apache

8.16.1. Problem

You want to communicate from PHP to other parts of the Apache request process. This includes setting variables in the
access_log.

8.16.2. Solution
Use apache_note() as shown in Example 8-39.

Communicating within Apache

<?php
// get value
$session = apache_note('session");

// set value
apache_note('session’, $session);
?>

8.16.3. Discussion

When Apache processes a request from a client, it goes through a series of steps; PHP plays only one part in the entire
chain. Apache also remaps URLs, authenticates users, logs requests, and more. While processing a request, each
handler has access to a set of key/value pairs called the notes table. The apache_note() function provides access to
the notes table to retrieve information set by handlers earlier on in the process and leave information for handlers later
on.

For example, if you use the session module to track users and preserve variables across requests, you can integrate
this with your logfile analysis so you can determine the average number of page views per user. Use apache_note() in
combination with the logging module to write the session ID directly to the access_log for each request. First, add the
session ID to the notes table with the code in Example 8-40.

Adding the session ID to the notes table

<?php

// retrieve the session ID and add it to Apache's notes table
apache_note('session_id', session_id());

?>

Then, modify your httpd.conf file to add the string %{session_id}n to your LogFormat. The trailing n tells Apache to use a
variable stored in its notes table by another module.

If PHP is built with the --enable-memory-limit configuration option, it stores the peak memory usage of each request in a
note called mod_php_memory_usage. Add the memory usage information to a LogFormat with %{mod_php_memory_usage}n.

8.16.4. See Also

Documentation on apache_note() at http://www.php.net/apache-note; information on logging in Apache at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 8.17. Program: Web Site Account (De)activator

When users sign up for your web site, it's helpful to know that they've provided you with a correct email address. To
validate the email address they provide, send an email to the address they supply when they sign up. If they don't visit
a special URL included in the email after a few days, deactivate their account.

This system has three parts. The first is the notify-user.php program that sends an email to a new user and asks that
user to visit a verification URL, shown in Example 8-42. The second, shown in Example 8-43, is the verify-user.php
page that handles the verification URL and marks users as valid. The third is the delete-user.php program that
deactivates accounts of users who don't visit the verification URL after a certain amount of time. This program is shown

in Example 8-44.
Example 8-41 contains the SQL to create the table in which the user information is stored.

SQL for user verification table

CREATE TABLE users (

email VARCHAR(255) NOT NULL,
created_on DATETIME NOT NULL,
verify_string VARCHAR(16) NOT NULL,
verified TINYINT UNSIGNED

)

What's in Example 8-41 is the minimum amount of information necessary for user verification. You probably want to
store more information than this about your users. When creating a user's account, save information to the users table,
and send the user an email telling him how to verify his account. The code in Example 8-42 assumes that the user's
email address is stored in the variable $email.

notify-user.php

<?php
// Connect to the database
$db = new PDO('sqlite:users.db");

$email = 'david’;

// generate verify_string

$verify_string = ";

for ($i = 0; $i < 16; $i++) {
$verify_string .= chr(mt_rand(32,126));

}

// insert user into database
// This uses an SQLite-specific datetime() function
$sth = $db->prepare("INSERT INTO users " .
"(email, created_on, verify_string, verified)
"VALUES (?, datetime('now'), ?, 0)");
$sth->execute(array($email, $verify_string));

"

$verify_string = urlencode($verify_string);
$safe_email = urlencode($email);

$verify_url = "http://www.example.com/verify-user.php";

$mail_body=<<<_MAIL_
To $email:

Please click on the following link to verify your account creation:

$verify_url?email=$safe_email&verify_string=$verify_string

If you do not verify your account in the next seven days, it will be

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

deleted.
MAIL;

// mail($email,"User Verification",$mail_body);
print "$email, $mail_body";

The verification page that users are directed to when they follow the link in the email message updates the users table if

the proper information has been provided, as shown in Example 8-43.

verify-user.php

<?php
// Connect to the database
$db = new PDO('sqlite:users.db");

$sth = $db->prepare('UPDATE users SET verified = 1 WHERE email = ? ".
' AND verify_string = ? AND verified = 0');

$res = $sth->execute(array($_GET['email'], $_GET['verify_string']));
var_dump($res, $sth->rowCount());
if (! $res) {
print "Please try again later due to a database error.";
}else {
if ($sth->rowCount() == 1) {
print "Thank you, your account is verified.";
}else {
print "Sorry, you could not be verified.";

¥

?>

The user's verification status is updated only if the email address and verify string provided match a row in the
database that has not already been verified. The last step is the short program that deletes unverified users after the

appropriate interval, as shown in Example 8-44.

delete-user.php

<?php
// Connect to the database
$db = new PDO('sqlite:users.db");

$window = '-7 days';
$sth = $db->prepare("DELETE FROM users WHERE verified = 0 AND ".

"created_on < datetime('now’,?)");
$res = $sth->execute(array($window));

if ($res) {
print "Deactivated " . $sth->rowCount() . " users.\n";
}else {
print "Can't delete users.\n";
}
?>

Run the program in Example 8-44 once a day to scrub the users table of users that haven't been verified. If you want to
change how long users have to verify themselves, adjust the value of $window, and update the text of the email message

sent to users to reflect the new value.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 8.18. Program: Tiny Wiki

The program in Example 8-44 puts together various concepts discussed in this chapter and implements a complete Wiki
system'a web site whose pages are all user-editable. It follows a structure common among simple PHP programs of its
type. The first part of the code defines various configuration settings. Then comes an if/else section that decides what to
do (display a page, save page edits, etc.) based on the values of submitted form or URL variables. The remainder of the
program consists of the functions invoked from that if/else section'functions to print the page header and footer, load
saved page contents, and display a page-editing form.

The tiny Wiki relies on an external library, PHP Markdown by Michel Fortin, to handle translating from the handy and

compact Markdown syntax to HTML. You can get PHP Markdown from http://www.michelf.com/projects/php-
markdown/.

Tiny Wiki

<?php

// Use the Markdown function from

// http://www.michelf.com/projects/php-markdown/
// for Wiki-like text markup

require_once 'markdown.php';

// The directory where the Wiki pages will be stored
// Make sure the web server user can write to it
define('PAGEDIR',dirname(__FILE__) . '/pages');

// Get page name, or use default
$page = isset($_GET['page']) ? $_GET['page'] : 'Home';

// Figure out what to do: display an edit form, save an
// edit form, or display a page

// Display an edit form that's been asked for
if (isset($_GET['edit'])) {
pageHeader($page);
edit($page);
pageFooter($page, false);

// Save a submitted edit form
else if (isset($_POST['edit'])) {
file_put_contents(pageToFile($_POST['page']), $_POST['contents']);
// Redirect to the regular view of the just-edited page
header('Location: http://'.$_SERVER['HTTP_HOST'] . $_SERVER['SCRIPT_NAME'] .
'?page=".urlencode($_POST['page']));
exit();
}
// Display a page
else {
pageHeader($page);
// If the page exists, display it and the footer with an "Edit" link
if (is_readable(pageToFile($page))) {
// Get the contents of the page from the file it's saved in
$text = file_get_contents(pageToFile($page));
// Convert Markdown syntax (using Markdown() from markdown.php)
$text = Markdown($text);
// Make bare [links] link to other wiki pages
$text = wikiLinks($text);
// Display the page
echo $text;
// Display the footer
pageFooter($page, true);

}
// If the page doesn't exist, display an edit form
// and the footer without an "Edit" link
else {
edit($page, true);
pageFooter($page, false);

}

// The page header -- pretty simple, just the title and the usual HTML

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// pleasantries

function pageheader($page) { ?>

<html>

<head>

<title>Wiki: <?php echo htmlentities($page) ?></title>
</head>

<body>

<h1><?php echo htmlentities($page) ?></h1>
<hr/>

<?php

¥

// The page footer -- a "last modified" timestamp, an optional
// "Edit" link, and a link back to the front page of the Wiki
function pageFooter($page, $displayEditLink) {
$timestamp = @filemtime(pageToFile($page));
if ($timestamp) {
$lastModified = strftime('%c', $timestamp);
}else {
$lastModified = 'Never';

b
if ($displayEditLink) {
$editLink = ' - Edit";
}else {
$editlLink = ";
}
?>
<hr/>

Last Modified: <?php echo $lastModified ?>

<?php echo $editLink ?> - <a href="<?php echo $_SERVER['SCRIPT_NAME'] ?>">Home
</body>

</html>

<?php

3

// Display an edit form. If the page already exists, include its current
// contents in the form
function edit($page, $isNew = false) {
if ($isNew) {
$contents = ";
?>
<p>This page doesn't exist yet. To create it, enter its contents below
and click the Save button.</p>
<?php } else {
$contents = file_get_contents(pageToFile($page));
¥

?>

<form method="post' action="<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>'>
<input type="'hidden' name='edit' value="true'/>

<input type="hidden' name="page' value='<?php echo htmlentities($page) ?>'/>
<textarea name='contents' rows="20" cols='60">

<?php echo htmlentities($contents) ?></textarea>

<input type="'submit' value='Save'/>

</form>

<?php

}

// Convert a submitted page to a filename. Using md5() prevents naughty
// characters in $page from causing security problems
function pageToFile($page) {
return PAGEDIR.'/'.md5($page);
}

// Turn text such as [something] in a page into an HTML link to the
// Wiki page "something"
function wikiLinks($page) {
if (preg_match_all('/AL([AM\]T+2)\]/', $page, $matches, PREG_SET_ORDER)) {
foreach ($matches as $match) {
$page = str_replace($match[0], '<a href="".$_SERVER['SCRIPT_NAME'].
"?page=".urlencode($match[1])."">".htmlentities($match[1]).'', $page);

return $page;

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & Prcy |
Chapter 9. Form

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

9.0. Introduction

The genius of PHP is its seamless integration of form variables into your programs. It makes web programming smooth
and simple, speeding the cycle from web form to PHP code to HTML output.

With that convenience, however, comes the responsibility to make sure that the user-provided information that flows so
easily into your program contains appropriate content. External input can never be trusted, so it's imperative always to
validate all incoming data. Recipes 9.2 through 9.9 show how to validate common kinds of information as well as
providing general guidelines on arbitrary form validation you might need to do. Recipe 9.10 discusses escaping HTML
entities to allow the safe display of user-entered data. Recipe 9.14 covers how to process files uploaded by a user.

HTTP is a "stateless" protocol'it has no built-in mechanism that helps you to save information from one page so you can
access it in other pages. Recipes 9.11, 9.12, and 9.13 all show ways to work around the fundamental problem of
figuring out which user is making which requests to your web server.

Whenever PHP processes a page, it checks for URL and form variables, uploaded files, applicable cookies, and web
server and environment variables. These are then directly accessible in the following arrays: $_GET, $_POST, $_FILES,
$_COOKIE, $_SERVER, and $_ENV. They hold, respectively, all variables set in the query string, in the body of a post request,
by uploaded files, by cookies, by the web server, and by the environment in which the web server is running. There's
also $_REQUEST, which is one giant array that contains the values from the other six arrays.

When placing elements inside of $_REQUEST, if two arrays both have a key with the same name, PHP breaks the tie by
relying on the variables_order configuration directive. By default, variables_order is EGPCS (or GPCS, if you're using the php.ini-
recommended configuration file). So PHP first adds environment variables to $_REQUEST and then adds query string, post,
cookie, and web server variables to the array, in this order. For instance, since C comes after P in the default order, a
cookie named username overwrites a posted variable named username. Note that the GPCS value from php.ini-
recommended means that the $_ENV array doesn't get populated with environment variables.

While $_REQUEST can be convenient, it's usually a better idea to look in the more detailed array directly. That way, you
know exactly what you're getting and don't have to be concerned that a change in variables_order affects the behavior of
your program.

All of these arrays are auto-global. That means global inside of a function or class'they're always in scope.

Prior to PHP 4.1, these auto-global variables didn't exist. Instead, there were regular arrays named $HTTP_COOKIE_VARS,
$HTTP_ENV_VARS, $HTTP_GET_VARS, $HTTP_POST_VARS, $HTTP_POST_FILES, and $HTTP_SERVER_VARS. These arrays are still available
for legacy reasons, but the newer arrays are easier to work with. These older arrays are populated only if the TRack_vars
configuration directive is on, but as of PHP 4.0.3, this feature is always enabled.

Finally, if the register_globals configuration directive is on, all these variables are also available as variables in the global
namespace. So $_GET['password'] is also just $password. While convenient, this introduces major security problems because
malicious users can easily set variables from the outside and overwrite trusted internal variables. Starting with PHP 4.2,
register_globals defaults to off.

Example 9-1 is a basic form. The form asks the user to enter his first name. When the form is submitted the
information is sent to hello.php.

Basic HTML form

<form action="hello.php" method="post">
What is your first name?

<input type="text" name="first_name" />
<input type="submit" value="Say Hello" />
</form>

The name of the text input element inside the form is first_name. Also, the method of the form is post. This means that when
the form is submitted, $_POST['first_name'] will hold whatever string the user typed in. (It could also be empty, of course, if
he didn't type anything.)

Example 9-2 shows the contents of hello.php, which will display information from the form.

Basic PHP form processing

<?php
echo 'Hello, ' . $_POST['first_name'] . "!";
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you type Twinkle into the form in Example 9-1, Example 9-2 prints:

Hello, Twinkle!

Example 9-2 is so basic that it omits two important steps that should be in all PHP form-processing applications: data
validation (to make sure what's typed into the form is acceptable to your program), and output escaping (to make sure
that malicious users can't use your web site to attack others). Recipes 9.2 through 9.9 discuss data validation and
Recipe 9.10 discusses output escaping.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.1. Processing Form Input

9.1.1. Problem

You want to use the same HTML page to emit a form and then process the data entered into it. In other words, you're
trying to avoid a proliferation of pages that each handle different steps in a transaction.

9.1.2. Solution

Use the $_SERVER['REQUEST_METHOD'] variable to determine whether the request was submitted with the get or post method.
If the get method was used, print the form. If the post method was used, process the form. Example 9-3 combines the
form from Example 9-1 and the code from Example 9-2 into one program, deciding what to do based on
$_SERVER['REQUEST_METHOD'].

Deciding what to do based on request method

<?php if ($_SERVER['REQUEST_METHOD'] == 'GET") { ?>
<form action="<?php echo $_SERVER['SCRIPT_NAME'] ?>" method="post">
What is your first name?
<input type="text" name="first_name" />
<input type="submit" value="Say Hello" />
</form>
<?php } else {
echo 'Hello, ' . $_POST(['first_name'] . '!";
}

>

9.1.3. Discussion

Back in the hazy past, in the early days of the Web, when our ancestors scratched out forms, they usually made two
files: a static HTML page with the form and a script that processed the form and returned a dynamically generated
response to the user. This was a little unwieldy because form.html/ led to form.cgi and, if you changed one page, you
needed to also remember to edit the other, or your script might break.

Usually, forms are easier to maintain when all parts live in the same file and context dictates which sections to display.
The get method (what your browser uses when you just type in a URL or click on a link) means "Hey, server, give me
something you've got." The post method (what your browser uses when you submit a form whose method attribute is set
to post) means "Hey, server, here's some data that changes something." So the characteristic response to a get request
is the HTML form, and the response to the post request is the results of processing that form. In Example 9-3, the
"processing" is extremely simple'just printing a greeting. In more typical applications, the processing is more
complicated'saving information to a database or sending an email message.

Note that although the XHTML specification requires that the method attribute of a <form/> element be lowercase (get or
post), the HTTP specification requires that a web browser use all uppercase (GET or POST) when sending the request
method to the server. The value in $_SERVER['REQUEST_METHOD'] is whatever the browser sends, so in practice it will
always be uppercase.

One other technique also makes pages easier to maintain: don't hardcode the path to your page directly into the form
action. This makes it impossible to rename or relocate your page without also editing it. Instead, use the
$_SERVER['SCRIPT_NAME'] variable as the form action. This is set up by PHP on each request to contain the filename
(relative to the document root) of the current script.

9.1.4. See Also

Recipe 9.11 for handling multipage forms.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | MEXT # |
Recipe 9.2. Validating Form Input: Required Fields

9.2.1. Problem

You want to make sure a value has been supplied for a form element. For example, you want to make sure a text box
hasn't been left blank.

9.2.2. Solution
Use strlen() to test the element in $_GET or $_POST, as in Example 9-4.

Testing a required field

<?php
if (! strlen($_POST['flavor'])) {
print "You must enter your favorite ice cream flavor.’;

b

?>

9.2.3. Discussion

Different types of form elements cause different types of behavior in $_GET and $_POST when left empty. Blank text
boxes, text areas, and file-upload boxes result in elements whose value is a zero-length string. Unchecked checkboxes
and radio buttons don't produce any elements in $_GET or $_POST. Browsers generally force a selection in a drop-down
menu that only allows one choice, but drop-down menus that allow multiple choices and have no choices selected act
like checkboxes'they don't produce any elements in $_GET or $_POST.

What's worse, requests don't have to come from web browsers. Your PHP program may receive a request from another
program, a curious hacker constructing requests by hand, or a malicious attacker building requests in an attempt to find
holes in your system. To make your code as robust as possible, always check that a particular element exists in $_GET or
$_POST before applying other validation strategies to the element. Additionally, if the validation strategy assumes that
the element is an array of values (as in Example 9-15), ensure that the value really is an array by using is_array().

Example 9-5 uses isset(), strlen(), and is_array() for maximally strict form validation.

Strict form validation

<?php

// Making sure $_POST['flavor'] exists before checking its length

if (! (isset($_POST['flavor']) && strlen($_POST['flavor']))) {
print "You must enter your favorite ice cream flavor.’;

¥

// $_POST['color'] is optional, but if it's supplied, it must be

// more than 5 characters

if (isset($_POST['color']) && (strlen($_POST['color']) <=5)) {
print 'Color must be more than 5 characters.';

¥

// Making sure $_POST['choices'] exists and is an array
if (! (isset($_POST['choices']) && is_array($_POST['choices']))) {
print 'You must select some choices.';

¥

?>

In a moment of weakness, you may be tempted to use empty() instead of strlen() to test if a value has been entered
in a text box. Succumbing to such weakness leads to problems since the one character string 0 is false according to the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

rules of PHP's boolean calculations. That means if someone types 0 into the children text box, Eausing $_POST['chiI&ren‘] to
contain 0, empty($_POST['children']) is TRue'which, from a form validation perspective, is wrong.

9.2.4. See Also

Recipe 9.5 for information about validating drop-down menus, Recipe 9.6 for information about validating radio buttons,
and Recipe 9.7 for information about validating checkboxes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 9.3. Validating Form Input: Numbers

9.3.1. Problem

You want to make sure a number is entered in a form input box. For example, you don't want someone to be able to
say that her age is "old enough" or "tangerine," but instead want values such as 13 or 56.

9.3.2. Solution

If you're looking for an integer larger than or equal to zero, use ctype_digit(), as shown in Example 9-12.

Validating a number with ctype_digit()

<?php
if (! ctype_digit($_POST['age'])) {
print 'Your age must be a number bigger than or equal to zero.";

b

?>

If you're looking for a positive or negative integer, compare the submitted value to what you get when casting it to an
integer and then back to a string, as in Example 9-8.

Validating an integer with typecasting

<?php
if ($_POST['rating'] != strval(intval($_POST['rating']))) {
print 'Your rating must be an integer.';

?>

If you're looking for a positive or negative decimal number, compare the submitted value to what you get when casting
it to a floating-point number and then back to a string, as in Example 9-8.

Validating a decimal humber with typecasting

<?php
if ($_POST['temperature'] != strval(floatval($_POST['temperature']))) {
print 'Your temperature must be a number.';

¥

?>

9.3.3. Discussion

Number validation is one of those things in PHP that seems like it's simple, but is a little trickier than it first appears. A
common impulse is to use the built-in i s_numeric() function for number validation. Unforunately, what is_numeric()

thinks is "numeric" is more in line with how a computer behaves than a human. For example, is_numeric() considers

hexadecimal number strings such as 0xCAFE and exponentially notated number strings such as 10e40 as numbers.

Something else to keep in mind when validating numbers (and all form input): values in $_GET and $_POST are always
strings. That means that if someone submits a form with 06520 typed into a text box named zip_code, the value of
$_POST['zip_code'] is the five character string 06520, not the integer 6,520.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

So if what you need to validate is "this value consists only of digits," then ctype_digit() is the way to go. It is the
fastest way to validate a number. ctype_digit(), like all the ctype functions, requires its input to be a string, but that's
taken care of for you when validating form input, since all values in $_GET and $_POST are strings.

Before PHP 5.1, ctype_digit() doesn't do what you expect if you give it an empty string (ctype_digit(") returns TRue), so be
sure to check an input as described in Recipe 9.2 before passing it to ctype_digit(). Also, a downside to ctype_digit()
(in all versions of PHP) is that it's not very flexible. All it knows about are digits. If you want to accept negative numbers
or decimal numbers, it can't help you.

In those cases, turn to two of PHP's typecasting functions: intval(), which "integerifies" a string, and floatval(), which
"floatifies" it. Each of these functions, when given a string, do their best to produce a number from what's in the string.
If the string just contains a valid number, that's what you get back. For example, intval('06520") returns the integer 6520,
intval('-2853") returns the integer -2853, floatval('3.1415') returns the floating-point number 3.1415, and floatval(-473.20")
returns the floating-point number -473.2.

Where these functions come in handy in input validation, however, is how they treat strings that aren't valid numbers.
Each returns as much number as it can find in the string, starting from the beginning and ignoring initial whitespace.
That is, intval('-6 weeks') returns -6, intval('30x bigger') returns 30, intval('3.1415") returns 3, and intval('21+up') returns 21.
floatval() behaves similarly, but allows decimal points. For example, floatval('127.128.129.130") returns 127.128. When
given a string with no valid number characters in it, both functions return 0.

This means that passing the user input through either intval() or floatval() works as a filter, leaving valid values
unmodified, but changing invalid values to just their numerical essence. The resulting comparison with the original input
succeeds if the value has passed through the filter without being modified'in other words, the comparison succeeds if
the original input is a valid integer or decimal number.

It is necessary to convert what comes out of intval() or floatval() to a string with strval() to make sure PHP does the
comparison properly. When PHP compares two strings, the comparison behaves as you'd expect. (The result is true if the
strings are the same, and false otherwise.) However, when PHP compares a string and a number (such as the result of
intval() or floatval()), it attempts to convert the string to a number (using the rules outlined above). This would
counteract the "filter" properties of intval() or floatval(), so we need to prevent it from happening. Ensuring that two
strings are compared accomplishes this.

If all of this typecasting has you feeling a bit queasy and you're a fan of regular expressions, feel free to use those
instead. Example 9-9 shows regular expressions that validate an integer and a decimal number.

Validating numbers with regular expressions

<?php

// The pattern matches an optional - sign and then

// at least one digit

if (! preg_match('/~-\d+$/'$_POST['rating'])) {
print 'Your rating must be an integer.’;

b

// The pattern matches an optional - sign and then

// Optional digits to go before a decimal point

// An optional decimal point

// And then at least one digit

if (! preg_match('/~-2\d*\.?\d+$/',$_POST['temperature'])) {
print "Your temperature must be a number.';

b

?>

It is a common refrain among performance-tuning purists that regular expressions should be avoided because they are
comparatively slow. In this case, however, with such simple regular expressions, they are about equally efficient as the
typecasting. If you're more comfortable with regular expressions, or you're using them in other validation contexts as
well, they can be a handy choice. The regular expression also allows you to consider valid numbers, such as
782364.238723123, that cannot be stored as a PHP float without losing precision. This can be useful with data such as
a longitude or latitude that you plan to store as a string. The regular expression also allows you to consider valid
numbers, such as 782364.238723123, that cannot be stored as a PHP float without losing precision. This can be useful
with data such as a longitude or latitude that you plan to store as a string. That said, the ctype_digit() function is much
faster than either typecasting or a regular expression, so if that does what you need, use it.

9.3.4. See Also

for information on validating required fields; documentation on ctype_digit() at

http://www.php.net/ctype_digit

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

& Py | | NEXT # |
Recipe 9.4. Validating Form Input: Email Addresses

9.4.1. Problem

You want to know whether an email address a user has provided is valid.

9.4.2. Solution

Use the is_valid_email_address() function in Example 9-10. It tells you whether an email address is valid according to
the rules in RFC 822.

Validating an email address

function is_valid_email_address($email){
$qtext = TA\\x0d\\x22\\x5¢\\x80-\\xff]';
$dtext = "T\\x0d\\x5b-\\x5d\\x80-\\xff]';
$atom = "TA\\x00-\\x20\\x22\\x28\\x29\\x2c\\x2e\\x3a-\\x3c'.

"\\x3e\\x40\\x5b-\\X5d\\X7f-\\xff]+';

$quoted_pair = "\\x5c[\\x00-\\x7f]";
$domain_literal = "\\x5b($dtext|$quoted_pair)*\\x5d";
$quoted_string = "\\x22($qtext|$quoted_pair)*\\x22";
$domain_ref = $atom;
$sub_domain = "($domain_ref|$domain_literal)";
$word = "($atom|$quoted_string)";
$domain = "$sub_domain(\\x2e$sub_domain)*";
$local_part = "$word(\\x2e$word)*";
$addr_spec = "$local_part\\x40$domain";
return preg_match("!~$addr_spec$!", $email) ? 1 : 0;

¥

if (is_valid_email_address('cal@example.com")) {

print 'cal@example.com is a valid e-mail address';
}else {

print 'cal@example.com is not a valid e-mail address';

9.4.3. Discussion

RFC 822 defines the standards for a valid email address. The function in Example 9-10, by Cal Henderson, uses the
grammar rules laid out in that RFC to build a regular expression. You can read more about how the function is
constructed at http://www.iamcal.com/publish/articles/php/parsing_email. Cal has also written a function that validates
according to the more complicated rules in RFC 2822. That function is available for download from

The function in Example 9-10 only checks that a particular address is syntactically correct. This is useful for preventing
a user from accidentally telling you that her email address is bingolover2261@example instead of
bingolover2261@example.com. What it doesn't tell you, however, is what happens if you send a message to that
address. Furthermore, it doesn't let you know that the person providing the email address is in control of the address.
For those sorts of validations, you need to send a confirmation message to the address. The confirmation message can
ask the user to take some affirmative task (reply to the message, click on a link) to indicate they're the same person
that entered the address on the form. Or, the confirmation message can tell the user what to do (reply to the message,
click on a link), if she's not the same person that entered the address on the form. Recipe 8.17 demonstrates a system
that sends an email message containing a link that the recipient must click on to confirm that she provided the address.

9.4.4. See Also

RFC 822 at http://www.fags.org/rfcs/rfc822.html, RFC 2822 at http://www.faqgs.org/rfcs/rfc2822 . html, "Parsing Email
Addresses in PHP" by Cal Henderson at http://www.iamcal.com/publish/articles/php/parsing_email, and the functions
available for download at http://code.iamcal.com/php/rfc822/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.5. Validating Form Input: Drop-Down Menus

9.5.1. Problem

You want to make sure that a valid choice was selected from a drop-down menu generated by the HTML <select/>
element.

9.5.2. Solution

Use an array of values to generate the menu. Then validate the input by checking that the value is in the array.

Example 9-11 uses in_array() to do the validation.

Validating a drop-down menu with in_array()

<?php
// Generating the menu
$choices = array('Eggs','Toast','Coffee');
echo "<select name="'food'>\n";
foreach ($choices as $choice) {

echo "<option>$choice</option>\n";

echo "</select>";

// Then, later, validating the menu
if (!'in_array($_POST['food'], $choices)) {
echo "You must select a valid choice.";

b

?>

The menu that Example 9-11 generates is:

<select name="food"'>
<option>Eggs</option>
<option>Toast</option>
<option>Coffee</option>
</select>

To work with a menu that sets value attributes on each <option/> element, use array_key_exists() to validate the input,

as shown in Example 9-12.

Validating a drop-down menu with array_key_exists()

<?php

// Generating the menu

$choices = array('eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam’,
'coffee’ => 'Piping Hot Coffee');

echo "<select name="food'>\n";

foreach ($choices as $key => $choice) {

echo "<option value='$key'>$choice</option>\n";

echo "</select>";
// Then, later, validating the menu
if (! array_key_exists($_POST['food'], $choices)) {

echo "You must select a valid choice.";
}

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The menu that Example 9-12 generates is:

<select name="food'>

<option value='eggs'>Eggs Benedict</option>

<option value="toast'>Buttered Toast with Jam</option>
<option value="coffee'>Piping Hot Coffee</option>
</select>

9.5.3. Discussion

The methods in Example 9-11 and Example 9-12 differ in the kinds of menus that they generate. Example 9-11 has a
$choices array with automatic numeric keys and outputs <option/> elements. Example 9-12 has a $choices array with
explicit keys and outputs <option/> elements with value attributes drawn from those keys.

In either case, the validation strategy is the same: make sure that the value submitted for the form element is one of
the allowed choices. For requests submitted by well-behaved browsers, this validation rule never fails'web browsers
generally don't let you make up your choice for a drop-down menu. Remember, though, that there's nothing requiring
that requests to your PHP program come from a well-behaved web browser. They could come from a buggy browser or
from a bored 11-year-old with a copy of the HTTP specification in one hand and a command-line telnet client in the
other. Because you always need to be mindful of malicious, hand-crafted HTTP requests, it's important to validate input
even in circumstances where most users will never encounter an error.

9.5.4. See Also

Documentation on in_array() at http://www.php.net/in_array and on array_key_exists() at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 9.6. Validating Form Input: Radio Buttons

9.6.1. Problem

You want to make sure a valid radio button is selected from a group of radio buttons.

9.6.2. Solution

Use an array of values to generate the menu. Then validate the input by checking that the submitted value is in the
array. Example 9-13 uses array_key_exists() to do the validation.

Validating a radio button

<?php
// Generating the radio buttons
$choices = array('eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam’,
'coffee’ => 'Piping Hot Coffee');
foreach ($choices as $key => $choice) {
echo "<input type="radio' name="food' value="$key'/> $choice \n";

}

// Then, later, validating the radio button submission
if (! array_key_exists($_POST['food'], $choices)) {
echo "You must select a valid choice.";

b

?>

9.6.3. Discussion

The radio button validation in Example 9-13 is very similar to the drop-down menu validation in Example 9-12. They
both follow the same pattern'define the data that describes the choices, generate the appropriate HTML, and then use
the defined data to ensure that a valid value was submitted. The difference is in what HTML is generated.

Another difference between drop-down menus and radio buttons is how defaults are handled. When the HTML doesn't
explicitly specify a default choice for a drop-down menu, the first choice in the menu is used. However, when the HTML
doesn't explicitly specify a default choice for a set of radio buttons, no choice is used as a default.

To ensure that one of a set of radio buttons is chosen in a well-behaved web browser, give the default choice a
checked="checked" attribute. In addition, to guard against missing values in hand-crafted malicious requests, use isset() to
ensure that something was submitted for the radio button, as described in Recipe 9.2.

9.6.4. See Also

Recipe 9.2 for information on validating required fields; documentation on array_key_exists() at

http://www.php.net/array_key_exists.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 9.7. Validating Form Input: Checkboxes

9.7.1. Problem

You want to make sure only valid checkboxes are checked.

9.7.2. Solution

For a single checkbox, ensure that if a value is supplied, it's the correct one. If a value isn't supplied for the checkbox,
then the box wasn't checked. Example 9-14 figures out whether a checkbox was checked, unchecked, or had an invalid
value submitted.

Validating a single checkbox

<?php

// Generating the checkbox

$value = 'yes';

echo "<input type="checkbox' name="subscribe' value="yes'/> Subscribe?";

// Then, later, validating the checkbox
if (isset($_POST['subscribe'])) {
// A value was submitted and it's the right one
if ($_POST['subscribe'] == $value) {
$subscribed = true;
}else {
// A value was submitted and it's the wrong one
$subscribed = false;
print 'Invalid checkbox value submitted.’;

}

}else {
// No value was submitted
$subscribed = false;

¥

if ($subscribed) {

print "You are subscribed.";
}else {

print 'You are not subscribed’;
}

For a group of checkboxes, use an array of values to generate the checkboxes. Then, use array_intersect() to ensure
that the set of submitted values is contained within the set of acceptable values, as shown in Example 9-15.

Validating a group of checkboxes

<?php
// Generating the checkboxes
$choices = array(‘eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam’,
'coffee’ => 'Piping Hot Coffee');
foreach ($choices as $key => $choice) {
echo "<input type="checkbox' name="'food[]' value="$key'/> $choice \n";

?>
// Then, later, validating the radio button submission
if (array_intersect($_POST['food'], array_keys($choices)) = $_POST['food"]) {

echo "You must select only valid choices.";
}

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

9.7.3. Discussion

For PHP to handle multiple checkbox values properly, the checkboxes' name attribute must end with [], as described in
i . Those multiple values are formatted in $_POST as an array. Since the checkbox name in Example 9-15 is
food[], $_POST['food'] holds the array of values from the checked boxes.

