
 < Day Day Up >

• Table of Contents
• Index
Java™ Studio Creator Field Guide

By Gail Anderson, Paul Anderson

Publisher: Addison Wesley

Pub Date: June 28, 2004

ISBN: 0-13-149168-7

Pages: 368

Sun's Java Studio Creator (formerly Project Rave) offers you a remarkably productive visual environment for building,
integrating, and delivering business-critical applications. Direct from Sun, Java (TM) Studio Creator Field Guide is
your definitive guide to Java Studio Creator. Leading Java platform instructors and consultants Gail and Paul Anderson
help you use Java Studio Creator to simplify and accelerate your entire development process.

One step at a time, the Andersons walk you through

Mastering Java Studio Creator's interface and workflow

Simplifying Web development with JavaServer(TM) Faces components, validators, and data converters

Controlling Web application page flow with the Page Navigation editor

Building Creator projects with JavaBeans(TM) components

Accessing Web services using XML-based open standards: a case study using Google Web Service APIs

Using databases and data-aware components--including detailed coverage of new JDBC(TM) RowSets

Customizing applications: localization, internationalization, and custom validation

Debugging with Creator's built-in debugger

With Java Studio Creator and this book, you'll spend less time on application "plumbing"--leaving more time for the
high-value tasks you really care about. Simply put, you'll get more done, faster...and have more fun doing it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
Java™ Studio Creator Field Guide

By Gail Anderson, Paul Anderson

Publisher: Addison Wesley

Pub Date: June 28, 2004

ISBN: 0-13-149168-7

Pages: 368

 Copyright

 Foreword

 Preface

 How This Book Is Organized

 About the Examples

 Stay Current with Creator!

 Notational Conventions

 About the Front Cover

 Acknowledgments

 Chapter 1. Java Technology Overview

 Section 1.1. Introduction

 Section 1.2. The Java Programming Language

 Section 1.3. JavaBeans Components

 Section 1.4. NetBeans Software

 Section 1.5. The XML Language

 Section 1.6. The J2EE Architecture

 Section 1.7. Java Servlet Technology

 Section 1.8. JavaServer Pages Technology

 Section 1.9. JDBC API and JDBC RowSets

 Section 1.10. JavaServer Faces Technology

 Section 1.11. Ant Build Tool

 Section 1.12. Web Services

 Section 1.13. Key Point Summary

 Chapter 2. Creator Basics

 Section 2.1. Examples Installation

 Section 2.2. Creator Views

 Section 2.3. Sample Application

 Section 2.4. Key Point Summary

 Chapter 3. JSF Standard Components

 Section 3.1. JSF Overview

 Section 3.2. Components

 Section 3.3. Component Catalog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.3. Component Catalog

 Section 3.4. JSF Validators

 Section 3.5. JSF Data Converters

 Section 3.6. Key Point Summary

 Chapter 4. Page Navigation

 Section 4.1. Navigation Model

 Section 4.2. Simple Navigation

 Section 4.3. Noncommand Components

 Section 4.4. Dynamic Navigation

 Section 4.5. Key Point Summary

 Chapter 5. JavaBeans Components

 Section 5.1. What Is a Bean?

 Section 5.2. LoginBean Component

 Section 5.3. LoanBean Component

 Section 5.4. Key Point Summary

 Chapter 6. Accessing Web Services

 Section 6.1. Google Web Services

 Section 6.2. Validation

 Section 6.3. HTML with Output Text

 Section 6.4. Displaying Multiple Pages

 Section 6.5. Key Point Summary

 Chapter 7. Accessing Databases

 Section 7.1. Database Fundamentals

 Section 7.2. Data Sources

 Section 7.3. Accessing the Music Database

 Section 7.4. Database Joins

 Section 7.5. Database Updates

 Section 7.6. Database Row Inserts

 Section 7.7. Database Deletions

 Section 7.8. Key Point Summary

 Chapter 8. Customizing Applications with Creator

 Section 8.1. Localizing an Application

 Section 8.2. Internationalizing an Application

 Section 8.3. Controlling the Locale from the Application

 Section 8.4. Creating Custom Validation

 Section 8.5. Key Point Summary

 Chapter 9. Debugging with Creator

 Section 9.1. Planning for Debugging

 Section 9.2. Running the Debugger

 Section 9.3. Setting Breakpoints

 Section 9.4. Stepping Through the Code

 Section 9.5. Tracking Variables

 Section 9.6. Setting Watches

 Section 9.7. Using the Call Stack

 Section 9.8. Detecting Exceptions

 Section 9.9. Using Log Files

 Section 9.10. Finish Debugging

 Section 9.11. Key Point Summary

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright
© 2004 Gail Anderson and Paul Anderson

Published by Prentice Hall PTR

Prentice-Hall, Inc.

Upper Saddle River, NJ 07458

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and it's licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions as set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 55.227.19. The products described in this book may
be protected by one or more U.S. patents, foreign patents, or pending patents.

TRADEMARKS—HotJava, Java, Java Development Kit, J2EE, JSP, JavaServer Pages, Enterprise JavaBeans, EJB, JDBC,
J2SE, Solaris, SPARC, SunOS, and SunSoft are trademarks of Sun Microsystems, Inc. All other products or services
mentioned in this book are the trademarks or service marks of their respective companies or organizations.

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact U.S. Corporate and Government Sales, 1-800-382-3419,
corpsales@pearsontechgroup.com. For sales outside of the U.S., please contact International Sales, 1-317-581-3793,
international@pearsontechgroup.com.

Acquisitions Editor: Gregory G. Doench

Editorial Assistant: Raquel Kaplan

Sun Microsystems Press Publisher: Myrna Rivera

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—CRS—0807060504

First printing, June 2004

Sun Microsystems Press

A Prentice Hall Title
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Foreword
The developers who set out to build Java Studio Creator had a very difficult task: to make the creation of sophisticated
enterprise applications easy.

The set of technologies that comprise Java2 Enterprise Edition (J2EE) is huge. The good side is that J2EE is battle
hardened and field proven to be an excellent base for large scale mission critical applications. There are many excellent
books that cover all of the aspects of J2EE in great detail. But all of this leads to the bad side of J2EE: it can be difficult
and time-consuming to learn and use. Tremendous effort goes into making J2EE as simple as possible, but it remains
daunting.

Java Studio Creator is a huge leap in the simplification of the process of developing J2EE based web applications.
Developers don't need to deal with all of the gory details: Creator just handles them. Instead, developers can focus on
what their application does and looks like in a very simple and straightforward way. They weave together data sources
through a simple drag-and-drop interface. Very little knowledge of Java or J2EE is required to develop applications in
Creator. Creator not only simplifies the process: it also accelerates it.

This book contains all that you need to know to generate enterprise applications using Creator. It doesn't require that
you know anything about J2EE or even Java: there are gentle introductory chapters that lead you through what you
need to know. This is a great entry point for developers from other platforms (like Visual Basic!) to enter the world of
large-scale, mission-critical applications. It's fun. Take the plunge.

James Gosling
Sun Microsystems, Inc.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
You're about to embark on a journey that we hope will prove both enjoyable and fruitful. Certainly the aim of any
application development tool is to help developers become efficient and allow them to spend time on creative tasks
while the tool silently generates the drudgery for them. To that end, we hope this book will teach you the ins and outs
of Creator so that you can quickly begin to build web applications. Before you start, we'd like to take a moment to
explain the organization of the book and the "method behind the madness" of our project examples.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How This Book Is Organized
Chapter 1 introduces the world of Java and its supporting technologies. Creator depends on these well-established Java
technologies to do its job. With the Java programming language and XML, JavaServer Faces component system, and
NetBeans tool building technology, Creator has tapped the available standards. Here we provide a gentle introduction to
these topics, so you'll get the "big picture" of how Creator fits into the Java world. We also spend ample time on the
Java programming language since you will use Java often with Creator. If you come from another programming
environment, we want you to feel comfortable right away with the myriad of pieces that make up a Java-based web
application.

Chapter 2 introduces Creator, with the aim of getting you up to speed with its various windows, the design canvas, and
its editors. A good tool lets you accomplish tasks in the order that's best for the developer. Knowing how to move about
within a Creator project will quickly make you productive. You'll also build your first project from scratch.

Chapter 3 is your "Components Catalog." This reference chapter lets you choose the best component for your
application from Creator's store of components, validators, and data converters. All the projects that you build use
these components, so as we discuss each one, we'll point you to places in the book where you can see how they work.

Chapter 4 introduces Page Navigation in Creator. You'll learn how to specify page flow in a web application and
understand which components are suitable for page navigation. We'll also discuss Creator's navigation model and
illustrate page navigation with several projects that you can build.

Chapter 5 explains JavaBeans components (beans). JavaBeans components provide one of the key supporting
technologies that Creator uses. Developers who understand the advantages of JavaBeans components can build robust
applications with reusable components for related or evolving applications.

Chapter 6 shows you how to access a web service from a Creator-built application. Creator bundles a full selection of
web services, which are all readily usable once you add them to your project. In this chapter, you'll build an application
that uses the Google Search Web Service.

Chapter 7 shows you how to use a database with Creator. You'll build projects with essential database operations, such
as read, update, insert, and delete. Web applications that tie into databases are an important and common need for
today's developer. Creator's data-aware components make linking to a database easy and straightforward.

Chapter 8 shows you how to customize a web application from Creator. You'll learn how to localize an application and
how to internationalize it. We also show you how to write and install custom validation methods.

Chapter 9 shows you defensive programming techniques for web development and how to use Creator's debugger in
your projects. You'll learn how to set breakpoints, look at the server log file, and respond to exceptions. Although this
chapter is at the end of the book, we expect you to refer to it as soon as you start doing serious web development

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Examples
Java Studio Creator Field Guide is an example-driven book. You may certainly download and run all the projects in the
chapters, but the real value of this book comes from doing these examples yourself, step by step. You can always check
your work against our examples as you build your projects, too.

The database chapter includes a sample Music database, which we also provide in the download bundle. The example
code is available at an FTP site for all the projects in this book. Check your firewall to ensure that you can access the
FTP site. You can download the example code from our web site at

http://www.asgteach.com
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Stay Current with Creator!
Creator is an evolving product, so make sure that you visit our web site at the above URL. We'll give you updated
example projects, including new code (which may be different than what's here in the book). We'll also keep you up to
date with the newest features of Creator and any changes to the product. Don't forget to check in with us!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Notational Conventions
We've applied a rather "light hand" with font conventions in an attempt to keep the page uncluttered. Here are the
conventions we follow.

Element Font and Example

attribute name value attribute, cellpadding attribute

code comments // User event code here . . .

component name text field loanAmount

Creator components output text, text field, dropdown list

filename color1.properties, Page1.jsp

Java class String, Object, Integer

Java code username.setValue("rave4u")

JavaBeans components LoginBean, ColorBean, Page1

JSF EL expressions #{Page1.colorBean.redValue}

JSP code, HTML code <f:loadBundle>,

key combinations press <Alt-Shift-I>; press <Enter>

menu selections View Page1 Java Class, Music > Tables

project name Login1, Echo

user input Type the text Music1, specify loginBean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Front Cover
I.M. Pei's Glass Pyramid is an apt symbol for a book on Java Studio Creator. The pyramid serves as the entrance to the
Louvre Museum in Paris. Truly international, it was designed by a Chinese-American, who is both an engineer and an
artist. We were drawn to its elegant simplicity of glass and light, its multiple facets, and the blending of a structure that
is modern yet simultaneously representative of Ancient Egypt.

Java Studio Creator is built on the same concept of layered architecture. Based on JavaServer Faces technology,
Creator leverages the existing Java 2 Platform Enterprise Edition (J2EE) architecture and of course, the solid
foundations of Java and its runtime environment. Likewise, the Glass Pyramid is an extraordinary example of layered
architecture whose backdrop is a traditional Renaissance palace. The Louvre itself houses artistic treasures dating from
antiquity, perhaps none more famous than Leonardo da Vinci's Mona Lisa.

Gail and Paul Anderson
Anderson Software Group, Inc.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Working on this project has given new meaning to the terms multitasking, bandwidth, and distributed processing!
Without the help of others, not only would this text be lacking in timeliness and accuracy, but its very existence is
questionable.

We'd like to thank our editor at Prentice Hall, Greg Doench, for approaching us with this project idea when neither
Creator nor its name even existed. He trusted that we could write at breakneck speed and promised support from both
Prentice Hall and Sun Microsystems. He delivered on his promises.

Valerie Lipman at Sun Microsystems gave us crucial technical support throughout the entire writing and testing cycle.
From Creator's first technology preview release to the latest and greatest bits hot from the amazing engineers that built
this product, Valerie supported us with quick turn-around emails and phone calls. Without Valerie's assistance, patience,
and invested effort, we could not have finished on time (not even close!).

Thank you also to Jim Inscore at Sun Microsystems. His work behind the scenes and his recognition in the importance
of a companion book to Creator helped smooth the tie-ins with Sun.

Thank you to our copy editor, Mary Lou Nohr, who is a wizard with words. Her speed and accuracy at zipping through a
300-page manuscript is impressive.

We'd also like to thank Bill Higgins, who provided helpful suggestions from a reader's viewpoint and Paul Fleck, who
knows a bit about the world of VB. John Fuller at Pearson Technology Group and Brett Linton from Courier Companies
helped with production. Vicky Hilpert of Vietsbronn, Germany helped with the German translations and Blanca Lazaro
helped with the Spanish. Thanks also to our children (who are not children anymore), Sara and Kellen.

Lastly, we'd like to thank James Gosling for giving us all Java.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Java Technology Overview
Topics in This Chapter

The Java Programming Language

JavaBeans Components

NetBeans Software

The XML Language

The J2EE Architecture

JavaServer Faces Technology

JDBC API

Ant Build Tool

Web Services

Welcome to Creator! Creator is an IDE (Integrated Development Environment) that helps you build web applications.
While many IDEs out in the world do that, Creator is unique in that it is built on a layered technology anchored in Java.
At the core of this technology is the Java programming language. Java includes a compiler that produces portable
bytecode and a Java Virtual Machine (JVM) that runs this byte code on any processor. Java is an important part of
Creator because it makes your web applications portable.

But Java is more than just a programming language. It is also a technology platform. Many large systems have been
developed that use Java as their core. These systems are highly scalable and provide services and structure that
address some of the high-volume, distributed computing environments of today.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Introduction
Creator depends on multiple technologies, so it's worthwhile touching on them in this chapter. If you're new to Java,
many of its parts and acronyms can be daunting. Java technologies are divided into related packages containing classes
and interfaces. To build an application, you might need parts of one system and parts of another. This chapter provides
you with a road map of Java technologies and documentation sources to help you design your web applications with
Creator.

We'll begin with an overview of the Java programming language. This will help you get comfortable writing Java code to
customize your Creator applications. But before we do that, we show you how to find the documentation for Java
classes and methods. This will help you use them with confidence in your programs.

Most of the documentation for a Java Application Program Interface (API) can be found online. Sometimes all you need
is the name of the package or the system to find out what API a class, interface, or method belongs to. Java consists of
the basic language (all packages under java) and Java extensions (all packages under javax). Once you locate a package
online, you can explore the interfaces and classes and learn about the methods they implement.

Here's a good starting point for the Java API documentation.

http://java.sun.com/docs/

This page contains links to the Java 2 Platform Standard Edition, which contains the core APIs. It also has a link to all of
the other Java APIs and technologies, found at

http://java.sun.com/reference/docs/index.html

Since the APIs change with improvements, new features, and bug fixes, it's best to check these "main" pages for the
most up-to-date documentation.

Creator is also built on the technology of JavaServer Faces (JSF). You can find the current JSF API documentation at

http://java.sun.com/j2ee/javaserverfaces/1.0/docs/api/index.html

JSF is described as part of the J2EE Tutorial, which can be found at

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

These are all important references for you. We've included them at the beginning of this book so it's easy to find them
later (when you're deep in the challenges of web application development). For now, let's begin with Java as a
programming language. Then we'll look at some of the other supporting technologies on which Creator is built.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 The Java Programming Language
This cursory overview of the Java programming language is for readers who come from a non-Java programming
environment. It's not meant to be an in-depth reference, but a starting point. Much of Creator involves manipulating
components through the design canvas and the components' property sheets. However, there are times when you must
add code to a Java page bean (the supporting Java code for your web application's page) or use a JavaBeans
component in your application. You'll want a basic understanding of Java to more easily use Creator.

Object-Oriented Programming

Languages like C and Basic are procedure-oriented languages, which means data and functions are separated. To write
programs, you either pass data as arguments to functions or make your data global to functions. This arrangement can
be problematic when you need to hide data like passwords, customer identification codes, and network addresses.
Procedure-oriented designs work fine when you write simple programs but are often not suitable to more complex tasks
like distributed programming and web applications. Function libraries help, but error handling can be difficult and global
variables may introduce side effects during program maintenance.

Object-oriented programming, on the other hand, combines data and functions into units called objects. Languages like
Java hide private data (fields) from user programs and expose only functions (methods) as a public interface. This
concept of encapsulation allows you to control how callers access your objects. It allows you to break up applications
into groups of objects that behave in a similar way, a concept called abstraction. In Java, you implement an object with
a Java class and your object's public interface becomes its outside view. Java has inheritance to create new data types
as extensions of existing types. Java also has interfaces, which allow objects to implement required behaviors of certain
classes of objects. All of these things help you separate an object's implementation (inside view) from its interface
(outside view).

All objects created from the same class have the same data type. Java is a strongly typed language, and all objects are
implicitly derived from type Object (except the built-in primitive types of int, boolean, char, double, long, etc.). You can
convert an object from one type to another with a converter. Casting to a different type is only allowed if the conversion
is known by the compiler. Creator's Java editor helps you create well-formed statements with dynamic syntax analysis
and code completion choices. You'll see how this works in Chapter 2.

Error handling has always been a tough problem to solve, but with web applications error handling is even more
difficult. Processing errors can occur on the server but need to propagate in a well-behaved way back to the user. Java
implements exception handling to handle errors as objects and recover gracefully. The Java compiler forces
programmers to use the built-in exception handling mechanism.

And, Java forbids global variables, a restriction that helps program maintenance.

Creating Objects

Operator new creates objects in Java. You don't have to worry about destroying them, because Java uses a garbage
collection mechanism to automatically destroy objects which are no longer used by your program.

Point p = new Point(); // create a Point at (0, 0)

Point q = new Point(10, 20); // create a Point at (10, 20)

Operator new creates an object at run time and returns its address in memory to the caller. In Java, you use references
(p and q) to store the addresses of objects so that you can refer to them later. Every reference has a type (Point), and
objects can be built with arguments to initialize their data. In this example, we create two Point objects with x and y
coordinates, one with a default of (0, 0) and the other one with (10, 20).

Once you create an object, you can call its methods with a reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

p.move(30, 30); // move object p to (30, 30)

q.up(); // move object q up in y direction

p.right(); // move object p right in x direction

int xp = p.getX(); // get x coordinate of object p

int yp = p.getY(); // get y coordinate of object p

q.setX(5); // change x coordinate in object q

p.setY(25); // change y coordinate in object p

As you can see, you can do a lot of things with Point objects. It's possible to move a Point object to a new location, or
make it go up or to the right, all of which affect one or more of a Point object's coordinates. We also have getter
methods to return the x and y coordinates separately and setter methods to change them.

Why is this all this worthwhile? Because a Point object's data (x and y coordinates) are hidden. The only way you can
manipulate a Point object is through its public methods. This makes it easier to maintain the integrity of Point objects.

Classes

Java already has a Point class in its API, but for the purposes of this discussion, let's roll our own. Here's our Java Point
class, which describes the functionality we've shown you.

Listing 1.1. Point class

// Point.java - Point class

class Point {

// Fields

 private double x, y; // x and y coordinates

// Constructors

 public Point(double x, double y) { move(x, y); }

 public Point() { move(0, 0); }

// Instance Methods

 public void move(double x, double y) {

 this.x = x; this.y = y;

 }

 public void up() { y++; }

 public void down() { y--; }

 public void right() { x++; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void right() { x++; }

 public void left() { x--; }

 // getters

 public double getX() { return x; }

 public double getY() { return y; }

 // setters

 public void setX(double x) { this.x = x; }

 public void setY(double y) { this.y = y; }

}

The Point class is divided into three sections: Fields, Constructors, and Instance Methods. Fields hold internal data,
constructors initialize the fields, and instance methods are called by you with references. Note that the fields for x and y
are private. This enforces data encapsulation in object-oriented programming, since users may not access these values
directly. Everything else, however, is declared public, making it accessible to all clients.

The Point class has two constructors to build Point objects. The first constructor accepts two double arguments, and the
second one is a default constructor with no arguments. Note that both constructors call the move() method to initialize
the x and y fields. Method move() uses the Java this keyword to distinguish local variable names in the method from class
field names in the object. The setX() and setY() methods use the same technique.[1]

[1] The this reference is not necessary if you use different names for the arguments.

Most of the Point methods use void for their return type, which means the method does not return anything. The ++ and
-- operators increment or decrement their values by one, respectively. Each method has a signature, which is another
name for a function's argument list. Note that a signature may be empty.

Packages

The Point class definition lives in a file called Point.java. In Java, you must name a file with the same name as your
class name. This makes it convenient for the Java run-time interpreter to find class definitions when it's time to
instantiate (create) objects. When all classes live in the same directory, it's easy to compile and run Java programs.

In the real world, however, classes have to live in different places, so Java has packages that allow you to group related
classes. A package in Java is both a directory and a library. This means a one-to-one correspondence exists between a
package hierarchy name and a file's pathname in a directory structure. Unique package names are typically formed by
reversing Internet domain names (com.mycompany). Java also provides access to packages from class paths and JAR
(Java Archive) files.

Suppose you want to store the Point class in a package called MyPackage.examples. Here's how you do it.

package MyPackage.examples;

class Point {

 . . .

}

Package names with dot (.) delimiters map directly to path names, so Point.java lives in the examples directory
under the MyPackage directory. A Java import statement makes it easy to use class names without fully qualifying
their package names. Import statements are also applicable to class names from any Java API.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their package names. Import statements are also applicable to class names from any Java API.

// Another Java program

import java.util.Date;

import javax.faces.context.*;

import MyPackage.examples.Point;

The first import statement provides the Date class name to our Java program from the java.util package. The second
import uses a wildcard (*) to make all class definitions available from javax.faces.context. The last import brings our Point
class into scope from package MyPackage.examples.

Exceptions

We mentioned earlier that one of the downfalls of procedure-oriented languages is that subroutine libraries don't handle
errors well. This is because libraries can only detect problems, not fix them. Even with libraries that support elaborate
error mechanisms, you cannot force someone to check a function's return value or peek at a global error flag. For these
and other reasons, it has been difficult to write distributed software that gracefully recovers from errors.

Object-oriented languages like Java have a built-in exception handling mechanism that lets you handle error conditions
as objects. When an error occurs inside a try block of critical code, an exception object can be thrown from a library
method back to a catch handler. Inside user code, these catch handlers may call methods in the exception object to do
a range of different things, like display error messages, retry, or take other actions.

The exception handling mechanism is built around three Java keywords: throw, catch, and try. Here's a simple example
to show you how it works.

class SomeClass {

 . . .

 public void doSomething(String input) {

 int number;

 try {

 number = Integer.parseInt(input);

 }

 catch (NumberFormatException e) {

 String msg = e.getMessage();

 // do something with msg

 }

 . . .

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose a method called doSomething() needs to convert a string of characters (input) to an integer value in memory
(number). In Java, the call to Integer.parseInt() performs the necessary conversion for you, but what about malformed
string arguments? Fortunately, the parseInt() method throws a NumberFormatException if the input string has illegal
characters. All we do is place this call in a try block and use a catch handler to generate an error message when the
exception is caught.

All that's left is to show you how the exception gets thrown. This is often called a throw point.

class Integer {

 public static int parseInt(String input)

 throws NumberFormatException {

 . . .

 // input string has bad chars

 throw new NumberFormatException("illegal chars");

 }

 . . .

}

The static parseInt() method[2] illustrates two important points about exceptions. First, the throws clause in the method
signature announces that parseInt() throws an exception object of type NumberFormatException. The throws clause allows
the Java compiler to enforce error handling. To call the parseInt() method, you must put the call inside a try block or in a
method that also has the same throws clause. Second, operator new calls the NumberFormatException constructor to build
an exception object. This exception object is built with an error string argument and thrown to a catch handler whose
signature matches the type of the exception object (NumberFormat Exception).[3] As you have seen, a catch handler calls
getMessage() with the exception object to access the error message.

[2] Inside class Integer, the static keyword means you don't have to instantiate an Integer object to call parseInt().
Instead, you call the static method with a class name rather than a reference.

[3] The match doesn't have to be exact. The exception thrown can match the catch handler's object exactly or any
exception object derived from it by inheritance. To catch any possible exception, you can use the superclass
Exception. We discuss inheritance in the next section.

Why are Java exceptions important? As you develop web applications with Creator, you'll have to deal with thrown
exceptions. Fortunately, Creator has a built-in debugger that helps you monitor exceptions. In the chapter on
debugging, we show you how to set breakpoints to track exceptions in your web application (see "Detecting Exceptions"
on page 318).

Inheritance

The concept of code reuse is a major goal of object-oriented programming. When designing a new class, you may
derive it from an existing one. Inheritance, therefore, implements an "is a" relationship between classes. Inheritance
also makes it easy to hook into existing frameworks so that you can take on new functionalities. With inheritance, you
can retain the existing structure and behavior of an existing class and specialize certain aspects of it to suit your needs.

In Java, inheritance is implemented by extending classes. When you extend one class from another, the public methods
of the "parent" class become part of the public interface of the "child class." The parent class is called a superclass and
the child class is called a subclass. Here are some examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Pixel extends Point {

 . . .

}

class NumberFormatException extends IllegalArgumentException {

 . . .

}

In the first example, Point is a superclass and Pixel is a subclass. A Pixel "is a" Point with, say, color. Inside the Pixel class,
a color field with setter and getter methods can assist in manipulating colors. Pixel objects, however, are Point objects,
so you can move them up, down, left or right, and you can get or set their x and y coordinates. (You can also invoke
any of Point's public methods with a reference to a Pixel object.) Note that you don't have to write any code in the Pixel
class to do these things because they have been inherited from the Point class. Likewise, in NumberFormatException, you
may introduce new methods but inherit the functionality of IllegalArgumentException.

Another point about inheritance. You can write your own version of a method in a subclass that has the same name and
signature as the method in the superclass. Suppose, for instance, we add a clear() method in our Point class to reset
Point objects back to (0, 0). In the Pixel class that extends from Point, we may override the clear() method.[4] This new
version could move a Pixel object to (0, 0) and reset its color. Note that clear() in class Point is called for Point objects,
but clear() in class Pixel will be called for Pixel objects. With a Point reference set to either type of object, different
behaviors happen when you call this method.

[4] Creator uses this same feature by providing methods that are called at different points in the JSF page request
life cycle. You can override any of these methods and thus provide your own code, "hooking" into the page request
life cycle. We show you how to do this in Chapter 6 (see "Life Cycle Issues" on page 183).

It's important to understand that these kinds of method calls in Java are resolved at run time. This is called dynamic
binding. In the object-oriented paradigm, dynamic binding means that the resolution of method calls with objects is
delayed until you run a program. In web applications and other types of distributed software, dynamic binding plays a
key role in how objects call methods from different machines across a network or from different processes in a
multitasking system.

Interfaces

In Java, a method with a signature and no code body is called an abstract method. Abstract methods must be
overridden in subclasses and help define interfaces. A Java interface is like a class but has no fields and only abstract
public methods. Interfaces are important because they specify a contract. Any new class that implements an interface
must provide code for the interface's methods.

Here's an example of an interface.

interface Encryptable {

 void encode(String key);

 String decode();

}

class Password implements Encryptable {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Password implements Encryptable {

 . . .

 void encode(String key) { . . . }

 String decode() { . . . }

}

The Encryptable interface contains only the abstract public methods encode() and decode(). Class Password implements the
Encryptable interface and must provide implementations for these methods. Remember, interfaces are types, just like
classes. This means you can implement the same interface with other classes and treat them all as Encryptable types.

Java prohibits a class from inheriting from more than one superclass, but it does allow classes to implement multiple
interfaces. Interfaces, therefore, allow arbitrary classes to "take on" the characteristics of any given interface.

One of the most common interfaces implemented by classes in Java is the Serializable interface. When an object
implements Serializable, you can use it in a networked environment or make it persistent (this means the state of an
object can be saved and restored by different clients). There are methods to serialize the object (before sending it over
the network or storing it) and to deserialize it (after retrieving it from the network or reading it from storage).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 JavaBeans Components
A JavaBeans component is a Java class with certain structure requirements. Javabeans components define and
manipulate properties, which are objects of a certain type. A JavaBeans component must have a default constructor so
that it can be instantiated when needed. Beans also have getter and setter methods that manipulate a bean property
and conform to a specific naming convention. These structural requirements make it possible for development tools and
other programs to create JavaBeans components and manipulate their properties.

Here's a simple example of a JavaBeans component.

public class Book {

 private String title;

 private String author;

 public Book() { setTitle(""); setAuthor(""); }

 public void setTitle(String t) { title = t; }

 public String getTitle() { return title; }

 public void setAuthor(String a) { author = a; }

 public String getAuthor() { return author; }

}

Why are JavaBeans components important? First and most important, they are accessible to Creator. When you write a
JavaBeans component that conforms to the specified design convention, you may use it with Creator and bind JSF
components to bean properties. Second, JavaBeans components can encapsulate business logic. This helps separate
your design presentation (GUI components) from the business data model.

In subsequent chapters, we show you several examples of JavaBeans components. We'll use a LoginBean to handle
users that login with names and passwords and show you a LoanBean that calculates mortgage payments for loans. The
Point class in Listing 1.1 on page 7 is another example of a JavaBeans component.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 NetBeans Software
NetBeans software is an open source IDE written in the Java programming language. It also includes an API that
supports building any type of application. The IDE has support for Java, but its architecture is flexible and extensible,
making support for other languages possible.

NetBeans is an Open Source project. You can view more information on its history, structure, and relationship with Sun
Microsystems at its web site

http://www.netbeans.org/

NetBeans and Creator are related because Creator is based on the NetBeans platform. In building Creator, Sun is
offering an IDE aimed specifically at creating web-based applications. Thus, the IDE integrates page design with
generated JSP source and page bean components. NetBeans provides features such as source code completion,
workspace manipulation of windows, expandable tree views of files and components, and debugging facilities. Because
NetBeans is extensible, the Creator architects included Java language features such as inheritance to adapt components
from NetBeans into Creator applications with the necessary IDE functions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 The XML Language
XML is a metalanguage that dictates how to define custom languages and describe data. The name is an acronym for
Extensible Markup Language. XML is not a programming language, however. In fact, it's based on simple character text
in which the data are surrounded by text markup that documents data. This means you can use XML to describe almost
anything. Since XML is self-describing, it's easy to read with tools and other programs to decide what actions to take.
You can transport XML documents easily between systems or across the Internet, and virtually any type of data can be
expressed and validated in an XML document. Furthermore, XML is portable because it's language and system
independent.

Creator uses XML to define several configuration files as well as the source for the JSP web pages. Here's an example
XML file (managed-beans.xml) that Creator generates for managing a JavaBeans component in a web application.

<faces-config>

 <managed-bean>

 <managed-bean-name>LoanBean</managed-bean-name>

 <managed-bean-class>asg.bean_examples.LoanBean

 </managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 </managed-bean>

</faces-config>

Every XML file has opening tags (<tag>) and closing tags (</tag>) that define self-describing information. Here, we
specify a managed-bean element to tell Creator what it needs to know about the LoanBean component. This includes its
name (LoanBean), class name and package (asg.bean_examples.LoanBean), and the scope of the bean (session). When
you add your own JavaBeans components to Creator as managed beans, Creator generates this configuration
information for you. We show you how to add a managed session bean to your project in Chapter 5.

Creator maintains and updates its XML files for you, but it's a good idea to be familiar with XML syntax. This will allow
you to customize the Creator XML files if necessary.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6 The J2EE Architecture
The J2EE platform gives you a multitiered application model to develop distributed components. Although any number
of tiers is possible, we'll use a three-tier architecture for the applications in this book. Figure 1-1 shows the approach.

Figure 1-1. Three-tier J2EE architecture

The client machine supports web browsers, applets, and stand-alone applications. A client application may be as simple
as a command-line program running as an administrator client or a graphical user interface created from Java Swing or
Abstract Window Toolkit (AWT) components. Regardless, the J2EE specification encourages thin clients in the
presentation tier. A thin client is a lightweight interface that does not perform database queries, implement business
logic, or connect to legacy code. These types of "heavyweight" operations preferably belong to other tiers.

The J2EE server machine is the center of the architecture. This middle tier contains web components and business
objects managed by the application server. The web components dynamically process user requests and construct
responses to client applications. The business objects implement the logic of a business domain. Both components are
managed by a J2EE application server that provides these components with important system services, such as
security, transaction management, naming and directory lookups, and remote connectivity. By placing these services
under control of the J2EE application server, client components focus on either presentation logic or business logic. And,
business objects are easier for developers to write. Furthermore, the architecture encourages the separation of
business logic from presentation logic (or model from view).

The database server machine handles the database back end. This includes mainframe transactions, databases,
Enterprise Resource Planning (ERP) systems, and legacy code. Another advantage of the three-tier architecture is that
older systems can take on a whole new "look" by using the J2EE platform. This is the approach many businesses are
taking as they integrate legacy systems into a modern distributed computing environment and expose application
services and data to the web.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.7 Java Servlet Technology
The Java Servlet component technology presents a request-response programming model in the middle tier. Servlets
let you define HTTP-specific servlet classes that accept data from clients and pass them on to business objects for
processing. Servlets run under the control of the J2EE application server and often extend applications hosted by web
servers. Servlet code is written in Java and compiled. It is particularly suited to server-side processing for web
applications since each Servlet session is handled in its own thread.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.8 JavaServer Pages Technology
A JavaServer Pages (JSP) page is a text-based document interspersed with Java code. A JSP engine translates JSP text
into Java Servlet code. It is then dynamically compiled and executed. This component technology lets you create
dynamic web pages in the middle tier. JSP pages contain static template data (HTML, WML, and XML) and JSP elements
that determine how a page constructs dynamic content. The JSP API provides an efficient, thread-based mechanism to
create dynamic page content.

Creator uses JavaServer Faces (JSF), which is built on both the servlet and JSP technologies. However, by using
Creator, you are shielded from much of the details of not only JSP and servlet programming, but JSF details as well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.9 JDBC API and JDBC RowSets
Java Data Base Connectivity (JDBC) is an API that lets you invoke SQL commands from Java methods in the middle tier.
Typically, you use the JDBC API to access a database from servlets or JSP pages. The JDBC API has an application-level
interface for database access and a service provider interface to attach JDBC drivers to the J2EE platform. In support of
JDBC, J2EE application servers manage a pool of database connections. This pool provides business objects efficient
access to database servers.

The JDBC RowSet API is a newer technology that makes it easier to access database information from the rows and
columns in a ResultSet object. A JDBC RowSet object is a connected rowset that is an extension of a ResultSet object.
RowSet objects have properties that can be manipulated, and they can participate in event notification. When you select
a data source in Creator, the system generates code in the Java page bean to access the data source through RowSet
objects.

We show you how to use databases with Creator in Chapter 7.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.10 JavaServer Faces Technology
The JavaServer Faces (JSF) technology helps you develop web applications using a server-side user interface (UI)
component framework. The JSF API gives you a rich set of UI components and lets you handle events, validate and
convert user input, define page navigation, and support internationalization. JSF has custom tag libraries for connecting
components to server-side objects. We show you these components and tag libraries in Chapter 3.

JSF incorporates many of the lower level tasks that JSP developers are used to doing. Unlike JSP applications, however,
applications developed with JSF can map HTTP requests to component-specific event handlers and manage UI elements
as stateful objects on the server. This means JSF offers a better separation of model and presentation. The JSF API is
also layered directly on top of the Servlet API.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.11 Ant Build Tool
Ant is a tool from the Apache Software Foundation (www.apache.org) that helps you manage the "build" of a software
application. The name is an acronym for "Another Neat Tool" and is similar in concept to older build tools like make
under Unix and gmake under Linux. However, Ant is XML-based, it's easier to use, and it's platform independent.

Ant is written in Java and accepts instructions from XML documents. Ant is well suited for performing complicated and
repetitive tasks. Creator uses Ant to compile and deploy your web applications. Ant gets its instructions for building a
system from the configuration file, build.xml. You won't have to know too much about Ant to use Creator, but you
should be aware that it's behind the scenes doing a lot of work for you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.12 Web Services
Web services are software APIs that are accessible over a network in a heterogeneous environment. Network
accessibility is achieved by means of a set of XML-based open standards such as the Web Services Description
Language (WSDL), the Simple Object Access Protocol (SOAP), and Universal Description, Discovery, and Integration
(UDDI). Web service providers and clients use these standards to define, publish, and access web services.

Creator's application server (J2EE 1.4) provides support for web services. In Creator, you can access methods of a web
service by dragging its node onto the design canvas. We show you web services with Creator in Chapter 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.13 Key Point Summary

Creator is an IDE built on layered Java technologies that helps you build web applications.

Procedure-oriented languages separate data and functions, whereas object-oriented languages combine them.

Encapsulation enforces data hiding and allows you to control access to your objects.

Java is a strongly typed object-oriented language with a large set of APIs that help you develop portable web
applications.

In Java, operator new returns a reference to a newly created object so that you can call methods with the
reference.

Java classes have fields, constructors, and instance methods. The private keyword is used for encapsulation, and
the public keyword grants access to clients.

Java packages allow you to store class files and retrieve them with import statements in Java programs.

Java uses try, catch, and throw to handle error conditions with a built-in exception handling mechanism.

Inheritance is a code reuse mechanism that implements an "is a" relationship between classes.

Dynamically bound method calls are resolved at run time in Java. Dynamic binding is essential with distributed
web applications.

An interface has no fields and only abstract public methods. A class that implements an interface must provide
code for the interface's methods.

The J2EE architecture is a multitiered application model to develop distributed components.

Java Servlets let you define HTTP-specific servlet classes that accept data from clients and pass them on to
business objects for processing.

A JSP page is a text-based document interspersed with Java code that allows you to create dynamic web pages.

JDBC is an API for database access from servlets, JSP pages, or JSF. JDBC RowSet objects allow enhanced
access to database sources using the JDBC API.

JavaServer Faces (JSF) helps you develop web applications using a server-side user interface component
framework.

A JavaBeans component is a Java class with a default constructor and setter and getter methods to manipulate
its properties.

NetBeans is a standards-based IDE and platform written in the Java programming language. Java Studio
Creator is based on the NetBeans platform.

XML is a self-describing, text-based language that documents data and makes it easy to transport between
systems.

Ant is a Java build tool that helps you compile and deploy web applications.

Web services are software APIs that are accessible over a network in a heterogeneous environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Creator Basics
Topics in This Chapter

Creator Window Layout

Component Palette

Source Editors/Code Completion

Clips Palette

Page Navigation Editor

Application Outline Window

Server Navigator Window

Creator Help System

Sun Java Studio Creator makes it easy to work with web applications from multiple points of view. This chapter explores
some of Creator's basic capabilities, the different windows (views) and the way in which you use them to build your
application. We show you how to manipulate your application through the drag-and-drop mechanism for placing
components, setting attributes in the Properties window, controlling page flow with the Page Navigation editor, and
selecting services from the Server Navigator window.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Examples Installation
We assume that you've successfully installed Creator. The best source of information on installing Creator is Sun's
product information page at the following URL.

http://developers.sun.com/prodtech/javatools/jscreator/

Creator runs on a variety of platforms and can be configured with different application servers and JDBC database
drivers. However, to run all our examples we've used the default application server (J2EE 1.4 Application Server) and
PointBase database. Once you've configured Creator for your system, the examples you build in the text should run the
same on your system.

Download Examples

You can download the examples for this book at

http://www.asgteach.com/download/index.htm

and select Java Studio Creator Field Guide: Book Examples. The examples are packed in a zip file. When you unzip the
file, you'll see the FieldGuide/Examples directory and subdirectories for the various chapters and projects. As each
chapter references the examples, you will be instructed on how to access the files.

You're now ready to start the tour of Creator.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Creator Views
Figure 2-1 shows Creator's initial window layout in its default configuration. When you first bring it up, no projects are
open and Creator displays its Welcome window.

Figure 2-1. Creator's initial window layout

[View full size image]

There are other windows besides those shown in the initial window layout. As you'll see, you can hide and display
windows, as well as move them around. As we begin this tour of Creator, you'll probably want to run Creator along with
the text.

Welcome

The Welcome window lets you to create new projects or work on existing ones. Figure 2-2 shows the Welcome window
in more detail. It lists the projects you've worked on recently and offers selection buttons for opening existing projects
or creating new projects.

Figure 2-2. Creator's Welcome window

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

To demonstrate Creator, let's use a project that we've already built with Creator. The project is in directory
FieldGuide/Examples/Projects/Login1.

1. Select the Open an Existing Project button and browse to the FieldGuide/Examples/Projects directory for
Java Creator Field Guide.

2. Select Login1 (look for the projects icon) and double click. This opens the Login1 project and displays the
design canvas for the project's first page.

Design Canvas

Figure 2-3 shows a close-up of the design canvas window for project Login1. You see the design grid and the
components we've placed on the canvas. As you select the individual components, their properties appear in the
Properties window (not shown here).

Figure 2-3. Creator's design canvas showing project Login1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each project in Creator can have many files associated with it. Here, the design canvas window displays the design view
of file Page1.jsp. You can have more than one of your project's files open at a time (currently, there's just one open).
When you open other files, their file tab appears at the top of the editor pane. You use the File Tab to select other files.

The editor pane allows you to manipulate elements of your project. When the design canvas is showing, you can select
components, validators, or converters from the palette. From the Server Navigator windows you can select nonvisual
components, such as data sources or web services. In the design canvas, you see the components we've added to this
page: a text field component, a secret field component, two component labels, two buttons, a message list component,
and an output text component used as a page title.

Creator allows you to configure your display's workspace to suit the tasks you're working on. All the windows can be
hidden when not needed (click the red X in a window's title bar to close it). To view the window again, select View from
the menu bar and then the window name. You can dock Creator windows by selecting the pushpin in the window title
bar. This action minimizes the window along the left or right side of the workspace. Make it visible again by moving the
cursor over its docked position. Undock it by toggling the pushpin icon.

Select the button labeled "Login" on the design canvas. This will bring up the button component's Properties window, as
shown in Figure 2-4.

Figure 2-4. Properties window for button component "Login"

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties

Creator lets you configure the components you use by manipulating their properties. When you change a component's
properties, Creator automatically updates the JSF source for you. Here are the login button's properties.

The id attribute uniquely identifies the component on the page. Creator generates the name for you, but you may want
to change it (as we have in this example) to more easily work with the generated code. You can use the style attribute
to change its appearance. If you click in the editing box opposite style, you can see what it's set to. The position attribute
reflects the component's position on the page. When you move the button component, Creator updates this for you.

The value attribute under Data holds the button's label. Click on the Login button again in the design canvas and from
the keyboard begin typing a new label. You'll see that Creator automatically selects the value attribute in the Properties
window and enables editing as you begin typing. Finish editing with <Enter>.

Under Events, the action attribute is set to login_action(). This refers to an event handler method in the Java page bean
that controls what happens when the user clicks the button.

Each component has a different list of attributes (although many attributes are the same). As you select other
components in the design canvas, note that the list of attributes in the Properties window changes.

Palette

Figure 2-5 shows the JSF Standard Components window and JSF Validators/ Converters window. These are the palettes
that let you select components and add them to your page. Page designers, for example, select a component and drag
it to the design canvas, positioning it on the page. Once the component is on the page, you can configure it by changing
the attributes in its Properties window.

Figure 2-5. JSF Standard Components and Validators/Converters windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click on the bar labeled JSF Validators/Converters to see these components. You can select these just like the standard
components. When you drag one to the canvas and drop it on top of a component, the validator or converter will bind
to that component. (To test this, select the Length Validator and drop it on top of the userName text field component.
You'll see a length validator #{Page1.lengthValidator1.validate} defined for the text field's validator attribute in the Properties
window.)

Note that the components, validators, and converters all have icons next to them. Creator uses these icons consistently
so you can easily spot what kind of component you're looking at. For example, reselect the JSF Standard Components
bar in the palette and then select the Login button component on the design canvas. Now look at the Application Outline
view. You'll see that the icon next to the button component in the JSF Standard Components palette matches the Login
button in the Application Outline window.

Application Outline

Figure 2-6 is the Application Outline window for project Login1. (Its default placement is in the lower-left portion of the
display.) The Application Outline window is handy because it shows both visual and nonvisual components for the page
that's currently displayed in the design canvas. You can select other pages (here we have LoginGood.jsp and
LoginBad.jsp) as well as the preconfigured managed beans, SessionBean1 and ApplicationBean1. These JavaBeans
components are handy to hold your project's data that belong in either session or application scope, respectively. (We
discuss scope issues for web application objects in "Scope of Web Applications" on page 128.)

Figure 2-6. Creator's Application Outline window for project Login1

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some components are composite components, meaning that they contain nested elements. The Application Outline
window will show this structure and allow you to expand and compress the display (using '+' and '-') as needed.

When you placed the length validator component on the userName text field, it appeared here as component
lengthValidator1. Delete it by selecting it in the Application Outline view, then right-click and select Delete from the
context menu. The validator should disappear from the Application Outline view. Select the text field component
userName and reset its validator attribute to null.

Creator Tip

Once you delete the lengthValidator1 component from your project, you must make
sure that the validator attribute for component userName is really set to null. If it
still references the validator, your project will build without any errors. However,
the system will throw an exception because it cannot find the validator at run time.

Now let's look at the Project Navigator window.

Project Navigator

Figure 2-7 shows the Project Navigator window for project Login1. Its default location is in the lower-right corner.
Whereas the Application Outline view displays the components for individual pages and managed beans, the Project
Navigator window displays your entire project. Project Login1 contains three JSP pages: Page1.jsp, LoginGood.jsp,
and LoginBad.jsp. Double-click on any one of them to pull it up in the design canvas. When the page opens, Creator
displays a file name tab so you can easily switch among different files in the design canvas.

Figure 2-7. Creator's Project Navigator window for project Login1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you create your own projects, each page comes with a Java component "page bean." These are Java classes that
conform to the JavaBeans structure we mention in Chapter 1 (see "JavaBeans Components" on page 13). To see the
Java files in this project, expand the Java Sources folder (click on the '+'), then the login1 folder. When you double-
click on any of the Java files, Creator brings it up in the Java source editor. Without going to the editor, you can also
see the Java classes, fields, constructors, and methods by expanding the '+' next to each level of the Java file.

The Project Navigator also lists the Resources node, which lives under the Web Pages node. The Resources node
typically holds file stylesheet.css and any image files. The Library References node lists the libraries Creator needs to
deploy your application. These are all of the JSF, Web Services, JDBC Rowset, and Exception Handler support classes.
These class files (compiled Java classes) are stored in special archive files called JAR (Java Archive) files. You can see
the name of the JAR files by expanding each of the nodes under Library References.[1] We show you how to add a
Library Reference to your project in Chapter 5 (see "Add a Library Reference to Your Project" on page 133).

[1] For those of you who are curious about their contents, you can look at these jar files with the Java command-
line jar command, Winzip or other compatible utility. With Winzip, be sure to specify *.* for all file types when
opening an archive. The command that produces a file list of a jar archive is jar tvf lib.jar. The files are found in the
directory structure of your project. (Look in Login1/build/WEB-INF/lib for the JAR files.)

By default, the Project Navigator window shows you the Logical View of your project. Select the project name Login1,
right-click, and choose Show FileSystem View from context menu, shown in Figure 2-8. The FileSystem View shows all
of the files in your project. This is handy for editing a configuration file that doesn't have a "visual editing interface." For
example, expand the view until you see file web.xml, as shown below. Double-click this file. Creator brings it up in the
editor pane. You can close the window again by selecting its File Tab at the top of the editor pane, right-click, and
choose Close.

Figure 2-8. The FileSystem View of the Project Navigator window.

JSP Source Editor

With Page1.jsp in the design editor, bring up the JSP for this page by clicking the tab labeled Source at the bottom of
the editor pane. Figure 2-9 shows Creator's JSP Source Editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-9. Page1.jsp Source window

[View full size image]

This is the JSP source that Creator generates for your page. Normally, you will not need to edit this page directly, but
studying it is a good way to understand how JSF components work and how you can configure them by managing their
properties. You'll see a close correspondence between the JSF tags and the components' properties as shown in the
Properties window.

You'll also note the JSF Expression Language (EL) used to refer to methods and properties in the Java page bean. For
example, the login button's action attribute is set to #{Page1.login_action}, which is a method in class Page1.java.

Let's look at the Java source for Page1.java now. Return to the design canvas for this page (select the tab labeled
Design at the bottom of the editor pane). Right-click on the design canvas and select View Page1 Java Class from the
menu.

Java Source Editor

You're looking at Creator's Java source editor for Java file Page1.java, the page bean for Page1.jsp. This Java file is a
bean (conforming to a JavaBeans structure). Its properties consist of the components we placed on the page: each
component corresponds to a private variable and has a getter and setter. This allows the JSF EL expression to access
the properties of the page bean.

There's a dropdown menu at the top left of the window. You can use this menu to locate a field, method, or constructor
in the file. Open the dropdown menu and select method login_action. Figure 2-10 shows this view.

Figure 2-10. Page1.java Java source editor

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's much to learn about the Java source editor, so we'll just touch on a few tidbits now. First, we enabled line
numbers here. To do this for your display, right-click in the margin (on the left-side of the editor window) and select
Show Line Numbers. You see that method login_action() begins at line 166.

All of Creator's editors are based on NetBeans. The Editor Module is a full-featured source editor and provides code
completion (we show an example shortly), a set of abbreviations, and fast import <Alt-Shift-I>.

To see the set of abbreviations, select Tools > Options from the menu bar. The Options dialog pops up. Under Options,
select Editing > Editor Settings > Java Editor. On the right side of the display, click the small editing box next to
Abbreviations. Creator pops up the window shown in Figure 2-11.

Figure 2-11. Java source editor list of abbreviations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The window lists the abbreviations in effect for your Java editor. (You can edit, add, or remove any item.) For example,
to add a for loop to your Java source file, type the sequence fora (for array) followed by <Space>. The editor adds

for (int i = 0; i < .length; i++) {

}

and places the cursor in front of .length so that you can add an array name. (.length refers to the length of the array
object. This code snippet lets you easily loop through the elements of the array.)

The Java source editor also helps you with Java syntax and code completion. All Java keywords are bold, and variables
and literal Strings have unique colors (you'll see that in your display; in the text here, it's different shades of gray).

When you add statements to your Java source code, the editor helps you by dynamically marking syntax errors (in red,
of course). The editor also pops up windows to help with code completion or package location for classes you need to
reference (press <Ctrl-Space> to activate the code completion window). For example, Figure 2-12 shows the code
completion mechanism as you start to type a method that begins with "e" for a String object (on line 168).

Figure 2-12. Java source editor code completion

[View full size image]

When you use the down-arrow to select method equals(), the help mechanism displays the Javadoc documentation
about equals() for java.lang.String. With method equals() highlighted, press <Enter>. The code completion does more for
you than you really want here. Delete all the characters after "equals" up to the parenthesis in front of "userName." The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you than you really want here. Delete all the characters after "equals" up to the parenthesis in front of "userName." The
syntax errors should disappear. (To retrieve Javadoc documentation on any class in your source file, select it and press
<Ctrl-Shift-Space>.)

Clips Palette

When the Java Source editor is displayed, Creator replaces the component palette with the Clips palette, as shown in
Figure 2-13. Here we select the Java Basics Clips. Highlight clip Concatenate Strings. If you hold the cursor over the clip
name, Creator displays a snippet window. You can drag and drop the clip directly into your Java source file. We do this
when we build our first sample project in the next section.

Figure 2-13. Java Basics Clips Palette and Viewer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To view or edit a clip, select it, right-click, and choose Edit. The second window in Figure 2-13 shows the Concatenate
Strings clip.

The Clips palette is divided into categories to show sample code for that general topic. For example, if you click
Application Data, you'll see a listing of clips that shows you how to access objects defined in your web application's
different scopes.

Page Navigation Editor

Return to the Java Source window and look at method login_action(). You'll see that this method returns one of two
Strings: either "loginSuccess" or "loginFail". These Strings are returned to the action event handler, which then passes
them to the navigation handler. The navigation handler manages page flow. Let's look at the Page Navigation editor
now.

1. From the top of the Java source window, select the tab labeled Page1.jsp. This returns you to the design
canvas for this page.

2. Now right-click in the design canvas and select Page Navigation from the context menu. Creator brings up the
Page Navigation editor for project Login1, as shown in Figure 2-14.

Figure 2-14. Page navigation editor for project Login1

[View full size image]

We mentioned earlier that there were three pages in this project. The Page Navigation editor displays these pages and
indicates page flow logic with labeled arrows. The two labels originating from page Page1.jsp correspond to the return
Strings we just looked at in the action method login_action().

You learn how to specify Navigation in Chapter 4 (see "Page Navigation" on page 96). The Page Navigation editor is also
a handy way to bring up any of the project's pages: just double-click inside the page. As you bring up each page, a
corresponding file tab appears at the top of the editor pane. And once you've visited the Page Navigation editor, Creator
displays a file tab called navigation.xml so you can easily return.

Before we explore our project any further, let's deploy and run the application. From the menu bar, select Build > Run
Project. (Or, click the green chevron on the toolbar icon, which also builds and runs your project.)

Build Output Window

Figure 2-15 shows the build output window just as the application is finishing deployment. Creator uses the Ant build
tool to control project builds. This Ant build process requires compiling Java source files and assembling the resources
used by the project into an archive file called a WAR (Web Archive) file. Ant reads its instructions from a Creator-
generated XML configuration file, called build.xml, in the project's directory structure.

Figure 2-15. Build Output window for project Login1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-15. Build Output window for project Login1

If problems occur during the build process, Creator displays messages in the Build Output window. A compilation error
with the Java source is the type of error that causes the build to fail. When the build succeeds (the window will show
BUILD SUCCESSFUL, as you see above), Creator tells the application server to deploy the application. If the application
server is not running, Creator starts it for you. If errors occur in this step, messages come from the application server.
Finally, it's possible for the deployment to be successful but for an exception to be shown in the browser's web page. A
likely source of this type of error is a problem with JSF tags on the JSP page or a resource that is not available for the
runtime class loader.

When the build/deployment process is complete, Creator brings up your browser with the correct URL. (The status
window displays "Starting browser for http://localhost:18080/login1.") So, to run project Login1 with the Sun J2EE 1.4
Application Server, Creator uses this web address.

http://localhost:18080/login1/

You use localhost if you're running the application server on your own machine; otherwise, use the Internet address or
host name where the server is running. The port number 18080 is unique to Sun's J2EE application server. Another
server will use a different port number here.

The Context Root is /login1 for this application. The application server builds a directory structure for all its deployed
applications, and the context root is the "base address" for all the resources that your application uses.

Figure 2-16 shows the Login1 project deployed and running in a browser. Type in some values for Username and
Password. If you leave the Username field empty, you'll get a validation error. The correct Username and Password is
"rave4u" for both fields.

Figure 2-16. Login page web application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you type in the correct values and click the Login button, the program displays page LoginGood.jsp. Incorrect
values display LoginBad.jsp. You'll build project Login1 from scratch in Chapter 4 ("Dynamic Navigation" on page
111).

It's time now to explore the Server Navigator window, located in the upper- left portion of your Creator display. Click
the tab labeled Server Navigator.

Server Navigator

Figure 2-17 shows the Server Navigator window after you've deployed project Login1. Four categories of servers are
listed here: Data Sources, Web Services, Deployment Server, and Database Server.

Figure 2-17. Server Navigator window

The Data Sources node is a JDBC database connection. The default database server is PointBase, but you can configure
a different one. Creator comes configured with several sample databases, which are visible if you expand the Data
Sources node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

PointBase must be running. You can start it on Windows by clicking the Start button
and selecting All Programs > Sun Microsystems > J2EE 1.4 SDK > Start PointBase.
You will need to restart Creator.

Now expand the Travel > Tables node to see the database tables as shown (there are four). As you select different
tables, Creator displays their properties in the Properties window.

You can expand each table further and see the database table field names. If you double-click on the table name,
Creator displays the data in the editor pane, as shown in Figure 2-18. You can close the table view by selecting the tab
labeled Table View, right-click, and select Close from the context menu. We discuss creating web applications that
access databases in Chapter 7 (see "Accessing Databases" on page 204).

Figure 2-18. Selecting View Data under the Data Sources node

[View full size image]

The second server type is Web Services, which provides access to remote APIs from Creator applications. This requires
the cooperation of several Java technologies, which we discussed in Chapter 1. When you install Creator, it includes a
web services API to access Google. In Chapter 6 we show you how to create an application that uses the Google web
service API.

The third server type is the Deployment Server, which is the application server. Sun's J2EE 1.4 application server is
Creator's default deployment server, which manages the deployment of web applications that you create. To start or
stop the server, select the Deployment Server node, right-click, and select Start/Stop Server. Creator pops up a
window that allows you to initiate one of these actions, or you can simply close the window.

If you expand the Deployment Server node, you'll see the Deployed Components node. Under this node are the
deployed applications. The /login1 application is listed (since you deployed it). You can undeploy an application by
right-clicking its node and selecting Undeploy.

The J2EE application server also has administration access through your browser at

http://localhost:14848/asadmin/

You can get there directly from Creator by selecting the Deployment Server node, right-clicking, and selecting Show
Admin Console. (The application server must be running for access to the administration port.) Use user name admin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Admin Console. (The application server must be running for access to the administration port.) Use user name admin
and password adminadmin.

Debugger Window

Creator has a debugger that lets you trace the call stack, track local variables, and set watches. You can see this
window by selecting View > Debugger Window from the toolbar. To run your application in "debug mode," click on
Debug > Debug Project from the menu bar. The application server has to stop and restart if it's not already in debug
mode. In Chapter 9 we walk you through the debugger options, setting breakpoints, stepping through code, and other
debugging activities.

Figure 2-19. Creator debugger window

[View full size image]

Creator Help System

The Creator Help System is probably the most useful window for readers new to Creator. This help system includes a
search capability, contents, and an index. You access the help system by selecting Help > Help Contents in the menu
bar. In Figure 2-20 we clicked the Index tab and selected entry "binding data to list components." The relevant
information appears in the adjacent window.

Figure 2-20. Creator Help window

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 Sample Application
Now that you're comfortable with Creator, let's create a simple web application. Even though this application is
simplistic, it hints at some of the power in Creator. Figure 2-22 on page 46 provides a preview of this web application.

Figure 2-22. Web application Echo running in a browser

Create a Project

Close project Login1 if it's open.

1. From the Welcome window, select button Create New Project.

2. Specify Echo for the Name, then click OK.

Specify Title

Creator initializes a project for you and brings up the design canvas editor. Now you'll be able to add components and
modify properties.

1. If the Properties window is not enabled for the page, select the page by clicking anywhere inside the design
canvas.

2. In the Properties window under General, change the Title attribute to Echo. Finish with <Enter>.

Add Components

You'll add three components to the page: a component label, a text field, and an output text component. When you
created project Echo and Creator brought up the design canvas, this made the JSF Standard Components palette

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

created project Echo and Creator brought up the design canvas, this made the JSF Standard Components palette
visible.

1. From the JSF Standard Components palette, select Component Label and drag it over to the design canvas.
Drop it onto the canvas, near the top on the left side. Don't resize it.

Creator Tip

If you resize the component, Creator generates static length and width attributes
for your component. If you leave it unsized, the rendering mechanism will
dynamically size the component to accommodate the text it needs to display.

2. Component label is a composite component; it contains an embedded (nested) output text component. The
output text component displays the label. From the Application Outline view, select the component label's
nested output text component, named componentLabel1Text.

Creator Tip

Creator provides an enhanced selection mechanism for composite components
(such as component label). In the design canvas, select the component label and
look in the Properties window to see which component is selected. Now click the
component again and you'll see a different component's properties. For
component label, you switch back and forth between the top-level, label
component and the embedded output text component by clicking the component
in the design canvas.

3. Now go to the Properties window and select the value attribute. Type the label Type in some text. Finish with
<Enter>. The text you type will appear in the component.

4. From the JSF Standard Components palette, select component Text Field and place it on the design canvas
underneath the component label you just added.

5. Make sure that it's selected, and in the Properties window, change its value attribute to Echo Text. Finish with
<Enter>.

6. Still in the Properties window for the text field, change its title attribute to The text you enter here will be
echoed below. Finish with <Enter>. You've just created a tooltip for this component.

7. Now select component label componentLabel1 (the top-level component) from the Application Outline view.

8. In the Properties window, select the small editing square opposite the for attribute. Creator pops up a dialog for
you to choose a component id. Select component textField1 and click OK. This associates the label component
with the text field component. You'll see (when you run the web application) that this affects GUI operations
such as cursor movement and selection behavior. For example, selecting the label also selects the text field.

9. From the JSF Standard Components palette, select an Output Text component and place it under the text field.
(Again, don't resize it.)

You've finished adding the components. Now you will use property binding to bind the text field component value
property to the output text component value property. Here's how.

1. Select the output text component (outputText1), right-click, and choose Property Bindings from the context
menu. Creator brings up the Property Bindings dialog. (See Figure 2-21.)

Figure 2-21. Property Bindings dialog

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Under Select bindable property, choose value Object.

3. Under Select binding target, expand Page1 > html > body > form1 by clicking the '+' at each level.

4. Select component textField1 (the text field component you added). Expand the component by clicking '+' on
textField1 and select value String. (The properties are listed in alphabetical order, so value is near the end.)

5. Click the Apply button. (If you don't click the Apply button, Creator doesn't set the property binding.) Under
Current binding for value property, you should see the following JSF EL expression

#{Page1.textField1.value}

6. Click Close to finish.

So, what did all this accomplish? You've just configured property binding on the output text component (id outputText1).
This means that JSF gets the value attribute (the text that is displayed on the page) for outputText1 from the text field's
value (component textField1). This, in turn, means that whatever you type for input will be echoed in the output text's
display.

Deploy and Run

You've finished creating the application. Now it's time to build, deploy, and run it. From the menu bar, select Build >
Run Project. Creator builds the application, deploys it, and brings up a browser with the Echo web application running.

Figure 2-22 shows what the browser window displays after you type Hello, World Wide Web inside the text field
followed by <Enter>.

Modify Project Echo

As promised, let's access the Clips palette and add some Java code to our project. First, we'll add an output text
component.

1. Make sure the Creator design canvas is visible.

2. From the JSF Standard Components palette, select Output Text component and place it underneath component
outputText1. This adds component outputText2 to your page. (You should see outputText2 when you look at the
Application Outline view of the project.)

3. Make sure component outputText2 is selected and in the Properties window click on the small editing box
opposite attribute value.

4. Creator pops up a dialog to manipulate the component's value. Click button Reset to default. This removes any
text from the design canvas for this component.

Now you will bring up the Java source editor to manipulate the Java page bean for this page.

1. Place the cursor anywhere in the design grid, right-click, and select View Page1 Java Class. This brings up the
Java Source editor with file Page1.java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java Source editor with file Page1.java.

2. Open the dropdown menu at the top of the editor pane and select the constructor, Page1(). Creator will place
the cursor at the beginning of this method and highlight the line in yellow. (Note that some Creator-managed
code is hidden—"folded"—to help keep your editor window uncluttered.)

3. Move the cursor to the end of the following line.

// Additional user provided initialization code

4. Click the mouse and start a new line by pressing <Enter>. Since you're in the Java Source editor, the Clips
palette is visible to the left of the editor pane.

5. Select Java Basics > Concatenate Strings. Drag this clip to your Java source and drop it directly underneath the
above comment line (where you just added a new line).

Creator adds the following code to your Java source file.

// Concatenating Strings

// This clip shows how to concatenate two strings in Java

// and places the result in a text field component

//TODO: set string1 and string2

String string1 = "concat";

String string2 = "enate";

String resultString = string1 + string2;

// show the result in a component on the page

getInputText1().setValue(resultString);

Note that the last line is underlined (in red), since it produces a syntax error. Before we fix the error, let's align the
newly added code.

1. Select the code you just added by swiping all the lines with the mouse. The selected lines turn gray.

2. At the top of the editor pane, hold the cursor over the icons until you find the icon with the tooltip "Shift Line
Right (Ctrl + T)."

3. Click the Shift Right icon until the selected code block is aligned with the line above it.

Let's fix the flagged error now. We need to use method getOutputText2() instead of method getInputText1().

1. Change the underlined line above to the following.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getOutputText2().setValue(resultString);

(Remove InputText1() and start typing the replacement text. Then press <Ctrl-Space> and see the code
completion box, as shown in Figure 2-23. Here we are given two choices. Use the down-arrow key to select
method getOutputText2() and press <Enter>.)

Figure 2-23. Code completion helping out

[View full size image]

2. Redeploy and run web application Echo. You'll see that the String "concatenate" displays in the output text
component on the page. We placed this code in Page1's constructor. This is where you provide initialization
code that is executed before the page is displayed.

This completes our tour of Creator. The next chapter provides a detailed description of the JSF standard components,
validators, and converters.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Key Point Summary

Creator has multiple windows to give you different views of the project that you're working on. The windows
can be sized, docked and undocked, or hidden.

From the main menu, select View and the desired window name to enable viewing.

Use the Welcome Window to select a Project to open, or to create a new project.

The design canvas allows you to manipulate components on a page and control their size and placement.

Use the components palette to place a component on the design canvas.

Use the converters/validators palette to select data converters and input validators for your project.

The Properties window allows you to inspect and edit a component's properties. Each element type displays a
different list of properties.

A component's value attribute usually contains text that is displayed (such as labels on buttons or input and
output fields). The title attribute gives you a tooltip for the component and the style attribute lets you change the
font characteristics.

You can apply Property Binding and "connect" the value of one component to another.

The Application Outline window shows all of the elements on a page, including nonvisual components.

The Project Navigator displays an entire project, including Java source files. Choose between the Logical view
and the FileSystem view by right-clicking the project name.

The JSP Source editor displays a page's source. Most of the page includes JSF tags for components and their
properties. As you make changes in the design canvas, Creator keeps the JSP source (as well as the Java
source) synchronized with your changes.

The Java Source editor displays the Java source for each "page bean," the JavaBeans component that
manipulates each page's elements. You typically place event handler code or custom initialization code in the
Java page bean.

The Java Source editor includes a code completion mechanism that provides pop-up windows with possible
method names (use <Ctrl-Space> to invoke) and Javadoc documentation for classes and objects in your
program (use <Ctrl-Shift-Space> to invoke). It also includes a dynamic syntax analyzer to warn you about
compilation errors before you compile.

The Clips palette provides sample Java code to accomplish common programming tasks. The Clips are
organized into categories based on function.

The Page Navigation editor lets you specify page flow. It builds a navigation configuration file, navigation.xml.

When you build your project, the Build Output window provides diagnostic feedback and completion status.

The Server Navigator window displays the Data Sources, Web Services, Deployment Server, and Database
Server nodes.

You can start and stop the application server and undeploy running web applications from the Deployment
Server node.

You can view Table data by expanding the Data Sources node and selecting individual tables. Creator displays
the data in the editor pane when you right-click the table name and select View Data.

The Debugger Window displays several views that are helpful when you are debugging your project. You can
monitor the call stack, local variables, and watches, for example.

The Creator Help system provides a table of contents, an index, and a search mechanism to help you use
Creator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. JSF Standard Components
Topics in This Chapter

JSF Component Attributes and Configuration

Data-Aware Components

Component Nesting

Action and Navigation Components

JSF Standard Converters and Validators

Components for Error Messages

Validation, Conversion, and the JSF Life Cycle

Sun Java Studio Creator's design palette presents a wide variety of JSF standard components to choose from. These
components include input and output text fields, checkboxes, listboxes, hyperlinks, images, database tables, and so on
—in short, anything you need to design a web page. You can select a component, drag it to the design canvas, and drop
it at the location of your choice. In addition, you can choose validator components to verify user input and converter
components for data conversions. Creator maintains a design canvas with your web page layout and generates Java
code for you, along with JSP and XML statements to help configure and deploy your application.

In this chapter we present a catalog of the JSF standard components, validators, and converters. We also provide
references to examples in this book where they are used. The examples will help you understand how to use the JSF
components in your Creator projects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 JSF Overview
The JSF API provides a rich set of UI components that let you handle events, validate and convert user input, define
page navigation, and support internationalization. JSF also has custom tag libraries that connect components to server
side objects. Let's start with the architecture of JSF to give you the "big picture" of what's going on.

JSF Architecture

Figure 3-1 shows the architecture used with JSF.

Figure 3-1. JSF architecture

Your browser interacts with the web container through one or more JSP pages (Page1.jsp and Page2.jsp). These are
JSP pages containing JSF tags. The supporting page bean (Page1.java) manages the objects referenced by the JSP
pages. Note that the JSP pages handle HTTP requests when a page is accessed, whereas the Java files render HTML for
the HTTP response.

The JSP Page

Suppose a web page has an output text component (outputText1) that displays "In what year were you born?", a button
to click (button1), and an input text field (textField1) for the year (restricted to the range 1900 to 1999). When these
components are moved from the palette to the design canvas, Creator generates the JSF tags in the JSP file. Each JSF
component also becomes a property in the generated Java page bean. To understand how this all works, let's start with
how the output text component is defined in Page1.jsp.

<h:outputText

 binding="#{Page1.outputText1}"

 style="font-size: 18pt; left: 96px; top: 96px;

 position: absolute"

 value="In what year were you born?"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSP file is expressed in XML. Creator generates this file for you and keeps it synchronized with your page design. As
you modify your components with the Properties window, Creator updates the JSP code as well as the Java code as
necessary. Creator generates the required JSF tags for your components in the JSP page. You can always access the
JSP page by selecting the tab labeled Source below the editor pane design canvas.

In this example, the output text component displays "In what year were you born" on the page. Its id attribute (unique
page identification) is outputText1 and its binding attribute (the corresponding property in the Page1 page bean) is also
outputText1. The style attribute specifies its location on the page with the left and top settings in pixels. This attribute
also makes the text appear in 18-point font size.

JSF Expression Language (EL)

JSF uses a specialized syntax to access JavaBeans components with its tags. For example, the notation

#{Page1.outputText1}

references the outputText1 property in JavaBeans component Page1. In the JSP file (Page1.jsp), the generated
component tags reference properties in the supporting page bean, as follows.

binding="#{Page1.outputText1}"

Now let's see how the button component is referenced in Page1.jsp.

<h:commandButton

 binding="#{Page1.button1}"

 action="#{Page1.button1_action}"

 style="left: 72px; top: 168px; position: absolute"

 title="Click for your age" value="Submit"/>

Elements binding and action are JSF tag library attributes whose values are set with JSF EL. Element binding is the button
component's page bean reference, and action references a special action event method button1_action(), also in Page1.
Here, method button1_action() is called when the users clicks the button controlled by JSF component button1.

Converters and Validators

What about the input text field component? Recall that this component must read a year (in the range 1900 to 1999)
from the user. Here's how the input text field component is configured in Page1.jsp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the user. Here's how the input text field component is configured in Page1.jsp.

<h:inputText

 binding="#{Page1.textField1}"

 converter="#{Page1.integerConverter1}"

 style="left: 192px; top: 168px; position: absolute"

 validator="#{Page1.longRangeValidator1.validate}"/>

Text field components display and accept text, but textField1 must work with integer numbers in this example.
Consequently, a JSF conversion component (integerConverter1) is necessary to convert String input to integer values.
Input is restricted to a specific range of numbers (1900 to 1999), so we'll need a JSF validator (longRangeValidator1) for
the input, too.

converter="#{Page1.integerConverter1}"

validator="#{Page1.longRangeValidator1.validate}"

In both cases, JSF EL references the components that perform the conversion and validation.

Event Handling

JSF uses a well-known delegation event model to handle events generated by user actions (clicking a button, changing
a selection in a dropdown list, pressing <Enter> after editing a text field, for example). It's helpful to have an
understanding of the pieces that work together to make responding to events a well-behaved system.

The Event Source is a component that is capable of generating an event. Different components generate different event
types. Button components and link action components generate action events. Dropdown list components generate
value change events.

Event Objects are generated by components (the Event Source). An Event Object is basically a message that is passed
from the Event Source to an Event Listener. The Event Object contains information about the Event.

Event Listeners are specialized objects created by JSF that know what to do when an event is generated. Different
types of listeners can respond to different types of events. For example, ActionEventListeners respond to action events
and ValueChangeListeners respond to value change events.

Using the "Publish-Subscribe" design pattern, Event Listener Registration keeps track of which objects "care about" an
event occurring. Objects that "care" are those that register themselves through the Event Listener Registration. After
registering with the Event Source, Event Listeners are notified when an action occurs. Notification means their special
event method is called with the event object as a parameter. Fortunately, Creator generates all the method stubs,
event listeners, and event registration for you. Here is an example of a value change method that JSF calls when a
value change event is generated from a dropdown list component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void dropdown1_processValueChange(

 javax.faces.event.ValueChangeEvent vce) {

 // User event code here. . .

}

Web application developers provide the specialized event-processing code (whatever actions your web application must
perform in responding to the value change event).

Action events are common with most applications and Creator generates the action event handlers for you. Action
events can be used to write processing code in response to a button click. In addition, action events return String
values to a navigation handler, which allow you to move to a different web page. Here is the stub Creator generates
when you request event processing for a button.

public String button1_action() {

 // User event code here...

 return null;

}

Note that action events implement navigation by returning String values. A null string means you stay on the same
page. A different String ("ButtonClick", for example) instructs the navigation handler to go to a new page.

Java Page Bean

Now let's show you the Java page bean file, Page1.java. Creator generates Java code in the Java page bean for the
components you select from the design palette. Each component becomes a property of the supporting page bean, and
the component instance is bound to that property.

Here's the Page1.java file for our simple web application with two text fields and a button. Again, Creator generates
this file for you.

public class Page1 extends AbstractPageBean {

 private HtmlOutputText outputText1 = new HtmlOutputText();

 private HtmlCommandButton button1 = new HtmlCommandButton();

 private HtmlInputText textField1 = new HtmlInputText();

 private IntegerConverter integerConverter1 =

 new IntegerConverter();

 private LongRangeValidator longRangeValidator1 =

 new LongRangeValidator();

 // getters and setters for components here...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // getters and setters for components here...

 public Page1() {// page constructor

 // Creator-managed initialization code

 }

 public String button1_action() { // event handler

 // User event code here...

 return null;

 }

}

Note that Page1 extends AbstractPageBean. The private fields define the JSF components and the getter and setter
methods make them accessible as properties. Here are the getters and setters for the output text component.

public HtmlOutputText getOutputText1() {

 return outputText1;

}

public void setOutputText1(HtmlOutputText hot) {

 this.outputText1 = hot;

}

In our example the Page1() constructor sets the minimum and maximum ranges for the JSF validator component
(longRangeValidator1). When you set these values for the validator by using Creator's Properties window, Creator
generates the statements in the constructor to configure the validator for you.

public Page1() {

 // Creator-managed initialization code

 try {

 longRangeValidator1.setMinimum(1900);

 longRangeValidator1.setMaximum(1999);

 }

 catch (Exception e) {

 log("Page1 Initialization Failure", e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 log("Page1 Initialization Failure", e);

 throw new FacesException(e);

 }

 // User provided initialization code

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Components
Creator allows you to select components from the JSF standard components palette for your application. These
components are implemented with a JSP custom tag library for rendering components in HTML (part of JSF). Therefore,
all of the JSF standard components are rendered as HTML tags.

When you select a component and drag it to the design canvas, Creator generates code in the page's JSP source as well
as support code in the associated Java page bean. Furthermore, Creator displays each component in the Application
Outline view, including any support components that may not be visible. Once you place a component on the design
canvas, you can modify its attributes and behavior through the Properties window, through the JSP code, or through
modifications to the Java page bean. In general, it's preferable to edit attributes of a component with Creator's
Properties window. However, writing code to control navigation or including Java statements to handle action and value
change events must be done in the Java page bean file.

Common Attributes

This chapter presents a catalog of the JSF standard components so that you can easily look up their behavior and use
them in your application. Many components share common attributes and code generation features, however. Let's
start with the definitions of these attributes so that you can see how they're used by the JSF components.

value

The value attribute stores a component's main characteristics. Its meaning depends on the component. For example,
value stores the text of a button label, the display text of an output text component, or the input for a text field. The
value attribute can also store the text for a secret field and hidden field components. For a hyperlink component, value
stores a target URL name. For an image component, value holds the name of an image file.

The value attribute is a Java Object type. Creator allows you to bind a component's value attribute to a JavaBeans
property, a data source, or even a localized message in a properties file.

title

The title attribute is a text string for a JSF component's tooltip.

style

The style attribute holds CSS Style Sheet strings for attributes such as font family, font size, and position parameters.
These determine the type of font used, its point size, and placement on the design canvas.

id

The id attribute is a page-unique string that identifies a component on the web page. Creator generates the
component's id for you, but you can use the Properties window to change it. We recommend renaming the default id
when you have more than one component on the same page that requires action methods (buttons, for example).
Providing meaningful names for the id attribute makes Creator generate associated action methods with meaningful
names. This makes your Java code easier to read.

action

The action attribute is important for button and link action components. This attribute references a method in the page
bean that returns a String for JSF's navigation handler. The application writer may provide application-specific
statements in the action method, process information to determine page flow, or both. Chapter 4 discusses page
navigation in detail.

binding

Creator generates the binding attribute for all components you place on the page. The binding attribute binds the
component instance to a property in the page bean. For example, if you add a button component to a web application's
initial page (Page1.jsp), the default binding attribute for the button component is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initial page (Page1.jsp), the default binding attribute for the button component is

binding="#{Page1.button1}"

This JSF EL expression references the button1 property of managed bean Page1 and binds the component instance to
the bean property. Now you can write code in the Page1.java page bean to access the button component and
dynamically control its properties.

Input Components

Components that collect input (text field, secret field, multiline text area, dropdown list, multiselect list, for example)
share common attributes to control and validate input. Let's look at some of these attributes now.

validator

The validator attribute references a method that performs validation on its value. JSF provides three standard validators:
a length validator for strings, a long range validator for integral types, and a double range validator for floating types.
You can also write your own custom validation method. See "Add a Validation Method" on page 294 (Chapter 8).

converter

The converter attribute references a converter component that builds the correct type of object. Once the conversion has
taken place, you can retrieve the object by casting it to the desired type.

maxlength

The maxlength attribute limits input to a specified number of characters. (This is not the same as length validation.)
Setting attribute maxlength causes a component to stop accepting input after the user has typed in the maximum
characters allowed. No error messages are produced.

required

Boolean required attribute specifies whether or not input is necessary for the component. If the user leaves an input
component's field empty and required is set, an error message is produced during the validation phase.

valueChangeListener

A value change event occurs when an input component's selection changes or its text changes. If you want to perform
processing based on input change, select the component in the design canvas, right-click, and select Edit Event Handler
> processValueChange from the context menu. Creator generates a processValueChange() event method for you in the
Java page bean. You can add your own processing code to this method if needed.

onchange

To set the onchange attribute, select a component in the design canvas, right-click, and choose Auto-submit on change.
This sets the onchange attribute to the JavaScript element this.form.submit(). When the selection or input value of a
component changes, the page request is submitted, allowing immediate processing (instead of waiting for a button click
or a link action).

Table Components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data table component and grid panel component build table elements. Here are the attributes that control their
appearance.

bgcolor

The bgcolor attribute sets the component's background color.

border

The border attribute specifies the line width of a table or a grid's border.

cellspacing

The cellspacing attribute specifies the amount of space around the cells.

cellpadding

The cellpadding attribute specifies the amount of padding inside the cells.

columns

The columns attribute specifies the number of columns in a table or grid.

Data-Aware Components

Creator offers a selection of data-aware components that you can bind to a database table selected through the Server
Navigator window. The data table component is particularly suited for displaying data, but you can also choose from
among the dropdown list, checkbox list, listbox, multi select listbox, multi select menu, or radio button list components.

Creator automatically supplies a converter for non-String data fields when you bind to a database table. However, if
there are any unexpected conversion errors, you will only see error messages if you have placed a message list
component on the page.

Creator Tip

We recommend placing a message list or inline message component on the page
when you're using the data-aware components, especially during development.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 Component Catalog
The following catalog of JSF components describes each component and gives you common usage scenarios. To show
you how a component can be useful in a Creator project, we also point you to relevant examples in other chapters of
this book. The components are listed alphabetically for easy lookup.

Button

The button component is an example of a "command component." Buttons perform an action when they are activated
(clicked). This can happen during server-side processing (a method that processes an action event) or with a
navigational action that determines page flow. The button component is one of the most-often-used components in web
design. By default, it is rendered as an HTML <input type=button> tag.

Buttons can be used for "simple" or dynamic navigation between web pages. With simple navigation, a button's action
method returns a String that matches a case label in the navigation rules generated for the application. We show you
how to create this type of navigation in "Add Page Navigation" on page 102. Dynamic navigation is useful when you
need to figure out the next page based on some sort of processing. In this case, the action method returns a String
based on the processing. See "Enable Page Navigation" on page 117 for an example of dynamic navigation.

In Creator, you connect the click of a button (an action event) to a method for processing the event by double-clicking
the button component in the Creator design canvas. This brings up the matching button_action() method (where button is
the component's id attribute) in the Java page bean so that you can add your processing code.

The button's value attribute is its label. You can bind this value to a database table if you want to update the label
dynamically. You can also change the appearance of a button by setting the button's image attribute to an image
filename.

Book Examples

"Add Button Components" on page 101 (Chapter 4). Uses a button to initiate navigation.

"Place Button and Output Text Components" on page 158 (Chapter 5). Uses a button to initiate a page request.

"Add a Button Component" on page 169 (Chapter 6). Uses a button to invoke an action event method.

"Add Button and Image File" on page 193 (Chapter 6). Uses an image with a button component.

"Add a Button and an Output Text Component" on page 293 (Chapter 8). Configures a button for
internationalization.

Checkbox

The checkbox component provides a boolean on/off setting. Checkboxes are particularly useful in conjunction with
component labels. By associating a component label with a checkbox (using the component label's for attribute), you
enable a user to check or uncheck the checkbox in two ways, either by selecting the label or by clicking directly on the
checkbox component.

All JSF standard components have value attributes that return Object types, so a Java cast is necessary to treat a
checkbox value as a boolean. To see how this works, let's look at the following code fragment. Here, we verify whether a
checkbox component called checkbox1 is "checked" or not. The checkbox component's getValue() method returns an
Object type, so you need to cast it to a Boolean type to call its booleanValue() method. This enables you to use the
checkbox expression inside an if statement.

if (((Boolean)checkbox1.getValue()).booleanValue())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (((Boolean)checkbox1.getValue()).booleanValue())

 feedback.setValue("Email confirmation will be sent to " +

 email.getValue().toString());

else

 feedback.setValue("No confirmation will be sent.");

Here, we use a feedback output text component to display an email confirmation message if checkbox1 is checked. If not,
a different message appears.

Example

Figure 3-2 shows part of a page with a checkbox component and its associated label. Selecting the label is the same as
checking/unchecking the checkbox component. To obtain this behavior, set the component label's for attribute in the
Properties window to the id attribute of the checkbox.

Figure 3-2. Using checkbox with a component label

Checkbox List

The checkbox list component groups a set of checkboxes. You can specify their items through the Properties window or
dynamically fill them from a database or JavaBeans component. When you use a checkbox list, the user may select any
number of the checkbox options (including none unless the required attribute is checked). A checkbox list component is
appropriate when you want to give the user a list of choices with the phrasing "please check all that apply."[1] The
selection items may be hardcoded with the Properties window or generated dynamically at run time. Creator
automatically supplies a converter for non-String data fields when you fill the list from a database source. This
component also accepts data binding. The value attribute of the checkbox list returns an array of Objects consisting of
the checked selections.

[1] If you'd like to limit the choice to only one from a list, use the radio button list component (see "Radio Button
List" on page 85).

Adding a checkbox list component to your web page creates three elements: the checkbox list component, an
embedded selection list, and a "default items" list used for initializing the selection choices. To specify the choices,
select checkboxList1DefaultItems from the Application Outline view. In the Properties window, click the editing box
opposite attribute items. Creator pops-up a dialog so that you can add, edit, or remove items. (This is the same dialog
that you use to specify items for the Listbox component. See Figure 3-9 on page 78.)

Figure 3-9. Supply text for selection items for a Listbox component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

Figure 3-3 shows a checkbox list component on a web page. A user can select as many of the choices as he or she
wants (including none or all of them).

Figure 3-3. Using checkbox list

Here is the Java code to display the choices selected from the checkbox list (whose id attribute is checkboxList1) in an
output text component. Note that we assign the selected values to String array sides. Casting is necessary since the
getSelectedValues() method returns an Object array. We use a for loop to concatenate the selected values with vertical-bar
delimiters. This code is placed in the button event handler method.

 public String button1_action() {

 // User event code here...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // User event code here...

 String choices = null;

 String[] sides =

 (String[])checkboxList1.getSelectedValues();

 for (int i = 0; i < sides.length; i++) {

 choices = choices + " ||" + sides[i] + "|| ";

 }

 outputText2.setValue(choices);

 return null;

}

Component Label

A component label associates with another component (using its for attribute) to provide label information and
additional selection behavior. For example, if you associate a component label with a text field, you can select the text
field by clicking either the label or the text field.

Component label is a composite component. This means it has a nested output text component to hold the label's text.
You typically set the text with Creator's Properties window. You can also specify data binding with a data source,
property binding with a JavaBeans property, or text from a resource bundle. A component label's outer component
contains the attributes that control the label's behavior and rendering.

Book Examples

"Create the Form's Input Components" on page 113 (Chapter 4). Uses component labels associated with text
fields.

"Add Components for Input" on page 289 (Chapter 8). Nests component labels in a grid panel. Sets the text for
its label from a localized .properties file.

Data Table

The data table component is complex. First of all, it's a composite component with nested columns, which in turn
contain nested display components (such as output text components, buttons, or text fields). The data table component
is typically filled dynamically with data from a data source or from JavaBeans properties. When you fill a data table
component with data from a data source, Creator lets you control the result, including the columns to display, the
number of headers and footers, and the component you want to display the text. You can also apply data converters to
any field in a data table component.

When you drop a data source on top of a data table component in the design canvas, Creator automatically binds the
table with the data and generates the number of columns from the database. Creator also generates headers from the
field names and uses the database table's metadata to apply the necessary converters.

Figure 3-4 shows Creator's design canvas with a data table component bound to the TRACKS table from our Music
Database in Chapter 7. This table has three columns (with headings from the database metadata). Creator shows the
column's data type as "123" for numeric data and "abc" for String data. If the data are not text, Creator applies a
converter for you as well.[2] In this table, an embedded output text component is used for the display.

[2] For example, if a primary key field is integer data, Creator applies an Integer converter to the component.
Creator performs this action for all the data-aware components.

Figure 3-4. Binding component data table with an external database table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

Creator provides an enhanced selection mechanism for composite components
(such as the data table). In the design canvas, select the data table component and
look in the Properties window to see which component is selected. Now click the
component again and you'll see a different component's properties. For the data
table, you traverse the components' nesting levels by successive clicking over the
component.

Creator automatically sizes the columns and dynamically generates the correct number of rows. When you bind a data
table component to a database table, Creator generates a default query for you. You can modify this query by selecting
the associated rowset from the nonvisual display. We show you how to work with database queries in Chapter 7 (see
"Modify the SQL Query" on page 220.)

Figure 3-5 shows Creator's dialog for manipulating a data table format. Here, the dialog shows the columns from the
TRACKS database table. You can choose which columns to display, the header and footer text, and the underlying
component that holds the data. To bring up this dialog, select the data table component in the Application Outline view,
right-click, and choose Table Layout.

Figure 3-5. Table Layout dialog: specifying columns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6 on page 70 shows Creator's dialog for specifying page controls for database queries that produce many
rows. Click the Paging tab in the Table Layout dialog. Now check Enable paging and then specify Page size. If you'd like
page navigation buttons, check the box Display page navigation buttons. Next to each button, specify the button's label.
At the bottom of the dialog, select where you want Creator to place the page control buttons using the dropdown list.
After making your selections, click Apply, then OK.

Figure 3-6. Table Layout dialog: specifying paging

Book Examples

"Add a Data Table" on page 217 (Chapter 7). Builds a master-detail relationship using data binding with a data
table component.

"Add a Second Data Table" on page 228 (Chapter 7). Shows how to build an SQL Inner Join query by using
multiple database tables and the JSF data table component.

Dropdown List

The dropdown list component is an extremely versatile JSF component, rendered as an HTML <select> element (a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dropdown list component is an extremely versatile JSF component, rendered as an HTML <select> element (a
dropdown list). A dropdown list allows a user to select one item from a set of items. The selection items can be
hardcoded with the Properties window or generated dynamically at run time. Creator automatically supplies a converter
for non-String data fields when you fill the list from a database source. This component also accepts data binding. The
value attribute of the selectOneMenu JSF tag maps to the property that holds the value of the currently selected item.

When a dropdown list component is used with data table binding, you typically bind the data table's primary key field
with the dropdown component's value field. You select an appropriate field from the data table for the dropdown
component's display field. Thus, the display field may contain a person's name, whereas the dropdown component's
getValue() method will return the primary key. This is useful for setting SQL query parameters from a listbox
component's selection value. (See "Add Query Criteria" on page 221.)

The dropdown component contains an embedded selectItems tag that represents the items in the list (this is a nonvisual
component appearing in the Application Outline view). The nonvisual component named dropdown1DefaultItems supplies
text for the selections. To make this happen, select the dropdown1DefaultItems element in the Application Outline view
and click the items attribute in the Properties window. A dialog pops up that lets you type in text for each selection (see
Figure 3-9 on page 78).

When the user makes a new selection from a dropdown component, the system generates a value change event.
Creator allows you to toggle the Auto-submit on change attribute for this event. When it's on, the system invokes the
this.form.submit() JavaScript function. This function updates the page and resubmits it when a user changes the
dropdown list selection.

Finally, the processValueChange() event handler is where you add your statements when a value change event is
detected. If you right-click the dropdown component and select Edit Event Handler > processValueChange, Creator
creates the stub for the event handler method in the Java page bean.

Book Examples

"Add a Dropdown List" on page 108 (Chapter 4). Uses a dropdown list with navigation.

"Add a Dropdown List Component" on page 213 (Chapter 7). Fills the selection list from a database data source.

"Add a Dropdown List Component" on page 276 (Chapter 8). Uses a dropdown list to specify locale.

Formatted Output

The formatted output component helps web developers display concatenated messages by using a specialized message
format pattern. The MessageFormat class (in package java.text) produces language-independent messages. (You can read
more about the MessageFormat class in the Java J2SE documentation at http://java.sun.com/j2se.) This type of
formatted output can be very useful when you are constructing messages for localized or internationalized web
applications. The MessageFormat class is set up to use either the default locale or a locale passed as an argument to its
constructor.

The value attribute of a formatted output component specifies the MessageFormat pattern, which is typically a keyed
string in a resource bundle. You provide param tags to specify the substitution parameters for the message.

Suppose, for example, your web application uses a counter to display the number of users currently logged on. You'd
like to display one of the following messages on your page.

There are no other users logged on.

There is one other user logged on.

There are 12 other users logged on.

As you can see, the words in these messages must be different when the number of users change. (And this is just for
English—the text in the resource bundles for other languages have their own patterns!)

Let's look at how you might do this with the MessageFormat pattern. The following statement lives in the .properties file
referenced in the <f:loadBundle> tag for this project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

referenced in the <f:loadBundle> tag for this project.

userCount = There {0,choice,0#are no other users|

 1#is one other user|1< are {0} other users} logged on

Here, userCount is the message key and everything else is the MessageFormat pattern. The number of users is
represented as a parameter (0). Note that three alternatives are specified for the number of users logged on: zero (0),
one (1), and many (1<). The expression {0} resolves to the current number of users.

JSF Tags

Here are the JSF tags for the formatted output component and an embedded parameter tag that fetches a number from
text field component numberText. We show the text field component's tags as well.

<h:outputFormat binding="#{Page1.formattedOutput1}"

 style="position: absolute; left: 168px; top: 360px"

 value="#{messages.userCount}">

 <f:param value="#{Page1.numberText.value}"/>

</h:outputFormat>

<h:inputText binding="#{Page1.numberText}"

 converter="#{Page1.integerConverter1}"

 style="position: absolute; left: 168px; top: 312px"

 value="0"/>

Book Examples

"Modify JSF Components for Localized Text" on page 269 (Chapter 8). This example doesn't use a formatted
output component, but it shows you how to specify and reference localized text with a .properties file.

Grid Panel

A grid panel is a general-purpose container that controls the layout of groups of other components. After placing a grid
panel in the design canvas and specifying the number of columns (the default is 1), you can drop other components
onto it. Creator fills the panel with your components in a grid (rows and columns) layout. This means the components
are placed in the order that you drop them on the grid panel and according to the number of columns you specify.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are placed in the order that you drop them on the grid panel and according to the number of columns you specify.

The grid panel component has several attributes that allow you to control a grid's appearance. These attributes include
bgcolor for background color, columns for the number of columns, cellspacing for cell width spacing, and border for the
width of the grid's border lines.

Creator Tip

When you create a page with nested components (such as the page in on page
-74), the Application Outline view is easier to use than the design canvas for placing
components on top of the desired target. This is because rendering in the design
view often obscures the specific target component that you're trying to drop onto.

Book Examples

"Add a Grid Panel Component" on page 100 (Chapter 4). Uses a grid panel to hold button components.

"Adding Components to the Page" on page 288 (Chapter 8). Uses a grid panel to format six components in a 3
by 2 grid.

Group Panel

A group panel is another general-purpose container that controls the layout of groups of other components. Whereas
the grid panel places components in a grid configuration (you specify the number of columns), the group panel uses a
flow layout. Depending on the width of the panel, group panels arrange components one after the other in a flow. When
there's not enough room in the first row, Creator continues with placement in a second row. As with the grid panel,
placement is determined by the order in which you drop the components on the panel.

Group panels are handy for grouping nested components. It's possible, for example, to place a group panel inside cells
of a grid panel. This technique lets you create interesting web pages by placing groups of components in each cell of a
grid panel. From the grid panel's perspective, these nested components are treated as a single cell.

Examples

Figure 3-7 shows nested components in a web page that uses an outer grid panel, three columns of nested group
panels, and individual components in each group. The first column is a nested grid panel that controls the spacing of the
component labels. In the second column, we adjust the width of another nested group panel so that each text field ends
up on its own line. The third column contains another group panel with a single message list component.

Figure 3-7. Component nesting with grid panel and group panel

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8 on page 75 shows the Application Outline view for this arrangement. The outer grid panel (gridPanel1)
contains three nested group panels, groupPanel1, groupPanel2, and groupPanel3. Inside groupPanel1, a nested grid panel
(gridPanel2) contains three component labels. The groupPanel2 component has three text fields and the groupPanel3
component has a message list.

Figure 3-8. Application Outline with component nesting

Hidden Field

The hidden field component allows web developers to include a hidden variable in a web page. The hidden field
component is generated as an HTML <input type=hidden> element. This means hidden fields are not displayed in the
browser. Hidden fields that you drop onto the design canvas in Creator show up in the nonvisual tray below the editor
pane. Hidden fields can also pass to the server special form-processing information that the user cannot see or change.
Note that hidden fields are "hidden" in the sense that they are not rendered by the browser. Anyone can still examine
an HTML document's source to locate a "hidden" field, however. Hidden fields, like secret fields, are extended from the
same component classes as text field and therefore have the same configurable attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same component classes as text field and therefore have the same configurable attributes.

Hyperlink

Hyperlink components link to other pages or a location on a page without generating an action event. A hyperlink
component is useful when a page's URL information is data driven and no processing is necessary. In general, the
hyperlink component takes an embedded output text component to display textual information to the user.

The hyperlink is rendered as an HTML <a> element and its text is underlined in a web page.

Book Examples

"Add a Hyperlink Component" on page 171 (Chapter 6). Uses a hyperlink component to provide a link to URLs
returned from a Google web services search.

Image

Image components display graphics from a file or a URL. Their value is the file or URL containing the image. The image
component is rendered as an HTML element.

When you select an Image component from the design palette, Creator pops up a Set URL Value dialog. To set the
filename, make sure the File tab is selected and browse to the desired file. Select OK. Creator displays the image you
select on the design canvas and copies the file to the project under the Resources node (you can view this in the
Project Navigator window). Alternatively, you can specify a URL and either link to it or maintain a copy in your project's
Resources folder. If you need to reference an image in Creator, use images/image_filename where
image_filename is the image file. Be sure to include the .gif or .jpg extension (these are the two types of image files
that browsers can typically display). Once the image component is on the design canvas, you can reposition it.

If you'd like an image to initiate an action, use a button and set its image attribute to the filename. (You won't be using
an image component for this.)

Book Examples

"Add the Google Logo" on page 167 (Chapter 6). Puts an image on the page.

"Add Button and Image File" on page 193 (Chapter 6). Uses an image with a button component.

Inline Message

The inline message component displays messages generated by other components. Typically, these messages are data
conversion errors or validation errors. When these types of errors occur, the validator or converter sends a message to
the JSF context on behalf of the component. Inline message components can retrieve and display these messages. You
attach an inline message component to a source component by using the inline message component's for attribute. (For
situations in which you'd like to use a single component to retrieve messages originating from more than one
component, use the Message List component instead. See "Message List" on page 79.) You can also use the inline
message style attribute to format the appearance of your error messages.

Book Examples

"Use Validators and Converters" on page 154 (Chapter 5). Uses an inline message component to report data
conversion errors for a text field component.

"Add an Inline Message Component" on page 183 (Chapter 6). Uses an inline message component to report
validation errors for a text field component.

"Add Components for Input" on page 289 (Chapter 8). Uses an inline message component to report validation
errors from a custom validator method.

Link Action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The link action component can initiate an action, just like a button component. Its action attribute corresponds to an
action method that returns a String. The return String can be used for page navigation, and the method can be used for
general processing. The link action component is a composite component consisting of a top-level link action part and
an embedded text component. The link action part controls the action attribute (like the button component), whereas
the embedded output text component holds the textual label of the hyperlink. The link action component is rendered as
an HTML <a href> element and its appearance is a hyperlink (underlined text). When you are working with the link
action component in the design canvas, an easy way to select it is through the Application Outline view.

To add event handling code associated with clicking the link action component, select the link action component in the
design canvas (the main, top-level node), right-click, and select Edit Event Handler > action. This brings up the
linkAction1_action() method (where linkAction1 is the component's id attribute). This is where you add your processing code
to the Java page bean file.

Book Examples

"Add Components to Page LoginBad" on page 121 (Chapter 4). Uses a link action component with navigation.

"Modify JSF Components for Localized Text" on page 269 (Chapter 8). Configures a link action component for
localization.

Listbox

The listbox component allows users to select one item from a set of items. The selections are displayed in a box (so
that they're all visible at once). If the list is too long to display, a vertical scrollbar provides access to the hidden
selections. A listbox is similar to a dropdown list.

The selection items can be hardcoded with the Properties window or generated dynamically at run time. The listbox
component also accepts data binding. The value attribute of the selectOneListbox JSF tag maps to the property that holds
the value of the currently selected item.

When a listbox component is used with data table binding, you typically bind the data table's primary key field with the
listbox component's value field. Creator automatically supplies a converter for non-String data fields when you fill the
list from a database source.

You select an appropriate field from the data table for the listbox component's display field. Thus, the display field may
contain a person's name, whereas the listbox component's getValue() method will return the primary key. This is useful
for setting SQL query parameters from a listbox component's selection value. (See "Add Query Criteria" on page 221.)

The listbox component contains an embedded selectItems tag that represents the items in the list (this is a nonvisual
component appearing in the Application Outline view). To supply text for the selections, use the nonvisual component
named listbox1DefaultItems. Select the component in the Application Outline view and click the items attribute in the
Properties window. A dialog pops up that lets you type in text for each selection (see Figure 3-9).

When the user makes a new selection, the system generates a value change event. Creator allows you to toggle the
listbox Auto-submit on change attribute. When it's selected, the system invokes the JavaScript function this.form.submit(),
which updates the page and resubmits it when the user changes the listbox selection.

To add the processValueChange() event handler method to the Java page bean file, right-click the listbox component and
select Edit Event Handler > processValueChange. Creator generates the processValueChange() event handler method for
you. You can then add event processing code to this method.

Book Examples

"Add a Listbox Component" on page 214 (Chapter 7). Fills the selection list from a database data source. Uses
listbox for a master-detail database read.

"Create the Form's Components" on page 251 (Chapter 7). Fills the selection list from a database data source.

Message List

Although similar to the inline message component, a message list component displays JSF messages originating from
more than a single component. If a message list component's for attribute is undefined, all messages from the page are
displayed. Conversely, when a message list component's for attribute identifies a component id, only that single
component's messages are displayed. You can use the message list style attribute to format the appearance of your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component's messages are displayed. You can use the message list style attribute to format the appearance of your
error messages. (See also "Inline Message" on page 76.)

Creator Tip

A message list is a good component to routinely place on your page. JSF writes
FacesException messages to the JSF context. These will only be displayed if a
message list or inline message component is on the page. (For example, a
conversion error may cause unexpected behavior. If a message list is on the page,
you'll see the conversion error.)

Book Examples

"Add a Message List Component" on page 116 (Chapter 4). Uses a message list component for all the page's
components.

Multi Line Text Area

The multi line text area component gathers textual information for multiple lines. This component is similar to a text
field, but you build it with rows and columns (see Figure 3-10). Its standard look displays several lines, and a vertical
scrollbar appears if the number of lines exceeds the number of rows. The getValue() method retrieves the text and
setValue() sets it. With a multi line text component, you can specify its size, provide text for a tooltip, and use data or
property binding.

Figure 3-10. Multi line text area component on a web page

Multiline text areas are common with web applications that solicit free-form text. This includes such things as
composing letters, listing comments, sending email, posting to guest books, filing bug reports, or reviewing user
products.

Like the listbox, multiline text areas work with value change events and the processValueChange() event handler. To
access this method, right-click the multi line text area component and select Edit Event Handler > processValueChange.
Creator generates the event handler method in the Java page bean for you. This is where you add your event
processing code.

Multi Select Listbox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The multi select listbox component is similar to a listbox except that you can select more than one item at the same
time. The selections are displayed in a box (so that they're all visible at once). If the list is too long to display all the
items, a vertical scrollbar provides access to the hidden selections.

The selection items can be hardcoded through the Properties window or generated dynamically at run time. Creator
automatically supplies a converter for non-String data fields when you fill the list from a database source. Multi select
listbox components also accept data binding. The value attribute of the selectManyListbox JSF tag maps to the property
that holds the currently selected items.

A multi select listbox component contains an embedded selectItems tag that represents the items in the list (this is a
nonvisual component appearing in the Application Outline view). To supply text for the selections, use the nonvisual
component named multiSelectListbox1DefaultItems. Select the component in the Application Outline view and click the items
attribute in the Properties window. A dialog pops up that lets you type in text for each selection (see Figure 3-9 on page
78).

When the user makes a new selection from a multi select listbox component, the system generates a value change
event. Creator allows you to toggle the Auto-submit on change attribute for this event. When it's on, the system invokes
the this.form.submit() JavaScript function. This function updates the page and resubmits it when a user changes the list
selection.

Finally, the processValueChange() event handler is where you add your processing statements when a value change event
is detected. If you right-click the multi select listbox component and select Edit Event Handler > processValueChange,
Creator creates the stub for the event handler method in the Java page bean.

Example

Figure 3-11 shows a page with a multi select listbox component and several items selected at once. Press <Ctrl-Click>
to select nonadjacent items.

Figure 3-11. Multi select listbox allows multiple and nonadjacent selections

[View full size image]

Multi Select Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The multi select menu component is similar to a dropdown list except that you can select more than one item at the
same time. The selections are displayed in a single line component and the user controls the selections with up and
down arrows (see Figure 3-12).

Figure 3-12. Multi select menu allows multiple and non-adjacent selections

The selection items can be hardcoded through the Properties window or dynamically generated at run time. Creator
automatically supplies a converter for non-String data fields when you fill the list from a database source. Multi select
menu components also accept data binding. The value attribute of the selectManyMenu JSF tag maps to the property that
holds the currently selected items.

A multi-select menu component contains an embedded selectItems tag that represents the items in the list (this is a
nonvisual component appearing in the Application Outline view). To supply text for the selections, use the nonvisual
component named multiSelectMenu1DefaultItems. Select the component in the Application Outline view and click the items
attribute in the Properties window. A dialog pops-up that lets you type text for each selection (see Figure 3-9 on page
78).

When the user makes a new selection from a multi select menu component, the system generates a value change
event. Creator allows you to toggle the Auto-submit on change attribute for this event. When it's on, the system invokes
the this.form.submit() JavaScript function. This function updates the pages and resubmits it when a user changes the list
selection.

Finally, the processValueChange() event handler is where you add your processing statements when a value change event
is detected. If you right-click the multi-select menu component and select Edit Event Handler > processValueChange,
Creator creates the stub for the event handler method in the Java page bean.

Example

When you apply data binding to a data-aware component, you can specify the field from the database RowSet
component that is displayed and the field that is returned with a getValue() call. Figure 3-13 shows the Fill List from
Database dialog. Here, the user chooses RECORDINGARTISTID for the Value field and RECORDINGARTISTNAME for the
Display field.

Figure 3-13. Fill List from Database dialog applied to multi-select menu component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Output Text

Of all the JSF components, the output text component is probably used the most often in web pages. It's useful for
putting up titles on a page or displaying any kind of textual information. Output text components display String data,
but you can bind them to other types. With data converters and formatters, output text components can display almost
any type of data. They may be embedded in data table components, link action or hyperlink components, and
component labels.

The value attribute of an output text component stores the text that is displayed. From a user's point of view, output
text components are read-only. The setValue() method sets its text and getValue() reads it. You can resize output text
components on the design page, but Creator expands them if you leave them unsized.

An embedded output text component is the default for a data table component. You can also bind an output text
component to a JavaBeans property.

Output text components are rendered as plain text, which may include HTML formatting tags. Thus, you can build entire
HTML pages by concatenating a string of HTML tags with text and assigning it to the component's value attribute. To
enable correct rendering of HTML tags, make sure you set the escape attribute to false in the Properties window.

Book Examples

"Place Button and Output Text Components" on page 158 (Chapter 5). Binds an output component to a
JavaBeans property and applies a number converter.

"Add Output Text Components" on page 171 (Chapter 6). Uses an output text component to store HTML text.

"Build HTML Output" on page 188 (Chapter 6). Uses an output text component with HTML formatting.

Page Fragment Box

The Page Fragment Box component is a JSP page directive that allows you to include another JSP file in your page. This
features makes it easy to build web pages that have consistent form. When you select this directive, Creator pops up a
dialog so that you can select a JSP file (page fragment) that already exists or you can create one. Figure 3-14 shows
the Select Page Fragment dialog.

Figure 3-14. Select Page Fragment dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, we select page fragment footer.jsp. Creator generates the JSP directive inside a <div> tag, which allows you to
specify style attributes for the page fragment. If the page fragment contains a <div> tag, you can also specify style
attributes inside the included material (giving a consistent look). Here is the code Creator generates for the include.

<div style="left: 96px; top: 480px; position: absolute">

 <jsp:directive.include file="footer.jsp"/>

</div>

Radio Button List

The radio button list component enables you to group radio buttons on a page. With a radio button list, the user can
make only one selection from a group of choices; changing the choice deselects the previous choice. This means only
one button within the group is "on" at a time.[3] The selection items can be hardcoded with the Properties window or
dynamically generated at run time. Creator automatically supplies a converter for non-String data fields when you fill
the list from a database source. This component also accepts data binding. The value attribute of the radio button list
returns the selected item.

[3] If you need multiple-item selections, use the checkbox list component (see "Checkbox List" on page 65.)

Adding a radio button list component to your web page creates three elements: the radio button list component, an
embedded selection list, and a "default items" list used for initializing the selection choices. To specify the choices,
select radioButtonList1DefaultItems from the Application Outline view. In the Properties window, click the editing box
opposite attribute items. Creator pops up a dialog so that you can add, edit, or remove items. (This is the same dialog
box used to specify items for the Listbox component. See Figure 3-9 on page 78.)

Example

Figure 3-15 shows the design canvas of an application that obtains breakfast selections from the user. The application
uses radio button list components for the beverage and entree choices, respectively. A checkbox list handles the
optional side dishes (from which the user may select more than one item). With radio buttons, the user is limited to a
single choice from the beverage and entree selections.

Figure 3-15. Using radio button list components on the design canvas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-16 shows this application running in a browser. Note that the two radio button list components have a single
item selected, whereas the checkbox list allows multiple selections.

Figure 3-16. Using radio button list components in an application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is the code in the button's event handler that displays the user's selections in the output text component. The
code that accesses the radio button list components is bold.

public String button1_action() {

 // User event code here...

 String choices = null;

 choices = "You chose . . . " + beverage.getValue()

 + " and " + entree.getValue()

 + " and your side dishes are:";

 String[] sides =

 (String[])checkboxList1.getSelectedValues();

 for (int i = 0; i < sides.length; i++) {

 choices = choices + " ||" + sides[i] + "|| ";

 }

 outputText2.setValue(choices);

 return null;

}

Secret Field

The secret field component allows users to input a single line of text. Echoed text is replaced by a single character, such
as a black dot or an asterisk. When a secret field is rendered, its previous value is always cleared. Secret field
components are useful for handling sensitive data input, like passwords and PIN numbers.

In all other respects, a secret field component behaves just like a text field. The input string is stored in the
component's value attribute. Whenever you change the text, a value change event is generated. The secret field's
getValue() method reads the text and setValue() sets it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getValue() method reads the text and setValue() sets it.

You can also attach validators to secret field components. Length validators, required validators, and range validators
(to convert input text strings to numerical values) can be used to check input text. Note that value change events occur
only if no validation errors are detected. When data conversion and formatting is needed, you can attach data
converters to secret field components.

When a secret field component generates a value change event, the JSF implementation invokes the value change
event handler for that component. The secret field component is rendered as an HTML <input type=password> element.

With secret fields, a component label typically appears with the label text on a page. It's a good idea to use an inline
message component with secret fields to report validation or conversion errors. To create a tooltip, set the secret field's
title attribute.

Book Examples

"Create the Form's Input Components" on page 113 (Chapter 4). Uses a secret field to gather input for a
password field.

"Bind Input Components" on page 140 (Chapter 5). Shows property binding with the secret field component.

"Modify JSF Components for Localized Text" on page 269 (Chapter 8). Shows how to localize an application that
contains a secret field.

Text Field

The text field component enables users to input a single line of text. The input string is stored in the component's value
attribute, and a value change event is generated when you change the text. The component's getValue() method reads
the text and setValue() sets it. With text fields, you can attach a length validator, a required validator, or range
validators (to convert text strings to numerical values). Value change events occur only if no validation errors are
detected.

You can also attach a data converter to a text field. To do this, select the convertor you want from the Properties
window under Data. When you apply a data converter, the type of the value attribute changes from the default String to
the converted type.

A text field component can be embedded in a data table component. You can bind text field components to data, either
by themselves or by embedding them in data table components. You can also bind a text field to a property in a
JavaBeans component (see Chapter 5, "Property Binding with Components" on page 132). Figure 3-17 shows Creator's
Property Bindings dialog box for binding a text field component to a JavaBeans property. Here, we bind text field
blueInput with the blueColor property in the JavaBeans component ColorBean.

Figure 3-17. Property Bindings dialog with text field component

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the text field component generates a value change event, the JSF implementation invokes the value change
event handler for that component. The text field component is rendered as an HTML <input type=text> element.

With text fields, a component label typically appears with the label text on a page. Inline message components are
handy for reporting validation or conversion errors with text fields. To create a tooltip, set the text field's title attribute.

Example Page

Figure 3-18 shows Creator's design canvas for a page with text fields, component labels, and inline message
components. Each text field has an associated component label, allowing users to select either the label or the text field
component (this makes the text field active). Inline message components appear next to the text fields requiring input.
This makes it easy for the user to see errors made during input.

Figure 3-18. Using text field components with other components

[View full size image]

Note that in this example, a dropdown list handles State input codes. Presumably, each text field has a tooltip to help
users input data correctly. The zip code text field component should only accept zip codes with a 5-character maximum
length. Set the maxlength attribute of the text field component to limit input to 5 characters.

Book Examples

"Bind Input Components" on page 140 (Chapter 5). Shows binding properties with a text field.

"Create the Form's Input Components" on page 153 (Chapter 5). Shows text fields with converters and
validators.

"Add a Text Field Component" on page 168 (Chapter 6). Shows validators.

"Create the Form's Input Components" on page 242 (Chapter 7). Uses text fields to gather input for database
row insert operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

row insert operations.

"Add Components for Input" on page 289 (Chapter 8). Uses text fields with a custom validator method.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4 JSF Validators
JSF provides a set of standard objects that validate user input gathered through JSF components. The JSF architecture
builds validation into the page request life cycle process, making validation an easy task for the developer to specify.

Validation Model

In Creator, you attach a validator object to a JSF component by selecting a validator from the design palette and
dropping it onto the component in the design canvas. Validators also have properties that you can manipulate.

The JSF life cycle (see Figure 6-5 on page 185) includes a Process Validation phase. For components that have
registered validators, JSF will validate the component's data. When validation errors occur, the affected component is
marked "invalid" and an error message is sent to the JSF context.

Validation errors affect the life cycle process. Validation errors cause the page to proceed directly to the Render
Response phase, skipping the Update Model Values phase and Invoke Application phase. This means events such as
button clicks are not processed. When a page has multiple components with registered validators, all input is validated.
This is helpful to the user since feedback (error messages) for the entire page can be displayed.

Table 3.1 lists the choices you have for validators in JSF. There are three standard validators: a Double Range Validator
for floating types, a Length Validator for strings, and a Long Range Validator for integral values. You can also write your
own custom validation method. Note that each standard validator has attributes that let you specify minimum and
maximum values. The Length validator works with String data, and the Double Range and Long Range validators are
typically used with converters to convert a component's data to the correct type.

Table 3.1. Validation choices
Name Description Example

Double Range Validator Specify minimum and maximum
values.

"Use Validators and Converters" on
page 154 (Chapter 5). Uses a
Double Range Validator with a text
field to check the range of a double.

Length Validator Specify minimum and maximum
values. Does not detect empty
input fields (you use required
attribute of component).

"Add a Validator" on page 181
(Chapter 6). Uses a Length
Validator with a text field.

Long Range Validator Specify minimum and maximum
values.

"Place Interest Rate and Term
Components" on page 156 (Chapter
5). Uses a Long Range Validator
with a text field to check the range
of an Integer value.

Custom Validate Method validate-HexString() method checks
for a 2-digit hex string

"Add a Validation Method" on page
294 (Chapter 8). Shows how to
implement your own validation
method.

Table 3.1 also points you to examples in the book that show you how to use the validators. This includes an example of
a custom Validate Method called validateHexString() that checks for a 2-digit hexadecimal string.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5 JSF Data Converters
JSF strives to maintain a separation of presentation data (the data that users read and possibly modify) from internal
data or model data. To accomplish this, you should use JavaBeans components, JDBC rowsets, and other application-
specific structures as much as possible in your models. JSF also makes sure that any data conversions between the two
views are consistent and well-defined.

Conversion Model

A JSF component that is type UIOutput or is subclassed from UIOutput can take a data converter to convert its data to a
specific type. Typically (but not always), the component may be bound to a JavaBeans property of that type. For
example, in project Payment1 (see "LoanBean Component" on page 144), we bind a text field component (loanAmount)
to the amount property of LoanBean. Property amount is a Double, so we apply a Double converter to the text field
component.

Like the validation process, JSF sets aside specific times to perform conversions. Conversion errors may occur after the
Process Validation phase or the Update Model phase. When errors occur, the affected component is marked "invalid"
and conversion errors are sent to the JSF context. JSF proceeds to the Render Response phase in this case.

Creator will apply converters automatically to data-aware components when the source data type is not a String.

Table 3.2 lists the JSF standard converters available on Creator's palette. Most of the JSF converters are straightforward
and provide a conversion that's obvious from their name. Note that all converters use wrapper classes (subclassed from
Object) instead of the primitive types. This allows the value attribute (type Object) to accept all of these types. Two
converters require a bit more explanation, however: the Date Time Converter and the Number Converter, so let's do
that now.

Table 3.2. JSF converters
Name Description/Example

Boolean Converter Convert String data to Boolean.

Byte Converter Convert String data to Byte.

Character Converter Convert String data to Character.

Date Time Converter (See below.)

Double Converter "Use Validators and Converters" on page 154 (Chapter 5). Shows a double
converter with an interest rate value and a loan amount value.

Float Converter Convert String data to Float.

Integer Converter "Place Interest Rate and Term Components" on page 156 (Chapter 5). Shows an
integer converter with a loan term value.

Long Converter Convert String data to Long.

Number Converter "Place Button and Output Text Components" on page 158 (Chapter 5). Shows a
number converter with a currency value.

Short Converter Convert String data to Short.

Date Time Converter

The Date Time Converter converts a component's data to a java.util.Date. When you apply a Date Time Converter to a
text field, the textual input is converted. The field on the page is updated with a standard format during the Render
Response phase. You can always configure a Date Time Converter's format if you need to. If you don't specify a locale,
the Date Time Converter uses the default locale (see "A Word About Locales" on page 265).

The Date Time Converter uses the format rules and patterns of the DateFormat class. See the tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/dateFormat.html for more information on formatting; see also the
Javadoc for the DateFormat class at http://java.sun.com/j2se/1.4.2/docs/api/java/text/DateFormat.html.

The Date Time Converter uses a default pattern if you don't configure it differently. The data are assumed to be a date
(as opposed to time) using the pattern MMM d, yyyy. Although full names for the month are accepted, the Date Time
Converter shortens it to three letters and rejects numerical values. On input, you must supply a comma.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converter shortens it to three letters and rejects numerical values. On input, you must supply a comma.

Of course, your choices for other formats are flexible. Figure 3-19 shows the Date Time Converter with the dateStyle
attribute set to default for a text field component and to medium, long, and full. The second column shows formatting with
two different patterns (appearing above the output text components). Each component has its own registered Date
Time Converter to manipulate the converter's attributes separately. All the output components are bound to a single
text field.

Figure 3-19. Using the Date Time Converter

Number Converter

A Number Converter enables you to manipulate numerical data in all sorts of interesting ways. Since numbers as well as
date information are sensitive to language and locale, a Number Converter can use locale.

The Number Converter uses a pattern with separate attributes for manipulating a format (such as currency symbol,
integer digits, fraction digits, and locale). To learn how a Number Converter can convert a double to a dollar value
(including a dollar sign with a comma to separate thousands and hundreds and two digits to the right of the decimal
point), see "Place Button and Output Text Components" on page 158.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.6 Key Point Summary

Creator's design palette contains JSF standard components, validators, and converters.

JSF components are rendered in HTML.

The JSF components share many attributes in common, such as value, title, style, id, and binding.

JSF components that have a UIOutput type (output text components) or subclassed from UIOutput (such as text
fields) can accept converters to convert text information.

Input components share common attributes, such as validator, maxlength, required, valueChangeListener, and
onchange.

A value change event occurs when an input component's selection changes or its text changes.

Creator generates a processValueChange() method for you when you write event processing code for a value
change event.

The onchange attribute allows you to specify a JavaScript element that is invoked with a value change event.

Table components (data table and grid panel) have attributes to control appearance, such as bgcolor, border,
cellspacing, cellpadding, and columns.

JSF provides component binding with data sources, JavaBeans properties, and other JSF components. With
component binding, converters, and validators, you can build web applications without writing any event
processing code.

A data table component is data aware and offers sophisticated layout choices. By specifying headers, footers,
and embedded component types for its columns, the page designer can build a custom page for displaying data.

You can enable paging controls with data table components. This is useful for database queries that produce
more than a single page of data.

JSF has data converters that encourage the separation of model and presentation data. The standard converters
seamlessly convert presentation data to and from model data.

The JSF validators validate user input before events are processed. Validation and conversion errors short-
circuit the normal life cycle request mechanism and re-render the page with error messages.

Use an inline message or message list component to display validation or conversion errors on a web page.

You can write your own custom validation method and hook it into the JSF validation cycle.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Page Navigation
Topics in This Chapter

JSF Navigation Model

Page Navigation Editor

Navigation Rules

Command Components and Navigation

Action Event Handlers

Noncommand Components

Simple Navigation

Dynamic Navigation

Most web applications consist of multiple pages. A significant design task in building web applications is deciding page
flow: that is, how you get from one page to another. Many commercial web sites consist of a "main" (or home) web
page with links to other pages. These are frequently static links that simply bring up the requested page without any
processing or decision making. Other web sites require more flexibility in their page navigation. Even if the next page is
known, the web application may perform bookkeeping tasks or other processing before launching the next page. Finally,
clicking a button may involve dynamic processing whose outcome determines the next page. For example, a login
sequence results in either a successful login (and you go to the Welcome page) or a failed login (where you are rebuffed
or are invited to try again).

Fortunately, Creator excels at page navigation. It uses the JavaServer Faces navigation model in concert with an easy-
to-use Page Navigation editor that lets you draw page flow action arrows to define navigation rules. Creator generates
the underlying configuration files for you. You retain the needed flexibility through coding the action methods that
return outcome Strings to the navigation handler. Let's see how this works.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Navigation Model
JSF navigation is a rule-based system. Each application contains a navigation configuration file, navigation.xml, that
has rules for choosing the next page to display after a user clicks a button or a link action component. Like the other
configuration files, navigation.xml consists of XML elements. Here is a sample rule for changing pages from Page1 to
MusicBrowser.

<navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>musicBrowse</from-outcome>

 <to-view-id>/MusicBrowser.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

Element from-view-id identifies the origination page and to-view-id identifies the target page. Element from-outcome
specifies the String value that is returned from an action method associated with a command component. Clicking that
component generates the String which is passed to the navigation handler. With these rules, the navigational handler
can then identify the target page.

In Creator, you specify the navigation rules by connecting your web pages with labeled page flow arrows in the Page
Navigation editor. For each rule you construct, Creator generates an origin page, a destination page, and the outcome
label that identifies it. Creator assumes that your origin page contains either a link action component or a button
component that generates an action event when the user clicks it. The action event implements the navigation. That is,
it returns the String that matches the label associated with that navigation rule.

Figure 4-1 is a UML activity diagram summarizing the steps in the navigation system.

Figure 4-1. JSF Navigation Model: Page Navigation UML activity diagram

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator implements dynamic navigation. Often you need to process information before you can determine which page
to invoke (for example, a login scenario can succeed or fail). To do this, the component's action property specifies an
action method. The action method returns a navigation label that depends on the results of its processing.

By the way, the navigation model understands a default rule. If the action method returns null (its default in the initial
definition Creator generates for you), the navigation model renders the same page. You'll see this behavior if you add a
button to your page but do not define an action method. Or, if you don't change the default return value of null. When
you click the button, it appears as if nothing happens. However, JSF invokes the page request life cycle process and the
current page is redisplayed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Simple Navigation
The first example we work through illustrates simple navigation. That is, each button component (or you could just as
easily use a link action component) takes the user to one page. No processing is involved after the user clicks the
button. The action event handler invokes an action method on behalf of the button; that method always returns the
same String.

Create a New Project

In the Welcome Page, click Create New Project. Specify the project name as Navigate1. The selected project
type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click anywhere in the design canvas.

2. Select attribute Title in the Properties window and type the text Navigate 1. Finish by pressing <Enter>.
(Alternatively, if you click in the small square opposite the property name, a pop-up dialog lets you edit the
title. Click OK to complete editing.)

Add an Output Text Component

You now use an output text component to place a heading title on the page.

1. From the JSF Standard Components palette, select Output Text. Drag it over to the design canvas and place it
near the top of the page. Don't resize it.

2. Make sure that it's selected and type in Welcome to the Music Store, ending with <Enter>. This changes the
value attribute. The component should now display these words.

3. In the Properties window under Appearance, edit the style attribute. Add the following.

; font-family: Helvetica; font-size: 18pt

Press <Enter>. The output text should now appear with its new style characteristics. (Again, it's probably
easier to click the small square opposite the property name. A pop-up dialog lets you edit the style attribute.
Click OK to complete editing.)

Add a Grid Panel Component

A grid panel component is a container that holds nested components, organized as a grid. You'll use it to hold two
button components in a single row. (Adding a grid panel component for this project is optional.)

1. Select Grid Panel from the JSF Standard Components palette and drag it to the design canvas. Place it
underneath the output text component. Creator builds a grid panel component with id attribute gridPanel1.

2. Make sure the grid panel is selected. In the Properties window under General, specify lightyellow for attribute
bgcolor.

3. Still in the Properties window, change cellpadding to 3, cellspacing to 3, border to 3, and columns to 2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

Grid panel is a container component that uses a grid layout. It places the
components in the container in the order that you drop them on the panel. A grid
panel dynamically creates rows to hold the components according to how many
columns you've specified. (If you don't specify the number of columns, it defaults to
1.) After you add the button components, you'll see them nested beneath the grid
panel node in the Application Outline view.

Add Button Components

You now add two button components to the grid panel.

1. From the JSF Standard Components palette, select Button and drag the component to the design canvas. Drop
it directly on top of the grid panel you added previously. Change its id attribute to browseMusic and its value
attribute to Browse Music Titles. Note that the grid panel automatically resizes itself as you add components
to it.

Creator Tip

Changing the id attribute is important here because you want more meaningful
names than those generated by Creator. When you have multiple components
that generate action events, it is much easier to work with meaningful method
and property names in the Java page bean.

2. Select a second Button and drop it onto the grid panel. Creator will place the second button to the right of the
first.

3. Change the button's id attribute to loginButton and its value attribute to Members Login.

Besides buttons, you can also use link action components. These components have action methods and can be used
with the JSF navigation model, too.

Creator Tip

You cannot, however, use the hyperlink component with the navigation model. The
hyperlink component does not generate an action event, which is required in order
to return a String label to the navigation handler. Use the hyperlink to hold a literal
URL address, or hold a link that is data driven. For an example of using the
hyperlink component, see the Google Web Services example ("Add a Hyperlink
Component" on page 171).

Deploy and Test Run

Your web application is only partially done, but this is a good point at which to deploy and run it. Note that the page is
redisplayed when you click the buttons; that's because there are no navigation rules yet. Figure 4-2 shows what the
initial page looks like.

Figure 4-2. Simple navigation web application

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Add Page Navigation

Creator makes it particularly easy to add page navigation to your web application. In this section, we show you how to
do this with the Page Navigation editor. Let's enhance your application to have a total of three web pages. The first
page, Page1, contains all of the components you just added, which include two buttons that take the user to separate
pages in the application. Here are the steps to create the new pages and add page flow definitions with Creator's Page
Navigation editor.

1. From the design canvas view, place the mouse in the canvas (anywhere in the background), right-click, and
select Page Navigation. This brings up the Page Navigation editor. You see the initial web page, Page1.jsp, in
the Page Navigation editor pane.

2. Place the mouse anywhere in the editor pane (in the background area) and right-click. From the context menu
select New Page. Provide the name MusicBrowser instead of the default (Page2). This creates a new page
called MusicBrowser.jsp.

3. Repeat this process to create another page called LoginStart.

The Page Navigation editor now displays the three pages of your application in the editor pane: Page1.jsp,
MusicBrowser.jsp, and LoginStart.jsp. (You can see the pages in the Project Navigator window as well, under the
Web Pages node.)

There is also a tab at the top of the editor pane labeled navigation.xml. This is the XML-based configuration file that
contains your application's navigation rules. As you define page flow cases, Creator generates the navigation rules for
you.

New Rules!

In this next step, you'll connect the pages and provide navigation case labels that the navigation handler uses to control
page flow.

1. Click the mouse inside page Page1.jsp. The page changes color, enlarges, and displays its buttons.

2. Position the mouse inside page Page1.jsp, click, and drag the arrow to page MusicBrowser.jsp. When you
unclick, you'll see an arrow with a label. Change the label from case1 to musicBrowse (finish by pressing
<Enter>).

3. For the second case, start once again inside Page1.jsp, click, and drag the arrow to page LoginStart.jsp. This
time change the label name to userLogin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-3 shows the Page Navigation editor pane with the web pages and navigation labels you just created. Note that
the page flow arrows originate from Page1.jsp and point to the target pages.

Figure 4-3. Navigating from page Page1.jsp

[View full size image]

Creator Tip

As you create your navigation rules, Creator displays the attribute values in the
Properties window for that rule (see -). You can always use the Properties window
to change a selected page flow arrow or rename a label.

Figure 4-4. Properties window for a navigation rule

To view the navigation configuration file that Creator generates, select the Source tab at the bottom of the Page
Navigation editor pane. Here is the file for this application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<faces-config>

 <navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>musicBrowse</from-outcome>

 <to-view-id>/MusicBrowser.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>userLogin</from-outcome>

 <to-view-id>/LoginStart.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

This XML code defines one navigation rule with two separate navigation cases. Creator can collapse both cases into a
single rule since they share the same origination page (Page1.jsp, the value of attribute from-view-id). The from-outcome
attribute corresponds to the labels you supplied to the Page Navigation editor. These are the labels that you'll return
from the buttons' action methods.

Add Event Handler Code

Now let's add event handler code for the two buttons on page Page1.jsp. Select the tab labeled Page1.jsp at the top
of the Page Navigation editor pane. Alternatively, double-click inside the Page1.jsp page in the Page Navigation editor
pane. You are now working in the design canvas for Page1.jsp.

1. From the design view, select the Browse Music Titles button, right-click, and choose Edit Event Handler >
action. This takes you to the Java page bean, Page1.java. Creator generates the event handler method for you
and places the cursor inside the method.

2. Change the null return value to "musicBrowse" (make sure you include the quotation marks).

3. Repeat the same steps for the second button, using String "userLogin".

The action methods for both buttons follow. Note that the return values (in bold) match the case labels you used in the
Page Navigation editor.

public java.lang.String browseMusic_action() {

 // User event code here...

 return "musicBrowse";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return "musicBrowse";

}

public java.lang.String loginButton_action() {

 // User event code here...

 return "userLogin";

}

Action methods have a consistent format: they are always public methods that return a String and take no parameters.
A null return value is ignored by the navigation handler (and therefore redisplays the same page).

When you define action method components, Creator generates the necessary JSP source for the button components.
Here are the tags. Note that the action property references the event method in the page's Java page bean.

<h:commandButton action="#{Page1.browseMusic_action}"

 binding="#{Page1.browseMusic}"

 value="Browse Music Titles"/>

<h:commandButton action="#{Page1.loginButton_action}"

 binding="#{Page1.loginButton}"

 value="Members Login"/>

Add Output Text Components

Before testing the application, you'll now add output text components to both target pages (MusicBrowser.jsp and
LoginStart.jsp). You can access the design canvas of each page by double-clicking the page in the Page Navigation
editor, by selecting the page name in the tab at the top of the editor pane (if it has been opened previously), or by
double-clicking the page name in the Project Navigator window.

1. For each page, select it and bring up its design canvas editor.

2. From the JSF Standard Components palette, select Output Text component and drag it to the design canvas.

3. Modify its value attribute so that it displays a title that indicates which page you navigated to.

4. Optionally, modify the style attributes to manipulate the text font.

Deploy and Run

Go ahead and deploy the application. When you click a button, the system displays the appropriate page. You can use
the browser's back arrow to return to the main page. If you'd prefer to have a button or link action component to
navigate back, you can easily add these components to each of the target pages. Of course, you'll need to define the
additional navigational rules in the Page Navigation editor. Figure 4-2 on page 102 shows the initial page in this web
application.

Creator Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

When you navigate to one of the target pages, the page loads slowly the first time.
This is because the application server must generate Java source from the JSP,
compile, and execute the code. It will be faster after the first time because the code
has already been generated and compiled.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Noncommand Components
The JSF navigation model is set up to work with command components (those components that generate action
events). Action event handlers return a String that the navigation handler uses to determine which page to launch next.

However, you can use other components to initiate navigation, although it's not quite as seamless. Basically, you need
to provide a String directly to the navigation handler that matches the navigation rules you defined. Let's modify the
Navigate1 project to use a dropdown list component instead of buttons to hold the navigation choices.

Copy the Project

To avoid starting from scratch, copy the Navigate1 project to a new project called Navigate2. This step is optional. If
you don't want to copy the project, simply skip this section and continue making modifications to the Navigate1
project.

1. Bring up project Navigate1 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project As and provide the new name Navigate2. You'll make changes to the
Navigate2 project.

4. Click anywhere in the design canvas of the Navigate2 project. In the Properties window, change the page's
Title attribute to Navigate 2.

Delete the Buttons

1. From the design canvas of the first page Page1.jsp, select and delete the two button components. (Make sure
you select the buttons and not the grid panel. Use the Application Outline view to select and delete them if you
want.)

2. Right-click in the background of the design canvas and select View Page1 Java Class to bring up the Java page
bean.

3. In the Java source, remove the action methods associated with the button components you just deleted. These
are browseMusic_action() and loginButton_action().

Add a Dropdown List

1. Return to the design canvas by selecting the tab labeled Page1.jsp at the top of the editor pane. From the JSF
Standard Components, select Dropdown List and drop it on top of the grid panel component. (If you elected not
to use the grid panel component, just drop Dropdown List onto the page.)

2. In the Application Outline view, select the dropdown1DefaultItems element (at the very bottom of the view).

3. In its Properties window, click the small editing square opposite attribute items. An editing dialog box appears.
Replace the default items with the three choices: type in Home and click Add. Then change the input field to
Browse Music Titles and click Add again. Finally, add the third choice, Members Login, followed by Add. Now
select each of the default strings and click Remove. When you're done, click OK.

4. In the design canvas, select the dropdown list component. Right-click and check Auto-submit on change (it's
currently unchecked). This tells JSF to initiate the page request cycle when the user changes the dropdown list
component's selection.

Value Change Event vs. Action Event

Before we go any further, an explanation is warranted for adding three navigation choices to the dropdown menu
component. Why is this necessary? Remember, the event type is called value change. If we present the user with a
dropdown menu item that contains navigation choices and one of the choices is preselected, this preselection prohibits
the user from selecting it with an accompanying value change event. Simply, there is no change in value since it is
already selected. Therefore, we create an initial (preselected) choice, Home, representing the current page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When users return to this page by clicking the browser Back button, Home is no longer preselected. Now selecting
Home does cause a value change event and the string "Home" is passed to the navigation handler. Since Home
doesn't match any of the navigation rules, no page change occurs.

A page designer has another choice. You can always place a button next to the dropdown menu. After the user makes a
selection (whether it be a value change or not), he or she clicks the button and the button's action event handler can
return the dropdown menu selection's String value.

Creator Tip

When you key off a value change event, the event handler will only be called if the
selection component has actually changed. The event handler will not be called
when you select the displayed choice.

Match the Navigation Labels

In the previous example, you used navigation labels that are not the same as the text you're using for the dropdown list
component. The dropdown list component's getValue() method returns the text you just put into the
dropdown1DefaultItems element. Therefore, you'll need to modify the navigation labels so they match the text you used in
the dropdown list.

1. Bring up the Page Navigation editor: right-click in the design canvas and select Page Navigation from the
context menu.

2. Select the page flow arrow that points to the MusicBrowser.jsp page. In the Properties window, change the
Outcome attribute to Browse Music Titles.

3. Now select the second page flow arrow and change its Outcome attribute to Members Login. The labels are
case sensitive. It's all right to have embedded spaces in the Strings.

4. Click the Source tab at the bottom of the editor pane. You'll see that Creator updated the navigation
configuration file, as follows.

<navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>Browse Music Titles</from-outcome>

 <to-view-id>/MusicBrowser.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>Members Login</from-outcome>

 <to-view-id>/LoginStart.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

Add Event Handler Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the user changes the selection in a dropdown list component, a value change event is generated. A value change
event is not hooked into the navigation system the way that an action event is. But in the event handler, we can grab
the new value and pass it directly to the navigation handler. You'll be adding code to do this.

Creator Tip

The code you are about to add will cause the Java source editor to complain
because it doesn't have all of the necessary import statements. After you add the
code, we'll show you a shortcut for adding the imports.

1. Return to the design canvas for Page1.jsp.

2. Select the dropdown list. Right-click and select Edit Event Handler > processValueChange. Creator brings up the
Java page bean and puts the cursor in the newly generated event handling method for the dropdown list
component, dropdown1_processValueChange().

3. Add the code from the book's download examples (copy and paste file
FieldGuide/Examples/Navigation/snippets/Navigate2_valueChange.txt). This code "gets at" the
context and application objects associated with this web application to access the navigation handler. The last
statement sends the navigation String (the value in the dropdown list component) to the navigation handler.
The added code is bold.

public void dropdown1_valueChangeListener(

javax.faces.event.ValueChangeEvent vce) {

 // User event code here...

 FacesContext context = FacesContext.getCurrentInstance();

 Application application = context.getApplication();

 NavigationHandler navigator =

 application.getNavigationHandler();

 navigator.handleNavigation(context,null,

 (String)dropdown1.getValue());

}

Your code will be underlined in red because the Java file is lacking import statements. Here's how to add the needed
import statements.

1. First, click anywhere inside the word FacesContext and type <Alt-Shift-I>. Creator pops up the Import Class
dialog and displays package name javax.faces.context. Choose radio button Import Package and Click OK.

2. Repeat this by clicking inside the word Application in your code. Again, press <Alt-Shift-I>. Choose radio button
Import Package and click OK. Figure 4-5 shows the Import Class dialog box at this point.

Figure 4-5. Import Class dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you're finished specifying the code imports, Creator adds the following packages to your file.

import javax.faces.application.*;

import javax.faces.context.*;

This procedure will eliminate the red underlines in your code and any "unresolved symbol" errors in the event handler
code.

Deploy and Run

Deploy and run the application. Figure 4-6 shows the dropdown list component with the page navigation choices. You
can see that command components (button and link action) are easier to use for navigation, but with a bit of extra
coding you can make other components work too.

Figure 4-6. Using a dropdown list component for navigation

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 Dynamic Navigation
You've seen an example of simple navigation, in which each component's action event returns a label that corresponds
to a navigation rule. Now you're going to work through an example that shows dynamic navigation. Here, an action
method can return a different label depending on some processing it performs. You'll see that dynamic navigation is
also straightforward with Creator.

This example sets up a login sequence whereby the user is required to give a username and password to gain access to
the next page. We've simplified the processing criteria to concentrate on the navigation issues, but in the next chapter
we expand this example for an improved architectural configuration (using JavaBeans component architecture).

Create a New Project

Creator Tip

In this section, you will use the same name (Login1) as the project we showed you
in Chapter 2 ("Creator Basics"). However, this time you'll build the project from
scratch. If project Login1 is already included in your default Creator Projects
directory, you may want to delete it or move it before continuing.

In the Welcome Page, select button Create New Project. Specify project name as Login1. The selected project
type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the text Login 1. Finish by pressing <Enter>.

Add an Output Text Component

You'll use an output text component to place a heading title on the page.

1. From the JSF Standard Components palette, select Output Text. Drag it over to the design canvas and place it
near the top of the page.

2. Make sure that it's selected. Start typing Members Login and press <Enter>. The value attribute in the
Properties window will show these words and the output text component will display them.

3. In the Properties window under Appearance, edit the style attribute. Click the small square opposite the style
attribute. A pop-up dialog allows you to edit the attribute. After the current settings, add the following.

; font-family: Helvetica; font-size: 18pt

Click OK. The output text should now appear with its new style characteristics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create the Form's Input Components

The application uses the next set of components to gather input for the member's username and password. For the
username, you'll add a component label to display a label and a text field to gather the data. Figure 4-7 shows the
design canvas with all the components added to the page.

1. From the JSF Standard Components palette, select Component Label and add it to the design canvas. This is a
composite component with a nested output text to display the label's text.

2. In the Application Outline view, select the embedded output text component (componentLabel1Text) and change
its value attribute to Username. Under style, add

font-family: Helvetica

3. From the JSF Standard Components palette, select Text Field and add it to the design canvas. Change its id
attribute to userName. Position it next to the label component you just added.

4. In the text field's Properties window under Data, check the required attribute. This prevents an empty input field.
Now when you process the input in the event handler, you don't have to worry about checking for null values.

5. Still in the Properties window, change its title attribute to Please type in your username. The title attribute
supplies text to the component's tooltip mechanism.

6. In the Application Outline view, select component componentLabel1 (the top-level component of the component
label element you added).

7. In the Properties window, click the editing box next to the for attribute and from the list of components, select
userName (the text field component). Click OK. This step binds the label component to the text field component,
affecting GUI operations such as mouse selection. For example, clicking the mouse over the label's text puts the
cursor in the associated text field's input box.

Figure 4-7. Design canvas showing components for project Login1

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the password field, you'll need a secret field component in addition to a label component to display the label. The
secret field component performs several functions that make it particularly suitable for gathering sensitive data. First, it
replaces the text that you enter with a constant character (the default is a black dot or an asterisk). Second, when the
page is refreshed or you return to the page, the field is cleared. Thus, if you leave your workstation and someone else
uses your computer, the new user can't "borrow" your password entry by simply selecting the browser's back button
until the login page is reached.

Place the password components directly underneath the username components added above. You will follow the same
procedure.

1. From the JSF Standard Components palette, select Component Label and add it to the design canvas.

2. In the Application Outline view, select the embedded output text component (componentLabel2Text) and change
its value attribute to Password. Under style, add

font-family: Helvetica

3. Add a Secret Field component and change its id attribute to password. Position it next to the label component
you just added.[1]

[1] Unlike the username field, don't check the required attribute for password. Since the component clears
its field every page request, requiring input interferes with the reset button that you will add in the next
section.

4. Still in the Properties window, change its title attribute to Please type in your password for the tooltip.

5. In the Application Outline view, select component componentLabel2 (the top-level component of the component
label element you added).

6. In the Properties window, click the editing box next to the for attribute and from the list of components, select
password (the secret field component) to associate the label with the password secret field. Click OK.

To check the placement of the components on the page, right-click in the design canvas and choose Preview in
Browser. Creator renders the JSF components in a page in your browser.

Add Button Components

This application uses two button components: one to submit the form data to be processed for logging in. The second
button clears the two input fields so that the user can start over. After adding the components, you'll add page
navigation rules and code for the button event handlers.

1. From the JSF Standard Components palette, select the Button component and drag it to the design canvas.
Position it under the two text field components. Change its component name (id attribute) to login.

2. Make sure it's selected and bring up its Properties window. Under Data, change its value attribute to Login and
press <Enter>. The button's label should now change.

3. Repeat these steps and add a second button to the design canvas. Change its id attribute to reset.

4. Make sure it's selected and bring up its Properties window. Under Data, change its value attribute to Reset and
press <Enter>. The button's label should now reflect this label name.

Add a Message List Component

Since the required attribute is checked for component userName, you need to tell the user that input is required if they
leave the field empty. Creator has two components that help you do this. The inline message component is bound to a
single component and listens for and displays messages generated by that component. If you choose this component,
use one for each component that has user input validation. Because you place each inline message component near its
associated input field, users know right away where the problems are.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

associated input field, users know right away where the problems are.

The second choice is the message list component. In this case, a single component will display the error messages
generated from all the page's components. The message list component is appropriate for this example because we
have only one component that requires input.

1. Select the Message List component from the JSF Standard Components palette and drag it onto the design
canvas. Position it under the two buttons you just added.

2. In its Properties window under Appearance, select the style attribute and add the following.

; font-style: italic

3. In the Properties window under General, make sure attribute showSummary is checked. (Attributes showDetail and
showSummary display the same message text here.)

Deploy and Test Run

Although you haven't yet added any functionality to the button components, it's a good idea to deploy and run the
application now. Go ahead and click the green chevron in the toolbar. When the login page comes up, type in
usernames and passwords. Of course, clicking the buttons won't do anything, but you should see an error message if
you leave an input field empty. Figure 4-8 shows the initial page of the Login1 web application. The user is holding the
cursor over the secret field to display the tooltip.

Figure 4-8. Login page web application

Enable Page Navigation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This application has a total of three web pages. The first page, Page1, contains all of the components you have just
added, including a Login button that will take the user to either a LoginGood page (if the login process succeeds) or
LoginBad page (if the login process fails). The easiest way to build this is to go to the Page Navigation editor, create
the two new pages, and connect them with labeled navigation arrows. When you've done all this, you can then add the
code in the button event handlers to return the correct String values for the navigation rules.

1. From the design canvas view, place the mouse in the canvas (anywhere in the background), right-click and
select Page Navigation. The Page Navigation editor comes up. You see the initial web page, Page1.jsp, in the
Page Navigation editor pane.

2. Place the mouse anywhere in the editor pane (in the background area) and right-click. From the context menu
select New Page. Provide the name LoginGood instead of the default. This creates a new page,
LoginGood.jsp.

3. Repeat this process, creating another page. Call it LoginBad. In the Project Navigator window, you see your
application's three web pages: Page1.jsp, LoginGood.jsp, and LoginBad.jsp.

In the next three steps, you'll connect the pages and provide navigation case labels that you can use in your event
handling code to control the page flow. This step is exactly the same as in the previous example.

1. Place the mouse inside page Page1.jsp, click and drag the arrow to page LoginGood.jsp. When you unclick,
you'll see an arrow with a label. Change the label from case1 to loginSuccess.

2. Once again, select Page1.jsp and drag the arrow to page LoginBad.jsp. This time change the label name to
loginFail.

3. Finally, you'll add a third rule. Create an arrow from LoginBad.jsp back to the initial page, Page1.jsp. Change
its label to loginPage.

Figure 4-9 shows the Page Navigation editor pane with the web pages and navigation labels you just created.

Figure 4-9. Page Navigation editor pane with three navigation rules

[View full size image]

Behind the scenes Creator is generating code for its Navigation Rules in file navigation.xml. To see what it generates,
select the Source tab at the bottom of the Page Navigation editor pane. Here is the file.

<faces-config>

 <navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>loginSuccess</from-outcome>

 <to-view-id>/LoginGood.jsp</to-view-id>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <to-view-id>/LoginGood.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>loginFail</from-outcome>

 <to-view-id>/LoginBad.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

 <navigation-rule>

 <from-view-id>/LoginBad.jsp</from-view-id>

 <navigation-case>

 <from-outcome>loginPage</from-outcome>

 <to-view-id>/Page1.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

This XML file has two rules originating from Page1.jsp and one rule from page LoginBad.jsp. The from-outcome
attribute corresponds to the labels you supplied to the Page Navigation editor. You'll use these labels when you write
the event handling code in the Java page bean.

Add Event Handler Code

You added two button components to the Page1.jsp page. Now let's add event handler code to both of them.

1. Select the tab labeled Page1.jsp at the top of the Page Navigation editor pane. Alternatively, double-click
inside the Page1.jsp page in the Page Navigation editor pane. You are now in the design canvas for
Page1.jsp. The button components should be visible.

2. From the design view, double-click the Reset button. This takes you to the Java page bean, Page1.java.
Creator generates the event handler method for you and places the cursor inside the method. The following
code clears the input components. Add it to the Reset button event handler, reset_action(). (The added code is
bold.)

public java.lang.String reset_action() {

 // User event code here...

 userName.setValue("");

 password.setValue("");

 return null;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Return to the design view by selecting the Page1.jsp tab at the top of the editor pane. Double-click the Login
button component. Creator now generates the event handler for the Login button.This takes you to the Java
page bean, Page1.java.

4. Add the following code to the Login button event handler, login_action(). Copy and paste from file
FieldGuide/Examples/Navigation/snippets/Login1_loginAction.txt. The added code is bold. (Be sure to
delete the return null statement.)

public java.lang.String login_action() {

 // User event code here...

 if (myUserName.equals(userName.getValue()) &&

 myPassword.equals(password.getValue())) {

 return "loginSuccess";

 }

 else return "loginFail";

}

(Ignore the errors flagged in red for now.) The "loginSuccess" and "loginFail" String values correspond to the
page's navigation rules for going to page LoginGood.jsp and LoginBad.jsp, respectively. This is called
"dynamic" navigation because the event handler dynamically figures out the outcome according to the result of
the if statement.

5. Add the following two lines of code (place them above method login_action()). These statements define values for
private variables myUserName and myPassword. These are the "correct" values the user must supply for a
successful login. Choose whatever values you'd like for testing the application (and they don't have to be the
same). Here's the code. (After you add this code, the errors flagged in red will disappear.)

private String myUserName = "rave4u";

private String myPassword = "rave4u";

Add Components to Page LoginBad

When the login process fails because the values typed into the input fields do not match the Strings stored in the Java
page bean, the system loads page LoginBad.jsp. Here you display a failure message to the user and include a link
action component to return to the login page, Page1.jsp.

1. In the Project Navigator window under Web Pages, double-click the web page LoginBad.jsp. You're now
working in the design canvas for this page.

2. From the JSF Standard Components palette, select component Output Text and drag it onto the design canvas.
Position it at the top.

3. Make sure the component is selected and type Invalid username or password. To try again, click. Finish
by pressing <Enter>. This changes the value attribute.

4. Now select the Link Action component from the components palette and drag it onto the design canvas. Position
it directly under the output text component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Note that just like component label, the link action component results in a composite component, as shown in
the Application Outline view. The link action component contains a nested output text component.

6. In the Application Outline view, select the nested output text component linkAction1Text, and change its value
attribute to HERE.

7. Now select the link action component in the Application Outline view and change its id attribute in the Property
view to loginpage. The component's name should reflect this change in the Application Outline view.

Add Event Handler Code

1. Return to the Application Outline view and select the link action component, loginpage. Right-click and from the
context menu select Edit Event Handler > action.

2. This brings up the Java page bean for this page, LoginBad.java, and places the cursor at the generated event
handler method.

3. Add the following navigation case label to the event handler. (Replace the word null with the text in bold. Be
sure to include the quotation marks.)

public java.lang.String loginpage_action() {

 // User event code here...

 return "loginPage";

}

Recall that in the Page Navigation editor, you assigned this label to the navigation case going from page
LoginBad.jsp to the initial page, Page1.jsp.

Add a Component to Page LoginGood

Before deploying and testing the web application, you need to add a component to the successful login page,
LoginGood.jsp.

1. From the Project Navigator window under Web Pages, double-click LoginGood.jsp.

You should now be working in the design canvas view of the LoginGood.jsp page.

2. From the JSF Standard Components palette, select component Output Text and drag it onto the design canvas.
Position it at the top.

3. Make sure the component is selected and type in Welcome to our Members-Only Page. Finish by pressing
<Enter>.

4. In the Property window under Appearance, modify the style attribute to include the following font values after
the other style characteristics.

; font-family: Helvetica; font-size: 18pt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Go ahead and type in test usernames and
passwords. Check both the failure and success cases, as well as leaving one or more of the input fields blank. Also, note
that when you return to the login page, the password input field (the secret field component) is cleared. Figure 4-8 on
page 116 shows the login page.

Design Tip

The login_action() event handler performs a simple String comparison between the
input field values and the private variables in the Java page bean. We elected to
show you this code because it is simple and we really wanted to emphasize page
navigation. However, it is better to remove the computation for determining the
"success" of a login from the action method and encapsulate it in a JavaBeans
component. The changes are small, but the architectural advantages are striking. In
the next chapter, we show you how to encapsulate this computation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5 Key Point Summary

JSF navigation is a rule-based system. When you create page flow links, Creator generates the rules for you
and stores them in the XML configuration file, navigation.xml.

Creator supports both simple and dynamic navigation.

In simple navigation, the command component's action event handler returns a String that matches a
navigation case label.

In dynamic navigation, the command component's action event handler performs some processing that affects
the String value that it returns.

The action event listener passes the String associated with clicking a button or link action component to the
navigation handler.

You can use other components with navigation, but you have to manually code their event handlers to pass an
appropriate String to the navigation handler.

Dynamic navigation provides more flexibility than simple navigation. With dynamic navigation you can add
processing in the event handler (to determine the next page or just to perform some housekeeping updates).

With Creator's Page Navigation editor, you can create new web pages and connect the pages in your application
with page flow case labels. Creator generates the navigation rules that the navigation handler uses to manage
your application's page flow.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. JavaBeans Components
Topics in This Chapter

JavaBeans Properties

Managed Beans in Creator

Object Scope

Property Binding

Creation of Java Classes and Packages

Using JAR Files

Examples of Using Converters and Validators

Separation of Business Logic and Presentation Code

JSF's architecture includes the concept of managed beans. A managed bean is a JavaBeans component whose life cycle
and scope is controlled by JSF. By carefully defining its public methods, you can make your managed bean and all of its
properties available to the pages of a web application.

Creator projects support JavaBeans components. In our first example (LoginBean), you'll make the JavaBeans
component a property of a managed bean. You'll also add its JAR file to your project as a library reference. In the
second example (LoanBean), the JavaBeans component itself will be a managed bean and you'll add the source directly
to your project with the Project Navigator. Either way, once you make your JavaBeans component available to Creator,
you can bind JSF components directly to your JavaBeans component's properties.

This chapter shows you how to build Creator projects with JavaBeans components. In addition, you can find examples
in other chapters (see "Localizing an Application" on page 263 and "Creating Custom Validation" on page 279). The first
step is to learn what a JavaBeans component is.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 What Is a Bean?
A JavaBeans component (bean) is a Java class with certain structure requirements. When a Java class conforms to this
structure, other programs (like Creator) can access the bean and inspect it intelligently. Furthermore, programs can
inspect instances (objects) of the bean.

Because they follow certain design conventions, beans can be reused as components in various applications. The JSF
architecture is set up to allow the JSF components to access JavaBeans components.

Properties

One the most important characteristic of a bean is its ability to define and manipulate properties. A JavaBeans property
is a value of a certain type. With a bean, you provide public methods to access a bean's properties. A property is
frequently implemented by an instance variable, but not always. Sometimes properties are derived from the values of
other instance variables in the Java class (especially with read-only properties). Properties can also be tied to events
and have listeners that detect a change to a property's value.

Properties usually contain a single value. These are called simple properties. They can also be represented by an array
of values. These are called indexed properties.

Setters and Getters

The public setters and getters define a bean's properties. A setter provides write access to a property and a getter
provides read access. The names of these access methods are set by convention and determine the name of the
property.

A getter is a public method that returns a reference to an object of the property's type (or if the type is a built-in type,
it returns a value). It combines the word "get" with the property name, capitalizing its first letter. For example, if a
JavaBeans component implements a property called customer (a String), its getter is

public String getCustomer() {

 return customer;

}

Similarly, a setter is a public method that takes an object of the property's type and returns void. Using the same
convention, setters combine the word "set" with a property name whose initial letter is capitalized. A setter for the
above customer property is

public void setCustomer(String c) {

 customer = c;

}

A boolean property's getter may have one of two forms. Suppose a JavaBeans component has a property called
onMailingList (a boolean). Its getter can be implemented as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public boolean isOnMailingList() { ... }

or the traditional

public boolean getOnMailingList() { . . . }

Note that what determines a bean's properties is the accessor methods you provide. When you create a JavaBeans
component through Creator's IDE, Creator enforces these conventions.

Default Constructor

There is one important rule to remember with JavaBeans components. A bean must define a public default constructor,
that is, a constructor with no arguments.[1] Typically, JavaBeans components are instantiated by a mechanism that
precludes passing arguments to the constructor. The constructor's job is to provide any necessary initialization steps for
the bean, including default values for the bean's properties.

[1] A public class with no constructor is also considered to have a public default constructor.

Binding

When you write a JavaBeans component that conforms to these design conventions, you can use them with Creator and
bind JSF components to JavaBeans properties. This provides a powerful link between a GUI component and the
application's "model," that is, the business data that the application manipulates.

The binding is specified by the JSF EL (Expression Language). Typically, the value property of either a text field
component or an output text component is bound to a JavaBeans property. Creator provides a Property Bindings dialog
that allows you to select an object's bindable property and a binding target (see Figure 5-4, "Property Bindings dialog"
on page 140). After you've applied the binding, Creator generates the necessary code in the page's JSP source. Here is
an example of an output text component called cost bound to the payment property of LoanBean, which we show you
later in this chapter. The binding with the LoanBean component is in bold.

<h:outputText binding="#{Page1.cost}"

 converter="#{Page1.numberConverter1}"

 style="position: absolute; left: 264px; top: 264px"

 value="#{LoanBean.payment}"/>

Figure 5-4. Property Bindings dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4. Property Bindings dialog

[View full size image]

This binding means that the output text's value is updated with the LoanBean's payment property during the page's
request cycle. The binding generates code to invoke the payment's getter method of the LoanBean, getPayment(). In this
example, the LoanBean object is a managed bean and has session scope. We explain later how this all works in more
detail. But first, we discuss object scope in web applications.

Scope of Web Applications

When a web application runs on the server, it consists of various programming objects whose life cycles depend on their
scope. For example, a page generally lives in request scope and exists during the life cycle of a single request. Certain
data, however, are available throughout the entire session. When a user puts items in a shopping cart, for example, the
cart and all of its contents are generally in session scope. Each user running the application has his or her own session
objects.

Sometimes data need to be shared among all users of a web application. For example, suppose a counter keeps track of
how many users have accessed a web application. Such a counter needs to be accessible throughout all sessions and
therefore must have application scope. Since it's important to understand object scope in your Creator projects, we
define the different kinds for you.

Session scope means the object is available for one user across multiple pages in a single session. Each user of the web
application is given his or her own instance of any object with session scope.

Application scope means the object is available for all sessions within an application. A component with application
scope usually contains application-wide data or processing, since all sessions share the same object.

Request scope means the object is available for only the page that references it. If another page needs an object of the
same type, the system instantiates a unique object for that page (in the new request scope). An object with request
scope is not shared with other pages in the same session.

An object with scope none is instantiated each time it is referenced. This means that the object is not saved in any
scope. You would use scope none when an object is closely tied to and dependent on another object. For example, an
AddressBean with scope none is instantiated when a CustomerBean references it.

If one object references a second one, the allowable scope of the second object depends on the scope of the first
object. Table 5.1 lists the allowable bindings in a JSF application.

Table 5.1. Well-behaved bindings between objects
Object1's Scope May Refer to Object2 in This Scope

none none

application none, application

session none, application, session

request none, application, session, request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In general, (except for scope none) an object with a longer-living scope should not refer to an object with a shorter life
span. For example, an object with session scope should not reference an object with request scope. On the other hand,
an object of request scope may refer to an object stored in session scope because session scope has a longer life span.
Objects with scope none may only reference other objects of the same scope (none).

Why is all this important? First of all, you need to understand scoping rules to create your JavaBeans components
properly in a Creator project. Then you must understand scoping rules to correctly instantiate and access your
JavaBeans components in the correctly scoped managed bean. Later in this chapter, we show you how to do this with
the LoginBean in session scope (see "Modify Event Handler" on page 141).

Predefined Creator Java Components

If you open any Creator project (or create a new one) from Creator's Project Navigator window, you'll see at least three
Java source files (expand the Java Sources node, then the "package name" folder): ApplicationBean1.java,
Page1.java, and SessionBean1.java. These are all JavaBeans components installed as managed beans with
application scope, request scope, and session scope, respectively.

Page1.java is the page bean for the first page of your application (unless you rename it). Each page has its own page
bean. The page bean is a JavaBeans component containing properties for all the components you add to your page.
Creator generates the Java source for this file, and you can add code to it (such as event handler methods or user-
defined initialization statements). Page1, therefore, is a JSF managed bean with request scope.

SessionBean1.java defines a Java class that is an almost-empty shell by default. This is where you place objects with
session scope. Here is its source.[2]

[2] Creator hides (or "folds") some of the Creator-managed code by default to keep your editor pane uncluttered.
To see this code, click the '+' in the editor pane's margin.

package project_name;

import com.sun.jsfcl.app.*;

public class SessionBean1 extends AbstractSessionBean {

 . . . Creator-managed Component Definition . . .

 public SessionBean1() {

 . . . Creator-managed Component Initialization . . .

 // Additional user provided initialization code

 }

 public ApplicationBean1 getApplicationBean1() {

 return (ApplicationBean1)getBean("ApplicationBean1");

 }

}

Inside SessionBean1, you call operator new to create your JavaBeans component and store its reference in a private
class variable. You also need to provide getter and setter methods to make the component accessible to your project as
a property (we show you how to do all this in our first example). When SessionBean1 is instantiated, all of its added
components are instantiated, too. Since SessionBean1 has session scope, all of its instance variables will have session
scope as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scope as well.

ApplicationBean1.java has the same structure. You use ApplicationBean1 as a holder for objects with application
scope. Here is its source.

package project_name;

import com.sun.jsfcl.app.*;

public class ApplicationBean1 extends

 AbstractApplicationBean {

 . . . Creator-managed Component Definition . . .

 public ApplicationBean1() {

 . . . Creator-managed Component Initialization . . .

 // Additional user provided initialization code

 }

}

There's a lot more to tell you about using JavaBeans components in Creator projects, so let's get started.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 LoginBean Component
In our first example using managed beans with Creator, you'll start with the web application you built in the previous
chapter (project Login1). You will add a reusable component called LoginBean. LoginBean is a bean with the structure
described in the previous section. LoginBean's purpose is twofold: it holds user login information and it processes a
login request. By encapsulating both the login data and the processing procedure, the client (which is the JSF web
application you are building) is shielded from the implementation details. Furthermore, by making LoginBean a
JavaBeans component with session scope, you can access it from any JSP page you define in your project.

LoginBean Outside View

Let's begin by examining the LoginBean from its outside view, that is, the view from your application. Then we'll look at
its source and show you how to install it in your project.

A bean that represents a user logging in should store the user's name and password. Therefore, the LoginBean will
have two properties, one for username (a String) and another for password (also a String). To access these properties
from JSF tags, use a JSF EL expression, as follows.

#{SessionBean1.loginBean.username}

Note that username is a property of loginBean, which in turn is a property of SessionBean1 (the default managed bean
with session scope). Likewise, the expression

#{SessionBean1.loginBean.password}

references loginBean's password property in SessionBean1. In Java code, these map to the property's accessor methods:
getUsername(), setUsername(), getPassword(), and setPassword().

Once a user of your web application types a username and password and these values are stored in the LoginBean, the
bean can tell you if that user's login information is valid. The LoginBean has a boolean property for that, called
loginGood. Since this is a read-only property, you'll need to provide getter isLoginGood().

Note that a client does not need to know how LoginBean determines whether a login is valid, making it easier for bean
providers to change how this is done. For example, our initial implementation of LoginBean compares the web
application user's login data with constants stored in the Java source. Another implementation could access a database
and look up the user's name and password. To the client, however, the calling method is unchanged. You still invoke
method isLoginGood().

Advantages of JavaBeans Components

In the previous chapter, we said that using a JavaBeans component offers striking advantages over placing code in a
Java page bean. We were referring to the ability to change a JavaBeans component's implementation without affecting
its clients, as well as the ability to encapsulate business logic and data. For example, in project Login1 you placed the
code for a valid login sequence inside the action event handler of the Java page bean, Page1.jsp. In general, it's not a
good idea to put business logic in the Java page bean. Instead, you should encapsulate all business logic inside business
components implemented as beans. This approach separates the presentation code (GUI components and event
handlers in the Java page bean) from the model code (business logic).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reusability is another big advantage of JavaBeans components that implement business logic. Because you don't put
any GUI-specific code (such as output formatting, for example) in LoginBean, there's no reason why another web
application cannot easily use it.

Property Binding with Components

When objects are implemented as JavaBeans components, it's easy to use binding with the JSF components you define
on your page. This means you don't need to write explicit Java code to set the LoginBean properties to the values using
the component's getValue() method. By binding the component's value property to a property in LoginBean, you're
essentially performing the Java code implicitly. Suppose, for example, the following code appears in an event handler
that reads a text field component called username.

loginBean.setUsername(userName.getValue());

Or, in the beforeRenderResponse() method, you might use the following code to display the value that's stored in the
LoginBean instance.

userName.setValue(loginBean.getUsername());

With object binding, however, all of this is accomplished behind the scenes (we show you how to specify binding
shortly). Creator generates the JSF tags for you. For example, to bind the text field component userName to the
username property of LoginBean, Creator generates the following JSF tag (the relevant attribute is bold).

<h:inputText binding="#{Page1.userName}"

 required="true"

 style="position: absolute; left: 240px; top: 96px"

 value="#{SessionBean1.loginBean.username}"/>

Binding this JSF component to LoginBean means that JSF displays the text that's in the username property of LoginBean
in the JSF's component's input field. And conversely, JSF puts the text that's in the value property of the text field
component in the username property of LoginBean.

Let's use LoginBean to upgrade the Login1 project from the previous chapter. Here's a step-by-step approach.

Copy the Project

To avoid starting from scratch, copy the Login1 project to a new project called Login2. This step is optional. If you
don't want to copy the project, simply skip this section and continue making modifications to the Login1 project.

1. Bring up Creator and open the project you created in the previous chapter, Login1. Creator displays the design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Bring up Creator and open the project you created in the previous chapter, Login1. Creator displays the design
view for Page1.jsp.

2. Click anywhere inside the design grid.

3. From the File menu, select Save Project as . . . and provide the new name Login2. You'll make changes to the
Login2 project.

Specify Title

In the design view of the editor pane, change the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type the new title Login 2. Finish by pressing <Enter>.

Add a Library Reference to Your Project

LoginBean is a reusable JavaBeans component that you will configure with session scope. Session scope means that the
component is available for one user across multiple pages. Each user of the web application is given his or her own
instance of the LoginBean object.

Both the class file (the compiled Java code) and the source file are in a component JAR file in your Creator book's
example files. Let's add the JAR file to your project now.

1. Open up the Project Navigator window. This window displays all the resources, pages, Java sources, and
references used by your project.

2. Expand the Library References node (if it's not already expanded). Creator lists several different libraries used
by your project. You're going to add the asg.jar file as a new library reference.

3. Right-click the Library References node and select Create New Library Reference. Creator pops up the Create
New Library Reference dialog. (See Figure 5-1.)

Figure 5-1. Create New Library Reference dialog

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. For Library Name, specify Bean_Examples. Scope should be set to Project.

5. Select tab Class Libraries and click Add. The Open dialog is displayed.

6. Browse to the location of your Creator book's examples. Under directory FieldGuide/Examples select asg.jar
and click Open. Creator adds the JAR file path to the Path Name field. Click OK.[3]

[3] Note that Creator uses an absolute pathname for the library reference. If you open a project created
on another system, make sure the JAR file has the same pathname or recreate the library reference.

Bean_Examples now appears under the Library References node. If you expand it, you'll see the added JAR file,
asg.jar.

Add a LoginBean Property to SessionBean1

You've added the library reference that contains the LoginBean class file, but now you need to make it accessible within
your project. Since LoginBean should have session scope, let's add it to managed bean SessionBean1 as a property.
This will enable JSF to automatically instantiate it when it instantiates SessionBean1. It will also make it available to the
GUI components as a SessionBean1 property.

1. In the Project Navigator window, expand the Java Sources folder and then the project's default package folder.
You'll see the Java page bean source for your project, Page1.java.

2. You'll also see "template" beans ApplicationBean1.java and SessionBean1.java for beans at application and
session scope, respectively.

3. Right-click the file node SessionBean1.java and select Add > Property. This pops up the New Property Pattern
dialog (see Figure 5-2).

Figure 5-2. New Property Pattern dialog

4. Fill in the dialog as follows. Under Name specify loginBean, under Type specify LoginBean, and under Mode,
select Read/Write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

select Read/Write.

Creator Tip

Since Name and Type are case sensitive, make sure you copy the capitalizations
exactly.

5. Make sure that options Generate Field, Generate Return Statement, and Generate Set Statement are all
checked. Click OK to add property loginBean to SessionBean1.

6. Still in the Project Navigator window, double-click the file node SessionBean1.java. This brings up the file in
the Java source editor. Here are the getter /setter methods Creator generated.

/**

 * Getter for property loginBean.

 * @return Value of property loginBean.

 */

public LoginBean getLoginBean() {

 return this.loginBean;

}

/**

 * Setter for property loginBean.

 * @param loginBean New value of property loginBean.

 */

public void setLoginBean(LoginBean loginBean) {

 this.loginBean = loginBean;

}

You'll note that the code is marked with syntax errors. This is because the type LoginBean is unknown in the current
compilation scope. Let's use the fast import shortcut to fix these errors.

1. In the Java source editor for file SessionBean1.java, place the cursor over the LoginBean class reference (in
any of the lines) and click the mouse.

2. Press the shortcut keys <Alt-Shift-I>. Creator's Java source editor displays the Import Class dialog box as
shown in Figure 5-3.

Figure 5-3. Import Class dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Make sure that asg.bean_examples.LoginBean and radio button Import Class are selected. Click OK.

This adds an import statement for the LoginBean class near the top of source file SessionBean1.java, as
shown below. The red underlines should disappear.

import asg.bean_examples.LoginBean;

. . .

Now you'll add Java code that instantiates (with operator new) the LoginBean object.

1. In the Java source editor (you're still editing file SessionBean1.java), add instantiation with operator new for
property loginBean inside the SessionBean1() constructor.

2. Place it after the comment, as follows.

// Additional user provided initialization code

loginBean = new LoginBean();

An Aside About Initialization Code

You must specify the instantiation of properties that you add to any Creator managed bean. It is recommended that you
place any initialization code in the constructor instead of modifying the Creator-generated declaration with (for
example),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example),

// Creator-managed Component Definition

// Not recommended

private LoginBean loginBean = new LoginBean();

Placing initialization code in the constructor is preferable because

you don't have to unfold and modify Creator-generator code;

if you need to add more initialization steps, your instantiation code will already be in the constructor and you
can keep all initialization code together;

if you have several properties in your bean, the initialization of all the properties is in one place instead of
spread out in the component definition section;

in general it's a poor idea to modify Creator-generated code.

The code that you added to SessionBean1.java makes the loginBean object a property of SessionBean1. Thus, to
access the username property of loginBean (for example), use the following JSF EL expression.

#{SessionBean1.loginBean.username}

This is how you'll bind LoginBean's properties with the GUI components on your web page. Before you specify binding
for the components, it's time to look at the source for LoginBean.java.

LoginBean.java Code

The source for LoginBean.java is included in the asg.jar JAR file. Since the JAR file is installed in your project as a
library reference, you can easily view the file in Creator's Java source editor.

1. In the Project Navigator window under Library References, expand nodes Bean_Examples > asg.jar > asg >
bean_examples.

2. Double-click file LoginBean.java. Creator brings it up in the Java source editor as a read-only file for you.

We show LoginBean.java in Listing 5.1.