The array_intersect() function finds all of the elements in $_POST['food'] that are also in array_keys($choices). That is, it
filters the submitted choices ($_POST['food']), only allowing through values that are acceptable'keys in the $choices array. If
all of the values in $_POST['food'] are acceptable, then the result of array_intersect($_POST['food'], array_keys($choices)) is an
unmodified copy of $_POST['food']. So if the result isn't equal to $_POST['food'], something invalid was submitted.

Checkboxes have the same issues with default values as do radio buttons. So just as with radio buttons, use the rules
in Recipe 9.2 to determine that something was submitted for the checkbox before proceeding with further validation.

9.7.4. See Also

for information about validating required fields; documentation on array_intersect() at

http://www.php.net/array_intersect.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.8. Validating Form Input: Dates and Times

9.8.1. Problem

You want to make sure that a date or time a user entered is valid. For example, you want to ensure that a user hasn't
attempted to schedule an event for the 45th of August or provided a credit card that has already expired.

9.8.2. Solution

If your form provides month, day, and year as separate elements, plug those values into checkdate(), as in Example 9-
16. This tells you whether or not the month, day, and year are valid.

Checking a particular date

<?php
if (! checkdate($_POST['month'], $_POST['day'], $_POST['year'])) {
print "The date you entered doesn't exist!";

?>

To check that a date is before or after a particular value, convert the user-supplied values to a timestamp, compute the
timestamp for the threshhold date, and compare the two. Example 9-17 checks that the supplied credit card expiration
month and year are after the current month.

Checking credit card expiration

<?php
// The beginning of the month in which the credit card expires
$expires = mktime(0, 0, 0, $_POST['month'], 1, $_POST['year']);
// The beginning of next month
// If date('n") + 1 == 13, mktime() does the right thing and uses
// January of the following year.
$nextMonth = mktime(0, 0, 0, date('n') + 1, 1);
if ($expires < $nextMonth) {

print "Sorry, that credit card expires too soon.";

?>

9.8.3. Discussion

checkdate() is handy because it knows about leap year and how many days are in each month, saving you from
tedious comparisons of each component of the date. For range validations'making sure a date or time is before, after,
or between other dates or times'it's easiest to work with epoch timestamps.

9.8.4. See Also

Chapter 3 discusses the finer points of date and time handling.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 9.9. Validating Form Input: Credit Cards

9.9.1. Problem
You want to make sure a user hasn't entered a bogus credit card number.

9.9.2. Solution

The is_valid_credit_card() function in Example 9-18 tells you whether a provided credit card number is syntactically
valid.

Validating a credit card number

<?php
function is_valid_credit_card($s) {
// Remove non-digits and reverse
$s = strrev(preg_replace('/[™"\d]/",",$s));
// compute checksum
$sum = 0;
for ($i = 0, $j = strlen($s); $i < $j; $i++) {
// Use even digits as-is
if (($i % 2) ==0){
$val = $s[$i];
Yelse {
// Double odd digits and subtract 9 if greater than 9
$val = $s[$i] * 2;
if ($val > 9) { $val -=9; }

$sum += $val;

b

// Number is valid if sum is a multiple of ten
return (($sum % 10) == 0);

if (! is_valid_credit_card($_POST['credit_card'])) {
print 'Sorry, that card number is invalid.';

}

?>

9.9.3. Discussion

Credit cards use the Luhn algorithm to prevent against accidental error. This algorithm, which the is_valid_credit_card(
) function in Example 9-18 uses, does some manipulations on the individual digits of the card number to tell whether
the number is acceptable.

Validating a credit card is a bit like validating an email address. Syntactic validation'making sure the provided value is a
sequence of characters that matches a standard'is relatively easy. Semantic validation, however, is trickier. The credit
card number 4111 1111 1111 1111 sails through the function in Example 9-18 but isn't valid. It's a well-known test number
that looks like a Visa card number. (And, as such, is handy for using in books when one needs an example.)

Just as strong email address validation requires external verification (usually by sending a message to the address with
a confirmation link in it), credit card validation requires external validation by submitting the credit card number to a
payment processor along with associated account info (card holder name and address) and making sure you get back
an approval.

Syntactic validation is good protection against inadvertent user typos but, obviously, is not all you need to do when
checking credit card numbers.

9.9.4. See Also

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.4 for information about validating email addresses; http://en.wikipedia.org/wiki/Luhn for information about
the Luhn algorithm.

e Py

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 9.10. Preventing Cross-Site Scripting

9.10.1. Problem

You want to securely display user-entered data on an HTML page. For example, you want to allow users to add
comments to a blog post without worrying that HTML or JavaScript in a comment will cause problems.

9.10.2. Solution
Pass user input through htmlentities() before displaying it, as in Example 9-19.

Escaping HTML

<?php

print 'The comment was: ';

print htmlentities($_POST['comment']);
?>

9.10.3. Discussion

PHP has a pair of functions to escape HTML entities. The most basic is htmispecialchars(), which escapes four
characters: < >" and & Depending on optional parameters, it can also translate ' instead of or in addition to ". For more
complex encoding, use htmlentities(); it expands on htmlspecialchars() to encode any character that has an HTML
entity. Example 9-20 shows htmlspecialchars() in action.

Escaping HTML entities

<?php
$html = "Stew's favorite movie.\n";
print htmlspecialchars($html); // double-quotes

print htmispecialchars($html, ENT_QUOTES); // single- and double-quotes
print htmlspecialchars($html, ENT_NOQUOTES); // neither

Example 9-20 prints:

Stew's favorite movie.
Stew's favorite movie.
Stew's favorite movie.

By default, both htmlentities() and htmispecialchars() use the ISO-8859-1 character set. To use a different character
set, pass the character set as a third argument. For example, to use UTF-8, call htmlentities($string, ENT_QUOTES, 'UTF-8'").

9.10.4. See Also

Recipes 18.4 and 19.13; documentation on htmlentities() at http://www.php.net/htmlentities and htmlspecialchars()
at http://www.php.net/htmlspecialchars.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 9.11. Working with Multipage Forms

9.11.1. Problem

You want to use a form that displays more than one page and preserves data from one page to the next. For example,
your form is for a survey that has too many questions to put them all on one page.

9.11.2. Solution

Use session tracking to store form information for each stage as well as a variable to keep track of what stage to
display. Example 9-21 displays a two-page form and then the collected results.

Making a multipage form

<?php
// Turn on sessions
session_start();

// Figure out what stage to use

if (($_SERVER['REQUEST_METHOD'] == 'GET") || (! isset($_POST['stage']))) {
$stage = 1;

}else {
$stage = (int) $_POST['stage'];

// Save any submitted data
if ($stage > 1) {
foreach ($_POST as $key => $value) {
$_SESSION[$key] = $value;
¥
if ($stage == 1) { >
<form action="<?php echo $_SERVER['SCRIPT_NAME'] ?>' method="'post'>

Name: <input type="text' name="'name'/>

Age: <input type="text' name='age'/> </br/>

<input type="'hidden' name='stage’' value='<?php echo $stage + 1 ?>'/>
<input type="'submit' value="Next'/>

</form>

<?php } else if ($stage == 2) { ?>

<form action="<?php echo $_SERVER['SCRIPT_NAME'] ?>' method="'post'>
Favorite Color: <input type="text' name="color'/>

Favorite Food: <input type="text' name="food'/> </br/>

<input type="'hidden' name='stage’' value="'<?php echo $stage + 1 ?>'/>
<input type='submit' value='Done'/>
</form>

<?php } else if ($stage == 3) { ?>
Hello <?php echo $_SESSION['name'] ?>.
You are <?php echo $_SESSION['age'] ?> years old.
Your favorite color is <?php echo $_SESSION['color'] ?>
and your favorite food is <?php echo $_SESSION['food'] ?>.

<?php } ?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

9.11.3. Discussion

At the beginning of each stage in Example 9-21, all the submitted form variables are copied into $_SESSION. This makes
them available on subsequent requests, including the code that runs in stage 3, which displays everything that's been
saved.

PHP's sessions are perfect for this kind of task since all of the data in a session is stored on the server. This keeps each

request small'no need to resubmit stuff that's been entered on a previous stage'and reduces the validation overhead.
You only have to validate each piece of submitted data when it's submitted.

9.11.4. See Also

Recipe 11.1 for information about session handling.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.12. Redisplaying Forms with Inline Error Messages

9.12.1. Problem

When there's a problem with data entered in a form, you want to print out error messages alongside the problem fields,
instead of a generic error message at the top of the form. You also want to preserve the values the user entered in the
form, so they don't have to redo the entire thing.

9.12.2. Solution

As you validate, keep track of form errors in an array keyed by element name. Then, when it's time to display the form,
print the appropriate error message next to each element. To preserve user input, use the appropriate HTML idiom: a
value attribute (with entity encoding) for most <input/> elements, a checked='checked' attribute for radio buttons and
checkboxes, and a selected='selected' attribute on <option/> elements in drop-down menus. Example 9-22 displays and
validates a form with a text box, a checkbox, and a drop-down menu.

Redisplaying a form with error messages and preserved input

<?php
// Set up some options for the drop-down menu
$flavors = array('Vanilla','Chocolate’,'Rhinoceros');

if ($_SERVER['REQUEST_METHOD'] == 'GET") {
// Just display the form if the request is a GET
display_form(array());
}else {
// The request is a POST, so validate the form
$errors = validate_form();
if (count($errors)) {
// If there were errors, redisplay the form with the errors
display_form($errors);
}else {
// The form data was valid, so congratulate the user
print 'The form is submitted!";
}

}

function display_form($errors) {
global $flavors;

// Set up defaults
$defaults['name'] = isset($_POST['name']) ? htmlentities($_POST['name']) : ";
$defaults['age'] = isset($_POST['age']) ? "checked="'checked" : ";
foreach ($flavors as $flavor) {
if (isset($_POST['flavor']) && ($_POST['flavor'] == $flavor)) {
$defaults['flavor'][$flavor] = "selected="selected";
Yelse {
$defaults['flavor'][$flavor] = ";
b

¥

?>

<form action="'<?php echo $_SERVER['SCRIPT_NAME'] ?>' method="'post'>
<dI>
<dt>Your Name:</dt>
<?php print_error('name’, $errors) ?>
<dd><input type="text' name="name' value='<?php echo $defaults['name'] ?>'/></dd>
<dt>Are you over 18 years old?</dt>
<?php print_error(‘age’, $errors) ?>
<dd><input type="checkbox' name="age' value='1' <?php echo $defaults['age'] ?>/> Yes</dd>
<dt>Your favorite ice cream flavor: </dt>
<?php print_error('flavor', $errors) ?>
<dd><select name="flavor'>
<?php foreach ($flavors as $flavor) {
echo "<option {$defaults['flavor'][$flavor]}>$flavor</option>";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3>

</select></dd>

</dI>

<input type="submit' value='Send Info'/>
</form>

<?php }

// A helper function to make generating the HTML for an error message easier
function print_error($key, $errors) {

if (isset($errors[$key])) {
print "<dd class="error'>{$errors[$key]}</dd>";
}

}

function validate_form() {
global $flavors;

// Start out with no errors
$errors = array();

// name is required and must be at least 3 characters
if (! (isset($_POST['name']) && (strlen($_POST['name']) > 3))) {
$errors['name'] = 'Enter a name of at least 3 letters';

¥
if (isset($_POST['age']) && ($_POST['age'] !="1")) {
$errors['age'] = 'Invalid age checkbox value.";

// flavor is optional but if submitted must be in $flavors

if (isset($_POST['flavor']) && (! in_array($_POST['flavor'], $flavors))) {
$errors['flavor'] = 'Choose a valid flavor.';
}

return $errors;

9.12.3. Discussion

When a form is submitted with invalid data, it's more pleasant for the user if the form is redisplayed with error
messages in appropriate places rather than a generic "the form is invalid" message at the top of the form. The
validate_form() function in Example 9-22 builds up an array of error messages that display_form() uses to print the
messages in the right places.

Extending Example 9-22 is a matter of expanding the checks in validate_form() to handle the appropriate validation
needs of your form and including the correct HTML generation in display_form() so that the form includes the input
elements you want.

9.12.4. See Also

Recipes 9.2 to 9.9 for various form validation strategies.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.13. Guarding Against Multiple Submission of the Same Form

9.13.1. Problem

You want to prevent a user from submitting the same form more than once.

9.13.2. Solution

Include a hidden field in the form with a unique value. When validating the form, check if a form has already been
submitted with that value. If it has, reject the submission. If it hasn't, process the form and record the value for later
use. Additionally, use JavaScript to disable the form Submit button once the form has been submitted.

Example 9-23 uses the unigid() and md5() functions to insert a unique ID field in a form. It also sets the form's
onsubmit handler to a small bit of JavaScript that disables the submit button once the form's been submitted.

Insert a unique ID into a form

<form method="post" action="<?php echo $_SERVER['SCRIPT_NAME'] ?>"
onsubmit="document.getElementById(‘submit-button').disabled = true;">

<!-- insert all the normal form elements you need -->

<input type="'hidden' name="token' value='<?php echo md5(uniqid()) ?>'/>

<input type="'submit' value="'Save Data' id="submit-button'/>

</form>

Example 9-24 checks the submitted token against saved data in an SQLite database to see if the form has already been
submitted.

Checking a form for resubmission

if ($_SERVER['REQUEST_METHOD'] == 'POST") {
$db = new PDO('sqlite:/tmp/formijs.db');
$db->beginTransaction();
$sth = $db->prepare('SELECT * FROM forms WHERE token = ?');
$sth->execute(array($_POST['token']));
if (count($sth->fetchAll())) {
print "This form has already been submitted!";
$db->rollBack();
Yelse {
/* Validation code for the rest of the form goes here --
* validate everything before inserting the token */
$sth = $db->prepare('INSERT INTO forms (token) VALUES (?)");
$sth->execute(array($_POST['token']));
$db->commit();
print "The form is submitted successfully.";

9.13.3. Discussion

For a variety of reasons, users often resubmit a form. Usually it's a slip-of-the-mouse: double-clicking the Submit
button. They may hit their web browser's Back button to edit or recheck information, but then they re-hit Submit
instead of Forward. It can be intentional: they're trying to stuff the ballot box for an online survey or sweepstakes. Our
Solution prevents the non-malicious attack and can slow down the malicious user. It won't, however, eliminate all
fraudulent use: more complicated work is required for that.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

The Solution does prevent your database from being cluttered with too many copies of the same record. By generating
a token that's placed in the form, you can uniquely identify that specific instance of the form, even when cookies are
disabled. The unigid() function generates an acceptable one-time token. The md5() function doesn't add any additional
randomness to the token, but restricts the characters that could be in it. The results of unigid() can be a mix of
different letters and other characters. The results of md5() consist only of digits and the letters abcdef. For English-
speaking users at least, this ensures that the token doesn't contain any naughty words.

It's tempting to avoid generating a random token and instead use a number one greater than the number of records
already in your database table. There are (at least) two problems with this method. First, it creates a race condition.
What happens when a second person starts the form before the first person has completed it? The second form will
then have the same token as the first, and conflicts will occur. This can be worked around by creating a new blank
record in the database when the form is requested, so the second person will get a number one higher than the first.
However, this can lead to empty rows in the database if users opt not to complete the form.

The other reason not do this is because it makes it trivial to edit another record in the database by manually adjusting
the ID to a different number. Depending on your security settings, a fake get or post submission allows the data to be
altered without difficulty. A random token, however, can't be guessed merely by moving to a different integer.

9.13.4. See Also

for more details on verifying data with hashes; documentation on unigid() at http://www.php.net/uniqid
and on md5() at http://www.php.net/md5.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 9.14. Processing Uploaded Files

9.14.1. Problem

You want to process a file uploaded by a user. For example, you're building a photo-sharing web site and you want to
store user-supplied photos.

9.14.2. Solution

Use the $_FILES array to get information about uploaded files. Example 9-25 saves an uploaded file to the /tmp directory
on the web server.

Uploading a file

<?php if ($_SERVER['REQUEST_METHOD'] == 'GET') { ?>
<form method="post" action="<?php echo $_SERVER['SCRIPT_NAME'] ?>"
enctype="multipart/form-data">
<input type="file" name="document"/>
<input type="submit" value="Send File"/>
</form>
<?php } else {
if (isset($_FILES['document']) &&
($_FILES['document']['error'] == UPLOAD_ERR_OK)) {
$newPath = '/tmp/' . basename($_FILES['document']['name']);
if (move_uploaded_file($_FILES['document']['tmp_name'], $newPath)) {
print "File saved in $newPath";
}else {
print "Couldn't move file to $newPath";

b
}else {

print "No valid file uploaded.";
¥

?>

9.14.3. Discussion

Starting in PHP 4.1, all uploaded files appear in the $_FILES auto-global array. For each file element in the form, an array
is created in $_FILES whose key is the file element's name. For example, the form in Example 9-25 has a file element
named document, so $_FILES['document'] contains the information about the uploaded file. Each of these per-file arrays has
five elements:

name
The name of the uploaded file. This is supplied by the browser so it could be a full pathname or just a filename.
type
The MIME type of the file, as supplied by the browser.
size

The size of the file in bytes, as calculated by the server.

tmp_name

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The location in which the file is temporarily stored on the server.

error

An error code describing what (if anything) went wrong with the file upload. (This element is available in PHP
4.2.0 and later versions.)

If you're using a version of PHP earlier than 4.1, this information is in $HTTP_POST_FILES instead of $_FILES.

The possible values of the error element are:

UPLOAD_ERR_OK (0)

Upload succeeded (no error).

UPLOAD_ERR_INI_SIZE(1)

The size of the uploaded file is bigger than the value of the upload_max_filesize configuration directive.

UPLOAD_ERR_FORM_SIZE (2)

The size of the uploaded file is bigger than the value of the form's MAX_FILE_SIZE element.

UPLOAD_ERR_PARTIAL (3)

Only part of the file was uploaded.

UPLOAD_ERR_NO_FILE (4)

There was no file uploaded.

UPLOAD_ERR_NO_TMP_DIR (6)

The upload failed because there was no temporary directory to store the file (available in PHP 4.3.10, 5.0.3, and
later).

UPLOAD_ERR_CANT_WRITE (7)
PHP couldn't write the file to disk (available in PHP 5.1.0 and later).

For all of the error values, the listed constants are available in PHP 4.3.0 and later. In earlier versions of PHP, use the
number in parentheses next to the constant instead.

The is_uploaded_file() function confirms that the file you're about to process is a legitimate file resulting from a user
upload. Always check the tmp_name value before processing it as any other file. This ensures that a malicious user can't
trick your code into processing a system file as an upload.

You can also move the file to a permanent location; use move_uploaded_file(), as in Example 9-25. It also does a
check to make sure that the file being moved is really an uploaded file. Note that the value stored in tmp_name is the
complete path to the file, not just the base name. Use basename() to chop off the leading directories if needed.

Be sure to check that PHP has permission to read and write to both the directory in which temporary files are saved (set
by the upload_tmp_dir configuration directive) and the location to which you're trying to copy the file. PHP is often running
under a special username such as nobody or apache, instead of your personal username. Because of this, if you're running
under safe_mode, copying a file to a new location will probably not allow you to access it again.

Processing files can be a subtle task because not all browsers submit the same information. It's important to do it
correctly, however, or you open yourself up to security problems. You are, after all, allowing strangers to upload any
file they choose to your machine; malicious people may see this as an opportunity to crack into or crash the computer.

As a result, PHP has a number of features that allow you to place restrictions on uploaded files, including the ability to
completely turn off file uploads altogether. So if you're experiencing difficulty processing uploaded files, check that your
file isn't being rejected because it seems to pose a security risk.

To do such a check, first make sure file_uploads is set to On inside your configuration file. Next, make sure your file size
isn't larger than upload_max_filesize; this defaults to 2 MB, which stops someone from trying to crash the machine by filling
up the hard drive with a giant file. Additionally, there's a post_max_size directive, which controls the maximum size of all
the post data allowed in a single request; its initial setting is 8 MB.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

From the perspective of browser differences and user error, if you don't see what you expect in $_FILES, make sure you
add enctype="multipart/form-data" to the form's opening tag. PHP needs this to process the file information properly.

Also, if no file is selected for uploading, versions of PHP prior to 4.1 set tmp_name to none; newer versions set it to the
empty string. PHP 4.2.1 allows files of length 0. To be sure a file was uploaded and isn't empty (although blank files
may be what you want, depending on the circumstances), you need to make sure tmp_name is set and size is greater than
0. Last, not all browsers necessarily send the same MIME type for a file; what they send depends on their knowledge of
different file types.

9.14.4. See Also

Documentation on handling file uploads at http://www.php.net/features.file-upload and on basename() at
http://www.php.net/basename .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.15. Preventing Global Variable Injection

9.15.1. Problem

You want to access form input variables without allowing malicious users to set arbitrary global variables in your
program.

9.15.2. Solution

Disable the register_globals configuration directive and access variables only from the $_GET, $_POST, and $_COOKIE arrays to
make sure you know exactly where your variables are coming from.

To do this, make sure register_globals = Off appears in your php.ini file.

As of PHP 4.2, this is the default configuration.

9.15.3. Discussion

When register_globals is set to on, external variables, including those from forms and cookies, are imported directly into
the global namespace. This is a great convenience, but it can also open up some security holes if you're not very
diligent about checking your variables and where they're defined. Why? Because there may be a variable you use
internally that isn't supposed to be accessible from the outside but has its value rewritten without your knowledge.

Example 9-26 contains a simple example: imagine you have a page in which a user enters a username and password. If
they are validated, you return her user identification number and use that numerical identifier to look up and print out
her personal information.

Insecure register_globals code

<?php

// assume magic_quotes_gpc is set to Off
$username = $dbh->quote($_GET['username']);
$password = $dbh->quote($_GET['password']);

$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND
password = $password");

if (1 == $sth->numRows()) {
$row = $sth->fetchRow(DB_FETCHMODE_OBJECT);
$id = $row->id;

}else {
"Print bad username and password";

}

if (fempty($id)) {
$sth = $dbh->query("SELECT * FROM profile WHERE id = $id");
¥

Normally, $id is set only by your program and is a result of a verified database lookup. However, if someone alters the
query string, and passes in a value for $id, you'll have problems. With register_globals enabled, your script could still
execute the second database query and return results even after a bad username and password lookup. Without
register_globals, $id remains unset because only $_REQUEST['id'] and $_GET['id'] are set.

Of course, there are other ways to solve this problem, even when using register_globals. You can restructure your code not
to allow such a loophole. One way to do this is in Example 9-27.

Avoiding register_globals problems

<?php
$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

passwdrd = $password");

if (1 == $sth->numRows()) {
$row = $sth->fetchRow(DB_FETCHMODE_OBJECT);
$id = $row->id;
if (‘empty($id)) {
$sth = $dbh->query("SELECT * FROM profile WHERE id = $id");

¥
}else {
"Print bad username and password";

¥

In Example 9-27 $id has a value only when it's been explicitly set from a database call. Sometimes, however, it is
difficult to do this because of how your program is laid out. Another solution is to manually unset() or initialize all
variables at the top of your script. This removes the bad $id value before it gets a chance to affect your code. However,
because PHP doesn't require variable initialization, it's possible to forget to do this in one place; a bug can then slip in
without a warning from PHP.

9.15.4. See Also

Documentation on register_globals can be found at http://www.php.net/security.registerglobals.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.16. Handling Remote Variables with Periods in Their Names

9.16.1. Problem

You want to process a variable with a period in its name, but when a form is submitted, you can't find the variable in
$_GET or $_POST.

9.16.2. Solution

Replace the period in the variable's name with an underscore. For example, if you have a form input element named
hot.dog, you access it inside PHP as the variable $_GET['hot_dog'] or $_POST['hot_dog'].

9.16.3. Discussion

During PHP's pimply adolescence when register_globals was on by default, a form variable named hot.dog couldn't become
$hot.dog'periods aren't allowed in variable names. To work around that, the . was changed to _. While $_GET['hot.dog'] and
$_POST['hot.dog'] don't have this problem, the translation still happens for legacy and consistency reasons, no matter your
register_globals setting.

You usually run into this translation when there's an element of type image in a form that's used to submit the form. For
example, a form element such as <input type="image" name="locations" src="locations.gif'>, when clicked, submits the form. The
x and y coordinates of the click are submitted as locations.x and locations.y. So in PHP, to find where a user clicked, you
need to check $_POST['locations_x'] and $_POST['locations_y'].

9.16.4. See Also

Documentation on variables from outside PHP at http://www.php.net/language.variables.external.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | MEXT # |
Recipe 9.17. Using Form Elements with Multiple Options

9.17.1. Problem

You have form elements that let a user select multiple choices, such as a drop-down menu or a group of checkboxes,
but PHP sees only one of the submitted values.

9.17.2. Solution

End the form element's name with a pair of square brackets ([]). Example 9-28 shows a properly named group of
checkboxes.

Naming a checkbox group

<input type="checkbox" name="boroughs[]" value="bronx"> The Bronx

<input type="checkbox" name="boroughs[]" value="brooklyn"> Brooklyn

<input type="checkbox" name="boroughs[]" value="manhattan"> Manhattan
<input type="checkbox" name="boroughs[]" value="queens"> Queens

<input type="checkbox" name="boroughs[]" value="statenisland"> Staten Island

Then, treat the submitted data as an array inside of $_GET or $_POST, as in Example 9-28.

Handling a submitted checkbox group

<?php
print 'Tlove ' . join(' and ', $_POST['boroughs']) . 'I";
?>

9.17.3. Discussion

Putting [] at the end of the form element name tells PHP to treat the incoming data as an array instead of a scalar.
When PHP sees more than one submitted value assigned to that variable, it keeps them all. If the first three boxes in
Example 9-28 were checked, it's as if you'd written the code in Example 9-30 at the top of your program.

Code equivalent of a multiple-value form element submission

<?php

$_POST['boroughs'][] = "bronx";
$_POST['boroughs'][] = "brooklyn";
$_POST['boroughs'][] = "manhattan”;
?>

A similar syntax also works with multidimensional arrays. For example, you can have a checkbox such as <input
type="checkbox" name="population[NY][NYC]" value="8008278">. If checked, this form element sets $_POST['population']'NY']['NYC'] to
8008278.

9.17.4. See Also

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The introduction to Chapter 4 for more on arrays.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 9.18. Creating Drop-Down Menus Based on the Current Date

9.18.1. Problem

You want to create a series of drop-down menus that are based automatically on the current date.

9.18.2. Solution
Use date() to find the current time in the web server's time zone and loop through the days with mktime() .
Example 9-31 generates <option/> values for today and the six days that follow. In this case, "today" is December 3,

2008.

Generating date-based drop-down menu options

<?php
list($hour, $minute, $second, $month, $day, $year) =
split(":', date('h:i:s:m:d:Y"));
// print out one week's worth of days
for ($i = 0; $i < 7; ++%i) {
$timestamp = mktime($hour, $minute, $second, $month, $day + $i, $year);
$date = date("D, F j, Y", $timestamp);
print "<option value="$timestamp'>$date</option>\n";

?>

When run on December 3, 2008, Example 9-31 prints:

<option value='1228305600'>Wed, December 3, 2008</option>
<option value='1228392000"'>Thu, December 4, 2008</option>
<option value="'1228478400'>Fri, December 5, 2008 </option>

<option value='1228564800">Sat, December 6, 2008</option>

<option value='1228651200">Sun, December 7, 2008</option>
<option value='1228737600'>Mon, December 8, 2008</option>
<option value='1228824000'>Tue, December 9, 2008</option>

9.18.3. Discussion

In Example 9-31 we set the value for each date as its Unix timestamp representation because we find this easier to
handle inside our programs. Of course, you can use any format you find most useful and appropriate.

Don't be tempted to eliminate the calls to mktime(); dates and times aren't as consistent as you'd hope. Depending on
what you're doing, you might not get the results you want. Example 9-32 takes the shortcut of just incrementing the
timestamp by the number of seconds in each day (60 seconds per minute x 60 minutes per hour x 24 hours per day =
86,400 seconds).

Incorrectly generating date-based drop-down menu options

<?php
$timestamp = mktime(0, 0, 0, 10, 30, 2008); // October 30, 2008
$one_day = 60 * 60 * 24; // number of seconds in a day

// print out one week's worth of days

for ($i = 0; $i < 7; ++3%i) {
$date = date("D, Fj, Y", $timestamp);
print "<option value='$timestamp'>$date</option>\n";
$timestamp += $one_day;

3

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 9-32 prints:

<option value='1225339200'>Thu, October 30, 2008</option>
<option value='1225425600">Fri, October 31, 2008</option>
<option value='1225512000">Sat, November 1, 2008</option>
<option value='1225598400">Sun, November 2, 2008</option>
<option value='1225684800'>Sun, November 2, 2008</option>
<option value='1225771200'>Mon, November 3, 2008</option>
<option value='1225857600'>Tue, November 4, 2008</option>

Example 9-32 should print out the month, day, and year for a seven-day period starting October 30, 2008. However, it
doesn't work as expected.

Why are there two Sun, November 2, 2008 in the list? The answer: daylight saving time. It's not true that the number of
seconds in a day stays constant; in fact, it's almost guaranteed to change. Worst of all, if you're not near either of the
changeover dates, you're liable to miss this bug during testing.

9.18.4. See Also

Chapter 3, particularly Recipe 3.12, but also Recipes 3.2, 3.3, 3.12, 3.5, 3.6, 3.12, and 3.14; documentation on date()
at http://www.php.net/date and mktime() at http://www.php.net/mktime.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & Pry |
Chapter 10. Database Access

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10.0. Introduction

Databases are central to many web applications. A database can hold almost any collection of information you may
want to search and update, such as a user list, a product catalog, or recent headlines. One reason why PHP is such a
great web programming language is its extensive database support. PHP can interact with (at last count) more than 20
different databases, some relational and some not. The relational databases it can talk to are Apache Derby, DB++,
FrontBase, IBM Cloudscape, IBM DB2, Informix, Interbase, Ingres II, Microsoft SQL Server, mSQL, MySQL, MySQL
MaxDB, Oracle, Ovrimos SQL Server, PostgreSQL, SQLite, and Sybase. The nonrelational databases it can talk to are
dBase, filePro, HyperWave, Paradox, and the DBM family of flat-file databases. It also has ODBC support, so even if
your favorite database isn't in the list, as long as it supports ODBC, you can use it with PHP.

DBM databases, discussed in Recipe 10.1, are simple, robust, and efficient flat files but limit the structure of your data
to key/value pairs. If your data can be organized as a mapping of keys to values, DBM databases are a great choice.

PHP really shines, though, when paired with an SQL database. This combination is used for most of the recipes in this
chapter. SQL databases can be complicated, but they are extremely powerful. To use PHP with a particular SQL
database, PHP must be explicitly told to include support for that database when it is compiled. If PHP is built to support
dynamic module loading, the database support can also be built as a dynamic module.

The SQL database examples in this chapter use PHP 5's PDO database access layer. With PDO, you use the same PHP
functions no matter what database engine you're talking to. Although the syntax of the SQL may differ from database
to database, the PHP code remains similar. In this regard, PDO offers data access abstraction, not total database
abstraction. Other PHP libraries, such as PEAR DB (http://pear.php.net/package/db), ADODb
(http://adodb.sourceforge.net/), and MDB2 (http://pear.php.net/package/MDB2) attempt to solve the total database

abstraction problem'they hide different databases' implementation details such as date handling and column types
behind a layer of code. While this sort of abstraction can save you some work if you're writing software that is intended
to be used with lots of different types of databases, but it can cause other problems. When you write SQL focused on a
particular type of database, you can take advantage of that database's features for maximum performance.

PHP 5 comes bundled with SQLite, a powerful database that doesn't require a separate server. It's a great choice when
you have a moderate amount of traffic and don't want to deal with the hassles of running a database server. Recipe
10.2 discusses some of the ins and outs of SQLite. With PHP 4, you can use SQLite via the PECL SQLite extension

(http://pecl.php.net/package/SQl ite).

Many SQL examples in this chapter use a table of information about Zodiac signs. The table's structure is shown in

Example 10-1. The data in the table is shown in Example 10-2.