Listing 5.1. LoginBean.java

// LoginBean.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// LoginBean.java

package asg.bean_examples;

public class LoginBean {

 private String username;

 private String password;

 private String correctName;

 private String correctPassword;

 /** Creates a new instance of LoginBean */

 public LoginBean() {

 username = "xxx";

 password = "xxx";

 correctName = "rave4u";

 correctPassword = "rave4u";

 }

 public boolean isLoginGood() {

 return (username.equals(correctName) &&

 password.equals(correctPassword));

 }

 public void setUsername(String name) {

 username = name;

 }

 public void setPassword(String word) {

 password = word;

 }

 public String getUsername() {

 return username;

 }

 public String getPassword() {

 return password;

 }

}

LoginBean has three properties, username, password, and loginGood. It also has two additional fields (correctName and
correctPassword), but these fields are not properties. LoginBean's default constructor sets the four fields with initial

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

correctPassword), but these fields are not properties. LoginBean's default constructor sets the four fields with initial
values. (Property loginGood is read-only and does not correspond to an instance variable.)

Boolean method isLoginGood() returns true if the login information in username and password is valid. Our implementation
checks the property values against the internal fields correctName and correctPassword. Other implementations of valid
login information are possible; change the initialization code in the constructor (to access a database, for example).

The remaining methods implement the setters (setUsername() and setPassword()) and getters (getUsername() and
getPassword()) for the bean's other properties.

Bind Input Components

To implement binding for both the text field and the secret field components, return to the design canvas (select the tab
Page1.jsp) at the top of the editor pane.

1. From either the design canvas or the Application Outline view, select text field userName.

2. Right-click and choose Property Bindings from the menu. Creator displays the Property Bindings dialog as
shown in Figure 5-4.

Component userName appears in the Property Bindings dialog title.

3. In the Select bindable property window, choose value Object.

4. In the Select binding target window, expand the SessionBean1 and loginBean nodes.

5. Select the username property under loginBean. Click Apply. The following expression is displayed under Current
binding for value property.

#{SessionBean1.loginBean.username}

6. Click Close.

7. Repeat steps 1 to 6 to bind the component password to the SessionBean1.loginBean.password property.

Creator Tip

You can also edit the component's value attribute in the Properties window to
specify binding using the JSF EL expressions above.

Modify Event Handler

You also need to update the Page1.java event handler to invoke the LoginBean's isLoginGood() method. To do that, you
have to access the LoginBean component. First bring up Page1.java in the Java source editor. Here are the steps.

1. Right-click in the background of the Page1.jsp page and select View Page1 Java Class. Or, select Page1.java
under Java Sources in the Project Navigator and double-click. (Make sure the Project Navigator window is in
Logical View if you do this.)

2. Remove the private variables myUserName and myPassword from the code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private String myUserName = "rave4u";

private String myPassword = "rave4u";

3. From the dropdown menu at the top of the editor pane, select method login_action. Creator puts the cursor at
the start of this event handler. (You'll notice that the editor has underlined some of the code in red since you
deleted the private variable declarations. We'll fix that soon.) Move the cursor to the end of the comment line
and press <Enter> to add a new line.

4. Add the following statement to obtain a reference to the LoginBean object from SessionBean1.

LoginBean login = getSessionBean1().getLoginBean();

Method getSessionBean1() returns a reference to the SessionBean1 object. We access this to get at
SessionBean1's loginBean property.

5. We've once again introduced syntax errors because of LoginBean. Use the fast import shortcut <Alt-Shift-I>
to have Creator add the import class statement to your source file.

import asg.bean_examples.LoginBean;

6. Modify the if statement to call LoginBean's getter, isLoginGood().

if (login.isLoginGood()) {

...

At this point, no red underlines should appear in your source code. If you still see them, check the syntax again
before moving on. Listing 5.2 shows the complete method.

Listing 5.2. Action event handler login_action()

public java.lang.String login_action() {

 // User event code here...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // User event code here...

 LoginBean login = getSessionBean1().getLoginBean();

 if (login.isLoginGood()) {

 return "loginSuccess";

 }

 else return "loginFail";

}

After calling getter isLoginGood(), the event handler returns either "loginSuccess" or "loginFail". These are the labels you
used when you specified navigation page flow for the project in the previous chapter.

Modify Page LoginGood.jsp

Because the LoginBean has session scope, it's available to other pages in your application. The successful login page,
LoginGood.jsp, will access LoginBean to personalize the welcome greeting for the user. You can do this simply enough
by binding an output text component to the LoginBean's username property. Here's how.

1. In the Project Navigator window, select the top node Login2, right-click, and select Show Logical View (if it's
not currently in Logical View).

2. Double click page LoginGood.jsp. This brings up the design canvas for this page.

3. Select the output text component outputText1.

4. In the Properties window, click the small editing box opposite the value attribute. A dialog pops up. Under
Current value setting, change its value to

Welcome, #{SessionBean1.loginBean.username}

5. Click OK.

Note that you've concatenated a plain string with a property binding expression. You can also concatenate one or more
property binding expressions together. The string and binding expression now appear inside the output text component
on the design canvas.

6. Click the Source tab at the bottom of the editor pane. Here is the updated JSP tag for the output text
component you placed on the LoginGood.jsp page. The property binding is in bold.

<h:outputText binding="#{LoginGood.outputText1}"

 style="font-family: Helvetica; font-size: 24pt;

 position: absolute; left: 24px; top: 48px"

 value="Welcome, #{SessionBean1.loginBean.username}"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Figure 5-5 shows the login page when the
web application first comes up.

Figure 5-5. Login web application that uses LoginBean

Note that the Username text field component displays "xxx." This is because the LoginBean constructor initializes the
username field with "xxx." When you specify binding, JSF automatically instantiates LoginBean and updates the text field
component's value field with the initialized value in LoginBean's username field.

The same initialization occurs with the secret field component and LoginBean's password field. However, because the
rendering mechanism of the secret field component clears its value property for display, you don't see LoginBean's
default initialization here.

Go ahead and type in various usernames and passwords. Again, check both the failure and success cases, as well as
leaving one or more of the input fields blank. Also, note that when you return to the login page, the Password input field
(the secret field component) is cleared.

Figure 5-6 shows page LoginGood.jsp after a successful login scenario. (Type rave4u for both the username and
password.) The page displays the Username, thanks to the binding of the output component with the LoginBean's
username property.

Figure 5-6. A successful login session

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 LoanBean Component
In the previous example, you added a library reference to your project and made the JavaBeans component LoginBean
a property of the SessionBean1 managed bean. Although we looked at LoginBean's source code, all you really need is
the JAR file that contains its class (compiled) file. However, sometimes you'll want to create the JavaBeans component
yourself. Instead of adding a pre-compiled class file (or files) in a JAR file, you can also create a managed bean using
Creator's interactive dialogs. In this example, you'll create a LoanBean component and make it a managed bean
(instead of installing it as a property of one of the default managed beans that Creator provides).

The project that you'll build in this section uses a JavaBeans business component called LoanBean. The LoanBean
component is interesting because we accomplish the web application's functionality completely through binding
properties with converters and validators to manage input and output. Once you install LoanBean as a managed bean in
the application, there is no code to write! All the hard work is accomplished by the architecture of the JSF components,
the functionality of the converters and validators, and the ability to plug in an application-specific bean. Furthermore,
the LoanBean code is compact and straightforward. This is a poster-child example for using layered technologies in an
IDE environment.

LoanBean Outside View

The LoanBean component computes a monthly payment for a long-term, fixed- rate loan based on a loan amount,
annual interest rate, and term (the length of the loan in years). The monthly payment is returned from getter
getPayment(), making payment a property of LoanBean. Although payment is a property of LoanBean, it is a derived
property. This means its value is computed from the values of the bean's other properties. Since payment is a derived
property, LoanBean does not require a setter method for it.

LoanBean's other three properties are amount (the loan amount), rate (the annual interest rate), and years (the loan's
term). Following the conventions of building a conforming JavaBeans component, LoanBean contains setters and getters
for each of these three properties.

To build this application, you'll be placing text field components on the design canvas to allow the user to specify
amounts for the LoanBean's properties. You'll use converters to convert String input into the necessary data types and
validators to control the range of these values. You'll also bind the components' value properties to the LoanBean
properties.

After supplying input parameters for the loan, the user clicks a Calculate button to see the monthly payment. The
application displays the payment information in an output text component that is bound to the LoanBean's payment
property. With the help of converters and formatters, JSF updates the page automatically. Figure 5-7 shows what this
web application looks like.

Figure 5-7. Project Payment1 running in a browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a New Project

To build this application, you create the project, place a title on the page, and add the LoanBean managed bean to the
project. After configuring the LoanBean component, you add the other components to gather input and report a
monthly payment amount. This involves adding labels, specifying tooltips, applying converters and validators, and
specifying binding between the user interface components (the "presentation" components) and the JavaBeans
component (the "model"). Let's begin.

From Creator's Welcome Page, select button Create New Project. Specify project name Payment1. The
selected project type is J2EE Web Application. Click OK.

Specify Title and Background

After initializing the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click anywhere in the middle of the design canvas and select Title in the Properties window. Change the title to
Payment Calculator. Finish by pressing <Enter>.

2. Change the page's background color. In the Properties window, select the small editing square next to attribute
Background. Creator pops up a color selection dialog. Choose the yellow swatch in the top row. This corresponds
to RGB value 255, 255, 204 (a variation of yellow).

Add an Output Text Component

You'll need an output text component to put a heading on the page.

1. From the JSF Standard Component palette, select Output Text component and drag it to the top of the page.

2. When you drop it onto the design canvas, it remains selected and you can begin typing its value. This is a
Creator shortcut to set a component's value. Type in Monthly Payment Calculator. Finish with <Enter>.
(Don't resize the component; Creator will stretch it to fit the text.)

3. Under Appearances in the Properties window, edit the style attribute. Add the following after the position settings.

; font-family: Helvetica; font-size: 18pt

The output text should now appear with its new style characteristics on the design canvas.

Add LoanBean to Your Project

These steps create the LoanBean Java source file and add it to your project as a managed session bean.

1. Select the Project Navigator window.

2. Expand the Java Sources folder and then the payment1 folder. You'll see the Java page bean for your project,
Page1.java, as well as the "template" Java beans ApplicationBean1.java and SessionBean1.java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Select the Java Sources folder, right-click, and select New > Package from the menu. Creator displays the New
Wizard - Package dialog.

4. Specify name asg and click Finish. This adds package asg under node Java Sources.

5. Now select the asg node and add package bean_examples (following the same steps you did for package
asg).

6. Select package bean_examples, right-click, and select New > Managed Session Bean from the menu. Creator
displays the New Wizard - Managed Session Bean dialog.

7. Specify name LoanBean and click Finish. You've just added a stub for class LoanBean.java, which Creator
brings up for you in the Java source editor.

You now define LoanBean's properties and specify custom code for its constructor and one of its getters.

1. The first property you will add is property amount. In the Project Navigator window, expand folder
bean_examples and select file LoanBean.java.

2. Right-click node LoanBean.java and select Add > Property. Creator displays the New Property Pattern dialog
as shown in Figure 5-8.

Figure 5-8. New Property Pattern dialog

3. Fill in the dialog. For Name, specify amount, for Type select Double[4] , and for Mode select Read/Write.
Verify that the default Options (Generate Field, Generate Return Statement, and Generate Set Statement) are
all checked.

[4] Note that you specify type as Double (the wrapper class), not double (the primitive type).

4. Click OK. You see that Creator has added the code to LoanBean.java for property amount.

You will add three more properties to LoanBean. Table 5.2 displays the property name, type, mode (read/write or read-
only), and options for each property in LoanBean.java. Use the table as a guide to add the three remaining properties
using the New Property Pattern dialog. Note that property payment is read only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5.2. Properties for LoanBean component
Name Type Mode Options

amount Double Read/Write Generate Field

Generate Return Statement

Generate Set Statement

rate Double Read/Write Generate Field

Generate Return Statement

Generate Set Statement

years Integer Read/Write Generate Field

Generate Return Statement

Generate Set Statement

payment Double Read Only Generate Field

Generate Return Statement

You must now supply initialization code for the constructor and payment calculation code for method getPayment().

1. The Java source editor should still be active with file LoanBean.java.

2. Find the folded code box in the constructor labeled Creator-managed Component Initialization. Place the cursor
in a new line after the comment

// Additional user provided initialization code

3. Add the constructor initialization code shown. Copy and paste from your Creator book's file
FieldGuide/Examples/JavaBeans/snippets/Payment1_constructor.txt. The added code is bold.

// Additional user provided initialization code

amount = new Double(10000);

rate = new Double(5.0);

years = new Integer(15);

4. Add the getPayment() calculation code. Select getPayment from the dropdown menu in the upper-left corner of the
editor pane. Creator puts the cursor at method getPayment().

5. Copy and paste from your Creator book's file
FieldGuide/Examples/JavaBeans/snippets/Payment1_getPayment.txt. The added code is bold.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Double getPayment() {

 double monthly_interest = rate.doubleValue() / 1200;

 int months = years.intValue() * 12;

 payment = new Double(amount.doubleValue() *

 (monthly_interest/(1-Math.pow(1+monthly_interest,

 -1*months))));

 return payment;

}

This completes the source for LoanBean. When you specified LoanBean as a managed session bean, Creator generated
the configuration information for you.

Managed Beans Configuration File

Creator provides a managed-beans.xml file to store managed bean configuration details. This is where Creator
specifies LoanBean's configuration as a managed bean for your project. There's nothing more you need to do, but let's
look at the configuration file anyway.

1. In the Project Navigator window, select node Managed Beans.

2. Open the file in Creator's XML editor by double-clicking the node.

Listing 5.3 shows the managed-beans.xml file with the configuration information for LoanBean at the end.

Listing 5.3. Configuration file managed-beans.xml

<faces-config>

 . . .

 <managed-bean>

 <managed-bean-name>Page1</managed-bean-name>

 <managed-bean-class>payment1.Page1

 </managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

 <managed-bean>

 <managed-bean-name>LoanBean</managed-bean-name>

 <managed-bean-class>asg.bean_examples.LoanBean

 </managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 </managed-bean>

</faces-config>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <managed-bean-name> element identifies the LoanBean component within your web application. This is the name
you use when you specify binding values for some of the components on your page.

The <managed-bean-class> element identifies the Java class file when JSF builds and instantiates the objects in your
project. Note that this element includes the package name as well as the Java class name.

Finally, the <managed-bean-scope> element specifies the bean's scope. Here, Creator specified session scope since you
created LoanBean as a Managed Session Bean. Session scope is appropriate here because JSF creates LoanBean only
once per session (instead of with each request). (See "Scope of Web Applications" on page 128 for a more detailed
discussion of object scope.)

LoanBean.java Code

Listing 5.4 contains the source for LoanBean.java. You've already seen the source in the Java source editor, but we
show it here for completeness. We omit most of the Creator-generated comments.

Listing 5.4. LoanBean.java

package asg.bean_examples;

import com.sun.jsfcl.app.*;

public class LoanBean extends AbstractSessionBean {

 private Double amount;

 private Double rate;

 private Integer years;

 private Double payment;

 public LoanBean() {

 try {

 }

 catch (Exception e) {

 System.err.println(

 "LoanBean Initialization Failure" + e);

 }

 // Additional user provided initialization code

 amount = new Double(10000);

 rate = new Double(5.0);

 years = new Integer(15);

 }

 public payment1.ApplicationBean1 getApplicationBean1() {

 return (payment1.ApplicationBean1)

 getBean("ApplicationBean1");

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public Double getAmount() {

 return this.amount;

 }

 public void setAmount(Double amount) {

 this.amount = amount;

 }

 public Double getRate() {

 return this.rate;

 }

 public void setRate(Double rate) {

 this.rate = rate;

 }

 public Integer getYears() {

 return this.years;

 }

 public void setYears(Integer years) {

 this.years = years;

 }

 public Double getPayment() {

 double monthly_interest = rate.doubleValue() / 1200;

 int months = years.intValue() * 12;

 payment = new Double(amount.doubleValue() *

 (monthly_interest/(1-Math.pow(1+

 monthly_interest,-1*months))));

 return payment;

 }

}

Create the Form's Input Components

Our web page requires a set of components to gather input for the parameters of the loan. There are three parameters:
the loan amount, the interest rate, and the term. Each parameter has a component label, a text field to gather input,
and an inline message component to report validation and conversion errors. Figure 5-9 shows what the design canvas
looks like with all of the components added to the page (we've labeled most of them for you).

Figure 5-9. Design canvas showing placement of components for project
Payment1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

To create the components for the loan amount parameter:

1. Switch back to the design canvas by selecting the tab labeled Page1.jsp at the top of the editor pane.

2. From the JSF Standard Components palette, select Component Label and drag it onto the design canvas. The
component label is a composite component with an embedded output text component to hold the label's text.

3. In the Application Outline view (or see the Creator Tip on this page), select the nested output text component,
componentLabel1Text. In the Properties window, set its value attribute to Loan Amount.

4. In the Properties window, set its style attribute to

font-family: Helvetica

Creator Tip

Creator provides an enhanced selection mechanism for composite components
(such as component label). In the design canvas, select the component label and
look in the Properties window to see which component is selected. Now click the
component again and you'll see a different component's properties. For
component label, you switch back and forth between the top-level, label
component and the embedded output text component by clicking the component
in the design canvas.

5. From the JSF Standard Components palette, select Text Field and drop it onto the design canvas. Position it to
the right of the label component you just added.

6. In the Properties window, change its id attribute to loanAmount.

7. In the Properties window under Data, make sure the required attribute is selected (checked). This ensures that
the user supplies input for this field.

8. In the Properties window, set the title attribute to Please supply the loan amount in dollars. Finish with
<Enter>. This sets the component's tooltip.

9. In the Application Outline view, select the component label (componentLabel1). In the Properties window, click

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. In the Application Outline view, select the component label (componentLabel1). In the Properties window, click
the editing box next to the for attribute. Choose component loanAmount from the list of components displayed in
the pop-up dialog. Click OK.

This associates the label component with the loanAmount text field, which affects mouse behavior. Now when the
application is running, selecting the label as well as the text field places the cursor in the text field.

Use Validators and Converters

The loanAmount text field collects a numerical string that represents the amount of the loan. The string data is used with
GUI components for the "presentation" part of the application. Internally, however, you'll store this information as a
Double. Therefore, you need to convert the String to a Double and make sure its value is within a reasonable range
with validation. To do this, you'll use a JSF DoubleRangeValidator for validation and a JSF DoubleConverter for conversion.
You can add these components to your project from the JSF Validators/Converters palette. Here's how.

1. From the JSF Validators/Converters palette, select Double Converter, drag it to the design canvas, and drop it
on top of the text field component loanAmount. Creator sets the converter attribute for loanAmount to
doubleConverter1. Component doubleConverter1 now appears in the Application Outline view.

2. Repeat this step for the validator. From the JSF Validators/Converts palette, select Double Range Validator,
drag it to the design canvas, and drop it on top of the loanAmount text field component. Creator sets the validator
attribute for loanAmount to #{Page1.doubleRangeValidator1.validate}. Component doubleRangeValidator1 also appears
in the Application Outline view.

You've just applied a range validator for the loan amount. Now you specify its range (maximum and minimum).

1. In the Application Outline view, select the validator you just added for the loanAmount component,
doubleRangeValidator1.

2. From the Properties window, set the minimum and maximum values to 1.0 and 1 million (1000000.0),
respectively (or other values you deem reasonable).

You also need a message component to display error messages during conversion.

1. Return to the JSF Standard Components palette and select Inline Message. Drag it to the design canvas and
position it to the right of the text field component loanAmount.

2. In the Properties window under General, click the editing box next to the for attribute. Choose component
loanAmount from the list of components displayed in the pop-up dialog. Click OK.

This ties the inline message component to the loanAmount text field component. Any error messages generated
by the component's validator or converter will be displayed by the message component.

3. Still in the inline message's Properties window, make sure attribute showSummary for the message component is
checked and add the following to its style attribute.

; font-style: italic

Specify Property Binding

Now let's specify binding for the loanAmount text field's value attribute. Make sure that the loanAmount component is
selected.

1. Right-click and select Property Bindings from the menu. A dialog entitled Property Bindings for loanAmount pops
up. (Figure 5-4 on page 140 shows the Property Bindings dialog for the Login2 project.)

2. In the Select bindable property window, choose value Object.

3. In the Select binding target window, choose amount under the LoanBean node.

4. Click Apply. The following binding expression appears in Current binding for value property window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#{LoanBean.amount}

5. Click Close. This binds the value attribute of the text field component loanAmount to the amount property of the
LoanBean.

Place Interest Rate and Term Components

Ok, you've finished placing the components associated with gathering the loan amount parameter. You'll need to repeat
these steps for the interest rate (which uses a Double converter and a Double range validator) and the loan term (which
uses an Integer converter and Long range validator). Follow the same steps we showed you for the loan amount input.
First grab a component label, then the text field, converter, and validator, and finally, the inline message component.
To make this easier, we've created tables that help you create the components and set their values. You may find it
helpful to follow the instructions and descriptions we gave you for the loan amount parameter.

Table 5.3 lists the components and their properties for the interest rate input. Be sure to specify binding for
interestRate's value attribute with #{LoanBean.rate}.

Table 5.3. Components for interest rate input
Component Property Setting

Component Label (componentLabel2) for interestRate

(set this attribute after you place
text field interestRate on canvas)

embedded text field
(componentLabel2Text) value

style

Interest Rate

font-family: Helvetica

Text Field id interestRate

 title Please specify the interest rate
(APR)

 converter doubleConverter1

(the same converter you used for
loanAmount; make sure to press
<Enter>)

 required true (checked)

 validator #{Page1.doubleRange
Validator2.validate}

(will be set after you drop the
validator onto the component)

 value #{LoanBean.rate}

Double Range Validator
(doubleRangeValidator2)

minimum 0.001

 maximum 15.5

Inline Message (inlineMessage2) for

showSummary

interestRate

true (checked)

 style font-style: italic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

You can use the same Double converter for text field interestRate that you used with
text field loanAmount. Instead of dragging a new converter from the JSF
Validators/Converters palette, specify interestRate's converter in the Properties
window. After placing the text field on the design canvas, select the converter
attribute. From the component selection pop-up, choose doubleConverter1 followed
by <Enter>.

Table 5.4 lists the components and their Properties settings for the loan term parameter. The text field component
loanTerm requires an Integer converter and a Long range validator to control the allowable range. Specify binding with #
{LoanBean.years}.

Table 5.4. Components for loan term input
Component Property Setting

Component Label (componentLabel3) for loanTerm

(set this attribute after you place text
field loanTerm on canvas)

embedded text field
(componentLabel3Text) value

style

Loan Term (Years)

font-family: Helvetica

Text Field id loanTerm

 title Please specify term of loan in years

 converter integerConverter1

(will be set after you drop the Integer
Converter onto the component)

 required true (checked)

 validator #{Page1.longRange Validator1.validate}

(will be set after you drop the validator
onto the component)

 value #{LoanBean.years}

Integer Converter (integerConverter1)

Long Range Validator
(longRangeValidator1)

minimum 1

 maximum 99

Inline Message (inlineMessage3) for

showSummary

loanTerm

true (checked)

 style font-style: italic

Place Button and Output Text Components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the last line of the web application page, you'll place a button, an output text component (to hold a label), and a
second output text component that binds to the payment property of the LoanBean. Table 5.5 shows the components
you need and their properties that control the payment display. Specify #{LoanBean.payment} to bind the output text's
value property with the LoanBean's payment property.

Table 5.5. Components for monthly payment output
Component Property Setting

Button id calculate

 value Calculate

Output Text (outputText2)
value

style

Payment

font-family: Helvetica

Output Text id cost

 converter numberConverter1

(this will be set after you drop the Number
Converter onto the component)

 value #{LoanBean.payment}

Number Converter
(numberConverter1)

pattern $###,###.00

Let's see how the button and output text components work with the LoanBean and the Number converter.

The button component does not have an action event handler defined in the Java page bean. The default action submits
the page. This begins the life cycle process and updates the fields, including the output text component cost.

Output text component cost is bound to the payment property of the LoanBean. Recall that method getPayment() returns a
double. When you define a number converter for the output text component, the double generated by the LoanBean
component is converted to a String. We want the payment displayed in dollars and cents, however. Fortunately, the
number converter has a pattern property that manipulates the double as a comma-separated number with two digits to
the right of the decimal point and a dollar sign in front. The pattern that accomplishes this is

$###,###.00

The number converter has additional properties to help you control the format of the output String, but this pattern
fully specifies the format we need.

Deploy and Run

Figure 5-10 shows the Application Outline view of the JSF components, converters, and validators for project
Payment1. Before deploying, you may find it helpful to compare your Application Outline view with ours in Figure 5-10.

Figure 5-10. Application Outline view for project Payment1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and run the application by clicking the green chevron on the toolbar. Figure 5-11 shows the web application with
new values. Note the tooltip display as the user holds the cursor over the interest rate text field component.

Figure 5-11. Monthly payment calculator that uses LoanBean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The payment amount is computed from the new values. When you change any of the loan parameters and click the
Calculate button, a new payment appears. All this takes place because of the bindings between the input text field
components and the LoanBean properties (including the LoanBean payment property for output). Of course, the
converters and validators play important roles as well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Key Point Summary

You can add a JAR file (a library reference) to your project through the Library References node in the Project
Navigator window. JAR files commonly hold libraries of compiled Java classes that address some functionality.

A JavaBeans component is a Java class that conforms to certain design conventions.

JavaBeans components implement read-access properties with public getter methods.

JavaBeans components implement write-access properties with public setter methods.

A JavaBeans component must have a public default constructor with no arguments.

A JavaBeans component is a reusable component and helps separate business logic from presentation code.

A JavaBeans component hides its implementation code by carefully defining its public methods (outside view).

You can install a JavaBeans component as a property in one of Creator's default managed beans. A JavaBeans
component configured as a property of the Page1.java page bean has request scope. Configuring it in
SessionBean1.java gives it session scope and configuring it in ApplicationBean1.java gives it application
scope.

You can also install a JavaBeans component in a Creator project as a managed bean and specify its scope
explicitly.

The bean configuration file managed-beans.xml contains your JavaBeans component's name, class, and
scope. It may also specify other properties of your bean.

A managed bean with session scope is available across multiple pages for one user.

A managed bean with request scope is available for only the page that references it.

To specify a managed bean property within a JSF component tag, use the JSF EL expression

#{ManagedBeanName.propertyName}

To specify a JavaBeans component's property that is itself a property of a managed bean, use the JSF EL
expression

#{ManagedBeanName.javaBeanComponentName.propertyName}

To bind a JSF component's property to a property in a JavaBeans component, select the JSF component, right-
click, and select Property Bindings. Creator displays the Property Bindings dialog which lets you specify the JSF
component's bindable property and the binding target. The binding target can be a property of another JSF
component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Accessing Web Services
Topics in This Chapter

Google Web Services

Components Text Field, Output Text

Button Component

Action Event Handlers

String Validators

Hyperlink Component

Button Component with Image File

Life Cycle Issues

Session Scope and Page Data

Web services are software APIs that are accessible over a network in a heterogeneous environment. This network
accessibility is achieved with a set of XML-based open standards such as the Web Services Description Language
(WSDL), the Simple Object Access Protocol (SOAP), and Universal Description, Discovery, and Integration (UDDI). Both
web service providers and clients use these standards to define, publish, and access web services.

Creator's default deployment server (J2EE 1.4) provides support for web services. Preinstalled with Creator is the
Google Web Service, which appears in the Server Navigator window under node Web Services > Samples >
GoogleSearchService. The Google Web Service APIs provide a SOAP interface to search Google's index, accessing
information and web pages from its cache. With SOAP and WSDL, Google enables clients to access these services in a
variety of programming environments (including, of course, Java).

This chapter shows you how to create an application that uses the Google Web Service API. Then, you'll enhance it.
After creating a project that uses web services, you'll (hopefully) exclaim, "Is that all?" because the steps are fairly
simple. And that's the way technology should be when industry-wide standards are adopted. You'll see that once we
drag and drop the web service onto the design canvas in Creator, we spend most of our time showing you elaborate
ways to manipulate and display the data that Google returns.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Google Web Services
We've divided this example into several projects that incrementally build on features of the previous project. With each
increment, you'll make a copy of the project so you can go back to a previous project if you want. Alternatively, you can
simply create a single project without saving any increments.

Note

You must register with Google before using their web service. You might also want
to download the Google Web APIs developer's kit since it has additional
documentation. Registration is free and painless. Once you register, Google will
email you a key, which is required for access to their service. The Google Web
Service URL is at http://www.google.com/apis/.

Create a New Project

From Creator's Welcome Page, select button Create New Project. Specify project name as Google1. Click OK.

Let's look at a preview of what you'll be building. Figure 6-1 shows Creator's design canvas with the components you'll
add for project Google1. The image component holds Google's recognizable logo, a button component initiates the
search, and a text field holds the search string. For the results display, output text field timeCount displays the search
time and results count, the hyperlink component displays the target URL, and the text field called result displays the
URL's "snippet" description. The Google web services component appears in the nonvisual component tray at the
bottom of the editor pane.

Figure 6-1. Creator's design canvas view showing project Google1's components

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

Select Title in the Properties window and type in the text Google Search 1. Finish by pressing <Enter>.
(Alternatively, if you click the small square that appears when you initiate editing, a pop-up dialog appears from
which you can edit the title. Click OK to complete editing.)

Add the Google Logo

It's a nice touch to include the Google logo when building a web application with Google's search service. To do this,
let's have Creator load an image component and set its URL to the logo on Google's web site.

1. In the JSF Standard components palette, select component Image and drag it onto the design window in the
editor pane. Place the image component in the upper-left corner of the canvas.

2. Creator displays a pop-up window entitled Select File or URL, as shown in Figure 6-2. Choose the tab labeled
URL and type the following URL address in the large editing box (make sure you use http://).

Figure 6-2. Select File or URL dialog for image component

http://www.google.com/logos/Logo_40wht.gif

3. After you've typed the URL address, click the Copy radio button at the top-right of the window. The image file
name will appear under resources in the box called Current File or URL setting.

4. Click OK. The editing box disappears, and the Google logo image will appear on the design canvas.
Furthermore, you should see file Logo_40wht.gif under the Resources node in the Project Navigator window.

Creator Tip

When you select the Copy radio button, Creator copies the .gif file from the Google
web site to your project's Resources folder. Selecting the Link radio button loads
the image from Google's web site. You can decide whether to keep a local copy (as
we've done here) or link to Google's page.

Add a Text Field Component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll need a text field component to read the user's search query.

1. In the JSF Standard Components palette, select component Text Field and drag it onto the design window. Place
it below the Google logo.

2. Make sure it is selected and stretch it so that it's approximately 10 grid units wide. You'll use this component to
obtain the user's search query string.

3. In the Properties window, change its id attribute to searchString.

4. To provide a tooltip for this text field, edit its title attribute in the Properties window. Type the text Type in a
search string followed by <Enter>.

Add a Button Component

Button components allow users to initiate some action, like navigating to a different page or submitting data for some
sort of processing. In this application, a button component will initiate a search using Google's Web Service API.

1. In the JSF Standard Components palette, select Button and drag it onto the design canvas. Place it to the right
of the Google logo.

2. Make sure the button is still selected. Use the Creator shortcut for editing its value attribute by simply typing in
a new label. When you type Google Search followed by <Enter>, Creator enables editing for the value
attribute. Note that Creator resizes the button to accommodate the longer text string, which now appears inside
the button on the design canvas.

3. In the Properties window, change the button's id attribute to search.

4. To provide a tooltip for the button, edit its title attribute in the Properties window. Type the text Search Google
for the Search String followed by <Enter>.

Inspect the JSP Source File

When you add components to your web application, Creator generates JSP code in a file by using the JavaServer Faces
(JSF) tag libraries. To look at this file, select the tab labeled Source at the bottom of the editor pane. You'll see the
following JSF standard components defined in your JSP file (Page1.jsp).

<h:graphicImage binding="#{Page1.image1}"

 style="position: absolute; left: 48px; top: 24px"

 value="images\Logo_40wht.gif"/>

<h:inputText binding="#{Page1.searchString}"

 style="position: absolute; left: 48px; top: 96px;

 width: 240px; height: 22px"

 title="Type in a search string"/>

<h:commandButton binding="#{Page1.search}"

 style="position: absolute; left: 216px; top: 48px"

 title="Search Google for the Search String"

 value="Google Search"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Three tags are defined here. The graphicImage tag defines an image component, and the inputText tag allows users to
type in and edit textual information. The commandButton tag allows users to initiate an action, typically involving
navigation or some kind of request for processing information. Clicking the button generates an event, which in turn
invokes the action method associated with the component. You haven't yet specified any action associated with this
button component, but you will do that shortly.

Let's return now to the design canvas by selecting the tab labeled Design at the bottom of the editor pane.

Add the Google Web Services

1. In the Server Navigator window under Web Services > Samples, click the '+' and select the Google Web Service
API, GoogleSearchService.

Creator Tip

The Google Web Service comes preinstalled during Creator's installation process
and appears in the Server Navigator window.

2. Drag the GoogleSearchService node and drop it anywhere on the editor pane. Since this is not a visible
component, nothing appears in the design canvas. However, you will see googleSearchServiceClient1 in the
nonvisual component tray below the editor pane.

3. Go to the Application Outline view. This window shows all the components (visible and nonvisual) currently in
your project. Note that the Google Web Service, googleSearchServiceClient1, is listed here.

Add a Web Service to the Server Navigator

The installation process configures the Google web service as well as other web services listed under the Web Services
> Samples node in the Server Navigator window. Creator also provides a way to add a web service to these selections.
Here are the steps to load the Google web service into Creator if it isn't preconfigured. Before you can add a web
service, you must provide the location (URL) of its Web Service WSDL. This is the information that describes the
particular web service's API.

We're going to step through the process to add the Google Search Service to Creator as an example. Use these steps to
add any web service. (Skip this section if the Google web service is already listed in the Server Navigator window.)

1. Go to the Server Navigator.

2. Right-click on Web Services.

3. Select Add Web Service. Creator pops up the Add Web Service dialog.

4. In the URL field at the top, supply Google's WSDL file.

http://api.google.com/GoogleSearch.wsdl

This is the location of the WSDL (Web Services Description Language) file for the Google Search Service.

5. Click Get Web Service Information. The Google web service API appears in the Web Service Information
window.

6. Click Add. The name GoogleSearchService appears under the Web Services node in the Server Navigator
window.

Once a web service is listed in the Server Navigator window, you can select it and add it to your Creator project (as you
did with the GoogleSearchService).

Add Output Text Components

Next, let's add output text components and a hyperlink to display the search results from Google.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the JSF Standard Components palette, select Output Text. Place it below the text field component,
aligning it on the left. Don't stretch it.

2. In the Properties window, change its id attribute to timeCount.

The output text component timeCount will display the amount of time in seconds that the search request took on
Google's server, as well as the estimated number of search results found. Although Google's search returns at
most 10 results, this number is the estimated total (anywhere from zero to thousands).

3. Repeat step 2 to add a second output text component. Place the second output text component under the first
one, indent it slightly, and leave some space above it for a hyperlink (this will be the URL the Google search
returns). This second output text component will display the "snippet" returned by the Google search.

4. In the Properties window, change the id attribute to result.

5. The snippet that Google returns will contain embedded HTML tags. To display the HTML formatting correctly,
uncheck the escape attribute in the output text's Properties window.

Add a Hyperlink Component

The hyperlink component allows application writers to set the href attribute in an HTML <a> tag. This in turn allows the
user to navigate to an arbitrary URL. The hyperlink's value attribute is the target URL. It uses an embedded output text
component to control the text displayed to the user.

Creator Tip

JSF provides two "hyperlink" components: a link action and a hyperlink. The link
action component generates an action event that can perform dynamic navigation
or some other processing. The hyperlink component does not generate an action
event when clicked. Instead, the application simply loads the URL specified in its
value attribute.

For this application, the hyperlink component is an easier way to display URL choices for the user. You'll get the URL
from the results returned by the Google search method. For now, let's put a hyperlink component in the application.

1. In the JSF Standard Components palette, select Hyperlink and drag it to the design canvas. Position it directly
below the first output text component, aligning it on the left. The name will appear as hyperlink1.

2. In the Application Outline view, select the hyperlink1's embedded output text component hyperlink1Text. Uncheck
its escape attribute in the Properties window. This allows HTML tags to format the text. Unchecking escape results
in an escape="false" attribute in the corresponding JSP code generation.

3. Look again at the JSP source file (select the Source tab at the bottom of the design canvas). You'll see that the
<h:outputLink/> tag has an embedded <h:outputText/> tag. The value attribute of the output text component is the
text that's displayed in the hyperlink (by default set to the hyperlink component's name). The value attribute of
the hyperlink component is the target URL (by default set to http://www.sun.com/jscreator).

<h:outputLink binding="#{Page1.hyperlink1}"

 style="position: absolute; left: 48px; top: 192px"

 value="http://www.sun.com/jscreator">

 <h:outputText binding="#{Page1.hyperlink1Text}"

 escape="false" value="hyperlink1"/>

</h:outputLink>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Return to the design canvas by selecting the Design tab at the bottom of the editor pane. Right-click inside the
design canvas and select View Page1 Java Class from the context menu. Creator now displays the Java page
bean source, Page1.java.

5. Take a moment to peruse this file. In the Creator-managed code, you'll see private instance variables
corresponding to the binding attributes of each of the JSF components you created with the GUI editor. (To
unfold hidden code, click the '+' near the left margin next to the box labeled Creator-managed Component
Definition.) There are also corresponding getter and setter methods. This is the standard way you create
properties for JavaBeans component classes. Every component in our application has become a property of the
Java page bean.

6. Return to the design canvas by selecting the Page1.jsp tab above the editor pane. Go to the Application
Outline view. The components hyperlink1 and hyperlink1Text appear in this view along with the previously added
components.

Figure 6-3. Application Outline view of components added to project Google1

Deploy and Run

Creator Tip

Although you haven't added the calls to the Google Web Service yet, let's build and
run the web application anyway. When the application runs, the page is redisplayed
when you click the Search Google button (admittedly, not much). However, at this
point you know if you've added all of the components to your page correctly.

To run the project, click the green chevron in the toolbar or select Build > Run Project from the main menu. The page
should display the Google logo in the upper-left corner, as well as the text field, button, and hyperlink components.
Since the hyperlink component has its value set to Sun's Creator web site, clicking it will take you to that site. The
output text components are not visible. You can type in a test search string, but clicking the button does not (yet)
access the Google web service. It does, however, redisplay the page.

Now it's time to add code to the Java page bean file to do something when you get an action event from clicking the
button!

Perform an Action

Our next step is to associate clicking the Search Google button with invoking the appropriate search routine in the
Google Web Service API. Recall that components may have event listeners associated with them. When the listened-to
event occurs, the system calls the action method associated with that component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event occurs, the system calls the action method associated with that component.

You must tell Creator to listen for an event associated with a specific component. You do this by double-clicking on that
component in the design canvas. When you double-click a component, Creator generates an action method stub so that
you can provide the correct event processing code. We show you this now.

In the design canvas, select the button component and double-click. Creator brings up the Java page bean
(Page1.java) in the editor pane and displays method search_action(). (Alternatively, you can right-click with the
mouse over the button component and select Edit Event Handler > action from the context menu.) The default
implementation of this method is as follows:

public String search_action() {

 // User event code here...

 return null;

}

When the user clicks the search button, the system invokes the search_action() method. This is where you want to place
the code that invokes Google's search. Before we show you this code, however, let's look at the methods in the Google
web service API.

Inspect the Web Service

The Google web service is already included in your application, so let's ask Creator to show you its methods.

In the Server Navigator window, select and open the folder labeled Web Services > Samples >
GoogleSearchService > GoogleSearchPort. Click the '+' to expand the node. Three methods are available.

doGetCachedPage()

doSpellingSuggestion()

doGoogleSearch()

You'll be invoking method doGoogleSearch() in this application.[1] Now look at the Java page bean, Page1.java.

[1] You access method doGoogleSearch() using googlesearchportDoGoogleSearch(). See the event handler
code in Listing 6.1 on page 178.

When you added the Google web service to your page, Creator modified the Java page bean file (Page1.java) to
import the Google web service package, as shown here.

import webservice.googlesearchservice.*;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This means you'll be able to use the code completion mechanism in the editor to get the package names and methods
when you access Google's API.

In the Creator-managed code, you'll see private variable googleSearchServiceClient1 in the Page1 JavaBean. This is the
object that you use to make calls to Google's web service API.

private GoogleSearchServiceClient googleSearchServiceClient1 =

 new GoogleSearchServiceClient();

Creator Tip

At this point, you will undoubtedly find Google's documentation to be helpful. A
detailed description of the methods and their parameters can be found on the
Google Web Site: http://www.google.com/apis/reference.html

Table 6.1 contains a list of the parameters for googlesearchportDoGoogleSearch(). The doGoogleSearch() method returns a
GoogleSearchResult object response. Table 6.2 on page 177 contains some of its access methods.

Table 6.1. doGoogleSearch() parameters
Name Type Description

key String Key provided to you by Google. A key is required for access
to the Google service.

q String Search query.

start int Zero-based index of the first desired result.

maxResults int Number of results desired per query. This is at most 10.

filter boolean Specifies whether or not you want filtering, which helps
eliminate very similar results.

restricts String Limits the search to a subset of the Google Web index.

safeSearch boolean Enables filtering of adult content.

lr String Language Restrict–limits the search to documents with the
specified languages.

ie String Input Encoding–deprecated.

oe String Output Encoding–deprecated.

Table 6.2. GoogleSearchResult public methods
Name Return Type Description

getDirectoryCategories Array Array of the Directory
Category items
corresponding to the ODP[a]

directory matches for this
search.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getEndIndex int Index (1-based) of the last
search result in the
ResultElements array.

getEstimatedTotalResultsCount int Estimates of the total
number of results for the
query.

getResultElements ResultElement[] Array containing the results.

getSearchComments String Search comments.

getSearchQuery String Search query you provided.

getSearchTime double Time it took the Google
server to compute the
results.

getSearchTips String Tips for searching.

getStartIndex int Index (1-based) of the first
search result in the
ResultElements array.

isDocmentFiltering boolean True if document filtering is
enabled.

isEstimateIsExact boolean True if the total results
estimate is exact.

[a] "The Open Directory Project is the largest, most comprehensive human-edited directory of the Web. It is
constructed and maintained by a vast, global community of volunteer editors." (See About the Open Directory
Project, http://dmoz.org.)

Finally, each response includes an array of ResultElement objects. Some of the methods you use to access a ResultElement
object are listed in Table 6.3 on page 178.

Table 6.3. ResultElement public methods
Name Return Type Description

getCachedSize String Size of the cached document.

getDirectoryCategory DirectoryCategory Name of the ODP category in
which the result occurs.

getDirectoryTitle String Name of the result as it appears in
the Open Directory.

getHostName String Hostname of the result.

getSnippet String Short description of the result
page.

getSummary String Description of the result as it
appears in the Open Directory.

getTitle String Page title of the result.

getURL String URL of the result page.

isRelatedInformationPresent boolean True if there are related
documents to this result.

Add the Java Code to Access the Google Web Service

What should the search_action() method do? Here's an overview.

Invoke the doSearchGoogle() method and save the response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Invoke the doSearchGoogle() method and save the response.

Display the time it took to complete the search and the estimated number of responses (using output text
component timeCount).

For the first result only, display the web site title and create a link to the web site's URL (using components
hyperlink1 and hyperlink1Text).

For the first result only, display the result's "snippet," which is an HTML-formatted string containing the search
words in bold (using output text component result).

Design Note

Because taking small steps is always better than attempting a giant leap, let's
display only the first result on your web page. In a later section, we'll have you
display all of the returned results (a maximum of 10).

1. At the top of the editor pane in Page1.java, open the dropdown menu and select search_action. Creator puts
the cursor at the start of this method and marks it in yellow.

2. Add the following private instance variable after the Page1() constructor and in front of the search_action()
method.

private GoogleSearchResult mySearchResult;

3. Add the following code to the search_action() method. From your Creator book download, copy and paste the file
FieldGuide/Examples/WebServices/snippets/google1_search.txt into the search_action() event handler.
The added code is bold.

Listing 6.1. Method search_action()

public String search_action() {

// User event code here...

 try {

 mySearchResult =

 googleSearchServiceClient1.googlesearchportDoGoogleSearch(

 "Your Google Key Here",(String)searchString.getValue(),

 0,10,true,"",true,"lang_en","","");

 timeCount.setValue("Search Time = " +

 mySearchResult.getSearchTime()

 + " Number of results returned = "

 + mySearchResult.getEstimatedTotalResultsCount());

 ResultElement[] myResults =

 mySearchResult.getResultElements();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mySearchResult.getResultElements();

 if (myResults.length > 0) {

 result.setValue(myResults[0].getSnippet());

 hyperlink1.setValue(myResults[0].getURL());

 hyperlink1Text.setValue(myResults[0].getTitle());

 }

 }

 catch (Exception e) {

 log("Remote Connect Failure", e);

 throw new FacesException(e);

 }

 return null;

}

Creator Tip

Make sure you include your Google Web API's License Key as the first argument of
the Google search method. Otherwise, your application will throw an exception, as
shown.

javax.faces.FacesException:

javax.xml.rpc.soap.SOAPFaultException:

Exception from service object:

Invalid authorization key: Your Google Key Here

Deploy and Run

It's time to test this initial version of the Google search web application.

From the menu bar, select Build > Run Project. You can test the Google Search API by typing in various search
queries. Click on the URL (displayed as the title) and go to that web page. Figure 6-4 shows a screen shot of
the application.

Figure 6-4. First version of the Google Web Search application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-4. First version of the Google Web Search application

[View full size image]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Validation
You have created a simple web application that uses a published web service. Now you're going to build on this example
and enhance it in the following ways.

Provide validation for the text field component and require that the user provide something. That is, you want
to prevent a zero-length string and require a minimum length for the search string (three characters).

Make sure all of the output text components values are cleared so that if there is any problem with the Google
search (for example, if zero results are returned), the previous results are cleared from the page.

Place an inline message component on the page to report errors.

Copy a Project

To avoid starting from scratch, copy the Google1 project to a new project called Google2. This step is optional. If you
don't want to copy the project, simply skip this section and continue making modifications to the Google1 project.

1. Bring up project Google1 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project as . . . and provide the new name Google2. You'll make changes to the
Google2 project.

4. Change the title to Google Search 2.

Add a Validator

It's always a good idea to validate user input. Among the JSF standard components are a set of validators to help with
this task. With text strings, two validators are of interest. First, a length validator can control a String's length. You can
specify a maximum and a minimum for the number of characters input. Interestingly enough, if you want to prevent a
zero-length string, you cannot use the length validator (and set the minimum to 1). Instead, you must use the
component's required attribute. The required attribute is set in the Properties window for each text field component. If
you check it (set it to true) and the component's value is a String, then its length must be greater than zero.

For this example, let's prevent a zero-length string and set a length minimum of three characters and a maximum of
2,048 characters (this is the maximum search query allowed by Google).

Creator Tip

For testing, you'll set the length minimum to 3 and its maximum to 25. Coupled
with the required validator, you should get the following behavior. If the user leaves
the text field empty, you'll get a message from the required validator saying that a
value is required. If you type in a 1- or 2-character text value, you'll get feedback
from the length validator saying that it was less than the minimum of 3. Likewise, if
you type in more than 25 characters, the length validator will complain that the
string was more than the maximum. Note that a zero-length string does not trigger
the length validator even if the minimum is set to 1. You must use the required
attribute of the component!

Let's add validation to the application now.

1. Make sure Page1 is in the design canvas.

2. Select the text field component, searchString.

3. In the Properties window, click the checkbox for the required attribute. This means the text field component
cannot be empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's add one of the JSF Validators.

4. From the JSF Validators/Converts palette, select Length Validator, drag it to the design canvas, and drop it on
top of the searchString text field component. Creator sets the validator attribute for searchString to #
{Page1.lengthValidator1.validate}. Component lengthValidator1 appears in the Application Outline view.

5. You've instantiated a length validator for the text field component. Now you have to give it length boundaries:
the minimum and maximum allowable. To do this, select lengthValidator1 in the Application Outline view. In its
corresponding Properties window, change attribute maximum to 25 and minimum to 3. These values are probably
not the limits you'd want to use in your production application, but they're good values for testing. Once you're
convinced the length validator is working, set the maximum to 2048, which is the maximum imposed by
Google. The advantage of using the validator instead of letting Google complain is that you save a trip to the
Google server.

6. Since the validator is a nonvisual component, it does not appear in the design canvas. However, it does appear
in the Application Outline view and the searchString component's tags in the source for Page1.jsp have been
modified as follows.

<h:inputText binding="#{Page1.searchString}"

 required="true"

 style="position: absolute; left: 48px; top: 96px;

 width: 240px; height: 22px"

 title="Type in a search string"

 validator="#{Page1.lengthValidator1.validate}"/>

Note that the Page1() constructor in the Java page bean has been modified to include the minimum and
maximum settings you defined in the Properties window, as follows. (Unfold the Creator-managed Component
Initialization block to see the code.)

lengthValidator1.setMinimum(3);

lengthValidator1.setMaximum(25);

Add an Inline Message Component

The JSF inline message component retrieves messages from the JSF context. As it turns out, the validator sends an
error message to the JSF context when it detects nonconforming input. The inline message component just needs to
know which component's messages it should retrieve.

1. From the JSF standard components palette, select Inline Message and drag it onto the design canvas. Place it
below the output text component called result.

2. From the Properties window under General, select the property for and select searchString from the list of
components in the pop-up window. Click OK.

3. Make sure attribute showSummary is checked (showSummary and showDetail display the same message for this
validation).

4. Still in the Properties window under Appearances, select attribute style. Click the small editing box; an editing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Still in the Properties window under Appearances, select attribute style. Click the small editing box; an editing
pane appears. After the position attributes, add the following font characteristics (this makes the error message
appear in italic).

; font-style: italic

5. Click OK.

Now any messages having to do with component searchString will be displayed by the inlineMessage1 component.

Life Cycle Issues

It's time to delve into the deep, dark crevices of JSF. This section is somewhat advanced, but it's useful nonetheless to
help you tweak your applications. If you'd prefer to skip this part and go ahead to the next section, you can do that
without jeopardizing your Google application.

Let's explore some of the nuances of the JSF life cycle process. The best way to do this is to "see" the life cycle effects
on a running web application.

Run the Google2 application now. Note that when you supply valid input, the application accesses the Google web
service and displays the first result. Subsequently, if you supply invalid input (a search query less than three characters
or no input at all) the validation step fails and the inline message component displays the appropriate error message.
However, the result from the previous search is still displayed, making for a confusing page at best.

A more pleasing page would make the validation errors appear directly below the text field component, overlapping the
output text components. To accomplish this, you must clear the value attribute in the output text components from the
previous search request. This results in a cleaner page and prevents error messages from overwriting old results.
Here's the code that clears the output text components. However, the more difficult question is: "Where should this
code go and when should it be executed?"

timeCount.setValue("");

result.setValue("");

hyperlink1Text.setValue("");

The JavaServer Faces framework provides a life cycle for a JSP request. The six steps in this life cycle process are
shown in Figure 6-5[2].

[2] This diagram is adapted from "JavaServer Faces Standard Request-Response Life Cycle," in the J2EE 1.4
Tutorial. See http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html for more information.

Figure 6-5. JSF Request-Response Life Cycle Process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While the steps always occur in the same order, it is important to note that not all six steps will necessarily be
processed for every page request. For example, validation rules are applied to the request during Step 3 (Process
Validations). If a component fails a validation, the page is returned with an error message and the process skips directly
to Step 6 (Render Response).

Creator provides hooks into this life cycle process for the application developer, but you have to know how to get at
them. Once you have the hooks, you can write a method that clears the output text components before validation
occurs. When errors occur, the previous requests' output does not appear on the page.

So how do you "hook into" the page request life cycle? You'll note that the Java page bean Page1.java extends class
AbstractPageBean. As it turns out, AbstractPageBean (as well as AbstractSessionBean and AbstractApplicationBean) all
extend from class FacesBean. There are twelve methods in FacesBean, each of which is called either before or after one
of the six page request life cycle phases. Table 6.4 lists all twelve methods in the order that they're invoked in the page
request life cycle.[3]

[3] Note that these methods are protected. This means you can call them from your page bean and any class
derived from it.

Table 6.4. Page request life cycle methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6.4. Page request life cycle methods

protected void beforeRestoreView();

protected void afterRestoreView();

protected void beforeApplyRequestValues();

protected void afterApplyRequestValues();

protected void beforeProcessValidations();

protected void afterProcessValidations();

protected void beforeUpdateModelValues();

protected void afterUpdateModelValues();

protected void beforeInvokeApplication();

protected void afterInvokeApplication();

protected void beforeRenderResponse();

protected void afterRenderResponse();

All methods have empty stubs, but they exist so that you can override them with your own versions in the page bean.
Method beforeRenderResponse(), for example, is called before the Render Response phase. We've included the code for
the methods in FieldGuide/Examples/WebServices/snippets/life_cycle.txt in case you want to use them in other
projects.

You'll need to call the beforeProcessValidations() method to clear the output text components in this project. If you include
the code to clear the components at this point, the page will be blank and ready for either error messages (generated
during the Process Validation phase) or output from the Google web search (displayed during the Render Response
phase). This is what you need to do.

1. Inside the Java page bean Page1.java, add the following method. Copy and paste from the file
FieldGuide/Examples/WebServices/snippets/google2_beforeProcessValidations.txt.

2. Put this method after the Page1() constructor code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void beforeProcessValidations() {

 timeCount.setValue("");

 result.setValue("");

 hyperlink1Text.setValue("");

}

Now the previous page's results will be cleared from the current request's page, even if there is a validation error. Since
you don't have to worry about validation error messages writing on top of previous results, move the inline message
component on the design canvas so that it is directly below the text field (left aligned). You can experiment with its size
and placement when you run and test the application.

Creator Tip

Method afterRenderResponse() is particularly useful with "cleanup" duties since it's
called at the very end of the page request cycle. This is a good place to make sure
any state information is saved for the next page request cycle. Since the default
scope for each page bean is request, the page bean's constructor will return all
components to their initial states. If this behavior is not what you want, save the
state in the SessionBean1 managed bean and retrieve it during construction.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 HTML with Output Text
The previous version of the application displays only the first result returned from a Google search. Most of the time,
the Google search returns an array of 10 results. You get the first 10 results of the query if parameter start is set to
zero and maxResults is set to 10, which is how you called doGoogleSearch(). To get the next set of 10 results, set start to
10 (instead of 0). For the third set of 10 results, set start to 20, and so on.

Google returns the total result count with method getEstimatedTotalResultsCount(); you can easily determine the number
of results returned by getting the length attribute of the ResultElement array. This will be at most 10. Furthermore,
Google imposes a 1,000 count limit, so even if the query returns 30,000 hits, Google will give you at most 1,000 (in 10-
count page increments).

In this version of our Google search application, you're going to display all (up to 10) elements of the ResultElement
array (that is, the first page). You'll use an HTML table tag to display the results.

Copy a Project

As before, copy Google2 and create a new project called Google3. This step is optional. If you don't want to copy the
project, simply skip this section and continue making modifications to the previous project.

1. Bring up project Google2 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project As and provide the new name Google3. You'll make changes to the
Google3 project.

4. Change the title to Google Search 3.

Modify the Components

To simplify our application, let's begin with the removal of the hyperlink component and its nested output text
component. That is, you'll delete

hyperlink1

hperlink1Text

To do this:

1. Go to the Application Outline view and select hyperlink1. Right-click and from the context menu, select Delete.
This automatically deletes the embedded output text component, hyperlink1Text, too.

2. Select component result in the design canvas and move it up so that it is directly under the timeCount
component. Position it so that it is aligned on the left with the timeCount component.

Instead of holding the result element's snippet only, you'll use the result output text component to display a
table of result elements returned from the Google search.

3. Now go to the Java page bean file by right-clicking in the design canvas and selecting View Page1 Java Class. At
the end of this file, you'll see syntax errors highlighted in red by the Java source editor.

4. In the beforeProcessValidations() method, remove the call to component hyperlink1. This clears the values of the
two output text components, timeCount and result only. Here is the modified method.[4]

[4] If you didn't make the earlier life cycle modifications to project Google2, this method does not appear
in the Page1.java source, so no modification is necessary here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the Page1.java source, so no modification is necessary here.

public void beforeProcessValidations() {

 timeCount.setValue("");

 result.setValue("");

}

There are still syntax errors in the search_action() method, but you'll fix them shortly.

Build HTML Output

An interesting feature of the output text component is that you can include HTML formatting tags in its value attribute
along with plain text as long as the escape attribute is unchecked (false). The HTML tags will be rendered just as you'd
expect. You've actually already seen this behavior when you assigned both the snippet string and the title string to
output text components. You'll recall that the search query words appear in bold. If you leave the escape attribute
checked, the search words are enclosed in HTML tags rather than appearing in bold. The following display shows the
previous search snippet displayed with the escape attribute checked.

Sun Java Studio Creator brings together the power of the
Java 2 Platform, Enterprise
 Edition, with the kind of simplified development model
acknowledged by ...

This means the output text component can handle arbitrary HTML tags and text. Thus, you can programmatically build
the output as an HTML table to display each result's title and snippet and use its URL as an href attribute. Since the
result is an array, a for loop can easily build this output in a method and return it as a String.

1. In the Java page bean file, go to the search_action() method. Just before it, place the code for a new public
method called buildTable() that will build the output string. Copy and paste file
FieldGuide/Examples/WebServices/snippets/google3_buildtable.txt. Here is the code.

Listing 6.2. Method buildTable()

public String buildTable(webservice.

 googlesearchservice.ResultElement[] results) {

 String str = "<table border=\"2\" cellpadding=\"2\"" +

 " width=\"720\"><tbody>";

 // Set href to the url and the display text to the title

 // Include the index number

 // Place the snippet in the row underneath

 for (int i = 0; i < results.length; i++) {

 str = str + "<tr><td>" + (i) +

 "</td><td>";

 str = str + results[i].getTitle() +

 "</td></tr><tr><td colspan=\"2\">";

 str = str + results[i].getSnippet() + "</td></tr>";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

 // Close html table tag

 str = str + "</tbody></table><p><p>";

 return str;

}

Method buildTable() takes the ResultElement[] array and returns a String. Note that you must precede embedded
quotation marks in the Java string with a backslash (\) character.

2. Now return to the search_action() method. You'll note that there are syntax errors highlighted in red squiggly
underlines. That's because you still have the previous version's code that accesses the hyperlink1 and
hyperlink1Text components. Delete those statements now and replace the previous result.setValue() call with a call
to buildTable(). Here is the new search_action() method (with the statement that calls buildTable() in bold).

Listing 6.3. Method search_action()

public String search_action() {

 // User event code here...

 try {

 mySearchResult =

 googleSearchServiceClient1.

 googlesearchportDoGoogleSearch(

 "Your Google Key Here",(String)searchString.getValue(),

 0,10,true,"",true,"lang_en","","");

 timeCount.setValue("Search Time = " +

 mySearchResult.getSearchTime()

 + " Number of results returned = "

 + mySearchResult.getEstimatedTotalResultsCount());

 ResultElement[] myResults =

 mySearchResult.getResultElements();

 if (myResults.length > 0)

 result.setValue(buildTable(myResults));

}

 catch (Exception e) {

 log("Remote Connect Failure", e);

 throw new FacesException(e);

 }

 return null;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the Google3 application. Depending on the input you provide for the search query, you should
see up to 10 results displayed on the page. Figure 6-6 shows an example screen shot.

Figure 6-6. Google Web Search application using HTML to build a results
table

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Displaying Multiple Pages
Each Google request displays up to 10 results. It's time to add controls that move forward to retrieve additional results
or move backward to display earlier results. You've seen how to use a button component to initiate an action. Now
you'll use two button controls with "arrow" images and render them on the page in place of the default button look. This
is quite easy to do and adds a nice touch to your web application.

The image files you'll need are in your Creator book's FieldGuide download bundle
(FieldGuide/Examples/WebServices/images), but if you'd like to use arrow graphics of your own, simply
substitute the appropriate .gif or .jpg file.

The modifications for this project include adding two new buttons and image files for their display. You'll also write
action event methods for the buttons to page forward or backward through the Google search results. These additions
are straightforward. What's a bit tricky is that you have to keep track of some of the parameters across page requests
when you call Google. That means you can't use local variables with request scope inside Page1.java, since the Page1
bean is instantiated with each page request. Therefore, you'll need to save and restore these control variables in
session scope. (You might want to review the discussion about the different types of scope for web application objects.
See "Scope of Web Applications" on page 128.)

Remember, Google returns at most 10 results at once. So you'll need to access the subsequent pages by submitting a
new call to the Google search method with a different starting index each time.

Copy a Project

Copy Google3 and create a new project called Google4. This step is optional. If you don't want to copy the project,
simply skip this section and continue making modifications to the previous project.

1. Bring up project Google3 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project as . . . and provide the new name Google4. You'll make changes to the
Google4 project.

4. Change the project's title to Google Search 4.

Before you add components to project Google4, look at Figure 6-7, the design canvas for this project. You can see the
placement of the buttons and the two output text components (faint dotted lines) below. Also, the web services
component, googleSearchServiceClient1, appears in the nonvisual tray at the bottom.

Figure 6-7. Design canvas showing component layout for project Google4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add Button and Image File

1. Move the timeCount and result output text components down on the design canvas to make room for the arrow
graphics components. (Leave the inline message component right below the text field.)

2. From the JSF Standard Components palette, select Button and drop it onto the design canvas. Place it under the
inline message component off center to the left. Change its id attribute to prev1 by selecting id in the Properties
window.

Creator Tip

You're changing the standard id that Creator uses because it's easier to keep
track of the components in the Java page bean file. By using meaningful id
names (such as prev1 and next1), the associated action methods that Creator
generates will have meaningful names, too.

3. In the Properties window, set attribute title to Get the previous set of results for its tooltip.

4. Make sure the button is selected. In the Properties window, scroll down to the section labeled Advanced. Click
the small editing box opposite attribute image. Creator pops up an image selection dialog.

5. Browse to directory FieldGuide/Examples/WebServices/images in this book's download directory and
select file arrow.blue.left.gif. Click OK. Creator copies the image file to the Resources folder and the left-
arrow image should now appear on the design canvas.

6. With the button still selected, scroll the Properties window back up and click the small editing box next to the
value attribute. When an editing box pops up, click the Reset to default button. This removes the value attribute
from the generated JSF tags for the prev1 button.

Here's the JSP code that Creator generates for the prev1 button with the image attribute set to the .gif file in the
project's resources folder.

<h:commandButton binding="#{Page1.prev1}"

image="resources/arrow.blue.left.gif"

style="position: absolute; left: 48px; top: 144px"/>

A Second Button and Image File

Follow the same procedure to add a second button and a second image to the page.

1. From the JSF Standard Components palette, select Button and drop it onto the design canvas. Place it under the
inline message component off center to the right. Change its id attribute to next1 by selecting id in the
Properties window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. In the Properties window, set attribute title to Get the next set of results for its tooltip.

3. Make sure the button is selected. In the Properties window, scroll down to the section labeled Advanced. Click
the small editing box opposite attribute image. Creator pops up an image selection dialog.

4. Browse to directory FieldGuide/Examples/WebServices/images in this book's download directory and
select file arrow.blue.right.gif. Click OK. Creator copies the image file to the Resources folder and the right-
arrow image should now appear on the design canvas.

5. With the button still selected, scroll the Properties window back up and click the small editing box next to the
value attribute. When an editing box pops up, click the Reset to default button.

Deploy and Run

You might want to experiment with the placement of these newly added graphic components. Deploy and run project
Google4. (The arrow buttons won't do anything useful, but you should be able to display the 10 results as before.)
Check the placement of the components and adjust them if necessary.

Creator Tip

Actually, the arrow buttons clear the page (why?). To see the search results again,
click the Google Search button. The page is cleared because clicking an arrow
button generates an action event, which initiates the JSF page life cycle process
(see Figure 6-5 on page 185). You haven't specified any action, but the system
proceeds through the different life cycle phases anyway. Before reaching the
Process Validations phase, the system executes beforeProcessValidations(), which
clears the page.

Add SessionBean1 Properties

You will soon add control variables to the Page1.java file. These values keep track of the current index and other
controls you need for displaying more than the first page of results. To maintain these values across page requests, you
add them to the SessionBean1 managed bean as properties. This automatically puts them in session scope. Here are
the steps to add properties to SessionBean1.

Creator Tip

Creator allows you to interactively add properties to its managed beans
(SessionBean1 for example). However, in this case, it's easier to simply copy and
paste the code directly into the Java source file.

1. From the Project Navigator window, select Java Sources > google4.

2. Double-click file SessionBean1.java. This brings it up in the Java source editor.

3. Add instance variables with their setters and getters for the properties referenced in Page1.java. Copy and
paste from file FieldGuide/Examples/WebServices/snippets/google4_sessionbean.txt.

Here's the SessionBean1.java source.

Listing 6.4. SessionBean1.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.4. SessionBean1.java

package google4;

import com.sun.jsfcl.app.*;

public class SessionBean1 extends AbstractSessionBean {

 // State variables saved in session scope

 private Integer startIndex = new Integer(0);

 public Integer getStartIndex() { return startIndex; }

 public void setStartIndex(Integer si) { startIndex = si; }

 private Integer currentCount = new Integer(0);

 public Integer getCurrentCount() { return currentCount; }

 public void setCurrentCount(Integer cc) {

 currentCount = cc; }

 private Integer totalCount = new Integer(0);

 public Integer getTotalCount() { return totalCount; }

 public void setTotalCount(Integer tc) { totalCount = tc; }

. . .

}

Specify the Action Code

When a user clicks the right-arrow button, the web application should display the next 10 results from the Google
search. Conversely, clicking the left-arrow button displays the previous 10 results. Because you'll make similar calls to
the Google search API, you should place this code in its own method. Furthermore, you need to keep track of the
current start index and previous index so that you know how to access the results data when the user clicks right arrow
or left arrow.

1. In the design canvas for Page1, select the right-arrow button, next1, and double-click.

2. Creator brings up the Java page bean file, Page1.java, and displays the generated event handler,
next1_action().

3. To keep track of the index variables and the result count information that Google returns, you'll need integer
control variables. Scroll up the Page1.java file until you find the declaration for private variable mySearchResult.
Immediately after this line (shown below), add the following declarations. Copy and paste file
FieldGuide/Examples/WebServices/snippets/google4_variables.txt.

private GoogleSearchResult mySearchResult;

private int startIndex = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private int startIndex = 0;

private int prevIndex = 0;

private int currentCount = 0;

private int totalCount = 0;

The startIndex, currentCount, and totalCount integer variables are saved and restored in session scope for the action
handlers. To do this, you'll use methods saveState() and restoreState() and the SessionBean1 object that Creator
generates for you from SessionBean1.java.

Let's look at the saveState() method first. This method calls setters to store startIndex, currentCount, and totalCount as
equivalently named properties in the SessionBean1 object.

Listing 6.5. Method saveState()

private void saveState() {

 getSessionBean1().setStartIndex(new Integer(startIndex));

 getSessionBean1().setCurrentCount(

 new Integer(currentCount));

 getSessionBean1().setTotalCount(new Integer(totalCount));

}

Note that getSessionBean1() is what you use to access the session object in your page bean. You can use SessionBean1
to store your own data as needed in session scope.[5]

[5] To store session data, be sure to use Integer (one of Java's wrapper classes) instead of an int primitive type.
Integer allows property binding between components and JavaBeans properties.

Next, let's look at getState(). This method calls getters to retrieve the equivalently named properties from the
SessionBean1 object.

Listing 6.6. Method getState()

private void getState() {

 startIndex = getSessionBean1().getStartIndex().intValue();

 currentCount =

 getSessionBean1().getCurrentCount().intValue();

 totalCount = getSessionBean1().getTotalCount().intValue();

}

1. Add the saveState() and getState() methods immediately after the variable declarations you just added in
Page1.java. Copy and paste from
FieldGuide/Examples/WebServices/snippets/google4_save_restore.txt.

2. Most of the code that resides in the search_action() event handler can be pulled out and placed in a method that
all three action event handlers will call. Let's call this new method doSearch(). To create the doSearch() method,
use FieldGuide/Examples/WebServices/snippets/google4_doSearch.txt and place it directly before the
search_action() method (near the end of the Java page bean file).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.7. Method doSearch()

public void doSearch(int start) {

 // Update control variables currentCount and totalCount

 // Display results (if there are any)

 try {

 mySearchResult =

 googleSearchServiceClient1.

 googlesearchportDoGoogleSearch(

 "Your Google Key Here",

 (String)searchString.getValue(),

 start,10,true,"",true,"lang_en","","");

 totalCount =

 mySearchResult.getEstimatedTotalResultsCount();

 timeCount.setValue("Search Time = " +

 mySearchResult.getSearchTime()

 + " Number of results returned = "

 + totalCount);

 ResultElement[] myResults =

 mySearchResult.getResultElements();

 currentCount = myResults.length;

 if (currentCount > 0) {

 result.setValue(buildTable(myResults));

 }

 }

 catch (Exception e) {

 log("Remote Connect Failure", e);

 throw new FacesException(e);

 }

}

(Remember, Your Google Key Here needs to be replaced by the licensed key supplied by Google when you register
to access their service.)

3. The search_action() method is now simpler, since all that's required is to reset the index control variables and call
doSearch(). Copy and paste from file FieldGuide/Examples/WebServices/snippets/google4_search.txt to
modify this method. Here's the new code. Note the call to saveState() to save the index variables in the session
object before returning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.8. Method search_action()

public String search_action() {

 // User event code here...

 startIndex = 0;

 prevIndex = 0;

 doSearch(startIndex);

 saveState();

 return null;

}

Clicking the right-arrow button returns the next set of results from Google. To effect this return, update the start
parameter (see Table 6.1 on page 176) of the doGoogleSearch() method. Also note that the code in the action handler
next1_action() is similar to the code in the above search_action(). You just need to check for upper limits in the index
control variables.

4. Add code to the next1_action() event handler. Copy and paste from file
FieldGuide/Examples/WebServices/snippets/google4_next1.txt. Here's the code. Note that in this
method, it's necessary to call getState() to restore the index variables from the session object before using them.
Likewise, saveState() saves the index variables in the session object before returning.

Listing 6.9. Method next1_action()

public String next1_action() {

 // User event code here...

 getState();

 prevIndex = startIndex;

 startIndex = startIndex + currentCount;

 if (startIndex >= totalCount || startIndex >= 1000) {

 startIndex = prevIndex;

 prevIndex -= currentCount;

 }

 doSearch(startIndex);

 saveState();

 return null;

}

Now let's add a prev1_action() method to handle action events associated with the left-arrow button.

5. Return to the design canvas by selecting the tab labeled Page1.jsp above the editor pane.

6. Select the left arrow button prev1 and double click. This creates the event handler method in the Java page bean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Select the left arrow button prev1 and double click. This creates the event handler method in the Java page bean
file for you and places the cursor at the beginning of the method.

7. Add the following code to the empty prev1_action() method. Copy and paste from file
FieldGuide/Examples/WebServices/snippets/google4_prev1.txt.

Listing 6.10. Method prev1_action()

public String prev1_action() {

 // User event code here...

 getState();

 prevIndex = startIndex - currentCount;

 startIndex = prevIndex;

 if (startIndex <= 0) {

 startIndex = 0;

 prevIndex = 0;

 }

 doSearch(startIndex);

 saveState();

 return null;

}

You'll note that the structure of prev1_action() is similar to the next1_action() method.

One final modification is necessary in Page1.java. In method buildTable(), HTML tags produce the results table. Recall
that you display the index number of the result. This index number starts at 0 and when there are 10 results continues
through index 9. As you display other pages, this index number should reflect the number of the result.

8. Change variable i in the HTML tags (which is simply the index of the results array), to the expression (i +
startIndex) for the correct result count. (So, for example, the second page of results will typically span indices 10
through 19.) To make this easy for you, here is the modified buildTable() method in its entirety with the
modification in bold.

Listing 6.11. Method buildTable()

public String buildTable(ResultElement[] results) {

 String str = "<table border=\"2\" cellpadding=\"2\""

 + " width=\"720\"><tbody>";

 // Set href to the url and the display text to the title

 // Include the index number

 // Place the snippet in the row underneath

 for (int i = 0; i < results.length; i++) {

 str = str + "<tr><td>" + (i + startIndex) +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = str + "<tr><td>" + (i + startIndex) +

 "</td><td>";

 str = str + results[i].getTitle() +

 "</td></tr><tr><td colspan=\"2\">";

 str = str + results[i].getSnippet() + "</td></tr>";

}

 // Close html table tag

 str = str + "</tbody></table><p><p>";

 return str;

}

Deploy and Run

Deploy and run project Google4. You should be able to page through multiple result sets by using the arrow graphics
"right" and "left." Figure 6-8 shows the third page of a result set. (Note that we moved the location of the arrows to get
a bit more output into the screen shot. This is very easy to do with Creator's design canvas.)

Figure 6-8. The Google Web Search application displaying the third page of results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Under the Hood

After running the project from Creator and testing the web application, you could easily assume that everything works.
Another important test is to run more than one session concurrently, possibly from different machines. Once the web
application is deployed, you can easily begin another session by specifying its URL from your browser, as follows.

http://localhost:18080/google4/faces/Page1.jsp

To invoke the application from a remote machine, substitute the ISP or machine name for localhost. Once you have two
or more applications running, perform different searches and page through the searches.

Each session is served by its own thread. This means that every session has its own copy of the control variables stored
in session scope as properties of SessionBean1. The web form, Page1, is in request scope. It is created anew with each
page request. What a jumbled mess there would be without each session having its own copy!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Key Point Summary

Web services provide a standard way to access services over a network in a heterogeneous environment.

The Google web service API provides a SOAP interface to search Google's index of pages.

Initiate a search of the Google engine by invoking the doGoogleSearch() method in the Google web service API.

Use image components to add graphics to your web pages.

The text field component allows users to type in and edit textual information.

The button component allows users to initiate an action. The action method associated with the component is
called an event handler.

You can access methods of a web service by dragging its node onto the design canvas. Web services appear in
the nonvisual component tray at the bottom of the design canvas

Use an output text component to display read-only text. Setting its escape attribute to false allows correct
rendering of HTML formatting tags. JSF dynamically sizes the output text component for you.

Use a hyperlink component for data-driven URLs. Clicking a hyperlink component does not generate an event.

The length validator makes sure that input is within a certain range for length. It does not check for empty
fields.

The required attribute makes sure the field is not empty.

Validators write error messages to the JSF context. Use an inline message component to display error messages
generated by a specific component.

The JSF framework provides a life cycle for a JSP page request.

You can define methods to access the life cycle at its various phases.

To display an image instead of the normal "button" graphic for a button component, specify an image file
(attribute image) instead of a text value (attribute value) in Creator.

Page1 lives in request scope. You can store information you need to access across page requests as properties
in SessionBean1, which is defined in session scope.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Accessing Databases
Topics in This Chapter

Database Basics

JDBC RowSet Technology

Data-Aware Components

Master-Detail Relationship with Components

Query Editor

Converters

Database Operations

Cascading Deletes

One of Creator's key goals is to simplify web application development with databases. To that end, Creator lets you add
data sources to your projects and select them with the Server Navigator window. Once you add a data source to your
project, you can select and view individual tables, including field names for each column.

Creator also gives you components that are data aware. Using the design canvas, you can select a number of different
components and visually position them on your web page. You can select tables and add them to your application as
rowsets, binding the components to the data from the rowsets. You can visually select or deselect columns to display,
add tables to create database queries with "join" commands, and modify queries to include parameters. You can also
modify transaction isolation levels and concurrency attributes through a rowset's Properties window.

Creator relies on multiple technologies to make this all happen. Besides using the JSF component and event models that
we've already shown you, Creator makes use of JDBC and JDBC RowSet technology to simplify accessing the database.

In this chapter, we use a Music Collection Database for the project examples. Before we start, however, we review
database and JDBC fundamentals and show you the organization of our Music database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Database Fundamentals
We begin with an overview of databases and JDBC, discussing database tables and how to access data with JDBC. If
you're already familiar with these subjects, you can skip to the next section.

A relational database consists of one or more tables, where each row in a table represents a database record and each
column represents a field. Within each table, a record must have a unique key. This key, called a primary key, enables
a database to distinguish one record from another. If a single field in a database table does not uniquely identify a
record, a composite primary key can be used. A composite primary key combines more than one field to uniquely
identify records in a database table. Each field of a composite primary key should be defined as a primary key.

A field within a table is either a primary key, a foreign key (used by the database to reference another table), or just
plain data. To set up a database table, you must define fields so that the database software can maintain the integrity
of the database. If a field is not "just data," then constraints are attached to the field. The description of the table's
fields, data types, and constraints make up the metadata associated with the table. Creator uses metadata to help you
configure your web application to access the database efficiently.

A very simple database consists of only a single table. However, many database schemata require multiple tables to
efficiently represent related data. For example, our Music Collection database centralizes the information about each
recording artist in one table. This table also cross-references a RecordingArtistID field in another table that stores data
about a specific recording. Thus, if a recording artist has more than one recording, you don't have to duplicate the
recording artist information.

To achieve cross-referencing and to avoid data duplication, you can mark a field in a database table as a foreign key. A
foreign key in one table always matches either a primary or foreign key in another table. This is what helps you "relate"
two or more tables.

Music Collection Database

The Music Collection database consists of four related tables. The database stores information about music recordings, a
generic term we apply to music CDs and older LPs (long-playing records). Figure 7-1 shows the four tables, the fields in
each table, and how they relate to each other through the foreign keys.

Figure 7-1. Music Collection Database Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Recordings table contains the bulk of the information about a recording. Its primary key (denoted PK) is the field
RecordingID. It has two foreign key fields (denoted FK): RecordingArtistID and MusicCategoryID. These foreign key
fields refer to records in the Recording Artists table and the Music Categories table, respectively. For each row in the
Music Categories table, there may be multiple rows in the Recordings table. (We indicate this relationship by placing the
word Many next to the Recordings table and the numeral 1 next to the Music Categories table.) Similarly, for each row
in the Recording Artists table, there may be multiple rows in the Recordings table. In the diagram, we show foreign key
field names on the lines that relate two tables.

The Tracks table contains information about each track belonging to a recording. To determine which recording a track
belongs to, we include the RecordingID as a foreign key in the Tracks table. Thus, for each row in the Recordings table,
there are multiple rows in the Tracks table.

JDBC RowSets

Java DataBase Connectivity (or JDBC) evolved as a standard way for Java programs to perform relational database
operations. The JDBC API is database independent and relies on a JDBC driver that translates standard JDBC calls into
specific calls required by the database it supports. Different drivers provide access to different database products.

Before RowSets were added to JDBC, connecting to a database and performing queries was rather clumsy. The end
result of a typical query was a ResultSet object. Basically, a ResultSet object is a table that consists of columns and
rows. A cursor points to the current row, and you extract data from the columns as fields. Initially, the cursor is
positioned before the first row, so you have to increment it before grabbing any data. Since the JDBC 2.0 specification,
a ResultSet object includes methods to manipulate the cursor position, but not all JDBC drivers support this feature. For
maximum portability, ResultSet objects should be read once in a forward direction only.

A JDBC RowSet object is a connected rowset that extends a ResultSet object. RowSet objects are structured to make
the JDBC driver look like a JavaBeans component. Properties in RowSet objects may participate in event notification.
RowSet listener methods include cursorMoved() (invoked when the RowSet's cursor moves), rowChanged() (invoked when
one or more values in a row changes), and rowSetChanged() (invoked when the contents of the whole rowset change).
JDBC RowSet objects are more flexible than ResultSets because they are scrollable and updatable.

When you select a data source from Creator's Server Navigator window, Creator generates code in the Java page bean
file to access the data source through RowSet objects. To see how this works, here is some generated code that
accesses the Recordings table of our Music Collection Database.

recordingsRowSet.setDataSourceName(

 "java:comp/env/jdbc/Music");

recordingsRowSet.setCommand("SELECT * FROM RECORDINGS");

First, we establish a connection to the JDBC Music database before creating a query command with setCommand(). Part
of Creator's cleanup tasks includes closing the rowset inside method afterRenderResponse(). (Recall that in the JSF page
request life cycle, method afterRenderResponse() is called at the very end after rendering the page.) Creator generates
the following code for you.

protected void afterRenderResponse() {

 recordingsRowSet.close();

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the JSP side, when you select a data-aware JSF component and bind it to a rowset, Creator generates the JSP code
for you. Here's an example that binds a dropdown list component to the recordingsRowSet object we just showed you
(tag selectOneMenu is the dropdown list component).

<h:selectOneMenu binding="#{Page1.dropdown1}"

 converter="#{Page1.dropdown1Converter}"

 immediate="true"

 onchange="this.form.submit();"

 style="left: 48px; top: 72px; position: absolute"

 value="#{Page1.recordingsRowSet.currentRow.RECORDINGID}"

 valueChangeListener=

 "#{Page1.dropdown1_processValueChange}">

 <f:selectItems binding="#{Page1.dropdown1SelectItems}"

 value="#{Page1.recordingsRowSet

 .selectItems['RECORDINGID,RECORDINGTITLE']}"/>

</h:selectOneMenu>

The embedded selectItems tag holds the selection choices for the dropdown list component. The displayed field is
RECORDINGTITLE and the value field is RECORDINGID (which is returned from the dropdown list component's getValue()
method). We show you how this all works later in the chapter.

Now let's build an application with Creator to access a database and dynamically update a data table component on the
web page.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Data Sources
The first step in our application is to create a Music database and make it available to Creator. Creator is bundled with
the PointBase database server and its JDBC driver for database access through Creator's IDE. Creator requires JDBC
3.0-compliant drivers. As of this writing, the Creator IDE includes drivers for DB2, Oracle, SQL Server, and Sybase. If
you are using any of these database products, you should be able to configure Creator with the provided drivers to
access your database.

Configuring for the PointBase Database

For our Music database example, we assume you're using the bundled PointBase database. Here are the steps to
configure the Data Source in Creator for PointBase.

1. Exit Creator if you have it running.

2. Start up PointBase. In Windows, click the Start button. From All Programs, navigate to Sun Microsystems >
J2EE 1.4 SDK and click Start PointBase. Creator also includes commands to start and stop PointBase.

3. Now start up Creator.

4. In the Creator Server Navigator window, make sure the Data Sources node is opened. Select the Travel
Database.

5. Right-click and select Remove Data Source.

6. Repeat steps 4 and 5 for the Order Database.

7. Exit Creator.

For the following steps, use the files from your Creator book's download directory,
FieldGuide/Examples/Database/utils.

1. Using a file copy utility, copy the following files to Creator's startup/bin directory. Copy

create-music-db.bat

create-music-db.sh

to directory

<Installation Directory>\Sun\Creator\startup\bin

2. Copy file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PBCreateMusicDB.class

to directory

<Installation Directory>\Sun\Creator\startup\samples

3. With PointBase running, execute the Windows script

create-music-db.bat (Windows)

or the Unix script

create-music-db.sh (UNIX)

When the script runs successfully, you will see the message

Music database was created.

4. Start up Creator, right-click Data Sources in the Server Navigator window, and select Add Data Source. The Add
Data Source dialog appears.

5. Supply the values shown in Table 7.1. Click Test Connection to verify that all the values are correct. Click Add to
finish.

Table 7.1. Add Data Source Dialog
Prompt Value

Data Source Name Music

Server Type Pointbase Bundled

Database Name (blank)

Host Name (blank)

User ID root

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password admin

Database URL jdbc:pointbase:server://localhost:19092/Music

Driver Class com.pointbase.jdbc.jdbcUniversalDriver

Creator Tip

Make sure that Data Source Name is still set to Music after you select Pointbase
Bundled from the dropdown menu and before clicking Add. Make sure that the
Database URL includes the database name Music as shown.

Now when you open the Music and Tables node, you'll see four tables in the Music database: MUSICCATEGORIES,
RECORDINGARTISTS, RECORDINGS, and TRACKS.

Loading Other Data Sources

If you configure Creator to use a Data Source other than PointBase, see the sql_readme.txt file in your Creator book's
examples (FieldGuide/Examples/Database/utils). We also provide an SQL script (createMusicDB.sql) that you
can adapt to any SQL-compliant database. This script loads sample music data into a Music database. After the
database tables and data have been built, you tell Creator how to access the database.

Here are the steps to configure a new (non-PointBase) Data Source in Creator.

1. In the Server Navigator window, right-click Data Sources and select Add Data Source from the menu.

2. Under Server Type, select the database product from the dropdown list.

3. Creator supplies default values for the Host Name (localhost), Database URL, and Driver Class. You'll need to
supply values for the Data Source Name, Database Name, User ID (if applicable), and Password (if applicable).
Figure 7-2 shows a screen shot of the Add Data Source window.

Figure 7-2. Add Data Source window

4. Use Test Connection to verify that Creator has all the information it needs to establish a connection to the
database.

5. If the Test Connection succeeds, click Add. You should see the newly added Data Source under the Data
Sources node in the Server Navigator window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Accessing the Music Database
Now that you have a configured database, let's use Creator's data-aware components to build a master-detail
relationship. You use a dropdown list component to hold the "master" information from which you select a single
recording. You then use a data table component to display the recording's details.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as Music1. The selected project
type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window. This is the title displayed by the web application in the title bar in your
browser.

3. Select the input field opposite the name Title and type the text Music DB 1. Finish by pressing <Enter>.

Add an Output Text Component

First, you'll add an output text component to place a heading title on the page.

1. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it near
the top of the page. Don't resize it, and make sure that it's selected.

2. Type the text Music Collection Database followed by <Enter>. This is a Creator shortcut to modify the
output text's value attribute. The component now displays the words you just entered.