Sample table structure

CREATE TABLE zodiac (
id INT UNSIGNED NOT NULL,
sign CHAR(11),
symbol CHAR(13),
planet CHAR(?7),
element CHAR(5),
start_month TINYINT,
start_day TINYINT,
end_month TINYINT,
end_day TINYINT,
PRIMARY KEY(id)

)

Sample table data

INSERT INTO zodiac VALUES (1,'Aries','Ram’,'Mars', fire',3,21,4,19);

INSERT INTO zodiac VALUES (2,'Taurus','Bull','Venus','earth’,4,20,5,20);
INSERT INTO zodiac VALUES (3,'Gemini','Twins','Mercury','air',5,21,6,21);
INSERT INTO zodiac VALUES (4,'Cancer’,'Crab’,'Moon’,'water',6,22,7,22);
INSERT INTO zodiac VALUES (5,'Leo','Lion','Sun’, fire',7,23,8,22);

INSERT INTO zodiac VALUES (6,'Virgo','Virgin','Mercury','earth’,8,23,9,22);
INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);

INSERT INTO zodiac VALUES (8,'Scorpio’,'Scorpion’,'Mars','water',10,24,11,21);
INSERT INTO zodiac VALUES (9,'Sagittarius','Archer', Jupiter', 'fire',11,22,12,21);
INSERT INTO zodiac VALUES (10,'Capricorn’,'Goat','Saturn’,'earth’,12,22,1,19);
INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,18);
INSERT INTO zodiac VALUES (12,'Pisces','Fishes','Neptune','water',2,19,3,20);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipes 10.3 through 10.8 cover the basics of connecting to a database server, sending queries and getting the results
back, as well as using queries that change the data in the database.

Typical PHP programs capture information from HTML form fields and store that information in the database. Some
characters, such as the apostrophe and backslash, have special meaning in SQL, so you have to be careful if your form
data contains those characters. PHP has a feature called "magic quotes" that attempts to make this easier. When the
configuration setting magic_quotes_gpc is on, variables coming from get requests, post requests, and cookies have single
quotes, double quotes, backslashes, and nulls escaped with a backslash. You can also turn on magic_quotes_runtime to
automatically escape quotes, backslashes, and nulls from external sources such as database queries or text files. For
example, if magic_quotes_runtime is on and you read a file into an array with file(), the special characters in that array are
backslash-escaped.

Unfortunately, "magic quotes" usually turns out to be more like "annoying quotes." If you want to use submitted form
data in any other context than just an SQL query (for example, displaying it in a page), then you need to undo the
escaping so the page looks right. If you've run into a PHP web site in which backslashes seem to accumulate before
single quotes in text fields, the culprit is almost certainly magic quotes. Recipe 10.7 explains PDO's bound parameters
support, which is a better way to make sure that special characters in user input are properly escaped when the user
input is incorporated into SQL queries. Recipe 10.9 discusses escaping special characters in queries in more detail.
General debugging techniques you can use to handle errors resulting from database queries are covered in Recipe
10.10.

The remaining recipes cover database tasks that are more involved than just simple queries. Recipe 10.11 shows how
to automatically generate unique ID values you can use as record identifiers. Recipe 10.12 covers building queries at
runtime from a list of fields. This makes it easier to manage INSERT and UPDATE queries that involve a lot of columns.
Recipe 10.13 demonstrates how to display links that let you page through a result set, displaying a few records on each
page. To speed up your database access, you can cache queries and their results, as explained in Recipe 10.14.

Recipe 10.15 shows some techniques for managing access to a single database connection from various places in a

large program. Last, Recipe 10.16 ties together some of the topics discussed in the chapter in a complete program that
stores a threaded message board in a database.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 10.1. Using DBM Databases

10.1.1. Problem

You have data that can be easily represented as key/value pairs, want to store it safely, and have very fast lookups
based on those keys.

10.1.2. Solution

Use the DBA abstraction layer to access a DBM-style database, as shown in Example 10-3.

Using a DBM database

<?php
$dbh = dba_open(‘fish.db','c’,'gdbm") or die($php_errormsg);

// retrieve and change values

if (dba_exists(‘flounder',$dbh)) {
$flounder_count = dba_fetch('flounder',$dbh);
$flounder_count++;
dba_replace('flounder',$flounder_count, $dbh);
print "Updated the flounder count.";

}else {
dba_insert(‘flounder',1, $dbh);
print "Started the flounder count.";

}

// no more tilapia
dba_delete('tilapia’,$dbh);

// what fish do we have?

for ($key = dba_firstkey($dbh); $key !== false; $key = dba_nextkey($dbh)) {
$value = dba_fetch($key, $dbh);
print "$key: $value\n";

dba_close($dbh);
7>

10.1.3. Discussion

PHP can support a few different kinds of DBM backends: GDBM, NDBM, DB2 , DB3, DBM, and CDB. The DBA abstraction
layer lets you use the same functions on any DBM backend. All these backends store key/value pairs. You can iterate
through all the keys in a database, retrieve the value associated with a particular key, and find if a particular key exists.
Both the keys and the values are strings.

The program in Example 10-4 maintains a list of usernames and passwords in a DBM database. The username is the
first command-line argument, and the password is the second argument. If the given username already exists in the
database, the password is changed to the given password; otherwise, the user and password combination are added to
the database.

Tracking users and passwords with a DBM database

<?php

$user = $_SERVER['argv'][1];
$password = $_SERVER['argv'][2];
$data_file = '/tmp/users.db’;

$dbh = dba_open($data_file,'c’,'gdbm") or die("Can't open db $data_file");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (dba_exists($user,$dbh)) {

print "User $user exists. Changing password.";
}else {

print "Adding user $user.";

}
dba_replace($user,$password,$dbh) or die("Can't write to database $data_file");

dba_close($dbh);
?>

The dba_open() function returns a handle to a DBM file (or false on error). It takes three arguments. The first is the
filename of the DBM file. The second argument is the mode for opening the file. A mode of r opens an existing database
for read-only access, and w opens an existing database for read-write access. The ¢ mode opens a database for read-
write access and creates the database if it doesn't already exist. Last, n does the same thing as ¢, but if the database
already exists, n empties it. The third argument to dba_open() is which DBM handler to use; this example uses 'gdbm'.
To find what DBM handlers are compiled into your PHP installation, look at the "DBA" section of the output from
phpinfo(). The "Supported handlers" line gives you your choices.

To find if a key has been set in a DBM database, use dba_exists(). It takes two arguments: a string key and a DBM
filehandle. It looks for the key in the DBM file and returns true if it finds the key (or false if it doesn't). The dba_replace()
function takes three arguments: a string key, a string value, and a DBM filehandle. It puts the key/value pair into the
DBM file. If an entry already exists with the given key, it overwrites that entry with the new value.

To close a database, call dba_close() . A DBM file opened with dba_open() is automatically closed at the end of a
request, but you need to call dba_close() explicitly to close persistent connections created with dba_open().

You can use dba_firstkey() and dba_nextkey() to iterate through all the keys in a DBM file and dba_fetch() to retrieve

the values associated with each key. The program in Example 10-5 calculates the total length of all passwords in a DBM
file.

Calculating password length with DBM

<?php

$data_file = '/tmp/users.db’;

$total_length = 0;

if (! ($dbh = dba_open($data_file,'r','gdbm"))) {
die("Can't open database $data_file");

}
$k = dba_firstkey($dbh);
while ($k) {

$total_length += strlen(dba_fetch($k,$dbh));
$k = dba_nextkey($dbh);
}

print "Total length of all passwords is $total_length characters.";

dba_close($dbh);

The dba_firstkey() function initializes $k to the first key in the DBM file. Each time through the while loop, dba_fetch()
retrieves the value associated with key $k and $total_length is incremented by the length of the value (calculated with
strlen()). With dba_nextkey(), $k is set to the next key in the file.

One way to store complex data in a DBM database is with serialize(). Example 10-6 stores structured user information
in a DBM database by serializing the structure before storing it and unserializing when retrieving it.

Storing structured data in a DBM database

<?php
$dbh = dba_open('users.db','c','gdbm’") or die($php_errormsg);

// read in and unserialize the data
if ($exists = dba_exists($_POST['username'], $dbh)) {
$serialized_data = dba_fetch($_POST['username'], $dbh) or die($php_errormsg);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$data = unserialize($serialized_data);
}else {
$data = array();

// update values
if ($_POST['new_password']) {
$data['password'] = $_POST['new_password'];

$datal'last_access'] = time();

// write data back to file
if ($exists) {
dba_replace($_POST['username'],serialize($data), $dbh);
}else {
dba_insert($_POST['username'],serialize($data), $dbh);

dba_close($dbh);
?>

While Example 10-6 can store multiple users' data in the same file, you can't search for, for example, a user's last
access time, without looping through each key in the file. If you need to do those kinds of searches, put your data in an
SQL database.

Each DBM handler has different behavior in some areas. For example, GDBM provides internal locking. If one process
has opened a GDBM file in read-write mode, other calls to dba_open() to open the same file in read-write mode will
fail. For other DBM handlers, add an | to the mode you pass to dba_open() to lock the database with a separate ./ck file
or a d to lock the database file itself. Two DBA functions are also database-specific: dba_optimize() and dba_sync().
The dba_optimize() function calls a handler-specific DBM file-optimization function. Currently, this is implemented only
for GDBM, for which its gdbm_reorganize() function is called. The dba_sync() function calls a handler-specific DBM file
synchronizing function. For DB2 and DB3, their sync() function is called. For GDBM, its gdbm_sync() function is called.
Nothing happens for other DBM handlers.

Using a DBM database is a step up from a plain text file but it lacks most features of an SQL database. Your data
structure is limited to key/value pairs, and locking robustness varies greatly depending on the DBM handler. Still, DBM
handlers can be a good choice for heavily accessed read-only data.

10.1.4. See Also

Recipe 5.7 discusses serializing data; documentation on the DBA functions at http://www.php.net/dba; for more
information on the DB2 and DB3 DBM handlers, see http://www.sleepycat.com/products/bdb.html (note that these

handlers are not generally free for commercial use); for GDBM, check out http://www.gnu.org/directory/gdbm.html or
.) -800) ; - i .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 10.2. Using an SQL.ite Database

10.2.1. Problem

You want to use a relational database that doesn't involve a separate server process.

10.2.2. Solution

Use SQLite. This robust, powerful database program comes with PHP 5 and doesn't require running a separate server.
An SQLite database is just a file. Example 10-7 creates an SQLite database, populates it with a table if it doesn't already
exist, and then puts some data into the table.

Creating an SQLite database

<?php
$db = new PDO('sqlite:/usr/local/zodiac');

// Create the table and insert the data atomically
$db->beginTransaction();
// Try to find a table named 'zodiac'
$q = $db->query("SELECT name FROM sglite_master WHERE type = 'table™ .
" AND name = 'zodiac™);
// If the query didn't return a row, then create the table
// and insert the data
if ($g->fetch() === false) {
$db->exec(<<<_SQL_

CREATE TABLE zodiac (

id INT UNSIGNED NOT NULL,

sign CHAR(11),

symbol CHAR(13),

planet CHAR(?),

element CHAR(5),

start_month TINYINT,

start_day TINYINT,

end_month TINYINT,

end_day TINYINT,

PRIMARY KEY(id)

SQL
)

// The individual SQL statements

$sql=<<<_SQL_
INSERT INTO zodiac VALUES (1,'Aries','Ram’,'Mars','fire',3,21,4,19);
INSERT INTO zodiac VALUES (2,'Taurus','Bull','Venus','earth',4,20,5,20);
INSERT INTO zodiac VALUES (3,'Gemini','Twins','Mercury','air',5,21,6,21);
INSERT INTO zodiac VALUES (4,'Cancer’,'Crab’,'Moon’,'water',6,22,7,22);
INSERT INTO zodiac VALUES (5,'Leo','Lion','Sun’, fire',7,23,8,22);
INSERT INTO zodiac VALUES (6,'Virgo','Virgin','Mercury','earth’,8,23,9,22);
INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);
INSERT INTO zodiac VALUES (8,'Scorpio','Scorpion','Mars','water',10,24,11,21);
INSERT INTO zodiac VALUES (9,'Sagittarius','Archer’, Jupiter', fire',11,22,12,21);
INSERT INTO zodiac VALUES (10,'Capricorn’,'Goat','Saturn’,'earth’,12,22,1,19);
INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,18);
INSERT INTO zodiac VALUES (12,'Pisces','Fishes','Neptune','water',2,19,3,20);
SQL;

// Chop up each line of SQL and execute it
foreach (explode("\n",trim($sql)) as $q) {
$db->exec(trim($q));

}
$db->commit();
}else {
// Nothing happened, so end the transaction
$db->rollback();

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10.2.3. Discussion

Because SQLite databases are just regular files, all the precautions and gotchas that apply to file access in PHP apply to
SQLite databases. The user that your PHP process is running as must have permission to read from and write to the
location where the SQLite database is. It is an extremely good idea to make this location somewhere outside your web
server's document root. If the database file can be read directly by the web server, then a user who guesses its location
can retrieve the entire thing, bypassing any restrictions you've built into the queries in your PHP programs.

In PHP, the sqlite extension provides regular SQLite access as well as a PDO driver for SQLite version 2. The pdo_sqlite
extension provides a PDO driver for SQLite version 3. If you're starting from scratch, use the PDO driver for SQLite 3,
since it's faster and has more features. If you already have an SQLite 2 database, consider using the PDO drivers to
migrate to SQLite 3.

The sqlite_master table referenced in Example 10-7 is special system table that holds information about other tables'so it's
useful in determining whether a particular table exists yet. Other databases have their own ways of providing this sort
of system metadata.

10.2.4. See Also

Documentation on SQLite at http://www.sglite.org/docs.html and on sglite_master at http://www.sqlite.org/fag.html#q9.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | MEXT # |
Recipe 10.3. Connecting to an SQL Database

10.3.1. Problem

You want access to a SQL database to store or retrieve information. Without a database, dynamic web sites aren't very
dynamic.

10.3.2. Solution

Create a new PDO object with the appropriate connection string. Example 10-8 shows PDO object creation for a few
different kinds of databases.

Connecting with PDO

<?php

// MySQL expects parameters in the string

$mysqgl = new PDO('mysql:host=db.example.com', $user, $password);

// Separate multiple parameters with ;

$mysgl = new PDO('mysql:host=db.example.com;port=31075', $user, $password)

$mysqgl = new PDO('mysqgl:host=db.example.com;port=31075;dbname=food', $user, $password)
// Connect to a local MySQL Server

$mysqgl = new PDO('mysql:unix_socket=/tmp/mysql.sock’, $user, $password)

// PostgreSQL also expects parameters in the string

$pgsqgl = new PDO('pgsql:host=db.example.com’, $user, $password);

// But you separate multiple parameters with ' '

$pgsql = new PDO('pgsql:host=db.example.com port=31075', $user, $password)

$pgsqgl = new PDO('pgsql:host=db.example.com port=31075 dbname=food', $user, $password)
// You can put the user and password in the DSN if you like.

$pgsqgl = new PDO("pgsql:host=db.example.com port=31075 dbname=food user=$user password
=$password");

// Oracle

// If a database name is defined in tnsnames.ora, just put that in the DSN

$oci = new PDO('oci:food', $user, $password)

// Otherwise, specify an Instant Client URL

$oci = new PDO('oci:dbname=//db.example.com:1521/food', $user, $password)

// Sybase (If PDO is using FreeTDS)

$sybase = new PDO('sybase:host=db.example.com;dbname=food', $user, $password)
// Microsoft SQL Server (If PDO is using MS SQL Server libraries)

$mssql = new PDO('mssql:host=db.example.com;dbname=food', $user, $password);
// DBLib (for other versions of DB-lib)

$dblib = new PDO('dblib:host=db.example.com;dbname=food', $user, $password);

// ODBC -- a predefined connection

$odbc = new PDO('odbc:DSN=food'");

// ODBC -- an ad-hoc connection. Provide whatever the underlying driver needs
$odbc = new PDO('odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=
C:\\data\\food.mdb;Uid=Chef");

// SQLite just expects a filename -- no user or password
$sqlite = new PDO('sqlite:/usr/local/zodiac.db');

$sqlite = new PDO('sqlite:c:/data/zodiac.db');

// SQLite can also handle in-memory, temporary databases
$sqlite = new PDO('sqlite::memory:");

// SQLite v2 DSNs look similar to v3

$sqlite2 = new PDO('sqlite2:/usr/local/old-zodiac.db'");

?>

10.3.3. Discussion

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If all goes well, the PDO constructor returns a new object that can be used for querying the database. If there's a
problem, a PDOException is thrown.

As you can see from Example 10-8, the format of the DSN is highly dependent on which kind of database you're
attempting to connect to. In general, though, the first argument to the PDO constructor is a string that describes the
location and name of the database you want and the second and third arguments are the username and password to

connect to the database with. Note that to use a particular PDO backend, PHP must be built with support for that
backend. Use the output from phpinfo() to determine what PDO backends your PHP setup has.

10.3.4. See Also

Recipe 10.6 for querying an SQL database; Recipe 10.6 for modifying an SQL database; documentation on PDO at
http://www.php.net/PDQ.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | MEXT # |
Recipe 10.4. Querying an SQL Database

10.4.1. Problem

You want to retrieve some data from your database.

10.4.2. Solution

Use PDO::query() to send the SQL query to the database, and then a foreach loop to retrieve each row of the result, as
shown in Example 10-9.

Sending a query to the database

<?php
$st = $db->query('SELECT symbol,planet FROM zodiac'");
foreach ($st->fetchAll() as $row) {

print "{$row['symbol']} goes with {$row['planet']}
\n";

?>

10.4.3. Discussion
The query() method returns a PDOStatement object. Its fetchAll() provides a concise way to do something with each row
returned from a query.

The fetch() method returns a row at a time, as shown in Example 10-10.

Fetching individual rows

<?php

$rows = $db->query('SELECT symbol,planet FROM zodiac");

$firstRow = $rows->fetch();

print "The first results are that {$row['symbol']} goes with {$row['planet']}";
?>

Each call to fetch() returns the next row in the result set. When there are no more rows available, fetch() returns false.

By default, fetch() returns an array containing each column in the result set row twice'once with an index
corresponding to the column name and once with a numerical index. That means that the $firstRow variable in Example
10-10 has four elements: $firstRow[0] is Ram, $firstRow[1] is Mars, $firstRow['symbol'] is Ram, and $firstRow['planet'] is Mars.

To have fetch() return rows in a different format, pass a PDO::FETCH_* constant to query() as a second argument. You
can also pass one of the constants as the first argument to fetch(). The allowable constants and what they make fetch(
) return are listed in Table 16-2.

Table 10-1. PDO::FETCH_* constants

Constant Row format

PDO::FETCH_BOTH | Array with both numeric and string (column names) keys. The default format.

PDO::FETCH_NUM | Array with numeric keys.

PDO::FETCH_ASSOC | Array with string (column names) keys.

PDO::FETCH_OBJ Object of class stdClass with column names as property names.

Object of class PDORow with column names as property names. The properties aren't populated until

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PDO::FETCH_LAZY acéessed, so this is a good choice if your result row has a lot of columns. Note that if ydu store the
returned object and fetch another row, the stored object is updated with values from the new row.

In addition to the choices in Table 16-2, there are additional ways a row can be structured. These other ways require
more than just passing a constant to query() or fetch(), however.

In combination with bindColumn(), the PDO::FETCH_BOUND fetch mode lets you set up variables whose values get
refreshed each time fetch() is called. Example 7-34 shows how this works.

Binding result columns

<?php
$row = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_BOUND);
// Put the value of the 'symbol' column in $symbol
$row->bindColumn('symbol', $symbol);
// Put the value of the second column (‘planet') in $planet
$row->bindColumn(2, $planet);
while ($row->fetch()) {
print "$symbol goes with $planet.
\n";

?>

In Example 7-34, each time fetch() is called, $symbol and $planet are assigned new values. Note that you can use either a
column name or number with bindColumn(). Column numbers start at 1.

When used with query(), the PDO::FETCH_INTO and PDO::FETCH_CLASS constants put result rows into specialized objects of
particular classes. To use these modes, first create a class that extends the built-in PDOStatement class. Example 10-12
extends PDOStatement with a method that reports the average length of all the column values and then sets up a query to
use it.

Extending PDOStatement

<?php
class AvgStatement extends PDOStatement {
public function avg() {
$sum = 0;
$vars = get_object_vars($this);
// Remove PDOStatement's built-in 'queryString' variable
unset($vars['queryString']);
foreach ($vars as $var => $value) {
$sum += strlen($value);

return $sum / count($vars);

}
}
$row = new AvgStatement;
$results = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_INTO, $row);
// Each time fetch() is called, $row is repopulated
while ($results->fetch()) {

print "$row->symbol belongs to $row->planet (Average: {$row->avg()})
\n";

?>

In Example 10-12, the second and third arguments to guery() tell PDO "each time you fetch a new row, stuff the
values into properties of the $row variable." Then, inside the while() loop, the properties of $row are available, as well as
the newly defined avg() method.

PDO::FETCH_INTO is useful when you want to keep data around in the same object, such as whether you're displaying an
odd- or even-numbered row, throughout all the calls to fetch(). But when you want a new object for each row, use
PDO::FETCH_CLASS. Pass it to query() like PDO::FETCH_INTO, but make the third argument to query() a class name, not an
object instance. The class name you provide with PDO::FETCH_CLASS must extend PDOStatement.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10.4.4. See Also

Recipe 10.5 for other ways to retrieve data; Recipe 10.6 for modifying an SQL database; Recipe 10.7 for repeating
queries efficiently; documentation on PDO at http://www.php.net/PDO .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 10.5. Retrieving Rows Without a Loop

10.5.1. Problem

You want a concise way to execute a query and retrieve the data it returns.

10.5.2. Solution

Use fetchAll() to get all the results from a query at once, as shown in Example 10-13.

Getting all results at once

<?php
$st = $db->query('SELECT planet, element FROM zodiac');
$results = $st->fetchAll();
foreach ($results as $i => $result) {
print "Planet $i is {$result['planet']}
\n";

?>

10.5.3. Discussion

The fetchAll() method is useful when you need to do something that depends on all the rows a query returns, such as
counting how many rows there are or handling rows out of order. Like fetch(), fetchAll() defaults to representing each
row as an array with both numeric and string keys and accepts the various PDO::FETCH_* constants to change that
behavior.

fetchAll() also accepts a few other constants that affect the results it returns. To retrieve just a single column from the
results, pass PDO::FETCH_COLUMN and a second argument, the index of the column you want. The first column is 0, not 1.

10.5.4. See Also

Recipe 10.6 for querying an SQL database and more information on fetch modes; Recipe 10.6 for modifying an SQL
database; Recipe 10.7 for repeating queries efficiently; documentation on PDO at http://www.php.net/PDO.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | MEXT # |
Recipe 10.6. Modifying Data in an SQL Database

10.6.1. Problem

You want to add, remove, or change data in an SQL database.

10.6.2. Solution

Use PDO::exec() to send an INSERT, DELETE, or UPDATE command, as shown in Example 10-14.

Using PDO::exec()

<?php
$db->exec("INSERT INTO family (id,name) VALUES (1,'Vito')");

$db->exec("DELETE FROM family WHERE name LIKE 'Fredo™);

$db->exec("UPDATE family SET is_naive = 1 WHERE name LIKE 'Kay");
?>

You can also prepare a query with PDO::prepare() and execute it with PDOStatement::execute(), as shown in

Preparing and executing a query

<?php
$st = $db->prepare('INSERT INTO family (id,name) VALUES (?,?)");
$st->execute(array(1,'Vito'));

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?);
$st->execute(array('Fredo"));

$st = $db->prepare('UPDATE family SET is_naive = ? WHERE name LIKE ?');
$st->execute(array(1,'Kay');
?>

10.6.3. Discussion

The exec() method sends to the database whatever it's passed. For INSERT, UPDATE, and DELETE queries, it returns the
number of rows affected by the query.

The prepare() and execute() methods are especially useful for queries that you want to execute multiple times. Once
you've prepared a query, you can execute it with new values without re-preparing it. Example 10-16 reuses the same
prepared query three times.

Reusing a prepared statement

<?php

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo"));

$st->execute(array('Sonny"));

$st->execute(array('Luca Brasi'));

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10.6.4. See Also

Recipe 10.7 for information on repeating queries; documentation on PDO::exec() at http://www.php.net/PDO::exec,
on PDO::prepare() at http://www.php.net/PDQ::prepare, and on PDOStatement::execute() at
http://www.php.net/PDOStatement::execute.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 10.7. Repeating Queries Efficiently

10.7.1. Problem

You want to run the same query multiple times, substituting in different values each time.

10.7.2. Solution

Set up the query with PDO::prepare() and then run it by calling execute() on the prepared statement that prepare()
returns. The placeholders in the query passed to prepare() are replaced with data by execute(), as shown in Example
10-12 .

Running prepared statements

<?php
// Prepare
$st = $db->prepare("SELECT sign FROM zodiac WHERE element LIKE ?");
// Execute once
$st->execute(array('fire"));
while ($row = $st->fetch()) {
print $row[0] . "
\n";

// Execute again

$st->execute(array(‘'water"));

while ($row = $st->fetch()) {
print $row[0] . "
\n";

?>

10.7.3. Discussion

The values passed to execute() are called bound parameters'each value is associated with (or "bound to") a
placeholder in the query. Two great things about bound parameters are security and speed. With bound parameters,
you don't have to worry about SQL injection attacks. PDO appropriately quotes and escapes each parameter so that
special characters are neutralized. Also, upon prepare(), many database backends do some parsing and optimizing of
the query, so each call to execute() is faster than calling exec() or query() with a fully formed query in a string you've
built yourself.

In Example 10-17, the first execute() runs the query SELECT sign FROM zodiac WHERE element LIKE 'fire’. The second execute()
runs SELECT sign FROM zodiac WHERE element LIKE 'water'.

Each time, execute() substitutes the value in its second argument for the ? placeholder. If there is more than one
placeholder, put the arguments in the array in the order they should appear in the query. Example 10-18 shows
prepare() and execute() with two placeholders.

Multiple placeholders

<?php
$st = $db->prepare(
"SELECT sign FROM zodiac WHERE element LIKE ? OR planet LIKE ?");

// SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'
$st->execute(array('earth’,'Mars"));
?>

In addition to the ? placeholder style, PDO also supports named placeholders. If you've got a lot of placeholders in a
query, this can make them easier to read. Instead of ?, put a placeholder name (which has to begin with a colon) in the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

query, and then use those placeholder names (without the coions) as keys in the parameter arrail you pass to e}(ecute(
). Example 10-19 shows named placeholders in action.

Using named placeholders

<?php
$st = $db->prepare(

"SELECT sign FROM zodiac WHERE element LIKE :element OR planet LIKE :planet");
// SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'
$st->execute(array('planet’ => 'Mars', 'element' => 'earth’));
$row = $st->fetch();

With named placeholders, your queries are easier to read and you can provide the values to execute() in any order.
Note, though, that each placeholder name can only appear in a query once. If you want to provide the same value more
than once in a query, use two different placeholder names and include the value twice in the array passed to execute(

).

Aside from ? and named placeholders, prepare() offers a third way to stuff values into queries: bindParam(). This
method automatically associates what's in a variable with a particular placeholder. Example 10-20 shows how to use
bindParam().

Using bindParam()

<?php

$pairs = array('Mars' => 'water’,
'Moon' => 'water",
'Sun' => 'fire');

$st = $db->prepare(

"SELECT sign FROM zodiac WHERE element LIKE :element AND planet LIKE :planet");
$st->bindParam(':element’, $element);
$st->bindparam(':planet’, $planet);
foreach ($pairs as $planet => $element) {

// No need to pass anything to execute() --

// the values come from $element and $planet

$st->execute();

var_dump($st->fetch());

?>

In Example 10-20, there's no need to pass any values to execute(). The two calls to bindParam() tell PDO "whenever
you execute $st, use whatever's in the $element variable for the :element placeholder and whatever's in the $planet variable
for the :planet placeholder." The values in those variables when you call bindParam() don't matter'it's the values in
those variables when execute() is called that counts. Since the foreach statement puts array keys in $planet and array
values in $element, the keys and values from $pairs are substituted into the query.

If you use ? placeholders with prepare(), provide a placeholder position as the first argument to bindParam() instead
of a parameter name. Placeholder positions start at 1, not 0.

bindParam() takes its cue on how to deal with the provided value based on that value's PHP type. Force bindParam()
to treat the value as a particular type by passing a type constant as a third argument. The type constants that
bindParam() understands are listed in Table 10-2.

Table 10-2. PDO::PARAM_* constants

Constant Type
PDO::PARAM_NULL NULL
PDO::PARAM_BOOL Boolean
PDO::PARAM_INT Integer
PDO::PARAM_STR String
PDO::PARAM_LOB "Large Object"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The PDO::PARAM_LOB type is particularly handy because it treats the parameter as a stream. It makes for an efficient way
to stuff the contents of files (or anything that can be represented by a stream, such as a remote URL) into a database
table. Example 10-21 uses glob() to slurp the contents of all the files in a directory into a database table.

Putting file contents into a database with PDO::PARAM_LOB

<?php
$st = $db->prepare('INSERT INTO files (path,contents) VALUES (:path,:contents)’);
$st->bindParam(':path',$path);
$st->bindParam(':contents',$fp,PDO::PARAM_LOB);
foreach (glob('c:/documents/*.*") as $path) {
// Get a filehandle that PDO::PARAM_LOB can work with
$fp = fopen($path,'r');
$st->execute();

?>

Using PDO::PARAM_LOB effectively depends on your underlying database. For example, with Oracle your query must
create an empty LOB handle and be inside a transaction. The "Inserting an image into a database: Oracle" example of
the PDO manpage at http://www.php.net/PDO shows the proper syntax to do this.

10.7.4. See Also

Documentation on PDO::prepare() at http://www.php.net/PDO::prepare, PDOStatement::execute() at
http://www.php.net/PDOStatement: :execute, on PDO::bindParam() at http://www.php.net/PDO::bindParam, and on
PDO::PARAM_LOB in the "Large Objects" section of http://www.php.net/PDO.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 10.8. Finding the Number of Rows Returned by a Query

10.8.1. Problem

You want to know how many rows a SELECT query returned, or you want to know how many rows were changed by an
INSERT, UPDATE, or DELETE query.

10.8.2. Solution

If you're issuing an INSERT, UPDATE, or DELETE with PDO::exec(), the return value from exec() is the nhumber of modified
rows.

If you're issuing an INSERT, UPDATE, or DELETE with PDO::prepare() and PDOStatement: :execute(), call
PDOStatement: :rowCount() to get the number of modified rows, as shown in Example 10-22.

Counting rows with rowCount()

<?php

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo"));

print "Deleted rows: " . $st->rowCount();
$st->execute(array('Sonny"));

print "Deleted rows: " . $st->rowCount();
$st->execute(array('Luca Brasi'));

print "Deleted rows: " . $st->rowCount();

?>

If you're issuing a SELECT statement, the only foolproof way to find out how many rows are returned is to retrieve them
all with fetchAll() and then count how many rows you have, as shown in Example 10-23.

Counting rows from a SELECT

<?php

$st = $db->query('SELECT symbol,planet FROM zodiac'");
$all= $st->fetchAll(PDO::FETCH_COLUMN, 1);

print "Retrieved ". count($all) . " rows";

?>

10.8.3. Discussion

Although some database backends provide information to PDO about the number of rows retrieved by a SELECT so that
rowCount() can work in those circumstances, not all do. So relying on that behavior isn't a good idea.

However, retrieving everything in a large result set can be inefficient. As an alternative, ask the database to calculate a
result set size with the COUNT(*) function. Use the same WHERE clause as you would otherwise, but ask SELECT to return
COUNT(*) instead of a list of fields.

10.8.4. See Also

Documentation on PDO::rowCount at http://www.php.net/PDO::rowCount and on PDO::exec() at
http://www.php.net/exec.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & phiy | | MEXT # |
Recipe 10.9. Escaping Quotes

10.9.1. Problem

You need to make text or binary data safe for queries.

10.9.2. Solution

Write all your queries with placeholders so that prepare() and execute() can escape strings for you. Recipe 10.7
details the different ways to use placeholders.

If you need to apply escaping yourself, use the PDO::quote() method. The rare circumstance you might need to do this
could be if you want to escape SQL wildcards coming from user input, as shown in Example 10-24.

Manual quoting

<?php

$safe = $db->quote($_GET['searchTerm']);

$safe = strtr($safe,array(’_' =>"_', '%' => "\%"));

$st = $db->query("SELECT * FROM zodiac WHERE planet LIKE $safe");
?>

10.9.3. Discussion

The PDO::quote() method makes sure that text or binary data is appropriately quoted, but you may also need to quote
the SQL wildcard characters % and _ to ensure that SELECT statements using the LIKE operator return the right results. If
$_GET['searchTerm'] is set to Melm% and Example 10-24 doesn't call strtr(), its query returns rows with planet set to Melmac,
Melmacko, Melmacedonia, or anything else beginning with Melm.