3. In the Properties window under Appearance, edit the style attribute. After the position settings, add the following.

; font-family: Helvetica; font-size: 18pt

Press <Enter>. (You may find it easier to click the small rectangle that brings up an editing box. Click OK when
you're done editing.) The output text should now display a bold heading in a larger font.

Add a Dropdown List Component

A dropdown list component creates a dropdown selection menu from a fixed list of choices. You can specify these
choices directly by editing the Properties window, or you can bind this component to a data source and obtain the
selection choices from a database (that is what you're going to do).

Creator Tip

Instead of a Dropdown List Component, you can also use a Listbox component
here. The functionality is the same, but the listbox is rendered as a box with all of
its choices displayed at once. If the selection list is too long, the component
includes a vertical scrollbar. If you'd like to use a Listbox component, skip this
section and follow the steps under "Add a Listbox Component".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the JSF Standard Components palette, select Dropdown List and drag it to the design canvas. Center it
under the previously placed output text component.

2. Right-click inside the design canvas and choose View Page1 Java Class. This opens the Java page bean source
file, Page1.java.

For each component that you place on the page, Creator generates an associated object that is a property
inside the JavaBeans component on your web page. You'll note that it currently contains the two objects from
the components you just added to the design canvas: an HtmlSelectOneMenu (the dropdown list component
named dropdown1) and the HtmlOutputText (the output text component named outputText1). In addition, the
dropdown list component generates two supporting components: dropdown1DefaultItems and
dropdown1SelectItems.

3. Return to the design canvas (select the Page1.jsp tab at the top of the editor pane). Now select the Source tab
at the bottom of the editor pane. This brings up the Page1.jsp source file. You'll see both the <h:outputText>
and <h:selectOneMenu> tags. Note that the dropdown list component also has an embedded <f:selectItems> tag.

Skip over the next section "Add a Listbox Component" unless you've chosen to use a listbox in place of the dropdown
list component.

Add a Listbox Component

Instead of using a dropdown list component to hold the data from the RECORDINGS table, let's use a listbox
component. You can substitute the steps in this section for those outlined for the dropdown list component above.
When you've finished the steps for adding a listbox component, continue to the next section ("Add a Data Source").

A listbox component creates a fixed list of choices that are all displayed. If the list is longer than the space allocated to
the component, a vertical scrollbar provides access to the other choices. Just like the dropdown list component, you can
specify the listbox choices directly by editing the Properties window, or you can bind this component to a data source.

1. From the JSF Standard Components palette, select Listbox and drag it to the design canvas. Center it under the
previously placed output text component.

2. Resize it so that it is wider and longer. (You can experiment with its size by right-clicking in the design canvas
and selecting Preview in Browser.)

The rest of the build steps assume you selected the dropdown list component, although the steps are the same for the
listbox component.

Add a Data Source

1. Make sure the design canvas is visible by selecting the Design tab at the bottom of the editor pane.

2. From the Server Navigator window, expand the Data Sources, Music, and Tables nodes. Select the
RECORDINGS table and drag it to the design view. Drop it on top of the dropdown list component.

A dialog pops up and you see the recordingsRowSet component added to the nonvisual tray at the bottom of the
editor pane.

3. In the dialog, select Fill the List. The text "abc" appears in the dropdown list component, signifying that the data
is of type VARCHAR from the database.

Let's see what Creator knows about the database table at this point (these steps are for the curious-at-heart).

1. Right-click the dropdown list component. From the context menu, choose Fill List from Database. You have
already completed the binding in the previous steps, but this step shows you the database table's metadata (its
fields and table names). Creator displays a dialog with a database rowset, a Value field, and a Display field, as
shown in Figure 7-3.

Figure 7-3. Bind Display to Data dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dropdown list component's value attribute is assigned field RECORDINGID, which is the primary key. Thus,
when you invoke method

dropdown1.getValue();

you'll get the value of the primary key for that selection.

The text that's displayed in the dropdown list is the field selected in the Display field, which is set to
RECORDINGTITLE.

2. Click OK to return to the design canvas.

As you saw from Chapter 2, you can view the actual data from a database table from Creator. Let's do that now.

1. From the Server Navigator window, select Data Sources > Music > Tables > RECORDINGS. Open the
RECORDINGS node (click on '+') and Creator displays the field names.

2. Double-click the RECORDINGS node. Creator displays the table's data in the editor pane. We show this view in
Figure 7-4.

Figure 7-4. RECORDINGS Table View

[View full size image]

Creator Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

In general, it is easier to add a data-aware component to your design canvas before
you add a database table from the selected data source. If the component is
already on the design canvas, you can "drop" the database table directly on the
component and Creator does the binding automatically. You can then modify the
selected fields for the display or change the value attributes if necessary.

Deploy and Run

Although we have only a page heading and a dropdown list, it's a good idea to deploy and run the application at this
point. Go ahead and click the green chevron on the toolbar. A successful deployment is a significant milestone here
because it shows you've successfully queried the database. It's also a good idea to look at the Java page bean to see
how the JDBC RowSet objects are defined and how they are manipulated to obtain the data.

When you run the application, you'll see seven recording titles in the dropdown list. Right now, selecting one doesn't do
anything other than display a different title.

Part of the power of data binding is that you can associate the component's value with a primary key. To display a field
other than the primary key typically has more meaning, however. The component in this example displays the
recording's title. When a user selects a specific title, you obtain the corresponding primary key through the component's
value attribute. The primary key allows you to build additional queries to the database and obtain more details about the
recording associated with that primary key. This is building a master-detail relationship, which is our next step.

Add a Data Table

Now you're ready to do something when the user selects a recording title in the dropdown list. In this section, you will
display the recording's track information: the track number, its title, and its length. The track information is stored in
the TRACKS table and is associated with the recording information through its foreign key, the RECORDINGID. In the
Server Navigator window, expand the TRACKS table under the Data Sources > Music > Tables node (click on '+') to see
the field names. TRACKID is the primary key for the TRACKS table, and RECORDINGID is the foreign key (you may also
want to refer to the diagram in Figure 7-1 on page 207 again).

1. Bring up the design canvas (Page1.jsp).

2. Select the Data Table component from the JSF Standard Components palette and drop it onto the design canvas
under the dropdown list component that's already there.

3. Go to the Data Sources node in the Server Navigator window, choose the TRACKS table, and drop it onto the
data table.

4. Drop the table directly onto the data table component. Creator will do the binding automatically. The data table
should now have five columns (the fields in the TRACKS table).

Creator Tip

If you don't drop the table exactly onto the data table component in the design
canvas, a Choose Target dialog pops up. If this happens, choose the dataTable1
radio button and click OK. If you drop the TRACKS table onto the design canvas
(but not onto the data table component), no binding occurs at all. You'll notice the
tracksRowSet item added to the nonvisual component tray, but the data table is
unchanged. In this case, right-click the data table and select Bind to Database.
Select the tracksRowSet for binding. Auto-generate table columns should be enabled.
Click OK. The data table component will reflect data binding and should now have
five columns.

The next step is to modify what the data table component displays.

1. Select the data table component. (If you have trouble selecting the entire table, position the mouse inside the
data table component on the design canvas and issue successive clicks until Creator indicates that the data
table component is selected.) Now right-click and choose Table Layout.

The Table Layout dialog appears. The Columns format should be selected. There are two lists: Available
columns and Displayed columns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Under the Displayed heading, remove columns TRACKS.TRACKID and TRACKS.RECORDINGID by selecting
these columns and clicking the left arrow (<) button. There are now three columns in the Displayed list, as
shown in Figure 7-5.

Figure 7-5. Table Layout dialog

3. Select Apply, then OK. The data table component should now have only three columns.

4. Now select the data table component. In the Properties window, specify 3 for attribute border. (We like the look;
you be the judge.)

Congratulations, you've just created a table with a data-aware component. You've also manipulated the component by
telling it what columns from the rowset you want displayed. Creator generates code to populate the data table
component and builds headers in the table with the column names. Figure 7-6 shows the design canvas with the data
table component configured for the TRACKS table.

Figure 7-6. Data-aware table component bound to TRACKS table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might want to look at the JSP source Creator generates for the data table component. The data table contains an
embedded column component (for each of its columns), and a column can be rendered by one of several JSF
components. The default is an output text component. Creator uses a JSF <f:facet> tag to render the column headers.

The column's embedded output text component is resized dynamically to fit the data. You can change the look of the
data table's display by modifying its properties in the Properties view. For example, you can change property values for
bgcolor (Background Color), cellpadding, cellspacing, and border.

You can also choose a different embedded component to hold the data. Another popular component to use here is a
text field component, which allows editing. If you select a text field component, you will need to approximate its size (it
won't be sized dynamically). The two components (text field and output text) give different looks. Experiment with this
to get the look you want.

Modify the SQL Query

The modifications you've just performed affect the data table component and its binding to the tracksRowSet component.
The tracksRowSet object includes an SQL query that reads the database. Now you'll use the Query Editor to modify the
default query.

Double-click the tracksRowSet component (select it at the bottom of the editor pane in the nonvisual component
tray). This opens the Query Editor for the tracksRowSet object, as shown in Figure 7-7.

Figure 7-7. Query Editor for TRACKS table

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Query Editor has several views. The top portion (the table view) is a visual view of the data table (or tables)
involved in the query. Here the query references one table, the TRACKS table. Note that all five fields are displayed and
that the primary and foreign keys are marked with key icons. Only the fields that are selected (checked) will be
returned in the query. Here, all fields are checked.

Below the table view is the spreadsheet view of the fields that are returned in the query. Only the fields selected
(checked) in the Output column appear in this view.

At the bottom of the Query Editor is the actual SQL query. As you make modifications to the query, the Query Editor
updates this text.

Add Query Criteria

When the user selects a recording title from the dropdown list component, you want to display only those tracks that
belong to the selected recording. You identify these tracks by matching the track's RECORDINGID foreign key with the
dropdown list component's value attribute, the primary key of the RECORDINGS database table. Let's do this now.

1. In the Query Editor, make sure that the RECORDINGID foreign key in the TRACKS table is checked.

2. In the spreadsheet view, right-click the RECORDINGID field and choose Add Query Criteria from the context
menu.

3. The Add Query Criteria dialog appears. Select radio button Parameter. Figure 7-8 shows the Add Query Criteria
dialog at this point. Leave the Comparison at the default (= Equals), and click OK. These steps add a WHERE
clause to the query.

Figure 7-8. Add Query Criteria dialog

You're almost done, but we have another modification to make to the query. Recall that the TRACKS table contains all
the tracks of all the recordings. In addition, each row contains a track number, which refers to the order in which that
track appears on the recording. This may or may not correspond to the actual order of the information in the database.
We'd like to order the track display (from lowest to highest) in the data table component. To do this, we'll modify the
query so that it sorts the results by track number in ascending order.

1. Locate the TRACKNUMBER field in the spreadsheet view of the Query Editor. Opposite this field, select the Sort
Type cell. A dropdown menu appears.

2. Select Ascending. This step adds an ORDER BY clause to the query. Since this is the only field involved in the
ordering criteria, the TRACKNUMBER Sort Order cell is set to 1.

3. In the table view of the Query Editor, uncheck the RECORDINGID and TRACKID fields. (Although the
RECORDINGID field participates in the selection criteria of the query, we don't include this field in the data that
are returned in the RowSet object.)

Here is your modified query, shown at the bottom of the Query Editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is your modified query, shown at the bottom of the Query Editor.

SELECT ALL ROOT.TRACKS.TRACKNUMBER, ROOT.TRACKS.TRACKTITLE,

ROOT.TRACKS.TRACKLENGTH FROM ROOT.TRACKS WHERE

ROOT.TRACKS.RECORDINGID=? ORDER BY ROOT.TRACKS.TRACKNUMBER ASC

The WHERE clause expects a parameter to match with the RECORDINGID field, and the results will be ordered (in
ascending order) by the TRACKNUMBER field.

4. Return to the design canvas by selecting the Page1.jsp tab. Right-click in the design canvas and select View
Page1 Java Class. Inside the Page1() constructor (unfold the Creator-managed Component Initialization box),
you'll see the updated query appear in the call to tracksRowSet.setCommand().

tracksRowSet.setCommand("SELECT ALL ROOT.TRACKS.TRACKNUMBER,

 ROOT.TRACKS.TRACKTITLE, ROOT.TRACKS.TRACKLENGTH \n

 FROM ROOT.TRACKS\n

 WHERE ROOT.TRACKS.RECORDINGID=?\n

 ORDER BY ROOT.TRACKS.TRACKNUMBER ASC");

Add a SessionBean1 Property

In the previous chapter, you learned how to save control variables in session scope to maintain data across page
requests (see "Add SessionBean1 Properties" on page 195). In this project, you will save the dropdown list's current
selection in session scope. Without this step, the dropdown list returns to its initial state at each page request, since it
exists in request scope. As in the previous chapter, you will add information to the SessionBean1 managed bean as a
property. Call the property recordingID; it will be type Integer. Here are the steps to add property recordingID to
SessionBean1.

1. In the Project Navigator window, expand Java Sources > music1.

2. Right-click on SessionBean1.java and select Add > Property. Creator displays the New Property Pattern
dialog, as shown in Figure 7-9.

Figure 7-9. Adding a property to SessionBean1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Fill in the fields as shown above. Specify recordingID for Name. Select Integer in the dropdown list for Type.
Select Read/Write for Mode. Make sure the options Generate Field, Generate Return Statement, and Generate
Set Statement are all checked.

4. Click OK.

Now you need to provide the instantiation with operator new for property recordingID in SessionBean1.java.

1. From the Project Navigator window, double-click file SessionBean1.java. This brings it up in the Java source
editor.

2. Add instantiation with operator new for property recordingID inside the SessionBean1() constructor. Place it after
the comment, as follows.

// Additional user provided initialization code

recordingID = new Integer(0);

Connect Dropdown List to Query

All that's left is to detect the change in the dropdown list component's selection and use it to set the parameter for the
query with the tracksRowSet object.

1. In the design canvas, select the dropdown list component, right-click, and select Edit Event Handler >
processValueChange. This brings up the Page1 Java class source and places the cursor in the
dropdown1_processValueChange() method. This is the event handler for processing the change in the dropdown
list's value. Creator creates the stub for this event handler for you.

2. Add the code to the dropdown1_processValueChange() method. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/Music1Dropdown.txt. (The added code is bold).

public void dropdown1_processValueChange(ValueChangeEvent vce)

{

 // User event code here...

 getSessionBean1().setRecordingID(

 (Integer)dropdown1.getValue());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (Integer)dropdown1.getValue());

 try {

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable1Model.execute();

 } catch (SQLException e) {

 error("Music: Master Detail " + e);

 log("Music: Master Detail " + e);

 }

}

Use Creator's shortcut <Alt-Shift-I> to add the import statement for SQLException. This code sets the parameter of
the tracksRowSet query (the dataTabel1Model object) to the value attribute of the dropdown1 component (the primary key of
the specific record in the RECORDINGS table). The execute() method executes the query. The selected primary key is
saved in session scope.

3. Return to the design canvas. From the JSF Standard Components palette, select Message List and place it on
the page next to the dropdown list.

Important Creator Tips

You must not throw an exception from any event handler. Instead, use log() (to
record the error in the server log) and error() (to report status to the user).
Throughout this chapter, we use a message list component for all messages
(error and general feedback) to the user. Methods info(), warning(), error() (shown
above), and fatal() all write to the faces context. You need a message list to
display these messages. These methods are all inherited from class FacesBean.
When you bind a data source to a data table component, you manipulate the
associated dataTableNModel object. With all other components, however, you
make calls to the rowset object.

4. Add initialization statements to the Page1() constructor. This code initializes the data table to hold the track
information from the recordingsRowSet's first row. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/Music1Init.txt. (The added code is bold.)

public Page1() {

 // code omitted . . .

 // Additional user provided initialization code

 try {

 if (getSessionBean1().getRecordingID().intValue() == 0) {

 recordingsRowSet.execute();

 recordingsRowSet.next();

 getSessionBean1().setRecordingID(new Integer(

 recordingsRowSet.getInt("RECORDINGID")));

 recordingsRowSet.previous();

 }

 dataTable1Model.setObject(1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 } catch (SQLException e) {

 throw new FacesException(e);

 }

}

5. Return to the design canvas (select the Page1.jsp tab).

6. Right-click the dropdown list component and check the Auto-submit on change option. This adds the JavaScript

this.form.submit();

to the dropdown list component's JavaScript Events onchange attribute in the Properties window. Now when a
user selects a new title from the menu, the system resubmits and updates the page with the new track list.

Deploy and Run

It's time to deploy and run this web application. Figure 7-10 shows what the page looks like as the user is selecting a
title in the dropdown list. Note that as the user selects different recording titles, the data table is updated with the
corresponding track information. The number of rows as well as the width of the columns changes with the new data.
You also see that the track numbers appear in ascending order. (Some of the recordings do not have track lengths.)

Figure 7-10. The Music Collection Database application: selecting title Graceland

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Under the Hood

Besides the code that Creator generates for you in the page bean constructor to initialize the RowSet objects, Creator
also generates code to clean up. Specifically, it closes the database connections with the RowSet's close() method.
Creator uses life cycle method afterRenderResponse(), as follows.

protected void afterRenderResponse() {

 recordingsRowSet.close();

 tracksRowSet.close();

}

This ensures that the database will be in a valid, known state at the beginning of each page request cycle. For more
information on the life cycle methods, see "JSF Request-Response Life Cycle Process" on page 185 (Figure 6-5) and
"Page request life cycle methods" on page 186 (Table 6.4).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Database Joins
Both of the data-aware components we've configured are bound to data that originate from a single database table. In
this section, we'll add a second data table component to the page. Its data will be bound to a rowset that is a result of a
query "joining" multiple tables.

Copy the Project

To avoid starting from scratch, copy the Music1 project to a new project called Music2. This step is optional. If you
don't want to copy the project, simply skip this section and continue making modifications to the Music1 project.

1. Bring up project Music1 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project As and provide the new name Music2. You'll make changes to the
Music2 project.

4. Click anywhere in the design canvas of the Music2 project. In the Properties window, change the page's Title
attribute to Music DB 2.

Add a Second Data Table

1. From the design canvas view of the editor pane, select component dataTable1 and move it down on the page so
that there is room for a one-row data table to fit above it on the page.

2. Select Data Table from the JSF Standard Components palette and drag it onto the web page.

3. Position the component so that it is below the dropdown list component and above the first data table
component you added in the previous section.

4. In the Properties window for dataTable2, change attribute border to 3.

You have added component dataTable2, giving you two data table components on the page. Don't worry about the tables
overlapping each other.

Select a Data Source

1. In the Server Navigator window, select the Data Sources > Music > Tables > RECORDINGARTISTS node and
drop it onto the data table that you just added.

2. If you drop the database source directly on top of the data table, Creator performs the binding automatically.
Otherwise, a Choose Target dialog appears. If this happens, select dataTable2 and click OK.

On the design canvas, the data table contains three columns that correspond to the three fields in the
RECORDINGARTISTS table: RECORDINGARTISTSID, RECORDINGARTISTNAME, and NOTES. You'll also see the
component recordingartistsRowSet added to the nonvisual component tray. Figure 7-11 shows the design canvas with the
two (somewhat overlapping) data table components.

Figure 7-11. Dropping RECORDINGARTIST table on dataTable2

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Modify the SQL Query

1. In the nonvisual component tray, double-click the recordingartistsRowSet component. This brings up the Query
Editor for the selected RowSet object.

2. In the table view (which shows the RECORDINGARTISTS table), uncheck all fields except the
RECORDINGARTISTNAME field.

3. Right-click anywhere in the table view and select Add Table from the context menu. Choose table
RECORDINGS. Click OK.

This step adds an INNER JOIN statement to the SQL query. Note that Creator has modified the query in the
Query View. The Creator SQL code generation figures out which keys are required in order to join the two
tables.

4. The Recordings table is the same one we used with the dropdown list component. Uncheck all fields except
RECORDINGID and RECORDINGLABEL. You'll note that this table contains two foreign keys,
RECORDINGARTISTID (linking it to the RECORDINGARTISTS table) and MUSICCATEGORYID (linking it to the
MUSICCATEGORIES table).

5. Right-click in the table view and again select Add Table from the context menu. This time choose table
MUSICCATEGORIES. Click OK. This step adds another INNER JOIN statement to the SQL query.

6. Uncheck the MUSICCATEGORYID field in the MUSICCATEGORIES table. Figure 7-12 shows the Query Editor's
table view after two tables were added to the query.

Figure 7-12. Table view in Creator's Query Editor after addition of two tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add Query Criteria

1. In the spreadsheet view of the Query Editor, right-click RECORDINGID and choose Add Query Criteria. Select =
Equals criterion and the Parameter radio button. Click OK.

2. Uncheck the RECORDINGID for output (in the spreadsheet view) or uncheck it in the table view.

3. You've now added a parameter to limit the rows returned from the database query based on the value of the
RECORDINGID field. This should return at most one row since there is one recording artist and one music
category for each row in the RECORDINGS table. Here is the modified query.

SELECT ALL ROOT.RECORDINGARTISTS.RECORDINGARTISTNAME,

 ROOT.RECORDINGS.RECORDINGLABEL,

 ROOT.MUSICCATEGORIES.MUSICCATEGORY

 FROM ROOT.RECORDINGARTISTS

INNER JOIN ROOT.RECORDINGS ON

 ROOT.RECORDINGS.RECORDINGARTISTID=

 ROOT.RECORDINGARTISTS.RECORDINGARTISTID

INNER JOIN ROOT.MUSICCATEGORIES ON

 ROOT.RECORDINGS.MUSICCATEGORYID=

 ROOT.MUSICCATEGORIES.MUSICCATEGORYID

WHERE ROOT.RECORDINGS.RECORDINGID=?

Table Layout

1. Return to the design canvas by selecting the Page1.jsp tab at the top of the editor pane.

2. Select the dataTable2 component (use the Application Outline view or click inside the table until the top-level
component appears in the Properties window). Right-click and choose Table Layout.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Choose the following fields from the left window (Available fields). Select the right-arrow symbol (>) and copy
the field name to the Displayed fields window. The Displayed fields should look like this.

RECORDINGARTISTS.RECORDINGARTISTNAME

MUSICCATEGORIES.MUSICCATEGORY

RECORDINGS.RECORDINGLABEL

4. (Get rid of any spurious columns by selecting them and clicking the left-arrow symbol (<).) Select Apply and
OK. Figure 7-13 shows the Table Layout dialog with the fields you want in the Displayed list.

Figure 7-13. Table Layout dialog for dataTable2 component

Java Class Modifications

1. Bring up the Java page bean by selecting the Page1.java tab at the top of the editor pane (or right-click in the
design canvas and select View Page1 Java Class).

2. In the dropdown menu at the top of the Java editor pane, select the event handler method,
dropdown1_processValueChange. In the editor, the cursor is placed at this method for you.

3. First, add code to the event handler. Use file
FieldGuide/Examples/Database/snippets/Music2Dropdown.txt, and add the code where indicated. The
added code is bold.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void dropdown1_processValueChange(ValueChangeEvent vce)

{

 // User event code here...

 getSessionBean1().setRecordingID(

 (Integer)dropdown1.getValue());

 try {

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable1Model.execute();

 dataTable2Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable2Model.execute();

 } catch (SQLException e) {

 error("Music: Master Detail " + e);

 log("Music: Master Detail " + e);

 }

}

4. Add code to the Page1() constructor after the dataTable1Model initialization code you added in the previous
section. This is initialization code to grab the database records corresponding to the RECORDINGID returned in
the first row from the recordingsRowSet component. Some code in the constructor is omitted below. Copy and
paste from your Creator book's file FieldGuide/Examples/Database/snippets/Music2Init.txt. (The added
code is in bold.)

public Page1() {

 // code omitted . . .

 // Additional user provided initialization code

 try {

 if (getSessionBean1().getRecordingID().intValue() == 0) {

 recordingsRowSet.execute();

 recordingsRowSet.next();

 getSessionBean1().setRecordingID(new Integer(

 recordingsRowSet.getInt("RECORDINGID")));

 recordingsRowSet.previous();

 }

 dataTable1Model.setObject(1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable2Model.setObject(1,

 getSessionBean1().getRecordingID());

 } catch (SQLException e) {

 throw new FacesException(e);

 }

}

Deploy and Run

It's time to deploy and run the application. Figure 7-14 shows a screen shot of the page after selection of the recording
title Imagine. Now when you select different titles, you'll see the artist's name, recording label, music category, and
the tracks for the selected title.

Figure 7-14. The Music Collection Database after selection of title Imagine

[View full size image]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Database Updates
The previous example accessed the Music Collection database in a read-only mode. When you add a data table to your
project and bind it to a data source, Creator assumes that the access will be read-only. Furthermore, the embedded
components of the data table component are output text components, which are read-only components.

In this section you'll create a project that allows a user to modify data fields in the database. Many of the steps are
similar to those you've just worked through, but some code changes and some Properties window attributes require
different settings. Let's begin by creating a new project.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as MusicUpdate. The selected
project type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type the text Music DB Update. Finish by pressing <Enter>.

Add an Output Text Component

Place a heading title on the page with an output text component.

1. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it near
the top of the page. Don't resize it, and make sure it's selected.

2. Type the text Update Music Category followed by <Enter>. The component now displays the words you just
entered.

3. In the Properties window under Appearance, edit the style attribute. Add the following after the position settings.

; font-family: Helvetica; font-size: 18pt

4. Press <Enter>. (You may find it easier to click the small rectangle that brings up an editing box. Click OK when
you're done editing.) The output text should now display a bold heading in a larger font.

Add Button and Output Text Components

A button component allows the user to initiate a command. In this project, a button will indicate when a user finishes
editing so that the database can be updated with all of the displayed rows' changes. You use the output text component
to display messages to the user.

1. From the JSF Standard Components palette, select Button and drag it to the design canvas. Position it under the
previously placed output text component. Creator assigns the default identifier name button1.

2. Make sure the button is still selected and type Update Music Database followed by <Enter>. Creator updates
the value attribute in the Properties window. The button's label should now display the words you just entered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it to the
right of the button you just added.

4. In the Properties window, change its id attribute to sqlMessage.

5. Still in the Properties window, click the editing square next to attribute value. In the dialog that pops up, click
Reset to default.

Add a Data Table Component

To display data from the MUSICCATEGORIES table, you need a data table component. The component allows users to
edit and update the data.

1. From the JSF Standard Components palette, select Data Table and drop it onto the design canvas under the
button component that's already there.

2. Go to the Data Sources node in the Server Navigator window. Under Music > Tables, choose the
MUSICCATEGORIES table and drop it onto the data table.

3. Drop the table directly onto the data table component. Creator automatically binds the data to the data table
component. The data table should now have two columns (the fields in the MUSICCATEGORIES table).

Creator Tip

If you don't drop the table exactly onto the data table component in the design
canvas, a Choose Target dialog pops up. If this happens, choose the dataTable1
radio button and click OK. If you drop the MUSICCATETORIES table onto the
design canvas (but not onto the data table component), no binding occurs at all.
You'll notice the musiccategoriesRowSet item added to the nonvisual component
tray, but the data table is unchanged. In this case, right-click the data table and
select Bind to Database. Select the musiccategoriesRowSet for binding. Auto-
generate table columns should be enabled. Click OK. The data table component
will reflect data binding and should now have two columns.

4. Select the data table and modify its attributes in the Properties window. (Click inside the data table component
successive times until the data table appears in the Properties window.) Under category Appearance, make
bgcolor lightcyan, border 2, and cellpadding 6. You should see the appearance of the table change in the design
canvas.

Creator Tip

This step is optional, but it helps bring contrast to the data table and will emphasize
the appearance difference between read-only and editable table cells.

Modify the Table Layout

Now let's modify the data table's layout.

1. Select the data table component, right-click, and choose Table Layout.

The Table Layout dialog appears. The Columns format should be selected. There are two lists: the Available
columns and Displayed columns. You should see both column names in both of these lists.

2. Under the Displayed fields window, select the MUSICCATEGORYID column. In the view underneath you'll see
the column name, Header and Footer fields, and the column's component type. The default component type is
Output Text (read-only). Leave the default setting unchanged.

3. Select the MUSICCATEGORY column in the Displayed fields window. Change the default component type to
Input Text (editable).

4. Click Apply, then OK. Figure 7-15 shows the Table Layout dialog for this step.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Click Apply, then OK. Figure 7-15 shows the Table Layout dialog for this step.

Figure 7-15. Table Layout dialog: changing the component type

Figure 7-16 shows the design view after changing the table layout. The data table component displays two columns.
The first column holds the primary key, and it retains the default display component, output text. The second column
uses a text field component, which enables editing. If you changed the table's bgcolor attribute to lightcyan, you'll see
the text field component is white against the table's cyan background.

Figure 7-16. Design canvas view after changing the table layout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the Button Event Handler

It's time to add the code to process the button's action event.

1. From the design canvas, double-click the button component you added earlier.

Creator brings up the Java source editor with the cursor at the button1_action() method.

2. Add code to the event handler. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicUpdate_button1.txt. (The added code is bold.)

public String button1_action() {

// User event code here...

 try {

 dataTable1Model.commit();

 dataTable1Model.execute();

 info("Update Successful");

 } catch (SQLException e) {

 log("Music Update: " + e);

 error("Music Update: " + e);

 }

 return null;

}

To add the import statement for SQLException, click inside the word SQLException. Press <Alt-Shift-I> and
click OK.

Modify the RowSet's Attribute

To make this application run correctly, you have to change a RowSet property.

1. Return to the design view by selecting the Page1.jsp tab on top of the editor pane.

2. Select musiccategoriesRowSet component from the nonvisual component tray at the bottom of the design view.

3. In the Properties window, click the check mark opposite attribute concurrency. From the dropdown list, choose
selection CONCUR_UPDATABLE. Creator generates code in the Page1() constructor to enable updating for the
RowSet.

4. From the JSF Standard Components palette, select Message List and drag it to the design canvas. Place it next
to the button component. (This component will display messages written to the faces context by methods info()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the button component. (This component will display messages written to the faces context by methods info()
and error().)

Deploy and Run

Deploy and run the application. Figure 7-17 shows you what the page looks like after the user changes several of the
music categories from the original text. Note that you can make changes to more than one row before updating the
database. Also, note that you can't edit the primary key field. To see the music category data changes, select Data
Sources from the Server Navigator window. Expand Music > Tables. Double-click table MUSICCATEGORIES, and Creator
displays the table's data (including the changed fields) in the editor pane.

Figure 7-17. The Music Collection Database: updating the Music Categories table

Under the Hood

Creator helps out with the database updates by providing a data table model component that is bound to the JSF data
table component. When you invoke

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dataTable1Model.commit();

in the button event handler, all of the table's rows are written to the database. There's a few items of interest about the
JSF data table and Creator database operations.

The JSF data table is the only component that has a special, built-in connection to Creator's data table model.
(Note how simple the event handler is in this application.)

If you write an application that updates a database (such as this example), and you use the JSF data table's
paging mechanism, you must issue the commit for the current page before navigating to view the next page's
data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.6 Database Row Inserts
The previous sections showed you how to read a database, create a master-detail database display, perform join
operations with more than one database table, and edit and update a database table. Now you'll create an application
that inserts new data into the database table. This operation is called a row insert.

This application will come up with a data input page to collect data for the row insert operation. It consists of text fields,
labels, and inline message components to collect the data. A button issues the row insert command.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as MusicInsert. The selected
project type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title and
components to the first page.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the text Music DB Insert. Finish by pressing <Enter>.

Add an Output Text Component

Place a heading title on the page with an output text component.

1. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it near
the top of the page. Don't resize it, and make sure it's selected.

2. Type the text Music Collection Database - Add Data followed by <Enter>. The component now displays the
words you just typed in.

3. In the Properties window under Appearance, edit the style attribute. Add the following after the position settings.

; font-family: Helvetica; font-size: 18pt

Finish with <Enter>. The output text should now display a bold heading in a larger font.

Create the Form's Input Components

The next set of components you'll place on the page will gather text for a new database row. A row in the
RECORDINGARTISTS table consist of a primary key (an integer), an artist name (text), and notes (also text). The artist
name field is a VARCHAR field up to 36 characters in length and is required. The optional notes field is a VARCHAR field
up to 200 characters. In our example, the primary key is an integer and must be unique. Many database systems
generate primary keys for you, but we'll have the user supply one here. If an input key number is already in the
database, an SQLException is thrown from the database, allowing the user to choose another key.

For the artist name field, you'll add a component label, a text field to gather data, and a validator to make sure that the
input is valid. You'll also need an inline message component to display error validation messages. Figure 7-18 shows
what the design canvas looks like after the page is populated with these components. We've labeled the component for
the primary key input; you'll use the same components for the artist name and artist notes input. You may find it
helpful to refer to this diagram as you add components to your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

helpful to refer to this diagram as you add components to your project.

Figure 7-18. Design canvas view with components on page

[View full size image]

Components for Artist Name

1. From the JSF Standard Components palette, select Component Label and drag it to the design canvas. Place it
below the output text component on the left side of the page.

2. In the Application Outline view, select the embedded output text component, componentLabel1Text, and change
its value attribute to Artist Name.

3. From the JSF Standard Components palette, select Text Field and drag it to the design canvas directly below the
component label.

4. In the Properties window, change its id attribute to artistName.

5. Set its title attribute to Type in the artist's name. This sets the component's tooltip.

6. Under Data in the Properties window, select attribute required (make sure it's checked).

The database expects a character string, so you'll use a length validator to make sure it doesn't exceed the maximum
length.

1. Select the JSF Validators/Converters bar on the palette. From the JSF Validators/Converters palette, select
Length Validator and drop it directly on top of the text field artistName. This sets the validator attribute of the
artistName component to #{Page1.lengthValidator1.validate}.

2. Using the Application Outline view, select the validator component (lengthValidator1). In the Properties window,
set its minimum to 1 and its maximum to 36.

3. From the JSF Standard Components palette, select Inline Message and place it on the design canvas directly
under the text field component.

4. In the Properties window attribute, showSummary should be checked.

5. Under Appearance and after the position values in its style attribute, add the following.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; font-style: italic

6. In the Properties window for the inline message component, click the editing box opposite attribute for. Select
artistName from the pop-up dialog and click OK. This tells the message component to display error messages
generated on behalf of component artistName.

7. Now select the component label (componentLabel1) in the Application Outline view. In its Properties window, click
the editing box opposite attribute for. Select artistName from the pop-up dialog and click OK.

Components for Artist Notes

For the Artist Notes field, you'll need the same components. Place them to the right of the artist name components,
directly below each other, as follows.

1. Add a component label and change its embedded output text component's value attribute to Artist Notes.

2. Below this add a text field. Change its id attribute to artistNotes.

3. Set its title attribute to Type in notes about the artist. This sets the component's tooltip.

4. Under Data in the Properties window, select attribute required (make sure it's checked).

The database expects a character string, so you'll use a length validator to make sure it doesn't exceed the maximum
length.

1. From the JSF Validators/Converters palette, select Length Validator and drop it directly on top of component
artistNotes. This sets the validator attribute of the artistNotes component to #{Page1.lengthValidator2.validate}.

(Note that you must use a new length validator here. You can't reuse the validator you applied to the artistName
component, since you have to specify different minimum and maximum values.)

2. Using the Application Outline view, select the validator component (lengthValidator2). In the Properties window,
set its minimum to 1 and its maximum to 200.

3. From the JSF Standard Components palette, select Inline Message and place it on the design canvas directly
under the text field component you just added.

4. In the Properties window, attribute showSummary should be checked.

5. Add the following after the position values in its style attribute.

; font-style: italic

6. In the Properties window for the inline message component, click the editing box opposite attribute for. Select
artistNotes from the pop-up dialog and click OK. This tells the message component to display error messages
generated on behalf of component artistNotes.

7. Select the component label (componentLabel2) from the Application Outline view. In its Properties window, click
the editing box opposite attribute for. Select artistNotes from the pop-up dialog and click OK.

Components for Primary Key

For the primary key field, you'll need the same components. Place them to the right of the artist notes components,
directly below each other, as before. Because the primary key is an integer field, you'll also need an integer converter
for the text field component.

1. Add a component label and change its embedded output text component's value attribute to Primary Key.

2. Below this add a text field. Change its id attribute to pkfield.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Below this add a text field. Change its id attribute to pkfield.

3. Set its title attribute to Type in an integer-value primary key. This sets the component's tooltip.

4. Check attribute required.

The database expects an integer value for the primary key, so you'll use an integer converter to convert the user's
input.

1. From the JSF Validators/Converters palette, select Integer Converter and drop it directly on top of component
pkfield. In the converter field under Data, you should see integerConverter1.

2. From the JSF Standard Components palette, select Inline Message and place it on the design canvas directly
under the text field component you just added.

3. In the Properties window, attribute showSummary should be checked.

4. Add the following after the position values in its style attribute.

; font-style: italic

5. In the Properties window for the inline message component, click the editing box opposite attribute for. Select
pkfield from the pop-up dialog and click OK. This tells the message component to display error messages
generated on behalf of component pkfield.

6. Now select the component label (componentLabel3) from the Application Outline view. In its Properties window,
click the editing box opposite attribute for. Select pkfield from the pop-up dialog and click OK.

Add a Button, Output Text, and a Data Source

1. From the JSF Standard Components palette, select Button and drag it to the design canvas. Position it under the
inline message component for the artist name.

2. Make sure it's selected and type Add New Artist followed by <Enter>. The button's label should now display
these words.

3. From the JSF Standard Components palette, select Message List and drag it to the design canvas. Place it under
the button component. (This component will display messages written to the faces context by methods info()
and error().)

4. From the Data Sources > Music > Tables node in the Server Navigator view, select the RECORDINGARTISTS
table and drag it anywhere in the open design canvas. You are not binding it to any components. The
recordingartistsRowSet component appears in the nonvisual component tray at the bottom of the design canvas.

5. Select the recordingartistsRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

Add Initialization Code

First, right-click in the design canvas and select View Page1 Java Class to bring up Page1.java. Go to the Page1()
constructor. Add initialization statements after the Creator-generated code inside its own try block. The initialization
code includes calls to invoke the execute() and next() methods for the recordingartistsRowSet object. This executes the
query and puts the rowset cursor at the first record. Should the user want to insert more than one row, this ensures
that the rowset is in a valid state.

Copy and paste from your Creator book's file FieldGuide/Examples/Database/snippets/MusicInsert_init.txt.
(The added code is bold.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Page1() {

// Creator-managed initialization code

. . . code omitted . . .

 // Additional user provided initialization code

 try {

 recordingartistsRowSet.execute();

 recordingartistsRowSet.next();

 } catch (Exception ex) {

 throw new FacesException(ex);

 } // end try catch

}

Add Button Event Handler Code

Your one remaining task is to the add the code in the button1's event handler to update the RECORDINGARTISTS table.

1. From the design canvas, double-click the Add New Artist button. This brings up the Java page bean,
Page1.java and places the cursor at the button1_action() event handler.

2. Add the following code to the button1_action() method. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicInsert_button1.txt. (The added code is bold).

public String button1_action() {

 // User event code here...

 try {

 recordingartistsRowSet.moveToInsertRow();

 recordingartistsRowSet.updateInt("RECORDINGARTISTID",

 ((Integer)pkfield.getValue()).intValue());

 recordingartistsRowSet.updateString(

 "RECORDINGARTISTNAME",

 artistName.getValue().toString());

 recordingartistsRowSet.updateString("NOTES",

 artistNotes.getValue().toString());

 recordingartistsRowSet.insertRow();

 recordingartistsRowSet.moveToCurrentRow();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 recordingartistsRowSet.moveToCurrentRow();

 recordingartistsRowSet.commit();

 info("Successful Add to RecordingArtists Table");

 } catch (SQLException ex) {

 error("MusicInsert: " + ex);

 log("MusicInsert: " + ex);

 try {

 recordingartistsRowSet.rollback();

 } catch (SQLException f) {

 log("MusicInsert: " + f);

 }

 }

 return null;

}

(We'll fix the red underline syntax error shortly.) When the user clicks the Add New Artist button, the action event
handler prepares the rowset for insertion and fetches the data from the text fields. At this point we know there are no
conversion or validation errors, but it's possible that the primary key provided by the user is not unique within the
table. If this happens, we catch the SQLException error thrown by the database software. The error message is
displayed in the message list component, and the user gets to try again.

Primary Keys

You might want to have your own method that generates unique primary keys
instead of requesting a key from the user. This would eliminate the problem of
duplicate primary keys.

To insert a new row of data, you must invoke method moveToInsertRow() and then update each field. After the fields
have been updated, you call insertRow().

Note the event handler contains nested catch handlers at the end of the try block. The first catch handler accepts an
SQLException thrown from the database. If this happens, the exception's message is displayed in the message list
component (using method error()). The second catch handler catches possible errors from the call to rollback(). If no
exceptions occur, the database was updated and a success message is shown to the user (using method info()).

To fix the syntax error in the event handler, use Creator's fast import shortcut to have the necessary import statements
included.

1. Click inside the word SQLException in the code you just added.

2. Press <Alt-Shift-I>. In the Import Class dialog, choose the Import Class radio button.

3. Click OK. Creator adds this import statement to your file.

import java.sql.SQLException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application. Figure 7-19 shows how recording artist ISAM Band is added to the database.

Figure 7-19. After the insert row operation to the RecordingArtists table

After running the MusicInsert web application, you can check the status of the database by inspecting the tables with
Creator's Server Navigator window. Select Data Sources > Music > Tables > RECORDINGARTISTS. Double-click the
RECORDINGARTISTS table. Creator displays the data in the Table View window of the editor pane.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.7 Database Deletions
Four database operations are represented by the acronym CRUD: Create (insert), Read, Update, and Delete. The
previous sections have shown you all these operations except delete.

Deleting is not that different from the other operations. To demonstrate, we'll build a two-page web application that
deletes a database row as dictated by the selection of a listbox component. The listbox is similar to a dropdown list
component because it displays one field and returns another in its getValue() method. We'll work with the
RECORDINGARTISTS table. The listbox will display RECORDINGARTISTNAME and return the primary key field,
RECORDINGARTISTID. The primary key field will determine the row to delete.

Handle Cascading Deletes

When you target a row for deletion that is referenced with a foreign key in another (related) table, you will have to
delete the related records first. For example, to delete a record in the RECORDINGARTISTS table that is referenced in
the RECORDINGS table, you must first delete the related row in the RECORDINGS table. You can locate the row by
matching its foreign key value for RECORDINGARTISTID.

Furthermore, to delete the row in the RECORDINGS table, you'll also have to delete the related rows in the TRACKS
table. These you find by locating all tracks with a foreign key that matches the RECORDINGSID. This "cascading" effect
that trickles through the database is called cascading deletes.

The database enforces data integrity by preventing deletes on rows referenced by other tables. In our example,
deleting a row in the RECORDINGARTIST table means we have to find and delete the related records in the
RECORDINGS table and TRACKS table. This is not difficult to do, but it does require careful coding.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as MusicDelete. The selected
project type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title and
components to the first page.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the text Music DB Delete. Finish by pressing <Enter>.

Add an Output Text Component

Place a heading title on the page with an output text component.

1. From the JSF Standard Components palette, select Output Text. Drag it over to the design canvas and place it
near the top of the page. Don't resize it and make sure it's selected.

2. Type the text Music Database - Delete Recording Artist followed by <Enter>. The component now displays
these words.

3. In the Properties window under Appearance edit the style attribute. After the position settings, add the following.

; font-family: Helvetica; font-size: 18pt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finish with <Enter>. The output text should now display a bold heading in a larger font.

Create the Form's Components

The set of components that you'll place on this page will display records from the RECORDINGARTISTS table. You'll use
a listbox to display the recording artist name, and you'll provide a button to delete the selection from the database
table. You'll also have an output text component to display errors.

When the user successfully deletes an artist, a second web page comes up. The user can return to the original page by
clicking the Back arrow on the browser to perform another delete.

Figure 7-20 shows the first page's design canvas with all the components added.

1. From the JSF Standard Components palette, select Listbox and drag it to the design canvas. Place it below the
output text component on the left side of the page. You don't need to resize it.

2. From the Data Sources > Music > Tables node in the Server Navigator view, select the RECORDINGARTISTS
table and drop it directly on top of the listbox component. A dialog appears.

3. In the dialog, select Fill the List. The text "abc" appears in the listbox indicating that the data is of type VARCHAR
from the database.

4. The recordingartistsRowSet component appears in the nonvisual component tray.

Figure 7-20. Design canvas view with components on page

[View full size image]

Let's see what assumptions Creator has made about the database table.

1. Right-click the listbox component. From the context menu, choose Fill List from Database. You have already
completed the binding in the previous steps, but this action enables you to view the database table's metadata
(its fields and table names). Creator displays a dialog with a database rowset, a Value field, and a Display field,
as shown in Figure 7-21.

Figure 7-21. Bind Display to Data dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The database rowset is recordingartistsRowSet.

The listbox component's value attribute is assigned field RECORDINGARTISTID, which is the primary key. Thus,
you'll get the value of the primary key for the selection when you invoke method

listbox1.getValue();

The listbox's displayed text is the field highlighted under Display field, which is set to RECORDINGARTISTNAME.

2. Click OK to return to the design canvas.

You'll add a button component and an output text component.

1. From the JSF Standard Components palette, select Button and place it under the title on the right side of the
page. Leave plenty of room since you don't know exactly how much space the listbox will consume when
populated with data.

2. With the button still selected, type the label Delete Selection (No Undo) followed by <Enter>.

3. Select Output Text from the palette and place it below the button. Don't resize it. Change its id attribute to
sqlMessage.

Include Additional RowSets

Figure 7-20 on page 252 shows the rowset components for both the RECORDINGS and TRACKS tables (as well as the
RECORDINGARTISTS table you just added). Let's add these two rowset components now.

1. From the Data Sources > Music > Tables node in the Server Navigator view, select the RECORDINGS table and
drop it directly on top of the design canvas. (Don't drop it on any components.)

The recordingsRowSet component appears in the nonvisual component tray.

2. Again from the Data Sources > Music > Tables node in the Server Navigator view, select the TRACKS table and
drop it directly on top of the design canvas.

The tracksRowSet component appears in the nonvisual component tray.

Modify the SQL Queries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you access these tables from the application, you'll perform a query to select only those rows that have matching
foreign keys for the target row deletion in the RECORDINGARTISTS table (for the recordingsRowSet object) or the target
row deletion in the RECORDINGS table (for the tracksRowSet object). Therefore, you'll need to modify the default query
for both of these objects to add query criteria. This is the same type of master-detail relationship you built in the
Music1 and Music2 projects. Let's modify the recordingsRowSet's query first.

1. Double-click the recordingsRowSet object in the nonvisual tray at the bottom of the editor pane. This brings up
the Query Editor.

2. In the spreadsheet view, right-click the RECORDINGARTISTID field and choose Add Query Criteria from the
context menu.

3. The Add Query Criteria dialog appears. Select radio button Parameter and leave the Comparison at the default
(= Equals). Click OK.

This adds a WHERE clause to the query. Here is the modified query as shown at the bottom of the Query Editor.

SELECT ALL ROOT.RECORDINGS.RECORDINGID,

ROOT.RECORDINGS.RECORDINGTITLE,

ROOT.RECORDINGS.RECORDINGARTISTID,

ROOT.RECORDINGS.MUSICCATEGORYID,

ROOT.RECORDINGS.RECORDINGLABEL, ROOT.RECORDINGS.FORMAT,

ROOT.RECORDINGS.NUMBEROFTRACKS, ROOT.RECORDINGS.NOTES

FROM ROOT.RECORDINGS WHERE ROOT.RECORDINGS.RECORDINGARTISTID=?

4. Now click the tab labeled Page1.jsp at the top of the editor pane to return to the design canvas.

5. Double-click the tracksRowSet object to modify the tracksRowSet query.

6. In the spreadsheet view, right-click the RECORDINGID field and choose Add Query Criteria.

7. In the Add Query Criteria dialog, select radio button Parameter and click OK.

Here is the modified query for the tracksRowSet.

SELECT ALL ROOT.TRACKS.TRACKID, ROOT.TRACKS.TRACKNUMBER,

ROOT.TRACKS.TRACKTITLE, ROOT.TRACKS.TRACKLENGTH,

ROOT.TRACKS.RECORDINGID FROM ROOT.TRACKS

WHERE ROOT.TRACKS.RECORDINGID=?

Add Initialization Code

You'll need to add initialization code to the end of the Page1() constructor.

1. Return to the design canvas by selecting the Page1.jsp tab. Right-click in the design canvas to bring up
Page1.java in the Java editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Page1.java in the Java editor.

2. Select the Page1() constructor from the dropdown menu at the top left of the editor pane. Creator puts the
cursor at the beginning of the constructor.

3. Add the following statements after the Creator-generated code. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicDelete_init.txt. (Added code is bold).

public Page1() {

// Creator-managed initialization code

. . . code omitted . . .

// Additional user provided initialization code

 try {

 recordingartistsRowSet.execute();

 recordingartistsRowSet.next();

 } catch (Exception ex) {

 throw new FacesException(ex);

 } // end try catch

}

4. Return to the design canvas by selecting the tab labeled Page1.jsp.

5. Select the recordingartistsRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

6. Select the recordingsRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

7. Select the tracksRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

8. From the JSF Standard Components palette, select Message List and place it on the page underneath the
button.

Add Button Event Handler Code

You'll now add the button event handler code. Return to the design canvas by selecting the tab labeled Page1.jsp at
the top of the editor pane.

1. From the Page1.jsp design canvas, double-click the Delete Selection button. This brings up the Java page
bean, Page1.java and places you at the button1_action() event handler.

2. Add the following code to the button1_action() method. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicDelete_button1.txt. (The added code is bold). Make
sure you delete the return null statement at the end of the method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public String button1_action() {

 // User event code here...

 int pK = ((Integer)listbox1.getValue()).intValue();

 try {

 recordingartistsRowSet.execute();

 while (recordingartistsRowSet.next()) {

 if (pK == recordingartistsRowSet.getInt(

 "RECORDINGARTISTID")) {

 cascadeDelete(pK);

 recordingartistsRowSet.deleteRow();

 recordingartistsRowSet.commit();

 break;

 }

 }

 } catch (SQLException ex) {

 log("MusicDelete: " + ex);

 error("MusicDelete: " + ex);

 try {

 tracksRowSet.rollback();

 recordingsRowSet.rollback();

 recordingartistsRowSet.rollback();

 } catch (SQLException f) {

 log("MusicDelete: rollback exception " + f);

 }

 return null;

 }

 return "deleteOK";

}

(We'll fix the red underline syntax errors shortly.) When the user clicks the Delete Selection button, the action event
handler prepares the rowset for the delete operation. The while loop gets the value from the listbox and compares it to
the primary key in the rowset's current row. When a match is found, the code inside the while loop calls method
cascadeDelete(pK), deletes the row, and breaks out of the loop. If there are no errors, the method returns string
"deleteOK".

After you add the code for method cascadeDelete(), the red underlines will disappear. Let's fix the error with
SQLException first. You'll use Creator's fast import shortcut to add the necessary import statement.

1. Click inside the word SQLException in the code you just added.

2. Press <Alt-Shift-I>. In the Import Class dialog, choose the Import Class radio button.

3. Click OK. Creator adds this import statement to your file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import java.sql.SQLException;

Add Method Cascade Delete

Now let's look at the cascadeDelete() method. Its argument is a key, specifically, the RECORDINGARTISTID
corresponding to the selected row in the RECORDINGARTISTS table. This method finds the related records in both the
RECORDINGS and TRACKS tables.

Creator Tip

Method cascadeDelete() may not be necessary for some database configurations.
Check with your database software.

Method cascadeDelete() has a throws clause. This allows you to call RowSet object methods without creating a new try
block. Since the button event handler calls cascadeDelete() within its own try block, it will catch any thrown exceptions
from cascadeDelete(). Inside the method, nested while loops iterate through the data. The outer while loop steps through
the recordingsRowSet object and finds the related records in the TRACKS table. The inner while loop steps through the
tracksRowSet.

Here is the code for the cascadeDelete() method, which you can place in front of or after the button handler. Copy and
paste your Creator book's file FieldGuide/Examples/Database/snippets/MusicDelete_cascade.txt.

private void cascadeDelete(int foreignKey) throws SQLException

{

 recordingsRowSet.setInt(1, foreignKey);

 recordingsRowSet.execute();

 while (recordingsRowSet.next()) {

 tracksRowSet.setInt(1, recordingsRowSet.getInt(

 "RECORDINGID"));

 tracksRowSet.execute();

 while (tracksRowSet.next()) {

 tracksRowSet.deleteRow();

 tracksRowSet.commit();

 }

 // delete matching recording

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // delete matching recording

 recordingsRowSet.deleteRow();

 recordingsRowSet.commit();

 }

}

Set Up the Second Page

Let's create the second page, add a navigation rule, and add an output text component to the page.

1. From the design canvas, right-click anywhere in the background and choose Page Navigation.

2. The Page Navigation editor comes up and displays Page1.jsp. Click anywhere in the background and choose
New Page. Accept the default name, Page2.

3. Click inside Page1.jsp and draw a navigation arrow to Page2.jsp. Specify case label deleteOK (the string that
matches the button event handler return value). This is the only navigation rule you'll define for this project.

4. Now double-click inside Page2.jsp. Creator brings up the design canvas for Page2.

5. Select Output Text from the palette and drop it onto the design canvas. Type the text Record was
successfully deleted from the database table followed by <Enter>. The text will appear on the page.

6. In the Properties window under Appearance, edit the style attribute. After the position settings, add the following.

; font-family: Helvetica; font-size: 14pt

7. Press <Enter>. The output text now displays a bold heading in a larger font.

Deploy and Run

From the main menu bar, select Build > Run Project to deploy project MusicDelete. Figure 7-22 shows the application
as the user is about to remove Steely Dan from the database by clicking the Delete Selection button.

Figure 7-22. MusicDelete application's initial page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After running the MusicDelete web application, you can check the status of the database by inspecting the tables with
Creator's Server Navigator window. Select Data Sources > Music > Tables > RECORDINGARTISTS. Double-click the
RECORDINGARTISTS table. Creator displays the data in the Table View window of the editor pane. Inspect tables
RECORDINGS and TRACKS using the same key strokes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.8 Key Point Summary

The Java Database Connectivity (JDBC) and JDBC RowSets technology provide a portable way to access a
relational database using SQL.

A JDBC RowSet object is a connected rowset that extends a ResultSet object.

When you select a data source from Creator's Server Navigator window, Creator generates code in the Java
page bean to access this data through RowSet objects. The default access is read-only.

The Music Collection Database consists of four related tables, as diagrammed in Figure 7-1 on page 207.
Relational databases use foreign keys to relate records from one table to records of another table.

A dropdown list creates a selection menu from a fixed list of choices. You can bind the component to a rowset to
obtain the selection choices from a database.

A listbox component creates a fixed list of choices that are all displayed. You can also bind this component to a
rowset.

Selection components (such as dropdown and listbox) let you specify a database field for display and a different
database field for its value. This allows meaningful text to be displayed to the user and at the same time the
selection is automatically tied to a row's primary key.

Adding a data table (a Data Source) to your Creator project creates a rowset, which is a nonvisual component.

Creator generates code in the page bean constructor to initialize the database rowset object. Creator also
generates close() statements in the afterRenderResponse() method to close the connection to the database.

You can add a data table component and bind it to a database rowset. You can modify which columns are
displayed and the embedded component to use with the data table (output text is the default). You can also
apply data converters to a column.

You can control the data that is returned by invoking the Query Editor.

You can use the Query Editor to sort the rowset, add a criterion based on a parameter or a fixed value, or
create a JOIN by adding additional database tables.

You can edit and update data in your underlying database when you bind a data table component to a rowset
and edit the fields in the component.

You can insert or delete rows in a database by manipulating the data's RowSet object.

Database applications that perform delete operations must handle cascading delete situations when the
database contains related tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Customizing Applications with Creator
Topics in This Chapter

Localizing and Internationalizing Applications

Setting Up Properties Files

Locales and Languages

Configuring Your Browser

Setting a Locale from Your Application

Creating Custom Validation

Accessing a Custom Validation Method

Using Localized Error Messages

An IDE like Creator is only as good as its supporting technology. Fortunately, Creator is built on the solid foundation of
JSF, and under that, live a host of other Java technologies that we've touched upon. One area that you'll explore in this
chapter is the duo of localization and internationalization.

Another important facet of web application design is providing custom validation. We show you how to write a custom
validator method for your Creator project. You'll be able to validate a component's input, control error message display
with a message component, and use localized error messages.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Localizing an Application
Localization means that you customize an application to a given locale. The Java programming language has the
concept of a locale that affects many objects. For example, the String class has a version of toLowerCase() that takes a
Locale object as its argument. When you supply this argument, toLowerCase() uses the Locale's idea of translating a
String to lowercase letters. More commonly, you use Locale to control the format of a Date object or a monetary
amount, using the local currency symbol.

Consider the following Java code fragment.

import java.util.*;

import java.text.*;

. . .

Locale currentLocale = new Locale("en", "US");

Date myDate = new Date();

DateFormat df = DateFormat.getDateInstance(

 DateFormat.LONG, currentLocale);

System.out.println(df.format(myDate));

The DateFormat class uses the locale argument (if provided) to determine how to format the date. Here we provide a
locale language ("en" for English) and country ("US" for the United States). The println statement produces

April 2, 2004

But if we change the country locale to "GB" for Great Britain, the output becomes

02 April 2004

to reflect the customary British date format. Furthermore, if we use Spanish and Spain ("es" and "ES" for español and
España, respectively), we get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

España, respectively), we get

2 de abril de 2004

However, it's not good enough to simply customize an application for a specific locale. You also need to make your
application language independent. To accomplish this task, you gather all the text messages, error messages, and
labels from your web page and put them in a "properties" file. Each properties file isolates messages for a specific
Locale. To run a program, you "bundle" those messages that are specific to the user's Locale. This creates a
ResourceBundle containing locale-specific objects.

The project example in this section shows you how to

create the property file that holds localized messages;

configure your application to accept localized messages;

create and load the resource bundle that makes the localized messages available to the pages in your
application; and

allow the user to dynamically change the locale.

A Word About Locales

Locales designate both a language and a country (or region). Many readers are aware of the differences between British
English and American English, for example, so specifying just a language isn't always good enough. The Spanish spoken
in Mexico is different from that spoken in Spain. Similarly, the French spoken in Montreal is distinct from the French
spoken in Paris.

On the other hand, specifying a generic language (without a country) may be just fine. A locale may represent just a
language or a language and a country.

You can learn more about internationalization[1] from the following tutorial.

[1] The term "i18n" refers to the word internationalization: the 18 letters sandwiched between the initial i and the
final n.

http://java.sun.com/docs/books/tutorial/i18n/index.html

To learn about internationalization support in Java, visit

http://java.sun.com/j2se/corejava/intl/index.jsp

Localize Application Labels and Text

Much of the time we forget to plan ahead for localization and are therefore forced to localize an application after it's
already written. For our first example, let's localize project Login2 from Chapter 5. Then we'll internationalize it and
provide a way for the user to select the application's language

Localizing an application means that the messages and labels on the page are determined by the locale. When there are
no explicit instructions to use a particular locale, a properly localized application simply uses the default locale.

Let's start with opening up project Login2 from Chapter 5

Copy the Project

To avoid starting from scratch, copy project Login2 to a new project called Login3. This step is optional. If you don't
want to copy the project, simply skip this section and continue making modifications to the Login2 project.

1. Bring up Creator and open project Login2 from Chapter 5

2. From the File menu, select Save Project As and provide the new name Login3. You'll make changes to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. From the File menu, select Save Project As and provide the new name Login3. You'll make changes to the
Login3 project.

Specify Title

In the design view of the editor pane, change the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the new title Login 3. Finish with <Enter>.

Isolate Labels and Text Messages

Go ahead and deploy project Login3 unchanged. Recall that the project consists of three pages: the initial page
(Page1.jsp), the page you get when you successfully login (LoginGood.jsp), and the login failure page
(LoginBad.jsp). Provide input for a successful login as well as errors. (For a successful login, type "rave4u" for both
the username and password fields.) Note that you get validation errors when you fail to provide any input. (Fortunately,
the JSF validators are already localized components. You'll notice that when you provide support for different locales,
these components automatically provide locale-specific text.)

To isolate the text in a web page, you must extract each label or message and put it in a property file. Let's look at the
localized property file in English for this application.

Listing 8.1. asg.messages.login3.properties

welcomeGreeting = Welcome

loginPageTitle = Members Login Page

usernameLabel = Username

passwordLabel = Password

usernameTip = Please type in your username

passwordTip = Please type in your password

loginButtonLabel = Login

resetButtonLabel = Reset

badLogin = Invalid username or password. To try again click

hereHyperlink = HERE

Fortunately, there are not many messages and component labels to extract, but the format is important. The format is
a key (for example, welcomeGreeting listed above), an equal sign (=), followed by the message or label text. Spaces
around the equal sign are optional. You place these key/value pairs in a text file and give it a name with a .properties
extension. If the file represents the default locale, the name doesn't need a locale identifier. Otherwise, append
_LOCALE to the base filename.

With English as the default locale, the name of this file is login3.properties (with no locale designation) in package
asg.messages. Later, you'll implement translations to German and Spanish. These files will have the names
login3_de.properties (for German) and login3_es.properties (for Spanish).

With country codes as well as language codes, use login3_es_ES.properties (for Spanish in Spain) and
login3_de_DE.properties for German in Germany. (By the way, American English is login3_en_US.properties and
British English is login3_en_GB.properties.) Adding country-specific translations involves creating additional
translations with the country-specific filename. You can easily add these to your application later.

Accessing the login3.properties File

The login3.properties file is in the JAR file you added as a Library Reference during the building of project Login2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The login3.properties file is in the JAR file you added as a Library Reference during the building of project Login2
(see "Add a Library Reference to Your Project" on page 133). Creator lets you view the file as a key-value database in
the editor pane, showing all of the locales. Here's how you can view it.

1. In the Project Navigator window under Library References, expand the Bean_Examples > asg.jar > asg >
messages nodes.

2. Under folder messages, select login3.properties file and double-click. Creator displays the key-value data in
the editor as shown in Figure 8-1.

Figure 8-1. Viewing the properties file in Creator's editor pane

[View full size image]

You can use the editor to modify any of the key-value entries, as well as add or remove entries. To add a new key-
value pair, click button New Property and fill in the New Property's dialog, as shown in Figure 8-2. Click OK.

Figure 8-2. New Property dialog for properties files

Create a New Properties File

You can also create a new properties file and add it to your project. Here's how (you don't need to create a properties
file for this project since you imported it using the library reference).

1. In the Project Navigator window, expand Java Sources and select your project's default package name.

2. Right-click on the package name and select New > All Templates.

3. Expand the Java Classes option and select properties.properties. Click Next.

4. Specify a name (mybundle, for example) and click Finish. Creator creates file mybundle.properties and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Specify a name (mybundle, for example) and click Finish. Creator creates file mybundle.properties and
brings it up in the properties file editor. From the editor, you can add key/value pairs, as shown in Figure 8-2 on
page 268

Localize the JSF Source

Once you've created a properties file for at least one locale, you must tell your program where to access these
messages. JSF has a loadBundle tag that accomplishes this. Let's put a <f:loadBundle/> tag in each of your page's JSF
source files, as follows.

1. Bring up the Page1.jsp page in the design editor.

2. Click the Source tab at the bottom of the editor pane. This brings up the JSF source tags for this page.

3. Directly after the <f:view/> tag, open a new line and add the following loadBundle tag. (Put the tag all on one
line.)

<f:loadBundle basename="asg.messages.login3"

 var="messages"/>

The loadBundle tag appears in the Application Outline view under Page1.

With the loadBundle tag, JSF loads the resource bundle from the properties file with basename login3 in package
asg.messages. This selects the properties file that corresponds to the current locale. If no locale is specified, JSF loads
resource property file login3.properties.

The var property specifies how you'll refer to the message text in the rest of the JSF source. Here you've set var to
"messages," so the JSF EL that grabs the text corresponding to the key welcomeGreeting is

#{messages.welcomeGreeting}

Note that messages is the value of the var property and welcomeGreeting is the key in the properties file that corresponds
to the text you want.

Creator Tip

There is a big advantage to having a distinct var property specify a "handle" to the
properties file. If the properties file name changes, you only have to modify the
basename attribute of the loadBundle tag. All of the JSF EL expressions for your
application's components remain unaffected, since they reference the var property.

Now add the same loadBundle tag to the pages LoginGood.jsp and LoginBad.jsp. Go to the Project Navigator window,
double-click the filename, and click the Source tab at the bottom of the editor pane. Copy and paste the loadBundle tag
into each JSP source file at the same spot.

Modify JSF Components for Localized Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You've created the properties file with the localized text. Next, you'll modify the project's components to use it.

1. Bring up the design canvas for the initial page, Page1.jsp.

2. Select the component that displays the page's title, outputText1.[2] Bring up the Property window. Its value is set
to Members Login. Select the small editing square to bring up the dialog box. In the field labeled Current value
setting, change the value to

[2] For each of these steps, you can also use the Property Bindings dialog. Select the component in the
design canvas, right-click, and select Property Bindings. Choose the property you want bind to in the
Select bindable property window. Under New binding expression, specify the binding as indicated. Click
Apply, then Close.

#{messages.loginPageTitle}

Click OK. (Note that the text in the label is removed from the design pane and only the box remains.)

3. Select the component that displays the label for username input, componentLabel1Text. Its value is currently
Username. Change it to

#{messages.usernameLabel}

4. Repeat this process for the component that displays the label for password input (componentLabel2Text), the login
button component (login), and the reset button (reset). Use the following JSF EL expressions for their values.

#{messages.passwordLabel}

#{messages.loginButtonLabel}

#{messages.resetButtonLabel}

5. The two input components have tooltips. Change the title attribute for components userName and password to the
following.

#{messages.usernameTip}

#{messages.passwordTip}

Each of the other two pages contains components as well.

6. Bring up the design canvas for page LoginGood.jsp. Select the output component that's on the page (there's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Bring up the design canvas for page LoginGood.jsp. Select the output component that's on the page (there's
only one) and change its value to (keep it on a single line)

#{messages.welcomeGreeting},

#{SessionBean1.loginBean.username}!

This expression concatenates the welcome greeting text with the user's login name. Figure 8-3 shows the
modified design canvas for page LoginGood.jsp.

Figure 8-3. Using localized messages and property binding

7. Bring up the design canvas for page LoginBad.jsp. There are two components: an output text component and
a link action component.

8. Change the value attribute of the output text component to

#{messages.badLogin}

9. Change the value attribute of the nested output text component (it's under the link action component) to

#{messages.hereHyperlink}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Ok, you've completed the steps for localization, so now it's time to deploy and run the application. If you've done
everything right, you should not see any changes from the Login2 application. The messages are still in English and
the login procedure is unchanged. Underneath, however, there is a big difference. No hard-wired English labels or
messages appear on the page. Everything is read from the properties file you reference for the default locale. The next
step is internationalization.

Creator Tip

If you're having trouble with your application working correctly, here are some
things to check. First, if deploying throws an exception, open the Page1.jsp file in
source mode and make sure you have the asg.messages.login3 properties file
spelled correctly in the <f:loadBundle> tag. Check the other pages, too. If the
application deploys but doesn't work properly, use the Properties window or the JSP
source in Creator to check that all the JSF EL expressions are correct.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Internationalizing an Application
A localized application is much easier to internationalize than one that is not localized. Since you've already extracted
the messages and labels, it won't be difficult to configure your application to access translated versions of the text.

Provide Translations

Fortunately, you can provide translations at any time once you've isolated the text that requires translation. (This is
when you hire a bank of native speakers who can translate your English language text into the target languages.) Here
is our translation for Spanish, in file login3_es.properties.

Listing 8.2. asg.messages.login3_es.properties

welcomeGreeting = !Bienvenido

loginPageTitle = Página del Registro Para Los Miembros

usernameLabel = Username

passwordLabel = Contraseña

usernameTip = Proporcione por favor su Username

passwordTip = Proporcione por favor su Contraseña

loginButtonLabel = Conexión

resetButtonLabel = Despeje

badLogin = Username o contraseña inválido. Para tratar otra vez escoge

hereHyperlink = Aquí

Here is the translation for German, in file login3_de.properties.

Listing 8.3. asg.messages.login3_de.properties

welcomeGreeting = Willkommen

loginPageTitle = LOGIN-Seite Des Mitgliedes

usernameLabel = Username

passwordLabel = Kennwort

usernameTip = Tippen Sie bitte Ihr Username ein

passwordTip = Tippen Sie bitte Ihr Kennwort ein

loginButtonLabel = LOGIN

resetButtonLabel = Zurückstellen

badLogin = Unzulässiges Username oder Kennwort. Um es erneut zu versuchen klicken Sie

hereHyperlink = HIER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the text keys are unchanged from the original version. In any properties file, the keys remain consistent
across all translations. With Spanish and German text isolated into properties files (they're already installed in our JAR
file, asg.jar), the only step left is to tell JSF which locales the application supports.

Specify Supported Locales

Once your configuration is done, you can set up your browser for one of the supported locales. To do this, use an XML
configuration file called faces-config.xml and install it in the same directory as the other configuration files that
Creator generates. Here are the contents. We've included the source in
FieldGuide/Examples/Custom/login3_faces-config.xml (note the different file name here).

Listing 8.4. faces-config.xml

<faces-config>

 <application>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>es</supported-locale>

 <supported-locale>de</supported-locale>

 </locale-config>

 </application>

</faces-config>

Here, the default locale is English (en), and Spanish (es) and German (de) are supported locales.

To install file faces-config.xml in your project, follow these steps.

1. In the Project Navigator window, select the top node Login3, right-click, and select New Item . . . ; Creator
brings up the New Wizard dialog.

2. Under Select a Template, expand node Resources and select XML Document. Click Next.

3. For Target Location, expand path <...>Projects/Login3/src/web and select Web-INF. (Scroll down to the
end of the file list.)

4. At the top of the dialog, specify faces-config for Name. Click Next.

5. Under Select Document Type, choose radio button Well-formed Document and click Finish.

Creator brings up the XML editor for you. Open the login3_faces-config.xml file in your Creator book's download
directory FieldGuide/Examples/Custom and copy and paste the contents into the XML editor pane. Paste over any
XML tags that are already there (use <Ctrl-V>). When you build your project, Creator makes this configuration file
available to JSF.

Configure Your Browser

If you use Internet Explorer, do this:

1. Select Tools > Internet Options > Languages. Click the Add button and select the following lines in the
supported languages box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Spanish [es]

English [en]

German [de]

2. Click OK.

3. To change your locale, select the target language and move it to the top with the Move Up button.

If you use Netscape Navigator as your browser, do this:

Select Edit > Preferences > Languages. Provide the same locale specifications as for Internet Explorer. Select
the target locale and move it to the top with the Move Up button.

Deploy and Run

With the preceding changes, you can run the application in either English, Spanish, or German by configuring your
browser for these different locales. Note that if you don't supply a username or password, the application displays the
error message in the selected language. This is because the JSF validator is already configured to get its text from
locale-specific messages.

Figure 8-4 shows a successful login page in the Spanish version.

Figure 8-4. A successful login with the Spanish version

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Controlling the Locale from the Application
You may want users of your web application to select a language directly without having to modify browser
configurations or change default locale settings. In this example (still Login3), you'll add a dropdown list component to
the initial page that offers language selection for the application. Since the web application has already been
internationalized (for three languages, at least), these modifications are minor.

Here's the approach. You'll use a dropdown list to hold the locale choices. When the user changes the locale, you save
the choice as a property in session scope. Then, when the user returns to the application's initial page, you make sure
that the language choice is still selected in the dropdown component. This save-restore step is similar to the save-
restore you coded in projects Music1 and Music2. Your first step, then, is to add a property to session scope.

Add a SessionBean1 Property

In this project, you will save the dropdown list's current selection in session scope. Call the property myLocale; it will be
type String. Here are the steps to add property myLocale to SessionBean1.

1. In the Project Navigator window, expand Java Sources > login1 (the package name).

2. Right-click on SessionBean1.java and select Add > Property. Creator displays the New Property Pattern
dialog.

3. Fill in the fields as follows. Specify myLocale for Name. Select String from the dropdown list for Type. Select
Read/Write for Mode. Make sure the options Generate Field, Generate Return Statement, and Generate Set
Statement are all checked.

4. Click OK.

Now you need to provide the instantiation with operator new for property myLocale in SessionBean1.java.

1. From the Project Navigator window, double-click file SessionBean1.java to bring it up in the Java source
editor.

2. Add instantiation with operator new for property myLocale inside the SessionBean1() constructor, as follows.

// Additional user provided initialization code

myLocale = new String();

This instantiates an empty String.

Add a Dropdown List Component

Now, let's add a dropdown list component with three language choices.

1. Bring up Page1.jsp in the design canvas.

2. From the JSF Standard Components palette, select component Dropdown List and drag it onto the design
canvas of page Page1.jsp. Place it under the inline message component.

3. In the Application Outline view, select item dropdown1DefaultItems (it's at the bottom of the Application Outline
view).

4. In the Properties window, select the small editing box under items. A dialog pops up. Add the following.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

English [en]

Deutsch [de]

Español [es]

5. Remove the default items in the list and click OK.

6. Select the dropdown list component. Right-click and select Edit Event Handler > processValueChange from the
context menu. This action generates a processValueChange() method for the dropdown list component in the Java
page bean, Page1.java.

Creator Tip

The code you are about to add will cause the Java source editor to complain
because it doesn't have all of the necessary import statements. After you add
the code, we'll show you how to make Creator generate the import statements
for you.

7. Add the following code to method dropdown1_processValueChange(). Copy and paste from file
FieldGuide/Examples/Custom/snippets/Login3_dropdown.txt. The added code is bold.

public void dropdown1_processValueChange(ValueChangeEvent vce)

{

 // User event code here...

 FacesContext context = FacesContext.getCurrentInstance();

 UIViewRoot viewRoot = context.getViewRoot();

 String loc = dropdown1.getValue().toString();

 viewRoot.setLocale(new Locale(

 loc.substring(loc.indexOf('[')+ 1,loc.indexOf(']'))));

 getSessionBean1().setMyLocale(

 (String)dropdown1.getValue());

 }

This method retrieves the faces context and the root view (the top level for all the components on the page).
From the dropdown list's value, it parses the String to extract the locale designation that's between the square
brackets ([de] for German, for example). After setting the locale, the method saves the dropdown list's value in
session scope using property myLocale.

The code you just added is underlined in red because the Java page bean file is lacking three import statements. Here's
how to fix them.

1. First, click anywhere inside the word FacesContext and press <Alt-Shift-I>. Creator pops up the Import Class
dialog and displays javax.faces.context.FacesContext. Choose radio button Import Package and click OK.

2. Repeat this step with the class UIVewRoot. Press <Alt-Shift-I>, and choose Import Package for
javax.faces.component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

javax.faces.component.

3. Choose class Locale and choose Import Package for java.util.

Creator adds the following import statements along with the others in file Page1.java. The red underlines in
your code should go away now.

import java.util.*;

import javax.faces.component.*;

import javax.faces.context.*;

Method dropdown1_processValueChange() saves the new locale selection in session scope as property myLocale. It's the
constructor's job to make sure the dropdown list's selection is initialized to the requested locale. Place this code in the
Page1() constructor after the comment as indicated. Here's the code. Copy and paste from file
FieldGuide/Examples/Custom/snippets/Login3_init.txt. The added code is bold.

public Page1() {

// omitted code . . .

 // Additional user provided initialization code

 if (getSessionBean1().getMyLocale().length() != 0) {

 dropdown1.setValue(getSessionBean1().getMyLocale());

 }

}

Make the following final modifications to your project.

1. Return to the design canvas and select the dropdown list component.

2. Right-click and check Auto-submit on change (it is currently unchecked). This submits the page when the
dropdown list selection changes.

3. Select the secret text component, passWord.

4. In the Properties window, uncheck the required attribute. (Because a dropdown list component was added, you
don't want the validator to flag an error when the password field is empty. An empty password is still an invalid
password submission, so if the user leaves the field blank, the application behaves properly. With this change,
you don't have to supply a password before selecting the target language.)

Delete file faces-config.xml from your project. This is to prevent the locale settings performed by the event handler
from interfering with the settings indicated by your browser. Without the configuration information in faces-
config.xml, the dropdown component's event handler will determine the current locale.

1. In the Server Navigator window, right-click Login3, the top node. Select Show File System View.

2. Expand nodes src > src > WEB-INF. Under WEB-INF, right-click file faces-config.xml and select Delete.
(Click OK to the confirmation.)

3. Right-click Login3 again and now select Clean Project (this removes faces-config.xml from the project's
build).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application. You can now select the target language without configuring your browser. Figure 8-5
shows the initial page (still in English) as the user is about to select German.

Figure 8-5. Setting the locale from the application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Creating Custom Validation
Sometimes you need to provide your own validation for input. There are two approaches to take here. One is to write
your own custom validator that you can use with other projects. Writing your own validator is a lot more work, but it
does give you a reusable component. The other approach is to write a validation method and add it to your page bean.
This is appropriate for input validation that you don't expect to use with other pages or other applications. It's the
easier of the two approaches and a good first step if you're thinking about creating your own custom validator.

Let's see how you can write your own validation method. It's not difficult to do and it gets you up and running quickly.
You can convert it to a validation component later if you want.

You've just learned about localization and internationalization in the previous sections. We're also going to show you
how to make your validation method access the current locale for error messages and post messages to the faces
context. Using the current locale allows you to provide international support for your validator error messages. By
posting error messages to the faces context you can use message components to report validation errors generated by
your custom validation method.

You'll accomplish all this with a simple application that uses a JavaBeans component called ColorBean to store red-
green-blue (RGB) color values. Each color property of ColorBean stores its value as a two-digit hexadecimal string. A
getColor() method returns a String that sets HTML colors. The String's format is #rrggbb, where rr is a two-digit hex value
for red, gg is a two-digit hex value for green, and bb is a two-digit hex value for blue.

The user can modify the two-digit value of any color, but a custom validator makes sure that the user's input is only
two digits and that the digits are valid. The validator also allows upper- and lowercase input for the hex digits a through
f.

This application comes up with all color properties set to the String "ff" (white). See Figure 8-6 for the page layout.
When the user modifies an RGB color value, the background color of the enclosing Grid Panel changes to the new color.

Figure 8-6. Using custom validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a Project

Let's start by creating a project called Color1. When the design canvas comes up, change the Page1.jsp's page title to
Color 1.

Add a Library Reference to Your Project

Before you add components, configure properties files, and create a faces-config.xml file, add a library reference to
your project. You'll use the same JAR file from the previous project. This JAR file contains ColorBean.java (the source
for your JavaBeans component), ColorBean.class (the compiled class file), and the .properties files you'll need to
internationalize the application.

1. Open up the Project Navigator window. This window displays all the resources, pages, Java sources, and
references used by your project.

2. Expand the Library References node (if it's not already expanded). Creator lists several different libraries used
by your project. You're going to add the asg.jar file as a new library reference.

3. Right-click the Library References node and select Create New Library Reference. Creator pops up the Create
New Library Reference dialog. (See Figure 8-7.)

Figure 8-7. Create New Library Reference dialog

4. For Library Name, specify Bean_Examples. Scope should be set to Project.

5. Select tab Class Libraries and click Add. The Open dialog is displayed.

6. Browse to the location of your Creator book's examples. Under directory FieldGuide/Examples select asg.jar
and click Open. Creator adds the JAR file path to the Path Name field. Click OK.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bean_Examples now appears under the Library References node. If you expand it, you'll see the added JAR file,
asg.jar.

Add a ColorBean Property to SessionBean1

Now that you've added the library reference containing the ColorBean class file, you'll need to make it accessible within
your project. Since you want ColorBean to have session scope, let's add it to the managed bean SessionBean1 as a
property. This enables JSF to automatically instantiate the bean when it instantiates SessionBean1. The bean will also
become available to the GUI components as a SessionBean1 property.

Creator Tip

Why put ColorBean in session scope? Although the web project we are building is a
single page application, users will submit the page multiple times. If we want the
previous settings to carry over to each new rendering of the page, then ColorBean's
state must be saved in session scope.

1. In the Project Navigator window, expand the Java Sources folder and then the color1 folder. You'll see the Java
page bean source for your project, Page1.java.

2. You'll also see "template" beans ApplicationBean1.java and SessionBean1.java for beans at application and
session scope, respectively.

3. Right-click the file node SessionBean1.java and select Add > Property. Creator pops up the New Property
Pattern dialog (see Figure 8-8).

Figure 8-8. New Property Pattern dialog

4. Fill in the dialog as follows. Under Name specify colorBean, under Type specify ColorBean, and under Mode,
select Read/Write.

Creator Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

Since Name and Type are case sensitive, make sure you copy the capitalizations
exactly.

5. Options Generate Field, Generate Return Statement, and Generate Set Statement should all be checked. Click
OK to add property colorBean to SessionBean1.

6. Still in the Project Navigator window, double-click the file node SessionBean1.java. This brings up the file in
the Java source editor. Here are the getter /setter methods Creator generated.

/**

 * Getter for property colorBean.

 * @return Value of property colorBean.

 */

public ColorBean getColorBean() {

 return this.colorBean;

}

/**

 * Setter for property colorBean.

 * @param colorBean New value of property colorBean.

 */

public void setColorBean(ColorBean colorBean) {

 this.colorBean = colorBean;

}

You'll note that the code is marked with syntax errors because type ColorBean is unknown in the current compilation
scope. Here's how to fix the errors.

1. In the Java source editor for file SessionBean1.java, click the cursor in the ColorBean class reference.

2. Press the shortcut keys <Alt-Shift-I>. Creator's Java source editor displays the Import Class dialog box as
shown in Figure 8-9.

Figure 8-9. Import Class dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Make sure that asg.bean_examples.ColorBean and radio button Import Class are selected. Click OK.

This adds an import statement for the ColorBean class near the top of source file SessionBean1.java, as
shown below. The added import statement is bold. The red underlines should disappear.

package color1;

import asg.bean_examples.ColorBean;

. . .

Now you'll add the Java code that instantiates (with operator new) the ColorBean object.

1. Still editing file SessionBean1.java, place the cursor after the comment line in the SessionBean1() constructor.

2. Add instantiation with operator new for property colorBean, as follows.

// Additional user provided initialization code

colorBean = new ColorBean();

The code that you added to SessionBean1.java makes the colorBean object a property of SessionBean1. Thus, to
access the redColor property of colorBean (for example), use the following JSF EL expression.

#{SessionBean1.colorBean.redColor}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is how you'll bind ColorBean's properties with the GUI components on your web page. Before you specify binding
for the components, however, let's look at the source code for ColorBean.java.

ColorBean.java Code

The source for ColorBean.java is included in the asg.jar JAR file. Since the JAR file is installed in your project as a
library reference, you can easily view the file in Creator's Java source editor.

1. In the Project Navigator window under Library References, expand nodes Bean_Examples > asg.jar > asg >
bean_examples.

2. Double-click file ColorBean.java. Creator brings it up in the Java source editor as a read-only file for you.

Listing 8.5 shows the source for ColorBean.java.

Listing 8.5. ColorBean.java

// ColorBean.java

package asg.bean_examples;

public class ColorBean {

 private String redColor;

 private String greenColor;

 private String blueColor;

 /** Creates a new instance of ColorBean */

 public ColorBean() {

 redColor = "ff";

 greenColor = "ff";

 blueColor = "ff";

 }

 // Setters

 public void setRedColor(String c) { redColor = c; }

 public void setGreenColor(String c) { greenColor = c; }

 public void setBlueColor(String c) { blueColor = c; }

 // Getters

 public String getRedColor() { return redColor; }

 public String getGreenColor() { return greenColor; }

 public String getBlueColor() { return blueColor; }

 public String getColor() {

 return "#" + redColor + greenColor + blueColor;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return "#" + redColor + greenColor + blueColor;

 }

}

ColorBean has four properties: three are read/write and the fourth is a read-only property (color). All properties have
String values. You will bind three text field components to the properties redColor, greenColor, and blueColor. You'll also
bind the background color of a grid panel to the color property.

Isolate Localized Text

This time you're going to plan ahead for localization. Your application will have a page title, labels for three text field
components, a button label, and two different error messages that result from validation. The properties file will contain
the labels and error messages in English. The name of this file is color1.properties, and it lives in the asg.jar library
under package asg.messages. (You can also find it in your Creator book's download at
FieldGuide/Examples/asg/messages/color1.properties.) The code for this file is shown in Listing 8.6.

Listing 8.6. asg.messages.color1.properties

pageTitleLabel = Color Fun

redValueLabel = Red Value

greenValueLabel = Green Value

blueValueLabel = Blue Value

updateButtonLabel = Update Color

lengthError = Hex numbers must be two digits exactly.

digitError = Hex characters must be [0-9][A-F][a-f] only.

Creator Tip

You can also view the properties file with Creator. In the Project Navigator window
under Library References, expand the asg.jar > asg > messages folders. Double-
click file color1.properties. Creator displays each key-value pair for both the
default locale and the Spanish locale in the editor pane.

Let's add the JSF loadBundle tag to your Page1.jsp source page. This tells JSF to use the resource bundle from the
current locale. Here are the steps.

1. Bring up Page1.jsp in the design canvas.

2. Select the tab labeled Source at the bottom of the design window.

3. Add the <f:loadBundle> tag after the <f:view> tag in the JSP source. Here's the JSF tag. (Put the tag all on one
line.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<f:loadBundle basename="asg.messages.color1"

 var="messages"/>

Now you'll be able to bind the text messages in the .properties file to the components that you place on the page.

Adding Components to the Page

With all the setup work complete, it's time to add the components, event handling code, and validation method to the
page bean. To help you add components to the page, Figure 8-10 shows the design canvas with the components you
need.