Because % is the SQL wildcard meaning "match any number of characters" (like * in shell globbing) and _ is the SQL
wildcard meaning "match one character" (like ? in shell globbing), those need to be backslash-escaped as well.

strtr() must be called after PDO::quote(). Otherwise, PDO::quote() would backslash-escape the backslashes strtr()
adds. With PDO::quote() first, Melm_ is turned into Melm_, which is interpreted by the database to mean "the string M e
I m followed by a literal underscore character." With PDO::quote() after strtr(), Melm_ is turned into Melm_, which is
interpreted by the database to mean "the string Melm followed by a literal backslash character, followed by the
underscore wildcard." This is the same thing that would happen if we escaped the SQL wildcards and then used the
resulting value as a bound parameter.

Quoting of placeholder values happens even if magic_quotes_gpc or magic_quotes_runtime is turned on. Similarly, if you call
PDO::quote() on a value when magic quotes are active, the value gets quoted anyway. For maximum portability,
remove the magic quotessupplied backslashes before you use a query with placeholders or call PDO::quote(). Example
10-25 shows this check.

Checking for magic quotes

<?php

// The behavior of magic_quotes_sybase can also affect things

if (get_magic_quotes_gpc() && (! ini_get('magic_quotes_sybase"))) {
$fruit = stripslashes($_GET['fruit']);

}else {
$fruit = $_GET['fruit'];

$st = $db->prepare('UPDATE orchard SET trees = trees - 1 WHERE fruit = ?");
$st->execute(array($fruit));
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you have any control over your server, turn magic quotes off and make your life a lot easier. However, if you're
trying to write maximally portable code that could run in an environment you don't control, you need to look out for this
problem.

10.9.4. See Also

Documentation on PDO::quote() at http://www.php.net/PDO::quote and on magic quotes at
1/ £ inf -~ . —anc.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 10.10. Logging Debugging Information and Errors

10.10.1. Problem

You want access to information to help you debug database problems. For example, when a query fails, you want to see
what error message the database returns.

10.10.2. Solution

Use PDO::errorCode() or PDOStatement::errorCode() after an operation to get an error code if the operation failed.
The corresponding errorinfo() method returns more information about the error. Example 10-26 handles the error that
results from trying to access a nonexistent table.

Printing error information

<?php
$st = $db->prepare('SELECT * FROM imaginary_table');
if (1 $st) {
$error = $db->errorInfo();
print "Problem ({$error[2]})";
}

?>

10.10.3. Discussion

The errorCode() method returns a five-character error code. PDO uses the SQL 92 SQLSTATE error codes. By that
standard, 00000 means "no error," so a call to errorCode() that returns 00000 indicates success.

The errorInfo() method returns a three-element array. The first element contains the five-character SQLSTATE code
(the same thing that errorCode() returns). The second element is a database backend-specific error code. The third
element is a database backend-specific error message.

Make sure to call errorCode() or errorInfo() on the same object on which you called the method that you're checking
for an error. In Example 10-26, the prepare() method is called on the PDO object, so errorInfo() is called on the PDO
object. If you want to check whether a fetch() called on a PDOStatement object succeeded, call errorCode() or errorInfo(
) on the PDOStatement object.

One exception to this rule is when creating a new PDO object. If that fails, PDO throws an exception. It does this
because otherwise there'd be no object on which you could call errorCode() or errorInfo(). The message in the
exception details why the connection failed.

To have PDO throw exceptions every time it encounters an error, call setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION) on your PDO object after it's created. This way, you can handle database problems uniformly
instead of larding your code with repeated calls to errorCode() and errorInfo(). Example 10-27 performs a series of
database operations wrapped inside a try/catch block.

Catching database exceptions

<?php
try {
$db = new PDO('sqlite:/usr/local/zodiac.db');
// Make all DB errors throw exceptions
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$st = $db->prepare('SELECT * FROM zodiac");
$st->execute();
while ($row = $st->fetch(PDO::FETCH_NUM)) {
print implode(',',$row). "
\n";

} catch (Exception $e) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

print "Database Problem: " . $e->getMessage();

¥

?>

Handling PDO errors as exceptions is useful inside of transactions, too. If there's a problem with a query once the
transaction's started, just roll back the transaction when handling the exception.

Similar to the exception error mode is the "warning" error mode. setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING)
tells PDO to issue warnings when a database error is encountered. If you prefer to work with regular PHP errors instead
of exceptions, this is the error mode for you. Set up a custom error handler with set_error_handler() to handle
E_WARNING level events and you can deal with your database problems in the error handler.

Whatever the error mode, PDO throws an exception if the initial PDO object creation fails. When using PDO, it's an
extremely good idea to set up a default exception handler with set_exception_handler(). Without a default exception
handler, an uncaught exception causes the display of a complete stack trace if display_errors is on. If an exception is
thrown when connecting to the database, this stack trace may contain sensitive information, including database
connection credentials.

10.10.4. See Also

Documentation on PDO::errorCode() at http://www.php.net/PDO::errorCode, on PDO: :errorinfo() at
http://www.php.net/PDO::errorInfo, on PDOStatement: :errorCode() at
http://www.php.net/PDOStatement: :errorCode, on PDOStatement::errorInfo() at
http://www.php.net/PDOStatement::errorlnfo, on set_exception_handler() at
http://www.php.net/set_exception_handler, and on set_error_handler() at http://www.php.net/set-error-handler. A
list of some SQL 92 SQLSTATE error codes that PDO knows about is available at

http://cvs.php.net/viewcvs.cgi/php-
src/ext/pdo/pdo_sqlstate.c?view=markup, but some database backends may raise errors other than the ones listed .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 10.11. Creating Unique ldentifiers

10.11.1. Problem

You want to assign unique IDs to users, articles, or other objects as you add them to your database.

10.11.2. Solution

Use PHP's unigid() function to generate an identifier. To restrict the set of characters in the identifier, pass it through
md5(), which returns a string containing only numerals and the letters a through f. Example 10-28 creates identifiers
using both techniques.

Creating unique identifiers

<?php

$st = $db->prepare('INSERT INTO users (id, name) VALUES (?,?)");
$st->execute(array(uniqid(), 'Jacob'));
$st->execute(array(md5(unigid()), 'Ruby"));

?>

You can also use a database-specific method to have the database generate the ID. For example, SQLite 3 and MySQL
support AUTOINCREMENT columns that automatically assign increasing integers to a column as rows are inserted.

10.11.3. Discussion

unigid() uses the current time (in microseconds) and a random number to generate a string that is extremely difficult
to guess. md5() computes a hash of whatever you give it. It doesn't add any randomness to the identifier, but restricts
the characters that appear in it. The results of md5() don't contain any punctuation, so you don't have to worry about
escaping issues. Plus, you can't spell any naughty words with just the first six letters of the alphabet (in English, at
least).

If you'd rather give your database the responsibility of generating the unique identifier, use the appropriate syntax
when creating a table. Example 10-29 shows how to create a table in SQLite with a column that gets an auto-
incremented integer ID each time a new row is inserted.

Creating an auto-increment column with SQLite

<?php
// the type INTEGER PRIMARY KEY AUTOINCREMENT tells SQLite
// to assign ascending IDs
$db->exec(<<<_SQL_
CREATE TABLE users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(255)
)
SQL
)i

// No need to insert a value for 'id' -- SQLite assigns it
$st = $db->prepare('INSERT INTO users (name) VALUES (?)");

// These rows are assigned 'id' values
foreach (array('Jacob’,'Ruby') as $name) {
$st->execute(array($name));

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 10-30 shows the same thing for MySQL.

Creating an auto-increment column with MySQL

<?php
// the AUTO_INCREMENT tells MySQL to assign ascending IDs
// that column must be the PRIMARY KEY
$db->exec(<<<_SQL_
CREATE TABLE users (
id INT NOT NULL AUTO_INCREMENT,
name VARCHAR(255),
PRIMARY KEY(id)

)
SQL
)i
// No need to insert a value for 'id' -- MySQL assigns it
$st = $db->prepare('INSERT INTO users (name) VALUES (?)");

// These rows are assigned 'id' values
foreach (array('Jacob’,'Ruby") as $name) {
$st->execute(array($name));

?>

When the database creates ID values automatically, the PDO: :lastInsertId() method retrieves them. Call lastInsertId()
on your PDO object to get the auto-generated ID of the last inserted row. Some database backends also let you pass a
sequence name to lastInsertld() to get the last value from the sequence.

10.11.4. See Also

Documentation on unigid() at http://www.php.net/uniqgid, on md5() at http://www.php.net/md5, on
PDO::lastInsertld() at http://www.php.net/PDO::lastInsertld, on SQLite and AUTOINCREMENT at
http://www.sqlite.org/fag.html#qgl, and on MySQL and is found AUTO_INCREMENT at
http://dev.mysql.com/doc/refman/5.0/en/example-auto-increment.html .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 10.12. Building Queries Programmatically

10.12.1. Problem

You want to construct an INSERT or UPDATE query from an array of field names. For example, you want to insert a new
user into your database. Instead of hardcoding each field of user information (such as username, email address, postal
address, birthdate, etc.), you put the field names in an array and use the array to build the query. This is easier to
maintain, especially if you need to conditionally INSERT or UPDATE with the same set of fields.

10.12.2. Solution

To construct an UPDATE query, build an array of field/value pairs and then implode() together each element of that

array, as shown in Example 10-31.

Building an UPDATE query

<?php
// A list of field names
$fields = array('symbol’,'planet’,'element’);

$update_fields = array();

$update_values = array();

foreach ($fields as $field) {
$update_fields[] = "$field = ?";
// Assume the data is coming from a form
$update_values[] = $_POST[$field];

}

$st = $db->prepare("UPDATE zodiac SET " .
implode(',', $update_fields) .
'WHERE sign = ?");

// Add 'sign’ to the values array
$update_values[] = $_GET['sign'];

// Execute the query
$st->execute($update_values);
?>

For an INSERT query, do the same thing, although the SQL syntax is a little different, as Example 10-32 demonstrates.

Building an INSERT query

<?php

// A list of field names

$fields = array('symbol’,'planet’,'element’);

$placeholders = array();

$values = array();

foreach ($fields as $field) {
// One placeholder per field
$placeholders[] = '?';
// Assume the data is coming from a form
$values[] = $_POST[$field];

$st = $db->prepare('INSERT INTO zodiac (' .
implode(',', $fields) .
") VALUES ('
implode(',', $placeholders) .

"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Execute the QUery
$st->execute($values);
?>

10.12.3. Discussion

Placeholders make this sort of thing a breeze. Because they take care of escaping the provided data, you can easily
stuff user-submitted data into programatically generated queries.

If you use sequence-generated integers as primary keys, you can combine the two query-construction techniques into
one function. That function determines whether a record exists and then generates the correct query, including a new

ID, as shown in the pc_build_query() function in Example 10-33.

pc_build_query()

<?php
function pc_build_query($db,$key_field,$fields,$table) {
$values = array();
if (! empty($_POST[$key_field])) {
$update_fields = array();
foreach ($fields as $field) {
$update_fields[] = "$field = ?";
// Assume the data is coming from a form
$values[] = $_POST[$field];

b
// Add the key field's value to the $values array
$values[] = $_POST[$key_field];
$st = $db->prepare("UPDATE $table SET " .
implode(',', $update_fields) .
"WHERE $key_field = ?");
}else {
// Start values off with a unique ID
// If your DB is set to generate this value, use NULL instead
$values[] = md5(uniqid());
$placeholders = array('?');
foreach ($fields as $field) {
// One placeholder per field
$placeholders[] = '?';
// Assume the data is coming from a form
$values[] = $_POST[$field];

b

$st = $db->prepare("INSERT INTO $table ($key_field," .
implode(',',$fields) . ') VALUES ('.
implode(',',$placeholders) .")");

$st->execute($values);
return $st;

?>

Using this function, you can make a simple page to edit all the information in the zodiac table, shown in Example 10-34.

A simple add/edit record page

<?php
$db = new PDO('sqlite:/usr/local/data/zodiac.db");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$fields = array('sign','symbol’,'planet’,'element’,
'start_month','start_day','end_month','end_day");

$cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';

switch ($cmd) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

case 'edit':
try {
$st = $db->prepare('SELECT ' . implode(',', $fields) .
' FROM zodiac WHERE id = ?");
$st->execute(array($_REQUEST['id']));
$row = $st->fetch(PDO::FETCH_ASSOC);
} catch (Exception $e) {
$row = array();

case 'add":
print '<form method="post" action="".
htmlentities($_SERVER['PHP_SELF']) . "'>";
print '<input type="hidden" name="cmd" value="save">';
print '<table>";
if ('edit' == $_REQUEST['cmd']) {
printf('<input type="hidden" name="id" value="%d">",
$_REQUEST['id']);

b
foreach ($fields as $field) {
if ('edit' == $_REQUEST['cmd']) {
$value = htmlentities($row[$field]);
}else {
$value = ";

printf('<tr><td>%s: </td><td><input type="text" name="%s" value="%s">',
$field, $field,$value);
printf('</td></tr>");

print '<tr><td></td><td><input type="submit" value="Save"></td></tr>";
print '</table></form>";
break;
case 'save':
try {
$st = pc_build_query($db,'id',$fields,'zodiac');
print 'Added info.";
} catch (Exception $e) {
print "Couldn't add info: " . htmlentities($e->getMessage());

print '<hr>";
case 'show':
default:
$self = htmlentities($_SERVER['PHP_SELF']);
print '";
foreach ($db->query('SELECT id,sign FROM zodiac') as $row) {
printf(' %s",
$self,$row['id'],$row['sign']);

print '<hr> Add New";
print '";
break;

o>

The switch statement controls what action the program takes based on the value of $_REQUEST['cmd']. If $_REQUEST['cmd'] is
add or edit, the program displays a form with text boxes for each field in the $fields array, as shown in Figure 10-1. If
$_REQUEST['cmd'] is edit, values for the row with the supplied $id are loaded from the database and displayed as defaults. If
$_REQUEST['cmd'] is save, the program uses pc_build_query() to generate an appropriate query to either INSERT or UPDATE
the data in the database. After saving (or if no $_REQUEST['cmd'] is specified), the program displays a list of all zodiac
signs, as shown in Figure 10-2.

Adding and editing a record

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Listing records

Whether pc_build_query() builds an INSERT or UPDATE statement is based on the presence of the request variable
$_REQUEST['id'] (because id is passed in $key_field). If $ REQUEST['id'] is not empty, the function builds an UPDATE query to
change the row with that ID. If $_REQUEST['id'] is empty (or it hasn't been set at all), the function generates a new ID and
uses that new ID in an INSERT query that adds a row to the table. To have pc_build_query() respect a database's
AUTOINCREMENT setting, start $values off with null instead of md5(unigid()).

10.12.4. See Also

Recipe 10.7 for information about placeholders, prepare(), and execute(); documentation on PDO: :prepare() at

http://www.php.net/PDO::prepare and on PDOStatement: :execute() at
http://www.php.net/PDOStatement::execute([20091[2009]).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 10.13. Making Paginated Links for a Series of Records

10.13.1. Problem

You want to display a large dataset a page at a time and provide links that move through the dataset.

10.13.2. Solution

Use database-appropriate syntax to grab just a section of all the rows that match your query. Example 10-35 shows
how this works with SQLite.

Paging with SQLite

<?php
// Select 5 rows, starting after the first 3
foreach ($db->query('SELECT * FROM zodiac ' .
'ORDER BY sign LIMIT 5"
'OFFSET 3'") as $row) {
// Do something with each row

>

The pc_indexed_links() and pc_print_link() functions in this recipe assist with printing paging information. Example
10-36 shows them in action.

Displaying paginated results

<?php

$offset = isset($_GET['offset']) ? intval($_GET['offset']) : 1;

if (! $offset) { $offset = 1; }

$per_page = 5;

$total = $db->query('SELECT COUNT(*) FROM zodiac')->fetchColumn(0);

$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .
"LIMIT $per_page OFFSET " . ($offset-1);
$lastRowNumber = $offset - 1;

foreach ($db->query($limitedSQL) as $row) {
$lastRowNumber++;
print "{$row['sign']}, {$row['symbol'T} ({$row['id']})
\n";

pc_indexed_links($total,$offset,$per_page);

print "
";

print "(Displaying $offset - $lastRowNumber of $total)";
?>

10.13.3. Discussion
pc_print_link() is shown in Example 10-37 and pc_indexed_links() in Example 10-38.

pc_print_link()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
function pc_print_link($inactive, $text, $offset=") {
if ($inactive) {
print "$text";
Yelse {
print "".
"<a href=""". htmlentities($_SERVER['PHP_SELF']) .
"?offset=$offset'>$text";

pc_indexed_links()

<?php
function pc_indexed_links($total,$offset, $per_page) {
$separator ="' | ';

// print "<<Prev" link
pc_print_link($offset == 1, '<< PreV', $offset - $per_page);

// print all groupings except last one
for ($start = 1, $end = $per_page;
$end < $total;
$start += $per_page, $end += $per_page) {
print $separator;
pc_print_link($offset == $start, "$start-$end", $start);
}

/* print the last grouping -
* at this point, $start points to the element at the beginning
* of the last grouping

*/

/* the text should only contain a range if there's more than

* one element on the last page. For example, the last grouping

* of 11 elements with 5 per page should just say "11", not "11-11"
*/

$end = ($total > $start) ? "-$total" : ";

print $separator;
pc_print_link($offset == $start, "$start$end", $start);

// print "Next>>" link
print $separator;
pc_print_link($offset == $start, 'Next >>',$offset + $per_page);

To use these functions, retrieve the correct subset of the data using and then print it out. Call pc_indexed_links() to
display the indexed links.

After connecting to the database, you need to make sure $offset has an appropriate value. $offset is the beginning record
in the result set that should be displayed. To start at the beginning of the result set, $offset should be 1. The variable
$per_page is set to how many records to display on each page, and $total is the total number of records in the entire result
set. For this example, all the zodiac records are displayed, so $total is set to the count of all the rows in the entire table.

The SQL query that retrieves information in the proper order is:
<?php
$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .

"LIMIT $per_page OFFSET " . ($offset-1);
?>

The LIMIT and OFFSET keywords are how you tell SQLite to return just a subset of all matching rows.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The relevant rows are retrieved by $db->query($limitedSQL), and then information is displayed from each row. After the
rows, pc_indexed_links() provides navigation links. The output when $offset is not set (or is 1) is shown in Figure 10-3.

Paginated results with pc_indexed_links()

In Figure 10-3, "6-10," "11-12," and "Next >>" are links to the same page with adjusted $offset arguments, while "<<
Prev" and "1-5" are grayed out, because what they would link to is what's currently displayed.

10.13.4. See Also

A discussion of paging in the Solar framework at http://paul-m-jones.com/blog/?p=185 and information on different
database paging syntaxes at http://troels.arvin.dk/db/rdbms/#select-limit-offset.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 10.14. Caching Queries and Results

10.14.1. Problem

You don't want to rerun potentially expensive database queries when the results haven't changed.

10.14.2. Solution

Use PEAR's Cache_Lite package. It makes it simple to cache arbitrary data. In this case, cache the results of a SELECT
query and use the text of the query as a cache key. Example 10-39 shows how to cache query results with Cache_Lite.

Caching query results

<?php
require_once 'Cache/Lite.php’;

$opts = array(
// Where to put the cached data
‘cacheDir' => 'c:/tmp’,
// Let us store arrays in the cache
‘automaticSerialization' => true,
// How long stuff lives in the cache
'lifeTime' => 600 /* ten minutes */);

// Create the cache
$cache = new Cache_Lite($opts);

// Connect to the database
$db = new PDO('sqlite:c:/data/zodiac.db');

// Define our query and its parameters
$sql = 'SELECT * FROM zodiac WHERE planet = ?';
$params = array($_GET['planet']);

// Get the unique cache key
$key = cache_key($sql, $params);

// Try to get results from the cache
$results = $cache->get($key);

if ($results === false) {
// No results found, so do the query and put the results in the cache
$st = $db->prepare($sql);
$st->execute($params);
$results = $st->fetchAll();
$cache->save($results);

}

// Whether from the cache or not, $results has our data
foreach ($results as $result) {

print "$result[id]: $result[planet], $result[sign]
\n";
}

function cache_key($sql, $params) {
return md5($sql .
implode('|',array_keys($params)) .
implode('|',$params));

10.14.3. Discussion

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Cache_Lite is a generic, lightweight mechanism for caching arbitrary information. It uses files to store the information
it's caching. The Cache_Lite constructor takes an array of options that control its behavior. The two most important
ones in Example 10-39 are automaticSerialization, which makes it easier to store arrays in the cache, and cacheDir, which
defines where the cache files go. Make sure cacheDir ends with a /.

The cache is just a mapping of keys to values. It's up to us to make sure that we supply a cache key that uniquely
identifies the data we want to cache'in this case, the SQL query and the parameters bound to it. The cache_key function
computes an appropriate key. After that, Example 10-39 just checks to see if the results are already in the cache. If
not, it executes the query against the database and stuffs the results in the cache for next time.

Note that you can't put a PDO or PDOStatement object in the cache'you have to fetch results and then put the results in the
cache.

By default, entries stay in the cache for one hour. You can adjust this by passing a different value (in seconds) as the
lifeTime option when creating a new Cache_Lite object. Pass in null if you don't want data to automatically expire.

The cache isn't altered if you change the database with an INSERT, UPDATE, or DELETE query. If there are cached SELECT
statements that refer to data no longer in the database, you need to explicitly remove everything from the cache with
the Cache_Lite::clean() method. You can also remove an individual element from the cache by passing a cache key to
Cache_Lite::remove().

The cache_key() function in Example 10-39 is case sensitive. This means that if the results of SELECT * FROM zodiac are in
the cache, and you run the query SELECT * from zodiac, the results aren't found in the cache and the query is run again.
Maintaining consistent capitalization, spacing, and field ordering when constructing your SQL queries results in more
efficient cache usage.

10.14.4. See Also

Documentation on Cache_Lite found at http://pear.php.net/manual/en/package.caching.cache-lite.php.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 10.15. Accessing a Database Connection Anywhere in Your
Program

10.15.1. Problem

You've got a program with lots of functions and classes in it, and you want to maintain a single database connection
that's easily accessible from anywhere in the program.

10.15.2. Solution

Use a static class method that creates the connection if it doesn't exist and returns the connection (see Example 10-
40).

Creating a database connection in a static class method

<?php
class DBCxn {
// What DSN to connect to?
public static $dsn = 'sqlite:c:/data/zodiac.db’;
public static $user = null;
public static $pass = null;
public static $driverOpts = null;

// Internal variable to hold the connection
private static $db;

// No cloning or instantiating allowed
final private function __construct() { }
final private function __clone() { }

public static function get() {
// Connect if not already connected
if (is_null(self::$db)) {
self::$db = new PDO(self::$dsn, self::$user, self::$pass,
self::$driverOpts);

// Return the connection
return self::$db;
}
}

?>

10.15.3. Discussion

The DBCxn::get() method defined in Example 10-40 accomplishes two things: you can call it from anywhere in your
program without worrying about variable scope and it prevents more than one connection from being created in a
program.

To change what kind of connection DBCxn::get() provides, just alter the $dsn, $user, $pass, and $driverOpts properties of
the class. If you need to manage multiple different database connections during the same script execution, change $dsn
and $db to an array and have get() accept an argument identifying which connection to use. Example 10-41 shows a
version of DBCxn that provides access to three different databases.

Handling connections to multiple databases

<?php
class DBCxn {
// What DSNs to connect to?
public static $dsn =
array('zodiac' => 'sqlite:c:/data/zodiac.db’,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

'users' => array('mysql:host=db.example.com’, monty','7f2iuh"),
'stats' => array('oci:statistics', 'statsuser’,'statspass'));

// Internal variable to hold the connection
private static $db = array();

// No cloning or instantiating allowed
final private function __construct() { }
final private function __clone() { }

public static function get($key) {
if (! isset(self::$dsn[$key])) {
throw new Exception("Unknown DSN: $key");
¥
// Connect if not already connected
if (! isset(self::$db[$key])) {
if (is_array(self::$dsn[$key])) {
// The next two lines only work with PHP 5.1.3 and above
$c = new ReflectionClass('PDQO");
self::$db[$key] = $c->newlnstanceArgs(self::$dsn[$key]);
}else {
self::$db[$key] = new PDO(self::$dsn[$key]);

// Return the connection
return self::$db[$key];

In Example 10-41, you must pass a key to DBCxn::get() that identifies which entry in $dsn to use. The code inside get(
) is a little more complicated, too, because it has to handle variable numbers of arguments to the PDO constructor.
Some databases, such as SQLite, just need one argument. Others may provide two, three, or four arguments. Example
10-41 uses the ReflectionClass::newlInstanceArgs() method, added in PHP 5.1.3, to concisely call a constructor and
provide arguments in an array. If you're using an earlier version of PHP, replace the calls to new ReflectionClass('PDO') and
to newlnstanceArgs() with the code in Example 10-42.

Calling the PDO constructor with older PHP versions

<?php
$args = self::$dsn[$key];
$argCount = count($args);
if ($argCount == 1) {
self::$db[$key] = new PDO($args[0]);
} else if ($argCount == 2) {
self::$db[$key] = new PDO($args[0],$args[1]);
} else if ($argCount == 3) {
self::$db[$key] = new PDO($args[0],$args[1],$args[2]);
} else if ($argCount == 4) {
self::$db[$key] = new PDO($args[0],$args[1],$args[2],$args[3]);
}

?>

Example 10-42 checks for each possible count of arguments to provide to the PDO constructor and invokes the
constructor accordingly.

10.15.4. See Also

Documentation on PDO::__construct() at http://www.php.net/PDO:: _construct and on
ReflectionClass: :newlnstanceArgs() can be found at http://www.php.net/language.oop5.reflection.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 10.16. Program: Storing a Threaded Message Board

Storing and retrieving threaded messages requires extra care to display the threads in the correct order. Finding the
children of each message and building the tree of message relationships can easily lead to a recursive web of queries.
Users generally look at a list of messages and read individual messages far more often then they post messages. With a
little extra processing when saving a new message to the database, the query that retrieves a list of messages to
display is simpler and much more efficient.

Store messages in a table structured like this:

CREATE TABLE pc_message (
id INT UNSIGNED NOT NULL,
posted_on DATETIME NOT NULL,
author CHAR(255),
subject CHAR(255),
body MEDIUMTEXT,
thread_id INT UNSIGNED NOT NULL,
parent_id INT UNSIGNED NOT NULL,
level INT UNSIGNED NOT NULL,
thread_pos INT UNSIGNED NOT NULL,
PRIMARY KEY(id)

)i

The primary key, id, is a unique integer that identifies a particular message. The time and date that a message is posted
is stored in posted_on, and author, subject, and body are (surprise!) a message's author, subject, and body. The remaining
four fields keep track of the threading relationships between messages. The integer tHRead_id identifies each thread. All
messages in a particular thread have the same thread_id. If a message is a reply to another message, parent_id is the id of
the replied-to message. level is how many replies into a thread a message is. The first message in a thread has level 0.
A reply to that level message has level 1, and a reply to that level 1 message has level 2. Multiple messages in a thread
can have the same level and the same parent_id. For example, if someone starts off a thread with a message about the
merits of BeOS over CP/M, the angry replies to that message from CP/M's legions of fans all have level 1 and a parent_id
equal to the id of the original message.

The last field, tHRead_pos, is what makes the easy display of messages possible. When displayed, all messages in a
thread are ordered by their tHRead_pos value.

Here are the rules for calculating thread_pos:
® The first message in a thread has thread_pos = 0.

® For a new message N, if there are no messages in the thread with the same parent as N, N's thread_pos is one
greater than its parent's thread_pos.

® For a new message N, if there are messages in the thread with the same parent as N, N's thread_pos is one
greater than the biggest tHRead_pos of all the messages with the same parent as N.

® After new message N's thread_pos is determined, all messages in the same thread with a thread_pos value greater
than or equal to N's have their thread_pos value incremented by 1 (to make room for N).

The message board program, message.php, shown in Example 10-43 saves messages and properly calculates thread_pos.
Sample output is shown in Figure 10-4.

A threaded message board

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

message.php

<?php

$board = new MessageBoard();
$board->go();

class MessageBoard {
protected $db;
protected $form_errors = array();
protected $inTransaction = false;

public function __construct() {
set_exception_handler(array($this,'logAndDie"));
$this->db = new PDO('sqlite:/usr/local/data/message.db');
$this->db->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_EXCEPTION);
b

public function go() {
// The value of $_REQUEST['cmd'] tells us what to do
$cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';
switch ($cmd) {
case 'read": // read an individual message
$this->read();
break;
case 'post': // display the form to post a message
$this->post();
break;
case 'save': // save a posted message
if ($this->valid()) { // if the message is valid,
$this->save(); // then save it
$this->show(); // and display the message list
Yelse {
$this->post(); // otherwise, redisplay the posting form

break;
case 'show": // show a message list by default
default:
$this->show();
break;
b

b

// save() saves the message to the database
protected function save() {

$parent_id = isset($_REQUEST['parent_id']) ?
intval($_REQUEST['parent_id']) : 0;

// Make sure pc_message doesn't change while we're working with it.
$this->db->beginTransaction();
$this->inTransaction = true;

// is this message a reply?
if ($parent_id) {
// get the thread, level, and thread_pos of the parent message
$st = $this->db->prepare("SELECT thread_id,level,thread_pos
FROM pc_message WHERE id = ?");
$st->execute(array($parent_id));
$parent = $st->fetch();

// a reply's level is one greater than its parent's
$level = $parent['level'] + 1;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

}

b

b

}

/* what's the biggest thread_pos in this thread among messages

with the same parent? */

$st = $this->db->prepare('SELECT MAX(thread_pos) FROM pc_message
WHERE thread_id = ? AND parent_id = ?');

$st->execute(array($parent['thread_id'], $parent_id));

$thread_pos = $st->fetchColumn(0);

// are there existing replies to this parent?

if ($thread_pos) {
// this thread_pos goes after the biggest existing one
$thread_pos++;

}else {
// this is the first reply, so put it right after the parent
$thread_pos = $parent['thread_pos'] + 1;

/* increment the thread_pos of all messages in the thread that

come after this one */

$st = $this->db->prepare('UPDATE pc_message SET thread_pos = thread_pos + 1
WHERE thread_id = ? AND thread_pos >= ?');

$st->execute(array($parent['thread_id'], $thread_pos));

// the new message should be saved with the parent's thread_id
$thread_id = $parent['thread_id'];

}else {

// the message is not a reply, so it's the start of a new thread

$thread_id = $this->db->query('SELECT MAX(thread_id) + 1 FROM pc_message')
->fetchColumn(0);

$level = 0;

$thread_pos = 0;

/* insert the message into the database. Using prepare() and execute()
makes sure that all fields are properly quoted */
$st = $this->db->prepare("INSERT INTO pc_message (id,thread_id,parent_id,

thread_pos,posted_on,level,author,subject,body)
VALUES (2,2,2,2,2,2,2,2,2)");

AVAYARAYARAV AN

$st->execute(array(null,$thread_id,$parent_id,$thread_pos,

date('c'),$level,$_REQUEST['author'],
$_REQUEST['subject'],$_REQUEST['body']));

// Commit all the operations
$this->db->commit();
$this->inTransaction = false;

// show() displays a list of all messages
protected function show() {
print '<h2>Message List</h2><p>";

/* order the messages by their thread (thread_id) and their position
within the thread (thread_pos) */
$st = $this->db->query("SELECT id,author,subject, LENGTH(body) AS body_length,

posted_on,level FROM pc_message
ORDER BY thread_id,thread_pos");

while ($row = $st->fetch()) {

// indent messages with level > 0

print str_repeat(‘ ',4 * $row['level']);

// print out information about the message with a link to read it
print "<a href="". htmlentities($_SERVER['PHP_SELF']) .
"?cmd=read&id={$row['id']}'>" .
htmlentities($row['subject']) . ' by '.
htmlentities($row['author']) . '@ ' .
htmlentities($row['posted_on']) .

" ({$row['body_length']} bytes)
";

// provide a way to post a hon-reply message
print "<hr/><a href="".

htmlentities($_SERVER['PHP_SELF']) .
"?cmd=post'>Start a New Thread";

// read() displays an individual message
public function read() {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/* make sure the message id we're passed is an integer and really
represents a message */
if (! isset($_REQUEST(['id'])) {

throw new Exception('"No message ID supplied');

b
$id = intval($_REQUEST['id']);
$st = $this->db->prepare("SELECT author,subject,body,posted_on
FROM pc_message WHERE id = ?");
$st->execute(array($id));
$msg = $st->fetch();
if (! $msg) {
throw new Exception('Bad message ID");

b

/* don't display user-entered HTML, but display newlines as
HTML line breaks */
$body = ni2br(htmlentities($msg['body']));

// display the message with links to reply and return to the message list
$self = htmlentities($_SERVER['PHP_SELF']);
$subject = htmlentities($msg['subject']);
$author = htmlentities($msg['author']);
print<<<_HTML_

<h2>$subject</h2>

<h3>by $author</h3>

<p>$body</p>

<hr/>

Reply

List Messages

HTML;

b

// post() displays the form for posting a message
public function post() {
$safe = array();
foreach (array(‘author','subject’,'body") as $field) {
// escape characters in default field values
if (isset($_POST[$field])) {
$safe[$field] = htmlentities($_POST[$field]);
}else {
$safe[$field] = ";

// make the error messages display in red

if (isset($this->form_errors[$field])) {
$this->form_errors[$field] = '".