1. Bring up the design canvas for the project.

2. From the JSF Standard Components palette, select Output Text and drag the component to the canvas.

3. Change the component's id attribute to pageTitle.

4. Add the following to its style attribute.

; font-family: Helvetica; font-size: 24pt

5. Bind its value attribute to the localized messages, using

#{messages.pageTitleLabel}

(Select the small editing square opposite attribute value. Click OK when finished.)

6. Add component Grid Panel to the page. This component lets you format components within a grid.

7. In the Properties window, change cellpadding to 3, border to 3, and columns to 3.

8. Bind the grid panel's bgcolor attribute to the ColorBean color property. Select the grid panel component, right-
click, and choose Property Bindings. Use the dialog box to select the bgcolor property in component gridpanel1
and bind it to the colorBean.color property under SessionBean1. (See Figure 8-11 for the Property Bindings dialog
box.) Click Apply and Close. The JSF EL expression should be the following.

#{SessionBean1.colorBean.color}

Figure 8-11. Property Bindings dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-10. Design canvas with components added to Page1.jsp for project Color1

[View full size image]

Add Components for Input

For each of the three color values (red, green, and blue) you'll need a component label, a text field component to
gather input, and an inline message component for validation. Each color will occupy a column in the grid panel you
placed on the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

placed on the page.

There are a lot of components to add here, so it's best to place all three labels on the page first, followed by all three
text field components, and finally all three inline message components. As you add the components, check the
Application Outline view to make sure you're not nesting components inappropriately.

Creator Tip

Drag each JSF component from the Design Palette and drop it directly onto
gridPanel1 in the Application Outline window. This is much safer than dropping the
components onto the grid in the design pane, since with the latter technique you
can't control their placement as easily. When you're finished, all the components
should be at the same "level" under the grid panel component (except for the
component label's embedded output text components). Figure 8-12 shows the
Application Outline view after all the components have been added.

Figure 8-12. Application Outline view for project Color1

Table 8.1 shows the component labels, their properties, and the embedded output text component used to display the
label's text.

Table 8.1. Component labels
Component Property Setting

component label (componentLabel1) for redInput

embedded output text value #{messages.redValueLabel}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

embedded output text
(componentLabel1Text)

value #{messages.redValueLabel}

component label (componentLabel2) for greenInput

embedded output text
(componentLabel2Text)

value #{messages.greenValueLabel}

component label (componentLabel3) for blueInput

embedded output text
(componentLabel3Text)

value #{messages.blueValueLabel}

With the component labels, you'll need to specify the setting of property for after you've added the text field
components from Table 8.2. When you set the values for the embedded output text components (componentLabel1Text,
for instance), select the component first in the Application Outline view and then set the value property in the
Properties window. Note that the value attribute for each component matches the associated key from the
color1.properties file (see Listing 8.6 on page 287.)

Table 8.2. Text field components for color input
Component Property Setting

text field id redInput

required true (checked)

validator #{Page1.validateHexString}

value #{SessionBean1.colorBean.redColor}

text field id greenInput

required true (checked)

validator #{Page1.validateHexString}

value #{SessionBean1.colorBean.greenColor}

text field id blueInput

required true (checked)

validator #{Page1.validateHexString}

value #{SessionBean1.colorBean.blueColor}

Table 8.2 shows the text field components and settings you'll use for gathering color value input. All text field
components specify validators, but the validator specification is not one of the standard JSF validators. Instead, the
validator property references custom method validateHexString()

Creator Tip

The Properties window assumes that you will use one of the standard validators.
For custom validators, set the property manually in the JSP source file. Click the
Source tab at the bottom of the editor pane and add the tag validator="#
{Page1.validateHexString}" to each text field.

To bind the value attribute of the text field components to the color properties of ColorBean, select the text field
component and right-click. Select Property Bindings. Creator displays the Property Bindings dialog. Expand the colorBean
property under SessionBean1 and select the desired property as shown in Figure 8-13 (here we show component
blueInput). Make sure you click Apply followed by Close.

Figure 8-13. Property Bindings dialog to specify binding for text field blueInput

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the third row in the grid panel, Table 8.3 shows the inline message components and settings to report validation
errors. Each of the three text field components has an associated inline message component.

Table 8.3. Inline message components
Component Property Setting

inline message for redInput

(inlineMessage1) style font-style:

italic

 showSummary checked (true)

inline message for greenInput

(inlineMessage2) style font-style:

italic

 showSummary checked (true)

inline message for blueInput

(inlineMessage3) style font-style:

italic

 showSummary checked (true)

The grid panel is now set. It has three component labels, three text fields, and three inline messages.

Add a Button and an Output Text Component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's add a button component and an output text component to the page. Place these components below the grid
panel. Allow plenty of space between the grid panel and the button since the grid panel's size changes dynamically,
depending on its embedded components. For example, if the validator detects an error, the error message appears in
the grid panel, expanding its size. Table 8.4 shows the button and output text components. Note that the button's label
is bound to the localized messages file and the output text's label is bound to ColorBean's color property.

Table 8.4. Button and output text components
Component Property Setting

button (button1) value #{messages.updateButtonLabel}

output text (outputText1) value #{SessionBean1.colorBean.color}

This example does not require an action method associated with the button component. That's because we just want
the page to be submitted when the user clicks the button. All the work is done by input validation and component
binding.

Add a Validation Method

To "hook" into JSF's component validation process, all custom validation methods must conform to the correct format.
Specifically, they must accept arguments that include the faces context, the input component that's being validated,
and the input string that's being validated.

Furthermore, to keep with the stipulation that all messages are localized, you'll have to access the resource bundle from
the current context to build the error message. Once the error message is formed, we add the message to the faces
context and mark the component "not valid."

Custom method validateHexString() calls toLowerCase() to convert possible uppercase values to lower case. Note that we
supply the optional Locale argument to the call.

Listing 8.7 shows the source to add to the Java page bean, Page1.java. (Copy and paste from file
FieldGuide/Examples/Custom/snippets/Color1_validateHex.txt.) Open the Page1.java file and place this
method at the end of the page bean file after the Page1() constructor.

Listing 8.7. Method validateHexString()

public void validateHexString(FacesContext context,

 UIComponent toValidate, Object value) {

 String hexString = value.toString().toLowerCase(

 context.getViewRoot().getLocale());

 boolean valid = true;

 String message = "";

 if (hexString.length() != 2) {

 valid = false;

 message = hexString + ": " +

 lookup_message(context, "lengthError");

 }

 else {

 for (int i = 0; i < 2; i++) {

 char hd = hexString.charAt(i);

 int v = Character.digit(hd, 16);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int v = Character.digit(hd, 16);

 if (v < 0 || v > 15) {

 valid = false;

 message = hexString + ": " +

 lookup_message(context, "digitError");

 break;

 }

 }

 }

 if (!valid) {

 ((UIInput)toValidate).setValid(false);

 context.addMessage(toValidate.getClientId(context),

 new FacesMessage(message));

 }

}

After you paste in the method code, the Java source editor will show red underlines for any unknown classes. We'll
show you how to fix this after you add the code for the lookup_message() method.

Method lookup_message() is a private helper function that looks up the resource bundle associated with this context and
locale. It finds the message text with the key from the resource bundle.

Listing 8.8 shows the source to add to the Java page bean, Page1.java. (Use file
FieldGuide/Examples/Custom/snippets/Color1_lookup.txt).

Listing 8.8. Method lookup_message()

private String lookup_message(

 FacesContext context, String key) {

 String text = null;

 try {

 ResourceBundle bundle =

 ResourceBundle.getBundle("asg.messages.color1",

 context.getViewRoot().getLocale());

 text = bundle.getString(key);

 } catch (Exception e) {

 text = "???" + key + "???";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 text = "???" + key + "???";

 }

 return text;

}

Next, you'll add import statements to the Page1.java source file. These imports will eliminate the editor's unresolved
symbol errors. (Use the Java Source editor shortcut <Alt-Shift-I> to make Creator generate the import statements for
you.) Here are the imports you need.

import java.util.ResourceBundle;

import javax.faces.application.FacesMessage;

import javax.faces.component.*;

import javax.faces.context.FacesContext;

import javax.faces.validator.*;

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Figure 8-14 shows the page after the user
changes the color to yellow (#ffff00) and then supplies invalid input for the red color value.

Figure 8-14. Custom validation with localized error messages in English

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

If you're having trouble with your application working correctly, here are some
things to check. First, if deploying throws an exception, open the Page1.jsp file in
source mode and make sure you have the asg.messages.color1 properties file
spelled correctly in the <f:loadBundle> tag. If the application deploys but doesn't
work properly, use the Properties window in Creator to check that all the property
bindings are correct. Make sure you click Apply when using the Property Bindings
dialog.

Internationalize for Spanish

In keeping with our two-step process for internationalization (localization being the first step), let's look at the Spanish
text for the keys we already created in the default color1.properties file. We'll call this file color1_es_ES.properties
(for Spanish as it's spoken in Spain). The file is already in the asg.jar file installed in your project. You can view it at
FieldGuide/Examples/asg/messages/color1_es_ES.properties. Here is the properties file. (You can also view it
in the editor pane by expanding the asg.jar library reference in the Project Navigator window. Double-click the
color1.properties file to bring it up in the editor.)

Listing 8.9. asg.messages.color1_es_ES.properties

pageTitleLabel = Diversión con color

redValueLabel = Valor Rojo

greenValueLabel = Valor Verde

blueValueLabel = Valor Azul

updateButtonLabel = Fije el Color

lengthError = Los números hexadecimales deben ser dos dígitos

 exactamente.

digitError = Los caracteres hexadecimales deben ser

 [0-9][A-F][a-f] solamente.

Specify Supported Locales

You'll need to specify which locale you want since your project has multiple color1.properties files. This step isn't
necessary with just a default locale, but if you want to configure your browser to use a different locale, you'll have to
tell the application which locales are supported.

You'll also need to install a faces-config.xml file in your project directory. Here is the
FieldGuide/Examples/Custom/color1_faces-config.xml file from your Creator book download. (Note the different
file names.)

Listing 8.10. faces-config.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.10. faces-config.xml

<faces-config>

 <application>

 <locale-config>

 <default-locale>en_US</default-locale>

 <supported-locale>es_ES</supported-locale>

 </locale-config>

 </application>

</faces-config>

To install the faces-config.xml file in your project, follow these steps.

1. In the Project Navigator window, select the top node Color1, right-click, and select New Item . . . ; Creator
brings up the New Wizard dialog.

2. Under Select a Template, expand node Resources and select XML Document. Click Next.

3. For Target Location, expand path <...>Projects/Color1/src/web and select Web-INF.

4. At the top of the dialog, specify faces-config for Name. Click Next.

5. Under Select Document Type, choose radio button Well-formed Document and click Finish.

Creator brings up the XML editor for you. Open the color1_faces-config.xml file in your Creator book's download
directory FieldGuide/Examples/Custom and copy and paste the contents into the XML editor pane. Paste over any
XML tags that are already there (use <Ctrl-V>). When you build your project, Creator makes this configuration file
available to JSF.

Configure Your Browser

If you use Internet Explorer as your browser, follow these steps.

1. Select Tools > Internet Options > Languages.

2. In the Language Preference window, click the Add button and type the following lines in the User defined box.

es-ES

en-US

3. Make sure you use a hyphen (-) and not an underline (__) here. Click OK.

4. To change your locale, select the target language you want and move it to the top with the Move Up button.

If you use Netscape Navigator, follow these steps.

1. Select Edit > Preferences > Languages.

2. Provide the same locale specifications as above.

3. Select the target locale and move it to the top with the Move Up button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Figure 8-15 shows the page after the user
changes the color to yellow (#ffff00) and then supplies invalid input for the red color value. When you configure your
browser for Spanish, the custom validator displays the messages you supplied for the Spanish locale.

Figure 8-15. Custom validation with localized error messages in Spanish

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.5 Key Point Summary

Localization and internationalization enable your applications to run in a global environment.

Java uses a Locale to customize an application for a target language and country.

To localize an application, first isolate all textual labels and messages and organize them into key-value pairs.

Java uses a properties file to hold key-value pairs of text to identify text data.

Use the loadBundle JSF tag to identify the resource bundle of the current locale.

To internationalize an application, translate the messages and labels in the properties file to the target
languages you intend to support.

Each supported locale has its own properties file.

Components access message keys in the properties file instead of using literal text. JSF uses value binding for
this.

When you want to support more than one locale by configuring your browser, specify the supported locales in
an XML configuration file.

You can also control the locale programmatically by invoking the setLocale() method of UIViewRoot.

You can provide custom validation by writing a validation method in your Java page bean.

You must modify a component's validator attribute to use a custom validator method.

The custom validator method should access the current locale to obtain localized error messages.

The custom validator should add error messages to the faces context so that you can use message components
to display them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Debugging with Creator
Topics in This Chapter

Planning for Debugging

Running the Debugger

Setting Breakpoints

Stepping Through Your Code

Tracking Variables

Setting Watches

Using the Call Stack

Detecting Exceptions

Using Log Files

Let's face it, everyone makes mistakes. Designing and coding a web application is certainly no exception. Even simple
web applications can be complex to work with, and there are lots of things to keep track of. As a programmer you have
to be conversant with Java programming as well as XML. If all goes well, there's no problem. But when things don't
work right, you can use all the help you can get.

Fortunately, Creator has a built-in debugger that can assist you in troubleshooting your web applications. The debugger
is smart, includes lots of features, and has a user-friendly interface. You can use the debugger to monitor program flow,
find out why variables aren't set to proper values, and help decipher why you're getting a Java exception. All this is not
difficult if you know what to do. This chapter shows you how. And if you haven't used a debugger before, don't worry,
we take it one step at a time.

This chapter shows you the different features of the Creator debugger as we look at an application that you've already
seen. We'll examine breakpoints, watches, call stacks, variable tracking and show you how to apply the debugging
features of Creator while your web application is running. To make it easier to follow, we include lots of screen shots so
you can see what's going on. You are also welcome to perform each step as you read along, too.

Before we begin, however, let's talk about debugging in general.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 Planning for Debugging
Unless you are very bold and confident, it's best to plan ahead for debugging. This mode of operation is often called
defensive programming. Although this is a broad topic that covers many things, the main philosophy here is to simply
plan ahead. Don't be too fancy with your code and follow some simple rules. Here are some of ours.

Keep methods short in size. Call other methods as needed (this practice is often called stepwise refinement).

Use local variables to store important data so that it's easier to track the data with a debugger.

Use assertions in your program at places where disaster can occur if something goes wrong.

Use log files to store important data, monitor program flow, and document the capture of a critical exception in
a catch handler.

Provide catch handlers to capture uncaught or unexpected exceptions early in your designs.

Although we won't show you all these suggestions in this chapter, here are several to look at.

Local Variables

public double getPayment() {

 double monthly_interest = this.rate / 1200;

 int months = this.years * 12;

 return this.amount * (monthly_interest /

 (1-Math.pow(1+monthly_interest,-1*months)));

}

In the above method, the calculation of a monthly interest payment is performed in the return statement. This
approach makes it difficult to access the payment amount in a debugger. A better approach for debugging is to store
the payment in a local variable before returning its value.

public double getPayment() { {

 double monthly_interest = this.rate / 1200;

 int months = this.years * 12;

 double pmt = this.amount * (monthly_interest /

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 double pmt = this.amount * (monthly_interest /

 (1-Math.pow(1+monthly_interest,-1*months)));

 return pmt;

}

Now you can track the pmt variable in memory as you test out the algorithm with different input values. A class field,
rather than a local variable, can also be used here.

Assertions

Another programming technique for debugging is a Java assertion.[1] There are two formats.

[1] Java assertions were introduced in JDK 1.4.

assert expression1;

assert expression1 : expression2;

An assertion is a boolean expression that is expected to be true at run time. In the first format, an AssertionError is
thrown if expression1 evaluates to false. The second format customizes the message for AssertionError from expression2,
which is typically a String.

There are many ways to use assertions in Java. Here's an example with a private class method that tests a
precondition.

private void myMethod(int arg) {

 assert arg >=0 && arg <= 100 : "Bad argument: " + arg;

 // rest of code here...

}

Log Files

The last example of defensive programming is a simple output print statement, strategically placed where it might be
important to see in a log file or in a message window. To do this, use System.out.println(). Here's an example.

System.out.println("button was clicked");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator also provides a log() method.

log("button was clicked");

We show both methods in "Using Log Files" on page 321.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 Running the Debugger
Before you run your project with the debugger, let's show you the debugging commands in Creator and what they
mean. We'll also discuss the contents of the Debugger Window, which gives you a visual look at your running program.

Debugging Commands

The Debug menu on the Creator menu bar lists the following debugging commands. Most of these commands also have
hotkeys listed in the menu.

Debug Project

Finish Sessions

Pause

Continue

Step Into

Step Over

Step Out

Run to Cursor

Fix

Stack

New Breakpoint

New Watch

Debug Project runs Creator in debugging mode, and Finish Sessions stops the debugging session. Most of the other
commands deal with breakpoints, a central concept in a debugger. A breakpoint is a spot in your program at which you
can stop the execution of your program. Once you're at a breakpoint, you can examine the values of program variables
or monitor program flow by means of a call stack of method calls. Breakpoints allow you to use other debugging
commands to find out why your code is not working correctly. Here is a description of the debugging commands that
affect breakpoints.

Pause – Temporarily halt the execution of your program.

Continue – Execute to the next breakpoint or if there are no more breakpoints, run until the program
completes.

Step Into – Execute only the next statement, but if it's a method, pause before executing the first statement in
the method.

Step Over – Execute only the next statement, then pause again. If the statement is a method call, execute the
entire method code and pause after returning from it.

Step Out – Execute the rest of the current method and pause in the method that called it.

Run to Cursor – Execute up to the point where the cursor is positioned.

We'll show you later how to set breakpoints and use these debugging commands.

Open Project and Files

Let's start our tour of the Creator Debugger with the Monthly Payment Calculator program from Chapter 5 (see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's start our tour of the Creator Debugger with the Monthly Payment Calculator program from Chapter 5 (see
"LoanBean Component" on page 144). Here's what you do.

1. In the Welcome Page, open project Payment1 from the list of projects.

2. You should see the Page1.jsp page appear.

3. In the design view, right-click the page and select View Page1 Java Class.

4. In the Project Navigator window, click the '+' for Java Sources, the '+' for asg, and the '+' for
bean_examples. Double-click LoanBean.java to see the Java code for this file.

5. You'll need to see line numbers in both Java files, so right-click anywhere in the left margin column of the Java
source file window and select Show Line Numbers.

Run and Deploy in Debug Mode

Now let's run the Payment program in debug mode with Creator.

In the Creator toolbar, select Debug, then Debug Project.

Creator will compile and deploy the system. If the server is already running, Creator will stop the server and restart it in
debug mode. After deployment, the Calculator page appears in the browser window. You can execute the program by
typing in various input values for the loan amount, interest rate, and loan term (in years).

Open the Debugger Window

Click the Page1.jsp tab to the see the design canvas for the Calculator application. A debugger window should be at
the bottom of your screen. If it's not there, go to View in the Creator toolbar and select Debugger Window. Or, click the
Debugger icon at the bottom of your screen.

At the far left of the Debugger window, you will see three columns of icons. The first column contains shortcut icons for
Creator's debugging commands. The second column shows icons for the various displays that are available in the
Debugger window. The last column is a list of class visibility icons. If you place the cursor over any icon, Creator tells
you what it means.

The display icons (second column) control what you see in the Debugger window. Let's show you the list of display
icons now. (You may have to make the Debugger window larger to see them all.)

Sessions

Threads

Call Stack

Local Variables

All in One

Watches

Classes

Breakpoints

We show you how to use most of these features shortly, but for now let's just learn how to manipulate the display. If
you hold your mouse over any of the icons, a pop-up will tell you what they are. Clicking the icon is a toggle to display
or not display. If you click the Watches display icon, for instance, the Watches display disappears. Clicking the icon
again brings it back.

You can also change the display format of the Debugger window. The top right corner of the Debugger window has
several icons. The red X removes the debugger window (you can always get it back with View on the Creator toolbar).
The other icons widen the Debugger window and display it vertically or horizontally. Figure 9-1 shows the Debugger
window as a horizontal display with only the Call Stack and Local Variables.

Figure 9-1. The Debugger window

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Now you are ready to work with the Debugger window and learn its features. Let's start with breakpoints.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Setting Breakpoints
Go to the Calculator Page and exit the browser to end the current session. Switch back to Creator. The first thing you'll
do now is set a breakpoint. Recall that a breakpoint is a place in your program at which the debugger stops the
execution of your program. In Creator, you can set a breakpoint for any of the following.

Line

Method

Exception

Variable

Thread

Class

With any breakpoint, the program stops before the breakpoint is executed (in other words, before a line is reached, a
method is called, an exception is thrown, etc.)

Let's set breakpoints for a line[2] and a method in our Java code. Here's what you do.

[2] The format of your program may be slightly different than ours. If so, use your line numbers from the same
spots in the program.

1. Click the LoanBean.java tab to open the window with the Java code.

2. Set a breakpoint at the line where the amount field is initialized. Right-click Line 46 and select Toggle
Breakpoint. Creator will highlight Line 46 in red for you, showing that a breakpoint has been set.

3. Move the cursor down to the getPayment() method at line 107. Put the cursor on the line and click the left button
of the mouse.

4. Select Debug on the Creator toolbar and choose New Breakpoint.

5. You will see a Breakpoint Type selection menu at the top of the New Breakpoint window. Select Method from
this list. This is how you set a breakpoint to a Java method. This means that the Creator debugger will stop the
execution of your program when the method is called, as shown in Figure 9-2.

Figure 9-2. New Breakpoint dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Click the OK button to finish setting your breakpoint.

7. Right-click Line 107 and select Toggle Breakpoint. Creator will highlight Line 107 in red for you. (This step is not
necessary here, but we're doing it so you can see where all the breakpoints are set in your code.)

Figure 9-3 shows you the LoanBean.java code with the breakpoints. Note that the breakpoints at Lines 46 and 107
are marked in red (shown as dark lines in the figure) for you.

Figure 9-3. Setting breakpoints

[View full size image]

You are now ready to run and deploy the program again, so click Debug Project in the Debug toolbar of Creator.
Several things will happen. First, a Start New Session Dialog appears. This gives you several choices. You can restart
the current debugging session, start up an additional one, or cancel and continue debugging the current session.
Choose Finish & Start to restart your debugging session.

Next, Line 46 changes color from red to green in the LoanBean.java window. This means that the first breakpoint was
reached and the program has been stopped. Since we are inside the LoanBean constructor at this point and Creator has
not finished initializing the LoanBean object, the Calculator JSP page cannot be rendered. Hence, your browser window
is empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is empty.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Stepping Through the Code
Debuggers typically allow you to execute your code one line at a time as it executes. This is called stepping. Let's step
through the LoanBean constructor code now with the Creator debugger to initialize the LoanBean's fields. This is where
we'll use the Debugger window, so make sure you have that window open. Here's what this window displays for you.

Call Stack

Local Variables

Watches

Classes

Breakpoints

Click the Call Stack icon in the left column of the Debugger window to make the Call Stack display go away. We'll just
look at the Local Variables display for now. Here's what you do.

1. Click the '+' for the this reference. Underneath this name, you will see the fields for the LoanBean constructor:
amount, rate, years, and payment.

2. From the Debug toolbar, select Step Over (you may also hit the F10 key). This makes the Creator debugger
execute Line 46 and stop at Line 47, which will now be green in color.

In the Local Variables display, the amount field should be set to 100000.0.

3. Now Step Over Line 47 to Line 48, and then Step Over again to Line 49.

4. In the Local Variables display, the rate field should now be 5.0 and the years field should be 15.

Figure 9-4 shows you what the screen looks like after the LoanBean constructor has finished executing.

Figure 9-4. Displaying LoanBean fields

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

It's easy to change the value of a local variable in memory with Creator. Just click
the rounded box on the right of any variable and use the custom editor to modify
the value. This feature can be very handy for checking out boundary conditions and
algorithm correctness during debugging.

Creator Tip

There are other ways to step through your code in Creator. You can, for instance,
Step Into a method or Step Out of a method. You can also move the cursor to a line
and select Run to Cursor.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Tracking Variables
Now let's make Creator execute our program to the next breakpoint. To do this, click Continue from the Debug menu.
The Continue command makes the Creator debugger continue execution from the current breakpoint to the next one.

Inside the LoanBean.java window, you'll see that Creator has stopped execution at the second breakpoint. This is the
first statement in the getPayment() method (Line 108), and is highlighted in green. Note that this method calculates the
loan payment, using local variables to store data. Let's see how to monitor these variables with a Creator debugger
feature called tracking. Here are the steps.

1. Click the '+' for the this reference in the Local Variables window. You should see the same values for the
LoanBean fields as before.

2. Click Step Over from the Debug toolbar. This moves the focus to Line 109.

In the Local Variables display of the Debugger window, a new entry appears above the this reference. The local
variable monthly_interest shows up with a value of 0.00416666.

3. Click Step Over from the Debug toolbar. This moves the focus to Line 110.

The local variable months appears in the Local Variables display with a value of 180.

4. Click Step Over one more time. The LoanBean payment field changes to a value of 790.79362. Figure 9-5 shows
the result.

Figure 9-5. Displaying getPayment() local variables

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Click Continue from the Debug toolbar and switch to the Calculator page in your browser. You will see a Loan
Payment of $790.79 displayed on the page.

TroubleShooting Tip

You can repeat this whole exercise again by changing any of the input fields on the
Calculator page. When you click the Calculate button and return to the Creator
screen, you will see the program stop at the same breakpoint. By stepping through
getPayment() as before, you can see the changed values in the Local Variables
display. When you click Continue in the debugger, the Calculator page will show the
new payment. This is a handy way to test an algorithm and see whether a method
is working correctly for a wide range of input test values.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Setting Watches
There are several local variables inside the getPayment() method, but the LoanBean payment field is the most important.
Since this field holds the payment amount that will be displayed on our web page, let's use another feature of the
Creator debugger called a watch. With watches, you can monitor key variables as they change values during the
execution of a program. Whereas the Local Variables window shows values for variables in the currently executing
method, the Watch window monitors values of variables selected by you (including class fields). Here's how to set a
watch.

1. In the second column of the Debugger window, click the Local Variables icon to make the display go away.

2. Now click the Watches icon to make this display show up.

3. Click the Breakpoints icon to show the current list of breakpoints. (You may have to make the Debugger window
larger.)

4. In the Breakpoints display, disable all the breakpoints by clicking the checkboxes underneath the Enabled
heading. (Alternatively, you can right-click in the Breakpoints display and select Disable All.)

5. Put a new breakpoint at line 112 in LoanBean.java where payment is set to the new calculated amount. To do
this, place the cursor at the line, right-click, and choose Toggle Breakpoint. Line 112 should now be highlighted
in red.

6. Right-click line 112 on the payment variable and select New Watch. The Watch Expression dialog should display
the payment variable.

7. Click OK to make payment a watch variable.

The payment variable should appear in the Watches display of the Debugger window. Note that its value is not
defined at this point.

Now return to your browser to interact with the Calculator page. Supply the following input: 100000 for Loan Amount,
5.0 for Interest Rate, and 30 for Loan Term. Click the Calculate button and switch back to the Creator screen. Figure 9-
6 shows the result for the Watches and Breakpoints display. In the Watches display, the value of the payment field is
now set to the current payment. (If you didn't supply the same input fields on the Calculator page, your payment
variable will have a different value from ours.)

Figure 9-6. Monitoring watches

[View full size image]

Click Continue on the Creator toolbar. When you go back to the Calculator page, you will see the same loan payment
amount displayed. Now type in various input values for the amount, interest rate, and loan term. Click the Calculate
button again and switch back to the Creator screen. Click Continue when the breakpoint at line 112 is reached and is
highlighted in green. Each time you do this, the payment watch variable displays the new loan payment. This is the same
value that is printed on the Calculator web page in your browser.

TroubleShooting Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TroubleShooting Tip

Watches are a handy way to monitor how a variable changes during the execution
of a program. Use Continue in Creator to step through the breakpoints as you do
this.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 Using the Call Stack
The Java Virtual Machine executes your Java code and maintains a call stack list. This list shows the order of method
calls that have been invoked but have not yet returned (this type of list is often called a call chain). The current method
is at the top of the list, and the invocations of each parent method appears below it as you work down the call list.

To see the Call Stack in action, click the Calculate button on the Calculator web page in your browser. Now switch back
to Creator and make sure line 112 is highlighted in green. Click the Call Stack icon in the second column of the
Debugger window and remove the other displays (click the Watches and Breakpoints icons). Figure 9-7 shows the
result. At the top of the Call Stack is the current method LoanBean.getPayment(), which was called from a series of native
methods in the underlying system. If you scroll through this display, you'll see various calls to binder methods, UI
components, and servlets. At the very bottom of the Call Stack is Thread.run(), which starts it all.

Figure 9-7. Displaying the Call Stack

[View full size image]

Creator also lets you manipulate the Call Stack. When you click Debug on the Creator menu bar, you'll see a choice
called Stack on the dropdown list. With the Call Stack, you can select from any of the following.

Make Callee Current

Make Caller Current

Pop Topmost Call

The first two commands let you change the current method of the call stack. The pop command removes the current
method from the top of the stack.

TroubleShooting Tip

The Call Stack display is useful when your program calls a method and you aren't
sure why. When you set a breakpoint at a method and run your program, the Call
Stack tells you the call chain of methods up to and including the breakpoint. You
can learn a lot about how things happen by taking a closer look at the Call Stack.
Call stacks are also handy when you need to determine which method threw an
exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.8 Detecting Exceptions
When using Creator's debugger, you can detect and track thrown exceptions. We'll show you how to do this now.

Our working Calculator program doesn't throw any exceptions directly, but it does generate an internal exception that is
handled by JSF. This happens when you don't type anything in one of the input text fields and click the Calculate
button. In this case, an error message appears on the Calculator page, because an exception was thrown and handled.

Here are the steps for detecting an exception with the debugger.

1. Remove all breakpoints. To do this, open the Debugger window and bring up the Breakpoint display. Right-click
anywhere in the Breakpoint display, and select Delete All. A pop-up window appears to prompt you for the
deletion. Answer Yes.

2. Click on the Debug toolbar and select New Breakpoint.

3. In the checkbox for Breakpoint Type, select Exception.

4. In the checkbox for Package Name, select java.util.

5. In the checkbox for Exception Class Name, choose MissingResourceException.

6. In the checkbox for Stop On, choose Exception Caught, as shown in Figure 9-8.

Figure 9-8. Setting a breakpoint on a caught exception

7. Click the OK button. In the Breakpoint display of the Debugger window, you should see the exception enabled.

8. If line 112 is still highlighted in green, click Continue from the Debug toolbar.

9. Switch to the Calculator page and clear the input for the Interest Rate field. Click the Calculate button.

Figure 9-9 shows you what the Call Stack in the Debugger window looks like when you switch back to Creator. At the
bottom of the screen, you see this error message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exception java.util.MissingResourceException reached at line ? in class java.util

.ResourceBundle . . .

Figure 9-9. Exception caught

[View full size image]

Because you did not type anything into the interest rate input field, a MissingResourceException was caught by the
ResourceBundle() method. The line number appears as ? in the error message because the source code for this method is
not available to Creator. At the top of the Call Stack, you will see ResourceBundle.getObject() as the current method.

Go to the Breakpoint display in the Debugger window and disable the Exception breakpoint by unchecking the Enabled
checkbox. Now click Continue from the Debug toolbar and execution resumes. In the Calculator page, the following
error message appears from the Validator since the exception was handled.

Validation Error: "interestRate": Value is required.

Creator Tip

In Creator, click New Breakpoint again from the Debug toolbar. In the dialog box,
choose Exception at the top and then peruse the choices in the checkbox for
Package Name. Note that there are lots of choices. If you scroll down and select
javax.faces, for instance, you'll see the choices for Exception Class Name change,
too. (The only choice here is FacesException.) If you examine the checkbox for Stop
On, you'll notice that you can monitor uncaught exceptions as well as caught
exceptions, or both. All this gives you a variety of ways to track exceptions as you
debug your applications with Creator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.9 Using Log Files
There are two ways to write debugging information to your application server's log file. You can use a Java
System.out.println() statement or Creator's log() method. Let's look at Java print statements first, since they can be used
in any Java source file (including your own JavaBeans components, such as LoanBean).

Method System.out.println()

It's easy to write to a Creator log file with simple Java print statements. Here are some examples.

System.out.println("amount = " + this.amount);

System.out.println("button1_action called");

System.out.println("input: " + (Double)inputText1.getValue());

Let's assume that Creator is installed on the C: drive. If you are using the J2EE application server, the log file is

C:\Sun\Creator\SunAppServer8\domains\creator\logs\server.log

On our system, we use the following commands to examine the output from Java println() statements.

$ cd C:\Sun\Creator\SunAppServer8\domains\creator\logs

$ tail -30 server.log

. . .

...amount = 120000

...button1_action called

...input: 4.5

The Unix tail command displays the last 30 lines of the log file.

Creator Tip

The server log file is also accessible from the Server Navigator window in Creator.
Right-click localhost under Deployment Servers and select View Server Log. The
server log is displayed at the bottom of your screen in its own Output window.

Let's write to the log file now from the application to show you how it works. Here's what you need to do.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's write to the log file now from the application to show you how it works. Here's what you need to do.

1. Bring up the Page1.jsp screen in Creator.

2. Double-click the Calculate button. This makes Creator write Java code for the button action method.

Creator opens the Page1.java file and puts the cursor in the calculate_action() method.

3. Add the following println() statement to the button handler.

public java.lang.String calculate_action() {

 System.out.println("button clicked");

 return null;

}

You don't need a button handler in this program, but we include it to show you how to write to log files. All the println()
statement does is write to the log file. When the user clicks the Calculate button, JSF submits the page. If no validation
errors occur, JSF invokes the button handler method. The println() output tells us that the calculate_action() method was
invoked.

Recompile and redeploy the program. Click the Calculate button with valid entries for the amount, interest rate, and
loan term.[3] The loan payment should appear on the Calculator page. When you examine the log file, the last line in
the file should contain

[3] Remember that validation errors cause the life cycle process to skip some of life cycle stages and
calculate_action() won't be called (see "JSF Request-Response Life Cycle Process" on page 185).

button clicked

Method log()

The log() method, defined in FacesBean, is another way to write debugging information to the server log file. This
method, however, can only be called from Creator's preconfigured managed bean files, since they extend the
FacesBean class. Calls to log(), therefore, are valid only in Page1.java, SessionBean1.java, ApplicationBean1.java,
or other page beans that you create in your project.

The log() method has two formats.

void log(java.lang.String);

void log(java.lang.String, java.lang.Throwable);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first format is handy for printing event information (such as "button clicked"). The second format is useful in catch
handlers with thrown exceptions.

catch (Exception e) {

 log("SQL ROWSET UPDATE ERROR", e);

 throw new FacesException(e);

}

Note that this form of the log() method uses the Exception object with the textual message you want to use.

The information from the log() method is available in Creator's output window. To see what this looks like, replace the
System.out.println() statement in your button handler with a call to log(), as follows.

public java.lang.String calculate_action() {

 log("button clicked");

 return null;

}

Now deploy and run the application. After you click the Calculate button and return to Creator, here's how to display the
log file. From the Server Navigator window, select Deployment Servers > localhost:4848 [running] and right- click.
Choose View Server Log. Near the end of the file you should see output similar to the following.

[#|2004-05-14T17:48:32.328-0700|INFO|

sun-appserver-pe8.0.0_01|

javax.enterprise.system.container.web|_ThreadID=12;

|WebModule[/Payment1]button clicked|#]

Note that the output from the log() method shows you more than the text you called it with. The output includes date
and time information, the thread ID of your application, and the web module name (project name).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.10 Finish Debugging
To finish your debugging session, click Debug on the Creator menu bar and select Finish Sessions. A popup menu may
appear with details about the debugging session. Click the checkbox if you want to suppress this popup menu in future
calls.

TroubleShooting Tip

A good way to end a debugging session is to clear all breakpoints before you select
Finish. In the Breakpoints display of the Debugger window, you can either disable
your breakpoints or delete them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.11 Key Point Summary

Defensive programming means that you plan ahead for debugging.

An assertion is a boolean expression that is expected to be true at run time. If an assertion fails, the Java
Virtual Machine throws an AssertionError.

You can run and deploy programs with Creator in debug mode.

Creator has debugging features with which you can set breakpoints, step through code, track variables, and set
watches.

The Creator Debugger window enables you to examine sessions, threads, the call stack, local variables,
watches, classes, breakpoints, and properties.

A breakpoint is a spot in your program at which the debugger stops the execution of your program.

The Creator debugger can step you through your code one line at a time. You can also step in or out of a
method or run your program to a selected line.

Tracking allows you to follow the creation and initialization of a local variable in a method. Tracking is a handy
way to see if a method is working correctly for a range of test values.

Watches let you monitor key variables as they change values during the execution of a program. Creator lets
you display watches as your program runs.

The Call Stack shows you the order of method calls as your program runs, with the most recent method at the
top. Call stacks are useful for determining when a method was called and which method threw an exception.

The Creator debugger lets you select exception breakpoints from a wide variety of different Java packages.

In debugging mode, you can set a breakpoint when an exception is caught, uncaught, or both.

Creator lets you view the server log to which you can write from your code. Log files are useful to monitor
program flow, show intermediate data, and determine whether an event occurred.

The log() method is handy for displaying log information during debugging. This method can only be called from
Creator's preconfigured managed bean files.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

10572
 FGC
 Figure 5-1 Login web application using JavaBean LoginBean 2nd
10726
 FGC
 Figure 8-13 Table Layout dialog: changing the component type
11134
 NL1
 1. From either the design canvas or the Application Outline view, select text
11716
 FGC
 Figure 2-15 Value Binding dialog box
11724
 FGC
 Figure 7-3 The Music Collection Database after selecting title Graceland
12408
 FGC
 Figure 2-6 Creator's Document Outline window for project Login1
13151
 CN1
 1
13250
 H2
 Add a Library Reference to Your Project 2nd
13813
 FGC
 Figure 8-9 School Client and Student message driven bean
14209
 FigureHeading
 Figure 1.2: JSF Lifecycle Process 2nd
15126
 FGC
 Figure 6-2 A successful login session
15446
 FGC
 Figure 7-9 Adding a property to SessionBean1
15499
 FGC
 Figure 3-6 Multi line text area on a web page
16163
 FGC
 Figure 3-10 Multi-select menu allows multiple and non-adjacent selections
16533
 H1
 9.9 Using Log Files
16588
 H2
 Page Navigation
16817
 CT
 Accessing Databases
16918
 FGC
 Figure 8-6 Query Editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17008
 FGC
 Figure 7-6 Screen shot showing the added Recording Artist data
18385
 FGC
 Figure 8-11 Table Layout dialog for dataTable2 component
18521
 FGC
 Figure 4-6 Design canvas showing components for project Login1
18677
 FGC
 Figure 8-3 Setting breakpoints
18891
 H2
 Page Navigation
19486
 H2
 Add a Validator
19737
 FGC
 Figure 2-9 WebForm1.java Java source editor
20606
 FGC
 Figure 8-4 Setting breakpoints
20893
 FGC
 Figure 8-2 Bind Display to Data dialog box
21751
 FGC
 Figure 5-2 Login page web application 2nd
22685
 FGC
 Figure 6-2 Login page web application using JavaBean LoginBean
22795
 FGC
 Figure 3-1 Using checkbox with a component label
22859
 FGC
 Figure 9-4 Displaying LoanBean fields
23144
 CN1
 8
23417
 H2
 Components for Input
24227
 H2
 Add a Data Table
24584
 H2
 Scope of Web Applications
24717
 H2
 Add Components to Page LoginBad
25625
 FGC
 Figure 7-1 Creator's design canvas view showing project Google1's components
25874
 FGC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Figure 6-3 Screen shot showing latest version of the Google Web Search application
25999
 CT
 Page Navigation
26010
 FGC
 Figure 3-3 Table Layout dialog box
26171
 FGC
 Figure 9-8 Setting a breakpoint on a caught exception
26454
 H2
 Interest Rate and Term Components
26605
 FGC
 Figure 2-10 Page navigation editor for project Login1
26652
 NL
 6. Click Close
27018
 H2
 Bind Input Components
27390
 FGC
 Figure 2-11 Java source editor list of abbreviations
29032
 FGC
 Figure 3-10 Using radio button list components in an application
29853
 FGC
 Figure 9-4 Custom validation with localized error messages
30844
 FGC
 Figure 5-3 Simple navigation web application
30945
 H2
 Localized Text for JSF Components
31173
 FGC
 Figure 8-19 Bind Display to Data dialog box
31419
 H1
 8.4 Custom Validation
32295
 H2
 Modifying the SQL Query
32668
 H2
 Add the Google Logo
32882
 H2
 A Word About Locales
33115
 H2
 Add a Validation Method
33225
 FGC
 Figure 8-17 Design canvas view with components on Page2.jsp
33234

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FGC
 Figure 8-18 Design canvas view with components on page
35110
 FGC
 Figure 3-2 Binding component data table with an external data base table
35594
 FGC
 Figure 3-8 Multi Select Listbox allows multiple and non-adjacent selections
35793
 H2
 Data Table
35970
 FGC
 Figure 8-14 Design canvas view after changing the table layout
36398
 H2
 Creating the Form's Input Components
36461
 FGC
 Figure 4-5 Import Class dialog box
36768
 FGC
 Figure 3-8 Select Page Fragment dialog
36831
 FGC
 Figure 3-10 Using text field components with other components
36934
 H2
 Property Binding
37372
 FGC
 Figure 2-1 Creator's initial window layout
38525
 FGC
 Figure 7-5 Screen shot after the insert row operation to the RecordingArtists Table
38650
 FGC
 Figure 6-4 Screen shot showing latest version of the Google Web Search application
39106
 H2
 Adding a Data Source
39487
 H2
 Add Query Criteria
39859
 H2
 Add a Second Data Table
40480
 FGC
 Figure 2-3 Creator's design canvas showing project Login1
41312
 FGC
 Figure 8-1 The Debugger Window
41508
 FGC
 Figure 2-11 Build Output window for project Login1
42238
 FGC
 Figure 8-6 Design canvas with components added to Page1.jsp for project Color1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

42820
 FGC
 Figure 2-7 Creator's Project Navigator window for project Login1
43786
 CN1
 7
44258
 FGC
 Figure 8-7 Value Bindings dialog to specify binding for text field blueInput
44367
 FGC
 Figure 8-1 Dropping RECORDINGARTIST table on dataTable2
44817
 FGC
 Figure 8-5 Data-aware table component bound to TRACKS table
46641
 FGC
 Figure 6-2 Select File or URL dialog for image component
47751
 FGC
 Figure 2-2 Creator's Welcome window
47761
 FGC
 Figure 2-5 JSF Standard Components window
48118
 FGC
 Figure 8-3 Using localized messages and property binding
48929
 H1
 8.1 Localization
49290
 H2
 Modify Event Handler
49618
 NL
 5. Select the username property under loginBean. Click Apply
50129
 FGC
 Figure 7-2 Add Data Source window
50215
 FGC
 Figure 4-2 Music Collection Database Schema
51207
 FGC
 Figure 3-5 Table Layout dialog: specifying paging
52103
 FGC
 Figure 8-4 Table Layout dialog box
52141
 FGC
 Figure 2-10 Java source editor code completion
52580
 FGC
 Figure 3-2 Using checkbox with a component label
52618
 Heading2
 Copy a Project 2nd 3rd
52640
 H2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Creating the Form's Components
52843
 H2
 Add a Dropdown List Component
52888
 H2
 Add a Listbox Component
53601
 FGC
 Figure 2-15 Selecting View Data under the Data Sources node
53796
 H2
 Add Button and Output Text Components
54176
 H2
 Add a Dropdown List Component
54306
 H2
 Adding Components to the Page
54345
 FGC
 Figure 8-1 A successful login using the Spanish version
54490
 FGC
 Figure 4-4 Properties window for a navigation rule
54659
 H2
 Binding
54951
 FGC
 Figure 8-6 Displaying the call stack
55624
 H2
 Add a Hyperlink and an Image
56680
 FGC
 Figure 5-2 Property Bindings dialog
57606
 FGC
 Figure 6-2 Screen shot showing the Google Web Search application 2nd 3rd
60413
 FGC
 Figure 5-5 Project Payment1 running in a browser
60800
 FGC
 Figure 3-3 Docuemnt Outline with component nesting
60804
 FGC
 Figure 10-5 Monitoring watches
61473
 FGC
 Figure 8-7 Query Editor
61520
 FGC
 Figure 3-11 Using the Date Time Converter
61653
 CN1
 8
61714

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 H2
 Message List
62643
 FGC
 Figure 8-1 A successful login using the Spanish version
63026
 H2
 Building HTML Output
63441
 FGC
 Figure 3-2 Component nesting with grid panel and group panel
64562
 H2
 Life Cycle Issues
66379
 FGC
 Figure 2-19 Web application Echo running in a browser
66475
 FGC
 Figure 6-2 Document Outline view of the JSF components, converters, and validators
67055
 FGC
 Figure 8-2 New Property dialog for properties files
68220
 FGC
 Figure 2-8 Creator's Project Navigator window for project Login1
68275
 H2
 Introducing JDBC
68396
 H2
 Isolate Labels and Text Messages
68574
 FGC
 Figure 2-4 Properties window for component 'Login'
69969
 H1
 1.8 JavaBeans
71285
 H2
 Creating the Form's Input Components
72281
 FGC
 Figure 2-20 Code completion helping out
73367
 H2
 Creating the Form's Input Components
73395
 H2
 Inheritance
73417
 FGC
 Figure 3-3 Supply text for selection items for a Listbox component
73913
 H1
 10.8 Exceptions
73975
 FGC
 Figure 8-10 Dropping RECORDINGARTIST table on dataTable2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

75579
 FGC
 Figure 3-11 Fill List from Database dialog applied to multi-select menu component
75799
 FGC
 Figure 8-2 Setting the locale from the application
76110
 H2
 Checkbox List
76178
 FGC
 Figure 2-8 WebForm1.jsp Source window
77865
 H2
 Button and Output Text Components
78032
 H2
 Add Output Text Components
78039
 CT
 Creator Basics
78186
 FGC
 Figure 9-3 Custom validation with localized error messages in English
78650
 H2
 Add a Button Component
79007
 CN1
 3
79849
 FGC
 Figure 9-3 Custom validation with localized error messages
79986
 FGC
 Figure 9-2 New Breakpoint dialog
81413
 H1
 5.4 Dynamic Navigation
81715
 FGC
 Figure 2-12 Server Navigator window
82636
 FGC
 Figure 2-20 Creator Help window
83434
 H2
 Radio Button Group
83510
 H2
 Add Button Components
85192
 FGC
 Figure 8-3 RECORDINGS Table View
85746
 H2
 Add an Input Text Component
85922
 H2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Validators and Converters
86849
 FGC
 Figure 3-11 Using radio button list components in an application
86921
 H2
 Add SessionBean1 Properties
87948
 H2
 Bind Input Components
88002
 FGC
 Figure 1-2 JSF Architecture
88142
 FGC
 Figure 5-8 New Property Pattern dialog
88587
 FGC
 Figure 8-9 Application Outline view for project Color1
88830
 FGC
 Figure 6-1 Login web application using JavaBean LoginBean
89015
 FGC
 Figure 2-11 Java Basics Clips Palette
89275
 FGC
 Figure 5-5 Using a dropdown list component for navigation
89609
 H2
 Add a Message List Component
89631
 CN1
 5
89732
 FGC
 Figure 8-5 New Property Pattern dialog 2nd
89991
 H2
 Inline Message
90256
 FGC
 Figure 7-5 Design canvas showing component layout for project Google4
90383
 H2
 Add a Message Component
90487
 FGC
 Figure 3-1 Using text field components with other components
90540
 FGC
 Figure 7-4 The Music Collection Database: updating the Music Categories table
90557
 FGC
 Figure 5-4 Navigating from page WebForm1.jsp
90960
 CN1
 6
92120

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 H2
 Add an Output Link Component
93577
 H2
 Add a Grid Panel Component
93717
 FGC
 Figure 8-20 MusicDelete application's initial page
98453
 CT
 Debugging with Creator
98695
 H2
 Add a Dropdown List
99085
 H1
 5.3 LoanBean
99443
 FGC
 Figure 8-8 Value Bindings dialog to specify binding for text field blueInput
99556
 FGC
 Figure 8-4 Create New Library Reference dialog 2nd
99611
 FGC
 Figure 5-6

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

abbreviations, Editors
abstract method
abstraction
AbstractPageBean class 2nd
action attribute 2nd 3rd
action event
 and page navigation
action method
 and page navigation
 for a button 2nd
 format of
add a web service to Creator
Add Data Source dialog, (table)
Add Table menu item, Query Editor
add XML document to project 2nd
Admin Console
afterRenderResponse() method 2nd
Ant build tool 2nd
Application Outline view
 as a target for dropping components
application scope 2nd
application server 2nd 3rd
 debug mode
 log file
ApplicationBean1
architecture
 J2EE
 JSF
argument list
asg.jar JAR file 2nd 3rd 4th
AssertionError
assertions
Auto-submit on change 2nd 3rd
 Dropdown List
 Listbox
 Multi Select Listbox 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

background color 2nd
basename attribute, loadBundle tag
beforeProcessValidations() method
beforeRenderResponse() method
bgcolor attribute 2nd
Bind Display to Data dialog
 (figure)
binding
binding attribute
Boolean Converter
boolean property
border attribute 2nd
breakpoints, setting 2nd
 (figure)
browser
 configure for different locales 2nd
Build menu
 Run Project command
build output window
build.xml 2nd
business logic, separation from presentation logic
Button 2nd 3rd 4th
 with dynamic navigation
 with image file 2nd
 with simple navigation
Byte Converter

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

call stack (debugging) 2nd
cascadeDelete() method
cascading deletes
casting
catch keyword
cellpadding attribute 2nd
cellspacing attribute 2nd
Character Converter
Checkbox
Checkbox List
class construct 2nd
Clips palette
 accessing objects in different scopes
 Concatenate Strings
close() database connection
code completion , Java source editor
Color1 project
color1.properties file
ColorBean 2nd
ColorBean.java
columns attribute
Component Label 2nd 3rd 4th
 with secret field
 with text field 2nd
components
 action attribute
 bgcolor attribute
 binding attribute
 border attribute
 Button 2nd 3rd 4th 5th 6th 7th 8th
 cellpadding attribute
 cellspacing attribute
 Checkbox
 Checkbox List
 columns attribute
 common attributes
 compare Link Action and Hyperlink
 Component Label 2nd 3rd 4th 5th 6th 7th
 composite
 converter attribute
 Data Table 2nd 3rd 4th 5th
 data-aware 2nd
 delete
 Dropdown List 2nd 3rd 4th 5th 6th
 Formatted Output
 Grid Panel 2nd 3rd
 Group Panel
 Hidden Field
 Hyperlink 2nd
 id attribute
 Image 2nd
 Inline Message 2nd 3rd 4th 5th
 Link Action 2nd
 Listbox 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 localizing text
 maxlength attribute
 Message List 2nd
 Multi Line Text Area
 Multi Select Listbox
 Multi Select Menu
 nested
 onchange attribute
 Output Text 2nd 3rd 4th 5th 6th
 Page Fragment Box
 Radio Button List
 required attribute
 resizing
 Secret Field 2nd 3rd
 style attribute
 Text Field 2nd 3rd 4th 5th 6th 7th 8th
 title attribute (tooltip) 2nd
 validator attribute
 value attribute
 valueChangeListener attribute
Components window
composite components
composite primary key
Concatenate Strings clip 2nd
configure workspace
constructors
context root
Continue command
Continue debugging command
conversion model
converter attribute
converters 2nd 3rd
 Boolean Converter
 Byte Converter
 Character Converter
 Date Time Converter
 Double Converter 2nd
 Float Converter
 Integer Converter 2nd
 Long Converter
 Number Converter 2nd
 Short Converter
Converters palette
create a new web page
create new navigation rules
Create New Project command 2nd
Creator windows
 Application Outline view
 build output window
 Clips palette
 Debugger window 2nd
 design canvas
 docking
 editor pane
 file tab
 Help System
 hiding
 JSF Standard Components
 JSF Validators/ Converters window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 palette 2nd
 Project Navigator window
 Properties window
 Server Navigator window
Creator, additional documentation
CRUD database operations
custom validate method 2nd
custom validation 2nd
 validator tag

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data Source
 add a 2nd
 add to project 2nd 3rd
 Choose Target dialog
 configure alternate
 Test Connection
Data Sources node 2nd
 Add Data Source 2nd
 JDBC 3.0-compliant drivers
 Remove Data Source
 View Data
Data Table 2nd 3rd 4th 5th
 bgcolor attribute
 Bind to Data 2nd
 Choose Target dialog 2nd 3rd
 embedded column component
 Input Text (editable)
 Output Text (read-only)
 Table Layout dialog 2nd 3rd
 (figure) 2nd
 Table Layout Paging dialog
 (figure)
data-aware components
 and converters
database
 fundamentals 2nd
 metadata
database operations
 cascading deletes
 CRUD
 database joins 2nd
 dataTableModel
 deletions 2nd
 master-detail relationship
 row inserts 2nd
 updates 2nd
Database sample
 Music Collection database
dataTableModel
Date Time Converter
 pattern
DateFormat class documentation
DB2 JDBC driver
Debug menu
 Continue command
 Debug Project command
 Finish command
 New Breakpoint menu item
debug mode
Debug Project debugging command
Debugger window 2nd
debugging
 AssertionError
 assertions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 call stack 2nd
 commands
 defensive programming
 exceptions 2nd
 local variables
 log file
 log() method
 planning for 2nd
 setting breakpoints 2nd
 setting watches 2nd
 Step Over
 stepping
 System.out.println() method
 tracking variables
 Watch window
default constructor 2nd
default-locale element
defensive programming
delete component
delete database operations 2nd
Deployed Components node
deployment
Deployment Servers node
derived property
design canvas
 Page Navigation context menu
 View Java Class context menu
docking windows
documentation
 Creator
 DateFormat class
 Google Web Service
 internationalization
 J2EE Tutorial
 Java API
 Java programming language
 JavaServer Faces
 MessageFormat class
 NetBeans
doGoogleSearch() method
 parameters (table)
Double Converter 2nd
Double Range Validator 2nd
download examples
drag and drop components
Dropdown List 2nd
 Auto-submit on change
 database binding
 Fill the List
 specifying default items 2nd
 used with navigation
 value change event 2nd
dynamic binding
dynamic navigation 2nd 3rd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Echo project
Edit Event Handler
 action 2nd
 processValueChange
editor pane
Editors
 abbreviations
 Java source
 JSP source
 line numbers
 NetBeans
 Page Navigation 2nd 3rd
 Query 2nd
 XML source
encapsulation
error message 2nd
escape attribute 2nd
event
 action
 value change 2nd
 value change vs. action
event handler code
 and page navigation
event listener
event model
event object
event source
examples
 download
exception handling 2nd 3rd
 and debugging 2nd
 AssertionError
 NumberFormatException
 SQLException 2nd
extends keyword

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

faces-config.xml 2nd
FacesBean superclass
FacesContext object
facet tag, Data Table component
fast import <Alt-Shift-I> editor short cut 2nd 3rd
fields 2nd
file tab
 Close option
FileSystem View
Finish command
Finish Sessions debugging command
Float Converter
fora editor abbreviation
foreign key
Formatted Output
from-outcome element
from-view-id element

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

garbage collection
getNavigationHandler() method
getter
global variables
Google logo
Google Web Service
 add to project
 documentation
 license key
 registration
 URL
Google1 project
Google2 project
Google3 project
Google4 project
GoogleSearchResult object
 public methods (table)
GoogleSearchService
Grid Panel 2nd
 with nested button components
Group Panel

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Help menu
 Help Contents
Help System
 Index
Hidden Field
hiding windows
HTML table
HTML tags
 with Output Text
Hyperlink 2nd
 compare with Link Action

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

id attribute 2nd 3rd
Image
 Google logo
image attribute, Button
image file, using with Button 2nd
implements keyword
Import Class dialog 2nd
import statement
include file for JSP pages
Index tab, Help System
indexed property
inheritance 2nd
Inline Message 2nd 3rd 4th 5th
INNER JOIN statement
Integer Converter 2nd
interface
internationalization 2nd 3rd 4th
 configure browser 2nd
 documentation
Internet Explorer 2nd
is-a relationship

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

J2EE
 architecture
 Tutorial
J2EE application server
 administration console
JAR files 2nd
 add to project
Java API documentation
Java Data Base Connectivity [See JDBC]
Java file
 add to project
 double click to edit
Java package
 add to project
Java programming language 2nd 3rd
 abstraction
 casting
 classes 2nd
 constructors
 encapsulation
 exception handling 2nd 3rd
 fields 2nd
 import statement
 inheritance 2nd
 interface
 methods 2nd
 object oriented programming 2nd
 objects
 outside view
 package
 private
 public
 references
 this keyword
 void return type
Java Servlet technology
Java source editor 2nd
 code completion
 dropdown menu
 Editor Settings
 fast import short cut 2nd 3rd
 Javadoc retrieval
 Show Line Numbers
 toggle breakpoint
Java Sources folder
 add Java file
JavaBeans 2nd 3rd
 advantages of
 binding
 ColorBean 2nd
 default constructor 2nd
 derived property
 getter
 LoanBean 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LoginBean 2nd
 preconfigured
 property 2nd
 property binding
 scoping rules
 setter
Javadoc retrieval
JavaScript element, this.form.submit() 2nd 3rd
JavaServer Faces (JSF) 2nd 3rd
 aaa] [See also JavaServer Faces (JSF)]
 documentation
JavaServer Pages (JSP)
JDBC
 3.0-compliant drivers
 database server
 ResultSet object
JDBC RowSets 2nd 3rd 4th
 close()
 concurrency attribute
 initialization code
JSF
 architecture
 component validation process
 conversion model
 converters 2nd
 Creator-generated tags
 event model
 Expression Language (EL) 2nd 3rd
 facet tag
 Life Cycle Process 2nd
 (figure)
 loadBundle tag 2nd
 navigation model 2nd
 Standard Components window
 validation model
 validators 2nd
 Validators / Converters window
JSF context
 error messages 2nd
JSP source editor

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

key/value pairs in properties files

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Length Validator 2nd 3rd 4th
libraries
 in projects
Library References node 2nd
 libraries
Life Cycle Process 2nd
 methods for tapping into (table)
line numbers in source files
 setting breakpoints
Link Action
 compare with Hyperlink
 with page navigation
Listbox 2nd
 database binding
 Fill the List 2nd
 value change event
loadBundle tag 2nd
LoanBean 2nd
LoanBean.java
local variables, using in debugging
locale
 configure from application 2nd
 specify supported
localhost
localization 2nd
 properties file
log file
log() method
Logical View
Login1 project 2nd
Login2 project
Login3 project
login3.properties file
LoginBean 2nd
LoginBean.java
Long Converter
Long Range Validator 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

managed beans
 add to project
 configuration
 preconfigured
Managed Beans node
Managed Session Bean dialog
managed-bean-class element
managed-bean-name element
managed-bean-scope element
managed-beans.xml 2nd
Margin editor contextual menu
master-detail relationship
maximum, validator attribute 2nd
maxlength attribute
Message List
 validation errors for multiple components
MessageFormat class documentation
metadata 2nd
methods 2nd
 abstract
 argument list
 signature of
minimum, validator attribute 2nd
model view
Multi Line Text Area
Multi Select Listbox
Multi Select Menu
Music Categories table
Music Collection Database
 (figure)
 schema
 SQL script
Music1 project
Music2 project
MusicDelete project
MusicInsert project
MusicUpdate project

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Navigate1 project
Navigate2 project
navigation
 handler
 labels
 model 2nd
navigation.xml
NetBeans 2nd
Netscape Navigator 2nd
new 2nd
New Breakpoint menu item
New Page menu item 2nd
New Property Pattern dialog
non-command components and page navigation 2nd
none, scope
null return value
 and page navigation
Number Converter 2nd
 pattern 2nd
NumberFormatException

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object oriented programming 2nd
 abstraction
 encapsulation
 outside view
objects
onchange attribute
Open an Existing Project
operator new 2nd
Oracle JDBC driver
ORDER BY clause
Output Text 2nd 3rd 4th
 with Data Table 2nd
 with HTML tags 2nd
 with number converter
outside view
override methods

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

package
page bean 2nd
 Creator-generated Java code
Page Fragment Box
page navigation
 action method
 dynamic navigation 2nd
 event handler code
 null return value
 simple 2nd
 UML activity diagram
 with non-command components 2nd
Page Navigation editor 2nd 3rd
 create new page 2nd
 create new rules
 editor pane (figure) 2nd 3rd
 Properties window (figure)
Page Request Life Cycle 2nd
Page1
palette
 Clips
 JSF Components
 JSF Validators/ Converters
parameter, SQL query 2nd
parseInt() method
pattern, Number Converter
Pause debugging command
Payment1 project 2nd
PointBase 2nd
position attribute
presentation view
primary key 2nd 3rd
private
Process Validations life cycle phase
processValueChange
project
 add Java file to
 add library to 2nd
 add managed session bean to
 add package to
 add XML document to 2nd
 Create New Project
 Open an Existing Project
Project Navigator window
 add XML file to project 2nd
 FileSystem View
 Library References node 2nd
 Logical View
 Managed Beans node
 References node 2nd
 Resources node
Projects
 Color1
 Echo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Google1
 Google2
 Google3
 Google4
 Login1 2nd
 Login2
 Login3
 Music1
 Music2
 MusicDelete
 MusicInsert
 MusicUpdate
 Navigate1
 Navigate2
 Payment1 2nd
properties file
 for project Color1
 for project Login3 2nd 3rd
 format
Properties window
property 2nd
 add to bean component
 boolean
 indexed
 simple
property binding 2nd 3rd 4th 5th 6th
 concatenating with a string
Property Bindings dialog 2nd 3rd 4th
 (figure)
public
Publish-Subscribe pattern

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Query Editor 2nd 3rd
 (figure)
 Add Query Criteria dialog 2nd
 Add Table
 INNER JOIN
 modify default query
 ORDER BY clause
 parameter 2nd
 query text
 Sort Type
 spreadsheet view
 table view
 WHERE clause 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Radio Button List
read access
Recording Artists table
recordingartistsRowSet 2nd 3rd
Recordings table 2nd
recordingsRowSet
references
Remove Data Source menu item
Render Response life cycle phase
request scope
required attribute 2nd 3rd
ResourceBundle 2nd 3rd
Resources node
ResultElement object
 public methods (table)
ResultSet object
RowSets [See JDBC RowSets]
Run to Cursor debugging command

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

scope 2nd
 accessing objects clips
Secret Field 2nd
 collect password
Server Navigator window
 Data Sources node 2nd
 Deployed Components node
 Deployment Servers node
 Google Web Service
 log file
 Show Admin Console command
 Undeploy application
 Web Services node 2nd
Servlets, Java
session scope 2nd
 saving data in 2nd
 SessionBean1 2nd 3rd
SessionBean1 2nd
 add properties to 2nd 3rd
setter
Short Converter
Show Admin Console
Show Line Numbers context menu item
signature, method
simple navigation 2nd
Simple Object Access Protocol (SOAP) 2nd
simple property
SOAP
sort for SQL query
SQL
SQL query 2nd
 add parameter 2nd
SQL Server JDBC driver
SQLException 2nd
Step Into debugging command
Step Out debugging command
Step Over
Step Over debugging command
stepping (debugging)
stepwise refinement
style attribute 2nd
subclass
superclass
supported-locale element
Sybase JDBC driver
System.out.println() method

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Table Layout dialog
 (figure)
Table Layout Paging dialog
 (figure)
Table View database viewer
Test Connection to Data Source
Text Field 2nd 3rd 4th 5th
 collect username
 required attribute 2nd
 with Data Table 2nd
thin clients
this keyword
throw keyword
throw point
throws clause
Title attribute
title attribute (tooltip) 2nd
to-view-id element
Toggle Breakpoint editor option
Tools menu
 Options
tooltip
tracking variables (debugging)
Tracks table
translations of text in properties file
try keyword

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI
UML activity diagram, page navigation
Undeploy application
Universal Description, Discovery, and Integration (UDDI) 2nd
URL in browser

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

validateHexString() custom validation method 2nd
validation model
validator attribute
validator tag
validators 2nd 3rd
 custom validate method
 custom validation 2nd
 Double Range Validator 2nd
 Length Validator 2nd 3rd 4th
 Long Range Validator 2nd
 maximum
 minimum
Validators/Converters window
value attribute 2nd
value binding
 localizing components' text
Value Bindings dialog
value change event 2nd 3rd 4th
 vs. action event
valueChangeListener 2nd 3rd
valueChangeListener attribute
var attribute, loadBundle tag
VARCHAR data type 2nd 3rd
variables
 tracking (debugging)
View Data
View Java Class context menu
View menu
 Debugger window 2nd
views, configure Creator's workspace
void return type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WAR file
Watch window (debugging)
watches, setting (debugging) 2nd
web services 2nd
 add to Creator
 nonvisual component tray
Web Services Description Language (WSDL) 2nd
Web Services node 2nd
Welcome window 2nd
WHERE clause 2nd
windows, configure Creator workspace
workspace, configure
write access

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML
XML Document 2nd
XML editor
XML file
 build.xml 2nd
 faces-config.xml 2nd
 managed-beans.xml 2nd
 navigation.xml

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zero-length string

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Java Technology Overview
Topics in This Chapter

The Java Programming Language

JavaBeans Components

NetBeans Software

The XML Language

The J2EE Architecture

JavaServer Faces Technology

JDBC API

Ant Build Tool

Web Services

Welcome to Creator! Creator is an IDE (Integrated Development Environment) that helps you build web applications.
While many IDEs out in the world do that, Creator is unique in that it is built on a layered technology anchored in Java.
At the core of this technology is the Java programming language. Java includes a compiler that produces portable
bytecode and a Java Virtual Machine (JVM) that runs this byte code on any processor. Java is an important part of
Creator because it makes your web applications portable.

But Java is more than just a programming language. It is also a technology platform. Many large systems have been
developed that use Java as their core. These systems are highly scalable and provide services and structure that
address some of the high-volume, distributed computing environments of today.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Introduction
Creator depends on multiple technologies, so it's worthwhile touching on them in this chapter. If you're new to Java,
many of its parts and acronyms can be daunting. Java technologies are divided into related packages containing classes
and interfaces. To build an application, you might need parts of one system and parts of another. This chapter provides
you with a road map of Java technologies and documentation sources to help you design your web applications with
Creator.

We'll begin with an overview of the Java programming language. This will help you get comfortable writing Java code to
customize your Creator applications. But before we do that, we show you how to find the documentation for Java
classes and methods. This will help you use them with confidence in your programs.

Most of the documentation for a Java Application Program Interface (API) can be found online. Sometimes all you need
is the name of the package or the system to find out what API a class, interface, or method belongs to. Java consists of
the basic language (all packages under java) and Java extensions (all packages under javax). Once you locate a package
online, you can explore the interfaces and classes and learn about the methods they implement.

Here's a good starting point for the Java API documentation.

http://java.sun.com/docs/

This page contains links to the Java 2 Platform Standard Edition, which contains the core APIs. It also has a link to all of
the other Java APIs and technologies, found at

http://java.sun.com/reference/docs/index.html

Since the APIs change with improvements, new features, and bug fixes, it's best to check these "main" pages for the
most up-to-date documentation.

Creator is also built on the technology of JavaServer Faces (JSF). You can find the current JSF API documentation at

http://java.sun.com/j2ee/javaserverfaces/1.0/docs/api/index.html

JSF is described as part of the J2EE Tutorial, which can be found at

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

These are all important references for you. We've included them at the beginning of this book so it's easy to find them
later (when you're deep in the challenges of web application development). For now, let's begin with Java as a
programming language. Then we'll look at some of the other supporting technologies on which Creator is built.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.10 JavaServer Faces Technology
The JavaServer Faces (JSF) technology helps you develop web applications using a server-side user interface (UI)
component framework. The JSF API gives you a rich set of UI components and lets you handle events, validate and
convert user input, define page navigation, and support internationalization. JSF has custom tag libraries for connecting
components to server-side objects. We show you these components and tag libraries in Chapter 3.

JSF incorporates many of the lower level tasks that JSP developers are used to doing. Unlike JSP applications, however,
applications developed with JSF can map HTTP requests to component-specific event handlers and manage UI elements
as stateful objects on the server. This means JSF offers a better separation of model and presentation. The JSF API is
also layered directly on top of the Servlet API.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.11 Ant Build Tool
Ant is a tool from the Apache Software Foundation (www.apache.org) that helps you manage the "build" of a software
application. The name is an acronym for "Another Neat Tool" and is similar in concept to older build tools like make
under Unix and gmake under Linux. However, Ant is XML-based, it's easier to use, and it's platform independent.

Ant is written in Java and accepts instructions from XML documents. Ant is well suited for performing complicated and
repetitive tasks. Creator uses Ant to compile and deploy your web applications. Ant gets its instructions for building a
system from the configuration file, build.xml. You won't have to know too much about Ant to use Creator, but you
should be aware that it's behind the scenes doing a lot of work for you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.12 Web Services
Web services are software APIs that are accessible over a network in a heterogeneous environment. Network
accessibility is achieved by means of a set of XML-based open standards such as the Web Services Description
Language (WSDL), the Simple Object Access Protocol (SOAP), and Universal Description, Discovery, and Integration
(UDDI). Web service providers and clients use these standards to define, publish, and access web services.

Creator's application server (J2EE 1.4) provides support for web services. In Creator, you can access methods of a web
service by dragging its node onto the design canvas. We show you web services with Creator in Chapter 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.13 Key Point Summary

Creator is an IDE built on layered Java technologies that helps you build web applications.

Procedure-oriented languages separate data and functions, whereas object-oriented languages combine them.

Encapsulation enforces data hiding and allows you to control access to your objects.

Java is a strongly typed object-oriented language with a large set of APIs that help you develop portable web
applications.

In Java, operator new returns a reference to a newly created object so that you can call methods with the
reference.

Java classes have fields, constructors, and instance methods. The private keyword is used for encapsulation, and
the public keyword grants access to clients.

Java packages allow you to store class files and retrieve them with import statements in Java programs.

Java uses try, catch, and throw to handle error conditions with a built-in exception handling mechanism.

Inheritance is a code reuse mechanism that implements an "is a" relationship between classes.

Dynamically bound method calls are resolved at run time in Java. Dynamic binding is essential with distributed
web applications.

An interface has no fields and only abstract public methods. A class that implements an interface must provide
code for the interface's methods.

The J2EE architecture is a multitiered application model to develop distributed components.

Java Servlets let you define HTTP-specific servlet classes that accept data from clients and pass them on to
business objects for processing.

A JSP page is a text-based document interspersed with Java code that allows you to create dynamic web pages.

JDBC is an API for database access from servlets, JSP pages, or JSF. JDBC RowSet objects allow enhanced
access to database sources using the JDBC API.

JavaServer Faces (JSF) helps you develop web applications using a server-side user interface component
framework.

A JavaBeans component is a Java class with a default constructor and setter and getter methods to manipulate
its properties.

NetBeans is a standards-based IDE and platform written in the Java programming language. Java Studio
Creator is based on the NetBeans platform.

XML is a self-describing, text-based language that documents data and makes it easy to transport between
systems.

Ant is a Java build tool that helps you compile and deploy web applications.

Web services are software APIs that are accessible over a network in a heterogeneous environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 The Java Programming Language
This cursory overview of the Java programming language is for readers who come from a non-Java programming
environment. It's not meant to be an in-depth reference, but a starting point. Much of Creator involves manipulating
components through the design canvas and the components' property sheets. However, there are times when you must
add code to a Java page bean (the supporting Java code for your web application's page) or use a JavaBeans
component in your application. You'll want a basic understanding of Java to more easily use Creator.

Object-Oriented Programming

Languages like C and Basic are procedure-oriented languages, which means data and functions are separated. To write
programs, you either pass data as arguments to functions or make your data global to functions. This arrangement can
be problematic when you need to hide data like passwords, customer identification codes, and network addresses.
Procedure-oriented designs work fine when you write simple programs but are often not suitable to more complex tasks
like distributed programming and web applications. Function libraries help, but error handling can be difficult and global
variables may introduce side effects during program maintenance.

Object-oriented programming, on the other hand, combines data and functions into units called objects. Languages like
Java hide private data (fields) from user programs and expose only functions (methods) as a public interface. This
concept of encapsulation allows you to control how callers access your objects. It allows you to break up applications
into groups of objects that behave in a similar way, a concept called abstraction. In Java, you implement an object with
a Java class and your object's public interface becomes its outside view. Java has inheritance to create new data types
as extensions of existing types. Java also has interfaces, which allow objects to implement required behaviors of certain
classes of objects. All of these things help you separate an object's implementation (inside view) from its interface
(outside view).

All objects created from the same class have the same data type. Java is a strongly typed language, and all objects are
implicitly derived from type Object (except the built-in primitive types of int, boolean, char, double, long, etc.). You can
convert an object from one type to another with a converter. Casting to a different type is only allowed if the conversion
is known by the compiler. Creator's Java editor helps you create well-formed statements with dynamic syntax analysis
and code completion choices. You'll see how this works in Chapter 2.

Error handling has always been a tough problem to solve, but with web applications error handling is even more
difficult. Processing errors can occur on the server but need to propagate in a well-behaved way back to the user. Java
implements exception handling to handle errors as objects and recover gracefully. The Java compiler forces
programmers to use the built-in exception handling mechanism.

And, Java forbids global variables, a restriction that helps program maintenance.

Creating Objects

Operator new creates objects in Java. You don't have to worry about destroying them, because Java uses a garbage
collection mechanism to automatically destroy objects which are no longer used by your program.

Point p = new Point(); // create a Point at (0, 0)

Point q = new Point(10, 20); // create a Point at (10, 20)

Operator new creates an object at run time and returns its address in memory to the caller. In Java, you use references
(p and q) to store the addresses of objects so that you can refer to them later. Every reference has a type (Point), and
objects can be built with arguments to initialize their data. In this example, we create two Point objects with x and y
coordinates, one with a default of (0, 0) and the other one with (10, 20).

Once you create an object, you can call its methods with a reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

p.move(30, 30); // move object p to (30, 30)

q.up(); // move object q up in y direction

p.right(); // move object p right in x direction

int xp = p.getX(); // get x coordinate of object p

int yp = p.getY(); // get y coordinate of object p

q.setX(5); // change x coordinate in object q

p.setY(25); // change y coordinate in object p

As you can see, you can do a lot of things with Point objects. It's possible to move a Point object to a new location, or
make it go up or to the right, all of which affect one or more of a Point object's coordinates. We also have getter
methods to return the x and y coordinates separately and setter methods to change them.

Why is this all this worthwhile? Because a Point object's data (x and y coordinates) are hidden. The only way you can
manipulate a Point object is through its public methods. This makes it easier to maintain the integrity of Point objects.

Classes

Java already has a Point class in its API, but for the purposes of this discussion, let's roll our own. Here's our Java Point
class, which describes the functionality we've shown you.

Listing 1.1. Point class

// Point.java - Point class

class Point {

// Fields

 private double x, y; // x and y coordinates

// Constructors

 public Point(double x, double y) { move(x, y); }

 public Point() { move(0, 0); }

// Instance Methods

 public void move(double x, double y) {

 this.x = x; this.y = y;

 }

 public void up() { y++; }

 public void down() { y--; }

 public void right() { x++; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void right() { x++; }

 public void left() { x--; }

 // getters

 public double getX() { return x; }

 public double getY() { return y; }

 // setters

 public void setX(double x) { this.x = x; }

 public void setY(double y) { this.y = y; }

}

The Point class is divided into three sections: Fields, Constructors, and Instance Methods. Fields hold internal data,
constructors initialize the fields, and instance methods are called by you with references. Note that the fields for x and y
are private. This enforces data encapsulation in object-oriented programming, since users may not access these values
directly. Everything else, however, is declared public, making it accessible to all clients.

The Point class has two constructors to build Point objects. The first constructor accepts two double arguments, and the
second one is a default constructor with no arguments. Note that both constructors call the move() method to initialize
the x and y fields. Method move() uses the Java this keyword to distinguish local variable names in the method from class
field names in the object. The setX() and setY() methods use the same technique.[1]

[1] The this reference is not necessary if you use different names for the arguments.

Most of the Point methods use void for their return type, which means the method does not return anything. The ++ and
-- operators increment or decrement their values by one, respectively. Each method has a signature, which is another
name for a function's argument list. Note that a signature may be empty.

Packages

The Point class definition lives in a file called Point.java. In Java, you must name a file with the same name as your
class name. This makes it convenient for the Java run-time interpreter to find class definitions when it's time to
instantiate (create) objects. When all classes live in the same directory, it's easy to compile and run Java programs.

In the real world, however, classes have to live in different places, so Java has packages that allow you to group related
classes. A package in Java is both a directory and a library. This means a one-to-one correspondence exists between a
package hierarchy name and a file's pathname in a directory structure. Unique package names are typically formed by
reversing Internet domain names (com.mycompany). Java also provides access to packages from class paths and JAR
(Java Archive) files.

Suppose you want to store the Point class in a package called MyPackage.examples. Here's how you do it.

package MyPackage.examples;

class Point {

 . . .

}

Package names with dot (.) delimiters map directly to path names, so Point.java lives in the examples directory
under the MyPackage directory. A Java import statement makes it easy to use class names without fully qualifying
their package names. Import statements are also applicable to class names from any Java API.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their package names. Import statements are also applicable to class names from any Java API.

// Another Java program

import java.util.Date;

import javax.faces.context.*;

import MyPackage.examples.Point;

The first import statement provides the Date class name to our Java program from the java.util package. The second
import uses a wildcard (*) to make all class definitions available from javax.faces.context. The last import brings our Point
class into scope from package MyPackage.examples.

Exceptions

We mentioned earlier that one of the downfalls of procedure-oriented languages is that subroutine libraries don't handle
errors well. This is because libraries can only detect problems, not fix them. Even with libraries that support elaborate
error mechanisms, you cannot force someone to check a function's return value or peek at a global error flag. For these
and other reasons, it has been difficult to write distributed software that gracefully recovers from errors.

Object-oriented languages like Java have a built-in exception handling mechanism that lets you handle error conditions
as objects. When an error occurs inside a try block of critical code, an exception object can be thrown from a library
method back to a catch handler. Inside user code, these catch handlers may call methods in the exception object to do
a range of different things, like display error messages, retry, or take other actions.

The exception handling mechanism is built around three Java keywords: throw, catch, and try. Here's a simple example
to show you how it works.

class SomeClass {

 . . .

 public void doSomething(String input) {

 int number;

 try {

 number = Integer.parseInt(input);

 }

 catch (NumberFormatException e) {

 String msg = e.getMessage();

 // do something with msg

 }

 . . .

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose a method called doSomething() needs to convert a string of characters (input) to an integer value in memory
(number). In Java, the call to Integer.parseInt() performs the necessary conversion for you, but what about malformed
string arguments? Fortunately, the parseInt() method throws a NumberFormatException if the input string has illegal
characters. All we do is place this call in a try block and use a catch handler to generate an error message when the
exception is caught.

All that's left is to show you how the exception gets thrown. This is often called a throw point.

class Integer {

 public static int parseInt(String input)

 throws NumberFormatException {

 . . .

 // input string has bad chars

 throw new NumberFormatException("illegal chars");

 }

 . . .

}

The static parseInt() method[2] illustrates two important points about exceptions. First, the throws clause in the method
signature announces that parseInt() throws an exception object of type NumberFormatException. The throws clause allows
the Java compiler to enforce error handling. To call the parseInt() method, you must put the call inside a try block or in a
method that also has the same throws clause. Second, operator new calls the NumberFormatException constructor to build
an exception object. This exception object is built with an error string argument and thrown to a catch handler whose
signature matches the type of the exception object (NumberFormat Exception).[3] As you have seen, a catch handler calls
getMessage() with the exception object to access the error message.

[2] Inside class Integer, the static keyword means you don't have to instantiate an Integer object to call parseInt().
Instead, you call the static method with a class name rather than a reference.

[3] The match doesn't have to be exact. The exception thrown can match the catch handler's object exactly or any
exception object derived from it by inheritance. To catch any possible exception, you can use the superclass
Exception. We discuss inheritance in the next section.

Why are Java exceptions important? As you develop web applications with Creator, you'll have to deal with thrown
exceptions. Fortunately, Creator has a built-in debugger that helps you monitor exceptions. In the chapter on
debugging, we show you how to set breakpoints to track exceptions in your web application (see "Detecting Exceptions"
on page 318).

Inheritance

The concept of code reuse is a major goal of object-oriented programming. When designing a new class, you may
derive it from an existing one. Inheritance, therefore, implements an "is a" relationship between classes. Inheritance
also makes it easy to hook into existing frameworks so that you can take on new functionalities. With inheritance, you
can retain the existing structure and behavior of an existing class and specialize certain aspects of it to suit your needs.

In Java, inheritance is implemented by extending classes. When you extend one class from another, the public methods
of the "parent" class become part of the public interface of the "child class." The parent class is called a superclass and
the child class is called a subclass. Here are some examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Pixel extends Point {

 . . .

}

class NumberFormatException extends IllegalArgumentException {

 . . .

}

In the first example, Point is a superclass and Pixel is a subclass. A Pixel "is a" Point with, say, color. Inside the Pixel class,
a color field with setter and getter methods can assist in manipulating colors. Pixel objects, however, are Point objects,
so you can move them up, down, left or right, and you can get or set their x and y coordinates. (You can also invoke
any of Point's public methods with a reference to a Pixel object.) Note that you don't have to write any code in the Pixel
class to do these things because they have been inherited from the Point class. Likewise, in NumberFormatException, you
may introduce new methods but inherit the functionality of IllegalArgumentException.

Another point about inheritance. You can write your own version of a method in a subclass that has the same name and
signature as the method in the superclass. Suppose, for instance, we add a clear() method in our Point class to reset
Point objects back to (0, 0). In the Pixel class that extends from Point, we may override the clear() method.[4] This new
version could move a Pixel object to (0, 0) and reset its color. Note that clear() in class Point is called for Point objects,
but clear() in class Pixel will be called for Pixel objects. With a Point reference set to either type of object, different
behaviors happen when you call this method.

[4] Creator uses this same feature by providing methods that are called at different points in the JSF page request
life cycle. You can override any of these methods and thus provide your own code, "hooking" into the page request
life cycle. We show you how to do this in Chapter 6 (see "Life Cycle Issues" on page 183).

It's important to understand that these kinds of method calls in Java are resolved at run time. This is called dynamic
binding. In the object-oriented paradigm, dynamic binding means that the resolution of method calls with objects is
delayed until you run a program. In web applications and other types of distributed software, dynamic binding plays a
key role in how objects call methods from different machines across a network or from different processes in a
multitasking system.

Interfaces

In Java, a method with a signature and no code body is called an abstract method. Abstract methods must be
overridden in subclasses and help define interfaces. A Java interface is like a class but has no fields and only abstract
public methods. Interfaces are important because they specify a contract. Any new class that implements an interface
must provide code for the interface's methods.

Here's an example of an interface.

interface Encryptable {

 void encode(String key);

 String decode();

}

class Password implements Encryptable {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Password implements Encryptable {

 . . .

 void encode(String key) { . . . }

 String decode() { . . . }

}

The Encryptable interface contains only the abstract public methods encode() and decode(). Class Password implements the
Encryptable interface and must provide implementations for these methods. Remember, interfaces are types, just like
classes. This means you can implement the same interface with other classes and treat them all as Encryptable types.

Java prohibits a class from inheriting from more than one superclass, but it does allow classes to implement multiple
interfaces. Interfaces, therefore, allow arbitrary classes to "take on" the characteristics of any given interface.

One of the most common interfaces implemented by classes in Java is the Serializable interface. When an object
implements Serializable, you can use it in a networked environment or make it persistent (this means the state of an
object can be saved and restored by different clients). There are methods to serialize the object (before sending it over
the network or storing it) and to deserialize it (after retrieving it from the network or reading it from storage).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 JavaBeans Components
A JavaBeans component is a Java class with certain structure requirements. Javabeans components define and
manipulate properties, which are objects of a certain type. A JavaBeans component must have a default constructor so
that it can be instantiated when needed. Beans also have getter and setter methods that manipulate a bean property
and conform to a specific naming convention. These structural requirements make it possible for development tools and
other programs to create JavaBeans components and manipulate their properties.

Here's a simple example of a JavaBeans component.

public class Book {

 private String title;

 private String author;

 public Book() { setTitle(""); setAuthor(""); }

 public void setTitle(String t) { title = t; }

 public String getTitle() { return title; }

 public void setAuthor(String a) { author = a; }

 public String getAuthor() { return author; }

}

Why are JavaBeans components important? First and most important, they are accessible to Creator. When you write a
JavaBeans component that conforms to the specified design convention, you may use it with Creator and bind JSF
components to bean properties. Second, JavaBeans components can encapsulate business logic. This helps separate
your design presentation (GUI components) from the business data model.

In subsequent chapters, we show you several examples of JavaBeans components. We'll use a LoginBean to handle
users that login with names and passwords and show you a LoanBean that calculates mortgage payments for loans. The
Point class in Listing 1.1 on page 7 is another example of a JavaBeans component.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 NetBeans Software
NetBeans software is an open source IDE written in the Java programming language. It also includes an API that
supports building any type of application. The IDE has support for Java, but its architecture is flexible and extensible,
making support for other languages possible.