$this->form_errors[$field] . '
';

}else {
$this->form_errors[$field] = ";

3

b

// is this message a reply
if (isset($_REQUEST['parent_id']) &&
$parent_id = intval($_REQUEST['parent_id'])) {

// send the parent_id along when the form is submitted
$parent_field =
sprintf('<input type="hidden" name="parent_id" value="%d" />',
$parent_id);

// if no subject's been passed in, use the subject of the parent

if (! strlen($safe['subject'])) {
$st = $this->db->prepare('SELECT subject FROM pc_message WHERE id = ?');
$st->execute(array($parent_id));
$parent_subject = $st->fetchColumn(0);

/* prefix 'Re: ' to the parent subject if it exists and
doesn't already have a 'Re:' */

$safe['subject'] = htmlentities($parent_subject);

if ($parent_subject && (! preg_match('/~re:/i',$parent_subject))) {
$safe['subject'] = "Re: {$safe['subject']}";

b
Yelse {
$parent_field = ";
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// display the posting form, with errors and default values
$self = htmlentities($_SERVER['PHP_SELF']);
print<<<_HTML_
<form method="post" action="¢self">
<table>
<tr>
<td>Your Name:</td>
<td>{$this->form_errors['author']}
<input type="text" name="author" value="{$safe['author']}" />
</td>
<tr>
<td>Subject:</td>
<td>{$this->form_errors['subject']}
<input type="text" name="subject" value="{$safe['subject']}" />
</td>
<tr>
<td>Message:</td>
<td>{$this->form_errors['body']}
<textarea rows="4" cols="30" wrap="physical"
name="body">{$safe['body']}</textarea>
</td>
<tr><td colspan="2"><input type="submit" value="Post Message" /></td></tr>
</table>
$parent_field
<input type="hidden" name="cmd" value="save" />
</form>
HTML;
¥

// validate() makes sure something is entered in each field
public function valid() {
$this->form_errors = array();
if (! (isset($_POST['author']) && strlen(trim($_POST['author'])))) {
$this->form_errors['author'] = 'Please enter your name.';

)
if (! (isset($_POST['subject']) && strlen(trim($_POST['subject'])))) {
$this->form_errors['subject'] = 'Please enter a message subject.’;

¥
if (! (isset($_POST['body']) && strlen(trim($_POST['body'])))) {
$this->form_errors['body'] = 'Please enter a message body.'";

}

return (count($this->form_errors) == 0);

b

public function logAndDie(Exception $e) {
print 'ERROR: ' . htmlentities($e->getMessage());
if ($this->db && $this->db->inTransaction) {
$this->db->rollback();

b
exit();

To properly handle concurrent usage, save() needs exclusive access to the msg table between the time it starts
calculating the tHRead_pos of the new message and when it actually inserts the new message into the database. We've
used PDO's beginTransaction() and commit() methods to accomplish this. Note that logAndDie(), the exception
handler, rolls back the transaction when appropriate if an error occured inside the transaction. Although PDO always
calls rollback() at the end of a script if a transaction was started, explicitly including the call inside logAndDie() makes
clearer what's happening to someone reading the code.

The level field can be used when displaying messages to limit what you retrieve from the database. If discussion threads

become very deep, this can help prevent your pages from growing too large. Example 10-44 shows how to display just
the first message in each thread and any replies to that first message.

Limiting thread depth

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
$st = $this->db->query(

"SELECT * FROM pc_message WHERE level <= 1 ORDER BY thread_id,thread_pos");
while ($row = $st->fetch()) {

// display each message

?>

If you're interested in having a discussion group on your web site, you may want to use one of the existing PHP
message board packages. A popular one is FUDForum (http://fudforum.org/forum/), and there are a number of others

listed at http://www.zend.com/apps.php?CID=261 .
|4 Py | | NEXT # |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 11. Sessions and Data Persistence

Recipe 11.1. in ion Trackin

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

EIZZR | NEXT # |
11.0. Introduction

As web applications have matured, the need for statefulness has become a common requirement. Stateful web
applications, meaning applications that keep track of a particular visitor's information as he travels throughout a site,
are now so common that they are taken for granted.

Given the prevalence of web applications that keep track of things for their visitors'such as shopping carts, online
banking, personalized home page portals, and social networking community sites'it is hard to imagine the Internet we
use every day without stateful applications.

HTTP, the protocol that web servers and clients use to talk to each other, is a stateless protocol by design. However,
since PHP 4.0, developers who've built applications with PHP have had a convenient set of session management
functions that have made the challenge of implementing statefulness much easier. This chapter focuses on several good
practices to keep in mind while developing stateful applications.

Sessions are focused on maintaining visitor-specific state between requests. Some applications also require an
equivalent type of lightweight storage of non-visitor-specific state for a period of time at the server-side level. This is
known as data persistence.

Recipe 11.1 explains PHP's session module, which lets you easily associate persistent data with a user as he moves
through your site. Recipes 11.2 and 11.3 explore session hijacking and session fixation vulnerabilities and how to avoid
them.

Session data is stored in flat files in the server's /tmp directory by default. Recipes 11.4 and 11.5 explain how to store
session data in alternate locations, such as a database and shared memory, and discusses the pros and cons of these
different approaches.

Recipe 11.6 demonstrates how to use shared memory for more than just session data storage, and Recipe 11.7
illustrates techniques for longer-term storage of summary information that has been gleaned from lodfiles.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 11.1. Using Session Tracking

11.1.1. Problem

You want to maintain information about a user as she moves through your site.

11.1.2. Solution

Use the sessions module. The session_start() function initializes a session, and accessing an element in the auto-global
$_SESSION array tells PHP to keep track of the corresponding variable:

<?php

session_start();

$_SESSION['visits']++;

print 'You have visited here '.$_SESSION['visits']." times.";
?>

11.1.3. Discussion

The session function keep track of users by issuing them cookies with randomly generated session IDs.

By default, PHP stores session data in files in the /tmp directory on your server. Each session is stored in its own file. To
change the directory in which the files are saved, set the session.save_path configuration directive to the new directory in
php.ini or with ini_set(). You can also call session_save_path() with the new directory to change directories, but you
need to do this before starting the session or accessing any session variables.

To start a session automatically on each request, set session.auto_start to 1 in php.ini. With session.auto_start, there's no need
to call session_start().

With the session.use_trans_sid configuration directive turned on, if PHP detects that a user doesn't accept the session ID
cookie, it automatically adds the session ID to URLs and forms.H For example, consider this code that prints a URL:

[Before PHP 4.2.0, this behavior had to be explicitly enabled by building PHP with the --enable-trans-sid configuration setting.

<?php
print 'Take the A Train';
?>

If sessions are enabled, but a user doesn't accept cookies, what's sent to the browser is something like:

<?php
Take the A Train
?>

In this example, the session name is PHPSESSID and the session name is 2eb89f3344520d11969a79aea6bbd2fdd. PHP adds those
to the URL so they are passed along to the next page. Forms are modified to include a hidden element that passes the
session ID.

Due to a variety of security concerns relating to embedding session IDs in URLs, this behavior is disabled by default. To
enable transparent session IDs in URLSs, you need to turn on session.use_trans_sid in php.ini or through the use of
ini_set('session.use_trans_sid', true) in your scripts before the session is started.

Although session.use_trans_sid is convenient, it can cause you some security-related headaches. Because URLs have
session IDs in them, distribution of such a URL lets anybody who receives the URL act as the user to whom the session
ID was given. A user that copies a URL from his web browser and pastes it into an email message sent to friends
unwittingly allows all those friends (and anybody else to whom the message is forwarded) to visit your site and
impersonate him.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

What's worse, when a user clicks on a link on your site that takes him to another site, the user's browser passes along
the session IDcontaining URL as the referring URL to the external site. Even if the folks who run that external site don't
maliciously mine these referrer URLs, referrer logs are often inadvertently exposed to search engines. Search for
PHPSESSID referer on your favorite search engine, and you'll probably find some referrer logs with PHP session IDs
embedded in them.

Separately, redirects with the Location header aren't automatically modified, so you have to add a session ID to them
yourself using the SID constant:

$redirect_url = 'http://www.example.com/airplane.php';
if (defined('SID") && (lisset($_COOKIE[session_name()]))) {
$redirect_url .= "?". SID;

}

header("Location: $redirect_url");

The session_name() function returns the name of the cookie to the session ID is stored in, so this code appends the SID
constant to $redirect_url if the constant is defined, and the session cookie isn't set.

11.1.4. See Also

Documentation on session_start() at http://www.php.net/session-start and session_save_path() at
http://www.php.net/session-save-path. The session module has a number of configuration directives that help you do

things like manage how long sessions can last and how they are cached. These options are detailed in the "Sessions"

section of the online manual at http://www.php.net/session.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 11.2. Preventing Session Hijacking

11.2.1. Problem

You want make sure an attacker can't access another user's session.

11.2.2. Solution

Allow passing of session IDs via cookies only, and generate an additional session token that is passed via URLs. Only
requests that contain a valid session ID and a valid session token may access the session:

<?php
ini_set('session.use_only_cookies', true);
session_start();

$salt = 'YourSpecialValueHere';
$tokenstr = (str) date('W') . $salt;
$token = md5($tokenstr);

if (lisset($_REQUEST['token']) || $_REQUEST['token'] != $token) {
// prompt for login
exit;

¥

$_SESSION['token'] = $token;
output_add_rewrite_var('token', $token);
?>

If you're using a PHP version earlier than 4.3.0, output_add_rewrite_var() is not available. Instead, use the code in

Adding a session token to links

<?php
ini_set('session.use_only_cookies', true);
session_start();

$salt = 'YourSpecialValueHere';
$tokenstr = (str) date('W'") . $salt;
$token = md5($tokenstr);

if (lisset($_REQUEST['token']) || $_REQUEST['token'] != $token) {
// prompt for login
exit;

}

$_SESSION['token'] = $token;
ob_start('inject_session_token');
function inject_session_token($buffer)

$hyperlink_pattern = "/<a[~>]+href=\"([*\"]+)/i";
preg_match_all($hyperlink_pattern, $buffer, $matches);

foreach ($matches[1] as $link) {
if (strpos($link, '?') === false) {
$newlink = $link . "?token=". $_SESSION['token'];
Yelse {
$newlink = $link .= '&token=". $_SESSION['token'];

}
$buffer = str_replace($link, $newlink, $buffer);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

¥

return $buffer;

¥

The regular expression for matching hyperlinks in the inject_session_token() function isn't bulletproof; it will not catch
hyperlinks with href attributes quoted with single quotes.

11.2.3. Discussion

This example creates an auto-shifting token by joining the current week number together with a salt term of your
choice. With this technique, tokens will be valid for a reasonable period of time without being fixed.

We then check for the token in the request, and if it's not found, we prompt for a new login.

If it is found, it needs to be added to generated links. output_add_rewrite_var() does this easily. Without
output_add_rewrite_var(), we continue generating the page and declare an output buffer callback function that will make
sure that any hyperlinks on the page are modified to contain the current token before the page is displayed.

Note that the inject_session_token() function in the example does not address imagemaps, form submissions, or Ajax

calls; make sure that you adjust any such functionality on a page to include the session token that's been generated
and stored in the session.

11.2.4. See Also

Recipe 18.1 for more information on regenerating IDs to prevent session fixation.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 11.3. Preventing Session Fixation

11.3.1. Problem

You want to make sure that your application is not vulnerable to session fixation attacks.

11.3.2. Solution

Require the use of session cookies without session identifiers appended to URLs, and generate a new session ID
frequently:

ini_set('session.use_only_cookies', true);

session_start();

if (lisset($_SESSION['generated'])
|| $_SESSION['generated'] < (time() - 30)) {
session_regenerate_id();
$_SESSION['generated'] = time();

¥

11.3.3. Discussion

In this example, we start by setting PHP's session behavior to use cookies only. This overrides PHP's default behavior of
transparently appending values such as ?PHPSESSID=12345678 to any URL on a page whenever a visitor's session is started
if he doesn't have cookies enabled in his browser.

Once the session is started, we set a value that will keep track of the last time a session ID was generated. By requiring
a new one to be generated on a regular basis'every 30 seconds in this example'the opportunity for an attacker to obtain
a valid session ID is dramatically reduced.

These two approaches combine to virtually eliminate the risk of session fixation. An attacker has a hard time obtaining
a valid session ID because it changes so often, and since sessions IDs can only be passed in cookies, a URL-based
attack is not possible. Finally, since we enabled the session.use_only_cookies setting, no session cookies will be left lying
around in browser histories or in server referrer logs.

11.3.4. See Also

"Session Fixation Vulnerability in Web-based Applications," http://www.acros.si/papers/session_fixation.pdf; Recipe

18.1 for information about regenerating session IDs on privilege escalation.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 11.4. Storing Sessions in a Database

11.4.1. Problem

You want to store session data in a database instead of in files. If multiple web servers all have access to the same
database, the session data is then mirrored across all the web servers.

11.4.2. Solution

Use a class or a set of functions in conjunction with the session_set_save_handler() function to define database-aware
routines for session management. For example, use PEAR's HTTP_Session package for convenient database session
storage:

<?php
require_once 'HTTP/Session/Container/DB.php';

$s = new HTTP_Session_Container_DB('mysql://user:password@Ilocalhost/db");
ini_get('session.auto_start') or session_start();
?>

11.4.3. Discussion

One of the most powerful aspects of the session module is its abstraction of how sessions get saved. The
session_set_save_handler() function tells PHP to use different functions for the various session operations such as
saving a session and reading session data.

The PEAR HTTP_Session package provides classes that take advantage of PEAR's DB, MDB, and MDB2 database abstraction
packages to store session data in a database. If the database is shared between multiple web servers, users' session
information is portable across all those web servers. So if you have a bunch of web servers behind a load balancer, you
don't need any fancy tricks to ensure that a user's session data is accurate no matter which web server she gets sent
to.

To use HTTP_Session_Container_DB, pass a data source name (DSN) to the class when you instantiate it. The session data is
stored in a table called sessiondata whose structure is:

CREATE TABLE sessiondata

id CHAR(32) NOT NULL,

data MEDIUMBLOB,

expiry INT UNSIGNED NOT NULL,
PRIMARY KEY (id)

)

If you want the table name to be different than sessiondata, you can set a new table name with an options array when
instantiating the HTTP_Session_Container_DB class:

<?php
require_once 'HTTP/Session/Container/DB.php';

$options = array(

‘table' => 'php_session’,

'dsn' => 'mysql://user:password@Ilocalhost/db’
)i
$s = new HTTP_Session_Container_DB($options);
ini_get('session.auto_start') or session_start();
?>

To customize an aspect of how the container classes provided by HTTP_Session manipulate session data, you can modify
the behavior by extending one of the container classes. This is better than writing a completely new session handler
class.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

11.4.4. See Also

Documentation on session_set_save _handler() at http://www.php.net/session-set-save-handler; information on
installing PEAR packages, such as HTTP_Session, is covered in Recipes 13.12.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 11.5. Storing Sessions in Shared Memory

11.5.1. Problem

You want to store session data in shared memory to maximize performance.

11.5.2. Solution

Use the pc_Shm_Session class shown in Example 11-3. For example:

<?php

$s = new pc_Shm_Session();
ini_get('session.auto_start') or session_start();
?>

11.5.3. Discussion

As discussed in Recipe 11.4, the session module allows users to define their own session handling methods. While this
flexibility is most commonly used to store session data in a database, you may find that performance suffers with the
overhead of the database connection and the subsequent queries. If sharing session data across a bunch of web servers
is not a concern, you can boost session handling performance by storing that data in shared memory.

Before deciding to use shared memory for session storage, make sure that you can spare the amount of memory that
your traffic plus your average session data size will consume. The performance boost of shared memory session storage
won't matter if your site's sessions consume all available memory on your system!

To store session data in shared memory, you need to have the shared memory functions explicitly enabled by building
PHP with --enable-shmop. You will also need the pc_Shm class shown in Example 11-3, as well as the pc_Shm_Session class
shown in Example 11-3.

pc_Shm class

class pc_Shm {

var $tmp;
var $size;
var $shm;
var $keyfile;

function pc_Shm($tmp = ") {
if (!function_exists('shmop_open")) {
trigger_error('pc_Shm: shmop extension is required.', E_USER_ERROR);
return;

¥

if ($tmp =" && is_dir($tmp) && is_writable($tmp)) {
$this->tmp = $tmp;

}else {
$this->tmp = '/tmp’;

// default to 16k
$this->size = 16384;

return true;

¥

function __construct($tmp = ") {
return $this->pc_Shm($tmp);

¥

function setSize($size) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (ctype_digit($size)) {
$this->size = $size;
}
}

function open($id) {
$key = $this->_getKey($id);
$shm = shmop_open($key, 'c', 0644, $this->size);
if (1$shm) {
trigger_error("pc_Shm: could not create shared memory segment', E_USER_ERROR);
return false;

}
$this->shm = $shm;
return true;

b

function write($data) {
$written = shmop_write($this->shm, $data, 0);
if ($written != strlen($data)) {
trigger_error('pc_Shm: could not write entire length of data', E_USER_ERROR);
return false;
b
return true;

¥

function read() {
$data = shmop_read($this->shm, 0, $this->size);
if (1$data) {
trigger_error('pc_Shm: could not read from shared memory block', E_USER_ERRORY);
return false;

return $data;

¥

function delete() {
if (shmop_delete($this->shm)) {
if (file_exists($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile)) {
unlink($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile);

b

return true;

b

function close() {
return shmop_close($this->shm);

b

function fetch($id) {
$this->open($id);
$data = $this->read();
$this->close();
return $data;

}

function save($id, $data) {
$this->open($id);
$result = $this->write($data);
if (! (bool) $result) {
return false;
Yelse {
$this->close();
return $result;
}
h

function _getKey($id) {
$this->keyfile = 'pcshm_" . $id;
if ('file_exists($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile)) {
touch($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile);

b
return ftok($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile, 'R");

The pc_Shm class provides an object-oriented wrapper around PHP's shmop functions. The pc_Shm

::._getKey() method

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

provides a convenient way to trénsparently calculate a memory address, which is often the biggest obstacle for people
getting familiar with the shmop functions. By abstracting the memory address, reading and writing from shared
memory is as easy as manipulating a value in an associative array.

pc_Shm creates 16k memory blocks by default. To adjust the size of the blocks used, pass a value in bytes to the
pc_Shm::setSize() method.

With pc_Shm defined, pc_Shm_Session has what it needs to easily provide custom methods for session_set_save_handler().

Example 11-3 shows the pc_Shm_Session class.

pc_Shm_Session class

class pc_Shm_Session {
var $shm;

function pc_Shm_Session($tmp = ") {
if ('function_exists('shmop_open")) {
trigger_error("pc_Shm_Session: shmop extension is required.",E_USER_ERROR);
return;

b

if (! session_set_save_handler(array(&$this,
array(&$this, '_close"),
array(&$this, '_read"),
array(&$this, '_write"),
array(&$this, '_destroy'),
array(&$this, '_gc"))) {
trigger_error('pc_Shm_Session: session_set_save_handler() failed', E_USER_ERROR);
return;

b

$this->shm = new pc_Shm();

1

_open’),

return true;

¥

function __construct() {
return $this->pc_Shm_Session();

}

function setSize($size) {
if (ctype_digit($size)) {
$this->shm->setSize($size);
b
b

function _open() {
return true;

}

function _close() {
return true;

¥

function _read($id) {
$this->shm->open($id);
$data = $this->shm->read();
$this->shm->close();
return $data;

}

function _write($id, $data) {
$this->shm->open($id);
$this->shm->write($data);
$this->shm->close();
return true;

b

function _destroy($id) {
$this->shm->open($id);
$this->shm->delete();
$this->shm->close();

b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

function _gc($maxlifetime) {
$d = dir($this->tmp);
while (false !== ($entry = $d->read())) {
if (substr($entry, 0, 6) == 'pcshm_") {
$tmpfile = $this->tmp . DIRECTORY_SEPARATOR . $entry;
$id = substr($entry, 6);
$fmtime = filemtime($tmpfile);
$age = now() - $fmtime;
if ($age >= $maxlifetime) {
$this->shm->open($id);
$this->shm->delete();
$this->shm->close();
b
¥

}
$d->close();
return true;

¥
b

Versions of Microsoft Windows prior to Windows 2000 do not support shared memory. Also, when using PHP in a
Windows server environment, shmop functions will only work if PHP is running as a web server module, such those
provided by Apache or IIS. CLI and CGI interfaces to PHP do not support shmop functions under Windows.

It's possible that you may not need to use these classes at all. If your web server can be configured to mount a ramdisk
partition such as /dev/shm, using shared memory for session storage may be as simple as:

<?php

ini_set('session.save_path', '/dev/shm");
ini_get('session.auto_start') or session_start();
?>

11.5.4. See Also

Documentation on session_set_save _handler() at http://www.php.net/session-set-save-handler; documentation on
shmop functions at http://www.php.net/shmop. Information on configuring ramdisks on Linux-based systems is available

at http://www.linuxhg.com/kernel/file/Documentation/ramdisk.txt.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

KN | NEXT $ |
Recipe 11.6. Storing Arbitrary Data in Shared Memory

11.6.1. Problem

You want a chunk of data to be available to all web server processes through shared memory.

11.6.2. Solution

Use the pc_Shm class shown in Example 11-3. For example, to store a string in shared memory, used the pc_Shm::save(
) method, which accepts a key/value pair:

<?php

$shm = new pc_Shm();

$secret_code = 'land shark’;
$shm->save('mysecret’, $secret_code);
?>

Another process can then access that data from shared memory with the pc_Shm::fetch() method:

<?php

$shm = new pc_Shm();

print $shm->fetch('mysecret’);
?>

11.6.3. Discussion

Occasionally there are times when you want to cache a value or set of values in shared memory for rapid retrieval. If
your web server is busy with disk I/O, it may make sense to leverage the shmop functions to achieve greater
performance with storage and retrieval of information in that cache.

The pc_Shm class has two convenient methods, pc_Shm::fetch() and pc_Shm::save(), which abstract away the need to
set memory addresses or explictly open and close the shared memory segments.

It's important to remember that, unlike setting a key/value pair in a regular PHP array, the shmop functions need to
allocate a specific amount of space that the data stored there is expected to consume. The pc_Shm class allocates 16k for
each value by default. If data you need to store is larger than 16k, you need to increase the amount of space the
shmop functions should reserve. For example:

<?php

$shm = new pc_Shm();

$shm->setSize(24576); // 24k

$shm->save('longstring’, 'Lorem ipsum pri eu simul nominati...");
?>

11.6.4. See Also

Recipe 11.5 and Recipe 5.6; the Memcache section of the PHP online manual at
Memcache is a very fast and efficient alternative to the shmop functions. More information about memcache can be

found at http://www.danga.com/memcached/. Also, the PECL apc module (http://pecl.php.net/apc) offers functions for

storing data in shared memory.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT $ |
Recipe 11.7. Caching Calculated Results in Summary Tables

11.7.1. Problem

You need to collect statistics from log tables that are too large to efficiently query in real time.

11.7.2. Solution

Create a table that stores summary data from the complete log table, and query the summary table to generate reports
in nearly real time.

11.7.3. Discussion

Let's say that you are logging search queries that web site visitors use on search engines like Google and Yahoo! to find
your web site, and tracking those queries in MySQL. Your search term tracking log table has this structure:

CREATE TABLE searches

searchterm VARCHAR(255) NOT NULL, # search term determined from HTTP_REFERER

parsing
dt DATETIME NOT NULL, # request date
source VARCHAR(15) NOT NULL # site where search was performed

)

If you are fortunate enough to be logging thousands or tens of thousands of visits from the major search engines per
hour, the searches table could grow to an unmanageable size over a period of several months.

You may wish to generate reports that illustrate trends of search terms that have driven traffic to your web site over
time from each major search engine so that you can determine which search engine to purchase advertising with.

Create a summary table that reflects what your report needs to display, and then query the full dataset hourly and
store the result in the summary table for speedy retrieval during report generation. Your summary table would have
this structure:

CREATE TABLE searchsummary
(
searchterm VARCHAR(255) NOT NULL, # search term
source VARCHAR(15) NOT NULL, # site where search was performed
sdate DATE NOT NULL, # date search performed
searches INT UNSIGNED NOT NULL, # number of searches
PRIMARY KEY (searchterm, source, sdate)
)i

Your report generation script can then use PDO to query the searchsummary table, and if results are not available, collect
them from the searches table and cache the result in searchsummary:

$st = $db->prepare('SELECT COUNT(*)

FROM
searchsummary
WHERE
sdate = ?");

$st->execute(array(date('Y-m-d', strtotime('yesterday"))));
$row = $st->fetch();

// no matches in cache
if ($row[0] == 0) {
$st2 = $db->prepare('SELECT
searchterm,
source,
FROM_DAYS(TO_DAYS(dt)) AS sdate,
COUNT(*) as searches
WHERE

TO_DAYS(dt) = ?");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$st2->execute(array(date('Y-m-d', strtotime('yesterday"))));

$stinsert = $db->prepare('INSERT INTO searchsummary
(searchterm,source,sdate,searches)
VALUES (?,2,2,7)");
while ($row->fetch(PDO::FETCH_NUM)) {
$stinsert->execute($row);
3
¥

?>

Using this technique, your script will only incur the overhead of querying the full log table once, and all subsequent
requests will retrieve a single row of summary data per search term.

11.7.4. See Also

Recipe 10.7 for information about PDO: :prepare() and PDOStatement::execute() .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

o prcy
Chapter 12. XML

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12.0. Introduction

XML has gained popularity as a data-exchange and message-passing format. As web services become more
widespread, XML plays an even more important role in a developer's life. With the help of a few extensions, PHP lets
you read and write XML for every occasion.

XML provides developers with a structured way to mark up data with tags arranged in a tree-like hierarchy. One
perspective on XML is to treat it as CSV on steroids. You can use XML to store records broken into a series of fields. But
instead of merely separating each field with a comma, you can include a field name, a type, and attributes alongside
the data.

Another view of XML is as a document representation language. For instance, this book was written using XML. The
book is divided into chapters; each chapter into recipes; and each recipe into Problem, Solution, and Discussion
sections. Within any individual section, we further subdivide the text into paragraphs, tables, figures, and examples. An
article on a web page can similarly be divided into the page title and headline, the authors of the piece, the story itself,
and any sidebars, related links, and additional content.

XML content looks similar to HTML. Both use tags bracketed by < and > for marking up text. But XML is both stricter
and looser than HTML. It's stricter because all container tags must be properly closed. No opening elements are allowed
without a corresponding closing tag. It's looser because you're not forced to use a set list of tags, such as <a>, ,
and <h1l>. Instead, you have the freedom to choose a set of tag names that best describe your data.

Other key differences between XML and HTML are case sensitivity, attribute quoting, and whitespace. In HTML, and
 are the same bold tag; in XML, they're two different tags. In HTML, you can often omit quotation marks around
attributes; XML, however, requires them. So you must always write:

<element attribute="value">

Additionally, HTML parsers generally ignore whitespace, so a run of 20 consecutive spaces is treated the same as one
space. XML parsers preserve whitespace, unless explicitly instructed otherwise. Because all elements must be closed,
empty elements must end with />. For instance, in HTML, the line break is
, while in XHTML, which is HTML that
validates as XML, it's written as
.H

U This is why nl2br() outputs
; its output is XML compatible.

There is another restriction on XML documents. When XML documents are parsed into a tree of elements, the
outermost element is known as the root element. Just as a tree has only one trunk, an XML document must have
exactly one root element. In the previous book example, this means chapters must be bundled inside a book tag. If you
want to place multiple books inside a document, you need to package them inside a bookcase or another container.
This limitation applies only to the document root. Again, just like trees can have multiple branches off of the trunk, it's
legal to store multiple books inside a bookcase.

This chapter doesn't aim to teach you XML; for an introduction to XML, see Learning XML by Erik T. Ray (O'Reilly). A
solid nuts-and-bolts guide to all aspects of XML is XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means
(O'Reilly).

Now that we've covered the rules, here's an example: if you are a librarian and want to convert your card catalog to
XML, start with this basic set of XML tags:

<book>
<title>PHP Cookbook</title>
<author>Sklar, David and Trachtenberg, Adam</author>
<subject>PHP</subject>

</book>

From there, you can add new elements or modify existing ones. For example, <author> can be divided into first and last
name, or you can allow for multiple records so two authors aren't placed in one field.

PHP 5 has a completely new set of XML extensions that address major problems in PHP 4's XML extensions. While PHP 4
allows you to manipulate XML, its XML tools are only superficially related. Each tool covers one part of the XML
experience, but they weren't designed to work together, and PHP 4 support for the more advanced XML features is
often patchy. Not so in PHP 5. The new XML extensions:

® Work together as a unified whole
® Are standardized on a single XML library: libxml2

® Fully comply with W3C specifications

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® Efficiently process data
® Provide you with the right XML tool for your job

Additionally, following the PHP tenet that creating web applications should be easy, there's a new XML extension that
makes it simple to read and alter XML documents. The aptly named SimpleXML extension allows you to interact with
the information in an XML document as though these pieces of information are arrays and objects, iterating through

them with foreach loops and editing them in place merely by assigning new values to variables.

The first two recipes in this chapter cover parsing XML. Recipe 12.1 shows how to write XML without additional tools. To
use the DOM extension to write XML in a standardized fashion, see Recipe 12.2.

The complement to writing XML is parsing XML. That's the subject of the next three recipes. They're divided based upon
the complexity and size of the XML document you're trying to parse. Recipe 12.3 covers how to parse basic XML
documents. If you need more sophisticated XML parsing tools, move onto Recipe 12.4. When your XML documents are
extremely large and memory intensive, turn to Recipe 12.5. If this is your first time using XML, and you're unsure which
recipe is right for you, try them in order, as the code becomes increasingly complex as your requirements go up.

XPath is the topic of Recipe 12.6. It's a W3C standard for extracting specific information from XML documents. We like
to think of it as regular expressions for XML. XPath is one of the most useful, yet unused parts of the XML family of
specifications. If you process XML on a regular basis, you should be familiar with XPath.

With XSLT, you can take an XSL stylesheet and turn XML into viewable output. By separating content from
presentation, you can make one stylesheet for web browsers, another for PDAs, and a third for cell phones, all without
changing the content itself. This is the subject of Recipe 12.7.

After introducing XSLT, the two recipes that follow show how to pass information back and forth between PHP and
XSLT. Recipe 12.8 tells how to send data from PHP to an XSLT stylesheet; Recipe 12.9 shows how to call out to PHP
from within an XSLT stylesheet.

As long as your XML document abides by the structural rules of XML, it is known as well-formed. However, unlike HTML,
which has a specific set of elements and attributes that much appear in set places, XML has no such restrictions.

Yet, in some cases, such as XHTML, the XML version of HTML, it's useful to make sure your XML documents abide by a
specification. This allows tools, such as web browsers, RSS readers, or your own scripts, to easily process the input.
When an XML document follows all the rules set out by a specification, then it is known as valid. Recipe 12.10 covers
how to validate an XML document.

One of PHP 5's major limitations is its handling of character sets and document encodings. PHP strings are not
associated with a particular encoding, but all the XML extensions require UTF-8 input and emit UTF-8 output. Therefore,
if you use a character set incompatible with UTF-8, you must manually convert your data both before sending it into an
XML extension and after you receive it back. Recipe 12.11 explores the best ways to handle this process.

The chapter concludes with a number of recipes dedicated to reading and writing a number of common types of XML
documents, specifically RSS and Atom. These are the two most popular data syndication formats, and are useful for
exchanging many types of data, including blog posts, podcasts, and even mapping information.

PHP Cookbook also covers all the popular types of web services: REST, XML-RPC, and SOAP. This topic is so important,
it gets two dedicated chapters of its own. Chapter 14 describes how to consume web services, while Chapter 15 tells
how to can implement web services of your very own.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.1. Generating XML as a String

12.1.1. Problem

You want to generate XML. For instance, you want to provide an XML version of your data for another program to
parse.