NetBeans is an Open Source project. You can view more information on its history, structure, and relationship with Sun
Microsystems at its web site

http://www.netbeans.org/

NetBeans and Creator are related because Creator is based on the NetBeans platform. In building Creator, Sun is
offering an IDE aimed specifically at creating web-based applications. Thus, the IDE integrates page design with
generated JSP source and page bean components. NetBeans provides features such as source code completion,
workspace manipulation of windows, expandable tree views of files and components, and debugging facilities. Because
NetBeans is extensible, the Creator architects included Java language features such as inheritance to adapt components
from NetBeans into Creator applications with the necessary IDE functions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 The XML Language
XML is a metalanguage that dictates how to define custom languages and describe data. The name is an acronym for
Extensible Markup Language. XML is not a programming language, however. In fact, it's based on simple character text
in which the data are surrounded by text markup that documents data. This means you can use XML to describe almost
anything. Since XML is self-describing, it's easy to read with tools and other programs to decide what actions to take.
You can transport XML documents easily between systems or across the Internet, and virtually any type of data can be
expressed and validated in an XML document. Furthermore, XML is portable because it's language and system
independent.

Creator uses XML to define several configuration files as well as the source for the JSP web pages. Here's an example
XML file (managed-beans.xml) that Creator generates for managing a JavaBeans component in a web application.

<faces-config>

 <managed-bean>

 <managed-bean-name>LoanBean</managed-bean-name>

 <managed-bean-class>asg.bean_examples.LoanBean

 </managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 </managed-bean>

</faces-config>

Every XML file has opening tags (<tag>) and closing tags (</tag>) that define self-describing information. Here, we
specify a managed-bean element to tell Creator what it needs to know about the LoanBean component. This includes its
name (LoanBean), class name and package (asg.bean_examples.LoanBean), and the scope of the bean (session). When
you add your own JavaBeans components to Creator as managed beans, Creator generates this configuration
information for you. We show you how to add a managed session bean to your project in Chapter 5.

Creator maintains and updates its XML files for you, but it's a good idea to be familiar with XML syntax. This will allow
you to customize the Creator XML files if necessary.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6 The J2EE Architecture
The J2EE platform gives you a multitiered application model to develop distributed components. Although any number
of tiers is possible, we'll use a three-tier architecture for the applications in this book. Figure 1-1 shows the approach.

Figure 1-1. Three-tier J2EE architecture

The client machine supports web browsers, applets, and stand-alone applications. A client application may be as simple
as a command-line program running as an administrator client or a graphical user interface created from Java Swing or
Abstract Window Toolkit (AWT) components. Regardless, the J2EE specification encourages thin clients in the
presentation tier. A thin client is a lightweight interface that does not perform database queries, implement business
logic, or connect to legacy code. These types of "heavyweight" operations preferably belong to other tiers.

The J2EE server machine is the center of the architecture. This middle tier contains web components and business
objects managed by the application server. The web components dynamically process user requests and construct
responses to client applications. The business objects implement the logic of a business domain. Both components are
managed by a J2EE application server that provides these components with important system services, such as
security, transaction management, naming and directory lookups, and remote connectivity. By placing these services
under control of the J2EE application server, client components focus on either presentation logic or business logic. And,
business objects are easier for developers to write. Furthermore, the architecture encourages the separation of
business logic from presentation logic (or model from view).

The database server machine handles the database back end. This includes mainframe transactions, databases,
Enterprise Resource Planning (ERP) systems, and legacy code. Another advantage of the three-tier architecture is that
older systems can take on a whole new "look" by using the J2EE platform. This is the approach many businesses are
taking as they integrate legacy systems into a modern distributed computing environment and expose application
services and data to the web.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.7 Java Servlet Technology
The Java Servlet component technology presents a request-response programming model in the middle tier. Servlets
let you define HTTP-specific servlet classes that accept data from clients and pass them on to business objects for
processing. Servlets run under the control of the J2EE application server and often extend applications hosted by web
servers. Servlet code is written in Java and compiled. It is particularly suited to server-side processing for web
applications since each Servlet session is handled in its own thread.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.8 JavaServer Pages Technology
A JavaServer Pages (JSP) page is a text-based document interspersed with Java code. A JSP engine translates JSP text
into Java Servlet code. It is then dynamically compiled and executed. This component technology lets you create
dynamic web pages in the middle tier. JSP pages contain static template data (HTML, WML, and XML) and JSP elements
that determine how a page constructs dynamic content. The JSP API provides an efficient, thread-based mechanism to
create dynamic page content.

Creator uses JavaServer Faces (JSF), which is built on both the servlet and JSP technologies. However, by using
Creator, you are shielded from much of the details of not only JSP and servlet programming, but JSF details as well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.9 JDBC API and JDBC RowSets
Java Data Base Connectivity (JDBC) is an API that lets you invoke SQL commands from Java methods in the middle tier.
Typically, you use the JDBC API to access a database from servlets or JSP pages. The JDBC API has an application-level
interface for database access and a service provider interface to attach JDBC drivers to the J2EE platform. In support of
JDBC, J2EE application servers manage a pool of database connections. This pool provides business objects efficient
access to database servers.

The JDBC RowSet API is a newer technology that makes it easier to access database information from the rows and
columns in a ResultSet object. A JDBC RowSet object is a connected rowset that is an extension of a ResultSet object.
RowSet objects have properties that can be manipulated, and they can participate in event notification. When you select
a data source in Creator, the system generates code in the Java page bean to access the data source through RowSet
objects.

We show you how to use databases with Creator in Chapter 7.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Creator Basics
Topics in This Chapter

Creator Window Layout

Component Palette

Source Editors/Code Completion

Clips Palette

Page Navigation Editor

Application Outline Window

Server Navigator Window

Creator Help System

Sun Java Studio Creator makes it easy to work with web applications from multiple points of view. This chapter explores
some of Creator's basic capabilities, the different windows (views) and the way in which you use them to build your
application. We show you how to manipulate your application through the drag-and-drop mechanism for placing
components, setting attributes in the Properties window, controlling page flow with the Page Navigation editor, and
selecting services from the Server Navigator window.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Examples Installation
We assume that you've successfully installed Creator. The best source of information on installing Creator is Sun's
product information page at the following URL.

http://developers.sun.com/prodtech/javatools/jscreator/

Creator runs on a variety of platforms and can be configured with different application servers and JDBC database
drivers. However, to run all our examples we've used the default application server (J2EE 1.4 Application Server) and
PointBase database. Once you've configured Creator for your system, the examples you build in the text should run the
same on your system.

Download Examples

You can download the examples for this book at

http://www.asgteach.com/download/index.htm

and select Java Studio Creator Field Guide: Book Examples. The examples are packed in a zip file. When you unzip the
file, you'll see the FieldGuide/Examples directory and subdirectories for the various chapters and projects. As each
chapter references the examples, you will be instructed on how to access the files.

You're now ready to start the tour of Creator.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Creator Views
Figure 2-1 shows Creator's initial window layout in its default configuration. When you first bring it up, no projects are
open and Creator displays its Welcome window.

Figure 2-1. Creator's initial window layout

[View full size image]

There are other windows besides those shown in the initial window layout. As you'll see, you can hide and display
windows, as well as move them around. As we begin this tour of Creator, you'll probably want to run Creator along with
the text.

Welcome

The Welcome window lets you to create new projects or work on existing ones. Figure 2-2 shows the Welcome window
in more detail. It lists the projects you've worked on recently and offers selection buttons for opening existing projects
or creating new projects.

Figure 2-2. Creator's Welcome window

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

To demonstrate Creator, let's use a project that we've already built with Creator. The project is in directory
FieldGuide/Examples/Projects/Login1.

1. Select the Open an Existing Project button and browse to the FieldGuide/Examples/Projects directory for
Java Creator Field Guide.

2. Select Login1 (look for the projects icon) and double click. This opens the Login1 project and displays the
design canvas for the project's first page.

Design Canvas

Figure 2-3 shows a close-up of the design canvas window for project Login1. You see the design grid and the
components we've placed on the canvas. As you select the individual components, their properties appear in the
Properties window (not shown here).

Figure 2-3. Creator's design canvas showing project Login1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each project in Creator can have many files associated with it. Here, the design canvas window displays the design view
of file Page1.jsp. You can have more than one of your project's files open at a time (currently, there's just one open).
When you open other files, their file tab appears at the top of the editor pane. You use the File Tab to select other files.

The editor pane allows you to manipulate elements of your project. When the design canvas is showing, you can select
components, validators, or converters from the palette. From the Server Navigator windows you can select nonvisual
components, such as data sources or web services. In the design canvas, you see the components we've added to this
page: a text field component, a secret field component, two component labels, two buttons, a message list component,
and an output text component used as a page title.

Creator allows you to configure your display's workspace to suit the tasks you're working on. All the windows can be
hidden when not needed (click the red X in a window's title bar to close it). To view the window again, select View from
the menu bar and then the window name. You can dock Creator windows by selecting the pushpin in the window title
bar. This action minimizes the window along the left or right side of the workspace. Make it visible again by moving the
cursor over its docked position. Undock it by toggling the pushpin icon.

Select the button labeled "Login" on the design canvas. This will bring up the button component's Properties window, as
shown in Figure 2-4.

Figure 2-4. Properties window for button component "Login"

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties

Creator lets you configure the components you use by manipulating their properties. When you change a component's
properties, Creator automatically updates the JSF source for you. Here are the login button's properties.

The id attribute uniquely identifies the component on the page. Creator generates the name for you, but you may want
to change it (as we have in this example) to more easily work with the generated code. You can use the style attribute
to change its appearance. If you click in the editing box opposite style, you can see what it's set to. The position attribute
reflects the component's position on the page. When you move the button component, Creator updates this for you.

The value attribute under Data holds the button's label. Click on the Login button again in the design canvas and from
the keyboard begin typing a new label. You'll see that Creator automatically selects the value attribute in the Properties
window and enables editing as you begin typing. Finish editing with <Enter>.

Under Events, the action attribute is set to login_action(). This refers to an event handler method in the Java page bean
that controls what happens when the user clicks the button.

Each component has a different list of attributes (although many attributes are the same). As you select other
components in the design canvas, note that the list of attributes in the Properties window changes.

Palette

Figure 2-5 shows the JSF Standard Components window and JSF Validators/ Converters window. These are the palettes
that let you select components and add them to your page. Page designers, for example, select a component and drag
it to the design canvas, positioning it on the page. Once the component is on the page, you can configure it by changing
the attributes in its Properties window.

Figure 2-5. JSF Standard Components and Validators/Converters windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click on the bar labeled JSF Validators/Converters to see these components. You can select these just like the standard
components. When you drag one to the canvas and drop it on top of a component, the validator or converter will bind
to that component. (To test this, select the Length Validator and drop it on top of the userName text field component.
You'll see a length validator #{Page1.lengthValidator1.validate} defined for the text field's validator attribute in the Properties
window.)

Note that the components, validators, and converters all have icons next to them. Creator uses these icons consistently
so you can easily spot what kind of component you're looking at. For example, reselect the JSF Standard Components
bar in the palette and then select the Login button component on the design canvas. Now look at the Application Outline
view. You'll see that the icon next to the button component in the JSF Standard Components palette matches the Login
button in the Application Outline window.

Application Outline

Figure 2-6 is the Application Outline window for project Login1. (Its default placement is in the lower-left portion of the
display.) The Application Outline window is handy because it shows both visual and nonvisual components for the page
that's currently displayed in the design canvas. You can select other pages (here we have LoginGood.jsp and
LoginBad.jsp) as well as the preconfigured managed beans, SessionBean1 and ApplicationBean1. These JavaBeans
components are handy to hold your project's data that belong in either session or application scope, respectively. (We
discuss scope issues for web application objects in "Scope of Web Applications" on page 128.)

Figure 2-6. Creator's Application Outline window for project Login1

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some components are composite components, meaning that they contain nested elements. The Application Outline
window will show this structure and allow you to expand and compress the display (using '+' and '-') as needed.

When you placed the length validator component on the userName text field, it appeared here as component
lengthValidator1. Delete it by selecting it in the Application Outline view, then right-click and select Delete from the
context menu. The validator should disappear from the Application Outline view. Select the text field component
userName and reset its validator attribute to null.

Creator Tip

Once you delete the lengthValidator1 component from your project, you must make
sure that the validator attribute for component userName is really set to null. If it
still references the validator, your project will build without any errors. However,
the system will throw an exception because it cannot find the validator at run time.

Now let's look at the Project Navigator window.

Project Navigator

Figure 2-7 shows the Project Navigator window for project Login1. Its default location is in the lower-right corner.
Whereas the Application Outline view displays the components for individual pages and managed beans, the Project
Navigator window displays your entire project. Project Login1 contains three JSP pages: Page1.jsp, LoginGood.jsp,
and LoginBad.jsp. Double-click on any one of them to pull it up in the design canvas. When the page opens, Creator
displays a file name tab so you can easily switch among different files in the design canvas.

Figure 2-7. Creator's Project Navigator window for project Login1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you create your own projects, each page comes with a Java component "page bean." These are Java classes that
conform to the JavaBeans structure we mention in Chapter 1 (see "JavaBeans Components" on page 13). To see the
Java files in this project, expand the Java Sources folder (click on the '+'), then the login1 folder. When you double-
click on any of the Java files, Creator brings it up in the Java source editor. Without going to the editor, you can also
see the Java classes, fields, constructors, and methods by expanding the '+' next to each level of the Java file.

The Project Navigator also lists the Resources node, which lives under the Web Pages node. The Resources node
typically holds file stylesheet.css and any image files. The Library References node lists the libraries Creator needs to
deploy your application. These are all of the JSF, Web Services, JDBC Rowset, and Exception Handler support classes.
These class files (compiled Java classes) are stored in special archive files called JAR (Java Archive) files. You can see
the name of the JAR files by expanding each of the nodes under Library References.[1] We show you how to add a
Library Reference to your project in Chapter 5 (see "Add a Library Reference to Your Project" on page 133).

[1] For those of you who are curious about their contents, you can look at these jar files with the Java command-
line jar command, Winzip or other compatible utility. With Winzip, be sure to specify *.* for all file types when
opening an archive. The command that produces a file list of a jar archive is jar tvf lib.jar. The files are found in the
directory structure of your project. (Look in Login1/build/WEB-INF/lib for the JAR files.)

By default, the Project Navigator window shows you the Logical View of your project. Select the project name Login1,
right-click, and choose Show FileSystem View from context menu, shown in Figure 2-8. The FileSystem View shows all
of the files in your project. This is handy for editing a configuration file that doesn't have a "visual editing interface." For
example, expand the view until you see file web.xml, as shown below. Double-click this file. Creator brings it up in the
editor pane. You can close the window again by selecting its File Tab at the top of the editor pane, right-click, and
choose Close.

Figure 2-8. The FileSystem View of the Project Navigator window.

JSP Source Editor

With Page1.jsp in the design editor, bring up the JSP for this page by clicking the tab labeled Source at the bottom of
the editor pane. Figure 2-9 shows Creator's JSP Source Editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-9. Page1.jsp Source window

[View full size image]

This is the JSP source that Creator generates for your page. Normally, you will not need to edit this page directly, but
studying it is a good way to understand how JSF components work and how you can configure them by managing their
properties. You'll see a close correspondence between the JSF tags and the components' properties as shown in the
Properties window.

You'll also note the JSF Expression Language (EL) used to refer to methods and properties in the Java page bean. For
example, the login button's action attribute is set to #{Page1.login_action}, which is a method in class Page1.java.

Let's look at the Java source for Page1.java now. Return to the design canvas for this page (select the tab labeled
Design at the bottom of the editor pane). Right-click on the design canvas and select View Page1 Java Class from the
menu.

Java Source Editor

You're looking at Creator's Java source editor for Java file Page1.java, the page bean for Page1.jsp. This Java file is a
bean (conforming to a JavaBeans structure). Its properties consist of the components we placed on the page: each
component corresponds to a private variable and has a getter and setter. This allows the JSF EL expression to access
the properties of the page bean.

There's a dropdown menu at the top left of the window. You can use this menu to locate a field, method, or constructor
in the file. Open the dropdown menu and select method login_action. Figure 2-10 shows this view.

Figure 2-10. Page1.java Java source editor

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's much to learn about the Java source editor, so we'll just touch on a few tidbits now. First, we enabled line
numbers here. To do this for your display, right-click in the margin (on the left-side of the editor window) and select
Show Line Numbers. You see that method login_action() begins at line 166.

All of Creator's editors are based on NetBeans. The Editor Module is a full-featured source editor and provides code
completion (we show an example shortly), a set of abbreviations, and fast import <Alt-Shift-I>.

To see the set of abbreviations, select Tools > Options from the menu bar. The Options dialog pops up. Under Options,
select Editing > Editor Settings > Java Editor. On the right side of the display, click the small editing box next to
Abbreviations. Creator pops up the window shown in Figure 2-11.

Figure 2-11. Java source editor list of abbreviations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The window lists the abbreviations in effect for your Java editor. (You can edit, add, or remove any item.) For example,
to add a for loop to your Java source file, type the sequence fora (for array) followed by <Space>. The editor adds

for (int i = 0; i < .length; i++) {

}

and places the cursor in front of .length so that you can add an array name. (.length refers to the length of the array
object. This code snippet lets you easily loop through the elements of the array.)

The Java source editor also helps you with Java syntax and code completion. All Java keywords are bold, and variables
and literal Strings have unique colors (you'll see that in your display; in the text here, it's different shades of gray).

When you add statements to your Java source code, the editor helps you by dynamically marking syntax errors (in red,
of course). The editor also pops up windows to help with code completion or package location for classes you need to
reference (press <Ctrl-Space> to activate the code completion window). For example, Figure 2-12 shows the code
completion mechanism as you start to type a method that begins with "e" for a String object (on line 168).

Figure 2-12. Java source editor code completion

[View full size image]

When you use the down-arrow to select method equals(), the help mechanism displays the Javadoc documentation
about equals() for java.lang.String. With method equals() highlighted, press <Enter>. The code completion does more for
you than you really want here. Delete all the characters after "equals" up to the parenthesis in front of "userName." The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you than you really want here. Delete all the characters after "equals" up to the parenthesis in front of "userName." The
syntax errors should disappear. (To retrieve Javadoc documentation on any class in your source file, select it and press
<Ctrl-Shift-Space>.)

Clips Palette

When the Java Source editor is displayed, Creator replaces the component palette with the Clips palette, as shown in
Figure 2-13. Here we select the Java Basics Clips. Highlight clip Concatenate Strings. If you hold the cursor over the clip
name, Creator displays a snippet window. You can drag and drop the clip directly into your Java source file. We do this
when we build our first sample project in the next section.

Figure 2-13. Java Basics Clips Palette and Viewer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To view or edit a clip, select it, right-click, and choose Edit. The second window in Figure 2-13 shows the Concatenate
Strings clip.

The Clips palette is divided into categories to show sample code for that general topic. For example, if you click
Application Data, you'll see a listing of clips that shows you how to access objects defined in your web application's
different scopes.

Page Navigation Editor

Return to the Java Source window and look at method login_action(). You'll see that this method returns one of two
Strings: either "loginSuccess" or "loginFail". These Strings are returned to the action event handler, which then passes
them to the navigation handler. The navigation handler manages page flow. Let's look at the Page Navigation editor
now.

1. From the top of the Java source window, select the tab labeled Page1.jsp. This returns you to the design
canvas for this page.

2. Now right-click in the design canvas and select Page Navigation from the context menu. Creator brings up the
Page Navigation editor for project Login1, as shown in Figure 2-14.

Figure 2-14. Page navigation editor for project Login1

[View full size image]

We mentioned earlier that there were three pages in this project. The Page Navigation editor displays these pages and
indicates page flow logic with labeled arrows. The two labels originating from page Page1.jsp correspond to the return
Strings we just looked at in the action method login_action().

You learn how to specify Navigation in Chapter 4 (see "Page Navigation" on page 96). The Page Navigation editor is also
a handy way to bring up any of the project's pages: just double-click inside the page. As you bring up each page, a
corresponding file tab appears at the top of the editor pane. And once you've visited the Page Navigation editor, Creator
displays a file tab called navigation.xml so you can easily return.

Before we explore our project any further, let's deploy and run the application. From the menu bar, select Build > Run
Project. (Or, click the green chevron on the toolbar icon, which also builds and runs your project.)

Build Output Window

Figure 2-15 shows the build output window just as the application is finishing deployment. Creator uses the Ant build
tool to control project builds. This Ant build process requires compiling Java source files and assembling the resources
used by the project into an archive file called a WAR (Web Archive) file. Ant reads its instructions from a Creator-
generated XML configuration file, called build.xml, in the project's directory structure.

Figure 2-15. Build Output window for project Login1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-15. Build Output window for project Login1

If problems occur during the build process, Creator displays messages in the Build Output window. A compilation error
with the Java source is the type of error that causes the build to fail. When the build succeeds (the window will show
BUILD SUCCESSFUL, as you see above), Creator tells the application server to deploy the application. If the application
server is not running, Creator starts it for you. If errors occur in this step, messages come from the application server.
Finally, it's possible for the deployment to be successful but for an exception to be shown in the browser's web page. A
likely source of this type of error is a problem with JSF tags on the JSP page or a resource that is not available for the
runtime class loader.

When the build/deployment process is complete, Creator brings up your browser with the correct URL. (The status
window displays "Starting browser for http://localhost:18080/login1.") So, to run project Login1 with the Sun J2EE 1.4
Application Server, Creator uses this web address.

http://localhost:18080/login1/

You use localhost if you're running the application server on your own machine; otherwise, use the Internet address or
host name where the server is running. The port number 18080 is unique to Sun's J2EE application server. Another
server will use a different port number here.

The Context Root is /login1 for this application. The application server builds a directory structure for all its deployed
applications, and the context root is the "base address" for all the resources that your application uses.

Figure 2-16 shows the Login1 project deployed and running in a browser. Type in some values for Username and
Password. If you leave the Username field empty, you'll get a validation error. The correct Username and Password is
"rave4u" for both fields.

Figure 2-16. Login page web application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you type in the correct values and click the Login button, the program displays page LoginGood.jsp. Incorrect
values display LoginBad.jsp. You'll build project Login1 from scratch in Chapter 4 ("Dynamic Navigation" on page
111).

It's time now to explore the Server Navigator window, located in the upper- left portion of your Creator display. Click
the tab labeled Server Navigator.

Server Navigator

Figure 2-17 shows the Server Navigator window after you've deployed project Login1. Four categories of servers are
listed here: Data Sources, Web Services, Deployment Server, and Database Server.

Figure 2-17. Server Navigator window

The Data Sources node is a JDBC database connection. The default database server is PointBase, but you can configure
a different one. Creator comes configured with several sample databases, which are visible if you expand the Data
Sources node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

PointBase must be running. You can start it on Windows by clicking the Start button
and selecting All Programs > Sun Microsystems > J2EE 1.4 SDK > Start PointBase.
You will need to restart Creator.

Now expand the Travel > Tables node to see the database tables as shown (there are four). As you select different
tables, Creator displays their properties in the Properties window.

You can expand each table further and see the database table field names. If you double-click on the table name,
Creator displays the data in the editor pane, as shown in Figure 2-18. You can close the table view by selecting the tab
labeled Table View, right-click, and select Close from the context menu. We discuss creating web applications that
access databases in Chapter 7 (see "Accessing Databases" on page 204).

Figure 2-18. Selecting View Data under the Data Sources node

[View full size image]

The second server type is Web Services, which provides access to remote APIs from Creator applications. This requires
the cooperation of several Java technologies, which we discussed in Chapter 1. When you install Creator, it includes a
web services API to access Google. In Chapter 6 we show you how to create an application that uses the Google web
service API.

The third server type is the Deployment Server, which is the application server. Sun's J2EE 1.4 application server is
Creator's default deployment server, which manages the deployment of web applications that you create. To start or
stop the server, select the Deployment Server node, right-click, and select Start/Stop Server. Creator pops up a
window that allows you to initiate one of these actions, or you can simply close the window.

If you expand the Deployment Server node, you'll see the Deployed Components node. Under this node are the
deployed applications. The /login1 application is listed (since you deployed it). You can undeploy an application by
right-clicking its node and selecting Undeploy.

The J2EE application server also has administration access through your browser at

http://localhost:14848/asadmin/

You can get there directly from Creator by selecting the Deployment Server node, right-clicking, and selecting Show
Admin Console. (The application server must be running for access to the administration port.) Use user name admin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Admin Console. (The application server must be running for access to the administration port.) Use user name admin
and password adminadmin.

Debugger Window

Creator has a debugger that lets you trace the call stack, track local variables, and set watches. You can see this
window by selecting View > Debugger Window from the toolbar. To run your application in "debug mode," click on
Debug > Debug Project from the menu bar. The application server has to stop and restart if it's not already in debug
mode. In Chapter 9 we walk you through the debugger options, setting breakpoints, stepping through code, and other
debugging activities.

Figure 2-19. Creator debugger window

[View full size image]

Creator Help System

The Creator Help System is probably the most useful window for readers new to Creator. This help system includes a
search capability, contents, and an index. You access the help system by selecting Help > Help Contents in the menu
bar. In Figure 2-20 we clicked the Index tab and selected entry "binding data to list components." The relevant
information appears in the adjacent window.

Figure 2-20. Creator Help window

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 Sample Application
Now that you're comfortable with Creator, let's create a simple web application. Even though this application is
simplistic, it hints at some of the power in Creator. Figure 2-22 on page 46 provides a preview of this web application.

Figure 2-22. Web application Echo running in a browser

Create a Project

Close project Login1 if it's open.

1. From the Welcome window, select button Create New Project.

2. Specify Echo for the Name, then click OK.

Specify Title

Creator initializes a project for you and brings up the design canvas editor. Now you'll be able to add components and
modify properties.

1. If the Properties window is not enabled for the page, select the page by clicking anywhere inside the design
canvas.

2. In the Properties window under General, change the Title attribute to Echo. Finish with <Enter>.

Add Components

You'll add three components to the page: a component label, a text field, and an output text component. When you
created project Echo and Creator brought up the design canvas, this made the JSF Standard Components palette

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

created project Echo and Creator brought up the design canvas, this made the JSF Standard Components palette
visible.

1. From the JSF Standard Components palette, select Component Label and drag it over to the design canvas.
Drop it onto the canvas, near the top on the left side. Don't resize it.

Creator Tip

If you resize the component, Creator generates static length and width attributes
for your component. If you leave it unsized, the rendering mechanism will
dynamically size the component to accommodate the text it needs to display.

2. Component label is a composite component; it contains an embedded (nested) output text component. The
output text component displays the label. From the Application Outline view, select the component label's
nested output text component, named componentLabel1Text.

Creator Tip

Creator provides an enhanced selection mechanism for composite components
(such as component label). In the design canvas, select the component label and
look in the Properties window to see which component is selected. Now click the
component again and you'll see a different component's properties. For
component label, you switch back and forth between the top-level, label
component and the embedded output text component by clicking the component
in the design canvas.

3. Now go to the Properties window and select the value attribute. Type the label Type in some text. Finish with
<Enter>. The text you type will appear in the component.

4. From the JSF Standard Components palette, select component Text Field and place it on the design canvas
underneath the component label you just added.

5. Make sure that it's selected, and in the Properties window, change its value attribute to Echo Text. Finish with
<Enter>.

6. Still in the Properties window for the text field, change its title attribute to The text you enter here will be
echoed below. Finish with <Enter>. You've just created a tooltip for this component.

7. Now select component label componentLabel1 (the top-level component) from the Application Outline view.

8. In the Properties window, select the small editing square opposite the for attribute. Creator pops up a dialog for
you to choose a component id. Select component textField1 and click OK. This associates the label component
with the text field component. You'll see (when you run the web application) that this affects GUI operations
such as cursor movement and selection behavior. For example, selecting the label also selects the text field.

9. From the JSF Standard Components palette, select an Output Text component and place it under the text field.
(Again, don't resize it.)

You've finished adding the components. Now you will use property binding to bind the text field component value
property to the output text component value property. Here's how.

1. Select the output text component (outputText1), right-click, and choose Property Bindings from the context
menu. Creator brings up the Property Bindings dialog. (See Figure 2-21.)

Figure 2-21. Property Bindings dialog

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Under Select bindable property, choose value Object.

3. Under Select binding target, expand Page1 > html > body > form1 by clicking the '+' at each level.

4. Select component textField1 (the text field component you added). Expand the component by clicking '+' on
textField1 and select value String. (The properties are listed in alphabetical order, so value is near the end.)

5. Click the Apply button. (If you don't click the Apply button, Creator doesn't set the property binding.) Under
Current binding for value property, you should see the following JSF EL expression

#{Page1.textField1.value}

6. Click Close to finish.

So, what did all this accomplish? You've just configured property binding on the output text component (id outputText1).
This means that JSF gets the value attribute (the text that is displayed on the page) for outputText1 from the text field's
value (component textField1). This, in turn, means that whatever you type for input will be echoed in the output text's
display.

Deploy and Run

You've finished creating the application. Now it's time to build, deploy, and run it. From the menu bar, select Build >
Run Project. Creator builds the application, deploys it, and brings up a browser with the Echo web application running.

Figure 2-22 shows what the browser window displays after you type Hello, World Wide Web inside the text field
followed by <Enter>.

Modify Project Echo

As promised, let's access the Clips palette and add some Java code to our project. First, we'll add an output text
component.

1. Make sure the Creator design canvas is visible.

2. From the JSF Standard Components palette, select Output Text component and place it underneath component
outputText1. This adds component outputText2 to your page. (You should see outputText2 when you look at the
Application Outline view of the project.)

3. Make sure component outputText2 is selected and in the Properties window click on the small editing box
opposite attribute value.

4. Creator pops up a dialog to manipulate the component's value. Click button Reset to default. This removes any
text from the design canvas for this component.

Now you will bring up the Java source editor to manipulate the Java page bean for this page.

1. Place the cursor anywhere in the design grid, right-click, and select View Page1 Java Class. This brings up the
Java Source editor with file Page1.java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java Source editor with file Page1.java.

2. Open the dropdown menu at the top of the editor pane and select the constructor, Page1(). Creator will place
the cursor at the beginning of this method and highlight the line in yellow. (Note that some Creator-managed
code is hidden—"folded"—to help keep your editor window uncluttered.)

3. Move the cursor to the end of the following line.

// Additional user provided initialization code

4. Click the mouse and start a new line by pressing <Enter>. Since you're in the Java Source editor, the Clips
palette is visible to the left of the editor pane.

5. Select Java Basics > Concatenate Strings. Drag this clip to your Java source and drop it directly underneath the
above comment line (where you just added a new line).

Creator adds the following code to your Java source file.

// Concatenating Strings

// This clip shows how to concatenate two strings in Java

// and places the result in a text field component

//TODO: set string1 and string2

String string1 = "concat";

String string2 = "enate";

String resultString = string1 + string2;

// show the result in a component on the page

getInputText1().setValue(resultString);

Note that the last line is underlined (in red), since it produces a syntax error. Before we fix the error, let's align the
newly added code.

1. Select the code you just added by swiping all the lines with the mouse. The selected lines turn gray.

2. At the top of the editor pane, hold the cursor over the icons until you find the icon with the tooltip "Shift Line
Right (Ctrl + T)."

3. Click the Shift Right icon until the selected code block is aligned with the line above it.

Let's fix the flagged error now. We need to use method getOutputText2() instead of method getInputText1().

1. Change the underlined line above to the following.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getOutputText2().setValue(resultString);

(Remove InputText1() and start typing the replacement text. Then press <Ctrl-Space> and see the code
completion box, as shown in Figure 2-23. Here we are given two choices. Use the down-arrow key to select
method getOutputText2() and press <Enter>.)

Figure 2-23. Code completion helping out

[View full size image]

2. Redeploy and run web application Echo. You'll see that the String "concatenate" displays in the output text
component on the page. We placed this code in Page1's constructor. This is where you provide initialization
code that is executed before the page is displayed.

This completes our tour of Creator. The next chapter provides a detailed description of the JSF standard components,
validators, and converters.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Key Point Summary

Creator has multiple windows to give you different views of the project that you're working on. The windows
can be sized, docked and undocked, or hidden.

From the main menu, select View and the desired window name to enable viewing.

Use the Welcome Window to select a Project to open, or to create a new project.

The design canvas allows you to manipulate components on a page and control their size and placement.

Use the components palette to place a component on the design canvas.

Use the converters/validators palette to select data converters and input validators for your project.

The Properties window allows you to inspect and edit a component's properties. Each element type displays a
different list of properties.

A component's value attribute usually contains text that is displayed (such as labels on buttons or input and
output fields). The title attribute gives you a tooltip for the component and the style attribute lets you change the
font characteristics.

You can apply Property Binding and "connect" the value of one component to another.

The Application Outline window shows all of the elements on a page, including nonvisual components.

The Project Navigator displays an entire project, including Java source files. Choose between the Logical view
and the FileSystem view by right-clicking the project name.

The JSP Source editor displays a page's source. Most of the page includes JSF tags for components and their
properties. As you make changes in the design canvas, Creator keeps the JSP source (as well as the Java
source) synchronized with your changes.

The Java Source editor displays the Java source for each "page bean," the JavaBeans component that
manipulates each page's elements. You typically place event handler code or custom initialization code in the
Java page bean.

The Java Source editor includes a code completion mechanism that provides pop-up windows with possible
method names (use <Ctrl-Space> to invoke) and Javadoc documentation for classes and objects in your
program (use <Ctrl-Shift-Space> to invoke). It also includes a dynamic syntax analyzer to warn you about
compilation errors before you compile.

The Clips palette provides sample Java code to accomplish common programming tasks. The Clips are
organized into categories based on function.

The Page Navigation editor lets you specify page flow. It builds a navigation configuration file, navigation.xml.

When you build your project, the Build Output window provides diagnostic feedback and completion status.

The Server Navigator window displays the Data Sources, Web Services, Deployment Server, and Database
Server nodes.

You can start and stop the application server and undeploy running web applications from the Deployment
Server node.

You can view Table data by expanding the Data Sources node and selecting individual tables. Creator displays
the data in the editor pane when you right-click the table name and select View Data.

The Debugger Window displays several views that are helpful when you are debugging your project. You can
monitor the call stack, local variables, and watches, for example.

The Creator Help system provides a table of contents, an index, and a search mechanism to help you use
Creator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. JSF Standard Components
Topics in This Chapter

JSF Component Attributes and Configuration

Data-Aware Components

Component Nesting

Action and Navigation Components

JSF Standard Converters and Validators

Components for Error Messages

Validation, Conversion, and the JSF Life Cycle

Sun Java Studio Creator's design palette presents a wide variety of JSF standard components to choose from. These
components include input and output text fields, checkboxes, listboxes, hyperlinks, images, database tables, and so on
—in short, anything you need to design a web page. You can select a component, drag it to the design canvas, and drop
it at the location of your choice. In addition, you can choose validator components to verify user input and converter
components for data conversions. Creator maintains a design canvas with your web page layout and generates Java
code for you, along with JSP and XML statements to help configure and deploy your application.

In this chapter we present a catalog of the JSF standard components, validators, and converters. We also provide
references to examples in this book where they are used. The examples will help you understand how to use the JSF
components in your Creator projects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 JSF Overview
The JSF API provides a rich set of UI components that let you handle events, validate and convert user input, define
page navigation, and support internationalization. JSF also has custom tag libraries that connect components to server
side objects. Let's start with the architecture of JSF to give you the "big picture" of what's going on.

JSF Architecture

Figure 3-1 shows the architecture used with JSF.

Figure 3-1. JSF architecture

Your browser interacts with the web container through one or more JSP pages (Page1.jsp and Page2.jsp). These are
JSP pages containing JSF tags. The supporting page bean (Page1.java) manages the objects referenced by the JSP
pages. Note that the JSP pages handle HTTP requests when a page is accessed, whereas the Java files render HTML for
the HTTP response.

The JSP Page

Suppose a web page has an output text component (outputText1) that displays "In what year were you born?", a button
to click (button1), and an input text field (textField1) for the year (restricted to the range 1900 to 1999). When these
components are moved from the palette to the design canvas, Creator generates the JSF tags in the JSP file. Each JSF
component also becomes a property in the generated Java page bean. To understand how this all works, let's start with
how the output text component is defined in Page1.jsp.

<h:outputText

 binding="#{Page1.outputText1}"

 style="font-size: 18pt; left: 96px; top: 96px;

 position: absolute"

 value="In what year were you born?"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSP file is expressed in XML. Creator generates this file for you and keeps it synchronized with your page design. As
you modify your components with the Properties window, Creator updates the JSP code as well as the Java code as
necessary. Creator generates the required JSF tags for your components in the JSP page. You can always access the
JSP page by selecting the tab labeled Source below the editor pane design canvas.

In this example, the output text component displays "In what year were you born" on the page. Its id attribute (unique
page identification) is outputText1 and its binding attribute (the corresponding property in the Page1 page bean) is also
outputText1. The style attribute specifies its location on the page with the left and top settings in pixels. This attribute
also makes the text appear in 18-point font size.

JSF Expression Language (EL)

JSF uses a specialized syntax to access JavaBeans components with its tags. For example, the notation

#{Page1.outputText1}

references the outputText1 property in JavaBeans component Page1. In the JSP file (Page1.jsp), the generated
component tags reference properties in the supporting page bean, as follows.

binding="#{Page1.outputText1}"

Now let's see how the button component is referenced in Page1.jsp.

<h:commandButton

 binding="#{Page1.button1}"

 action="#{Page1.button1_action}"

 style="left: 72px; top: 168px; position: absolute"

 title="Click for your age" value="Submit"/>

Elements binding and action are JSF tag library attributes whose values are set with JSF EL. Element binding is the button
component's page bean reference, and action references a special action event method button1_action(), also in Page1.
Here, method button1_action() is called when the users clicks the button controlled by JSF component button1.

Converters and Validators

What about the input text field component? Recall that this component must read a year (in the range 1900 to 1999)
from the user. Here's how the input text field component is configured in Page1.jsp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the user. Here's how the input text field component is configured in Page1.jsp.

<h:inputText

 binding="#{Page1.textField1}"

 converter="#{Page1.integerConverter1}"

 style="left: 192px; top: 168px; position: absolute"

 validator="#{Page1.longRangeValidator1.validate}"/>

Text field components display and accept text, but textField1 must work with integer numbers in this example.
Consequently, a JSF conversion component (integerConverter1) is necessary to convert String input to integer values.
Input is restricted to a specific range of numbers (1900 to 1999), so we'll need a JSF validator (longRangeValidator1) for
the input, too.

converter="#{Page1.integerConverter1}"

validator="#{Page1.longRangeValidator1.validate}"

In both cases, JSF EL references the components that perform the conversion and validation.

Event Handling

JSF uses a well-known delegation event model to handle events generated by user actions (clicking a button, changing
a selection in a dropdown list, pressing <Enter> after editing a text field, for example). It's helpful to have an
understanding of the pieces that work together to make responding to events a well-behaved system.

The Event Source is a component that is capable of generating an event. Different components generate different event
types. Button components and link action components generate action events. Dropdown list components generate
value change events.

Event Objects are generated by components (the Event Source). An Event Object is basically a message that is passed
from the Event Source to an Event Listener. The Event Object contains information about the Event.

Event Listeners are specialized objects created by JSF that know what to do when an event is generated. Different
types of listeners can respond to different types of events. For example, ActionEventListeners respond to action events
and ValueChangeListeners respond to value change events.

Using the "Publish-Subscribe" design pattern, Event Listener Registration keeps track of which objects "care about" an
event occurring. Objects that "care" are those that register themselves through the Event Listener Registration. After
registering with the Event Source, Event Listeners are notified when an action occurs. Notification means their special
event method is called with the event object as a parameter. Fortunately, Creator generates all the method stubs,
event listeners, and event registration for you. Here is an example of a value change method that JSF calls when a
value change event is generated from a dropdown list component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void dropdown1_processValueChange(

 javax.faces.event.ValueChangeEvent vce) {

 // User event code here. . .

}

Web application developers provide the specialized event-processing code (whatever actions your web application must
perform in responding to the value change event).

Action events are common with most applications and Creator generates the action event handlers for you. Action
events can be used to write processing code in response to a button click. In addition, action events return String
values to a navigation handler, which allow you to move to a different web page. Here is the stub Creator generates
when you request event processing for a button.

public String button1_action() {

 // User event code here...

 return null;

}

Note that action events implement navigation by returning String values. A null string means you stay on the same
page. A different String ("ButtonClick", for example) instructs the navigation handler to go to a new page.

Java Page Bean

Now let's show you the Java page bean file, Page1.java. Creator generates Java code in the Java page bean for the
components you select from the design palette. Each component becomes a property of the supporting page bean, and
the component instance is bound to that property.

Here's the Page1.java file for our simple web application with two text fields and a button. Again, Creator generates
this file for you.

public class Page1 extends AbstractPageBean {

 private HtmlOutputText outputText1 = new HtmlOutputText();

 private HtmlCommandButton button1 = new HtmlCommandButton();

 private HtmlInputText textField1 = new HtmlInputText();

 private IntegerConverter integerConverter1 =

 new IntegerConverter();

 private LongRangeValidator longRangeValidator1 =

 new LongRangeValidator();

 // getters and setters for components here...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // getters and setters for components here...

 public Page1() {// page constructor

 // Creator-managed initialization code

 }

 public String button1_action() { // event handler

 // User event code here...

 return null;

 }

}

Note that Page1 extends AbstractPageBean. The private fields define the JSF components and the getter and setter
methods make them accessible as properties. Here are the getters and setters for the output text component.

public HtmlOutputText getOutputText1() {

 return outputText1;

}

public void setOutputText1(HtmlOutputText hot) {

 this.outputText1 = hot;

}

In our example the Page1() constructor sets the minimum and maximum ranges for the JSF validator component
(longRangeValidator1). When you set these values for the validator by using Creator's Properties window, Creator
generates the statements in the constructor to configure the validator for you.

public Page1() {

 // Creator-managed initialization code

 try {

 longRangeValidator1.setMinimum(1900);

 longRangeValidator1.setMaximum(1999);

 }

 catch (Exception e) {

 log("Page1 Initialization Failure", e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 log("Page1 Initialization Failure", e);

 throw new FacesException(e);

 }

 // User provided initialization code

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Components
Creator allows you to select components from the JSF standard components palette for your application. These
components are implemented with a JSP custom tag library for rendering components in HTML (part of JSF). Therefore,
all of the JSF standard components are rendered as HTML tags.

When you select a component and drag it to the design canvas, Creator generates code in the page's JSP source as well
as support code in the associated Java page bean. Furthermore, Creator displays each component in the Application
Outline view, including any support components that may not be visible. Once you place a component on the design
canvas, you can modify its attributes and behavior through the Properties window, through the JSP code, or through
modifications to the Java page bean. In general, it's preferable to edit attributes of a component with Creator's
Properties window. However, writing code to control navigation or including Java statements to handle action and value
change events must be done in the Java page bean file.

Common Attributes

This chapter presents a catalog of the JSF standard components so that you can easily look up their behavior and use
them in your application. Many components share common attributes and code generation features, however. Let's
start with the definitions of these attributes so that you can see how they're used by the JSF components.

value

The value attribute stores a component's main characteristics. Its meaning depends on the component. For example,
value stores the text of a button label, the display text of an output text component, or the input for a text field. The
value attribute can also store the text for a secret field and hidden field components. For a hyperlink component, value
stores a target URL name. For an image component, value holds the name of an image file.

The value attribute is a Java Object type. Creator allows you to bind a component's value attribute to a JavaBeans
property, a data source, or even a localized message in a properties file.

title

The title attribute is a text string for a JSF component's tooltip.

style

The style attribute holds CSS Style Sheet strings for attributes such as font family, font size, and position parameters.
These determine the type of font used, its point size, and placement on the design canvas.

id

The id attribute is a page-unique string that identifies a component on the web page. Creator generates the
component's id for you, but you can use the Properties window to change it. We recommend renaming the default id
when you have more than one component on the same page that requires action methods (buttons, for example).
Providing meaningful names for the id attribute makes Creator generate associated action methods with meaningful
names. This makes your Java code easier to read.

action

The action attribute is important for button and link action components. This attribute references a method in the page
bean that returns a String for JSF's navigation handler. The application writer may provide application-specific
statements in the action method, process information to determine page flow, or both. Chapter 4 discusses page
navigation in detail.

binding

Creator generates the binding attribute for all components you place on the page. The binding attribute binds the
component instance to a property in the page bean. For example, if you add a button component to a web application's
initial page (Page1.jsp), the default binding attribute for the button component is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initial page (Page1.jsp), the default binding attribute for the button component is

binding="#{Page1.button1}"

This JSF EL expression references the button1 property of managed bean Page1 and binds the component instance to
the bean property. Now you can write code in the Page1.java page bean to access the button component and
dynamically control its properties.

Input Components

Components that collect input (text field, secret field, multiline text area, dropdown list, multiselect list, for example)
share common attributes to control and validate input. Let's look at some of these attributes now.

validator

The validator attribute references a method that performs validation on its value. JSF provides three standard validators:
a length validator for strings, a long range validator for integral types, and a double range validator for floating types.
You can also write your own custom validation method. See "Add a Validation Method" on page 294 (Chapter 8).

converter

The converter attribute references a converter component that builds the correct type of object. Once the conversion has
taken place, you can retrieve the object by casting it to the desired type.

maxlength

The maxlength attribute limits input to a specified number of characters. (This is not the same as length validation.)
Setting attribute maxlength causes a component to stop accepting input after the user has typed in the maximum
characters allowed. No error messages are produced.

required

Boolean required attribute specifies whether or not input is necessary for the component. If the user leaves an input
component's field empty and required is set, an error message is produced during the validation phase.

valueChangeListener

A value change event occurs when an input component's selection changes or its text changes. If you want to perform
processing based on input change, select the component in the design canvas, right-click, and select Edit Event Handler
> processValueChange from the context menu. Creator generates a processValueChange() event method for you in the
Java page bean. You can add your own processing code to this method if needed.

onchange

To set the onchange attribute, select a component in the design canvas, right-click, and choose Auto-submit on change.
This sets the onchange attribute to the JavaScript element this.form.submit(). When the selection or input value of a
component changes, the page request is submitted, allowing immediate processing (instead of waiting for a button click
or a link action).

Table Components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data table component and grid panel component build table elements. Here are the attributes that control their
appearance.

bgcolor

The bgcolor attribute sets the component's background color.

border

The border attribute specifies the line width of a table or a grid's border.

cellspacing

The cellspacing attribute specifies the amount of space around the cells.

cellpadding

The cellpadding attribute specifies the amount of padding inside the cells.

columns

The columns attribute specifies the number of columns in a table or grid.

Data-Aware Components

Creator offers a selection of data-aware components that you can bind to a database table selected through the Server
Navigator window. The data table component is particularly suited for displaying data, but you can also choose from
among the dropdown list, checkbox list, listbox, multi select listbox, multi select menu, or radio button list components.

Creator automatically supplies a converter for non-String data fields when you bind to a database table. However, if
there are any unexpected conversion errors, you will only see error messages if you have placed a message list
component on the page.

Creator Tip

We recommend placing a message list or inline message component on the page
when you're using the data-aware components, especially during development.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 Component Catalog
The following catalog of JSF components describes each component and gives you common usage scenarios. To show
you how a component can be useful in a Creator project, we also point you to relevant examples in other chapters of
this book. The components are listed alphabetically for easy lookup.

Button

The button component is an example of a "command component." Buttons perform an action when they are activated
(clicked). This can happen during server-side processing (a method that processes an action event) or with a
navigational action that determines page flow. The button component is one of the most-often-used components in web
design. By default, it is rendered as an HTML <input type=button> tag.

Buttons can be used for "simple" or dynamic navigation between web pages. With simple navigation, a button's action
method returns a String that matches a case label in the navigation rules generated for the application. We show you
how to create this type of navigation in "Add Page Navigation" on page 102. Dynamic navigation is useful when you
need to figure out the next page based on some sort of processing. In this case, the action method returns a String
based on the processing. See "Enable Page Navigation" on page 117 for an example of dynamic navigation.

In Creator, you connect the click of a button (an action event) to a method for processing the event by double-clicking
the button component in the Creator design canvas. This brings up the matching button_action() method (where button is
the component's id attribute) in the Java page bean so that you can add your processing code.

The button's value attribute is its label. You can bind this value to a database table if you want to update the label
dynamically. You can also change the appearance of a button by setting the button's image attribute to an image
filename.

Book Examples

"Add Button Components" on page 101 (Chapter 4). Uses a button to initiate navigation.

"Place Button and Output Text Components" on page 158 (Chapter 5). Uses a button to initiate a page request.

"Add a Button Component" on page 169 (Chapter 6). Uses a button to invoke an action event method.

"Add Button and Image File" on page 193 (Chapter 6). Uses an image with a button component.

"Add a Button and an Output Text Component" on page 293 (Chapter 8). Configures a button for
internationalization.

Checkbox

The checkbox component provides a boolean on/off setting. Checkboxes are particularly useful in conjunction with
component labels. By associating a component label with a checkbox (using the component label's for attribute), you
enable a user to check or uncheck the checkbox in two ways, either by selecting the label or by clicking directly on the
checkbox component.

All JSF standard components have value attributes that return Object types, so a Java cast is necessary to treat a
checkbox value as a boolean. To see how this works, let's look at the following code fragment. Here, we verify whether a
checkbox component called checkbox1 is "checked" or not. The checkbox component's getValue() method returns an
Object type, so you need to cast it to a Boolean type to call its booleanValue() method. This enables you to use the
checkbox expression inside an if statement.

if (((Boolean)checkbox1.getValue()).booleanValue())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (((Boolean)checkbox1.getValue()).booleanValue())

 feedback.setValue("Email confirmation will be sent to " +

 email.getValue().toString());

else

 feedback.setValue("No confirmation will be sent.");

Here, we use a feedback output text component to display an email confirmation message if checkbox1 is checked. If not,
a different message appears.

Example

Figure 3-2 shows part of a page with a checkbox component and its associated label. Selecting the label is the same as
checking/unchecking the checkbox component. To obtain this behavior, set the component label's for attribute in the
Properties window to the id attribute of the checkbox.

Figure 3-2. Using checkbox with a component label

Checkbox List

The checkbox list component groups a set of checkboxes. You can specify their items through the Properties window or
dynamically fill them from a database or JavaBeans component. When you use a checkbox list, the user may select any
number of the checkbox options (including none unless the required attribute is checked). A checkbox list component is
appropriate when you want to give the user a list of choices with the phrasing "please check all that apply."[1] The
selection items may be hardcoded with the Properties window or generated dynamically at run time. Creator
automatically supplies a converter for non-String data fields when you fill the list from a database source. This
component also accepts data binding. The value attribute of the checkbox list returns an array of Objects consisting of
the checked selections.

[1] If you'd like to limit the choice to only one from a list, use the radio button list component (see "Radio Button
List" on page 85).

Adding a checkbox list component to your web page creates three elements: the checkbox list component, an
embedded selection list, and a "default items" list used for initializing the selection choices. To specify the choices,
select checkboxList1DefaultItems from the Application Outline view. In the Properties window, click the editing box
opposite attribute items. Creator pops-up a dialog so that you can add, edit, or remove items. (This is the same dialog
that you use to specify items for the Listbox component. See Figure 3-9 on page 78.)

Figure 3-9. Supply text for selection items for a Listbox component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

Figure 3-3 shows a checkbox list component on a web page. A user can select as many of the choices as he or she
wants (including none or all of them).

Figure 3-3. Using checkbox list

Here is the Java code to display the choices selected from the checkbox list (whose id attribute is checkboxList1) in an
output text component. Note that we assign the selected values to String array sides. Casting is necessary since the
getSelectedValues() method returns an Object array. We use a for loop to concatenate the selected values with vertical-bar
delimiters. This code is placed in the button event handler method.

 public String button1_action() {

 // User event code here...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // User event code here...

 String choices = null;

 String[] sides =

 (String[])checkboxList1.getSelectedValues();

 for (int i = 0; i < sides.length; i++) {

 choices = choices + " ||" + sides[i] + "|| ";

 }

 outputText2.setValue(choices);

 return null;

}

Component Label

A component label associates with another component (using its for attribute) to provide label information and
additional selection behavior. For example, if you associate a component label with a text field, you can select the text
field by clicking either the label or the text field.

Component label is a composite component. This means it has a nested output text component to hold the label's text.
You typically set the text with Creator's Properties window. You can also specify data binding with a data source,
property binding with a JavaBeans property, or text from a resource bundle. A component label's outer component
contains the attributes that control the label's behavior and rendering.

Book Examples

"Create the Form's Input Components" on page 113 (Chapter 4). Uses component labels associated with text
fields.

"Add Components for Input" on page 289 (Chapter 8). Nests component labels in a grid panel. Sets the text for
its label from a localized .properties file.

Data Table

The data table component is complex. First of all, it's a composite component with nested columns, which in turn
contain nested display components (such as output text components, buttons, or text fields). The data table component
is typically filled dynamically with data from a data source or from JavaBeans properties. When you fill a data table
component with data from a data source, Creator lets you control the result, including the columns to display, the
number of headers and footers, and the component you want to display the text. You can also apply data converters to
any field in a data table component.

When you drop a data source on top of a data table component in the design canvas, Creator automatically binds the
table with the data and generates the number of columns from the database. Creator also generates headers from the
field names and uses the database table's metadata to apply the necessary converters.

Figure 3-4 shows Creator's design canvas with a data table component bound to the TRACKS table from our Music
Database in Chapter 7. This table has three columns (with headings from the database metadata). Creator shows the
column's data type as "123" for numeric data and "abc" for String data. If the data are not text, Creator applies a
converter for you as well.[2] In this table, an embedded output text component is used for the display.

[2] For example, if a primary key field is integer data, Creator applies an Integer converter to the component.
Creator performs this action for all the data-aware components.

Figure 3-4. Binding component data table with an external database table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

Creator provides an enhanced selection mechanism for composite components
(such as the data table). In the design canvas, select the data table component and
look in the Properties window to see which component is selected. Now click the
component again and you'll see a different component's properties. For the data
table, you traverse the components' nesting levels by successive clicking over the
component.

Creator automatically sizes the columns and dynamically generates the correct number of rows. When you bind a data
table component to a database table, Creator generates a default query for you. You can modify this query by selecting
the associated rowset from the nonvisual display. We show you how to work with database queries in Chapter 7 (see
"Modify the SQL Query" on page 220.)

Figure 3-5 shows Creator's dialog for manipulating a data table format. Here, the dialog shows the columns from the
TRACKS database table. You can choose which columns to display, the header and footer text, and the underlying
component that holds the data. To bring up this dialog, select the data table component in the Application Outline view,
right-click, and choose Table Layout.

Figure 3-5. Table Layout dialog: specifying columns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6 on page 70 shows Creator's dialog for specifying page controls for database queries that produce many
rows. Click the Paging tab in the Table Layout dialog. Now check Enable paging and then specify Page size. If you'd like
page navigation buttons, check the box Display page navigation buttons. Next to each button, specify the button's label.
At the bottom of the dialog, select where you want Creator to place the page control buttons using the dropdown list.
After making your selections, click Apply, then OK.

Figure 3-6. Table Layout dialog: specifying paging

Book Examples

"Add a Data Table" on page 217 (Chapter 7). Builds a master-detail relationship using data binding with a data
table component.

"Add a Second Data Table" on page 228 (Chapter 7). Shows how to build an SQL Inner Join query by using
multiple database tables and the JSF data table component.

Dropdown List

The dropdown list component is an extremely versatile JSF component, rendered as an HTML <select> element (a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dropdown list component is an extremely versatile JSF component, rendered as an HTML <select> element (a
dropdown list). A dropdown list allows a user to select one item from a set of items. The selection items can be
hardcoded with the Properties window or generated dynamically at run time. Creator automatically supplies a converter
for non-String data fields when you fill the list from a database source. This component also accepts data binding. The
value attribute of the selectOneMenu JSF tag maps to the property that holds the value of the currently selected item.

When a dropdown list component is used with data table binding, you typically bind the data table's primary key field
with the dropdown component's value field. You select an appropriate field from the data table for the dropdown
component's display field. Thus, the display field may contain a person's name, whereas the dropdown component's
getValue() method will return the primary key. This is useful for setting SQL query parameters from a listbox
component's selection value. (See "Add Query Criteria" on page 221.)

The dropdown component contains an embedded selectItems tag that represents the items in the list (this is a nonvisual
component appearing in the Application Outline view). The nonvisual component named dropdown1DefaultItems supplies
text for the selections. To make this happen, select the dropdown1DefaultItems element in the Application Outline view
and click the items attribute in the Properties window. A dialog pops up that lets you type in text for each selection (see
Figure 3-9 on page 78).

When the user makes a new selection from a dropdown component, the system generates a value change event.
Creator allows you to toggle the Auto-submit on change attribute for this event. When it's on, the system invokes the
this.form.submit() JavaScript function. This function updates the page and resubmits it when a user changes the
dropdown list selection.

Finally, the processValueChange() event handler is where you add your statements when a value change event is
detected. If you right-click the dropdown component and select Edit Event Handler > processValueChange, Creator
creates the stub for the event handler method in the Java page bean.

Book Examples

"Add a Dropdown List" on page 108 (Chapter 4). Uses a dropdown list with navigation.

"Add a Dropdown List Component" on page 213 (Chapter 7). Fills the selection list from a database data source.

"Add a Dropdown List Component" on page 276 (Chapter 8). Uses a dropdown list to specify locale.

Formatted Output

The formatted output component helps web developers display concatenated messages by using a specialized message
format pattern. The MessageFormat class (in package java.text) produces language-independent messages. (You can read
more about the MessageFormat class in the Java J2SE documentation at http://java.sun.com/j2se.) This type of
formatted output can be very useful when you are constructing messages for localized or internationalized web
applications. The MessageFormat class is set up to use either the default locale or a locale passed as an argument to its
constructor.

The value attribute of a formatted output component specifies the MessageFormat pattern, which is typically a keyed
string in a resource bundle. You provide param tags to specify the substitution parameters for the message.

Suppose, for example, your web application uses a counter to display the number of users currently logged on. You'd
like to display one of the following messages on your page.

There are no other users logged on.

There is one other user logged on.

There are 12 other users logged on.

As you can see, the words in these messages must be different when the number of users change. (And this is just for
English—the text in the resource bundles for other languages have their own patterns!)

Let's look at how you might do this with the MessageFormat pattern. The following statement lives in the .properties file
referenced in the <f:loadBundle> tag for this project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

referenced in the <f:loadBundle> tag for this project.

userCount = There {0,choice,0#are no other users|

 1#is one other user|1< are {0} other users} logged on

Here, userCount is the message key and everything else is the MessageFormat pattern. The number of users is
represented as a parameter (0). Note that three alternatives are specified for the number of users logged on: zero (0),
one (1), and many (1<). The expression {0} resolves to the current number of users.

JSF Tags

Here are the JSF tags for the formatted output component and an embedded parameter tag that fetches a number from
text field component numberText. We show the text field component's tags as well.

<h:outputFormat binding="#{Page1.formattedOutput1}"

 style="position: absolute; left: 168px; top: 360px"

 value="#{messages.userCount}">

 <f:param value="#{Page1.numberText.value}"/>

</h:outputFormat>

<h:inputText binding="#{Page1.numberText}"

 converter="#{Page1.integerConverter1}"

 style="position: absolute; left: 168px; top: 312px"

 value="0"/>

Book Examples

"Modify JSF Components for Localized Text" on page 269 (Chapter 8). This example doesn't use a formatted
output component, but it shows you how to specify and reference localized text with a .properties file.

Grid Panel

A grid panel is a general-purpose container that controls the layout of groups of other components. After placing a grid
panel in the design canvas and specifying the number of columns (the default is 1), you can drop other components
onto it. Creator fills the panel with your components in a grid (rows and columns) layout. This means the components
are placed in the order that you drop them on the grid panel and according to the number of columns you specify.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are placed in the order that you drop them on the grid panel and according to the number of columns you specify.

The grid panel component has several attributes that allow you to control a grid's appearance. These attributes include
bgcolor for background color, columns for the number of columns, cellspacing for cell width spacing, and border for the
width of the grid's border lines.

Creator Tip

When you create a page with nested components (such as the page in on page
-74), the Application Outline view is easier to use than the design canvas for placing
components on top of the desired target. This is because rendering in the design
view often obscures the specific target component that you're trying to drop onto.

Book Examples

"Add a Grid Panel Component" on page 100 (Chapter 4). Uses a grid panel to hold button components.

"Adding Components to the Page" on page 288 (Chapter 8). Uses a grid panel to format six components in a 3
by 2 grid.

Group Panel

A group panel is another general-purpose container that controls the layout of groups of other components. Whereas
the grid panel places components in a grid configuration (you specify the number of columns), the group panel uses a
flow layout. Depending on the width of the panel, group panels arrange components one after the other in a flow. When
there's not enough room in the first row, Creator continues with placement in a second row. As with the grid panel,
placement is determined by the order in which you drop the components on the panel.

Group panels are handy for grouping nested components. It's possible, for example, to place a group panel inside cells
of a grid panel. This technique lets you create interesting web pages by placing groups of components in each cell of a
grid panel. From the grid panel's perspective, these nested components are treated as a single cell.

Examples

Figure 3-7 shows nested components in a web page that uses an outer grid panel, three columns of nested group
panels, and individual components in each group. The first column is a nested grid panel that controls the spacing of the
component labels. In the second column, we adjust the width of another nested group panel so that each text field ends
up on its own line. The third column contains another group panel with a single message list component.

Figure 3-7. Component nesting with grid panel and group panel

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8 on page 75 shows the Application Outline view for this arrangement. The outer grid panel (gridPanel1)
contains three nested group panels, groupPanel1, groupPanel2, and groupPanel3. Inside groupPanel1, a nested grid panel
(gridPanel2) contains three component labels. The groupPanel2 component has three text fields and the groupPanel3
component has a message list.

Figure 3-8. Application Outline with component nesting

Hidden Field

The hidden field component allows web developers to include a hidden variable in a web page. The hidden field
component is generated as an HTML <input type=hidden> element. This means hidden fields are not displayed in the
browser. Hidden fields that you drop onto the design canvas in Creator show up in the nonvisual tray below the editor
pane. Hidden fields can also pass to the server special form-processing information that the user cannot see or change.
Note that hidden fields are "hidden" in the sense that they are not rendered by the browser. Anyone can still examine
an HTML document's source to locate a "hidden" field, however. Hidden fields, like secret fields, are extended from the
same component classes as text field and therefore have the same configurable attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same component classes as text field and therefore have the same configurable attributes.

Hyperlink

Hyperlink components link to other pages or a location on a page without generating an action event. A hyperlink
component is useful when a page's URL information is data driven and no processing is necessary. In general, the
hyperlink component takes an embedded output text component to display textual information to the user.

The hyperlink is rendered as an HTML <a> element and its text is underlined in a web page.

Book Examples

"Add a Hyperlink Component" on page 171 (Chapter 6). Uses a hyperlink component to provide a link to URLs
returned from a Google web services search.

Image

Image components display graphics from a file or a URL. Their value is the file or URL containing the image. The image
component is rendered as an HTML element.

When you select an Image component from the design palette, Creator pops up a Set URL Value dialog. To set the
filename, make sure the File tab is selected and browse to the desired file. Select OK. Creator displays the image you
select on the design canvas and copies the file to the project under the Resources node (you can view this in the
Project Navigator window). Alternatively, you can specify a URL and either link to it or maintain a copy in your project's
Resources folder. If you need to reference an image in Creator, use images/image_filename where
image_filename is the image file. Be sure to include the .gif or .jpg extension (these are the two types of image files
that browsers can typically display). Once the image component is on the design canvas, you can reposition it.

If you'd like an image to initiate an action, use a button and set its image attribute to the filename. (You won't be using
an image component for this.)

Book Examples

"Add the Google Logo" on page 167 (Chapter 6). Puts an image on the page.

"Add Button and Image File" on page 193 (Chapter 6). Uses an image with a button component.

Inline Message

The inline message component displays messages generated by other components. Typically, these messages are data
conversion errors or validation errors. When these types of errors occur, the validator or converter sends a message to
the JSF context on behalf of the component. Inline message components can retrieve and display these messages. You
attach an inline message component to a source component by using the inline message component's for attribute. (For
situations in which you'd like to use a single component to retrieve messages originating from more than one
component, use the Message List component instead. See "Message List" on page 79.) You can also use the inline
message style attribute to format the appearance of your error messages.

Book Examples

"Use Validators and Converters" on page 154 (Chapter 5). Uses an inline message component to report data
conversion errors for a text field component.

"Add an Inline Message Component" on page 183 (Chapter 6). Uses an inline message component to report
validation errors for a text field component.

"Add Components for Input" on page 289 (Chapter 8). Uses an inline message component to report validation
errors from a custom validator method.

Link Action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The link action component can initiate an action, just like a button component. Its action attribute corresponds to an
action method that returns a String. The return String can be used for page navigation, and the method can be used for
general processing. The link action component is a composite component consisting of a top-level link action part and
an embedded text component. The link action part controls the action attribute (like the button component), whereas
the embedded output text component holds the textual label of the hyperlink. The link action component is rendered as
an HTML <a href> element and its appearance is a hyperlink (underlined text). When you are working with the link
action component in the design canvas, an easy way to select it is through the Application Outline view.

To add event handling code associated with clicking the link action component, select the link action component in the
design canvas (the main, top-level node), right-click, and select Edit Event Handler > action. This brings up the
linkAction1_action() method (where linkAction1 is the component's id attribute). This is where you add your processing code
to the Java page bean file.

Book Examples

"Add Components to Page LoginBad" on page 121 (Chapter 4). Uses a link action component with navigation.

"Modify JSF Components for Localized Text" on page 269 (Chapter 8). Configures a link action component for
localization.

Listbox

The listbox component allows users to select one item from a set of items. The selections are displayed in a box (so
that they're all visible at once). If the list is too long to display, a vertical scrollbar provides access to the hidden
selections. A listbox is similar to a dropdown list.

The selection items can be hardcoded with the Properties window or generated dynamically at run time. The listbox
component also accepts data binding. The value attribute of the selectOneListbox JSF tag maps to the property that holds
the value of the currently selected item.

When a listbox component is used with data table binding, you typically bind the data table's primary key field with the
listbox component's value field. Creator automatically supplies a converter for non-String data fields when you fill the
list from a database source.

You select an appropriate field from the data table for the listbox component's display field. Thus, the display field may
contain a person's name, whereas the listbox component's getValue() method will return the primary key. This is useful
for setting SQL query parameters from a listbox component's selection value. (See "Add Query Criteria" on page 221.)

The listbox component contains an embedded selectItems tag that represents the items in the list (this is a nonvisual
component appearing in the Application Outline view). To supply text for the selections, use the nonvisual component
named listbox1DefaultItems. Select the component in the Application Outline view and click the items attribute in the
Properties window. A dialog pops up that lets you type in text for each selection (see Figure 3-9).

When the user makes a new selection, the system generates a value change event. Creator allows you to toggle the
listbox Auto-submit on change attribute. When it's selected, the system invokes the JavaScript function this.form.submit(),
which updates the page and resubmits it when the user changes the listbox selection.

To add the processValueChange() event handler method to the Java page bean file, right-click the listbox component and
select Edit Event Handler > processValueChange. Creator generates the processValueChange() event handler method for
you. You can then add event processing code to this method.

Book Examples

"Add a Listbox Component" on page 214 (Chapter 7). Fills the selection list from a database data source. Uses
listbox for a master-detail database read.

"Create the Form's Components" on page 251 (Chapter 7). Fills the selection list from a database data source.

Message List

Although similar to the inline message component, a message list component displays JSF messages originating from
more than a single component. If a message list component's for attribute is undefined, all messages from the page are
displayed. Conversely, when a message list component's for attribute identifies a component id, only that single
component's messages are displayed. You can use the message list style attribute to format the appearance of your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component's messages are displayed. You can use the message list style attribute to format the appearance of your
error messages. (See also "Inline Message" on page 76.)

Creator Tip

A message list is a good component to routinely place on your page. JSF writes
FacesException messages to the JSF context. These will only be displayed if a
message list or inline message component is on the page. (For example, a
conversion error may cause unexpected behavior. If a message list is on the page,
you'll see the conversion error.)

Book Examples

"Add a Message List Component" on page 116 (Chapter 4). Uses a message list component for all the page's
components.

Multi Line Text Area

The multi line text area component gathers textual information for multiple lines. This component is similar to a text
field, but you build it with rows and columns (see Figure 3-10). Its standard look displays several lines, and a vertical
scrollbar appears if the number of lines exceeds the number of rows. The getValue() method retrieves the text and
setValue() sets it. With a multi line text component, you can specify its size, provide text for a tooltip, and use data or
property binding.

Figure 3-10. Multi line text area component on a web page

Multiline text areas are common with web applications that solicit free-form text. This includes such things as
composing letters, listing comments, sending email, posting to guest books, filing bug reports, or reviewing user
products.

Like the listbox, multiline text areas work with value change events and the processValueChange() event handler. To
access this method, right-click the multi line text area component and select Edit Event Handler > processValueChange.
Creator generates the event handler method in the Java page bean for you. This is where you add your event
processing code.

Multi Select Listbox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The multi select listbox component is similar to a listbox except that you can select more than one item at the same
time. The selections are displayed in a box (so that they're all visible at once). If the list is too long to display all the
items, a vertical scrollbar provides access to the hidden selections.

The selection items can be hardcoded through the Properties window or generated dynamically at run time. Creator
automatically supplies a converter for non-String data fields when you fill the list from a database source. Multi select
listbox components also accept data binding. The value attribute of the selectManyListbox JSF tag maps to the property
that holds the currently selected items.

A multi select listbox component contains an embedded selectItems tag that represents the items in the list (this is a
nonvisual component appearing in the Application Outline view). To supply text for the selections, use the nonvisual
component named multiSelectListbox1DefaultItems. Select the component in the Application Outline view and click the items
attribute in the Properties window. A dialog pops up that lets you type in text for each selection (see Figure 3-9 on page
78).

When the user makes a new selection from a multi select listbox component, the system generates a value change
event. Creator allows you to toggle the Auto-submit on change attribute for this event. When it's on, the system invokes
the this.form.submit() JavaScript function. This function updates the page and resubmits it when a user changes the list
selection.

Finally, the processValueChange() event handler is where you add your processing statements when a value change event
is detected. If you right-click the multi select listbox component and select Edit Event Handler > processValueChange,
Creator creates the stub for the event handler method in the Java page bean.

Example

Figure 3-11 shows a page with a multi select listbox component and several items selected at once. Press <Ctrl-Click>
to select nonadjacent items.

Figure 3-11. Multi select listbox allows multiple and nonadjacent selections

[View full size image]

Multi Select Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The multi select menu component is similar to a dropdown list except that you can select more than one item at the
same time. The selections are displayed in a single line component and the user controls the selections with up and
down arrows (see Figure 3-12).

Figure 3-12. Multi select menu allows multiple and non-adjacent selections

The selection items can be hardcoded through the Properties window or dynamically generated at run time. Creator
automatically supplies a converter for non-String data fields when you fill the list from a database source. Multi select
menu components also accept data binding. The value attribute of the selectManyMenu JSF tag maps to the property that
holds the currently selected items.

A multi-select menu component contains an embedded selectItems tag that represents the items in the list (this is a
nonvisual component appearing in the Application Outline view). To supply text for the selections, use the nonvisual
component named multiSelectMenu1DefaultItems. Select the component in the Application Outline view and click the items
attribute in the Properties window. A dialog pops-up that lets you type text for each selection (see Figure 3-9 on page
78).

When the user makes a new selection from a multi select menu component, the system generates a value change
event. Creator allows you to toggle the Auto-submit on change attribute for this event. When it's on, the system invokes
the this.form.submit() JavaScript function. This function updates the pages and resubmits it when a user changes the list
selection.

Finally, the processValueChange() event handler is where you add your processing statements when a value change event
is detected. If you right-click the multi-select menu component and select Edit Event Handler > processValueChange,
Creator creates the stub for the event handler method in the Java page bean.

Example

When you apply data binding to a data-aware component, you can specify the field from the database RowSet
component that is displayed and the field that is returned with a getValue() call. Figure 3-13 shows the Fill List from
Database dialog. Here, the user chooses RECORDINGARTISTID for the Value field and RECORDINGARTISTNAME for the
Display field.

Figure 3-13. Fill List from Database dialog applied to multi-select menu component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Output Text

Of all the JSF components, the output text component is probably used the most often in web pages. It's useful for
putting up titles on a page or displaying any kind of textual information. Output text components display String data,
but you can bind them to other types. With data converters and formatters, output text components can display almost
any type of data. They may be embedded in data table components, link action or hyperlink components, and
component labels.

The value attribute of an output text component stores the text that is displayed. From a user's point of view, output
text components are read-only. The setValue() method sets its text and getValue() reads it. You can resize output text
components on the design page, but Creator expands them if you leave them unsized.

An embedded output text component is the default for a data table component. You can also bind an output text
component to a JavaBeans property.

Output text components are rendered as plain text, which may include HTML formatting tags. Thus, you can build entire
HTML pages by concatenating a string of HTML tags with text and assigning it to the component's value attribute. To
enable correct rendering of HTML tags, make sure you set the escape attribute to false in the Properties window.

Book Examples

"Place Button and Output Text Components" on page 158 (Chapter 5). Binds an output component to a
JavaBeans property and applies a number converter.

"Add Output Text Components" on page 171 (Chapter 6). Uses an output text component to store HTML text.

"Build HTML Output" on page 188 (Chapter 6). Uses an output text component with HTML formatting.

Page Fragment Box

The Page Fragment Box component is a JSP page directive that allows you to include another JSP file in your page. This
features makes it easy to build web pages that have consistent form. When you select this directive, Creator pops up a
dialog so that you can select a JSP file (page fragment) that already exists or you can create one. Figure 3-14 shows
the Select Page Fragment dialog.

Figure 3-14. Select Page Fragment dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, we select page fragment footer.jsp. Creator generates the JSP directive inside a <div> tag, which allows you to
specify style attributes for the page fragment. If the page fragment contains a <div> tag, you can also specify style
attributes inside the included material (giving a consistent look). Here is the code Creator generates for the include.

<div style="left: 96px; top: 480px; position: absolute">

 <jsp:directive.include file="footer.jsp"/>

</div>

Radio Button List

The radio button list component enables you to group radio buttons on a page. With a radio button list, the user can
make only one selection from a group of choices; changing the choice deselects the previous choice. This means only
one button within the group is "on" at a time.[3] The selection items can be hardcoded with the Properties window or
dynamically generated at run time. Creator automatically supplies a converter for non-String data fields when you fill
the list from a database source. This component also accepts data binding. The value attribute of the radio button list
returns the selected item.

[3] If you need multiple-item selections, use the checkbox list component (see "Checkbox List" on page 65.)

Adding a radio button list component to your web page creates three elements: the radio button list component, an
embedded selection list, and a "default items" list used for initializing the selection choices. To specify the choices,
select radioButtonList1DefaultItems from the Application Outline view. In the Properties window, click the editing box
opposite attribute items. Creator pops up a dialog so that you can add, edit, or remove items. (This is the same dialog
box used to specify items for the Listbox component. See Figure 3-9 on page 78.)

Example

Figure 3-15 shows the design canvas of an application that obtains breakfast selections from the user. The application
uses radio button list components for the beverage and entree choices, respectively. A checkbox list handles the
optional side dishes (from which the user may select more than one item). With radio buttons, the user is limited to a
single choice from the beverage and entree selections.

Figure 3-15. Using radio button list components on the design canvas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-16 shows this application running in a browser. Note that the two radio button list components have a single
item selected, whereas the checkbox list allows multiple selections.

Figure 3-16. Using radio button list components in an application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is the code in the button's event handler that displays the user's selections in the output text component. The
code that accesses the radio button list components is bold.

public String button1_action() {

 // User event code here...

 String choices = null;

 choices = "You chose . . . " + beverage.getValue()

 + " and " + entree.getValue()

 + " and your side dishes are:";

 String[] sides =

 (String[])checkboxList1.getSelectedValues();

 for (int i = 0; i < sides.length; i++) {

 choices = choices + " ||" + sides[i] + "|| ";

 }

 outputText2.setValue(choices);

 return null;

}

Secret Field

The secret field component allows users to input a single line of text. Echoed text is replaced by a single character, such
as a black dot or an asterisk. When a secret field is rendered, its previous value is always cleared. Secret field
components are useful for handling sensitive data input, like passwords and PIN numbers.

In all other respects, a secret field component behaves just like a text field. The input string is stored in the
component's value attribute. Whenever you change the text, a value change event is generated. The secret field's
getValue() method reads the text and setValue() sets it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getValue() method reads the text and setValue() sets it.

You can also attach validators to secret field components. Length validators, required validators, and range validators
(to convert input text strings to numerical values) can be used to check input text. Note that value change events occur
only if no validation errors are detected. When data conversion and formatting is needed, you can attach data
converters to secret field components.

When a secret field component generates a value change event, the JSF implementation invokes the value change
event handler for that component. The secret field component is rendered as an HTML <input type=password> element.

With secret fields, a component label typically appears with the label text on a page. It's a good idea to use an inline
message component with secret fields to report validation or conversion errors. To create a tooltip, set the secret field's
title attribute.

Book Examples

"Create the Form's Input Components" on page 113 (Chapter 4). Uses a secret field to gather input for a
password field.

"Bind Input Components" on page 140 (Chapter 5). Shows property binding with the secret field component.

"Modify JSF Components for Localized Text" on page 269 (Chapter 8). Shows how to localize an application that
contains a secret field.

Text Field

The text field component enables users to input a single line of text. The input string is stored in the component's value
attribute, and a value change event is generated when you change the text. The component's getValue() method reads
the text and setValue() sets it. With text fields, you can attach a length validator, a required validator, or range
validators (to convert text strings to numerical values). Value change events occur only if no validation errors are
detected.

You can also attach a data converter to a text field. To do this, select the convertor you want from the Properties
window under Data. When you apply a data converter, the type of the value attribute changes from the default String to
the converted type.

A text field component can be embedded in a data table component. You can bind text field components to data, either
by themselves or by embedding them in data table components. You can also bind a text field to a property in a
JavaBeans component (see Chapter 5, "Property Binding with Components" on page 132). Figure 3-17 shows Creator's
Property Bindings dialog box for binding a text field component to a JavaBeans property. Here, we bind text field
blueInput with the blueColor property in the JavaBeans component ColorBean.

Figure 3-17. Property Bindings dialog with text field component

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the text field component generates a value change event, the JSF implementation invokes the value change
event handler for that component. The text field component is rendered as an HTML <input type=text> element.

With text fields, a component label typically appears with the label text on a page. Inline message components are
handy for reporting validation or conversion errors with text fields. To create a tooltip, set the text field's title attribute.

Example Page

Figure 3-18 shows Creator's design canvas for a page with text fields, component labels, and inline message
components. Each text field has an associated component label, allowing users to select either the label or the text field
component (this makes the text field active). Inline message components appear next to the text fields requiring input.
This makes it easy for the user to see errors made during input.

Figure 3-18. Using text field components with other components

[View full size image]

Note that in this example, a dropdown list handles State input codes. Presumably, each text field has a tooltip to help
users input data correctly. The zip code text field component should only accept zip codes with a 5-character maximum
length. Set the maxlength attribute of the text field component to limit input to 5 characters.

Book Examples

"Bind Input Components" on page 140 (Chapter 5). Shows binding properties with a text field.

"Create the Form's Input Components" on page 153 (Chapter 5). Shows text fields with converters and
validators.

"Add a Text Field Component" on page 168 (Chapter 6). Shows validators.

"Create the Form's Input Components" on page 242 (Chapter 7). Uses text fields to gather input for database
row insert operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

row insert operations.

"Add Components for Input" on page 289 (Chapter 8). Uses text fields with a custom validator method.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4 JSF Validators
JSF provides a set of standard objects that validate user input gathered through JSF components. The JSF architecture
builds validation into the page request life cycle process, making validation an easy task for the developer to specify.

Validation Model

In Creator, you attach a validator object to a JSF component by selecting a validator from the design palette and
dropping it onto the component in the design canvas. Validators also have properties that you can manipulate.

The JSF life cycle (see Figure 6-5 on page 185) includes a Process Validation phase. For components that have
registered validators, JSF will validate the component's data. When validation errors occur, the affected component is
marked "invalid" and an error message is sent to the JSF context.

Validation errors affect the life cycle process. Validation errors cause the page to proceed directly to the Render
Response phase, skipping the Update Model Values phase and Invoke Application phase. This means events such as
button clicks are not processed. When a page has multiple components with registered validators, all input is validated.
This is helpful to the user since feedback (error messages) for the entire page can be displayed.

Table 3.1 lists the choices you have for validators in JSF. There are three standard validators: a Double Range Validator
for floating types, a Length Validator for strings, and a Long Range Validator for integral values. You can also write your
own custom validation method. Note that each standard validator has attributes that let you specify minimum and
maximum values. The Length validator works with String data, and the Double Range and Long Range validators are
typically used with converters to convert a component's data to the correct type.

Table 3.1. Validation choices
Name Description Example

Double Range Validator Specify minimum and maximum
values.

"Use Validators and Converters" on
page 154 (Chapter 5). Uses a
Double Range Validator with a text
field to check the range of a double.

Length Validator Specify minimum and maximum
values. Does not detect empty
input fields (you use required
attribute of component).

"Add a Validator" on page 181
(Chapter 6). Uses a Length
Validator with a text field.

Long Range Validator Specify minimum and maximum
values.

"Place Interest Rate and Term
Components" on page 156 (Chapter
5). Uses a Long Range Validator
with a text field to check the range
of an Integer value.

Custom Validate Method validate-HexString() method checks
for a 2-digit hex string

"Add a Validation Method" on page
294 (Chapter 8). Shows how to
implement your own validation
method.

Table 3.1 also points you to examples in the book that show you how to use the validators. This includes an example of
a custom Validate Method called validateHexString() that checks for a 2-digit hexadecimal string.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5 JSF Data Converters
JSF strives to maintain a separation of presentation data (the data that users read and possibly modify) from internal
data or model data. To accomplish this, you should use JavaBeans components, JDBC rowsets, and other application-
specific structures as much as possible in your models. JSF also makes sure that any data conversions between the two
views are consistent and well-defined.

Conversion Model

A JSF component that is type UIOutput or is subclassed from UIOutput can take a data converter to convert its data to a
specific type. Typically (but not always), the component may be bound to a JavaBeans property of that type. For
example, in project Payment1 (see "LoanBean Component" on page 144), we bind a text field component (loanAmount)
to the amount property of LoanBean. Property amount is a Double, so we apply a Double converter to the text field
component.

Like the validation process, JSF sets aside specific times to perform conversions. Conversion errors may occur after the
Process Validation phase or the Update Model phase. When errors occur, the affected component is marked "invalid"
and conversion errors are sent to the JSF context. JSF proceeds to the Render Response phase in this case.

Creator will apply converters automatically to data-aware components when the source data type is not a String.

Table 3.2 lists the JSF standard converters available on Creator's palette. Most of the JSF converters are straightforward
and provide a conversion that's obvious from their name. Note that all converters use wrapper classes (subclassed from
Object) instead of the primitive types. This allows the value attribute (type Object) to accept all of these types. Two
converters require a bit more explanation, however: the Date Time Converter and the Number Converter, so let's do
that now.

Table 3.2. JSF converters
Name Description/Example

Boolean Converter Convert String data to Boolean.

Byte Converter Convert String data to Byte.

Character Converter Convert String data to Character.

Date Time Converter (See below.)

Double Converter "Use Validators and Converters" on page 154 (Chapter 5). Shows a double
converter with an interest rate value and a loan amount value.

Float Converter Convert String data to Float.

Integer Converter "Place Interest Rate and Term Components" on page 156 (Chapter 5). Shows an
integer converter with a loan term value.

Long Converter Convert String data to Long.

Number Converter "Place Button and Output Text Components" on page 158 (Chapter 5). Shows a
number converter with a currency value.

Short Converter Convert String data to Short.

Date Time Converter

The Date Time Converter converts a component's data to a java.util.Date. When you apply a Date Time Converter to a
text field, the textual input is converted. The field on the page is updated with a standard format during the Render
Response phase. You can always configure a Date Time Converter's format if you need to. If you don't specify a locale,
the Date Time Converter uses the default locale (see "A Word About Locales" on page 265).

The Date Time Converter uses the format rules and patterns of the DateFormat class. See the tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/dateFormat.html for more information on formatting; see also the
Javadoc for the DateFormat class at http://java.sun.com/j2se/1.4.2/docs/api/java/text/DateFormat.html.

The Date Time Converter uses a default pattern if you don't configure it differently. The data are assumed to be a date
(as opposed to time) using the pattern MMM d, yyyy. Although full names for the month are accepted, the Date Time
Converter shortens it to three letters and rejects numerical values. On input, you must supply a comma.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converter shortens it to three letters and rejects numerical values. On input, you must supply a comma.

Of course, your choices for other formats are flexible. Figure 3-19 shows the Date Time Converter with the dateStyle
attribute set to default for a text field component and to medium, long, and full. The second column shows formatting with
two different patterns (appearing above the output text components). Each component has its own registered Date
Time Converter to manipulate the converter's attributes separately. All the output components are bound to a single
text field.

Figure 3-19. Using the Date Time Converter

Number Converter

A Number Converter enables you to manipulate numerical data in all sorts of interesting ways. Since numbers as well as
date information are sensitive to language and locale, a Number Converter can use locale.