12.1.2. Solution

Loop through your data and print it out surrounded by the correct XML tags:

<?php

header('Content-Type: text/xml');
print '<?xml version="1.0"?>"'. "\n";
print "<shows>\n";

$shows = array(array('name' => 'Simpsons',
'channel' => 'FOX,
'start’ => '8:00 PM',
'duration' => '30"),

array('name' => 'Law & Order',
‘channel' => 'NBC',
'start’ =>'8:00 PM',
'duration' => '60"));

foreach ($shows as $show) {
print" <show>\n";
foreach($show as $tag => $data) {
print " <$tag>" . htmispecialchars($data) . "</$tag>\n";

print" </show>\n";

}

print "</shows>\n";
?>

12.1.3. Discussion

Printing out XML manually mostly involves lots of foreach loops as you iterate through arrays. However, there are a few
tricky details. First, you need to call header() to set the correct Content-Type header for the document. Since you're
sending XML instead of HTML, it should be text/xml.

Next, depending on your settings for the short_open_tag configuration directive, trying to print the XML declaration may
accidentally turn on PHP processing. Since the <? of <?xml version="1.0"?> is the short PHP open tag, to print the
declaration to the browser you need to either disable the directive or print the line from within PHP. We do the latter in
the Solution.

Last, entities must be escaped. For example, the & in the show Law & Order needs to be ∓. Call htmlspecialchars() to
escape your data.

The output from the example in the Solution is shown in Example 12-1.

Tonight's TV listings

<?xml version="1.0"?>
<shows>
<show>
<name>Simpsons</name>
<channel>FOX</channel>
<start>8:00 PM</start>
<duration>30</duration>
</show>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<show>
<name>Law & Order</name>
<channel>NBC</channel>
<start>8:00 PM</start>
<duration>60</duration>
</show>
</shows>

12.1.4. See Also

Recipe 12.2 for generating XML using DOM; documentation on htmlspecialchars() at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.2. Generating XML with the DOM

12.2.1. Problem

You want to generate XML but want to do it in an organized way instead of using print and loops.

12.2.2. Solution

Use the DOM extension to create a DOMDocument object. After building up the document, call DOMDocument::save() or
DOMDocument::saveXML() to generate a well-formed XML document:

<?php
// create a new document
$dom = new DOMDocument('1.0");

// create the root element, <book>, and append it to the document
$book = $dom->appendChild($dom->createElement('book"));

// create the title element and append it to $book
$title = $book->appendChild($dom->createElement('title"));

// set the text and the cover attribute for $title
$title->appendChild($dom->createTextNode('PHP Cookbook'));
$title->setAttribute('cover’, 'soft');

// create and append author elements to $book

$sklar = $book->appendChild($dom->createElement(‘author"));
// create and append the text for each element
$sklar->appendChild($dom->createTextNode('Sklar"));

$trachtenberg = $book->appendChild($dom->createElement(‘author'));
$trachtenberg->appendChild($dom->createTextNode('Trachtenberg'));

// print a nicely formatted version of the DOM document as XML
$dom->formatOutput = true;

echo $dom->saveXML();

?>

<?xml version="1.0"?>

<book>
<title cover="soft">PHP Cookbook</title>
<author>Sklar</author>
<author>Trachtenberg</author>

</book>

12.2.3. Discussion

The DOM methods follow a pattern. You create an object as either an element or a text node, add and set any
attributes you want, and then append it to the tree in the spot it belongs.

Before creating elements, create a new document, passing the XML version as the sole argument:

$dom = new DOMDocument('1.0");

Now create new elements belonging to the document. Despite being associated with a specific document, nodes don't
join the document tree until appended:

$book_element = $dom->createElement('book");
$book = $dom->appendChild($book_element);

Here a new book element is created and assigned to the object $book_element. To create the document root, append

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$book_element as a child of the $dom document. The result, $Book, refers to the specific element and its location within the
DOM object.

All nodes are created by calling a method on $dom. Once a node is created, it can be appended to any element in the
tree. The element from which we call the appendChild() method determines the location in the tree where the node is
placed. In the previous case, $book_element is appended to $dom. The element appended to $dom is the top-level node, or
the root node.

You can also append a new child element to $book. Since $book is a child of $dom, the new element is, by extension, a
grandchild of $dom:

$title_element = $dom->createElement('title");
$title = $book->appendChild($title_element);

By calling $book->appendChild(), this code places the $title_element element under the $book element.
To add the text inside the <title></title> tags, create a text node using createTextNode() and append it to $title:

$text_node = $dom->createTextNode('"PHP Cookbook');
$title->appendChild($text_node);

Since ¢title is already added to the document, there's no need to re-append it to $book.

The order in which you append children to nodes isn't important. The following four lines, which first append the text
node to $title_element and then to $book, are equivalent to the previous code:

$title_element = $dom->createElement('title');
$text_node = $dom->createTextNode('PHP Cookbook');

$title_element->appendChild($text_node);
$book->appendChild($title_element);

To add an attribute, call setAttribute() upon a node, passing the attribute name and value as arguments:

$title->setAttribute('cover’, 'soft');

If you print the title element now, it looks like this:

<title cover="soft">PHP Cookbook</title>

Once you're finished, you can output the document as a string or to a file:

// put the string representation of the XML document in $books
$books = $dom->saveXML();

// write the XML document to books.xml
$dom->save('books.xml");

By default, these methods generate XML output in one long line without any whitespace, including indentations and line
breaks. To fix this, set the formatOutput attribute of your DOMDocument to true:

// print a nicely formatted version of the DOM document as XML
$dom->formatOutput = true;

This causes the DOM extension to generate XML like this:

<?xml version="1.0"?>
<book>

<title cover="soft">PHP Cookbook</title>
</book>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12.2.4. See Also

Recipe 12.1 for writing XML without DOM; Recipe 12.4 for parsing XML with DOM; documentation on DOMDocument at
and the DOM functlons in general at

mmmmmmmmmmm
http://www.php.net/dom; more information about the underlying libxmlI2 C library at http://xmlsoft.org/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 12.3. Parsing Basic XML Documents

12.3.1. Problem

You want to parse a basic XML document that follows a known schema, and you don't need access to more esoteric
XML features, such as processing instructions.

12.3.2. Solution

Use the SimpleXML extension. Here's how to read XML from a file:

<?php
$sx = simplexml_load_file(‘address-book.xml');

foreach ($sx->person as $person) {
$firstname_text_value = $person->firstname;
$lastname_text_value = $person->lastname;

print "$firstname_text_value $lastname_text_value\n";

}

>
David Sklar
Adam Trachtenberg

12.3.3. Discussion

SimpleXML has been described as "the mostest bestest thing ever." While it's hard to live up to such grand praise,
SimpleXML does do a remarkable job of making it'dare we say'simple to interact with XML. When you want to read a
configuration file written in XML, parse an RSS feed, or process the result of a REST request, SimpleXML excels at these
tasks. It doesn't work well for more complex XML-related jobs, such as reading a document where you don't know the
format ahead of time or when you need to access processing instructions or comments.

SimpleXML turns elements into object properties. The text between the tags is assigned to the property. If more than
one element with the same name lives in the same place (such as multiple <people>s), then they're placed inside a list.

Element attributes become array elements, where the array key is the attribute name and the key's value is the
attribute's value.

To access a single value, reference it directly using object method notation. Let's use this XML fragment as example:

<firstname>David</firstname>

If you have this in a SimpleXML object, $firstname, here's all you need to do to access David:

$firstname

SimpleXML assumes that when you have a node that contains only text, you're interested in the text. Therefore, print
$firstname does what you expect it to: it prints David.

Iteration methods, like foreach, are the best choice for cycling through multiple elements. Code for this is shown in later
examples.

Attributes are stored as array elements. For example, this prints out the id attribute for the first person element:

<?php
$ab = simplexml_load_file(‘address-book.xml');

// the id attribute of the first person
print $ab->person['id'] . "\n";
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

which gives you:

1

Example 12-2 contains a more complete example based on this simple address book in XML. It's used in the code
examples that follow.

Simple address book in XML

<?xml version="1.0"?>
<address-book>
<person id="1">
<!--David Sklar-->
<firstname>David</firstname>
<lastname>Sklar</lastname>
<city>New York</city>
<state>NY</state>
<email>sklar@php.net</email>
</person>

<person id="2">
<!--Adam Trachtenberg-->
<firstname>Adam</firstname>
<lastname>Trachtenberg</lastname>
<city>San Francisco</city>
<state>CA</state>
<email>amt@php.net</email>

</person>

</address-book>

Example 12-3 shows how you use SimpleXML to pull out all the first and last names.

Using SimpleXML to extract data

$sx = simplexml_load_file('address-book.xml');

foreach ($sx->person as $person) {
$firstname_text_value = $person->firstname;
$lastname_text_value = $person->lastname;
print "$firstname_text_value $lastname_text_value\n";

David Sklar
Adam Trachtenberg

When you use SimpleXML, you can directly iterate over elements using foreach. Here, the iteration occurs over $sx-
>person, which holds all the person nodes.

You can also directly print SimpleXML objects, as shown in Example 12-4.

Printing SimpleXML objects

<?php
foreach ($sx->person as $person) {
print "$person->firstname $person->lastname\n";

?>
David Sklar

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Adam Trachtenberg

PHP interpolates SimpleXML objects inside of quoted strings and retrieves the text stored in them.

12.3.4. See Also

Recipe 12.4 for parsing complex XML documents; Recipe 12.5 for parsing large XML documents; documentation on
SimpleXML at http://www.php.net/simplexml; more information about the underlying libxml2 C library at
http://xmlsoft.org/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 12.4. Parsing Complex XML Documents

12.4.1. Problem

You have a complex XML document, such as one where you need to introspect the document to determine its schema,
or you need to use more esoteric XML features, such as processing instructions or comments.

12.4.2. Solution

Use the DOM extension. It provides a complete interface to all aspects of the XML specification.

<?php
$dom = new DOMDocument;
$dom->load('address-book.xml');

foreach ($dom->getElementsByTagname('person') as $person) {
$firstname = $person->getElementsByTagname('firstname');
$firstname_text_value = $firstname->item(0)->firstChild->nodeValue;

$lastname = $person->getElementsByTagname('lastname');
$lastname_text_value = $lastname->item(0)->firstChild->nodeValue;

print "$firstname_text_value $lastname_text_value\n";
b
?>
David Sklar
Adam Trachtenberg

12.4.3. Discussion

The W3C's DOM provides a platform- and language-neutral method that specifies the structure and content of a
document. Using the DOM, you can read an XML document into a tree of nodes and then maneuver through the tree to
locate information about a particular element or elements that match your criteria. This is called tree-based parsing.

Additionally, you can modify the structure by creating, editing, and deleting nodes. In fact, you can use the DOM
functions to author a new XML document from scratch; see Recipe 12.2.

One of the major advantages of the DOM is that by following the W3C's specification, many languages implement DOM
functions in a similar manner. Therefore, the work of translating logic and instructions from one application to another

is considerably simplified. PHP 5 comes with a new series of DOM methods that are in stricter compliance with the DOM
standard than previous versions of PHP.

The DOM is large and complex. For more information, read the specification at http://www.w3.org/DOM/ or pick up a
copy of XML in a Nutshell.

DOM functions in PHP are object oriented. To move from one node to another, access properties such as $node-

>childNodes, which contains an array of node objects, and $node->parentNode, which contains the parent node object.
Therefore, to process a node, check its type and call a corresponding method, as shown in Example 12-5.

Parsing a DOM object

<?php
// $node is the DOM parsed node <book cover="soft">PHP Cookbook</book>
$type = $node->nodeType;

switch($type) {
case XML_ELEMENT_NODE:
// I'm a tag. I have a tagname property.
print $node->tagName; // prints the tagname property: "book"
break;
case XML_ATTRIBUTE_NODE:
// I'm an attribute. I have a name and a value property.
print $node->name; // prints the name property: "cover"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print $node->value; // prints the value property: "soft"
break;
case XML_TEXT_NODE:
// I'm a piece of text inside an element.
// I have a name and a content property.
print $node->nodeName; // prints the name property: "#text"
print $node->nodeValue; // prints the text content: "PHP Cookbook"
break;
default:
// another type
break;

}

>

To automatically search through a DOM tree for specific elements, use getElementsByTagname(). Example 12-6 shows
how to do so with multiple book records.

Card catalog in XML

<books>
<book>
<title>PHP Cookbook</title>
<author>Sklar</author>
<author>Trachtenberg</author>
<subject>PHP</subject>
</book>
<book>
<title>Perl Cookbook</title>
<author>Christiansen</author>
<author>Torkington</author>
<subject>Perl</subject>
</book>
</books>

Example 12-7 shows how to find all authors.

Printing all authors using DOM

// find and print all authors
$authors = $dom->getElementsByTagname(‘author');

// loop through author elements
foreach ($authors as $author) {
// childNodes holds the author values
$text_nodes = $author->childNodes;

foreach ($text_nodes as $text) {
print $text->nodeValue . "\n";
b

¥

Sklar
Trachtenberg
Christiansen
Torkington

The getElementsByTagname() method returns an array of element node objects. By looping through each element's
children, you can get to the text node associated with that element. From there, you can pull out the node values,
which in this case are the names of the book authors, such as Sklar and TRachtenberg.

12.4.4. See Also

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 12.3 for parsing simple XML documents; Recipe 12.5 for parsing large XML documents; documentation on DOM
at http://www.php.net/dom; more information about the underlying libxml2 C library at http://xmlsoft.org/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

KN | NEXT $ |
Recipe 12.5. Parsing Large XML Documents

12.5.1. Problem

You want to parse a large XML document. This document is so large that it's impractical to use SimpleXML or DOM
because you cannot hold the entire document in memory. Instead, you must load the document in one section at a
time.

12.5.2. Solution

Use the XMLReader extension:

<?php
$reader = new XMLReader();
$reader->open('card-catalog.xml');

/* Loop through document */
while ($reader->read()) {
/* If you're at an element named 'author' */
if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == "author') {
/* Move to the text node and print it out */
$reader->read();
print $reader->value . "\n";

12.5.3. Discussion

There are two major types of XML parsers: ones that hold the entire document in memory at once, and ones that hold
only a small portion of the document in memory at any given time.

The first kind are called tree-based parsers, since they store the document into a data structure known as a tree. The
SimpleXML and DOM extensions, from Recipes 12.3 and 12.4, are tree-based parsers. Using a tree-based parser is
easier for you, but requires PHP to use more RAM. With most XML documents, this isn't a problem. However, when your
XML document is quite large, then this can cause major performance issues.

The other kind of XML parser is a stream-based parser. Stream-based parsers don't store the entire document in
memory; instead, they read in one node at a time and allow you to interact with it in real time. Once you move onto
the next node, the old one is thrown away'unless you explicitly store it yourself for later use. This makes stream-based
parsers faster and less memory consuming, but you may have to write more code to process the document.

The easiest way to process XML data using a stream-based parser is using the XMLReader extension. This extension is
based on the C# XmlITextReader API. If you're familiar with the SAX (Simple API for XML) interface from PHP 4, it's still
available in PHP 5, but the XMLReader extension is more intuitive, feature-rich, and faster.

XMLReader is enabled by default as of PHP 5.1. If you're running PHP 5.0.x, grab the extension from PECL at
http://pecl.php.net/package/xmlIReader and install it yourself.

Begin by creating a new instance of the XMLReader class and specifying the location of your XML data:

<?php
// Create a new XMLReader object
$reader = new XMLReader();

// Load from a file or URL
$reader->open(‘document.xml');

// Or, load from a PHP variable
$reader->XML($document);
?>

Most of the time, you'll use the XMLReader::open() method to pull in data from an external source, but you can also
load it from an existing PHP variable with XMLReader::XML().

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Once the object is configured, you begin processing the data. At the start, you're positioned at the top of the document.
You can maneuver through the document using a combination of the two navigation methods XMLReader provides:
XMLReader::read() and XMLReader::next(). The first method reads in the piece of XML data that immediately follows
the current position. The second method moves to the next sibling element after the current position.

For example, look at the XML in Example 12-8.

Card catalog in XML

<books>
<book isbn="1565926811">
<title>PHP Cookbook</title>
<author>Sklar</author>
<author>Trachtenberg</author>
<subject>PHP</subject>
</book>
<book isbn="0596003137">
<title>Perl Cookbook</title>
<author>Christiansen</author>
<author>Torkington</author>
<subject>Perl</subject>
</book>
</books>

When the object is positioned at the first <book> element, the read() method moves you to the next element
underneath <book>. (This is technically the whitespace between <book> and <title>.) In comparison, next() moves you to
the next <book> element and skips the entire PHP Cookbook subtree.

These methods return TRue when they're able to successfully move to another node, and false when they cannot. So, it's
typical to use them inside a while loop, as such:

/* Loop through document */
while ($reader->read()) {
/* Process XML */

}

This causes the object to read in the entire XML document one piece at a time. Inside the while(), examine $reader and
process it accordingly.

A common aspect to check is the node type. This lets you know if you've reached an element (and then check the name
of that element), a closing element, an attribute, a piece of text, some whitespace, or any other part of an XML
document. Do this by referencing the nodeType attribute:

/* Loop through document */
while ($reader->read()) {
/* If you're at an element named 'author' */
if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == "author’) {
/* Process author element */
b
b

This code checks if the node is an element and, if so, that its name is author. For a complete list of possible values stored
in nodeType, check out Table 12-1.

Table 12-1. XMLReader node type values

Node type Description
XMLReader::NONE No node type
XMLReader::ELEMENT Start element
XMLReader::ATTRIBUTE Attribute node
XMLReader:: TEXT Text node
XMLReader::CDATA CDATA node
XMLReader::ENTITY_REF Entity Reference node

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

XMLReader::ENTITY Entity Declaration node
XMLReader::PI Processing Instruction node
XMLReader::COMMENT Comment node
XMLReader::DOC Document node
XMLReader::DOC_TYPE Document Type node
XMLReader::DOC_FRAGMENT Document Fragment node
XMLReader::NOTATION Notation node
XMLReader::WHITESPACE Whitespace node
XMLReader::SIGNIFICANT_WHITESPACE Significant Whitespace node
XMLReader::END_ELEMENT End Element
XMLReader::END_ENTITY End Entity
XMLReader::XML_DECLARATION XML Declaration node

From there, you can decide how to handle that element and the data it contains. For example, printing out all the
author names in the card catalog:

$reader = new XMLReader();
$reader->open('card-catalog.xml');

/* Loop through document */
while ($reader->read()) {
/* If you're at an element named 'author' */
if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == "author') {
/* Move to the text node and print it out */
$reader->read();
print $reader->value . "\n";

}

Sklar
Trachtenberg
Christiansen
Torkington

Once you've reached the <author> element, call $reader->read() to advance to the text inside it. From there, you can
find the author names inside of $reader->value.

The XMLReader::value attribute provides you access with a node's value. This only applies to nodes where this is a
meaningful concept, such as text nodes or CDATA nodes. In all other cases, such as element nodes, this attribute is set
to the empty string.

Table 12-2 contains a complete listing of XMLReader object properties, including value.

Table 12-2. XMLReader node type values

Name Type Description
attributeCount int Number of node attributes
baseURI string Base URI of the node
depth int Tree depth of the node, starting at 0
hasAttributes bool If the node has attributes
hasValue bool If the node has a text value
isDefault bool If the attribute value is defaulted from DTD
isSEmptyElement bool If the node is an empty element tag
localName string Local name of the node
name string Qualified name of the node

namespaceURI string URI of the namespace associated with the node

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

nodeType int Node type of the node

prefix string Namespace prefix associated with the node
value string Text value of the node

xmlLang string xml:lang scope of the node

There's one remaining major piece of XMLReader functionality: attributes. XMLReader has a special set of methods to
access attribute data when it's on top of an element node, including the following: moveToAttribute(),
moveToFirstAttribute(), and moveToNextAttribute().

The moveToAttribute() method lets you specify an attribute name. For example, here's code using the card catalog XML to
print out all the ISBN numbers:

<?php
$reader = new XMLReader();
$reader->XML($catalog);

/* Loop through document */
while ($reader->read()) {
/* If you're at an element named 'book’ */
if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == 'book’) {
$reader->moveToAttribute('isbn");
print $reader->value . "\n";
¥
b

?>

Once you've found the <book> element, call moveToAttribute('isbn') to advance to the isbn attribute, so you can read its value
and print it out.

In the examples in this recipe, we print out information on all books. However, it's easy to modify them to retrieve data
only for one specific book. For example, this code combines pieces of the examples to print out all the data for Per/
Cookbook in an efficient fashion:

<?php
$reader = new XMLReader();
$reader->XML($catalog);

// Perl Cookbook ISBN is 0596003137
// Use array to make it easy to add additional ISBNs
$isbns = array('0596003137' => true);

/* Loop through document to find first <book> */
while ($reader->read()) {
/* If you're at an element named 'book’ */
if ($reader->nodeType == XMLREADER::ELEMENT &&
$reader->localName == 'book') {
break;
3
¥

/* Loop through <book>s to find right ISBNs */
do {
if ($reader->moveToAttribute('isbn') &&
isset($isbns[$reader->value])) {
while ($reader->read()) {
switch ($reader->nodeType) {
case XMLREADER::ELEMENT:
print $reader->localName . ": ";
break;
case XMLREADER::TEXT:
print $reader->value . "\n";
break;
case XMLREADER::END_ELEMENT;
if ($reader->localName == 'book') {
break 2;
b
b
b

} while ($reader->next());
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

title: Perl Cookbook
author: Christiansen
author: Torkington
subject: Perl

The first while() iterates sequentially until it finds the first <book> element.

Having lined yourself up correctly, you then break out of the loop and start checking ISBN numbers. That's handled
inside a do... while() loop that uses $reader->next() to move down the <book> list. You cannot use a regular while()
here or you'll skip over the first <book>. Also, this is a perfect example of when to use $reader->next() instead of
$reader->read().

If the ISBN matches a value in $isbns, then you want to process the data inside the current <book>. This is handled using
yet another while() and a switch().

There are three different switch() cases: an opening element, element text, and a closing element. If you're opening
an element, you print out the element's name and a colon. If you're text, you print out the textual data. And if you're
closing an element, you check to see whether you're closing the <book>. If so, then you've reached the end of the data
for that particular book, and you need to return to the do... while() loop. This is handled using a break 2;; while jumps
back two levels, instead of the usual one level.

12.5.4. See Also

Recipe 12.3 for parsing simple XML documents; Recipe 12.4 for parsing complex XML documents; documentation on
XMLReader at http://www.php.net/xmlreader; more information about the underlying libxmlI2 C library's XMLReader
functions at http://xmlsoft.org/xmlreader.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.6. Extracting Information Using XPath

12.6.1. Problem

You want to make sophisticated queries of your XML data without parsing the document node by node.

12.6.2. Solution

Use XPath.
XPath is available in SimpleXML:

<?php
$s = simplexml_load_file(‘address-book.xml');
$emails = $s->xpath('/address-book/person/email’);

foreach ($emails as $email) {
// do something with $email

}

?>

And in DOM:

<?php

$dom = new DOMDocument;
$dom->load(‘address-book.xml');

$xpath = new DOMXPath($dom);

$email = $xpath->query('/address-book/person/email');

foreach ($emails as $email) {
// do something with $email

}

?>

12.6.3. Discussion

Except for the simplest documents, it's rarely easy to access the data you want one element at a time. As your XML
files become increasingly complex and your parsing desires grow, using XPath is easier than filtering the data inside a
foreach.

PHP has an XPath class that takes a DOM object as its constructor. You can then search the object and receive DOM
nodes in reply. SimpleXML also supports XPath, and it's easier to use because it's integrated into the SimpleXML object.

DOM supports XPath queries, but you do not perform the query directly on the DOM object itself. Instead, you create a
DOMXPath object, as shown in Example 12-9.

Using XPath and DOM

$dom = new DOMDocument;
$dom->load('address-book.xml');

$xpath = new DOMXPath($dom);

$email = $xpath->query('/address-book/person/email');

Instantiate DOMXPath by passing in a DOMDocument to the constructor. To execute the XPath query, call query() with the
query text as your argument. This returns an iterable DOM node list of matching nodes (see Example 12-10).

Using XPath with DOM in a basic example

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$dom = new DOMDocument;
$dom->load(‘address-book.xml');

$xpath = new DOMXPath($dom);

$emails = $xpath->query('/address-book/person/email');

foreach ($emails as $e) {
$email = $e->firstChild->nodeValue;
// do something with $email

¥

After creating a new DOMXPath object, query this object using DOMXPath::query(), passing the XPath query as the first
parameter (in this example, it's /people/person/email). This function returns a node list of matching DOM nodes.

By default, DOMXPath::query() operates on the entire XML document. Search a subsection of the tree by passing in
the subtree as a final parameter to query(). For instance, to gather all the first and last names of people in the address
book, retrieve all the people nodes and query each node individually, as shown in Example 12-11.

Using XPath with DOM in a more complicated example

$dom = new DOMDocument;
$dom->load(‘address-book.xml');

$xpath = new DOMXPath($dom);

$person = $xpath->query('/address-book/person');

foreach ($person as $p) {
$fn = $xpath->query(‘firstname', $p);
$firstname = $fn->item(0)->firstChild->nodeValue;

$In = $xpath->query('lastname’, $p);
$lastname = $In->item(0)->firstChild->nodeValue;

print "$firstname $lastname\n";

}

David Sklar
Adam Trachtenberg

Inside the foreach, call DOMXPath::query() to retrieve the firstname and lastname nodes. Now, in addition to the XPath
query, also pass $p to the method. This makes the search local to the node.

In contrast to DOM, all SimpleXML objects have an integrated xpath() method. Calling this method queries the current
object using XPath and returns a SimpleXML object containing the matching nodes, so you don't need to instantiate
another object to use XPath. The method's one argument is your XPath query.

Use Example 12-12 to find all the matching email addresses in the sample address book.

Using XPath and SimpleXML in a basic example

$s = simplexml_load_file(‘address-book.xml');
$emails = $s->xpath('/address-book/person/email');

foreach ($emails as $email) {
// do something with $email

}

This is shorter because there's no need to dereference the firstNode or to take the nodeVvalue.

SimpleXML handles the more complicated example, too. Since xpath() returns SimpleXML objects, you can query them

directly, as in Example 12-13.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Using XPath with SimpleXML in a more complicated example

$s = simplexml_load_file(‘address-book.xml');
$people = $s->xpath('/address-book/person');

foreach($people as $p) {
list($firstname) = $p->xpath(‘firstname');
list($lastname) = $p->xpath('lastname');

print "$firstname $lastname\n";

¥

David Sklar
Adam Trachtenberg

Since the inner XPath queries return only one element, use list to grab it from the array.

12.6.4. See Also

Documentation on DOM XPath at

http://www.php.net/function.dom-domxpath-construct.php
specification at http://www.w3.0org/TR/xpath; the XPath chapter from XML in a Nutshell at
http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html.

; the offical XPath

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.7. Transforming XML with XSLT

12.7.1. Problem

You have an XML document and an XSL stylesheet. You want to transform the document using XSLT and capture the
results. This lets you apply stylesheets to your data and create different versions of your content for different media.

12.7.2. Solution

Use PHP's XSLT extension:

// Load XSL template
$xsl = newDOMDocument;
$xsl->load('stylesheet.xsl');

// Create new XSLTProcessor
$xslt = new XSLTProcessor();
// Load stylesheet
$xslt->importStylesheet($xsl);

// Load XML input file
$xml = new DOMDocument;
$xml->load('data.xml');

// Transform to string
$results = $xslt->transformToXML($xml);

// Transform to a file
$results = $xslt->transformToURI($xml, 'results.txt');

// Transform to DOM object
$results = $xslt->transformToDoc($xml);

The transformed text is stored in $results.

12.7.3. Discussion

XML documents describe the content of data, but they don't contain any information about how that data should be
displayed. However, when XML content is coupled with a stylesheet described using XSL (eXtensible Stylesheet
Language), the content is displayed according to specific visual rules.

The glue between XML and XSL is XSLT (eXtensible Stylesheet Language Transformations). These transformations
apply the series of rules enumerated in the stylesheet to your XML data. So just as PHP parses your code and combines
it with user input to create a dynamic page, an XSLT program uses XSL and XML to output a new page that contains
more XML, HTML, or any other format you can describe.

There are a few XSLT programs available, each with different features and limitations. PHP 5 supports only the libxslt
processor. This is a different processor than PHP 4 used.

Using XSLT in PHP 5 involves two main steps: preparing the XSLT object and then triggering the actual transformation
for each XML file.

To begin, load in the stylesheet using DOM. Then, instantiate a new XSLTProcessor object, and import the XSLT document
by passing in your newly created DOM object to the importStylesheet() method, as shown in Example 12-14.

Configuring the XSLT processor

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Load XSL template
$xsl = newDOMDocument;
$xsl->load('stylesheet.xsl');

// Create new XSLTProcessor
$xslt = new XSLTProcessor();
// Load stylesheet

$xslt->importStylesheet($xsl);

Now the transformer is up and running. You can transform any DOM object in one of three ways: into a string, into a
file, or back into another DOM object, as shown in Example 12-15.

Transforming the XML data

// Load XML input file
$xml = new DOMDocument;
$xml->load('data.xml');

// Transform to string
$results = $xslt->transformToXML($xml);

// Transform to a file
$results = $xslt->transformToURI($xml, 'results.txt');

// Transform to DOM object
$results = $xslt->transformToDoc($xml);

When you call transformToXML() or transformToDoc(), the extension returns the result string or object. In contrast,
transformToURI() returns the number of bytes written to the file, not the actual document.

These methods return false when they fail, so to accurately check for failure, write:

if (false === ($results = $xslt->transformToXML($xml))) {
// an error occurred

¥
Using === prevents a return value of 0 from being confused with an actual error.
12.7.4. See Also

Documentation on XSL functions at http://www.php.net/xsl; XSLT by Doug Tidwell (O'Reilly).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 12.8. Setting XSLT Parameters from PHP

12.8.1. Problem

You want to set parameters in your XSLT stylesheet from PHP.

12.8.2. Solution

Use the XSLTProcessor::setParameter() method:

// This could also come from $_GET['city'];
$city = 'San Francisco';

$dom = new DOMDocument
$dom->load('address-book.xml');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);

$xslt->setParameter(NULL, 'city’, $city);
print $xslt->transformToXML($dom);

This code sets the XSLT city parameter to the value stored in the PHP variable $city.

12.8.3. Discussion
You can pass data from PHP into your XSLT stylesheet with the setParameter() method. This allows you to do things
such as filter data in your stylesheet based on user input.

For example, the program in Example 12-16 allows you to find people based on their city.

Setting XSLT parameters from PHP

// This could also come from $_GET['city'];
$city = 'San Francisco';

$dom = new DOMDocument
$dom->load(‘address-book.xml');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->setParameter(NULL, 'city’, $city);
print $xslt->transformToXML($dom);

The program uses the following stylesheet:

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="@*|node()">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</xsl:copy>
</xsl:template>

<xsl:template match="/address-book/person">
<xsl:if test="city=$city">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:if>
</xsl:template>
</xsl:stylesheet>

The program and stylesheet combine to produce the following results:

<?xml version="1.0"?>
<address-book>

<person id="2">
<I--Adam Trachtenberg-->
<firstname>Adam</firsthame>
<lastname>Trachtenberg</lasthame>
<city>San Francisco</city>
<state>CA</state>
<email>amt@php.net</email>

</person>

< /address-book>

The PHP script does a standard XSLT transformation, except that it calls $xslt->setParameter(NULL, 'city', $city). The first
argument is the parameter's namespace, the second is the parameter's name, and the third is the parameter's value.

Here, the value stored in the PHP variable $city'in this case, San Francisco'is assigned to the XSLT parameter city, which
does not live under a namespace. This is equal to placing the following in an XSLT file:

<xsl:param name="city">San Francisco</xsl:param>

You usually access a parameter inside a stylesheet like you do a PHP variable, by placing a dollar sign ($) in front of its
name. The stylesheet example creates a template that matches /address-book/person nodes.

Inside the template, you test whether city=$city; in other words, is the city child of the current node equal to the value of
the city parameter? If there's a match, the children are copied along; otherwise, the records are eliminated.

In this case, city is set to San Francisco, so David's record is removed and Adam's remains.

12.8.4. See Also

Documentation on XSLTProcessor::setParameter at http://www.php.net/manual/function.xsl-xsltprocessor-set-
parameter.php; XSLT by Doug Tidwell (O'Reilly).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 12.9. Calling PHP Functions from XSLT Stylesheets

12.9.1. Problem

You want to call PHP functions from within an XSLT stylesheet.

12.9.2. Solution

Invoke the XSLTProcessor::registerPHPFunctions() method to enable this functionality:

$xslt = new XSLTProcessor();
$xslt->registerPHPFunctions();

And use the function() or functionString() function within your stylesheet:

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmins:php="http://php.net/xsl"
xsl:extension-element-prefixes="php">

<xsl:template match="/">
<xsl:value-of select="php:function('strftime’, '%c")" />
</xsl:template>

</xsl:stylesheet>

12.9.3. Discussion

XSLT parameters are great when you need to communicate from PHP to XSLT. However, they're not very useful when
you require the reverse. You can't use parameters to extract information from the stylesheet during the transformation.
Ideally, you could call PHP functions from a stylesheet and pass information back to PHP.