The Number Converter uses a pattern with separate attributes for manipulating a format (such as currency symbol,
integer digits, fraction digits, and locale). To learn how a Number Converter can convert a double to a dollar value
(including a dollar sign with a comma to separate thousands and hundreds and two digits to the right of the decimal
point), see "Place Button and Output Text Components" on page 158.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.6 Key Point Summary

Creator's design palette contains JSF standard components, validators, and converters.

JSF components are rendered in HTML.

The JSF components share many attributes in common, such as value, title, style, id, and binding.

JSF components that have a UIOutput type (output text components) or subclassed from UIOutput (such as text
fields) can accept converters to convert text information.

Input components share common attributes, such as validator, maxlength, required, valueChangeListener, and
onchange.

A value change event occurs when an input component's selection changes or its text changes.

Creator generates a processValueChange() method for you when you write event processing code for a value
change event.

The onchange attribute allows you to specify a JavaScript element that is invoked with a value change event.

Table components (data table and grid panel) have attributes to control appearance, such as bgcolor, border,
cellspacing, cellpadding, and columns.

JSF provides component binding with data sources, JavaBeans properties, and other JSF components. With
component binding, converters, and validators, you can build web applications without writing any event
processing code.

A data table component is data aware and offers sophisticated layout choices. By specifying headers, footers,
and embedded component types for its columns, the page designer can build a custom page for displaying data.

You can enable paging controls with data table components. This is useful for database queries that produce
more than a single page of data.

JSF has data converters that encourage the separation of model and presentation data. The standard converters
seamlessly convert presentation data to and from model data.

The JSF validators validate user input before events are processed. Validation and conversion errors short-
circuit the normal life cycle request mechanism and re-render the page with error messages.

Use an inline message or message list component to display validation or conversion errors on a web page.

You can write your own custom validation method and hook it into the JSF validation cycle.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Page Navigation
Topics in This Chapter

JSF Navigation Model

Page Navigation Editor

Navigation Rules

Command Components and Navigation

Action Event Handlers

Noncommand Components

Simple Navigation

Dynamic Navigation

Most web applications consist of multiple pages. A significant design task in building web applications is deciding page
flow: that is, how you get from one page to another. Many commercial web sites consist of a "main" (or home) web
page with links to other pages. These are frequently static links that simply bring up the requested page without any
processing or decision making. Other web sites require more flexibility in their page navigation. Even if the next page is
known, the web application may perform bookkeeping tasks or other processing before launching the next page. Finally,
clicking a button may involve dynamic processing whose outcome determines the next page. For example, a login
sequence results in either a successful login (and you go to the Welcome page) or a failed login (where you are rebuffed
or are invited to try again).

Fortunately, Creator excels at page navigation. It uses the JavaServer Faces navigation model in concert with an easy-
to-use Page Navigation editor that lets you draw page flow action arrows to define navigation rules. Creator generates
the underlying configuration files for you. You retain the needed flexibility through coding the action methods that
return outcome Strings to the navigation handler. Let's see how this works.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Navigation Model
JSF navigation is a rule-based system. Each application contains a navigation configuration file, navigation.xml, that
has rules for choosing the next page to display after a user clicks a button or a link action component. Like the other
configuration files, navigation.xml consists of XML elements. Here is a sample rule for changing pages from Page1 to
MusicBrowser.

<navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>musicBrowse</from-outcome>

 <to-view-id>/MusicBrowser.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

Element from-view-id identifies the origination page and to-view-id identifies the target page. Element from-outcome
specifies the String value that is returned from an action method associated with a command component. Clicking that
component generates the String which is passed to the navigation handler. With these rules, the navigational handler
can then identify the target page.

In Creator, you specify the navigation rules by connecting your web pages with labeled page flow arrows in the Page
Navigation editor. For each rule you construct, Creator generates an origin page, a destination page, and the outcome
label that identifies it. Creator assumes that your origin page contains either a link action component or a button
component that generates an action event when the user clicks it. The action event implements the navigation. That is,
it returns the String that matches the label associated with that navigation rule.

Figure 4-1 is a UML activity diagram summarizing the steps in the navigation system.

Figure 4-1. JSF Navigation Model: Page Navigation UML activity diagram

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator implements dynamic navigation. Often you need to process information before you can determine which page
to invoke (for example, a login scenario can succeed or fail). To do this, the component's action property specifies an
action method. The action method returns a navigation label that depends on the results of its processing.

By the way, the navigation model understands a default rule. If the action method returns null (its default in the initial
definition Creator generates for you), the navigation model renders the same page. You'll see this behavior if you add a
button to your page but do not define an action method. Or, if you don't change the default return value of null. When
you click the button, it appears as if nothing happens. However, JSF invokes the page request life cycle process and the
current page is redisplayed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 Simple Navigation
The first example we work through illustrates simple navigation. That is, each button component (or you could just as
easily use a link action component) takes the user to one page. No processing is involved after the user clicks the
button. The action event handler invokes an action method on behalf of the button; that method always returns the
same String.

Create a New Project

In the Welcome Page, click Create New Project. Specify the project name as Navigate1. The selected project
type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click anywhere in the design canvas.

2. Select attribute Title in the Properties window and type the text Navigate 1. Finish by pressing <Enter>.
(Alternatively, if you click in the small square opposite the property name, a pop-up dialog lets you edit the
title. Click OK to complete editing.)

Add an Output Text Component

You now use an output text component to place a heading title on the page.

1. From the JSF Standard Components palette, select Output Text. Drag it over to the design canvas and place it
near the top of the page. Don't resize it.

2. Make sure that it's selected and type in Welcome to the Music Store, ending with <Enter>. This changes the
value attribute. The component should now display these words.

3. In the Properties window under Appearance, edit the style attribute. Add the following.

; font-family: Helvetica; font-size: 18pt

Press <Enter>. The output text should now appear with its new style characteristics. (Again, it's probably
easier to click the small square opposite the property name. A pop-up dialog lets you edit the style attribute.
Click OK to complete editing.)

Add a Grid Panel Component

A grid panel component is a container that holds nested components, organized as a grid. You'll use it to hold two
button components in a single row. (Adding a grid panel component for this project is optional.)

1. Select Grid Panel from the JSF Standard Components palette and drag it to the design canvas. Place it
underneath the output text component. Creator builds a grid panel component with id attribute gridPanel1.

2. Make sure the grid panel is selected. In the Properties window under General, specify lightyellow for attribute
bgcolor.

3. Still in the Properties window, change cellpadding to 3, cellspacing to 3, border to 3, and columns to 2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

Grid panel is a container component that uses a grid layout. It places the
components in the container in the order that you drop them on the panel. A grid
panel dynamically creates rows to hold the components according to how many
columns you've specified. (If you don't specify the number of columns, it defaults to
1.) After you add the button components, you'll see them nested beneath the grid
panel node in the Application Outline view.

Add Button Components

You now add two button components to the grid panel.

1. From the JSF Standard Components palette, select Button and drag the component to the design canvas. Drop
it directly on top of the grid panel you added previously. Change its id attribute to browseMusic and its value
attribute to Browse Music Titles. Note that the grid panel automatically resizes itself as you add components
to it.

Creator Tip

Changing the id attribute is important here because you want more meaningful
names than those generated by Creator. When you have multiple components
that generate action events, it is much easier to work with meaningful method
and property names in the Java page bean.

2. Select a second Button and drop it onto the grid panel. Creator will place the second button to the right of the
first.

3. Change the button's id attribute to loginButton and its value attribute to Members Login.

Besides buttons, you can also use link action components. These components have action methods and can be used
with the JSF navigation model, too.

Creator Tip

You cannot, however, use the hyperlink component with the navigation model. The
hyperlink component does not generate an action event, which is required in order
to return a String label to the navigation handler. Use the hyperlink to hold a literal
URL address, or hold a link that is data driven. For an example of using the
hyperlink component, see the Google Web Services example ("Add a Hyperlink
Component" on page 171).

Deploy and Test Run

Your web application is only partially done, but this is a good point at which to deploy and run it. Note that the page is
redisplayed when you click the buttons; that's because there are no navigation rules yet. Figure 4-2 shows what the
initial page looks like.

Figure 4-2. Simple navigation web application

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Add Page Navigation

Creator makes it particularly easy to add page navigation to your web application. In this section, we show you how to
do this with the Page Navigation editor. Let's enhance your application to have a total of three web pages. The first
page, Page1, contains all of the components you just added, which include two buttons that take the user to separate
pages in the application. Here are the steps to create the new pages and add page flow definitions with Creator's Page
Navigation editor.

1. From the design canvas view, place the mouse in the canvas (anywhere in the background), right-click, and
select Page Navigation. This brings up the Page Navigation editor. You see the initial web page, Page1.jsp, in
the Page Navigation editor pane.

2. Place the mouse anywhere in the editor pane (in the background area) and right-click. From the context menu
select New Page. Provide the name MusicBrowser instead of the default (Page2). This creates a new page
called MusicBrowser.jsp.

3. Repeat this process to create another page called LoginStart.

The Page Navigation editor now displays the three pages of your application in the editor pane: Page1.jsp,
MusicBrowser.jsp, and LoginStart.jsp. (You can see the pages in the Project Navigator window as well, under the
Web Pages node.)

There is also a tab at the top of the editor pane labeled navigation.xml. This is the XML-based configuration file that
contains your application's navigation rules. As you define page flow cases, Creator generates the navigation rules for
you.

New Rules!

In this next step, you'll connect the pages and provide navigation case labels that the navigation handler uses to control
page flow.

1. Click the mouse inside page Page1.jsp. The page changes color, enlarges, and displays its buttons.

2. Position the mouse inside page Page1.jsp, click, and drag the arrow to page MusicBrowser.jsp. When you
unclick, you'll see an arrow with a label. Change the label from case1 to musicBrowse (finish by pressing
<Enter>).

3. For the second case, start once again inside Page1.jsp, click, and drag the arrow to page LoginStart.jsp. This
time change the label name to userLogin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-3 shows the Page Navigation editor pane with the web pages and navigation labels you just created. Note that
the page flow arrows originate from Page1.jsp and point to the target pages.

Figure 4-3. Navigating from page Page1.jsp

[View full size image]

Creator Tip

As you create your navigation rules, Creator displays the attribute values in the
Properties window for that rule (see -). You can always use the Properties window
to change a selected page flow arrow or rename a label.

Figure 4-4. Properties window for a navigation rule

To view the navigation configuration file that Creator generates, select the Source tab at the bottom of the Page
Navigation editor pane. Here is the file for this application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<faces-config>

 <navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>musicBrowse</from-outcome>

 <to-view-id>/MusicBrowser.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>userLogin</from-outcome>

 <to-view-id>/LoginStart.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

This XML code defines one navigation rule with two separate navigation cases. Creator can collapse both cases into a
single rule since they share the same origination page (Page1.jsp, the value of attribute from-view-id). The from-outcome
attribute corresponds to the labels you supplied to the Page Navigation editor. These are the labels that you'll return
from the buttons' action methods.

Add Event Handler Code

Now let's add event handler code for the two buttons on page Page1.jsp. Select the tab labeled Page1.jsp at the top
of the Page Navigation editor pane. Alternatively, double-click inside the Page1.jsp page in the Page Navigation editor
pane. You are now working in the design canvas for Page1.jsp.

1. From the design view, select the Browse Music Titles button, right-click, and choose Edit Event Handler >
action. This takes you to the Java page bean, Page1.java. Creator generates the event handler method for you
and places the cursor inside the method.

2. Change the null return value to "musicBrowse" (make sure you include the quotation marks).

3. Repeat the same steps for the second button, using String "userLogin".

The action methods for both buttons follow. Note that the return values (in bold) match the case labels you used in the
Page Navigation editor.

public java.lang.String browseMusic_action() {

 // User event code here...

 return "musicBrowse";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return "musicBrowse";

}

public java.lang.String loginButton_action() {

 // User event code here...

 return "userLogin";

}

Action methods have a consistent format: they are always public methods that return a String and take no parameters.
A null return value is ignored by the navigation handler (and therefore redisplays the same page).

When you define action method components, Creator generates the necessary JSP source for the button components.
Here are the tags. Note that the action property references the event method in the page's Java page bean.

<h:commandButton action="#{Page1.browseMusic_action}"

 binding="#{Page1.browseMusic}"

 value="Browse Music Titles"/>

<h:commandButton action="#{Page1.loginButton_action}"

 binding="#{Page1.loginButton}"

 value="Members Login"/>

Add Output Text Components

Before testing the application, you'll now add output text components to both target pages (MusicBrowser.jsp and
LoginStart.jsp). You can access the design canvas of each page by double-clicking the page in the Page Navigation
editor, by selecting the page name in the tab at the top of the editor pane (if it has been opened previously), or by
double-clicking the page name in the Project Navigator window.

1. For each page, select it and bring up its design canvas editor.

2. From the JSF Standard Components palette, select Output Text component and drag it to the design canvas.

3. Modify its value attribute so that it displays a title that indicates which page you navigated to.

4. Optionally, modify the style attributes to manipulate the text font.

Deploy and Run

Go ahead and deploy the application. When you click a button, the system displays the appropriate page. You can use
the browser's back arrow to return to the main page. If you'd prefer to have a button or link action component to
navigate back, you can easily add these components to each of the target pages. Of course, you'll need to define the
additional navigational rules in the Page Navigation editor. Figure 4-2 on page 102 shows the initial page in this web
application.

Creator Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

When you navigate to one of the target pages, the page loads slowly the first time.
This is because the application server must generate Java source from the JSP,
compile, and execute the code. It will be faster after the first time because the code
has already been generated and compiled.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 Noncommand Components
The JSF navigation model is set up to work with command components (those components that generate action
events). Action event handlers return a String that the navigation handler uses to determine which page to launch next.

However, you can use other components to initiate navigation, although it's not quite as seamless. Basically, you need
to provide a String directly to the navigation handler that matches the navigation rules you defined. Let's modify the
Navigate1 project to use a dropdown list component instead of buttons to hold the navigation choices.

Copy the Project

To avoid starting from scratch, copy the Navigate1 project to a new project called Navigate2. This step is optional. If
you don't want to copy the project, simply skip this section and continue making modifications to the Navigate1
project.

1. Bring up project Navigate1 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project As and provide the new name Navigate2. You'll make changes to the
Navigate2 project.

4. Click anywhere in the design canvas of the Navigate2 project. In the Properties window, change the page's
Title attribute to Navigate 2.

Delete the Buttons

1. From the design canvas of the first page Page1.jsp, select and delete the two button components. (Make sure
you select the buttons and not the grid panel. Use the Application Outline view to select and delete them if you
want.)

2. Right-click in the background of the design canvas and select View Page1 Java Class to bring up the Java page
bean.

3. In the Java source, remove the action methods associated with the button components you just deleted. These
are browseMusic_action() and loginButton_action().

Add a Dropdown List

1. Return to the design canvas by selecting the tab labeled Page1.jsp at the top of the editor pane. From the JSF
Standard Components, select Dropdown List and drop it on top of the grid panel component. (If you elected not
to use the grid panel component, just drop Dropdown List onto the page.)

2. In the Application Outline view, select the dropdown1DefaultItems element (at the very bottom of the view).

3. In its Properties window, click the small editing square opposite attribute items. An editing dialog box appears.
Replace the default items with the three choices: type in Home and click Add. Then change the input field to
Browse Music Titles and click Add again. Finally, add the third choice, Members Login, followed by Add. Now
select each of the default strings and click Remove. When you're done, click OK.

4. In the design canvas, select the dropdown list component. Right-click and check Auto-submit on change (it's
currently unchecked). This tells JSF to initiate the page request cycle when the user changes the dropdown list
component's selection.

Value Change Event vs. Action Event

Before we go any further, an explanation is warranted for adding three navigation choices to the dropdown menu
component. Why is this necessary? Remember, the event type is called value change. If we present the user with a
dropdown menu item that contains navigation choices and one of the choices is preselected, this preselection prohibits
the user from selecting it with an accompanying value change event. Simply, there is no change in value since it is
already selected. Therefore, we create an initial (preselected) choice, Home, representing the current page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When users return to this page by clicking the browser Back button, Home is no longer preselected. Now selecting
Home does cause a value change event and the string "Home" is passed to the navigation handler. Since Home
doesn't match any of the navigation rules, no page change occurs.

A page designer has another choice. You can always place a button next to the dropdown menu. After the user makes a
selection (whether it be a value change or not), he or she clicks the button and the button's action event handler can
return the dropdown menu selection's String value.

Creator Tip

When you key off a value change event, the event handler will only be called if the
selection component has actually changed. The event handler will not be called
when you select the displayed choice.

Match the Navigation Labels

In the previous example, you used navigation labels that are not the same as the text you're using for the dropdown list
component. The dropdown list component's getValue() method returns the text you just put into the
dropdown1DefaultItems element. Therefore, you'll need to modify the navigation labels so they match the text you used in
the dropdown list.

1. Bring up the Page Navigation editor: right-click in the design canvas and select Page Navigation from the
context menu.

2. Select the page flow arrow that points to the MusicBrowser.jsp page. In the Properties window, change the
Outcome attribute to Browse Music Titles.

3. Now select the second page flow arrow and change its Outcome attribute to Members Login. The labels are
case sensitive. It's all right to have embedded spaces in the Strings.

4. Click the Source tab at the bottom of the editor pane. You'll see that Creator updated the navigation
configuration file, as follows.

<navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>Browse Music Titles</from-outcome>

 <to-view-id>/MusicBrowser.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>Members Login</from-outcome>

 <to-view-id>/LoginStart.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

Add Event Handler Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the user changes the selection in a dropdown list component, a value change event is generated. A value change
event is not hooked into the navigation system the way that an action event is. But in the event handler, we can grab
the new value and pass it directly to the navigation handler. You'll be adding code to do this.

Creator Tip

The code you are about to add will cause the Java source editor to complain
because it doesn't have all of the necessary import statements. After you add the
code, we'll show you a shortcut for adding the imports.

1. Return to the design canvas for Page1.jsp.

2. Select the dropdown list. Right-click and select Edit Event Handler > processValueChange. Creator brings up the
Java page bean and puts the cursor in the newly generated event handling method for the dropdown list
component, dropdown1_processValueChange().

3. Add the code from the book's download examples (copy and paste file
FieldGuide/Examples/Navigation/snippets/Navigate2_valueChange.txt). This code "gets at" the
context and application objects associated with this web application to access the navigation handler. The last
statement sends the navigation String (the value in the dropdown list component) to the navigation handler.
The added code is bold.

public void dropdown1_valueChangeListener(

javax.faces.event.ValueChangeEvent vce) {

 // User event code here...

 FacesContext context = FacesContext.getCurrentInstance();

 Application application = context.getApplication();

 NavigationHandler navigator =

 application.getNavigationHandler();

 navigator.handleNavigation(context,null,

 (String)dropdown1.getValue());

}

Your code will be underlined in red because the Java file is lacking import statements. Here's how to add the needed
import statements.

1. First, click anywhere inside the word FacesContext and type <Alt-Shift-I>. Creator pops up the Import Class
dialog and displays package name javax.faces.context. Choose radio button Import Package and Click OK.

2. Repeat this by clicking inside the word Application in your code. Again, press <Alt-Shift-I>. Choose radio button
Import Package and click OK. Figure 4-5 shows the Import Class dialog box at this point.

Figure 4-5. Import Class dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you're finished specifying the code imports, Creator adds the following packages to your file.

import javax.faces.application.*;

import javax.faces.context.*;

This procedure will eliminate the red underlines in your code and any "unresolved symbol" errors in the event handler
code.

Deploy and Run

Deploy and run the application. Figure 4-6 shows the dropdown list component with the page navigation choices. You
can see that command components (button and link action) are easier to use for navigation, but with a bit of extra
coding you can make other components work too.

Figure 4-6. Using a dropdown list component for navigation

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 Dynamic Navigation
You've seen an example of simple navigation, in which each component's action event returns a label that corresponds
to a navigation rule. Now you're going to work through an example that shows dynamic navigation. Here, an action
method can return a different label depending on some processing it performs. You'll see that dynamic navigation is
also straightforward with Creator.

This example sets up a login sequence whereby the user is required to give a username and password to gain access to
the next page. We've simplified the processing criteria to concentrate on the navigation issues, but in the next chapter
we expand this example for an improved architectural configuration (using JavaBeans component architecture).

Create a New Project

Creator Tip

In this section, you will use the same name (Login1) as the project we showed you
in Chapter 2 ("Creator Basics"). However, this time you'll build the project from
scratch. If project Login1 is already included in your default Creator Projects
directory, you may want to delete it or move it before continuing.

In the Welcome Page, select button Create New Project. Specify project name as Login1. The selected project
type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the text Login 1. Finish by pressing <Enter>.

Add an Output Text Component

You'll use an output text component to place a heading title on the page.

1. From the JSF Standard Components palette, select Output Text. Drag it over to the design canvas and place it
near the top of the page.

2. Make sure that it's selected. Start typing Members Login and press <Enter>. The value attribute in the
Properties window will show these words and the output text component will display them.

3. In the Properties window under Appearance, edit the style attribute. Click the small square opposite the style
attribute. A pop-up dialog allows you to edit the attribute. After the current settings, add the following.

; font-family: Helvetica; font-size: 18pt

Click OK. The output text should now appear with its new style characteristics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create the Form's Input Components

The application uses the next set of components to gather input for the member's username and password. For the
username, you'll add a component label to display a label and a text field to gather the data. Figure 4-7 shows the
design canvas with all the components added to the page.

1. From the JSF Standard Components palette, select Component Label and add it to the design canvas. This is a
composite component with a nested output text to display the label's text.

2. In the Application Outline view, select the embedded output text component (componentLabel1Text) and change
its value attribute to Username. Under style, add

font-family: Helvetica

3. From the JSF Standard Components palette, select Text Field and add it to the design canvas. Change its id
attribute to userName. Position it next to the label component you just added.

4. In the text field's Properties window under Data, check the required attribute. This prevents an empty input field.
Now when you process the input in the event handler, you don't have to worry about checking for null values.

5. Still in the Properties window, change its title attribute to Please type in your username. The title attribute
supplies text to the component's tooltip mechanism.

6. In the Application Outline view, select component componentLabel1 (the top-level component of the component
label element you added).

7. In the Properties window, click the editing box next to the for attribute and from the list of components, select
userName (the text field component). Click OK. This step binds the label component to the text field component,
affecting GUI operations such as mouse selection. For example, clicking the mouse over the label's text puts the
cursor in the associated text field's input box.

Figure 4-7. Design canvas showing components for project Login1

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the password field, you'll need a secret field component in addition to a label component to display the label. The
secret field component performs several functions that make it particularly suitable for gathering sensitive data. First, it
replaces the text that you enter with a constant character (the default is a black dot or an asterisk). Second, when the
page is refreshed or you return to the page, the field is cleared. Thus, if you leave your workstation and someone else
uses your computer, the new user can't "borrow" your password entry by simply selecting the browser's back button
until the login page is reached.

Place the password components directly underneath the username components added above. You will follow the same
procedure.

1. From the JSF Standard Components palette, select Component Label and add it to the design canvas.

2. In the Application Outline view, select the embedded output text component (componentLabel2Text) and change
its value attribute to Password. Under style, add

font-family: Helvetica

3. Add a Secret Field component and change its id attribute to password. Position it next to the label component
you just added.[1]

[1] Unlike the username field, don't check the required attribute for password. Since the component clears
its field every page request, requiring input interferes with the reset button that you will add in the next
section.

4. Still in the Properties window, change its title attribute to Please type in your password for the tooltip.

5. In the Application Outline view, select component componentLabel2 (the top-level component of the component
label element you added).

6. In the Properties window, click the editing box next to the for attribute and from the list of components, select
password (the secret field component) to associate the label with the password secret field. Click OK.

To check the placement of the components on the page, right-click in the design canvas and choose Preview in
Browser. Creator renders the JSF components in a page in your browser.

Add Button Components

This application uses two button components: one to submit the form data to be processed for logging in. The second
button clears the two input fields so that the user can start over. After adding the components, you'll add page
navigation rules and code for the button event handlers.

1. From the JSF Standard Components palette, select the Button component and drag it to the design canvas.
Position it under the two text field components. Change its component name (id attribute) to login.

2. Make sure it's selected and bring up its Properties window. Under Data, change its value attribute to Login and
press <Enter>. The button's label should now change.

3. Repeat these steps and add a second button to the design canvas. Change its id attribute to reset.

4. Make sure it's selected and bring up its Properties window. Under Data, change its value attribute to Reset and
press <Enter>. The button's label should now reflect this label name.

Add a Message List Component

Since the required attribute is checked for component userName, you need to tell the user that input is required if they
leave the field empty. Creator has two components that help you do this. The inline message component is bound to a
single component and listens for and displays messages generated by that component. If you choose this component,
use one for each component that has user input validation. Because you place each inline message component near its
associated input field, users know right away where the problems are.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

associated input field, users know right away where the problems are.

The second choice is the message list component. In this case, a single component will display the error messages
generated from all the page's components. The message list component is appropriate for this example because we
have only one component that requires input.

1. Select the Message List component from the JSF Standard Components palette and drag it onto the design
canvas. Position it under the two buttons you just added.

2. In its Properties window under Appearance, select the style attribute and add the following.

; font-style: italic

3. In the Properties window under General, make sure attribute showSummary is checked. (Attributes showDetail and
showSummary display the same message text here.)

Deploy and Test Run

Although you haven't yet added any functionality to the button components, it's a good idea to deploy and run the
application now. Go ahead and click the green chevron in the toolbar. When the login page comes up, type in
usernames and passwords. Of course, clicking the buttons won't do anything, but you should see an error message if
you leave an input field empty. Figure 4-8 shows the initial page of the Login1 web application. The user is holding the
cursor over the secret field to display the tooltip.

Figure 4-8. Login page web application

Enable Page Navigation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This application has a total of three web pages. The first page, Page1, contains all of the components you have just
added, including a Login button that will take the user to either a LoginGood page (if the login process succeeds) or
LoginBad page (if the login process fails). The easiest way to build this is to go to the Page Navigation editor, create
the two new pages, and connect them with labeled navigation arrows. When you've done all this, you can then add the
code in the button event handlers to return the correct String values for the navigation rules.

1. From the design canvas view, place the mouse in the canvas (anywhere in the background), right-click and
select Page Navigation. The Page Navigation editor comes up. You see the initial web page, Page1.jsp, in the
Page Navigation editor pane.

2. Place the mouse anywhere in the editor pane (in the background area) and right-click. From the context menu
select New Page. Provide the name LoginGood instead of the default. This creates a new page,
LoginGood.jsp.

3. Repeat this process, creating another page. Call it LoginBad. In the Project Navigator window, you see your
application's three web pages: Page1.jsp, LoginGood.jsp, and LoginBad.jsp.

In the next three steps, you'll connect the pages and provide navigation case labels that you can use in your event
handling code to control the page flow. This step is exactly the same as in the previous example.

1. Place the mouse inside page Page1.jsp, click and drag the arrow to page LoginGood.jsp. When you unclick,
you'll see an arrow with a label. Change the label from case1 to loginSuccess.

2. Once again, select Page1.jsp and drag the arrow to page LoginBad.jsp. This time change the label name to
loginFail.

3. Finally, you'll add a third rule. Create an arrow from LoginBad.jsp back to the initial page, Page1.jsp. Change
its label to loginPage.

Figure 4-9 shows the Page Navigation editor pane with the web pages and navigation labels you just created.

Figure 4-9. Page Navigation editor pane with three navigation rules

[View full size image]

Behind the scenes Creator is generating code for its Navigation Rules in file navigation.xml. To see what it generates,
select the Source tab at the bottom of the Page Navigation editor pane. Here is the file.

<faces-config>

 <navigation-rule>

 <from-view-id>/Page1.jsp</from-view-id>

 <navigation-case>

 <from-outcome>loginSuccess</from-outcome>

 <to-view-id>/LoginGood.jsp</to-view-id>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <to-view-id>/LoginGood.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>loginFail</from-outcome>

 <to-view-id>/LoginBad.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

 <navigation-rule>

 <from-view-id>/LoginBad.jsp</from-view-id>

 <navigation-case>

 <from-outcome>loginPage</from-outcome>

 <to-view-id>/Page1.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

This XML file has two rules originating from Page1.jsp and one rule from page LoginBad.jsp. The from-outcome
attribute corresponds to the labels you supplied to the Page Navigation editor. You'll use these labels when you write
the event handling code in the Java page bean.

Add Event Handler Code

You added two button components to the Page1.jsp page. Now let's add event handler code to both of them.

1. Select the tab labeled Page1.jsp at the top of the Page Navigation editor pane. Alternatively, double-click
inside the Page1.jsp page in the Page Navigation editor pane. You are now in the design canvas for
Page1.jsp. The button components should be visible.

2. From the design view, double-click the Reset button. This takes you to the Java page bean, Page1.java.
Creator generates the event handler method for you and places the cursor inside the method. The following
code clears the input components. Add it to the Reset button event handler, reset_action(). (The added code is
bold.)

public java.lang.String reset_action() {

 // User event code here...

 userName.setValue("");

 password.setValue("");

 return null;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Return to the design view by selecting the Page1.jsp tab at the top of the editor pane. Double-click the Login
button component. Creator now generates the event handler for the Login button.This takes you to the Java
page bean, Page1.java.

4. Add the following code to the Login button event handler, login_action(). Copy and paste from file
FieldGuide/Examples/Navigation/snippets/Login1_loginAction.txt. The added code is bold. (Be sure to
delete the return null statement.)

public java.lang.String login_action() {

 // User event code here...

 if (myUserName.equals(userName.getValue()) &&

 myPassword.equals(password.getValue())) {

 return "loginSuccess";

 }

 else return "loginFail";

}

(Ignore the errors flagged in red for now.) The "loginSuccess" and "loginFail" String values correspond to the
page's navigation rules for going to page LoginGood.jsp and LoginBad.jsp, respectively. This is called
"dynamic" navigation because the event handler dynamically figures out the outcome according to the result of
the if statement.

5. Add the following two lines of code (place them above method login_action()). These statements define values for
private variables myUserName and myPassword. These are the "correct" values the user must supply for a
successful login. Choose whatever values you'd like for testing the application (and they don't have to be the
same). Here's the code. (After you add this code, the errors flagged in red will disappear.)

private String myUserName = "rave4u";

private String myPassword = "rave4u";

Add Components to Page LoginBad

When the login process fails because the values typed into the input fields do not match the Strings stored in the Java
page bean, the system loads page LoginBad.jsp. Here you display a failure message to the user and include a link
action component to return to the login page, Page1.jsp.

1. In the Project Navigator window under Web Pages, double-click the web page LoginBad.jsp. You're now
working in the design canvas for this page.

2. From the JSF Standard Components palette, select component Output Text and drag it onto the design canvas.
Position it at the top.

3. Make sure the component is selected and type Invalid username or password. To try again, click. Finish
by pressing <Enter>. This changes the value attribute.

4. Now select the Link Action component from the components palette and drag it onto the design canvas. Position
it directly under the output text component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Note that just like component label, the link action component results in a composite component, as shown in
the Application Outline view. The link action component contains a nested output text component.

6. In the Application Outline view, select the nested output text component linkAction1Text, and change its value
attribute to HERE.

7. Now select the link action component in the Application Outline view and change its id attribute in the Property
view to loginpage. The component's name should reflect this change in the Application Outline view.

Add Event Handler Code

1. Return to the Application Outline view and select the link action component, loginpage. Right-click and from the
context menu select Edit Event Handler > action.

2. This brings up the Java page bean for this page, LoginBad.java, and places the cursor at the generated event
handler method.

3. Add the following navigation case label to the event handler. (Replace the word null with the text in bold. Be
sure to include the quotation marks.)

public java.lang.String loginpage_action() {

 // User event code here...

 return "loginPage";

}

Recall that in the Page Navigation editor, you assigned this label to the navigation case going from page
LoginBad.jsp to the initial page, Page1.jsp.

Add a Component to Page LoginGood

Before deploying and testing the web application, you need to add a component to the successful login page,
LoginGood.jsp.

1. From the Project Navigator window under Web Pages, double-click LoginGood.jsp.

You should now be working in the design canvas view of the LoginGood.jsp page.

2. From the JSF Standard Components palette, select component Output Text and drag it onto the design canvas.
Position it at the top.

3. Make sure the component is selected and type in Welcome to our Members-Only Page. Finish by pressing
<Enter>.

4. In the Property window under Appearance, modify the style attribute to include the following font values after
the other style characteristics.

; font-family: Helvetica; font-size: 18pt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Go ahead and type in test usernames and
passwords. Check both the failure and success cases, as well as leaving one or more of the input fields blank. Also, note
that when you return to the login page, the password input field (the secret field component) is cleared. Figure 4-8 on
page 116 shows the login page.

Design Tip

The login_action() event handler performs a simple String comparison between the
input field values and the private variables in the Java page bean. We elected to
show you this code because it is simple and we really wanted to emphasize page
navigation. However, it is better to remove the computation for determining the
"success" of a login from the action method and encapsulate it in a JavaBeans
component. The changes are small, but the architectural advantages are striking. In
the next chapter, we show you how to encapsulate this computation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5 Key Point Summary

JSF navigation is a rule-based system. When you create page flow links, Creator generates the rules for you
and stores them in the XML configuration file, navigation.xml.

Creator supports both simple and dynamic navigation.

In simple navigation, the command component's action event handler returns a String that matches a
navigation case label.

In dynamic navigation, the command component's action event handler performs some processing that affects
the String value that it returns.

The action event listener passes the String associated with clicking a button or link action component to the
navigation handler.

You can use other components with navigation, but you have to manually code their event handlers to pass an
appropriate String to the navigation handler.

Dynamic navigation provides more flexibility than simple navigation. With dynamic navigation you can add
processing in the event handler (to determine the next page or just to perform some housekeeping updates).

With Creator's Page Navigation editor, you can create new web pages and connect the pages in your application
with page flow case labels. Creator generates the navigation rules that the navigation handler uses to manage
your application's page flow.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. JavaBeans Components
Topics in This Chapter

JavaBeans Properties

Managed Beans in Creator

Object Scope

Property Binding

Creation of Java Classes and Packages

Using JAR Files

Examples of Using Converters and Validators

Separation of Business Logic and Presentation Code

JSF's architecture includes the concept of managed beans. A managed bean is a JavaBeans component whose life cycle
and scope is controlled by JSF. By carefully defining its public methods, you can make your managed bean and all of its
properties available to the pages of a web application.

Creator projects support JavaBeans components. In our first example (LoginBean), you'll make the JavaBeans
component a property of a managed bean. You'll also add its JAR file to your project as a library reference. In the
second example (LoanBean), the JavaBeans component itself will be a managed bean and you'll add the source directly
to your project with the Project Navigator. Either way, once you make your JavaBeans component available to Creator,
you can bind JSF components directly to your JavaBeans component's properties.

This chapter shows you how to build Creator projects with JavaBeans components. In addition, you can find examples
in other chapters (see "Localizing an Application" on page 263 and "Creating Custom Validation" on page 279). The first
step is to learn what a JavaBeans component is.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 What Is a Bean?
A JavaBeans component (bean) is a Java class with certain structure requirements. When a Java class conforms to this
structure, other programs (like Creator) can access the bean and inspect it intelligently. Furthermore, programs can
inspect instances (objects) of the bean.

Because they follow certain design conventions, beans can be reused as components in various applications. The JSF
architecture is set up to allow the JSF components to access JavaBeans components.

Properties

One the most important characteristic of a bean is its ability to define and manipulate properties. A JavaBeans property
is a value of a certain type. With a bean, you provide public methods to access a bean's properties. A property is
frequently implemented by an instance variable, but not always. Sometimes properties are derived from the values of
other instance variables in the Java class (especially with read-only properties). Properties can also be tied to events
and have listeners that detect a change to a property's value.

Properties usually contain a single value. These are called simple properties. They can also be represented by an array
of values. These are called indexed properties.

Setters and Getters

The public setters and getters define a bean's properties. A setter provides write access to a property and a getter
provides read access. The names of these access methods are set by convention and determine the name of the
property.

A getter is a public method that returns a reference to an object of the property's type (or if the type is a built-in type,
it returns a value). It combines the word "get" with the property name, capitalizing its first letter. For example, if a
JavaBeans component implements a property called customer (a String), its getter is

public String getCustomer() {

 return customer;

}

Similarly, a setter is a public method that takes an object of the property's type and returns void. Using the same
convention, setters combine the word "set" with a property name whose initial letter is capitalized. A setter for the
above customer property is

public void setCustomer(String c) {

 customer = c;

}

A boolean property's getter may have one of two forms. Suppose a JavaBeans component has a property called
onMailingList (a boolean). Its getter can be implemented as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public boolean isOnMailingList() { ... }

or the traditional

public boolean getOnMailingList() { . . . }

Note that what determines a bean's properties is the accessor methods you provide. When you create a JavaBeans
component through Creator's IDE, Creator enforces these conventions.

Default Constructor

There is one important rule to remember with JavaBeans components. A bean must define a public default constructor,
that is, a constructor with no arguments.[1] Typically, JavaBeans components are instantiated by a mechanism that
precludes passing arguments to the constructor. The constructor's job is to provide any necessary initialization steps for
the bean, including default values for the bean's properties.

[1] A public class with no constructor is also considered to have a public default constructor.

Binding

When you write a JavaBeans component that conforms to these design conventions, you can use them with Creator and
bind JSF components to JavaBeans properties. This provides a powerful link between a GUI component and the
application's "model," that is, the business data that the application manipulates.

The binding is specified by the JSF EL (Expression Language). Typically, the value property of either a text field
component or an output text component is bound to a JavaBeans property. Creator provides a Property Bindings dialog
that allows you to select an object's bindable property and a binding target (see Figure 5-4, "Property Bindings dialog"
on page 140). After you've applied the binding, Creator generates the necessary code in the page's JSP source. Here is
an example of an output text component called cost bound to the payment property of LoanBean, which we show you
later in this chapter. The binding with the LoanBean component is in bold.

<h:outputText binding="#{Page1.cost}"

 converter="#{Page1.numberConverter1}"

 style="position: absolute; left: 264px; top: 264px"

 value="#{LoanBean.payment}"/>

Figure 5-4. Property Bindings dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4. Property Bindings dialog

[View full size image]

This binding means that the output text's value is updated with the LoanBean's payment property during the page's
request cycle. The binding generates code to invoke the payment's getter method of the LoanBean, getPayment(). In this
example, the LoanBean object is a managed bean and has session scope. We explain later how this all works in more
detail. But first, we discuss object scope in web applications.

Scope of Web Applications

When a web application runs on the server, it consists of various programming objects whose life cycles depend on their
scope. For example, a page generally lives in request scope and exists during the life cycle of a single request. Certain
data, however, are available throughout the entire session. When a user puts items in a shopping cart, for example, the
cart and all of its contents are generally in session scope. Each user running the application has his or her own session
objects.

Sometimes data need to be shared among all users of a web application. For example, suppose a counter keeps track of
how many users have accessed a web application. Such a counter needs to be accessible throughout all sessions and
therefore must have application scope. Since it's important to understand object scope in your Creator projects, we
define the different kinds for you.

Session scope means the object is available for one user across multiple pages in a single session. Each user of the web
application is given his or her own instance of any object with session scope.

Application scope means the object is available for all sessions within an application. A component with application
scope usually contains application-wide data or processing, since all sessions share the same object.

Request scope means the object is available for only the page that references it. If another page needs an object of the
same type, the system instantiates a unique object for that page (in the new request scope). An object with request
scope is not shared with other pages in the same session.

An object with scope none is instantiated each time it is referenced. This means that the object is not saved in any
scope. You would use scope none when an object is closely tied to and dependent on another object. For example, an
AddressBean with scope none is instantiated when a CustomerBean references it.

If one object references a second one, the allowable scope of the second object depends on the scope of the first
object. Table 5.1 lists the allowable bindings in a JSF application.

Table 5.1. Well-behaved bindings between objects
Object1's Scope May Refer to Object2 in This Scope

none none

application none, application

session none, application, session

request none, application, session, request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In general, (except for scope none) an object with a longer-living scope should not refer to an object with a shorter life
span. For example, an object with session scope should not reference an object with request scope. On the other hand,
an object of request scope may refer to an object stored in session scope because session scope has a longer life span.
Objects with scope none may only reference other objects of the same scope (none).

Why is all this important? First of all, you need to understand scoping rules to create your JavaBeans components
properly in a Creator project. Then you must understand scoping rules to correctly instantiate and access your
JavaBeans components in the correctly scoped managed bean. Later in this chapter, we show you how to do this with
the LoginBean in session scope (see "Modify Event Handler" on page 141).

Predefined Creator Java Components

If you open any Creator project (or create a new one) from Creator's Project Navigator window, you'll see at least three
Java source files (expand the Java Sources node, then the "package name" folder): ApplicationBean1.java,
Page1.java, and SessionBean1.java. These are all JavaBeans components installed as managed beans with
application scope, request scope, and session scope, respectively.

Page1.java is the page bean for the first page of your application (unless you rename it). Each page has its own page
bean. The page bean is a JavaBeans component containing properties for all the components you add to your page.
Creator generates the Java source for this file, and you can add code to it (such as event handler methods or user-
defined initialization statements). Page1, therefore, is a JSF managed bean with request scope.

SessionBean1.java defines a Java class that is an almost-empty shell by default. This is where you place objects with
session scope. Here is its source.[2]

[2] Creator hides (or "folds") some of the Creator-managed code by default to keep your editor pane uncluttered.
To see this code, click the '+' in the editor pane's margin.

package project_name;

import com.sun.jsfcl.app.*;

public class SessionBean1 extends AbstractSessionBean {

 . . . Creator-managed Component Definition . . .

 public SessionBean1() {

 . . . Creator-managed Component Initialization . . .

 // Additional user provided initialization code

 }

 public ApplicationBean1 getApplicationBean1() {

 return (ApplicationBean1)getBean("ApplicationBean1");

 }

}

Inside SessionBean1, you call operator new to create your JavaBeans component and store its reference in a private
class variable. You also need to provide getter and setter methods to make the component accessible to your project as
a property (we show you how to do all this in our first example). When SessionBean1 is instantiated, all of its added
components are instantiated, too. Since SessionBean1 has session scope, all of its instance variables will have session
scope as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scope as well.

ApplicationBean1.java has the same structure. You use ApplicationBean1 as a holder for objects with application
scope. Here is its source.

package project_name;

import com.sun.jsfcl.app.*;

public class ApplicationBean1 extends

 AbstractApplicationBean {

 . . . Creator-managed Component Definition . . .

 public ApplicationBean1() {

 . . . Creator-managed Component Initialization . . .

 // Additional user provided initialization code

 }

}

There's a lot more to tell you about using JavaBeans components in Creator projects, so let's get started.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 LoginBean Component
In our first example using managed beans with Creator, you'll start with the web application you built in the previous
chapter (project Login1). You will add a reusable component called LoginBean. LoginBean is a bean with the structure
described in the previous section. LoginBean's purpose is twofold: it holds user login information and it processes a
login request. By encapsulating both the login data and the processing procedure, the client (which is the JSF web
application you are building) is shielded from the implementation details. Furthermore, by making LoginBean a
JavaBeans component with session scope, you can access it from any JSP page you define in your project.

LoginBean Outside View

Let's begin by examining the LoginBean from its outside view, that is, the view from your application. Then we'll look at
its source and show you how to install it in your project.

A bean that represents a user logging in should store the user's name and password. Therefore, the LoginBean will
have two properties, one for username (a String) and another for password (also a String). To access these properties
from JSF tags, use a JSF EL expression, as follows.

#{SessionBean1.loginBean.username}

Note that username is a property of loginBean, which in turn is a property of SessionBean1 (the default managed bean
with session scope). Likewise, the expression

#{SessionBean1.loginBean.password}

references loginBean's password property in SessionBean1. In Java code, these map to the property's accessor methods:
getUsername(), setUsername(), getPassword(), and setPassword().

Once a user of your web application types a username and password and these values are stored in the LoginBean, the
bean can tell you if that user's login information is valid. The LoginBean has a boolean property for that, called
loginGood. Since this is a read-only property, you'll need to provide getter isLoginGood().

Note that a client does not need to know how LoginBean determines whether a login is valid, making it easier for bean
providers to change how this is done. For example, our initial implementation of LoginBean compares the web
application user's login data with constants stored in the Java source. Another implementation could access a database
and look up the user's name and password. To the client, however, the calling method is unchanged. You still invoke
method isLoginGood().

Advantages of JavaBeans Components

In the previous chapter, we said that using a JavaBeans component offers striking advantages over placing code in a
Java page bean. We were referring to the ability to change a JavaBeans component's implementation without affecting
its clients, as well as the ability to encapsulate business logic and data. For example, in project Login1 you placed the
code for a valid login sequence inside the action event handler of the Java page bean, Page1.jsp. In general, it's not a
good idea to put business logic in the Java page bean. Instead, you should encapsulate all business logic inside business
components implemented as beans. This approach separates the presentation code (GUI components and event
handlers in the Java page bean) from the model code (business logic).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reusability is another big advantage of JavaBeans components that implement business logic. Because you don't put
any GUI-specific code (such as output formatting, for example) in LoginBean, there's no reason why another web
application cannot easily use it.

Property Binding with Components

When objects are implemented as JavaBeans components, it's easy to use binding with the JSF components you define
on your page. This means you don't need to write explicit Java code to set the LoginBean properties to the values using
the component's getValue() method. By binding the component's value property to a property in LoginBean, you're
essentially performing the Java code implicitly. Suppose, for example, the following code appears in an event handler
that reads a text field component called username.

loginBean.setUsername(userName.getValue());

Or, in the beforeRenderResponse() method, you might use the following code to display the value that's stored in the
LoginBean instance.

userName.setValue(loginBean.getUsername());

With object binding, however, all of this is accomplished behind the scenes (we show you how to specify binding
shortly). Creator generates the JSF tags for you. For example, to bind the text field component userName to the
username property of LoginBean, Creator generates the following JSF tag (the relevant attribute is bold).

<h:inputText binding="#{Page1.userName}"

 required="true"

 style="position: absolute; left: 240px; top: 96px"

 value="#{SessionBean1.loginBean.username}"/>

Binding this JSF component to LoginBean means that JSF displays the text that's in the username property of LoginBean
in the JSF's component's input field. And conversely, JSF puts the text that's in the value property of the text field
component in the username property of LoginBean.

Let's use LoginBean to upgrade the Login1 project from the previous chapter. Here's a step-by-step approach.

Copy the Project

To avoid starting from scratch, copy the Login1 project to a new project called Login2. This step is optional. If you
don't want to copy the project, simply skip this section and continue making modifications to the Login1 project.

1. Bring up Creator and open the project you created in the previous chapter, Login1. Creator displays the design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Bring up Creator and open the project you created in the previous chapter, Login1. Creator displays the design
view for Page1.jsp.

2. Click anywhere inside the design grid.

3. From the File menu, select Save Project as . . . and provide the new name Login2. You'll make changes to the
Login2 project.

Specify Title

In the design view of the editor pane, change the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type the new title Login 2. Finish by pressing <Enter>.

Add a Library Reference to Your Project

LoginBean is a reusable JavaBeans component that you will configure with session scope. Session scope means that the
component is available for one user across multiple pages. Each user of the web application is given his or her own
instance of the LoginBean object.

Both the class file (the compiled Java code) and the source file are in a component JAR file in your Creator book's
example files. Let's add the JAR file to your project now.

1. Open up the Project Navigator window. This window displays all the resources, pages, Java sources, and
references used by your project.

2. Expand the Library References node (if it's not already expanded). Creator lists several different libraries used
by your project. You're going to add the asg.jar file as a new library reference.

3. Right-click the Library References node and select Create New Library Reference. Creator pops up the Create
New Library Reference dialog. (See Figure 5-1.)

Figure 5-1. Create New Library Reference dialog

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. For Library Name, specify Bean_Examples. Scope should be set to Project.

5. Select tab Class Libraries and click Add. The Open dialog is displayed.

6. Browse to the location of your Creator book's examples. Under directory FieldGuide/Examples select asg.jar
and click Open. Creator adds the JAR file path to the Path Name field. Click OK.[3]

[3] Note that Creator uses an absolute pathname for the library reference. If you open a project created
on another system, make sure the JAR file has the same pathname or recreate the library reference.

Bean_Examples now appears under the Library References node. If you expand it, you'll see the added JAR file,
asg.jar.

Add a LoginBean Property to SessionBean1

You've added the library reference that contains the LoginBean class file, but now you need to make it accessible within
your project. Since LoginBean should have session scope, let's add it to managed bean SessionBean1 as a property.
This will enable JSF to automatically instantiate it when it instantiates SessionBean1. It will also make it available to the
GUI components as a SessionBean1 property.

1. In the Project Navigator window, expand the Java Sources folder and then the project's default package folder.
You'll see the Java page bean source for your project, Page1.java.

2. You'll also see "template" beans ApplicationBean1.java and SessionBean1.java for beans at application and
session scope, respectively.

3. Right-click the file node SessionBean1.java and select Add > Property. This pops up the New Property Pattern
dialog (see Figure 5-2).

Figure 5-2. New Property Pattern dialog

4. Fill in the dialog as follows. Under Name specify loginBean, under Type specify LoginBean, and under Mode,
select Read/Write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

select Read/Write.

Creator Tip

Since Name and Type are case sensitive, make sure you copy the capitalizations
exactly.

5. Make sure that options Generate Field, Generate Return Statement, and Generate Set Statement are all
checked. Click OK to add property loginBean to SessionBean1.

6. Still in the Project Navigator window, double-click the file node SessionBean1.java. This brings up the file in
the Java source editor. Here are the getter /setter methods Creator generated.

/**

 * Getter for property loginBean.

 * @return Value of property loginBean.

 */

public LoginBean getLoginBean() {

 return this.loginBean;

}

/**

 * Setter for property loginBean.

 * @param loginBean New value of property loginBean.

 */

public void setLoginBean(LoginBean loginBean) {

 this.loginBean = loginBean;

}

You'll note that the code is marked with syntax errors. This is because the type LoginBean is unknown in the current
compilation scope. Let's use the fast import shortcut to fix these errors.

1. In the Java source editor for file SessionBean1.java, place the cursor over the LoginBean class reference (in
any of the lines) and click the mouse.

2. Press the shortcut keys <Alt-Shift-I>. Creator's Java source editor displays the Import Class dialog box as
shown in Figure 5-3.

Figure 5-3. Import Class dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Make sure that asg.bean_examples.LoginBean and radio button Import Class are selected. Click OK.

This adds an import statement for the LoginBean class near the top of source file SessionBean1.java, as
shown below. The red underlines should disappear.

import asg.bean_examples.LoginBean;

. . .

Now you'll add Java code that instantiates (with operator new) the LoginBean object.

1. In the Java source editor (you're still editing file SessionBean1.java), add instantiation with operator new for
property loginBean inside the SessionBean1() constructor.

2. Place it after the comment, as follows.

// Additional user provided initialization code

loginBean = new LoginBean();

An Aside About Initialization Code

You must specify the instantiation of properties that you add to any Creator managed bean. It is recommended that you
place any initialization code in the constructor instead of modifying the Creator-generated declaration with (for
example),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example),

// Creator-managed Component Definition

// Not recommended

private LoginBean loginBean = new LoginBean();

Placing initialization code in the constructor is preferable because

you don't have to unfold and modify Creator-generator code;

if you need to add more initialization steps, your instantiation code will already be in the constructor and you
can keep all initialization code together;

if you have several properties in your bean, the initialization of all the properties is in one place instead of
spread out in the component definition section;

in general it's a poor idea to modify Creator-generated code.

The code that you added to SessionBean1.java makes the loginBean object a property of SessionBean1. Thus, to
access the username property of loginBean (for example), use the following JSF EL expression.

#{SessionBean1.loginBean.username}

This is how you'll bind LoginBean's properties with the GUI components on your web page. Before you specify binding
for the components, it's time to look at the source for LoginBean.java.

LoginBean.java Code

The source for LoginBean.java is included in the asg.jar JAR file. Since the JAR file is installed in your project as a
library reference, you can easily view the file in Creator's Java source editor.

1. In the Project Navigator window under Library References, expand nodes Bean_Examples > asg.jar > asg >
bean_examples.

2. Double-click file LoginBean.java. Creator brings it up in the Java source editor as a read-only file for you.

We show LoginBean.java in Listing 5.1.

Listing 5.1. LoginBean.java

// LoginBean.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// LoginBean.java

package asg.bean_examples;

public class LoginBean {

 private String username;

 private String password;

 private String correctName;

 private String correctPassword;

 /** Creates a new instance of LoginBean */

 public LoginBean() {

 username = "xxx";

 password = "xxx";

 correctName = "rave4u";

 correctPassword = "rave4u";

 }

 public boolean isLoginGood() {

 return (username.equals(correctName) &&

 password.equals(correctPassword));

 }

 public void setUsername(String name) {

 username = name;

 }

 public void setPassword(String word) {

 password = word;

 }

 public String getUsername() {

 return username;

 }

 public String getPassword() {

 return password;

 }

}

LoginBean has three properties, username, password, and loginGood. It also has two additional fields (correctName and
correctPassword), but these fields are not properties. LoginBean's default constructor sets the four fields with initial

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

correctPassword), but these fields are not properties. LoginBean's default constructor sets the four fields with initial
values. (Property loginGood is read-only and does not correspond to an instance variable.)

Boolean method isLoginGood() returns true if the login information in username and password is valid. Our implementation
checks the property values against the internal fields correctName and correctPassword. Other implementations of valid
login information are possible; change the initialization code in the constructor (to access a database, for example).

The remaining methods implement the setters (setUsername() and setPassword()) and getters (getUsername() and
getPassword()) for the bean's other properties.

Bind Input Components

To implement binding for both the text field and the secret field components, return to the design canvas (select the tab
Page1.jsp) at the top of the editor pane.

1. From either the design canvas or the Application Outline view, select text field userName.

2. Right-click and choose Property Bindings from the menu. Creator displays the Property Bindings dialog as
shown in Figure 5-4.

Component userName appears in the Property Bindings dialog title.

3. In the Select bindable property window, choose value Object.

4. In the Select binding target window, expand the SessionBean1 and loginBean nodes.

5. Select the username property under loginBean. Click Apply. The following expression is displayed under Current
binding for value property.

#{SessionBean1.loginBean.username}

6. Click Close.

7. Repeat steps 1 to 6 to bind the component password to the SessionBean1.loginBean.password property.

Creator Tip

You can also edit the component's value attribute in the Properties window to
specify binding using the JSF EL expressions above.

Modify Event Handler

You also need to update the Page1.java event handler to invoke the LoginBean's isLoginGood() method. To do that, you
have to access the LoginBean component. First bring up Page1.java in the Java source editor. Here are the steps.

1. Right-click in the background of the Page1.jsp page and select View Page1 Java Class. Or, select Page1.java
under Java Sources in the Project Navigator and double-click. (Make sure the Project Navigator window is in
Logical View if you do this.)

2. Remove the private variables myUserName and myPassword from the code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private String myUserName = "rave4u";

private String myPassword = "rave4u";

3. From the dropdown menu at the top of the editor pane, select method login_action. Creator puts the cursor at
the start of this event handler. (You'll notice that the editor has underlined some of the code in red since you
deleted the private variable declarations. We'll fix that soon.) Move the cursor to the end of the comment line
and press <Enter> to add a new line.

4. Add the following statement to obtain a reference to the LoginBean object from SessionBean1.

LoginBean login = getSessionBean1().getLoginBean();

Method getSessionBean1() returns a reference to the SessionBean1 object. We access this to get at
SessionBean1's loginBean property.

5. We've once again introduced syntax errors because of LoginBean. Use the fast import shortcut <Alt-Shift-I>
to have Creator add the import class statement to your source file.

import asg.bean_examples.LoginBean;

6. Modify the if statement to call LoginBean's getter, isLoginGood().

if (login.isLoginGood()) {

...

At this point, no red underlines should appear in your source code. If you still see them, check the syntax again
before moving on. Listing 5.2 shows the complete method.

Listing 5.2. Action event handler login_action()

public java.lang.String login_action() {

 // User event code here...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // User event code here...

 LoginBean login = getSessionBean1().getLoginBean();

 if (login.isLoginGood()) {

 return "loginSuccess";

 }

 else return "loginFail";

}

After calling getter isLoginGood(), the event handler returns either "loginSuccess" or "loginFail". These are the labels you
used when you specified navigation page flow for the project in the previous chapter.

Modify Page LoginGood.jsp

Because the LoginBean has session scope, it's available to other pages in your application. The successful login page,
LoginGood.jsp, will access LoginBean to personalize the welcome greeting for the user. You can do this simply enough
by binding an output text component to the LoginBean's username property. Here's how.

1. In the Project Navigator window, select the top node Login2, right-click, and select Show Logical View (if it's
not currently in Logical View).

2. Double click page LoginGood.jsp. This brings up the design canvas for this page.

3. Select the output text component outputText1.

4. In the Properties window, click the small editing box opposite the value attribute. A dialog pops up. Under
Current value setting, change its value to

Welcome, #{SessionBean1.loginBean.username}

5. Click OK.

Note that you've concatenated a plain string with a property binding expression. You can also concatenate one or more
property binding expressions together. The string and binding expression now appear inside the output text component
on the design canvas.

6. Click the Source tab at the bottom of the editor pane. Here is the updated JSP tag for the output text
component you placed on the LoginGood.jsp page. The property binding is in bold.

<h:outputText binding="#{LoginGood.outputText1}"

 style="font-family: Helvetica; font-size: 24pt;

 position: absolute; left: 24px; top: 48px"

 value="Welcome, #{SessionBean1.loginBean.username}"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Figure 5-5 shows the login page when the
web application first comes up.

Figure 5-5. Login web application that uses LoginBean

Note that the Username text field component displays "xxx." This is because the LoginBean constructor initializes the
username field with "xxx." When you specify binding, JSF automatically instantiates LoginBean and updates the text field
component's value field with the initialized value in LoginBean's username field.

The same initialization occurs with the secret field component and LoginBean's password field. However, because the
rendering mechanism of the secret field component clears its value property for display, you don't see LoginBean's
default initialization here.

Go ahead and type in various usernames and passwords. Again, check both the failure and success cases, as well as
leaving one or more of the input fields blank. Also, note that when you return to the login page, the Password input field
(the secret field component) is cleared.

Figure 5-6 shows page LoginGood.jsp after a successful login scenario. (Type rave4u for both the username and
password.) The page displays the Username, thanks to the binding of the output component with the LoginBean's
username property.

Figure 5-6. A successful login session

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 LoanBean Component
In the previous example, you added a library reference to your project and made the JavaBeans component LoginBean
a property of the SessionBean1 managed bean. Although we looked at LoginBean's source code, all you really need is
the JAR file that contains its class (compiled) file. However, sometimes you'll want to create the JavaBeans component
yourself. Instead of adding a pre-compiled class file (or files) in a JAR file, you can also create a managed bean using
Creator's interactive dialogs. In this example, you'll create a LoanBean component and make it a managed bean
(instead of installing it as a property of one of the default managed beans that Creator provides).

The project that you'll build in this section uses a JavaBeans business component called LoanBean. The LoanBean
component is interesting because we accomplish the web application's functionality completely through binding
properties with converters and validators to manage input and output. Once you install LoanBean as a managed bean in
the application, there is no code to write! All the hard work is accomplished by the architecture of the JSF components,
the functionality of the converters and validators, and the ability to plug in an application-specific bean. Furthermore,
the LoanBean code is compact and straightforward. This is a poster-child example for using layered technologies in an
IDE environment.

LoanBean Outside View

The LoanBean component computes a monthly payment for a long-term, fixed- rate loan based on a loan amount,
annual interest rate, and term (the length of the loan in years). The monthly payment is returned from getter
getPayment(), making payment a property of LoanBean. Although payment is a property of LoanBean, it is a derived
property. This means its value is computed from the values of the bean's other properties. Since payment is a derived
property, LoanBean does not require a setter method for it.

LoanBean's other three properties are amount (the loan amount), rate (the annual interest rate), and years (the loan's
term). Following the conventions of building a conforming JavaBeans component, LoanBean contains setters and getters
for each of these three properties.

To build this application, you'll be placing text field components on the design canvas to allow the user to specify
amounts for the LoanBean's properties. You'll use converters to convert String input into the necessary data types and
validators to control the range of these values. You'll also bind the components' value properties to the LoanBean
properties.

After supplying input parameters for the loan, the user clicks a Calculate button to see the monthly payment. The
application displays the payment information in an output text component that is bound to the LoanBean's payment
property. With the help of converters and formatters, JSF updates the page automatically. Figure 5-7 shows what this
web application looks like.

Figure 5-7. Project Payment1 running in a browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a New Project

To build this application, you create the project, place a title on the page, and add the LoanBean managed bean to the
project. After configuring the LoanBean component, you add the other components to gather input and report a
monthly payment amount. This involves adding labels, specifying tooltips, applying converters and validators, and
specifying binding between the user interface components (the "presentation" components) and the JavaBeans
component (the "model"). Let's begin.

From Creator's Welcome Page, select button Create New Project. Specify project name Payment1. The
selected project type is J2EE Web Application. Click OK.

Specify Title and Background

After initializing the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click anywhere in the middle of the design canvas and select Title in the Properties window. Change the title to
Payment Calculator. Finish by pressing <Enter>.

2. Change the page's background color. In the Properties window, select the small editing square next to attribute
Background. Creator pops up a color selection dialog. Choose the yellow swatch in the top row. This corresponds
to RGB value 255, 255, 204 (a variation of yellow).

Add an Output Text Component

You'll need an output text component to put a heading on the page.

1. From the JSF Standard Component palette, select Output Text component and drag it to the top of the page.

2. When you drop it onto the design canvas, it remains selected and you can begin typing its value. This is a
Creator shortcut to set a component's value. Type in Monthly Payment Calculator. Finish with <Enter>.
(Don't resize the component; Creator will stretch it to fit the text.)

3. Under Appearances in the Properties window, edit the style attribute. Add the following after the position settings.

; font-family: Helvetica; font-size: 18pt

The output text should now appear with its new style characteristics on the design canvas.

Add LoanBean to Your Project

These steps create the LoanBean Java source file and add it to your project as a managed session bean.

1. Select the Project Navigator window.

2. Expand the Java Sources folder and then the payment1 folder. You'll see the Java page bean for your project,
Page1.java, as well as the "template" Java beans ApplicationBean1.java and SessionBean1.java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Select the Java Sources folder, right-click, and select New > Package from the menu. Creator displays the New
Wizard - Package dialog.

4. Specify name asg and click Finish. This adds package asg under node Java Sources.

5. Now select the asg node and add package bean_examples (following the same steps you did for package
asg).

6. Select package bean_examples, right-click, and select New > Managed Session Bean from the menu. Creator
displays the New Wizard - Managed Session Bean dialog.

7. Specify name LoanBean and click Finish. You've just added a stub for class LoanBean.java, which Creator
brings up for you in the Java source editor.

You now define LoanBean's properties and specify custom code for its constructor and one of its getters.

1. The first property you will add is property amount. In the Project Navigator window, expand folder
bean_examples and select file LoanBean.java.

2. Right-click node LoanBean.java and select Add > Property. Creator displays the New Property Pattern dialog
as shown in Figure 5-8.

Figure 5-8. New Property Pattern dialog

3. Fill in the dialog. For Name, specify amount, for Type select Double[4] , and for Mode select Read/Write.
Verify that the default Options (Generate Field, Generate Return Statement, and Generate Set Statement) are
all checked.

[4] Note that you specify type as Double (the wrapper class), not double (the primitive type).

4. Click OK. You see that Creator has added the code to LoanBean.java for property amount.

You will add three more properties to LoanBean. Table 5.2 displays the property name, type, mode (read/write or read-
only), and options for each property in LoanBean.java. Use the table as a guide to add the three remaining properties
using the New Property Pattern dialog. Note that property payment is read only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5.2. Properties for LoanBean component
Name Type Mode Options

amount Double Read/Write Generate Field

Generate Return Statement

Generate Set Statement

rate Double Read/Write Generate Field

Generate Return Statement

Generate Set Statement

years Integer Read/Write Generate Field

Generate Return Statement

Generate Set Statement

payment Double Read Only Generate Field

Generate Return Statement

You must now supply initialization code for the constructor and payment calculation code for method getPayment().

1. The Java source editor should still be active with file LoanBean.java.

2. Find the folded code box in the constructor labeled Creator-managed Component Initialization. Place the cursor
in a new line after the comment

// Additional user provided initialization code

3. Add the constructor initialization code shown. Copy and paste from your Creator book's file
FieldGuide/Examples/JavaBeans/snippets/Payment1_constructor.txt. The added code is bold.

// Additional user provided initialization code

amount = new Double(10000);

rate = new Double(5.0);

years = new Integer(15);

4. Add the getPayment() calculation code. Select getPayment from the dropdown menu in the upper-left corner of the
editor pane. Creator puts the cursor at method getPayment().

5. Copy and paste from your Creator book's file
FieldGuide/Examples/JavaBeans/snippets/Payment1_getPayment.txt. The added code is bold.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Double getPayment() {

 double monthly_interest = rate.doubleValue() / 1200;

 int months = years.intValue() * 12;

 payment = new Double(amount.doubleValue() *

 (monthly_interest/(1-Math.pow(1+monthly_interest,

 -1*months))));

 return payment;

}

This completes the source for LoanBean. When you specified LoanBean as a managed session bean, Creator generated
the configuration information for you.

Managed Beans Configuration File

Creator provides a managed-beans.xml file to store managed bean configuration details. This is where Creator
specifies LoanBean's configuration as a managed bean for your project. There's nothing more you need to do, but let's
look at the configuration file anyway.

1. In the Project Navigator window, select node Managed Beans.

2. Open the file in Creator's XML editor by double-clicking the node.

Listing 5.3 shows the managed-beans.xml file with the configuration information for LoanBean at the end.

Listing 5.3. Configuration file managed-beans.xml

<faces-config>

 . . .

 <managed-bean>

 <managed-bean-name>Page1</managed-bean-name>

 <managed-bean-class>payment1.Page1

 </managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

 <managed-bean>

 <managed-bean-name>LoanBean</managed-bean-name>

 <managed-bean-class>asg.bean_examples.LoanBean

 </managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 </managed-bean>

</faces-config>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <managed-bean-name> element identifies the LoanBean component within your web application. This is the name
you use when you specify binding values for some of the components on your page.

The <managed-bean-class> element identifies the Java class file when JSF builds and instantiates the objects in your
project. Note that this element includes the package name as well as the Java class name.

Finally, the <managed-bean-scope> element specifies the bean's scope. Here, Creator specified session scope since you
created LoanBean as a Managed Session Bean. Session scope is appropriate here because JSF creates LoanBean only
once per session (instead of with each request). (See "Scope of Web Applications" on page 128 for a more detailed
discussion of object scope.)

LoanBean.java Code

Listing 5.4 contains the source for LoanBean.java. You've already seen the source in the Java source editor, but we
show it here for completeness. We omit most of the Creator-generated comments.

Listing 5.4. LoanBean.java

package asg.bean_examples;

import com.sun.jsfcl.app.*;

public class LoanBean extends AbstractSessionBean {

 private Double amount;

 private Double rate;

 private Integer years;

 private Double payment;

 public LoanBean() {

 try {

 }

 catch (Exception e) {

 System.err.println(

 "LoanBean Initialization Failure" + e);

 }

 // Additional user provided initialization code

 amount = new Double(10000);

 rate = new Double(5.0);

 years = new Integer(15);

 }

 public payment1.ApplicationBean1 getApplicationBean1() {

 return (payment1.ApplicationBean1)

 getBean("ApplicationBean1");

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public Double getAmount() {

 return this.amount;

 }

 public void setAmount(Double amount) {

 this.amount = amount;

 }

 public Double getRate() {

 return this.rate;

 }

 public void setRate(Double rate) {

 this.rate = rate;

 }

 public Integer getYears() {

 return this.years;

 }

 public void setYears(Integer years) {

 this.years = years;

 }

 public Double getPayment() {

 double monthly_interest = rate.doubleValue() / 1200;

 int months = years.intValue() * 12;

 payment = new Double(amount.doubleValue() *

 (monthly_interest/(1-Math.pow(1+

 monthly_interest,-1*months))));

 return payment;

 }

}

Create the Form's Input Components

Our web page requires a set of components to gather input for the parameters of the loan. There are three parameters:
the loan amount, the interest rate, and the term. Each parameter has a component label, a text field to gather input,
and an inline message component to report validation and conversion errors. Figure 5-9 shows what the design canvas
looks like with all of the components added to the page (we've labeled most of them for you).

Figure 5-9. Design canvas showing placement of components for project
Payment1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

To create the components for the loan amount parameter:

1. Switch back to the design canvas by selecting the tab labeled Page1.jsp at the top of the editor pane.

2. From the JSF Standard Components palette, select Component Label and drag it onto the design canvas. The
component label is a composite component with an embedded output text component to hold the label's text.

3. In the Application Outline view (or see the Creator Tip on this page), select the nested output text component,
componentLabel1Text. In the Properties window, set its value attribute to Loan Amount.

4. In the Properties window, set its style attribute to

font-family: Helvetica

Creator Tip

Creator provides an enhanced selection mechanism for composite components
(such as component label). In the design canvas, select the component label and
look in the Properties window to see which component is selected. Now click the
component again and you'll see a different component's properties. For
component label, you switch back and forth between the top-level, label
component and the embedded output text component by clicking the component
in the design canvas.

5. From the JSF Standard Components palette, select Text Field and drop it onto the design canvas. Position it to
the right of the label component you just added.

6. In the Properties window, change its id attribute to loanAmount.

7. In the Properties window under Data, make sure the required attribute is selected (checked). This ensures that
the user supplies input for this field.

8. In the Properties window, set the title attribute to Please supply the loan amount in dollars. Finish with
<Enter>. This sets the component's tooltip.

9. In the Application Outline view, select the component label (componentLabel1). In the Properties window, click

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. In the Application Outline view, select the component label (componentLabel1). In the Properties window, click
the editing box next to the for attribute. Choose component loanAmount from the list of components displayed in
the pop-up dialog. Click OK.

This associates the label component with the loanAmount text field, which affects mouse behavior. Now when the
application is running, selecting the label as well as the text field places the cursor in the text field.

Use Validators and Converters

The loanAmount text field collects a numerical string that represents the amount of the loan. The string data is used with
GUI components for the "presentation" part of the application. Internally, however, you'll store this information as a
Double. Therefore, you need to convert the String to a Double and make sure its value is within a reasonable range
with validation. To do this, you'll use a JSF DoubleRangeValidator for validation and a JSF DoubleConverter for conversion.
You can add these components to your project from the JSF Validators/Converters palette. Here's how.

1. From the JSF Validators/Converters palette, select Double Converter, drag it to the design canvas, and drop it
on top of the text field component loanAmount. Creator sets the converter attribute for loanAmount to
doubleConverter1. Component doubleConverter1 now appears in the Application Outline view.

2. Repeat this step for the validator. From the JSF Validators/Converts palette, select Double Range Validator,
drag it to the design canvas, and drop it on top of the loanAmount text field component. Creator sets the validator
attribute for loanAmount to #{Page1.doubleRangeValidator1.validate}. Component doubleRangeValidator1 also appears
in the Application Outline view.

You've just applied a range validator for the loan amount. Now you specify its range (maximum and minimum).

1. In the Application Outline view, select the validator you just added for the loanAmount component,
doubleRangeValidator1.

2. From the Properties window, set the minimum and maximum values to 1.0 and 1 million (1000000.0),
respectively (or other values you deem reasonable).

You also need a message component to display error messages during conversion.

1. Return to the JSF Standard Components palette and select Inline Message. Drag it to the design canvas and
position it to the right of the text field component loanAmount.

2. In the Properties window under General, click the editing box next to the for attribute. Choose component
loanAmount from the list of components displayed in the pop-up dialog. Click OK.

This ties the inline message component to the loanAmount text field component. Any error messages generated
by the component's validator or converter will be displayed by the message component.

3. Still in the inline message's Properties window, make sure attribute showSummary for the message component is
checked and add the following to its style attribute.

; font-style: italic

Specify Property Binding

Now let's specify binding for the loanAmount text field's value attribute. Make sure that the loanAmount component is
selected.

1. Right-click and select Property Bindings from the menu. A dialog entitled Property Bindings for loanAmount pops
up. (Figure 5-4 on page 140 shows the Property Bindings dialog for the Login2 project.)

2. In the Select bindable property window, choose value Object.

3. In the Select binding target window, choose amount under the LoanBean node.

4. Click Apply. The following binding expression appears in Current binding for value property window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#{LoanBean.amount}

5. Click Close. This binds the value attribute of the text field component loanAmount to the amount property of the
LoanBean.

Place Interest Rate and Term Components

Ok, you've finished placing the components associated with gathering the loan amount parameter. You'll need to repeat
these steps for the interest rate (which uses a Double converter and a Double range validator) and the loan term (which
uses an Integer converter and Long range validator). Follow the same steps we showed you for the loan amount input.
First grab a component label, then the text field, converter, and validator, and finally, the inline message component.
To make this easier, we've created tables that help you create the components and set their values. You may find it
helpful to follow the instructions and descriptions we gave you for the loan amount parameter.

Table 5.3 lists the components and their properties for the interest rate input. Be sure to specify binding for
interestRate's value attribute with #{LoanBean.rate}.

Table 5.3. Components for interest rate input
Component Property Setting

Component Label (componentLabel2) for interestRate

(set this attribute after you place
text field interestRate on canvas)

embedded text field
(componentLabel2Text) value

style

Interest Rate

font-family: Helvetica

Text Field id interestRate

 title Please specify the interest rate
(APR)

 converter doubleConverter1

(the same converter you used for
loanAmount; make sure to press
<Enter>)

 required true (checked)

 validator #{Page1.doubleRange
Validator2.validate}

(will be set after you drop the
validator onto the component)

 value #{LoanBean.rate}

Double Range Validator
(doubleRangeValidator2)

minimum 0.001

 maximum 15.5

Inline Message (inlineMessage2) for

showSummary

interestRate

true (checked)

 style font-style: italic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

You can use the same Double converter for text field interestRate that you used with
text field loanAmount. Instead of dragging a new converter from the JSF
Validators/Converters palette, specify interestRate's converter in the Properties
window. After placing the text field on the design canvas, select the converter
attribute. From the component selection pop-up, choose doubleConverter1 followed
by <Enter>.

Table 5.4 lists the components and their Properties settings for the loan term parameter. The text field component
loanTerm requires an Integer converter and a Long range validator to control the allowable range. Specify binding with #
{LoanBean.years}.

Table 5.4. Components for loan term input
Component Property Setting

Component Label (componentLabel3) for loanTerm

(set this attribute after you place text
field loanTerm on canvas)

embedded text field
(componentLabel3Text) value

style

Loan Term (Years)

font-family: Helvetica

Text Field id loanTerm

 title Please specify term of loan in years

 converter integerConverter1

(will be set after you drop the Integer
Converter onto the component)

 required true (checked)

 validator #{Page1.longRange Validator1.validate}

(will be set after you drop the validator
onto the component)

 value #{LoanBean.years}

Integer Converter (integerConverter1)

Long Range Validator
(longRangeValidator1)

minimum 1

 maximum 99

Inline Message (inlineMessage3) for

showSummary

loanTerm

true (checked)

 style font-style: italic

Place Button and Output Text Components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the last line of the web application page, you'll place a button, an output text component (to hold a label), and a
second output text component that binds to the payment property of the LoanBean. Table 5.5 shows the components
you need and their properties that control the payment display. Specify #{LoanBean.payment} to bind the output text's
value property with the LoanBean's payment property.

Table 5.5. Components for monthly payment output
Component Property Setting

Button id calculate

 value Calculate

Output Text (outputText2)
value

style

Payment

font-family: Helvetica

Output Text id cost

 converter numberConverter1

(this will be set after you drop the Number
Converter onto the component)

 value #{LoanBean.payment}

Number Converter
(numberConverter1)

pattern $###,###.00

Let's see how the button and output text components work with the LoanBean and the Number converter.

The button component does not have an action event handler defined in the Java page bean. The default action submits
the page. This begins the life cycle process and updates the fields, including the output text component cost.

Output text component cost is bound to the payment property of the LoanBean. Recall that method getPayment() returns a
double. When you define a number converter for the output text component, the double generated by the LoanBean
component is converted to a String. We want the payment displayed in dollars and cents, however. Fortunately, the
number converter has a pattern property that manipulates the double as a comma-separated number with two digits to
the right of the decimal point and a dollar sign in front. The pattern that accomplishes this is

$###,###.00

The number converter has additional properties to help you control the format of the output String, but this pattern
fully specifies the format we need.

Deploy and Run

Figure 5-10 shows the Application Outline view of the JSF components, converters, and validators for project
Payment1. Before deploying, you may find it helpful to compare your Application Outline view with ours in Figure 5-10.

Figure 5-10. Application Outline view for project Payment1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and run the application by clicking the green chevron on the toolbar. Figure 5-11 shows the web application with
new values. Note the tooltip display as the user holds the cursor over the interest rate text field component.

Figure 5-11. Monthly payment calculator that uses LoanBean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The payment amount is computed from the new values. When you change any of the loan parameters and click the
Calculate button, a new payment appears. All this takes place because of the bindings between the input text field
components and the LoanBean properties (including the LoanBean payment property for output). Of course, the
converters and validators play important roles as well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Key Point Summary

You can add a JAR file (a library reference) to your project through the Library References node in the Project
Navigator window. JAR files commonly hold libraries of compiled Java classes that address some functionality.

A JavaBeans component is a Java class that conforms to certain design conventions.

JavaBeans components implement read-access properties with public getter methods.

JavaBeans components implement write-access properties with public setter methods.

A JavaBeans component must have a public default constructor with no arguments.

A JavaBeans component is a reusable component and helps separate business logic from presentation code.

A JavaBeans component hides its implementation code by carefully defining its public methods (outside view).

You can install a JavaBeans component as a property in one of Creator's default managed beans. A JavaBeans
component configured as a property of the Page1.java page bean has request scope. Configuring it in
SessionBean1.java gives it session scope and configuring it in ApplicationBean1.java gives it application
scope.

You can also install a JavaBeans component in a Creator project as a managed bean and specify its scope
explicitly.

The bean configuration file managed-beans.xml contains your JavaBeans component's name, class, and
scope. It may also specify other properties of your bean.

A managed bean with session scope is available across multiple pages for one user.

A managed bean with request scope is available for only the page that references it.

To specify a managed bean property within a JSF component tag, use the JSF EL expression

#{ManagedBeanName.propertyName}

To specify a JavaBeans component's property that is itself a property of a managed bean, use the JSF EL
expression

#{ManagedBeanName.javaBeanComponentName.propertyName}

To bind a JSF component's property to a property in a JavaBeans component, select the JSF component, right-
click, and select Property Bindings. Creator displays the Property Bindings dialog which lets you specify the JSF
component's bindable property and the binding target. The binding target can be a property of another JSF
component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Accessing Web Services
Topics in This Chapter

Google Web Services

Components Text Field, Output Text

Button Component

Action Event Handlers

String Validators

Hyperlink Component

Button Component with Image File

Life Cycle Issues

Session Scope and Page Data

Web services are software APIs that are accessible over a network in a heterogeneous environment. This network
accessibility is achieved with a set of XML-based open standards such as the Web Services Description Language
(WSDL), the Simple Object Access Protocol (SOAP), and Universal Description, Discovery, and Integration (UDDI). Both
web service providers and clients use these standards to define, publish, and access web services.

Creator's default deployment server (J2EE 1.4) provides support for web services. Preinstalled with Creator is the
Google Web Service, which appears in the Server Navigator window under node Web Services > Samples >
GoogleSearchService. The Google Web Service APIs provide a SOAP interface to search Google's index, accessing
information and web pages from its cache. With SOAP and WSDL, Google enables clients to access these services in a
variety of programming environments (including, of course, Java).

This chapter shows you how to create an application that uses the Google Web Service API. Then, you'll enhance it.
After creating a project that uses web services, you'll (hopefully) exclaim, "Is that all?" because the steps are fairly
simple. And that's the way technology should be when industry-wide standards are adopted. You'll see that once we
drag and drop the web service onto the design canvas in Creator, we spend most of our time showing you elaborate
ways to manipulate and display the data that Google returns.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Google Web Services
We've divided this example into several projects that incrementally build on features of the previous project. With each
increment, you'll make a copy of the project so you can go back to a previous project if you want. Alternatively, you can
simply create a single project without saving any increments.

Note

You must register with Google before using their web service. You might also want
to download the Google Web APIs developer's kit since it has additional
documentation. Registration is free and painless. Once you register, Google will
email you a key, which is required for access to their service. The Google Web
Service URL is at http://www.google.com/apis/.

Create a New Project

From Creator's Welcome Page, select button Create New Project. Specify project name as Google1. Click OK.

Let's look at a preview of what you'll be building. Figure 6-1 shows Creator's design canvas with the components you'll
add for project Google1. The image component holds Google's recognizable logo, a button component initiates the
search, and a text field holds the search string. For the results display, output text field timeCount displays the search
time and results count, the hyperlink component displays the target URL, and the text field called result displays the
URL's "snippet" description. The Google web services component appears in the nonvisual component tray at the
bottom of the editor pane.

Figure 6-1. Creator's design canvas view showing project Google1's components

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

Select Title in the Properties window and type in the text Google Search 1. Finish by pressing <Enter>.
(Alternatively, if you click the small square that appears when you initiate editing, a pop-up dialog appears from
which you can edit the title. Click OK to complete editing.)

Add the Google Logo

It's a nice touch to include the Google logo when building a web application with Google's search service. To do this,
let's have Creator load an image component and set its URL to the logo on Google's web site.

1. In the JSF Standard components palette, select component Image and drag it onto the design window in the
editor pane. Place the image component in the upper-left corner of the canvas.

2. Creator displays a pop-up window entitled Select File or URL, as shown in Figure 6-2. Choose the tab labeled
URL and type the following URL address in the large editing box (make sure you use http://).

Figure 6-2. Select File or URL dialog for image component

http://www.google.com/logos/Logo_40wht.gif

3. After you've typed the URL address, click the Copy radio button at the top-right of the window. The image file
name will appear under resources in the box called Current File or URL setting.

4. Click OK. The editing box disappears, and the Google logo image will appear on the design canvas.
Furthermore, you should see file Logo_40wht.gif under the Resources node in the Project Navigator window.

Creator Tip

When you select the Copy radio button, Creator copies the .gif file from the Google
web site to your project's Resources folder. Selecting the Link radio button loads
the image from Google's web site. You can decide whether to keep a local copy (as
we've done here) or link to Google's page.

Add a Text Field Component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll need a text field component to read the user's search query.

1. In the JSF Standard Components palette, select component Text Field and drag it onto the design window. Place
it below the Google logo.

2. Make sure it is selected and stretch it so that it's approximately 10 grid units wide. You'll use this component to
obtain the user's search query string.

3. In the Properties window, change its id attribute to searchString.

4. To provide a tooltip for this text field, edit its title attribute in the Properties window. Type the text Type in a
search string followed by <Enter>.

Add a Button Component

Button components allow users to initiate some action, like navigating to a different page or submitting data for some
sort of processing. In this application, a button component will initiate a search using Google's Web Service API.

1. In the JSF Standard Components palette, select Button and drag it onto the design canvas. Place it to the right
of the Google logo.

2. Make sure the button is still selected. Use the Creator shortcut for editing its value attribute by simply typing in
a new label. When you type Google Search followed by <Enter>, Creator enables editing for the value
attribute. Note that Creator resizes the button to accommodate the longer text string, which now appears inside
the button on the design canvas.

3. In the Properties window, change the button's id attribute to search.

4. To provide a tooltip for the button, edit its title attribute in the Properties window. Type the text Search Google
for the Search String followed by <Enter>.

Inspect the JSP Source File

When you add components to your web application, Creator generates JSP code in a file by using the JavaServer Faces
(JSF) tag libraries. To look at this file, select the tab labeled Source at the bottom of the editor pane. You'll see the
following JSF standard components defined in your JSP file (Page1.jsp).

<h:graphicImage binding="#{Page1.image1}"

 style="position: absolute; left: 48px; top: 24px"

 value="images\Logo_40wht.gif"/>

<h:inputText binding="#{Page1.searchString}"

 style="position: absolute; left: 48px; top: 96px;

 width: 240px; height: 22px"

 title="Type in a search string"/>

<h:commandButton binding="#{Page1.search}"

 style="position: absolute; left: 216px; top: 48px"

 title="Search Google for the Search String"

 value="Google Search"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Three tags are defined here. The graphicImage tag defines an image component, and the inputText tag allows users to
type in and edit textual information. The commandButton tag allows users to initiate an action, typically involving
navigation or some kind of request for processing information. Clicking the button generates an event, which in turn
invokes the action method associated with the component. You haven't yet specified any action associated with this
button component, but you will do that shortly.

Let's return now to the design canvas by selecting the tab labeled Design at the bottom of the editor pane.

Add the Google Web Services

1. In the Server Navigator window under Web Services > Samples, click the '+' and select the Google Web Service
API, GoogleSearchService.

Creator Tip

The Google Web Service comes preinstalled during Creator's installation process
and appears in the Server Navigator window.

2. Drag the GoogleSearchService node and drop it anywhere on the editor pane. Since this is not a visible
component, nothing appears in the design canvas. However, you will see googleSearchServiceClient1 in the
nonvisual component tray below the editor pane.

3. Go to the Application Outline view. This window shows all the components (visible and nonvisual) currently in
your project. Note that the Google Web Service, googleSearchServiceClient1, is listed here.

Add a Web Service to the Server Navigator

The installation process configures the Google web service as well as other web services listed under the Web Services
> Samples node in the Server Navigator window. Creator also provides a way to add a web service to these selections.
Here are the steps to load the Google web service into Creator if it isn't preconfigured. Before you can add a web
service, you must provide the location (URL) of its Web Service WSDL. This is the information that describes the
particular web service's API.