Fortunately, there's a method that implements this functionality: registerPHPFunctions(). Here's how it's enabled:

$xslt = new XSLTProcessor();
$xslt->registerPHPFunctions();

This allows you to call any PHP function from your stylesheets. It's not available by default because it presents a
security risk if you're processing stylesheets controlled by other people.

Both built-in and user-defined functions work. Inside your stylesheet, you must define a namespace and call the
function() or functionString() methods, as shown in Example 12-17.

Calling PHP from an XSL stylesheet

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmins:php="http://php.net/xsl"
xsl:extension-element-prefixes="php">

<xsl:template match="/">
<xsl:value-of select="php:function('strftime’, '%c")" />
</xsl:template>

</xsl:stylesheet>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

At the top of the stylesheet, define the namespace for PHP: http://php.net/xsl. This example sets the namespace prefix

to php. Also, set the extension-element-prefixes value to php so XSLT knows these are functions.

To call a PHP function, reference php:function(). The first parameter is the function name; additional parameters are
the function arguments. In this case, the function name is strftime and the one argument is %c. This causes strftime to

return the current date and time.

Example 12-18 uses this stylesheet, stored as stylesheet.xsl, to process a single-element XML document.

Transforming XML with XSLT and PHP functions

$dom = new DOMDocument;
$dom->loadXML('<blank/>");
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->registerPHPFunctions();

print $xslt->transformToXML($dom);

Mon Jul 22 19:10:21 2004

This works like standard XSLT processing, but there's an additional call to registerPHPFunctions() to activate PHP

function support.

You can also return DOM objects. Example 12-19 takes the XML address book and mangles all the email addresses to

turn the hostname portion into three dots. Everything else in the document is left untouched.

Spam protecting email addresses

function mangle_email($nodes) {
return preg_replace('/([*@\s]+)@([-a-z0-9]+\.)+[a-z){2,}/is',
'$1@...",
$nodes[0]->nodeValue);
}

$dom = new DOMDocument;
$dom->load('address-book.xml');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->registerPhpFunctions();
print $xslt->transformToXML($dom);

Inside your stylesheet, create a special template for /address-book/person/email elements, as shown in Example 12-20.

XSL stylesheet to spam protect email address

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmins:php="http://php.net/xsl"
xsl:extension-element-prefixes="php">

<xsl:template match="@*|node()">

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:template>

<xsl:template match="/address-book/person/email">
<xsl:copy>
<xsl:value-of select="php:function('mangle_email’, node())" />
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

The first template ensures that the elements aren't modified, while the second passes the current node to PHP for
mangling. In the second template, the mangle_email() function is passed the current node, represented in XPath as
node(), instead of a string. Be sure not to place the node inside quotation marks, or you'll pass the literal text node().

Nodes becomes DOM objects inside PHP and always arrive in an array. In this case, mangle_email() knows there's
always only one object and it's a DOMText object, so the email address is located in $nodes[0]->nodeValue.

When you know that you're only interested in the text portion of a node, use the functionString() function. This
function converts nodes to PHP strings, which allows you to omit the array access and nodeValue dereference:

function mangle_email($email) {
return preg_replace('/([*@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',
'$1@...",
$email);

}

// all other code is the same as before

The new stylesheet template for /address-book/person/email is:

<xsl:template match="/address-book/person/email">
<xsl:copy>
<xsl:value-of
select="php:functionString('mangle_email', node())" />
</xsl:copy>
</xsl:template>

The mangle_email() function now processes $email instead of $nodes[0]->nodeValue because the template now calls the
functionString() function.

The function() and functionString() methods are incredibly useful, but using them undermines the premise of XSL as a
language-neutral transformation engine. When you call PHP from XSLT, you cannot easily reuse your stylesheets in

projects that use Java, Perl, and other languages, because they cannot call PHP. Therefore, you should consider the
trade-off between convenience and portability before using this feature.

12.9.4. See Also

Documentation on XSLTProcessor::registerPHPFunctions() at http://www.php.net/manual/function.xsl-xsltprocessor-register-
php-functions.php; XSLT by Doug Tidwell (O'Reilly).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.10. Validating XML Documents

12.10.1. Problem

You want to make sure your XML document abides by a schema, such as XML Schema, RelaxNG, and DTDs.

12.10.2. Solution

Use the DOM extension.
With existing DOM objects, call DOMDocument::schemaValidate() or DOMDocument: :relaxNGValidate():

$file = 'address-book.xml';
$schema = 'address-book.xsd';
$ab = new DOMDocument
$ab->load($file);

if ($ab->schemaValidate($schema)) {
print "$file is valid.\n";

}else {
print "$file is invalid.\n";

If your XML document specifies a DTD at the top, call DOMDocument::validate() to validate it against the DTD.
With XML in a string, call DOMDocument::schemaValidateSource() or DOMDocument::relaxNGValidateSource():

$xml = '<person><firstname>Adam</firstname></person>';
$schema = 'address-book.xsd';

$ab = new DOMDocument

$ab->>load($file);

if ($ab->>schemaValidateSource($schema)) {
print "XML is valid.\n";

}else {
print "XML is invalid.\n";

b

12.10.3. Discussion

Schemas are a way of defining a specification for your XML documents. While the goal is the same, there are multiple
ways to encode a schema, each with a different syntax.

Some popular formats are DTDs (Document Type Definitions), XML Schema, and RelaxNG. DTDs have been around
longer, but they are not written in XML and have other issues, so they can be difficult to work with. XML Schema and
RelaxNG are more recent schemas and attempt to solve some of the issues surrounding DTDs.

PHP 5 uses the libxml2 library to provide its validation support. Therefore, it lets you validate files against all three
types. It is most flexible when you're using XML Schema and RelaxNG, but its XML Schema support is incomplete. You
shouldn't run into issues in most XML Schema documents; however, you may find that libxmI2 cannot handle some
complex schemas or schemas that use more esoteric features.

Within PHP, the DOM extension supports DTD, XML Schema, and RelaxNG validation, while SimpleXML provides only an
XML Schema validator.

Validating any file using DOM is a similar process, regardless of the underlying schema format. To validate, call a

validation method on a DOM object (see Example 12-21). It returns true if the file passes. If there's an error, it returns
false and prints a message to the error log. There is no method for "capturing" the error message.

Validating an XML document

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$file = 'address-book.xml';
$schema = 'address-book.xsd';
$ab = new DOMDocument
$ab->load($file);

if ($ab->schemaValidate($schema)) {
print "$file is valid.\n";

}else {
print "$file is invalid.\n";

¥

If the schema is stored in a string, use DOMDocument::schemaValidateSource() instead of schemaValidate().

Table 12-3 lists all the validation methods.

Table 12-3. DOM schema validation methods

Method name

Schema type

Data location

schemaValidate XML Schema File
schemaValidateSource XML Schema String
relaxNGValidate RelaxNG File
relaxNGValidateSource RelaxNG String
validate DTD N/A

All of the validation methods behave in a similar manner, so you only need to switch the method name in the previous
example to switch to a different validation scheme.

Both XML Schema and RelaxNG support validation against files and strings. You can validate a DOM object only against
the DTD defined at the top of the XML document.

12.10.4. See Also

The XML Schema specification at http://www.w3.0rg/XML/Schema; the Relax NG specification at

http://www.relaxng.org/

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.11. Handling Content Encoding

12.11.1. Problem

PHP XML extensions use UTF-8, but your data is in a different content encoding.

12.11.2. Solution

Use the iconv library to convert it before passing it into an XML extension:

$utf_8 = iconv('ISO-8859-1', 'UTF-8', $iso_8859_1);

Then convert it back when you are finished:

$iso_8859_1 = iconv('UTF-8', '1SO-8859-1', $utf_8);

12.11.3. Discussion

Character encoding is a major PHP 5 weakness. Fortunately, Unicode support is the major driver behind PHP 6. Since
PHP 6 is still under development, in the meantime, you can run into problems if you're trying to use XML extensions
with arbitrary encoded data.

For simplicity, the XML extensions all exclusively use the UTF-8 character encoding. That means they all expect data in
UTF-8 and output all data in UTF-8. If your data is ASCII, then you don't need to worry, UTF-8 is a superset of ASCII.
However, if you're using other encodings, then you will run into trouble sooner or later.

To work around this issue, use the iconv extension to manually encode data back and forth between your character sets
and UTF-8. For example, to convert from ISO-8859-1 to UTF-8:

$utf_8 = iconv('ISO-8859-1', 'UTF-8', $iso_8859_1);

The iconv function supports two special modifiers for the destination encoding: //TRANSLIT and //IGNORE. The first option
tells iconv that whenever it cannot exactly duplicate a character in the destination encoding, it should try to approximate
it using a series of other characters. The other option makes iconv silently ignore any unconvertible characters.

For example, the string $geb holds the text Gédel, Escher, Bach. A straight conversion to ASCII produces an error:

echo iconv('UTF-8', 'ASCII', $geb);
PHP Notice: iconv(): Detected an illegal character in input string...

Enabling the //IGNORE feature allows the conversion to occur:

echo iconv('UTF-8', 'ASCII//IGNORE', $geb);

However, the output isn't nice, because the 6 is missing:

Gdel, Escher, Bach

The best solution is to use //trANSLIT:

echo iconv('UTF-8', 'ASCII//TRANSLIT', $geb);

This produces a better-looking string:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Gdel, Escher, Bach

However, be careful when you use //trANSLIT, as it can increase the number of characters. For example, the single
character 6 becomes two characters: " and o.

12.11.4. See Also

More information about working with UTF-8 text is in 19.13; documentation on iconv at http://www.php.net/iconv; the
GNU libiconv home page at http://www.gnu.org/software/libiconv/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 12.12. Reading RSS and Atom Feeds

12.12.1. Problem

You want to retrieve RSS and Atom feeds and look at the items. This allows you to incorporate newsfeeds from multiple
web sites into your application.

12.12.2. Solution

Use the MagpieRSS parser. Here's an example that reads the RSS feed for the php.announce mailing list:

<?php
require 'rss_fetch.inc';

$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';
$rss = fetch_rss($feed);

print "\n";
foreach ($rss->items as $item) {
print '". $item['title'] . "\n";

print "\n";
?>

12.12.3. Discussion

RSS (RDF Site Summary) is an easy-to-use headline or article syndication format written in xmL.[Many news web
sites, such as the New York Times and the Washington Post, provide RSS feeds that update whenever new stories are
published. Weblogs have also embraced RSS and having an RSS feed for your blog is a standard feature. The PHP web
site also publishes RSS feeds for most PHP mailing lists.

[RDF stands for Resource Definition Framework. RSS also stands for Rich Site Summary.

Atom is a similar XML syndication format. It extends many of the concepts in RSS, including a way to read and write
Atom data. It also attempts to provide a more well-defined syntax for syndication than RSS, as the RSS specification
doesn't always clearly enumerate exactly what is or isn't permissible in a feed.

Using MagpieRSS, retrieving and parsing RSS and Atom feeds are simple:

<?php
$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';

$rss = fetch_rss($feed);
?>

This example reads in the RSS feed for the php.announce mailing list. The feed is then parsed by fetch_rss() and
stored internally within $rss.

While this feed is RSS 0.93, there's no need to specify this to MagpieRSS. Its fetch_rss() function detects the
syndication format, including Atom, and formats the document accordingly.

Each RSS item is then retrieved as an associative array using the items property:

<?php
print "\n";

foreach ($rss->items as $item) {
print '". $item['title'] . "\n";

¥

print "\n";
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This foreach loop creates an unordered list of items with the item title linking back to the URL associated with the
complete article, as shown in Figure 12-1. Besides the required title and link fields, an item can have an optional description
field that contains a brief write-up about the item.

php.announce RSS feed

Each channel also has an entry with information about the feed, as shown in Figure 12-2. To retrieve that data, call
access the channel attribute:

<?php

$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';
$rss = fetch_rss($feed);

print "\n";

foreach ($rss->channel as $key => $value) {

print "$key: $value\n";

print "\n";
?>

php.announce RSS channel information

Fdoralla { Baslled 10: 200053002 ¢

1 iy

& ftie nead php pet php announce
* Ik hitp Maews php netfgoug, php Teroupsphp. mmeunce

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12.12.4. See Also

The Magpie RSS home page at http://magpierss.sourceforge.net/; more information on RSS at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN
Recipe 12.13. Writing RSS Feeds

12.13.1. Problem

You want to generate RSS feeds from your data. This will allow you to syndicate your content.

12.13.2. Solution

Use this class:

<?php
class rss2 extends DOMDocument {
private $channel;

public function __construct(s$title, $link, $description) {
parent::__construct();
$this->formatOutput = true;

$root = $this->appendChild($this->createElement('rss'));
$root->setAttribute('version', '2.0");

$channel= $root->appendChild($this->createElement(‘channel’));

$channel->appendChild($this->createElement('title', $title));
$channel->appendChild($this->createElement('link’, $link));
$channel->appendChild($this->createElement('description’, $description));

$this->channel = $channel;

¥

public function addItem($title, $link, $description) {
$item = $this->createElement(‘item’);
$item->appendChild($this->createElement('title', $title));
$item->appendChild($this->createElement('link’, $link));
$item->appendChild($this->createElement(‘description’, $description));

$this->channel->appendChild($item);
3
b

$rss = new rss2('Channel Title', 'http://www.example.org',
'Channel Description');

$rss->addItem('Item 1', 'http://www.example.org/item1',
'Item 1 Description');

$rss->addItem('Item 2', 'http://www.example.org/item2',
'Ttem 2 Description');

print $rss->saveXML();
?>

<?xml version="1.0"?>
<rss version="2.0">
<channel>
<title>Channel Title</title>
<link>http://www.example.org</link>
<description>Channel Description</description>
<item>
<title>Item 1</title>
<link>http://www.example.org/item1</link>
<description>Item 1 Description</description>
</item>
<item>
<title>Item 2</title>
<link>http://www.example.org/item2</link>
<description>Item 2 Description</description>
</item>
</channel>
</rss>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12.13.3. Discussion

RSS is XML, so you can leverage all the XML generation features of the DOM extension. The code in the Solution
extends the DOMDocument class to build up a DOM tree by creating elements and appending them in the appropriate
structure.

The class constructor sets up the <rss> and <channel> elements. It takes three arguments: the channel title, link, and
description:

public function __construct($title, $link, $description) {
parent::__construct();
$this->formatOutput = true;

$root = $this->appendChild($this->createElement('rss'));
$root->setAttribute('version', '2.0");

$channel= $root->appendChild($this->createElement(‘channel'));

$channel->appendChild($this->createElement('title’, $title));
$channel->appendChild($this->createElement('link’, $link));
$channel->appendChild($this->createElement('description’, $description));

$this->channel = $channel;

Inside the method, you call parent::__construct() method to invoke the actual DOMDocument::__construct(). Now
you can begin building up the document.

First, set the formatOutput attribute to true. This adds indention and carriage returns to the output, so it's easy to read.
From there, create the document's root element, rss, and set its version attribute to 2.0, since this is an RSS 2.0 feed.

All the actual data lives inside a channel element underneath the rss node, so the next step is to make that element and
also to set its title, link, and description child elements.

That data comes from the arguments passed to the constructor. It's set using a handy feature of the createElement()
method, which lets you specify both an element's name and a text node with data in one call. This is a PHP 5 extension
to the DOM specification.

Last, the channel element is saved for easy access later on.
With the main content defined, use the addItem() method to add item entries:

public function addItem($title, $link, $description) {
$item = $this->createElement(‘item’);
$item->appendChild($this->createElement('title', $title));
$item->appendChild($this->createElement('link’, $link));
$item->appendChild($this->createElement(‘description’, $description));

$this->channel->appendChild($item);

Since item elements contain the same data as the channel, this code is almost identical to what appears in the
constructor.

While a title, link, and description are required elements of the channel, they are actually optional in the item. The only
requirement of an item is that it contains either a title or a description. That's it.

For simplicity, this code requires all three elements. Likewise, it doesn't provide a way to add in additional channel or
item elements, such as the date the item was published or a GUID that uniquely identifies the item.

But 43 lines later, the basic RSS 2.0 class is finished. Use it like this:

$rss = new rss2("Channel Title', 'http://www.example.org’,
'Channel Description');

$rss->addItem('Item 1', 'http://www.example.org/item1’,
'Item 1 Description');

$rss->addItem('Item 2', 'http://www.example.org/item2',
'Ttem 2 Description');

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print $rss->saveXML();

<?xml version="1.0"?>
<rss version="2.0">
<channel>
<title>Channel Title</title>
<link>http://www.example.org</link>
<description>Channel Description</description>
<item>
<title>Item 1</title>
<link>http://www.example.org/item1</link>
<description>Item 1 Description</description>
</item>
<item>
<title>Item 2</title>
<link>http://www.example.org/item2</link>
<description>Item 2 Description</description>
</item>
</channel>
</rss>

Create a new instance of the rss2 class and pass along the channel data. Then call its addItem() method to add
individual items to the channel. Once you're finished, you can convert the class to XML by using the parent
DOMDocument::saveXML() method.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py |
Recipe 12.14. Writing Atom Feeds

12.14.1. Problem

You want to generate Atom feeds from your data. This will allow you to syndicate your content.

12.14.2. Solution

Use this class:

class atom1 extends DOMDocument {
private $ns;

public function __construct($title, $href, $name, $id) {
parent::__construct();
$this->formatOutput = true;

$this->ns = 'http://www.w3.0rg/2005/Atom’;
$root = $this->appendChild($this->createElementNS($this->ns, 'feed'));

$root->appendChild($this->createElementNS($this->ns, 'title', $title));
$link = $root->appendChild($this->createElementNS($this->ns, 'link"));
$link->setAttribute(‘href', $href);
$root->appendChild($this->createElementNS($this->ns, 'updated',
date('Y-m-d\\TH:i:sP")));

$author = $root->appendChild($this->createElementNS($this->ns, 'author'));
$author->appendChild($this->createElementNS($this->ns, 'name', $name));
$root->appendChild($this->createElementNS($this->ns, 'id', $id));

}

public function addEntry($title, $link, $summary) {
$entry = $this->createElementNS($this->ns, 'entry");
$entry->appendChild($this->createElementNS($this->ns, 'title', $title));
$entry->appendChild($this->createElementNS($this->ns, 'link’, $link));

$id = uniqid('http://example.org/atom/entry/ids/");
$entry->appendChild($this->createElementNS($this->ns, 'id', $id));

$entry->appendChild($this->createElementNS($this->ns, 'updated',
date(DATE_ATOM)));
$entry->appendChild($this->createElementNS($this->ns, 'summary’,
$summary));

$this->documentElement->appendChild($entry);
b
b

$atom = new atom1('Channel Title', 'http://www.example.org’,
'John Quincy Atom', 'http://example.org/atom/feed/ids/1');

$atom->addEntry('Item 1', 'http://www.example.org/item1’,
'Ttem 1 Description', 'http://example.org/atom/entry/ids/1');

$atom->addEntry('Item 2', 'http://www.example.org/item?2’,
'Ttem 2 Description', 'http://example.org/atom/entry/ids/2");

print $atom->saveXML();

<?xml version="1.0"?>
<feed xmlns="http://www.w3.0rg/2005/Atom" >
<title>Channel Title</title>
<link href="http://www.example.org"/>
<updated>2006-10-23T22:33:59-07:00</updated>
<author>
<name>John Quincy Atom</name>
</author>
<id>http://example.org/atom/feed/ids/1</id>
<entry>
<title>Item 1</title>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<link>http://www.example.org/item1</link>
<id>http://example.org/atom/entry/ids/1</id>
<updated>2006-10-23T20:23:32-07:00</updated>
<summary>Item 1 Description</summary>

</entry>

<entry>
<title>Item 2</title>
<link>http://www.example.org/item2</link>
<id>http://example.org/atom/entry/ids/2</id>
<updated>2006-10-23T21:53:44-07:00</updated>
<summary>Item 2 Description</summary>

</entry>

</feed>

12.14.3. Discussion

The atom1 class is structured similar to the rss2 class from Recipe 12.13. Read its Discussion for a more detailed
explanation of the overall code structure and DOM extension behavior. This recipe covers the differences between RSS
and Atom and how the class is updated to handle them.

The Atom Specification is more complex than RSS. It requires you to place elements inside a namespace and also
forces the generation of unique identifiers for a feed and individual items, along with the last updated times for those
entries.

Also, while its general structure is similar to RSS, it uses different terminology. The root element is now a feed and an
item is now an entry. You don't need a feed description, but you do need an author. And inside the entries, the description
is a summary.

Last, there is no concept of a channel. Both feed data and entries are located directly under the document element.
Here's the updated constructor:

public function __construct($title, $href, $name, $id) {
parent::__construct();
$this->formatOutput = true;

$this->ns = 'http://www.w3.0rg/2005/Atom’;
$root = $this->appendChild($this->createElementNS($this->ns, 'feed"));

$root->appendChild(
$this->createElementNS($this->ns, 'title', $title));
$link = $root->appendChild(
$this->createElementNS($this->ns, 'link'));
$link->setAttribute(‘href', $href);
$root->appendChild($this->createElementNS(
$this->ns, 'updated', date(DATE_ATOM)));
$author = $root->appendChild(
$this->createElementNS($this->ns, 'author'));
$author->appendChild(
$this->createElementNS($this->ns, 'name’, $name));
$root->appendChild(
$this->createElementNS($this->ns, 'id', $id"));

All Atom elements live under the http://www.w3.0rg/2005/Atom XML namespace. Therefore, all atoml methods use
DOMDocument::createElementNS(), which is the namespace version of DOMDocument: :createElement(). The Atom
namespace is stored in atom1::ns, so it's easy to access.

The constructor now takes four arguments: title, link, author name, and feed ID. The title and id are defined similar to
RSS channel elements. However, the link is actually set as the href attribute of the link element, and the name is a child
of the author element.

Additionally, there is an updated element, which is set to the last update time. In this case, it's set to the current time
and formatted using PHP's built-in DATE_ATOM constant formatting specification. This is only available as of PHP 5.1.1; if
you're using an earlier version of PHP, substitute the string Y-m-d\\TH:i:sP.

The addItem() method is renamed to addEntry() to be consistent with the Atom specification:

public function addEntry($title, $link, $summary, $id) {
$entry = $this->createElementNS($this->ns, 'entry");
$entry->appendChild(
$this->createElementNS($this->ns, 'title', $title));

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$entry->appendChild(

$this->createElementNS($this->ns, 'link’, $link));
$entry->appendChild(

$this->createElementNS($this->ns, 'id', $id));
$entry->appendChild(

$this->createElementNS($this->ns, 'updated', date(DATE_ATOM)));
$entry->appendChild(

$this->createElementNS($this->ns, 'summary', $summary));

$this->documentElement->appendChild($entry);

It behaves very similar to its counterpart, with the few additions of new elements, such as id and updated.
Everything comes together like this:

$atom = new atom1('Channel Title', 'http://www.example.org’,
'John Quincy Atom’', 'http://example.org/atom/feed/ids/1");

$atom->addEntry('Item 1', 'http://www.example.org/item1’,
'Ttem 1 Description', 'http://example.org/atom/entry/ids/1");

$atom->addEntry('Item 2, 'http://www.example.org/item2',
'Ttem 2 Description', 'http://example.org/atom/entry/ids/2");

print $atom->saveXML();

<?xml version="1.0"?>
<feed xmlns="http://www.w3.0rg/2005/Atom" >
<title>Channel Title</title>
<link href="http://www.example.org"/>
<updated>2006-10-23T22:33:59-07:00</updated>
<author>
<name>John Quincy Atom</name>
</author>
<id>http://example.org/atom/feed/ids/1</id>
<entry>
<title>Item 1</title>
<link>http://www.example.org/item1</link>
<id>http://example.org/atom/entry/ids/1</id>
<updated>2006-10-23T20:23:32-07:00</updated>
<summary>Item 1 Description</summary>
</entry>
<entry>
<title>Item 2</title>
<link>http://www.example.org/item2</link>
<id>http://example.org/atom/entry/ids/2</id>
<updated>2006-10-23T21:53:44-07:00</updated>
<summary>Item 2 Description</summary>
</entry>
</feed>

Like the rss2 class, atom1 implements only a small subset of the full specification. It's enough to generate a valid feed,
but if you need to do more, then you will need to extend the class.

12.14.4. See Also

The Atom home page http://www.atomenabled.org/; the Atom Wiki at http://www.intertwingly.net/wiki/pie/; more
information on Atom at http://en.wikipedia.org/wiki/Atom_(standard) .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| & Prcy |
Chapter 13. Web Automation

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

13.0. Introduction

Most of the time, PHP is part of a web server, sending content to browsers. Even when you run it from the command
line, it usually performs a task and then prints some output. PHP can also be useful, however, playing the role of a web
client, retrieving URLs and then operating on the content. Most recipes in this chapter cover retrieving URLs and
processing the results, although there are a few other tasks in here as well, such as cleaning up URLs and some
JavaScript-related operations.

There are many ways retrieve a remote URL in PHP. Choosing one method over another depends on your needs for
simplicity, control, and portability. The three methods discussed in this chapter are standard file functions, the cURL
extension, and the HTTP_Request class from PEAR. These three methods can generally do everything you need and at
least one of them should be available to you whatever your server configuration or ability to install custom extensions.
Other ways to retrieve remote URLs include the pecl_http extension (http://pecl.php.net/package/pecl_http), which, while
still in development, offers some promising features, and using the fsockopen() function to open a socket over which
you send an HTTP request that you construct piece by piece.

Using a standard file function such as file_get _contents() is simple and convenient. It automatically follows redirects,
so if you use this function to retrieve the directory http://www.example.com/people and the server redirects you to
http://www.example.com/people/, you'll get the contents of the directory index page, not a message telling you that
the URL has moved. Standard file functions also work with both HTTP and FTP. The downside to this method is that it
requires the allow_url_fopen configuration directive to be turned on.

The cURL extension is a powerful jack-of-all-request-trades. It relies on the popular libcurl (http://curl.haxx.se/) to
provide a fast, configurable mechanism for handling a wide variety of network requests. If this extension is available on
your server, we recommend you use it.

If allow_url_fopen is turned off and cURL is not available, the PEAR HTTP_Request module saves the day. Like all PEAR
modules, it's plain PHP, so if you can save a PHP file on your server, you can use it. HTTP_Request supports just about
anything you'd like to do when requesting a remote URL, including modifying request headers and body, using an
arbitrary method, and retrieving response headers.

Recipes 13.1 through 13.7 explain how to make various kinds of HTTP requests, tweaking headers, method, body, and
timing. Recipe 13.8 helps you go behind the scenes of an HTTP request to examine the headers in a request and
response. If a request you're making from a program isn't giving you the results you're looking for, examining the
headers often provides clues as to what's wrong.

Once you've retrieved the contents of a web page into a program, use Recipes 13.9 through 13.14 to help you
manipulate those page contents. 13.9 demonstrates how to mark up certain words in a page with blocks of color. This
technique is useful for highlighting search terms, for example. Recipe 13.11 provides a function to find all the links in a
page. This is an essential building block for a web spider or a link checker. Converting between plain text and HTML is
covered in Recipes 13.12 and 13.13. 13.14 shows how to remove all HTML and PHP tags from a web page.

Recipes 13.15 and 13.16 discuss how PHP and JavaScript can work together. 13.15 explores using PHP to respond to
requests made by JavaScript, in which you have to be concerned about caching and using alternate content types.
13.16 provides a full-fledged example of PHPJavaScript integration using the popular and powerful Dojo toolkit.

Two sample programs use the link extractor from Recipe 13.11. The program in Recipe 13.17 scans the links in a page
and reports which are still valid, which have been moved, and which no longer work. The program in Recipe 13.18
reports on the freshness of links. It tells you when a linked-to page was last modified and if it's been moved.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 13.1. Fetching a URL with the Get Method

13.1.1. Problem

You want to retrieve the contents of a URL. For example, you want to include part of one web page in another page's
content.

13.1.2. Solution
Provide the URL to file_get_contents(), as shown in Example 13-1.

Fetching a URL with file_get_contents()

<?php
$page = file_get_contents(‘http://www.example.com/robots.txt');
?>

Or you can use the cURL extension, as shown in Example 13-2.

Fetching a URL with cURL

<?php

$c = curl_init('http://www.example.com/robots.txt'");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);

curl_close($c);

?>

You can also use the HTTP_Request class from PEAR, as shown in Example 13-3.

Fetching a URL with HTTP_Request

<?php

require_once 'HTTP/Request.php’;

$r = new HTTP_Request('http://www.example.com/robots.txt');
$r->sendRequest();

$page = $r->getResponseBody();

?>

13.1.3. Discussion

file_get_contents(), like all PHP file-handling functions, uses PHP's streams feature. This means that it can handle local
files as well as a variety of network resources, including HTTP URLs. There's a catch, though'the allow_url_fopen
configuration setting must be turned on (which it usually is).

This makes for extremely easy retrieval of remote documents. As Example 13-4 shows, you can use the same
technique to grab a remote XML document.

Fetching a remote XML document

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
$url = 'http://rss.news.yahoo.com/rss/oddlyenough’;
$rss = simplexml_load_file($url);
print '";
foreach ($rss->channel->item as $item) {
print '<a href="".
htmlentities($item->link) .
">
htmlentities($item->title) .
'<fa>";

print '";
?>

To retrieve a page that includes query string variables, use http_build_query() to create the query string. It accepts an
array of key/value pairs and returns a single string with everything properly escaped. You're still responsible for the ? in
the URL that sets off the query string. Example 13-5 demonstrates http_build_query().

Building a query string with http_build_query()

<?php

$vars = array('page' => 4, 'search’' => 'this & that");
$gs = http_build_query($vars);

$url = 'http://www.example.com/search.php?' . $gs;
$page = file_get_contents($url);

?>

To retrieve a protected page, put the username and password in the URL. In Example 13-6, the username is david, and
the password is haxOr.

Retrieving a protected page

<?php

$url = 'http://david:haxOr@www.example.com/secrets.php';
$page = file_get_contents($url);

?>

Example 13-7 shows how to retrieve a protected page with cURL.

Retrieving a protected page with cURL

<?php

$c = curl_init("http://www.example.com/secrets.php");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_USERPWD, 'david:hax0r');
$page = curl_exec($c);

curl_close($c);

?>

Example 13-8 shows how to retrieve a protected page with HTTP_Request.

Retrieving a protected page with HTTP_Request

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

$r = new HTTP_Request('http://www.example.com/secrets.php');
$r->setBasicAuth('david','hax0r');

$r->sendRequest();

$page = $r->getResponseBody();

PHP's http stream wrapper automatically follows redirects. Since PHP 5.0.0, file_get_contents() and fopen() support a
stream context argument that allows for specifying options about how the stream is retrieved. In PHP 5.1.0 and later,
one of those options is max_redirects'the maximum number of redirects to follow. Example 13-9 sets max_redirects to 1,
which turns off redirect following.

Not following redirects

<?php

$url = 'http://www.example.com/redirector.php';

// Define the options

$options = array('max_redirects' => 1);

// Create a context with options for the http stream

$context = stream_context_create(array(‘http' => $options));
// Pass the options to file_get_contents. The second

// argument is whether to use the include path, which

// we don't want here.

print file_get_contents($url, false, $context);

The max_redirects stream wrapper option really indicates not how many redirects should be followed, but the maximum
number of requests that should be made when following the redirect chain. That is, a value of 1 tells PHP to make at
most 1 request'follow no redirects. A value of 2 tells PHP to make at most 2 requests'follow no more than 1 redirect. (A
value of 0, however, behaves like a value of 1'PHP makes just 1 request.)

If the redirect chain would have PHP make more requests than are allowed by max_redirects, PHP issues a warning.

cURL only follows redirects when the CURLOPT_FOLLOWLOCATION option is set, as shown in Example 13-10.

Following redirects with cURL

<?php

$c = curl_init("http://www.example.com/redirector.php");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_FOLLOWLOCATION, true);
$page = curl_exec($c);

curl_close($c);

?>

To set a maximum number of redirects that cURL should follow, set CURLOPT_FOLLOWLOCATION to TRue and then set the
CURLOPT_MAXREDIRS option to that maximum number.

HTTP_Request does not follow redirects, but another PEAR module, HTTP_Client, can. HTTP_Client wraps around HTTP_Request
and provides additional capabilities. Example 13-11 shows how to use HTTP_Client to follow redirects.

Following redirects with HTTP_Client

<?php
require_once 'HTTP/Client.php';

// Create a client
$client = new HTTP_Client();
// Issue a GET request

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$client->get($url);

// Get the response

$response = $client->currentResponse();

// $response is an array with three elements:
// code, headers, and body

print $response['body'];

?>

cURL can do a few different things with the page it retrieves. As you've seen in previous examples, if
CURLOPT_RETURNTRANSFER is set, curl_exec() returns the body of the page requested. If CURLOPT_RETURNTRANSFER is not

set, curl_exec() prints the response body.

To write the retrieved page to a file, open a file handle for writing with fopen() and set the CURLOPT_FILE option to that

file handle. Example 13-12 uses cURL to copy a remote web page to a local file.

Writing a response body to a file with cURL

<?php

$fh = fopen('local-copy-of-files.html','w") or die($php_errormsg);
$c = curl_init("http://www.example.com/files.html');
curl_setopt($c, CURLOPT_FILE, $fh);

curl_exec($c);

curl_close($c);

?>

To pass the cURL resource and the contents of the retrieved page to a function, set the CURLOPT_WRITEFUNCTION option to
a callback for that function (either a string function name or an array of object name or instance and method name).
The "write function" must return the number of bytes it was passed. Note that with large responses, the write function
might get called more than once as cURL processes the response in chunks. Example 13-13 uses a cURL write function

to save page contents in a database.

Saving a page to a database table with cURL

<?php

class PageSaver {
protected $db;
protected $page =";

public function __construct() {
$this->db = new PDO('sglite:./pages.db’);
b

public function write($curl, $data) {
$this->page .= $data;
return strlen($data);

public function save($curl) {
$info = curl_getinfo($curl);
$st = $this->db->prepare('INSERT INTO pages '.
'(url,page) VALUES (?,?)");
$st->execute(array($info['url'], $this->page));
¥
}

// Create the saver instance

$pageSaver = new PageSaver();

// Create the cURL resources

$c = curl_init('http://www.sklar.com/');

// Set the write function

curl_setopt($c, CURLOPT_WRITEFUNCTION, array($pageSaver,'write'));
// Execute the request

curl_exec($c);

// Save the accumulate data

$pageSaver->save($c);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

13.1.4. See Also

Recipe 13.2 for fetching a URL with the POST method; documentation on file_get_contents() at
http://www.php.net/file_get_contents, simplexm/_load_file() at http://www.php.net/simplexml_load_file,
stream_context_create() at http://www.php.net/stream_context_create, curl_init() at http://www.php.net/curl-init,
curl_setopt() at http://www.php.net/curl-setopt, curl_exec() at http://www.php.net/curl-exec, curl_getinfo() at
http://www.php.net/curl_getinfo, and curl_close() at http://www.php.net/curl-close; the PEAR HTTP_Request class at
http://pear.php.net/package/HTTP_Request; and the PEAR HTTP_Client class at
http://pear.php.net/package/HTTP_Client.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py |
Recipe 13.2. Fetching a URL with the Post Method

13.2.1. Problem

You want to retrieve a URL with the post method, not the default get method. For example, you want to submit a form.

13.2.2. Solution

Set the method and content stream context options when using the http stream, as in Example 13-14.

Using POST with the http stream

<?php

$url = 'http://www.example.com/submit.php’;

// The submitted form data, encoded as query-string-style
// name-value pairs

$body = 'monkey=uncle&rhino=aunt’;

$options = array('method' => 'POST', 'content' => $body);
// Create the stream context

$context = stream_context_create(array(‘http' => $options));
// Pass the context to file_get_contents()

print file_get_contents($url, false, $context);

?>

With cURL, set the CURLOPT_POST and CURLOPT_POSTFIELDS options, as in Example 13-15.

Using POST with cURL

<?php

$url = 'http://www.example.com/submit.php’;

// The submitted form data, encoded as query-string-style
// name-value pairs

$body = 'monkey=uncle&rhino=aunt’;

$c = curl_init($url);

curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_POSTFIELDS, $body);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);

curl_close($c);

?>

-16 shows how to post with HTTP_Request: pass HTTP_REQUEST_METHOD_POST to the constructor and call

addPostData() once for each name/value pair in the data to submit.

Using POST with HTTP_Request

<?php

require '"HTTP/Request.php';

$url = 'http://www.example.com/submit.php’;

$r = new HTTP_Request($url);
$r->setMethod(HTTP_REQUEST_METHOD_POST);
$r->addPostData('monkey','uncle’);
$r->addPostData('rhino’,'aunt’);
$r->sendRequest();

$page = $r->getResponseBody();

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

13.2.3. Discussion

Sending a post method request requires special handling of any arguments. In a get request, these arguments are in the
query string, but in a post request, they go in the request body. Additionally, the request needs a Content-Length header
that tells the server the size of the content to expect in the request body.

Although they each have different mechanisms by which you specify the request method and the body content, each of
the examples in the Solution automatically add the proper Content-Length header for you.

If you use a stream context to send a post request, make sure to set the method option to post'case matters.

Retrieving a URL with post instead of get is especially useful if the get query string is very long, more than 200 characters
or so. The HTTP 1.1 specification in RFC 2616 doesn't place a maximum length on URLs, so behavior varies among
different web and proxy servers. If you retrieve URLs with get and receive unexpected results or results with status code
414 ("Request-URI Too Long"), convert the request to a post request.

13.2.4. See Also

13.1 for fetching a URL with the get method; documentation on curl_setopt() at http://www.php.net/curl-setopt and on
stream options at http://www.php.net/wrappers.http; the PEAR HTTP_Request class at
http://pear.php.net/package/HTTP_Request; RFC 2616 is available at
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 13.3. Fetching a URL with Cookies

13.3.1. Problem

You want to retrieve a page that requires a cookie to be sent with the request for the page.
13.3.2. Solution
Use the CURLOPT_COOKIE option with cURL, as shown in Example 13-17.

Sending cookies with cURL

<?php

$c = curl_init('http://www.example.com/needs-cookies.php');
curl_setopt($c, CURLOPT_COOKIE, 'user=ellen; activity=swimming');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

curl_close($c);

?>

With HTTP_Request, use the addHeader() method to add a Cookie header, as shown in Example 13-18.

Sending cookies with HTTP_Request

<?php

require '"HTTP/Request.php';

$r = new HTTP_Request('http://www.example.com/needs-cookies.php');
$r->addHeader('Cookie','user=ellen; activity=swimming');
$r->sendRequest();

$page = $r->getResponseBody();

>

13.3.3. Discussion

Cookies are sent to the server in the Cookie request header. The cURL extension has a cookie-specific option, but with
HTTP_Request, you have to add the Cookie header just as with other request headers. Multiple cookie values are sent in a
semicolon-delimited list. The examples in the Solution send two cookies: one named user with value ellen and one named
activity with value swimming.

To request a page that sets cookies and then make subsequent requests that include those newly set cookies, use
cURL's "cookie jar" feature. On the first request, set CURLOPT_COOKIEJAR to the name of a file to store the cookies in. On
subsequent requests, set CURLOPT_COOKIEFILE to the same filename, and cURL reads the cookies from the file and sends
them along with the request. This is especially useful for a sequence of requests in which the first request logs into a
site that sets session or authentication cookies, and then the rest of the requests need to include those cookies to be
valid. Example 13-19 shows such a sequence of requests.

Tracking cookies with cURL's cookie jar

<?php
// A temporary file to hold the cookies
$cookie_jar = tempnam('/tmp’,'cookie');

// log in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$c = curl_init('https://bank.example.com/login.php?user=donald&password=b1gmoney$");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_COOKIEJAR, $cookie_jar);

$page = curl_exec($c);

curl_close($c);

// retrieve account balance

$c = curl_init("http://bank.example.com/balance.php?account=checking');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_COOKIEFILE, $cookie_jar);

$page = curl_exec($c);

curl_close($c);

// make a deposit

$c = curl_init("http://bank.example.com/deposit.php');

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'account=checking&amount=122.44");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_COOKIEFILE, $cookie_jar);

$page = curl_exec($c);

curl_close($c);

// remove the cookie jar
unlink($cookie_jar) or die("Can't unlink $cookie_jar");
?>

Be careful where you store the cookie jar. It needs to be in a place your web server has write access to, but if other
users can read the file, they may be able to poach the authentication credentials stored in the cookies.

HTTP_Client offers a similar cookie-tracking feature. You don't have to do anything special to enable it. If you make
multiple requests with the same HTTP_Client object, cookies are automatically preserved from one request to the next.

13.3.4. See Also

Documentation on curl_setopt() at http://www.php.net/curl-setopt; the PEAR HTTP_Request class at
http://pear.php.net/package/HTTP_Request, the PEAR HTTP_Client class at http://pear.php.net/package/HTTP_Client;
"Persistent Client State - HTTP Cookies" at http://wp.netscape.com/newsref/std/cookie_spec.html and "HTTP Cookies:
Standards, Privacy, and Politics" by David M. Kristol at http://arxiv.org/abs/cs.SE/0105018.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 13.4. Fetching a URL with Arbitrary Headers

13.4.1. Problem

You want to retrieve a URL that requires specific headers to be sent with the request for the page.

13.4.2. Solution

Set the header stream context option when using the http stream as in Example 13-20. The header value must be a
single string. Separate multiple headers with a carriage return and newline (\r\n inside a double-quoted string).

Sending a header with the http stream

<?php

$url = 'http://www.example.com/special-header.php’;
$header = "X-Factor: 12\r\nMy-Header: Bob";

$options = array(‘header' => $header);

// Create the stream context

$context = stream_context_create(array(‘http' => $options));
// Pass the context to file_get_contents()

print file_get_contents($url, false, $context);

?>

With cURL, set the CURLOPT_HTTPHEADER option to an array of headers to send, as shown in Example 13-22.

Sending a header with cURL

<?php

$c = curl_init("http://www.example.com/special-header.php');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_HTTPHEADER, array('X-Factor: 12', 'My-Header: Bob'"));
$page = curl_exec($c);

curl_close($c);

?>

With HTTP_Request, use the addHeader() method, as shown in Example 13-35.

Sending a header with HTTP_Request

<?php
require '"HTTP/Request.php';

$r = new HTTP_Request('http://www.example.com/special-header.php");
$r->addHeader('X-Factor',12);

$r->addHeader('My-Header','Bob');

$r->sendRequest();

$page = $r->getResponseBody();

?>

13.4.3. Discussion

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

cURL has special options for setting the Referer and User-Agent request headers'CURLOPT_REFERER and CURLOPT_USERAGENT.
Example 13-23 uses each of these options.

Setting Referer and User-Agent with cURL

<?php

$c = curl_init('http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_REFERER, 'http://www.example.com/form.php');
curl_setopt($c, CURLOPT_USERAGENT, 'cURL via PHP");

$page = curl_exec($c);

curl_close($c);

?>

13.4.4. See Also

Documentation on on the http stream wrapper at http://www.php.net/wrappers.http, on curl_setopt() at
http://www.php.net/curl-setopt, and on the PEAR HTTP_Request class at http://pear.php.net/package/HTTP_Request. The

mailing-list message at M&Mﬂmﬁmﬂﬂm&tﬂmﬂﬂ&%ﬂaﬂwﬁm explains the

ambitious and revolutionary goals behind spelling "Referer" with one "r."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 13.5. Fetching a URL with an Arbitrary Method

13.5.1. Problem

You want to retrieve a URL using a method more exotic than get or post, such as put or delete.

13.5.2. Solution

Just as when using post, set the method and content stream context options when using the http stream, as in Example 13-

24.

Using put with the http stream

<?php

$url = 'http://www.example.com/put.php';

// The request body, in arbitrary format

$body = '<menu>

<dish type="appetizer">Chicken Soup</dish>

<dish type="main course">Fried Monkey Brains</dish>
</menu>";

$options = array('method' => 'PUT', 'content' => $body);
// Create the stream context

$context = stream_context_create(array(‘http' => $options));
// Pass the context to file_get_contents()

print file_get_contents($url, false, $context);

>

With cURL, set the CURLOPT_CUSTOMREQUEST option to the method name. To include a request body, set

CURLOPT_POSTFIELDS to the the body, as in Example 13-25.

Using put with cURL

<?php
// The request body, in arbitrary format
$body = '<menu>
<dish type="appetizer">Chicken Soup</dish>
<dish type="main course">Fried Monkey Brains</dish>
</menu>";
$c = curl_init($url);
curl_setopt($c, CURLOPT_CUSTOMREQUEST, 'PUT");
curl_setopt($c, CURLOPT_POSTFIELDS, $body);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
curl_close($c);
?>

-26 shows how to put with HTTP_Request: pass HTTP_REQUEST_METHOD_PUT to the constructor and call setBody()

with the contents of the request body.

Using put with HTTP_Request

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

require '"HTTP/Request.php';

$url = 'http://www.example.com/put.php’;
$body = '<menu>

<dish type="appetizer">Chicken Soup</dish>
<dish type="main course">Fried Monkey Brains</dish>
</menu>";

$r = new HTTP_Request($url);
$r->setMethod(HTTP_REQUEST_METHOD_PUT);
$r->setBody($body);

$page = $r->getResponseBody();

?>

13.5.3. Discussion

As REST-style web services APIs grow more common, so do HTTP requests using lesser lights of the request-method
pantheon, such as put and delete.

The put method is often used for uploading the contents of a particular file. cURL has three special options to help with
this: CURLOPT_PUT, CURLOPT_INFILE, and CURLOPT_INFILESIZE. To upload a file with put and cURL, set CURLOPT_PUT to true,
CURLOPT_INFILE a filehandle opened to the file that should be uploaded, and CURLOPT_INFILESIZE to the size of that file.

Example 13-27 uploads a file with put.

Uploading a file with cURL and put

<?php

$url = 'http://www.example.com/upload.php’;
$filename = '/usr/local/data/pictures/piggy.jpg’;

$fp = fopen($filename,'r');

$c = curl_init($url);

curl_setopt($c, CURLOPT_PUT, true);
curl_setopt($c, CURLOPT_INFILE, $fp);
curl_setopt($c, CURLOPT_INFILESIZE, filesize($filename));
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);

print $page;

curl_close($c);

?>

13.5.4. See Also

Documentatlon on curl_setopt() at http://www.php.net/curl-setopt and on stream options at

; the PEAR HTTP_Request class at http://pear.php.net/package/HTTP_Request; Section
5.1.1 of RFC 2616, which dlscusses request methods, is available at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec5.html#sec5.1.1 .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

& Py | | NEXT # |
Recipe 13.6. Fetching a URL with a Timeout

13.6.1. Problem

You want to fetch a remote URL, but don't want to wait around too long if the remote server is busy or slow.

13.6.2. Solution

With the http stream, set the default_socket_timeout configuration option. Example 13-28 waits no more than 15 seconds to
establish the connection with the remote server.

Setting a timeout with the http stream

<?php

// 15 second timeout

ini_set('default_socket_timeout', 15);

$page = file_get_contents('http://slow.example.com/");

Note that changing default_socket_timeout affects all new sockets or remote connections created in a particular script
execution.

With cURL, set the CURLOPT_CONNECTTIMEOUT option, as shown in Example 13-29.

Setting a timeout with cURL

<?php

$c = curl_init('http://slow.example.com/");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_CONNECTTIMEOUT, 15);
$page = curl_exec($c);

curl_close($c);

?>

With HTTP_Request, set the timeout element in a parameter array passed to the HTTP_Request constructor, as shown in

Example 13-30.

Setting a timeout with HTTP_Request

<?php

require_once 'HTTP/Request.php';

$opts = array('timeout' => 15);

$req = new HTTP_Request('http://slow.example.com/', $opts);
$reqg->sendRequest();

>

13.6.3. Discussion

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Remote servers are fickle beasts. Even the most most robust, enterprise-class, mission-critical service can experience
an outage. Alternatively, a remote service you depend on can be up and running, but be unable to handle your requests
because of network problems between your server and the remote server. Limiting the amount of time that PHP waits
to connect to a remote server is a good idea if using data from remote sources is part of your page construction
process.

All of the techniques outlined in the Solution limit the amount of time PHP waits to connect to a remote server. Once the
connection is made, though, all bets are off in terms of response time. If you're truly concerned about speedy
responses, additionally set a limit on how long PHP waits to receive data from the already connected socket. For a
stream connection, use the stream_set_timeout() function. This function needs to be passed a stream resource, so you
have to open a stream with fopen()'no file_get_contents() here. Example 13-31 limits the read timeout to 20 seconds.

Setting the read timeout with the http stream

<?php

$url = 'http://slow.example.com’;

$stream = fopen($url, 'r');
stream_set_timeout($stream, 20);
$response_body = stream_get_contents($stream);
?>

With cURL, set the CURLOPT_TIMEOUT to the maximum amount of time curl_exec() should operate. This includes both the
connection timeout and the time to read the entire response body.

With HTTP_Request, add a readTimeout value to the parameter array you pass to the constructor. This value must be a
two-element array of seconds and microseconds. Example 13-32 sets the read timeout to 20 seconds.

Setting a read timeout with HTTP_Request

<?php

require_once 'HTTP/Request.php';

$opts = array(‘readTimeout' => array(20,0));

$req = new HTTP_Request('http://slow.example.com/', $opts);
$reg->sendRequest();

?>

Although setting connection and read timeouts can improve performance, it can also lead to garbled responses. Your
script could read just a partial response before a timeout expires. If you've set timeouts, be sure to validate the entire
response that you've received. Alternatively, in situations where fast page generation is crucial, retrieve external data in
a separate process and write it to a local cache. This way, your pages can use the cache without fear of timeouts or
partial responses.

13.6.4. See Also

Documentation on curl_setopt() at http://www.php.net/curl-setopt, on stream_set_timeout() at
http://www.php.net/stream_set_timeout, on default_socket_timeout at http://www.php.net/filesystem, and on the PEAR
HTTP_Request class at http://pear.php.net/package/HTTP_Request.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4 PrEy | NEXT B
Recipe 13.7. Fetching an HTTPS URL

13.7.1. Problem

You want to retrieve a secure URL.
13.7.2. Solution
Use any of the techniques described in Recipes 13.1 or Recipe 13.2, providing a URL that begins with https.

13.7.3. Discussion

As long as PHP has been built with an SSL library such as OpenSSL, all of the functions that can retrieve regular URLs
can retrieve secure URLs. Look for the "openss|" section in the output of phpinfo() to see if your PHP setup has SSL
support.

13.7.4. See Also

Recipes 13.1 and Recipe 13.2 for retrieving URLs, the OpenSSL Project at http://www.openssl.org/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

KN | NEXT B
Recipe 13.8. Debugging the Raw HTTP Exchange

13.8.1. Problem

You want to analyze the HTTP request a browser makes to your server and the corresponding HTTP response. For
example, your server doesn't supply the expected response to a particular request so you want to see exactly what the
components of the request are.

13.8.2. Solution

For simple requests, connect to the web server with Telnet and type in the request headers. A sample exchange is

shown in Example 13-33.

Sending a request with Telnet

% telnet www.example.com 80

Trying 10.3.75.31...

Connected to www.example.com (10.3.75.31).
Escape character is '*]'.

GET / HTTP/1.0

Host: www.example.com

HTTP/1.1 200 OK

Date: Sun, 03 Dec 2006 02:54:01 GMT
Server: Apache/2.2.2 (Unix)

Last-Modified: Fri, 20 Oct 2006 20:16:24 GMT
ETag: "1348010-2c-4c23b600"
Accept-Ranges: bytes

Content-Length: 44

Connection: close

Content-Type: text/html

[the body of the response]

13.8.3. Discussion

When you type in request headers, the web server doesn't know that it's just you typing and not a web browser
submitting a request. However, some web servers have timeouts on how long they'll wait for a request, so it can be
useful to pretype the request and then just paste it into Telnet. The first line of the request contains the request method
(get), a space and the path of the file you want (/), and then a space and the protocol you're using (HTTP/1.0). The next
line, the Host header, tells the server which virtual host to use if many are sharing the same IP address. A blank line
tells the server that the request is over; it then spits back its response: first headers, then a blank line, and then the

body of the response. The Netcat program (http://netcat.sourceforge.net/) is also useful for this sort of task.

Pasting text into Telnet can get tedious, and it's even harder to make requests with the post method that way. If you
make a request with HTTP_Request, you can retrieve the response headers and the response body with the
getResponseHeader() and getResponseBody() methods, as shown in Example 13-34.

Getting response headers with HTTP_Request

<?php

require 'HTTP/Request.php';

$r = new HTTP_Request('http://www.example.com/submit.php’);
$r->setMethod(HTTP_REQUEST_METHOD_POST);
$r->addPostData('monkey','uncle');

$r->sendRequest();

$response_headers = $r->getResponseHeader();
$response_body = $r->getResponseBody();
?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To retrieve a specific response header, pass the header name to getResponseHeader(). The header name must be all
lowercase. Without an argument, getResponseHeader() returns an array containing all the response headers.
HTTP_Request doesn't save the outgoing request in a variable, but you can reconstruct it by calling the _buildRequest()

method, as shown in Example 13-35.

Getting request headers with HTTP_Request

<?php
require 'HTTP/Request.php';

$r = new HTTP_Request('http://www.example.com/submit.php’);
$r->setMethod(HTTP_REQUEST_METHOD_POST);
$r->addPostData('monkey','uncle');

print $r->_buildRequest();
?>

The request that Example 13-35 is something like:

POST /submit.php HTTP/1.1

User-Agent: PEAR HTTP_Request class (http://pear.php.net/)
Content-Type: application/x-www-form-urlencoded
Connection: close

Host: www.example.com

Content-Length: 12

monkey=uncle

Accessing response headers with the http stream is possible, but you have to use a function such as fopen() that gives
you a stream resource. One piece of the metadata you get when passing that stream resource to
stream_get_meta_data() after the request has been made is the set of response headers. Example 13-36
demonstrates how to access response headers with a stream resource.

Getting response headers with the http stream

<?php

$url = 'http://www.example.com/submit.php';

$stream = fopen($url, 'r");

$metadata = stream_get_meta_data($stream);

// The headers are stored in the 'wrapper_data’

foreach ($metadata['wrapper_data'] as $header) {
print $header . "\n";

¥

// The body can be retrieved with

// stream_get_contents()

$response_body = stream_get_contents($stream);
?>

stream_get_meta_data() returns an array of information about the stream. The wrapper_data element of that array
contains wrapper-specific data. For the http wrapper, that means the response headers, one per subarray element.

Example 13-36 prints something like:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

HTTP/1.1 200 OK

Date: Sun, 07 May 2006 18:24:37 GMT

Server: Apache/2.2.2 (Unix)

Last-Modified: Sun, 07 May 2006 01:58:12 GMT
ETag: "1348011-7-16167500"

Accept-Ranges: bytes

Content-Length: 7

Connection: close

Content-Type: text/plain

The fopen() function accepts an optional stream context. Pass it as the fourth argument to fopen() if you want to use
one. (The second argument is the mode and the third argument is the optional flag indicating whether to use include_path
in looking for a file.)

With cURL, include response headers in the output from curl_exec() by setting the CURLOPT_HEADER option, as shown in
Example 13-37.

Getting response headers with cURL

<?php

$c = curl_init("http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_HEADER, true);

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$response_headers_and_page = curl_exec($c);

curl_close($c);

?>

To write the response headers directly to a file, open a filehandle with fopen() and set CURLOPT_WRITEHEADER to that
filehandle, as shown in Example 13-38.

Writing response headers to a file with cURL

<?php

$fh = fopen('/tmp/curl-response-headers.txt','w") or die($php_errormsg);
$c = curl_init("http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_WRITEHEADER, $fh);

$page = curl_exec($c);

curl_close($c);

fclose($fh) or die($php_errormsg);

?>

cURL's CURLOPT_VERBOSE option causes curl_exec() and curl_close() to print out debugging information to standard
error, including the contents of the request, as shown in Example 13-46.

Verbose output from cURL

$c = curl_init("http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_VERBOSE, true);

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

curl_close($c);

Example 13-46 prints something like:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* Connected to www.example.com (10.1.1.1)

> POST /submit.php HTTP/1.1

Host: www.example.com

Pragma: no-cache

Accept: image/qif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Length: 23

Content-Type: application/x-www-form-urlencoded

monkey=uncle&rhino=aunt* Connection #0 left intact
* Closing connection #0

Because cURL prints the debugging information to standard error and not standard output, it can't be captured with
output buffering. You can, however, open a filehandle for writing and set CURLOUT_STDERR to that filehandle to divert the
debugging information to a file. This is shown in Example 19-8.

Writing cURL verbose output to a file

<?php

$fh = fopen('/tmp/curl.out’,'w') or die($php_errormsg);
$c = curl_init('http://www.example.com/submit.php');
curl_setopt($c, CURLOPT_VERBOSE, true);
curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_STDERR, $fh);

$page = curl_exec($c);

curl_close($c);

fclose($fh) or die($php_errormsg);

?>

Another way to access response headers with cURL is to write a "header function." This is similar to a cURL "write
function" except it is called to handle response headers instead of the response body. Example 13-41 defines a
HeaderSaver class whose header() method can be used as a header function to accumulate response headers.

Using a cURL header function

<?php

class HeaderSaver {
public $headers = array();
public $code = null;

public function header($curl, $data){
if (is_null($this->code) &&
preg_match('@~HTTP/\d\.\d (\d+) @',$data,$matches)) {
$this->code = $matches[1];
Yelse {
// Remove the trailing newline
$trimmed = rtrim($data);
if (strlen($trimmed)) {
// If this line begins with a space or tab, it's a
// continuation of the previous header
if (($trimmed[0] =="") || ($trimmed[0] == "\t")) {
// Collapse the leading whitespace into one space
$trimmed = preg_replace('@”\[\t]+@',' ', $trimmed);
$this->headers[count($this->headers)-1] .= $trimmed;

}
// Otherwise, it's a new header
else {

$this->headers[] = $trimmed;
}

}

return strlen($data);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

b

$h = new HeaderSaver();
$c = curl_init('http://www.example.com/plankton.php');
// Register the header function
curl_setopt($c, CURLOPT_HEADERFUNCTION, array($h,'header"));
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
// Now $h is populated with data
print 'The response code was: ' . $h->code . "\n";
print "The response headers were: \n";
foreach ($h->headers as $header) {
print " $header\n";

The HTTP 1.1 standard specifies that headers can span multiple lines by putting at least one space or tab character at
the beginning of the additional lines of the header. The header arrays returned by stream_get_meta_data() and
HTTP_Request::getResponseHeader() do not properly handle multiline headers, though. The additional lines in a

header are treated as separate headers. The code in Example 13-41, however, correctly combines the additional lines
in multiline headers.

13.8.4. See Also

Documentation on curl_setopt() at http://www.php.net/curl-setopt, on stream_get _meta_data() at
http://www.php.net/stream_get _meta_ data, on fopen() at http://www.php.net/fopen, and on the PEAR HTTP_Request
class at http://pear.php.net/package/HTTP_Request; the syntax of an HTTP request is defined in RFC 2616 and
available at http://www.w3.org/Protocols/rfc2616/rfc2616.html. The rules about multiline message headers are in
Section 4.2: http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2. The netcat program is available from the
GNU Netcat project at http://netcat.sourceforge.net/.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Recipe 13.9. Marking Up a Web Page

13.9.1. Problem

You want to display a web page'for example, a search result'with certain words highlighted.

13.9.2. Solution

Build an array replacement for each word you want to highlight. Then, chop up the page into "HTML elements" and
"text between HTML elements" and apply the replacements to just the text between HTML elements. Example 13-42
applies highlighting in the HTML in $body to the words found in $words.

Marking up a web page

$body ="'
<p>I like pickles and herring.</p>

A pickle picture
I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

’

$words = array('pickle','herring’);
$replacements = array();
foreach ($words as $i => $word) {
$replacements[] = "$word";

// Split up the page into chunks delimited by a
// reasonable approximation of what an HTML element
// looks like.
$parts = preg_split("{(<(2:\"[A\"T\" | TATH|[~\">1)*>)},
$body,
-1, // Unlimited number of chunks
PREG_SPLIT_DELIM_CAPTURE);
foreach ($parts as $i => $part) {
// Skip if this part is an HTML element
if (isset($part[0]) && ($part[0] == '<")) { continue; }
// Wrap the words with s
$parts[$i] = str_replace($words, $replacements, $part);

// Reconstruct the body
$body = implode(",$parts);

print $body;
?>

13.9.3. Discussion

Example 13-42 prints:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<p>I like pickles and herring.
</p>

A pickle
picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

Each of the words in $words (pickle and herring) has been wrapped with a that has a specific class attribute. Use a
CSS stylesheet to attach particular display attributes to these classes, such as a bright yellow background or a border.

The regular expression in Example 13-42 chops up $body into a series of chunks delimited by HTML elements. This lets
us just replace the text between HTML elements and leaves HTML elements or attributes alone whose values might
contain a search term. The regular expression does a pretty good job of matching HTML elements, but if you have some
particularly crazy, malformed markup with mismatched or unescaped quotes, it might get confused.

Because str_replace() is case sensitive, only strings that exactly match words in $words are replaced. The last Herring in
Example 13-42 doesn't get highlighted because it begins with a capital letter. To do case-insensitive matching, we need
to switch from str_replace() to regular expressions. (We can't use str_ireplace() because the replacement has to
preserve the case of what matched.) Example 13-43 shows the altered code that uses regular expressions to do the
replacement.

Marking up a web page with regular expressions

<?php
$body ="'
<p>I like pickles and herring.</p>

A pickle picture
I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

’

$words = array('pickle','herring');

$patterns = array();

$replacements = array();

foreach ($words as $i => $word) {
$patterns[] = '/' . preg_quote($word) .'/i";
$replacements[] = "\\0";

b

// Split up the page into chunks delimited by a
// reasonable approximation of what an HTML element
// looks like.
$parts = preg_split("{(<(Z:\"["\"T*\"['TA T [[M\">1D*>) 3,
$body,
-1, // Unlimited number of chunks
PREG_SPLIT_DELIM_CAPTURE);
foreach ($parts as $i => $part) {
// Skip if this part is an HTML element
if (isset($part[0]) && ($part[0] == '<")) { continue; }
// Wrap the words with s
$parts[$i] = preg_replace($patterns, $replacements, $part);

// Reconstruct the body
$body = implode(",$parts);

print $body;
?>

The two differences in Example 13-43 are that it builds a $patterns array in the loop at the top and it uses the
preg_replace() (with the $patterns array) instead of str_replace(). The i at the end of each element in $patterns makes
the match case insensitive. The \\0 in the replacement preserves the case in the replacement with the case of what it
matched.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Switching to regular expressions also makes it easy to prevent substring matching. In both Example 13-42 and
Example 13-43, the herring in herringbone gets highlighted. To prevent this, change $patterns[] = '/ . preg_quote($word) .'/i'; in
Example 13-43 to $patterns[] = '/\b' . preg_quote($word) ."\b/i';. The additional \b items in the pattern tell preg_replace() only
to match a word if it stands on its own.

13.9.4. See Also

Documentation on str_replace() at http://www.php.net/str_replace, on str_ireplace() at
http://www.php.net/str_ireplace, on preg_replace() at http://www.php.net/preg_replace, and on preg_split() at
http://www.php.net/preg_split.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

| & phiy | | MEXT # |
Recipe 13.10. Cleaning Up Broken or Nonstandard HTML

13.10.1. Problem

You've got some HTML with malformed syntax that you'd like to clean up. This makes it easier to parse and ensures
that the pages you produce are standards compliant.

13.10.2. Solution

Use PHP's Tidy extension. It relies on the popular, powerful, HTML Tidy library to turn frightening piles of tag soup into
well-formed, standards-compliant HTML or XHTML. Example 13-44 shows how to repair a file.

Repairing an HTML file with Tidy

<?php

$fixed = tidy_repair_file("bad.html');
file_put_contents('good.html', $fixed);
?>

13.10.3. Discussion

The HTML Tidy library has a large number of rules and features built up over time that creatively handle a wide variety
of HTML abominations. Fortunately, you don't have to care about what all those rules are to reap the benefits of Tidy.
Just pass a filename to tidy_repair_file() and you get back a cleaned-up version. For example, if bad.htm/ contains:

I love monkeys.

then Example 13-44 writes the following out to good.html:

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title> </title>

</head>

<body>

 I love monkeys.
</body>

</html>

Tidy has a large number of configuration options that affect the output it produces. You can read about them at

http://tidy.sourceforge.net/docs/quickref.html. Pass configuration to tidy_repair_file() by providing a second argument
that is an array of configuration options and values. Example 13-45 uses the output-xhtml option, which tells Tidy to

produce valid XHTML.

Production of XHTML with Tidy

<?php

$config = array(‘output-xhtml' => true);
$fixed = tidy_repair_file('bad.html', $config);
file_put_contents('good.xhtml', $fixed);

?>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 13-45 writes the following to good.xhtml:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtmi|" >

<head>

<title></title>

</head>

<body>

 I love monkeys.

</body>

</html>

If your source HTML is in a string instead of a file, use tidy_repair_string(). It expects a first argument that contains
HTML, not a filename.

13.10.4. Se