We're going to step through the process to add the Google Search Service to Creator as an example. Use these steps to
add any web service. (Skip this section if the Google web service is already listed in the Server Navigator window.)

1. Go to the Server Navigator.

2. Right-click on Web Services.

3. Select Add Web Service. Creator pops up the Add Web Service dialog.

4. In the URL field at the top, supply Google's WSDL file.

http://api.google.com/GoogleSearch.wsdl

This is the location of the WSDL (Web Services Description Language) file for the Google Search Service.

5. Click Get Web Service Information. The Google web service API appears in the Web Service Information
window.

6. Click Add. The name GoogleSearchService appears under the Web Services node in the Server Navigator
window.

Once a web service is listed in the Server Navigator window, you can select it and add it to your Creator project (as you
did with the GoogleSearchService).

Add Output Text Components

Next, let's add output text components and a hyperlink to display the search results from Google.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the JSF Standard Components palette, select Output Text. Place it below the text field component,
aligning it on the left. Don't stretch it.

2. In the Properties window, change its id attribute to timeCount.

The output text component timeCount will display the amount of time in seconds that the search request took on
Google's server, as well as the estimated number of search results found. Although Google's search returns at
most 10 results, this number is the estimated total (anywhere from zero to thousands).

3. Repeat step 2 to add a second output text component. Place the second output text component under the first
one, indent it slightly, and leave some space above it for a hyperlink (this will be the URL the Google search
returns). This second output text component will display the "snippet" returned by the Google search.

4. In the Properties window, change the id attribute to result.

5. The snippet that Google returns will contain embedded HTML tags. To display the HTML formatting correctly,
uncheck the escape attribute in the output text's Properties window.

Add a Hyperlink Component

The hyperlink component allows application writers to set the href attribute in an HTML <a> tag. This in turn allows the
user to navigate to an arbitrary URL. The hyperlink's value attribute is the target URL. It uses an embedded output text
component to control the text displayed to the user.

Creator Tip

JSF provides two "hyperlink" components: a link action and a hyperlink. The link
action component generates an action event that can perform dynamic navigation
or some other processing. The hyperlink component does not generate an action
event when clicked. Instead, the application simply loads the URL specified in its
value attribute.

For this application, the hyperlink component is an easier way to display URL choices for the user. You'll get the URL
from the results returned by the Google search method. For now, let's put a hyperlink component in the application.

1. In the JSF Standard Components palette, select Hyperlink and drag it to the design canvas. Position it directly
below the first output text component, aligning it on the left. The name will appear as hyperlink1.

2. In the Application Outline view, select the hyperlink1's embedded output text component hyperlink1Text. Uncheck
its escape attribute in the Properties window. This allows HTML tags to format the text. Unchecking escape results
in an escape="false" attribute in the corresponding JSP code generation.

3. Look again at the JSP source file (select the Source tab at the bottom of the design canvas). You'll see that the
<h:outputLink/> tag has an embedded <h:outputText/> tag. The value attribute of the output text component is the
text that's displayed in the hyperlink (by default set to the hyperlink component's name). The value attribute of
the hyperlink component is the target URL (by default set to http://www.sun.com/jscreator).

<h:outputLink binding="#{Page1.hyperlink1}"

 style="position: absolute; left: 48px; top: 192px"

 value="http://www.sun.com/jscreator">

 <h:outputText binding="#{Page1.hyperlink1Text}"

 escape="false" value="hyperlink1"/>

</h:outputLink>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Return to the design canvas by selecting the Design tab at the bottom of the editor pane. Right-click inside the
design canvas and select View Page1 Java Class from the context menu. Creator now displays the Java page
bean source, Page1.java.

5. Take a moment to peruse this file. In the Creator-managed code, you'll see private instance variables
corresponding to the binding attributes of each of the JSF components you created with the GUI editor. (To
unfold hidden code, click the '+' near the left margin next to the box labeled Creator-managed Component
Definition.) There are also corresponding getter and setter methods. This is the standard way you create
properties for JavaBeans component classes. Every component in our application has become a property of the
Java page bean.

6. Return to the design canvas by selecting the Page1.jsp tab above the editor pane. Go to the Application
Outline view. The components hyperlink1 and hyperlink1Text appear in this view along with the previously added
components.

Figure 6-3. Application Outline view of components added to project Google1

Deploy and Run

Creator Tip

Although you haven't added the calls to the Google Web Service yet, let's build and
run the web application anyway. When the application runs, the page is redisplayed
when you click the Search Google button (admittedly, not much). However, at this
point you know if you've added all of the components to your page correctly.

To run the project, click the green chevron in the toolbar or select Build > Run Project from the main menu. The page
should display the Google logo in the upper-left corner, as well as the text field, button, and hyperlink components.
Since the hyperlink component has its value set to Sun's Creator web site, clicking it will take you to that site. The
output text components are not visible. You can type in a test search string, but clicking the button does not (yet)
access the Google web service. It does, however, redisplay the page.

Now it's time to add code to the Java page bean file to do something when you get an action event from clicking the
button!

Perform an Action

Our next step is to associate clicking the Search Google button with invoking the appropriate search routine in the
Google Web Service API. Recall that components may have event listeners associated with them. When the listened-to
event occurs, the system calls the action method associated with that component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event occurs, the system calls the action method associated with that component.

You must tell Creator to listen for an event associated with a specific component. You do this by double-clicking on that
component in the design canvas. When you double-click a component, Creator generates an action method stub so that
you can provide the correct event processing code. We show you this now.

In the design canvas, select the button component and double-click. Creator brings up the Java page bean
(Page1.java) in the editor pane and displays method search_action(). (Alternatively, you can right-click with the
mouse over the button component and select Edit Event Handler > action from the context menu.) The default
implementation of this method is as follows:

public String search_action() {

 // User event code here...

 return null;

}

When the user clicks the search button, the system invokes the search_action() method. This is where you want to place
the code that invokes Google's search. Before we show you this code, however, let's look at the methods in the Google
web service API.

Inspect the Web Service

The Google web service is already included in your application, so let's ask Creator to show you its methods.

In the Server Navigator window, select and open the folder labeled Web Services > Samples >
GoogleSearchService > GoogleSearchPort. Click the '+' to expand the node. Three methods are available.

doGetCachedPage()

doSpellingSuggestion()

doGoogleSearch()

You'll be invoking method doGoogleSearch() in this application.[1] Now look at the Java page bean, Page1.java.

[1] You access method doGoogleSearch() using googlesearchportDoGoogleSearch(). See the event handler
code in Listing 6.1 on page 178.

When you added the Google web service to your page, Creator modified the Java page bean file (Page1.java) to
import the Google web service package, as shown here.

import webservice.googlesearchservice.*;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This means you'll be able to use the code completion mechanism in the editor to get the package names and methods
when you access Google's API.

In the Creator-managed code, you'll see private variable googleSearchServiceClient1 in the Page1 JavaBean. This is the
object that you use to make calls to Google's web service API.

private GoogleSearchServiceClient googleSearchServiceClient1 =

 new GoogleSearchServiceClient();

Creator Tip

At this point, you will undoubtedly find Google's documentation to be helpful. A
detailed description of the methods and their parameters can be found on the
Google Web Site: http://www.google.com/apis/reference.html

Table 6.1 contains a list of the parameters for googlesearchportDoGoogleSearch(). The doGoogleSearch() method returns a
GoogleSearchResult object response. Table 6.2 on page 177 contains some of its access methods.

Table 6.1. doGoogleSearch() parameters
Name Type Description

key String Key provided to you by Google. A key is required for access
to the Google service.

q String Search query.

start int Zero-based index of the first desired result.

maxResults int Number of results desired per query. This is at most 10.

filter boolean Specifies whether or not you want filtering, which helps
eliminate very similar results.

restricts String Limits the search to a subset of the Google Web index.

safeSearch boolean Enables filtering of adult content.

lr String Language Restrict–limits the search to documents with the
specified languages.

ie String Input Encoding–deprecated.

oe String Output Encoding–deprecated.

Table 6.2. GoogleSearchResult public methods
Name Return Type Description

getDirectoryCategories Array Array of the Directory
Category items
corresponding to the ODP[a]

directory matches for this
search.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getEndIndex int Index (1-based) of the last
search result in the
ResultElements array.

getEstimatedTotalResultsCount int Estimates of the total
number of results for the
query.

getResultElements ResultElement[] Array containing the results.

getSearchComments String Search comments.

getSearchQuery String Search query you provided.

getSearchTime double Time it took the Google
server to compute the
results.

getSearchTips String Tips for searching.

getStartIndex int Index (1-based) of the first
search result in the
ResultElements array.

isDocmentFiltering boolean True if document filtering is
enabled.

isEstimateIsExact boolean True if the total results
estimate is exact.

[a] "The Open Directory Project is the largest, most comprehensive human-edited directory of the Web. It is
constructed and maintained by a vast, global community of volunteer editors." (See About the Open Directory
Project, http://dmoz.org.)

Finally, each response includes an array of ResultElement objects. Some of the methods you use to access a ResultElement
object are listed in Table 6.3 on page 178.

Table 6.3. ResultElement public methods
Name Return Type Description

getCachedSize String Size of the cached document.

getDirectoryCategory DirectoryCategory Name of the ODP category in
which the result occurs.

getDirectoryTitle String Name of the result as it appears in
the Open Directory.

getHostName String Hostname of the result.

getSnippet String Short description of the result
page.

getSummary String Description of the result as it
appears in the Open Directory.

getTitle String Page title of the result.

getURL String URL of the result page.

isRelatedInformationPresent boolean True if there are related
documents to this result.

Add the Java Code to Access the Google Web Service

What should the search_action() method do? Here's an overview.

Invoke the doSearchGoogle() method and save the response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Invoke the doSearchGoogle() method and save the response.

Display the time it took to complete the search and the estimated number of responses (using output text
component timeCount).

For the first result only, display the web site title and create a link to the web site's URL (using components
hyperlink1 and hyperlink1Text).

For the first result only, display the result's "snippet," which is an HTML-formatted string containing the search
words in bold (using output text component result).

Design Note

Because taking small steps is always better than attempting a giant leap, let's
display only the first result on your web page. In a later section, we'll have you
display all of the returned results (a maximum of 10).

1. At the top of the editor pane in Page1.java, open the dropdown menu and select search_action. Creator puts
the cursor at the start of this method and marks it in yellow.

2. Add the following private instance variable after the Page1() constructor and in front of the search_action()
method.

private GoogleSearchResult mySearchResult;

3. Add the following code to the search_action() method. From your Creator book download, copy and paste the file
FieldGuide/Examples/WebServices/snippets/google1_search.txt into the search_action() event handler.
The added code is bold.

Listing 6.1. Method search_action()

public String search_action() {

// User event code here...

 try {

 mySearchResult =

 googleSearchServiceClient1.googlesearchportDoGoogleSearch(

 "Your Google Key Here",(String)searchString.getValue(),

 0,10,true,"",true,"lang_en","","");

 timeCount.setValue("Search Time = " +

 mySearchResult.getSearchTime()

 + " Number of results returned = "

 + mySearchResult.getEstimatedTotalResultsCount());

 ResultElement[] myResults =

 mySearchResult.getResultElements();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mySearchResult.getResultElements();

 if (myResults.length > 0) {

 result.setValue(myResults[0].getSnippet());

 hyperlink1.setValue(myResults[0].getURL());

 hyperlink1Text.setValue(myResults[0].getTitle());

 }

 }

 catch (Exception e) {

 log("Remote Connect Failure", e);

 throw new FacesException(e);

 }

 return null;

}

Creator Tip

Make sure you include your Google Web API's License Key as the first argument of
the Google search method. Otherwise, your application will throw an exception, as
shown.

javax.faces.FacesException:

javax.xml.rpc.soap.SOAPFaultException:

Exception from service object:

Invalid authorization key: Your Google Key Here

Deploy and Run

It's time to test this initial version of the Google search web application.

From the menu bar, select Build > Run Project. You can test the Google Search API by typing in various search
queries. Click on the URL (displayed as the title) and go to that web page. Figure 6-4 shows a screen shot of
the application.

Figure 6-4. First version of the Google Web Search application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-4. First version of the Google Web Search application

[View full size image]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Validation
You have created a simple web application that uses a published web service. Now you're going to build on this example
and enhance it in the following ways.

Provide validation for the text field component and require that the user provide something. That is, you want
to prevent a zero-length string and require a minimum length for the search string (three characters).

Make sure all of the output text components values are cleared so that if there is any problem with the Google
search (for example, if zero results are returned), the previous results are cleared from the page.

Place an inline message component on the page to report errors.

Copy a Project

To avoid starting from scratch, copy the Google1 project to a new project called Google2. This step is optional. If you
don't want to copy the project, simply skip this section and continue making modifications to the Google1 project.

1. Bring up project Google1 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project as . . . and provide the new name Google2. You'll make changes to the
Google2 project.

4. Change the title to Google Search 2.

Add a Validator

It's always a good idea to validate user input. Among the JSF standard components are a set of validators to help with
this task. With text strings, two validators are of interest. First, a length validator can control a String's length. You can
specify a maximum and a minimum for the number of characters input. Interestingly enough, if you want to prevent a
zero-length string, you cannot use the length validator (and set the minimum to 1). Instead, you must use the
component's required attribute. The required attribute is set in the Properties window for each text field component. If
you check it (set it to true) and the component's value is a String, then its length must be greater than zero.

For this example, let's prevent a zero-length string and set a length minimum of three characters and a maximum of
2,048 characters (this is the maximum search query allowed by Google).

Creator Tip

For testing, you'll set the length minimum to 3 and its maximum to 25. Coupled
with the required validator, you should get the following behavior. If the user leaves
the text field empty, you'll get a message from the required validator saying that a
value is required. If you type in a 1- or 2-character text value, you'll get feedback
from the length validator saying that it was less than the minimum of 3. Likewise, if
you type in more than 25 characters, the length validator will complain that the
string was more than the maximum. Note that a zero-length string does not trigger
the length validator even if the minimum is set to 1. You must use the required
attribute of the component!

Let's add validation to the application now.

1. Make sure Page1 is in the design canvas.

2. Select the text field component, searchString.

3. In the Properties window, click the checkbox for the required attribute. This means the text field component
cannot be empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's add one of the JSF Validators.

4. From the JSF Validators/Converts palette, select Length Validator, drag it to the design canvas, and drop it on
top of the searchString text field component. Creator sets the validator attribute for searchString to #
{Page1.lengthValidator1.validate}. Component lengthValidator1 appears in the Application Outline view.

5. You've instantiated a length validator for the text field component. Now you have to give it length boundaries:
the minimum and maximum allowable. To do this, select lengthValidator1 in the Application Outline view. In its
corresponding Properties window, change attribute maximum to 25 and minimum to 3. These values are probably
not the limits you'd want to use in your production application, but they're good values for testing. Once you're
convinced the length validator is working, set the maximum to 2048, which is the maximum imposed by
Google. The advantage of using the validator instead of letting Google complain is that you save a trip to the
Google server.

6. Since the validator is a nonvisual component, it does not appear in the design canvas. However, it does appear
in the Application Outline view and the searchString component's tags in the source for Page1.jsp have been
modified as follows.

<h:inputText binding="#{Page1.searchString}"

 required="true"

 style="position: absolute; left: 48px; top: 96px;

 width: 240px; height: 22px"

 title="Type in a search string"

 validator="#{Page1.lengthValidator1.validate}"/>

Note that the Page1() constructor in the Java page bean has been modified to include the minimum and
maximum settings you defined in the Properties window, as follows. (Unfold the Creator-managed Component
Initialization block to see the code.)

lengthValidator1.setMinimum(3);

lengthValidator1.setMaximum(25);

Add an Inline Message Component

The JSF inline message component retrieves messages from the JSF context. As it turns out, the validator sends an
error message to the JSF context when it detects nonconforming input. The inline message component just needs to
know which component's messages it should retrieve.

1. From the JSF standard components palette, select Inline Message and drag it onto the design canvas. Place it
below the output text component called result.

2. From the Properties window under General, select the property for and select searchString from the list of
components in the pop-up window. Click OK.

3. Make sure attribute showSummary is checked (showSummary and showDetail display the same message for this
validation).

4. Still in the Properties window under Appearances, select attribute style. Click the small editing box; an editing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Still in the Properties window under Appearances, select attribute style. Click the small editing box; an editing
pane appears. After the position attributes, add the following font characteristics (this makes the error message
appear in italic).

; font-style: italic

5. Click OK.

Now any messages having to do with component searchString will be displayed by the inlineMessage1 component.

Life Cycle Issues

It's time to delve into the deep, dark crevices of JSF. This section is somewhat advanced, but it's useful nonetheless to
help you tweak your applications. If you'd prefer to skip this part and go ahead to the next section, you can do that
without jeopardizing your Google application.

Let's explore some of the nuances of the JSF life cycle process. The best way to do this is to "see" the life cycle effects
on a running web application.

Run the Google2 application now. Note that when you supply valid input, the application accesses the Google web
service and displays the first result. Subsequently, if you supply invalid input (a search query less than three characters
or no input at all) the validation step fails and the inline message component displays the appropriate error message.
However, the result from the previous search is still displayed, making for a confusing page at best.

A more pleasing page would make the validation errors appear directly below the text field component, overlapping the
output text components. To accomplish this, you must clear the value attribute in the output text components from the
previous search request. This results in a cleaner page and prevents error messages from overwriting old results.
Here's the code that clears the output text components. However, the more difficult question is: "Where should this
code go and when should it be executed?"

timeCount.setValue("");

result.setValue("");

hyperlink1Text.setValue("");

The JavaServer Faces framework provides a life cycle for a JSP request. The six steps in this life cycle process are
shown in Figure 6-5[2].

[2] This diagram is adapted from "JavaServer Faces Standard Request-Response Life Cycle," in the J2EE 1.4
Tutorial. See http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html for more information.

Figure 6-5. JSF Request-Response Life Cycle Process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While the steps always occur in the same order, it is important to note that not all six steps will necessarily be
processed for every page request. For example, validation rules are applied to the request during Step 3 (Process
Validations). If a component fails a validation, the page is returned with an error message and the process skips directly
to Step 6 (Render Response).

Creator provides hooks into this life cycle process for the application developer, but you have to know how to get at
them. Once you have the hooks, you can write a method that clears the output text components before validation
occurs. When errors occur, the previous requests' output does not appear on the page.

So how do you "hook into" the page request life cycle? You'll note that the Java page bean Page1.java extends class
AbstractPageBean. As it turns out, AbstractPageBean (as well as AbstractSessionBean and AbstractApplicationBean) all
extend from class FacesBean. There are twelve methods in FacesBean, each of which is called either before or after one
of the six page request life cycle phases. Table 6.4 lists all twelve methods in the order that they're invoked in the page
request life cycle.[3]

[3] Note that these methods are protected. This means you can call them from your page bean and any class
derived from it.

Table 6.4. Page request life cycle methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6.4. Page request life cycle methods

protected void beforeRestoreView();

protected void afterRestoreView();

protected void beforeApplyRequestValues();

protected void afterApplyRequestValues();

protected void beforeProcessValidations();

protected void afterProcessValidations();

protected void beforeUpdateModelValues();

protected void afterUpdateModelValues();

protected void beforeInvokeApplication();

protected void afterInvokeApplication();

protected void beforeRenderResponse();

protected void afterRenderResponse();

All methods have empty stubs, but they exist so that you can override them with your own versions in the page bean.
Method beforeRenderResponse(), for example, is called before the Render Response phase. We've included the code for
the methods in FieldGuide/Examples/WebServices/snippets/life_cycle.txt in case you want to use them in other
projects.

You'll need to call the beforeProcessValidations() method to clear the output text components in this project. If you include
the code to clear the components at this point, the page will be blank and ready for either error messages (generated
during the Process Validation phase) or output from the Google web search (displayed during the Render Response
phase). This is what you need to do.

1. Inside the Java page bean Page1.java, add the following method. Copy and paste from the file
FieldGuide/Examples/WebServices/snippets/google2_beforeProcessValidations.txt.

2. Put this method after the Page1() constructor code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void beforeProcessValidations() {

 timeCount.setValue("");

 result.setValue("");

 hyperlink1Text.setValue("");

}

Now the previous page's results will be cleared from the current request's page, even if there is a validation error. Since
you don't have to worry about validation error messages writing on top of previous results, move the inline message
component on the design canvas so that it is directly below the text field (left aligned). You can experiment with its size
and placement when you run and test the application.

Creator Tip

Method afterRenderResponse() is particularly useful with "cleanup" duties since it's
called at the very end of the page request cycle. This is a good place to make sure
any state information is saved for the next page request cycle. Since the default
scope for each page bean is request, the page bean's constructor will return all
components to their initial states. If this behavior is not what you want, save the
state in the SessionBean1 managed bean and retrieve it during construction.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 HTML with Output Text
The previous version of the application displays only the first result returned from a Google search. Most of the time,
the Google search returns an array of 10 results. You get the first 10 results of the query if parameter start is set to
zero and maxResults is set to 10, which is how you called doGoogleSearch(). To get the next set of 10 results, set start to
10 (instead of 0). For the third set of 10 results, set start to 20, and so on.

Google returns the total result count with method getEstimatedTotalResultsCount(); you can easily determine the number
of results returned by getting the length attribute of the ResultElement array. This will be at most 10. Furthermore,
Google imposes a 1,000 count limit, so even if the query returns 30,000 hits, Google will give you at most 1,000 (in 10-
count page increments).

In this version of our Google search application, you're going to display all (up to 10) elements of the ResultElement
array (that is, the first page). You'll use an HTML table tag to display the results.

Copy a Project

As before, copy Google2 and create a new project called Google3. This step is optional. If you don't want to copy the
project, simply skip this section and continue making modifications to the previous project.

1. Bring up project Google2 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project As and provide the new name Google3. You'll make changes to the
Google3 project.

4. Change the title to Google Search 3.

Modify the Components

To simplify our application, let's begin with the removal of the hyperlink component and its nested output text
component. That is, you'll delete

hyperlink1

hperlink1Text

To do this:

1. Go to the Application Outline view and select hyperlink1. Right-click and from the context menu, select Delete.
This automatically deletes the embedded output text component, hyperlink1Text, too.

2. Select component result in the design canvas and move it up so that it is directly under the timeCount
component. Position it so that it is aligned on the left with the timeCount component.

Instead of holding the result element's snippet only, you'll use the result output text component to display a
table of result elements returned from the Google search.

3. Now go to the Java page bean file by right-clicking in the design canvas and selecting View Page1 Java Class. At
the end of this file, you'll see syntax errors highlighted in red by the Java source editor.

4. In the beforeProcessValidations() method, remove the call to component hyperlink1. This clears the values of the
two output text components, timeCount and result only. Here is the modified method.[4]

[4] If you didn't make the earlier life cycle modifications to project Google2, this method does not appear
in the Page1.java source, so no modification is necessary here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the Page1.java source, so no modification is necessary here.

public void beforeProcessValidations() {

 timeCount.setValue("");

 result.setValue("");

}

There are still syntax errors in the search_action() method, but you'll fix them shortly.

Build HTML Output

An interesting feature of the output text component is that you can include HTML formatting tags in its value attribute
along with plain text as long as the escape attribute is unchecked (false). The HTML tags will be rendered just as you'd
expect. You've actually already seen this behavior when you assigned both the snippet string and the title string to
output text components. You'll recall that the search query words appear in bold. If you leave the escape attribute
checked, the search words are enclosed in HTML tags rather than appearing in bold. The following display shows the
previous search snippet displayed with the escape attribute checked.

Sun Java Studio Creator brings together the power of the
Java 2 Platform, Enterprise
 Edition, with the kind of simplified development model
acknowledged by ...

This means the output text component can handle arbitrary HTML tags and text. Thus, you can programmatically build
the output as an HTML table to display each result's title and snippet and use its URL as an href attribute. Since the
result is an array, a for loop can easily build this output in a method and return it as a String.

1. In the Java page bean file, go to the search_action() method. Just before it, place the code for a new public
method called buildTable() that will build the output string. Copy and paste file
FieldGuide/Examples/WebServices/snippets/google3_buildtable.txt. Here is the code.

Listing 6.2. Method buildTable()

public String buildTable(webservice.

 googlesearchservice.ResultElement[] results) {

 String str = "<table border=\"2\" cellpadding=\"2\"" +

 " width=\"720\"><tbody>";

 // Set href to the url and the display text to the title

 // Include the index number

 // Place the snippet in the row underneath

 for (int i = 0; i < results.length; i++) {

 str = str + "<tr><td>" + (i) +

 "</td><td>";

 str = str + results[i].getTitle() +

 "</td></tr><tr><td colspan=\"2\">";

 str = str + results[i].getSnippet() + "</td></tr>";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

 // Close html table tag

 str = str + "</tbody></table><p><p>";

 return str;

}

Method buildTable() takes the ResultElement[] array and returns a String. Note that you must precede embedded
quotation marks in the Java string with a backslash (\) character.

2. Now return to the search_action() method. You'll note that there are syntax errors highlighted in red squiggly
underlines. That's because you still have the previous version's code that accesses the hyperlink1 and
hyperlink1Text components. Delete those statements now and replace the previous result.setValue() call with a call
to buildTable(). Here is the new search_action() method (with the statement that calls buildTable() in bold).

Listing 6.3. Method search_action()

public String search_action() {

 // User event code here...

 try {

 mySearchResult =

 googleSearchServiceClient1.

 googlesearchportDoGoogleSearch(

 "Your Google Key Here",(String)searchString.getValue(),

 0,10,true,"",true,"lang_en","","");

 timeCount.setValue("Search Time = " +

 mySearchResult.getSearchTime()

 + " Number of results returned = "

 + mySearchResult.getEstimatedTotalResultsCount());

 ResultElement[] myResults =

 mySearchResult.getResultElements();

 if (myResults.length > 0)

 result.setValue(buildTable(myResults));

}

 catch (Exception e) {

 log("Remote Connect Failure", e);

 throw new FacesException(e);

 }

 return null;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the Google3 application. Depending on the input you provide for the search query, you should
see up to 10 results displayed on the page. Figure 6-6 shows an example screen shot.

Figure 6-6. Google Web Search application using HTML to build a results
table

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4 Displaying Multiple Pages
Each Google request displays up to 10 results. It's time to add controls that move forward to retrieve additional results
or move backward to display earlier results. You've seen how to use a button component to initiate an action. Now
you'll use two button controls with "arrow" images and render them on the page in place of the default button look. This
is quite easy to do and adds a nice touch to your web application.

The image files you'll need are in your Creator book's FieldGuide download bundle
(FieldGuide/Examples/WebServices/images), but if you'd like to use arrow graphics of your own, simply
substitute the appropriate .gif or .jpg file.

The modifications for this project include adding two new buttons and image files for their display. You'll also write
action event methods for the buttons to page forward or backward through the Google search results. These additions
are straightforward. What's a bit tricky is that you have to keep track of some of the parameters across page requests
when you call Google. That means you can't use local variables with request scope inside Page1.java, since the Page1
bean is instantiated with each page request. Therefore, you'll need to save and restore these control variables in
session scope. (You might want to review the discussion about the different types of scope for web application objects.
See "Scope of Web Applications" on page 128.)

Remember, Google returns at most 10 results at once. So you'll need to access the subsequent pages by submitting a
new call to the Google search method with a different starting index each time.

Copy a Project

Copy Google3 and create a new project called Google4. This step is optional. If you don't want to copy the project,
simply skip this section and continue making modifications to the previous project.

1. Bring up project Google3 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project as . . . and provide the new name Google4. You'll make changes to the
Google4 project.

4. Change the project's title to Google Search 4.

Before you add components to project Google4, look at Figure 6-7, the design canvas for this project. You can see the
placement of the buttons and the two output text components (faint dotted lines) below. Also, the web services
component, googleSearchServiceClient1, appears in the nonvisual tray at the bottom.

Figure 6-7. Design canvas showing component layout for project Google4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add Button and Image File

1. Move the timeCount and result output text components down on the design canvas to make room for the arrow
graphics components. (Leave the inline message component right below the text field.)

2. From the JSF Standard Components palette, select Button and drop it onto the design canvas. Place it under the
inline message component off center to the left. Change its id attribute to prev1 by selecting id in the Properties
window.

Creator Tip

You're changing the standard id that Creator uses because it's easier to keep
track of the components in the Java page bean file. By using meaningful id
names (such as prev1 and next1), the associated action methods that Creator
generates will have meaningful names, too.

3. In the Properties window, set attribute title to Get the previous set of results for its tooltip.

4. Make sure the button is selected. In the Properties window, scroll down to the section labeled Advanced. Click
the small editing box opposite attribute image. Creator pops up an image selection dialog.

5. Browse to directory FieldGuide/Examples/WebServices/images in this book's download directory and
select file arrow.blue.left.gif. Click OK. Creator copies the image file to the Resources folder and the left-
arrow image should now appear on the design canvas.

6. With the button still selected, scroll the Properties window back up and click the small editing box next to the
value attribute. When an editing box pops up, click the Reset to default button. This removes the value attribute
from the generated JSF tags for the prev1 button.

Here's the JSP code that Creator generates for the prev1 button with the image attribute set to the .gif file in the
project's resources folder.

<h:commandButton binding="#{Page1.prev1}"

image="resources/arrow.blue.left.gif"

style="position: absolute; left: 48px; top: 144px"/>

A Second Button and Image File

Follow the same procedure to add a second button and a second image to the page.

1. From the JSF Standard Components palette, select Button and drop it onto the design canvas. Place it under the
inline message component off center to the right. Change its id attribute to next1 by selecting id in the
Properties window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. In the Properties window, set attribute title to Get the next set of results for its tooltip.

3. Make sure the button is selected. In the Properties window, scroll down to the section labeled Advanced. Click
the small editing box opposite attribute image. Creator pops up an image selection dialog.

4. Browse to directory FieldGuide/Examples/WebServices/images in this book's download directory and
select file arrow.blue.right.gif. Click OK. Creator copies the image file to the Resources folder and the right-
arrow image should now appear on the design canvas.

5. With the button still selected, scroll the Properties window back up and click the small editing box next to the
value attribute. When an editing box pops up, click the Reset to default button.

Deploy and Run

You might want to experiment with the placement of these newly added graphic components. Deploy and run project
Google4. (The arrow buttons won't do anything useful, but you should be able to display the 10 results as before.)
Check the placement of the components and adjust them if necessary.

Creator Tip

Actually, the arrow buttons clear the page (why?). To see the search results again,
click the Google Search button. The page is cleared because clicking an arrow
button generates an action event, which initiates the JSF page life cycle process
(see Figure 6-5 on page 185). You haven't specified any action, but the system
proceeds through the different life cycle phases anyway. Before reaching the
Process Validations phase, the system executes beforeProcessValidations(), which
clears the page.

Add SessionBean1 Properties

You will soon add control variables to the Page1.java file. These values keep track of the current index and other
controls you need for displaying more than the first page of results. To maintain these values across page requests, you
add them to the SessionBean1 managed bean as properties. This automatically puts them in session scope. Here are
the steps to add properties to SessionBean1.

Creator Tip

Creator allows you to interactively add properties to its managed beans
(SessionBean1 for example). However, in this case, it's easier to simply copy and
paste the code directly into the Java source file.

1. From the Project Navigator window, select Java Sources > google4.

2. Double-click file SessionBean1.java. This brings it up in the Java source editor.

3. Add instance variables with their setters and getters for the properties referenced in Page1.java. Copy and
paste from file FieldGuide/Examples/WebServices/snippets/google4_sessionbean.txt.

Here's the SessionBean1.java source.

Listing 6.4. SessionBean1.java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.4. SessionBean1.java

package google4;

import com.sun.jsfcl.app.*;

public class SessionBean1 extends AbstractSessionBean {

 // State variables saved in session scope

 private Integer startIndex = new Integer(0);

 public Integer getStartIndex() { return startIndex; }

 public void setStartIndex(Integer si) { startIndex = si; }

 private Integer currentCount = new Integer(0);

 public Integer getCurrentCount() { return currentCount; }

 public void setCurrentCount(Integer cc) {

 currentCount = cc; }

 private Integer totalCount = new Integer(0);

 public Integer getTotalCount() { return totalCount; }

 public void setTotalCount(Integer tc) { totalCount = tc; }

. . .

}

Specify the Action Code

When a user clicks the right-arrow button, the web application should display the next 10 results from the Google
search. Conversely, clicking the left-arrow button displays the previous 10 results. Because you'll make similar calls to
the Google search API, you should place this code in its own method. Furthermore, you need to keep track of the
current start index and previous index so that you know how to access the results data when the user clicks right arrow
or left arrow.

1. In the design canvas for Page1, select the right-arrow button, next1, and double-click.

2. Creator brings up the Java page bean file, Page1.java, and displays the generated event handler,
next1_action().

3. To keep track of the index variables and the result count information that Google returns, you'll need integer
control variables. Scroll up the Page1.java file until you find the declaration for private variable mySearchResult.
Immediately after this line (shown below), add the following declarations. Copy and paste file
FieldGuide/Examples/WebServices/snippets/google4_variables.txt.

private GoogleSearchResult mySearchResult;

private int startIndex = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private int startIndex = 0;

private int prevIndex = 0;

private int currentCount = 0;

private int totalCount = 0;

The startIndex, currentCount, and totalCount integer variables are saved and restored in session scope for the action
handlers. To do this, you'll use methods saveState() and restoreState() and the SessionBean1 object that Creator
generates for you from SessionBean1.java.

Let's look at the saveState() method first. This method calls setters to store startIndex, currentCount, and totalCount as
equivalently named properties in the SessionBean1 object.

Listing 6.5. Method saveState()

private void saveState() {

 getSessionBean1().setStartIndex(new Integer(startIndex));

 getSessionBean1().setCurrentCount(

 new Integer(currentCount));

 getSessionBean1().setTotalCount(new Integer(totalCount));

}

Note that getSessionBean1() is what you use to access the session object in your page bean. You can use SessionBean1
to store your own data as needed in session scope.[5]

[5] To store session data, be sure to use Integer (one of Java's wrapper classes) instead of an int primitive type.
Integer allows property binding between components and JavaBeans properties.

Next, let's look at getState(). This method calls getters to retrieve the equivalently named properties from the
SessionBean1 object.

Listing 6.6. Method getState()

private void getState() {

 startIndex = getSessionBean1().getStartIndex().intValue();

 currentCount =

 getSessionBean1().getCurrentCount().intValue();

 totalCount = getSessionBean1().getTotalCount().intValue();

}

1. Add the saveState() and getState() methods immediately after the variable declarations you just added in
Page1.java. Copy and paste from
FieldGuide/Examples/WebServices/snippets/google4_save_restore.txt.

2. Most of the code that resides in the search_action() event handler can be pulled out and placed in a method that
all three action event handlers will call. Let's call this new method doSearch(). To create the doSearch() method,
use FieldGuide/Examples/WebServices/snippets/google4_doSearch.txt and place it directly before the
search_action() method (near the end of the Java page bean file).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.7. Method doSearch()

public void doSearch(int start) {

 // Update control variables currentCount and totalCount

 // Display results (if there are any)

 try {

 mySearchResult =

 googleSearchServiceClient1.

 googlesearchportDoGoogleSearch(

 "Your Google Key Here",

 (String)searchString.getValue(),

 start,10,true,"",true,"lang_en","","");

 totalCount =

 mySearchResult.getEstimatedTotalResultsCount();

 timeCount.setValue("Search Time = " +

 mySearchResult.getSearchTime()

 + " Number of results returned = "

 + totalCount);

 ResultElement[] myResults =

 mySearchResult.getResultElements();

 currentCount = myResults.length;

 if (currentCount > 0) {

 result.setValue(buildTable(myResults));

 }

 }

 catch (Exception e) {

 log("Remote Connect Failure", e);

 throw new FacesException(e);

 }

}

(Remember, Your Google Key Here needs to be replaced by the licensed key supplied by Google when you register
to access their service.)

3. The search_action() method is now simpler, since all that's required is to reset the index control variables and call
doSearch(). Copy and paste from file FieldGuide/Examples/WebServices/snippets/google4_search.txt to
modify this method. Here's the new code. Note the call to saveState() to save the index variables in the session
object before returning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.8. Method search_action()

public String search_action() {

 // User event code here...

 startIndex = 0;

 prevIndex = 0;

 doSearch(startIndex);

 saveState();

 return null;

}

Clicking the right-arrow button returns the next set of results from Google. To effect this return, update the start
parameter (see Table 6.1 on page 176) of the doGoogleSearch() method. Also note that the code in the action handler
next1_action() is similar to the code in the above search_action(). You just need to check for upper limits in the index
control variables.

4. Add code to the next1_action() event handler. Copy and paste from file
FieldGuide/Examples/WebServices/snippets/google4_next1.txt. Here's the code. Note that in this
method, it's necessary to call getState() to restore the index variables from the session object before using them.
Likewise, saveState() saves the index variables in the session object before returning.

Listing 6.9. Method next1_action()

public String next1_action() {

 // User event code here...

 getState();

 prevIndex = startIndex;

 startIndex = startIndex + currentCount;

 if (startIndex >= totalCount || startIndex >= 1000) {

 startIndex = prevIndex;

 prevIndex -= currentCount;

 }

 doSearch(startIndex);

 saveState();

 return null;

}

Now let's add a prev1_action() method to handle action events associated with the left-arrow button.

5. Return to the design canvas by selecting the tab labeled Page1.jsp above the editor pane.

6. Select the left arrow button prev1 and double click. This creates the event handler method in the Java page bean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Select the left arrow button prev1 and double click. This creates the event handler method in the Java page bean
file for you and places the cursor at the beginning of the method.

7. Add the following code to the empty prev1_action() method. Copy and paste from file
FieldGuide/Examples/WebServices/snippets/google4_prev1.txt.

Listing 6.10. Method prev1_action()

public String prev1_action() {

 // User event code here...

 getState();

 prevIndex = startIndex - currentCount;

 startIndex = prevIndex;

 if (startIndex <= 0) {

 startIndex = 0;

 prevIndex = 0;

 }

 doSearch(startIndex);

 saveState();

 return null;

}

You'll note that the structure of prev1_action() is similar to the next1_action() method.

One final modification is necessary in Page1.java. In method buildTable(), HTML tags produce the results table. Recall
that you display the index number of the result. This index number starts at 0 and when there are 10 results continues
through index 9. As you display other pages, this index number should reflect the number of the result.

8. Change variable i in the HTML tags (which is simply the index of the results array), to the expression (i +
startIndex) for the correct result count. (So, for example, the second page of results will typically span indices 10
through 19.) To make this easy for you, here is the modified buildTable() method in its entirety with the
modification in bold.

Listing 6.11. Method buildTable()

public String buildTable(ResultElement[] results) {

 String str = "<table border=\"2\" cellpadding=\"2\""

 + " width=\"720\"><tbody>";

 // Set href to the url and the display text to the title

 // Include the index number

 // Place the snippet in the row underneath

 for (int i = 0; i < results.length; i++) {

 str = str + "<tr><td>" + (i + startIndex) +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = str + "<tr><td>" + (i + startIndex) +

 "</td><td>";

 str = str + results[i].getTitle() +

 "</td></tr><tr><td colspan=\"2\">";

 str = str + results[i].getSnippet() + "</td></tr>";

}

 // Close html table tag

 str = str + "</tbody></table><p><p>";

 return str;

}

Deploy and Run

Deploy and run project Google4. You should be able to page through multiple result sets by using the arrow graphics
"right" and "left." Figure 6-8 shows the third page of a result set. (Note that we moved the location of the arrows to get
a bit more output into the screen shot. This is very easy to do with Creator's design canvas.)

Figure 6-8. The Google Web Search application displaying the third page of results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Under the Hood

After running the project from Creator and testing the web application, you could easily assume that everything works.
Another important test is to run more than one session concurrently, possibly from different machines. Once the web
application is deployed, you can easily begin another session by specifying its URL from your browser, as follows.

http://localhost:18080/google4/faces/Page1.jsp

To invoke the application from a remote machine, substitute the ISP or machine name for localhost. Once you have two
or more applications running, perform different searches and page through the searches.

Each session is served by its own thread. This means that every session has its own copy of the control variables stored
in session scope as properties of SessionBean1. The web form, Page1, is in request scope. It is created anew with each
page request. What a jumbled mess there would be without each session having its own copy!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.5 Key Point Summary

Web services provide a standard way to access services over a network in a heterogeneous environment.

The Google web service API provides a SOAP interface to search Google's index of pages.

Initiate a search of the Google engine by invoking the doGoogleSearch() method in the Google web service API.

Use image components to add graphics to your web pages.

The text field component allows users to type in and edit textual information.

The button component allows users to initiate an action. The action method associated with the component is
called an event handler.

You can access methods of a web service by dragging its node onto the design canvas. Web services appear in
the nonvisual component tray at the bottom of the design canvas

Use an output text component to display read-only text. Setting its escape attribute to false allows correct
rendering of HTML formatting tags. JSF dynamically sizes the output text component for you.

Use a hyperlink component for data-driven URLs. Clicking a hyperlink component does not generate an event.

The length validator makes sure that input is within a certain range for length. It does not check for empty
fields.

The required attribute makes sure the field is not empty.

Validators write error messages to the JSF context. Use an inline message component to display error messages
generated by a specific component.

The JSF framework provides a life cycle for a JSP page request.

You can define methods to access the life cycle at its various phases.

To display an image instead of the normal "button" graphic for a button component, specify an image file
(attribute image) instead of a text value (attribute value) in Creator.

Page1 lives in request scope. You can store information you need to access across page requests as properties
in SessionBean1, which is defined in session scope.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Accessing Databases
Topics in This Chapter

Database Basics

JDBC RowSet Technology

Data-Aware Components

Master-Detail Relationship with Components

Query Editor

Converters

Database Operations

Cascading Deletes

One of Creator's key goals is to simplify web application development with databases. To that end, Creator lets you add
data sources to your projects and select them with the Server Navigator window. Once you add a data source to your
project, you can select and view individual tables, including field names for each column.

Creator also gives you components that are data aware. Using the design canvas, you can select a number of different
components and visually position them on your web page. You can select tables and add them to your application as
rowsets, binding the components to the data from the rowsets. You can visually select or deselect columns to display,
add tables to create database queries with "join" commands, and modify queries to include parameters. You can also
modify transaction isolation levels and concurrency attributes through a rowset's Properties window.

Creator relies on multiple technologies to make this all happen. Besides using the JSF component and event models that
we've already shown you, Creator makes use of JDBC and JDBC RowSet technology to simplify accessing the database.

In this chapter, we use a Music Collection Database for the project examples. Before we start, however, we review
database and JDBC fundamentals and show you the organization of our Music database.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Database Fundamentals
We begin with an overview of databases and JDBC, discussing database tables and how to access data with JDBC. If
you're already familiar with these subjects, you can skip to the next section.

A relational database consists of one or more tables, where each row in a table represents a database record and each
column represents a field. Within each table, a record must have a unique key. This key, called a primary key, enables
a database to distinguish one record from another. If a single field in a database table does not uniquely identify a
record, a composite primary key can be used. A composite primary key combines more than one field to uniquely
identify records in a database table. Each field of a composite primary key should be defined as a primary key.

A field within a table is either a primary key, a foreign key (used by the database to reference another table), or just
plain data. To set up a database table, you must define fields so that the database software can maintain the integrity
of the database. If a field is not "just data," then constraints are attached to the field. The description of the table's
fields, data types, and constraints make up the metadata associated with the table. Creator uses metadata to help you
configure your web application to access the database efficiently.

A very simple database consists of only a single table. However, many database schemata require multiple tables to
efficiently represent related data. For example, our Music Collection database centralizes the information about each
recording artist in one table. This table also cross-references a RecordingArtistID field in another table that stores data
about a specific recording. Thus, if a recording artist has more than one recording, you don't have to duplicate the
recording artist information.

To achieve cross-referencing and to avoid data duplication, you can mark a field in a database table as a foreign key. A
foreign key in one table always matches either a primary or foreign key in another table. This is what helps you "relate"
two or more tables.

Music Collection Database

The Music Collection database consists of four related tables. The database stores information about music recordings, a
generic term we apply to music CDs and older LPs (long-playing records). Figure 7-1 shows the four tables, the fields in
each table, and how they relate to each other through the foreign keys.

Figure 7-1. Music Collection Database Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Recordings table contains the bulk of the information about a recording. Its primary key (denoted PK) is the field
RecordingID. It has two foreign key fields (denoted FK): RecordingArtistID and MusicCategoryID. These foreign key
fields refer to records in the Recording Artists table and the Music Categories table, respectively. For each row in the
Music Categories table, there may be multiple rows in the Recordings table. (We indicate this relationship by placing the
word Many next to the Recordings table and the numeral 1 next to the Music Categories table.) Similarly, for each row
in the Recording Artists table, there may be multiple rows in the Recordings table. In the diagram, we show foreign key
field names on the lines that relate two tables.

The Tracks table contains information about each track belonging to a recording. To determine which recording a track
belongs to, we include the RecordingID as a foreign key in the Tracks table. Thus, for each row in the Recordings table,
there are multiple rows in the Tracks table.

JDBC RowSets

Java DataBase Connectivity (or JDBC) evolved as a standard way for Java programs to perform relational database
operations. The JDBC API is database independent and relies on a JDBC driver that translates standard JDBC calls into
specific calls required by the database it supports. Different drivers provide access to different database products.

Before RowSets were added to JDBC, connecting to a database and performing queries was rather clumsy. The end
result of a typical query was a ResultSet object. Basically, a ResultSet object is a table that consists of columns and
rows. A cursor points to the current row, and you extract data from the columns as fields. Initially, the cursor is
positioned before the first row, so you have to increment it before grabbing any data. Since the JDBC 2.0 specification,
a ResultSet object includes methods to manipulate the cursor position, but not all JDBC drivers support this feature. For
maximum portability, ResultSet objects should be read once in a forward direction only.

A JDBC RowSet object is a connected rowset that extends a ResultSet object. RowSet objects are structured to make
the JDBC driver look like a JavaBeans component. Properties in RowSet objects may participate in event notification.
RowSet listener methods include cursorMoved() (invoked when the RowSet's cursor moves), rowChanged() (invoked when
one or more values in a row changes), and rowSetChanged() (invoked when the contents of the whole rowset change).
JDBC RowSet objects are more flexible than ResultSets because they are scrollable and updatable.

When you select a data source from Creator's Server Navigator window, Creator generates code in the Java page bean
file to access the data source through RowSet objects. To see how this works, here is some generated code that
accesses the Recordings table of our Music Collection Database.

recordingsRowSet.setDataSourceName(

 "java:comp/env/jdbc/Music");

recordingsRowSet.setCommand("SELECT * FROM RECORDINGS");

First, we establish a connection to the JDBC Music database before creating a query command with setCommand(). Part
of Creator's cleanup tasks includes closing the rowset inside method afterRenderResponse(). (Recall that in the JSF page
request life cycle, method afterRenderResponse() is called at the very end after rendering the page.) Creator generates
the following code for you.

protected void afterRenderResponse() {

 recordingsRowSet.close();

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the JSP side, when you select a data-aware JSF component and bind it to a rowset, Creator generates the JSP code
for you. Here's an example that binds a dropdown list component to the recordingsRowSet object we just showed you
(tag selectOneMenu is the dropdown list component).

<h:selectOneMenu binding="#{Page1.dropdown1}"

 converter="#{Page1.dropdown1Converter}"

 immediate="true"

 onchange="this.form.submit();"

 style="left: 48px; top: 72px; position: absolute"

 value="#{Page1.recordingsRowSet.currentRow.RECORDINGID}"

 valueChangeListener=

 "#{Page1.dropdown1_processValueChange}">

 <f:selectItems binding="#{Page1.dropdown1SelectItems}"

 value="#{Page1.recordingsRowSet

 .selectItems['RECORDINGID,RECORDINGTITLE']}"/>

</h:selectOneMenu>

The embedded selectItems tag holds the selection choices for the dropdown list component. The displayed field is
RECORDINGTITLE and the value field is RECORDINGID (which is returned from the dropdown list component's getValue()
method). We show you how this all works later in the chapter.

Now let's build an application with Creator to access a database and dynamically update a data table component on the
web page.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Data Sources
The first step in our application is to create a Music database and make it available to Creator. Creator is bundled with
the PointBase database server and its JDBC driver for database access through Creator's IDE. Creator requires JDBC
3.0-compliant drivers. As of this writing, the Creator IDE includes drivers for DB2, Oracle, SQL Server, and Sybase. If
you are using any of these database products, you should be able to configure Creator with the provided drivers to
access your database.

Configuring for the PointBase Database

For our Music database example, we assume you're using the bundled PointBase database. Here are the steps to
configure the Data Source in Creator for PointBase.

1. Exit Creator if you have it running.

2. Start up PointBase. In Windows, click the Start button. From All Programs, navigate to Sun Microsystems >
J2EE 1.4 SDK and click Start PointBase. Creator also includes commands to start and stop PointBase.

3. Now start up Creator.

4. In the Creator Server Navigator window, make sure the Data Sources node is opened. Select the Travel
Database.

5. Right-click and select Remove Data Source.

6. Repeat steps 4 and 5 for the Order Database.

7. Exit Creator.

For the following steps, use the files from your Creator book's download directory,
FieldGuide/Examples/Database/utils.

1. Using a file copy utility, copy the following files to Creator's startup/bin directory. Copy

create-music-db.bat

create-music-db.sh

to directory

<Installation Directory>\Sun\Creator\startup\bin

2. Copy file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PBCreateMusicDB.class

to directory

<Installation Directory>\Sun\Creator\startup\samples

3. With PointBase running, execute the Windows script

create-music-db.bat (Windows)

or the Unix script

create-music-db.sh (UNIX)

When the script runs successfully, you will see the message

Music database was created.

4. Start up Creator, right-click Data Sources in the Server Navigator window, and select Add Data Source. The Add
Data Source dialog appears.

5. Supply the values shown in Table 7.1. Click Test Connection to verify that all the values are correct. Click Add to
finish.

Table 7.1. Add Data Source Dialog
Prompt Value

Data Source Name Music

Server Type Pointbase Bundled

Database Name (blank)

Host Name (blank)

User ID root

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password admin

Database URL jdbc:pointbase:server://localhost:19092/Music

Driver Class com.pointbase.jdbc.jdbcUniversalDriver

Creator Tip

Make sure that Data Source Name is still set to Music after you select Pointbase
Bundled from the dropdown menu and before clicking Add. Make sure that the
Database URL includes the database name Music as shown.

Now when you open the Music and Tables node, you'll see four tables in the Music database: MUSICCATEGORIES,
RECORDINGARTISTS, RECORDINGS, and TRACKS.

Loading Other Data Sources

If you configure Creator to use a Data Source other than PointBase, see the sql_readme.txt file in your Creator book's
examples (FieldGuide/Examples/Database/utils). We also provide an SQL script (createMusicDB.sql) that you
can adapt to any SQL-compliant database. This script loads sample music data into a Music database. After the
database tables and data have been built, you tell Creator how to access the database.

Here are the steps to configure a new (non-PointBase) Data Source in Creator.

1. In the Server Navigator window, right-click Data Sources and select Add Data Source from the menu.

2. Under Server Type, select the database product from the dropdown list.

3. Creator supplies default values for the Host Name (localhost), Database URL, and Driver Class. You'll need to
supply values for the Data Source Name, Database Name, User ID (if applicable), and Password (if applicable).
Figure 7-2 shows a screen shot of the Add Data Source window.

Figure 7-2. Add Data Source window

4. Use Test Connection to verify that Creator has all the information it needs to establish a connection to the
database.

5. If the Test Connection succeeds, click Add. You should see the newly added Data Source under the Data
Sources node in the Server Navigator window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Accessing the Music Database
Now that you have a configured database, let's use Creator's data-aware components to build a master-detail
relationship. You use a dropdown list component to hold the "master" information from which you select a single
recording. You then use a data table component to display the recording's details.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as Music1. The selected project
type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window. This is the title displayed by the web application in the title bar in your
browser.

3. Select the input field opposite the name Title and type the text Music DB 1. Finish by pressing <Enter>.

Add an Output Text Component

First, you'll add an output text component to place a heading title on the page.

1. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it near
the top of the page. Don't resize it, and make sure that it's selected.

2. Type the text Music Collection Database followed by <Enter>. This is a Creator shortcut to modify the
output text's value attribute. The component now displays the words you just entered.

3. In the Properties window under Appearance, edit the style attribute. After the position settings, add the following.

; font-family: Helvetica; font-size: 18pt

Press <Enter>. (You may find it easier to click the small rectangle that brings up an editing box. Click OK when
you're done editing.) The output text should now display a bold heading in a larger font.

Add a Dropdown List Component

A dropdown list component creates a dropdown selection menu from a fixed list of choices. You can specify these
choices directly by editing the Properties window, or you can bind this component to a data source and obtain the
selection choices from a database (that is what you're going to do).

Creator Tip

Instead of a Dropdown List Component, you can also use a Listbox component
here. The functionality is the same, but the listbox is rendered as a box with all of
its choices displayed at once. If the selection list is too long, the component
includes a vertical scrollbar. If you'd like to use a Listbox component, skip this
section and follow the steps under "Add a Listbox Component".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the JSF Standard Components palette, select Dropdown List and drag it to the design canvas. Center it
under the previously placed output text component.

2. Right-click inside the design canvas and choose View Page1 Java Class. This opens the Java page bean source
file, Page1.java.

For each component that you place on the page, Creator generates an associated object that is a property
inside the JavaBeans component on your web page. You'll note that it currently contains the two objects from
the components you just added to the design canvas: an HtmlSelectOneMenu (the dropdown list component
named dropdown1) and the HtmlOutputText (the output text component named outputText1). In addition, the
dropdown list component generates two supporting components: dropdown1DefaultItems and
dropdown1SelectItems.

3. Return to the design canvas (select the Page1.jsp tab at the top of the editor pane). Now select the Source tab
at the bottom of the editor pane. This brings up the Page1.jsp source file. You'll see both the <h:outputText>
and <h:selectOneMenu> tags. Note that the dropdown list component also has an embedded <f:selectItems> tag.

Skip over the next section "Add a Listbox Component" unless you've chosen to use a listbox in place of the dropdown
list component.

Add a Listbox Component

Instead of using a dropdown list component to hold the data from the RECORDINGS table, let's use a listbox
component. You can substitute the steps in this section for those outlined for the dropdown list component above.
When you've finished the steps for adding a listbox component, continue to the next section ("Add a Data Source").

A listbox component creates a fixed list of choices that are all displayed. If the list is longer than the space allocated to
the component, a vertical scrollbar provides access to the other choices. Just like the dropdown list component, you can
specify the listbox choices directly by editing the Properties window, or you can bind this component to a data source.

1. From the JSF Standard Components palette, select Listbox and drag it to the design canvas. Center it under the
previously placed output text component.

2. Resize it so that it is wider and longer. (You can experiment with its size by right-clicking in the design canvas
and selecting Preview in Browser.)

The rest of the build steps assume you selected the dropdown list component, although the steps are the same for the
listbox component.

Add a Data Source

1. Make sure the design canvas is visible by selecting the Design tab at the bottom of the editor pane.

2. From the Server Navigator window, expand the Data Sources, Music, and Tables nodes. Select the
RECORDINGS table and drag it to the design view. Drop it on top of the dropdown list component.

A dialog pops up and you see the recordingsRowSet component added to the nonvisual tray at the bottom of the
editor pane.

3. In the dialog, select Fill the List. The text "abc" appears in the dropdown list component, signifying that the data
is of type VARCHAR from the database.

Let's see what Creator knows about the database table at this point (these steps are for the curious-at-heart).

1. Right-click the dropdown list component. From the context menu, choose Fill List from Database. You have
already completed the binding in the previous steps, but this step shows you the database table's metadata (its
fields and table names). Creator displays a dialog with a database rowset, a Value field, and a Display field, as
shown in Figure 7-3.

Figure 7-3. Bind Display to Data dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dropdown list component's value attribute is assigned field RECORDINGID, which is the primary key. Thus,
when you invoke method

dropdown1.getValue();

you'll get the value of the primary key for that selection.

The text that's displayed in the dropdown list is the field selected in the Display field, which is set to
RECORDINGTITLE.

2. Click OK to return to the design canvas.

As you saw from Chapter 2, you can view the actual data from a database table from Creator. Let's do that now.

1. From the Server Navigator window, select Data Sources > Music > Tables > RECORDINGS. Open the
RECORDINGS node (click on '+') and Creator displays the field names.

2. Double-click the RECORDINGS node. Creator displays the table's data in the editor pane. We show this view in
Figure 7-4.

Figure 7-4. RECORDINGS Table View

[View full size image]

Creator Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

In general, it is easier to add a data-aware component to your design canvas before
you add a database table from the selected data source. If the component is
already on the design canvas, you can "drop" the database table directly on the
component and Creator does the binding automatically. You can then modify the
selected fields for the display or change the value attributes if necessary.

Deploy and Run

Although we have only a page heading and a dropdown list, it's a good idea to deploy and run the application at this
point. Go ahead and click the green chevron on the toolbar. A successful deployment is a significant milestone here
because it shows you've successfully queried the database. It's also a good idea to look at the Java page bean to see
how the JDBC RowSet objects are defined and how they are manipulated to obtain the data.

When you run the application, you'll see seven recording titles in the dropdown list. Right now, selecting one doesn't do
anything other than display a different title.

Part of the power of data binding is that you can associate the component's value with a primary key. To display a field
other than the primary key typically has more meaning, however. The component in this example displays the
recording's title. When a user selects a specific title, you obtain the corresponding primary key through the component's
value attribute. The primary key allows you to build additional queries to the database and obtain more details about the
recording associated with that primary key. This is building a master-detail relationship, which is our next step.

Add a Data Table

Now you're ready to do something when the user selects a recording title in the dropdown list. In this section, you will
display the recording's track information: the track number, its title, and its length. The track information is stored in
the TRACKS table and is associated with the recording information through its foreign key, the RECORDINGID. In the
Server Navigator window, expand the TRACKS table under the Data Sources > Music > Tables node (click on '+') to see
the field names. TRACKID is the primary key for the TRACKS table, and RECORDINGID is the foreign key (you may also
want to refer to the diagram in Figure 7-1 on page 207 again).

1. Bring up the design canvas (Page1.jsp).

2. Select the Data Table component from the JSF Standard Components palette and drop it onto the design canvas
under the dropdown list component that's already there.

3. Go to the Data Sources node in the Server Navigator window, choose the TRACKS table, and drop it onto the
data table.

4. Drop the table directly onto the data table component. Creator will do the binding automatically. The data table
should now have five columns (the fields in the TRACKS table).

Creator Tip

If you don't drop the table exactly onto the data table component in the design
canvas, a Choose Target dialog pops up. If this happens, choose the dataTable1
radio button and click OK. If you drop the TRACKS table onto the design canvas
(but not onto the data table component), no binding occurs at all. You'll notice the
tracksRowSet item added to the nonvisual component tray, but the data table is
unchanged. In this case, right-click the data table and select Bind to Database.
Select the tracksRowSet for binding. Auto-generate table columns should be enabled.
Click OK. The data table component will reflect data binding and should now have
five columns.

The next step is to modify what the data table component displays.

1. Select the data table component. (If you have trouble selecting the entire table, position the mouse inside the
data table component on the design canvas and issue successive clicks until Creator indicates that the data
table component is selected.) Now right-click and choose Table Layout.

The Table Layout dialog appears. The Columns format should be selected. There are two lists: Available
columns and Displayed columns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Under the Displayed heading, remove columns TRACKS.TRACKID and TRACKS.RECORDINGID by selecting
these columns and clicking the left arrow (<) button. There are now three columns in the Displayed list, as
shown in Figure 7-5.

Figure 7-5. Table Layout dialog

3. Select Apply, then OK. The data table component should now have only three columns.

4. Now select the data table component. In the Properties window, specify 3 for attribute border. (We like the look;
you be the judge.)

Congratulations, you've just created a table with a data-aware component. You've also manipulated the component by
telling it what columns from the rowset you want displayed. Creator generates code to populate the data table
component and builds headers in the table with the column names. Figure 7-6 shows the design canvas with the data
table component configured for the TRACKS table.

Figure 7-6. Data-aware table component bound to TRACKS table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might want to look at the JSP source Creator generates for the data table component. The data table contains an
embedded column component (for each of its columns), and a column can be rendered by one of several JSF
components. The default is an output text component. Creator uses a JSF <f:facet> tag to render the column headers.

The column's embedded output text component is resized dynamically to fit the data. You can change the look of the
data table's display by modifying its properties in the Properties view. For example, you can change property values for
bgcolor (Background Color), cellpadding, cellspacing, and border.

You can also choose a different embedded component to hold the data. Another popular component to use here is a
text field component, which allows editing. If you select a text field component, you will need to approximate its size (it
won't be sized dynamically). The two components (text field and output text) give different looks. Experiment with this
to get the look you want.

Modify the SQL Query

The modifications you've just performed affect the data table component and its binding to the tracksRowSet component.
The tracksRowSet object includes an SQL query that reads the database. Now you'll use the Query Editor to modify the
default query.

Double-click the tracksRowSet component (select it at the bottom of the editor pane in the nonvisual component
tray). This opens the Query Editor for the tracksRowSet object, as shown in Figure 7-7.

Figure 7-7. Query Editor for TRACKS table

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Query Editor has several views. The top portion (the table view) is a visual view of the data table (or tables)
involved in the query. Here the query references one table, the TRACKS table. Note that all five fields are displayed and
that the primary and foreign keys are marked with key icons. Only the fields that are selected (checked) will be
returned in the query. Here, all fields are checked.

Below the table view is the spreadsheet view of the fields that are returned in the query. Only the fields selected
(checked) in the Output column appear in this view.

At the bottom of the Query Editor is the actual SQL query. As you make modifications to the query, the Query Editor
updates this text.

Add Query Criteria

When the user selects a recording title from the dropdown list component, you want to display only those tracks that
belong to the selected recording. You identify these tracks by matching the track's RECORDINGID foreign key with the
dropdown list component's value attribute, the primary key of the RECORDINGS database table. Let's do this now.

1. In the Query Editor, make sure that the RECORDINGID foreign key in the TRACKS table is checked.

2. In the spreadsheet view, right-click the RECORDINGID field and choose Add Query Criteria from the context
menu.

3. The Add Query Criteria dialog appears. Select radio button Parameter. Figure 7-8 shows the Add Query Criteria
dialog at this point. Leave the Comparison at the default (= Equals), and click OK. These steps add a WHERE
clause to the query.

Figure 7-8. Add Query Criteria dialog

You're almost done, but we have another modification to make to the query. Recall that the TRACKS table contains all
the tracks of all the recordings. In addition, each row contains a track number, which refers to the order in which that
track appears on the recording. This may or may not correspond to the actual order of the information in the database.
We'd like to order the track display (from lowest to highest) in the data table component. To do this, we'll modify the
query so that it sorts the results by track number in ascending order.

1. Locate the TRACKNUMBER field in the spreadsheet view of the Query Editor. Opposite this field, select the Sort
Type cell. A dropdown menu appears.

2. Select Ascending. This step adds an ORDER BY clause to the query. Since this is the only field involved in the
ordering criteria, the TRACKNUMBER Sort Order cell is set to 1.

3. In the table view of the Query Editor, uncheck the RECORDINGID and TRACKID fields. (Although the
RECORDINGID field participates in the selection criteria of the query, we don't include this field in the data that
are returned in the RowSet object.)

Here is your modified query, shown at the bottom of the Query Editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is your modified query, shown at the bottom of the Query Editor.

SELECT ALL ROOT.TRACKS.TRACKNUMBER, ROOT.TRACKS.TRACKTITLE,

ROOT.TRACKS.TRACKLENGTH FROM ROOT.TRACKS WHERE

ROOT.TRACKS.RECORDINGID=? ORDER BY ROOT.TRACKS.TRACKNUMBER ASC

The WHERE clause expects a parameter to match with the RECORDINGID field, and the results will be ordered (in
ascending order) by the TRACKNUMBER field.

4. Return to the design canvas by selecting the Page1.jsp tab. Right-click in the design canvas and select View
Page1 Java Class. Inside the Page1() constructor (unfold the Creator-managed Component Initialization box),
you'll see the updated query appear in the call to tracksRowSet.setCommand().

tracksRowSet.setCommand("SELECT ALL ROOT.TRACKS.TRACKNUMBER,

 ROOT.TRACKS.TRACKTITLE, ROOT.TRACKS.TRACKLENGTH \n

 FROM ROOT.TRACKS\n

 WHERE ROOT.TRACKS.RECORDINGID=?\n

 ORDER BY ROOT.TRACKS.TRACKNUMBER ASC");

Add a SessionBean1 Property

In the previous chapter, you learned how to save control variables in session scope to maintain data across page
requests (see "Add SessionBean1 Properties" on page 195). In this project, you will save the dropdown list's current
selection in session scope. Without this step, the dropdown list returns to its initial state at each page request, since it
exists in request scope. As in the previous chapter, you will add information to the SessionBean1 managed bean as a
property. Call the property recordingID; it will be type Integer. Here are the steps to add property recordingID to
SessionBean1.

1. In the Project Navigator window, expand Java Sources > music1.

2. Right-click on SessionBean1.java and select Add > Property. Creator displays the New Property Pattern
dialog, as shown in Figure 7-9.

Figure 7-9. Adding a property to SessionBean1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Fill in the fields as shown above. Specify recordingID for Name. Select Integer in the dropdown list for Type.
Select Read/Write for Mode. Make sure the options Generate Field, Generate Return Statement, and Generate
Set Statement are all checked.

4. Click OK.

Now you need to provide the instantiation with operator new for property recordingID in SessionBean1.java.

1. From the Project Navigator window, double-click file SessionBean1.java. This brings it up in the Java source
editor.

2. Add instantiation with operator new for property recordingID inside the SessionBean1() constructor. Place it after
the comment, as follows.

// Additional user provided initialization code

recordingID = new Integer(0);

Connect Dropdown List to Query

All that's left is to detect the change in the dropdown list component's selection and use it to set the parameter for the
query with the tracksRowSet object.

1. In the design canvas, select the dropdown list component, right-click, and select Edit Event Handler >
processValueChange. This brings up the Page1 Java class source and places the cursor in the
dropdown1_processValueChange() method. This is the event handler for processing the change in the dropdown
list's value. Creator creates the stub for this event handler for you.

2. Add the code to the dropdown1_processValueChange() method. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/Music1Dropdown.txt. (The added code is bold).

public void dropdown1_processValueChange(ValueChangeEvent vce)

{

 // User event code here...

 getSessionBean1().setRecordingID(

 (Integer)dropdown1.getValue());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (Integer)dropdown1.getValue());

 try {

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable1Model.execute();

 } catch (SQLException e) {

 error("Music: Master Detail " + e);

 log("Music: Master Detail " + e);

 }

}

Use Creator's shortcut <Alt-Shift-I> to add the import statement for SQLException. This code sets the parameter of
the tracksRowSet query (the dataTabel1Model object) to the value attribute of the dropdown1 component (the primary key of
the specific record in the RECORDINGS table). The execute() method executes the query. The selected primary key is
saved in session scope.

3. Return to the design canvas. From the JSF Standard Components palette, select Message List and place it on
the page next to the dropdown list.

Important Creator Tips

You must not throw an exception from any event handler. Instead, use log() (to
record the error in the server log) and error() (to report status to the user).
Throughout this chapter, we use a message list component for all messages
(error and general feedback) to the user. Methods info(), warning(), error() (shown
above), and fatal() all write to the faces context. You need a message list to
display these messages. These methods are all inherited from class FacesBean.
When you bind a data source to a data table component, you manipulate the
associated dataTableNModel object. With all other components, however, you
make calls to the rowset object.

4. Add initialization statements to the Page1() constructor. This code initializes the data table to hold the track
information from the recordingsRowSet's first row. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/Music1Init.txt. (The added code is bold.)

public Page1() {

 // code omitted . . .

 // Additional user provided initialization code

 try {

 if (getSessionBean1().getRecordingID().intValue() == 0) {

 recordingsRowSet.execute();

 recordingsRowSet.next();

 getSessionBean1().setRecordingID(new Integer(

 recordingsRowSet.getInt("RECORDINGID")));

 recordingsRowSet.previous();

 }

 dataTable1Model.setObject(1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 } catch (SQLException e) {

 throw new FacesException(e);

 }

}

5. Return to the design canvas (select the Page1.jsp tab).

6. Right-click the dropdown list component and check the Auto-submit on change option. This adds the JavaScript

this.form.submit();

to the dropdown list component's JavaScript Events onchange attribute in the Properties window. Now when a
user selects a new title from the menu, the system resubmits and updates the page with the new track list.

Deploy and Run

It's time to deploy and run this web application. Figure 7-10 shows what the page looks like as the user is selecting a
title in the dropdown list. Note that as the user selects different recording titles, the data table is updated with the
corresponding track information. The number of rows as well as the width of the columns changes with the new data.
You also see that the track numbers appear in ascending order. (Some of the recordings do not have track lengths.)

Figure 7-10. The Music Collection Database application: selecting title Graceland

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Under the Hood

Besides the code that Creator generates for you in the page bean constructor to initialize the RowSet objects, Creator
also generates code to clean up. Specifically, it closes the database connections with the RowSet's close() method.
Creator uses life cycle method afterRenderResponse(), as follows.

protected void afterRenderResponse() {

 recordingsRowSet.close();

 tracksRowSet.close();

}

This ensures that the database will be in a valid, known state at the beginning of each page request cycle. For more
information on the life cycle methods, see "JSF Request-Response Life Cycle Process" on page 185 (Figure 6-5) and
"Page request life cycle methods" on page 186 (Table 6.4).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Database Joins
Both of the data-aware components we've configured are bound to data that originate from a single database table. In
this section, we'll add a second data table component to the page. Its data will be bound to a rowset that is a result of a
query "joining" multiple tables.

Copy the Project

To avoid starting from scratch, copy the Music1 project to a new project called Music2. This step is optional. If you
don't want to copy the project, simply skip this section and continue making modifications to the Music1 project.

1. Bring up project Music1 in Creator, if it's not already opened.

2. Click anywhere inside the design canvas.

3. From the File menu, select Save Project As and provide the new name Music2. You'll make changes to the
Music2 project.

4. Click anywhere in the design canvas of the Music2 project. In the Properties window, change the page's Title
attribute to Music DB 2.

Add a Second Data Table

1. From the design canvas view of the editor pane, select component dataTable1 and move it down on the page so
that there is room for a one-row data table to fit above it on the page.

2. Select Data Table from the JSF Standard Components palette and drag it onto the web page.

3. Position the component so that it is below the dropdown list component and above the first data table
component you added in the previous section.

4. In the Properties window for dataTable2, change attribute border to 3.

You have added component dataTable2, giving you two data table components on the page. Don't worry about the tables
overlapping each other.

Select a Data Source

1. In the Server Navigator window, select the Data Sources > Music > Tables > RECORDINGARTISTS node and
drop it onto the data table that you just added.

2. If you drop the database source directly on top of the data table, Creator performs the binding automatically.
Otherwise, a Choose Target dialog appears. If this happens, select dataTable2 and click OK.

On the design canvas, the data table contains three columns that correspond to the three fields in the
RECORDINGARTISTS table: RECORDINGARTISTSID, RECORDINGARTISTNAME, and NOTES. You'll also see the
component recordingartistsRowSet added to the nonvisual component tray. Figure 7-11 shows the design canvas with the
two (somewhat overlapping) data table components.

Figure 7-11. Dropping RECORDINGARTIST table on dataTable2

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Modify the SQL Query

1. In the nonvisual component tray, double-click the recordingartistsRowSet component. This brings up the Query
Editor for the selected RowSet object.

2. In the table view (which shows the RECORDINGARTISTS table), uncheck all fields except the
RECORDINGARTISTNAME field.

3. Right-click anywhere in the table view and select Add Table from the context menu. Choose table
RECORDINGS. Click OK.

This step adds an INNER JOIN statement to the SQL query. Note that Creator has modified the query in the
Query View. The Creator SQL code generation figures out which keys are required in order to join the two
tables.

4. The Recordings table is the same one we used with the dropdown list component. Uncheck all fields except
RECORDINGID and RECORDINGLABEL. You'll note that this table contains two foreign keys,
RECORDINGARTISTID (linking it to the RECORDINGARTISTS table) and MUSICCATEGORYID (linking it to the
MUSICCATEGORIES table).

5. Right-click in the table view and again select Add Table from the context menu. This time choose table
MUSICCATEGORIES. Click OK. This step adds another INNER JOIN statement to the SQL query.

6. Uncheck the MUSICCATEGORYID field in the MUSICCATEGORIES table. Figure 7-12 shows the Query Editor's
table view after two tables were added to the query.

Figure 7-12. Table view in Creator's Query Editor after addition of two tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add Query Criteria

1. In the spreadsheet view of the Query Editor, right-click RECORDINGID and choose Add Query Criteria. Select =
Equals criterion and the Parameter radio button. Click OK.

2. Uncheck the RECORDINGID for output (in the spreadsheet view) or uncheck it in the table view.

3. You've now added a parameter to limit the rows returned from the database query based on the value of the
RECORDINGID field. This should return at most one row since there is one recording artist and one music
category for each row in the RECORDINGS table. Here is the modified query.

SELECT ALL ROOT.RECORDINGARTISTS.RECORDINGARTISTNAME,

 ROOT.RECORDINGS.RECORDINGLABEL,

 ROOT.MUSICCATEGORIES.MUSICCATEGORY

 FROM ROOT.RECORDINGARTISTS

INNER JOIN ROOT.RECORDINGS ON

 ROOT.RECORDINGS.RECORDINGARTISTID=

 ROOT.RECORDINGARTISTS.RECORDINGARTISTID

INNER JOIN ROOT.MUSICCATEGORIES ON

 ROOT.RECORDINGS.MUSICCATEGORYID=

 ROOT.MUSICCATEGORIES.MUSICCATEGORYID

WHERE ROOT.RECORDINGS.RECORDINGID=?

Table Layout

1. Return to the design canvas by selecting the Page1.jsp tab at the top of the editor pane.

2. Select the dataTable2 component (use the Application Outline view or click inside the table until the top-level
component appears in the Properties window). Right-click and choose Table Layout.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Choose the following fields from the left window (Available fields). Select the right-arrow symbol (>) and copy
the field name to the Displayed fields window. The Displayed fields should look like this.

RECORDINGARTISTS.RECORDINGARTISTNAME

MUSICCATEGORIES.MUSICCATEGORY

RECORDINGS.RECORDINGLABEL

4. (Get rid of any spurious columns by selecting them and clicking the left-arrow symbol (<).) Select Apply and
OK. Figure 7-13 shows the Table Layout dialog with the fields you want in the Displayed list.

Figure 7-13. Table Layout dialog for dataTable2 component

Java Class Modifications

1. Bring up the Java page bean by selecting the Page1.java tab at the top of the editor pane (or right-click in the
design canvas and select View Page1 Java Class).

2. In the dropdown menu at the top of the Java editor pane, select the event handler method,
dropdown1_processValueChange. In the editor, the cursor is placed at this method for you.

3. First, add code to the event handler. Use file
FieldGuide/Examples/Database/snippets/Music2Dropdown.txt, and add the code where indicated. The
added code is bold.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void dropdown1_processValueChange(ValueChangeEvent vce)

{

 // User event code here...

 getSessionBean1().setRecordingID(

 (Integer)dropdown1.getValue());

 try {

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable1Model.execute();

 dataTable2Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable2Model.execute();

 } catch (SQLException e) {

 error("Music: Master Detail " + e);

 log("Music: Master Detail " + e);

 }

}

4. Add code to the Page1() constructor after the dataTable1Model initialization code you added in the previous
section. This is initialization code to grab the database records corresponding to the RECORDINGID returned in
the first row from the recordingsRowSet component. Some code in the constructor is omitted below. Copy and
paste from your Creator book's file FieldGuide/Examples/Database/snippets/Music2Init.txt. (The added
code is in bold.)

public Page1() {

 // code omitted . . .

 // Additional user provided initialization code

 try {

 if (getSessionBean1().getRecordingID().intValue() == 0) {

 recordingsRowSet.execute();

 recordingsRowSet.next();

 getSessionBean1().setRecordingID(new Integer(

 recordingsRowSet.getInt("RECORDINGID")));

 recordingsRowSet.previous();

 }

 dataTable1Model.setObject(1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dataTable1Model.setObject(1,

 getSessionBean1().getRecordingID());

 dataTable2Model.setObject(1,

 getSessionBean1().getRecordingID());

 } catch (SQLException e) {

 throw new FacesException(e);

 }

}

Deploy and Run

It's time to deploy and run the application. Figure 7-14 shows a screen shot of the page after selection of the recording
title Imagine. Now when you select different titles, you'll see the artist's name, recording label, music category, and
the tracks for the selected title.

Figure 7-14. The Music Collection Database after selection of title Imagine

[View full size image]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Database Updates
The previous example accessed the Music Collection database in a read-only mode. When you add a data table to your
project and bind it to a data source, Creator assumes that the access will be read-only. Furthermore, the embedded
components of the data table component are output text components, which are read-only components.

In this section you'll create a project that allows a user to modify data fields in the database. Many of the steps are
similar to those you've just worked through, but some code changes and some Properties window attributes require
different settings. Let's begin by creating a new project.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as MusicUpdate. The selected
project type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type the text Music DB Update. Finish by pressing <Enter>.

Add an Output Text Component

Place a heading title on the page with an output text component.

1. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it near
the top of the page. Don't resize it, and make sure it's selected.

2. Type the text Update Music Category followed by <Enter>. The component now displays the words you just
entered.

3. In the Properties window under Appearance, edit the style attribute. Add the following after the position settings.

; font-family: Helvetica; font-size: 18pt

4. Press <Enter>. (You may find it easier to click the small rectangle that brings up an editing box. Click OK when
you're done editing.) The output text should now display a bold heading in a larger font.

Add Button and Output Text Components

A button component allows the user to initiate a command. In this project, a button will indicate when a user finishes
editing so that the database can be updated with all of the displayed rows' changes. You use the output text component
to display messages to the user.

1. From the JSF Standard Components palette, select Button and drag it to the design canvas. Position it under the
previously placed output text component. Creator assigns the default identifier name button1.

2. Make sure the button is still selected and type Update Music Database followed by <Enter>. Creator updates
the value attribute in the Properties window. The button's label should now display the words you just entered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it to the
right of the button you just added.

4. In the Properties window, change its id attribute to sqlMessage.

5. Still in the Properties window, click the editing square next to attribute value. In the dialog that pops up, click
Reset to default.

Add a Data Table Component

To display data from the MUSICCATEGORIES table, you need a data table component. The component allows users to
edit and update the data.

1. From the JSF Standard Components palette, select Data Table and drop it onto the design canvas under the
button component that's already there.

2. Go to the Data Sources node in the Server Navigator window. Under Music > Tables, choose the
MUSICCATEGORIES table and drop it onto the data table.

3. Drop the table directly onto the data table component. Creator automatically binds the data to the data table
component. The data table should now have two columns (the fields in the MUSICCATEGORIES table).

Creator Tip

If you don't drop the table exactly onto the data table component in the design
canvas, a Choose Target dialog pops up. If this happens, choose the dataTable1
radio button and click OK. If you drop the MUSICCATETORIES table onto the
design canvas (but not onto the data table component), no binding occurs at all.
You'll notice the musiccategoriesRowSet item added to the nonvisual component
tray, but the data table is unchanged. In this case, right-click the data table and
select Bind to Database. Select the musiccategoriesRowSet for binding. Auto-
generate table columns should be enabled. Click OK. The data table component
will reflect data binding and should now have two columns.

4. Select the data table and modify its attributes in the Properties window. (Click inside the data table component
successive times until the data table appears in the Properties window.) Under category Appearance, make
bgcolor lightcyan, border 2, and cellpadding 6. You should see the appearance of the table change in the design
canvas.

Creator Tip

This step is optional, but it helps bring contrast to the data table and will emphasize
the appearance difference between read-only and editable table cells.

Modify the Table Layout

Now let's modify the data table's layout.

1. Select the data table component, right-click, and choose Table Layout.

The Table Layout dialog appears. The Columns format should be selected. There are two lists: the Available
columns and Displayed columns. You should see both column names in both of these lists.

2. Under the Displayed fields window, select the MUSICCATEGORYID column. In the view underneath you'll see
the column name, Header and Footer fields, and the column's component type. The default component type is
Output Text (read-only). Leave the default setting unchanged.

3. Select the MUSICCATEGORY column in the Displayed fields window. Change the default component type to
Input Text (editable).

4. Click Apply, then OK. Figure 7-15 shows the Table Layout dialog for this step.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Click Apply, then OK. Figure 7-15 shows the Table Layout dialog for this step.

Figure 7-15. Table Layout dialog: changing the component type

Figure 7-16 shows the design view after changing the table layout. The data table component displays two columns.
The first column holds the primary key, and it retains the default display component, output text. The second column
uses a text field component, which enables editing. If you changed the table's bgcolor attribute to lightcyan, you'll see
the text field component is white against the table's cyan background.

Figure 7-16. Design canvas view after changing the table layout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the Button Event Handler

It's time to add the code to process the button's action event.

1. From the design canvas, double-click the button component you added earlier.

Creator brings up the Java source editor with the cursor at the button1_action() method.

2. Add code to the event handler. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicUpdate_button1.txt. (The added code is bold.)

public String button1_action() {

// User event code here...

 try {

 dataTable1Model.commit();

 dataTable1Model.execute();

 info("Update Successful");

 } catch (SQLException e) {

 log("Music Update: " + e);

 error("Music Update: " + e);

 }

 return null;

}

To add the import statement for SQLException, click inside the word SQLException. Press <Alt-Shift-I> and
click OK.

Modify the RowSet's Attribute

To make this application run correctly, you have to change a RowSet property.

1. Return to the design view by selecting the Page1.jsp tab on top of the editor pane.

2. Select musiccategoriesRowSet component from the nonvisual component tray at the bottom of the design view.

3. In the Properties window, click the check mark opposite attribute concurrency. From the dropdown list, choose
selection CONCUR_UPDATABLE. Creator generates code in the Page1() constructor to enable updating for the
RowSet.

4. From the JSF Standard Components palette, select Message List and drag it to the design canvas. Place it next
to the button component. (This component will display messages written to the faces context by methods info()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the button component. (This component will display messages written to the faces context by methods info()
and error().)

Deploy and Run

Deploy and run the application. Figure 7-17 shows you what the page looks like after the user changes several of the
music categories from the original text. Note that you can make changes to more than one row before updating the
database. Also, note that you can't edit the primary key field. To see the music category data changes, select Data
Sources from the Server Navigator window. Expand Music > Tables. Double-click table MUSICCATEGORIES, and Creator
displays the table's data (including the changed fields) in the editor pane.

Figure 7-17. The Music Collection Database: updating the Music Categories table

Under the Hood

Creator helps out with the database updates by providing a data table model component that is bound to the JSF data
table component. When you invoke

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dataTable1Model.commit();

in the button event handler, all of the table's rows are written to the database. There's a few items of interest about the
JSF data table and Creator database operations.

The JSF data table is the only component that has a special, built-in connection to Creator's data table model.
(Note how simple the event handler is in this application.)

If you write an application that updates a database (such as this example), and you use the JSF data table's
paging mechanism, you must issue the commit for the current page before navigating to view the next page's
data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.6 Database Row Inserts
The previous sections showed you how to read a database, create a master-detail database display, perform join
operations with more than one database table, and edit and update a database table. Now you'll create an application
that inserts new data into the database table. This operation is called a row insert.

This application will come up with a data input page to collect data for the row insert operation. It consists of text fields,
labels, and inline message components to collect the data. A button issues the row insert command.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as MusicInsert. The selected
project type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title and
components to the first page.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the text Music DB Insert. Finish by pressing <Enter>.

Add an Output Text Component

Place a heading title on the page with an output text component.

1. From the JSF Standard Components palette, select Output Text. Drag it to the design canvas and place it near
the top of the page. Don't resize it, and make sure it's selected.

2. Type the text Music Collection Database - Add Data followed by <Enter>. The component now displays the
words you just typed in.

3. In the Properties window under Appearance, edit the style attribute. Add the following after the position settings.

; font-family: Helvetica; font-size: 18pt

Finish with <Enter>. The output text should now display a bold heading in a larger font.

Create the Form's Input Components

The next set of components you'll place on the page will gather text for a new database row. A row in the
RECORDINGARTISTS table consist of a primary key (an integer), an artist name (text), and notes (also text). The artist
name field is a VARCHAR field up to 36 characters in length and is required. The optional notes field is a VARCHAR field
up to 200 characters. In our example, the primary key is an integer and must be unique. Many database systems
generate primary keys for you, but we'll have the user supply one here. If an input key number is already in the
database, an SQLException is thrown from the database, allowing the user to choose another key.

For the artist name field, you'll add a component label, a text field to gather data, and a validator to make sure that the
input is valid. You'll also need an inline message component to display error validation messages. Figure 7-18 shows
what the design canvas looks like after the page is populated with these components. We've labeled the component for
the primary key input; you'll use the same components for the artist name and artist notes input. You may find it
helpful to refer to this diagram as you add components to your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

helpful to refer to this diagram as you add components to your project.

Figure 7-18. Design canvas view with components on page

[View full size image]

Components for Artist Name

1. From the JSF Standard Components palette, select Component Label and drag it to the design canvas. Place it
below the output text component on the left side of the page.

2. In the Application Outline view, select the embedded output text component, componentLabel1Text, and change
its value attribute to Artist Name.

3. From the JSF Standard Components palette, select Text Field and drag it to the design canvas directly below the
component label.

4. In the Properties window, change its id attribute to artistName.

5. Set its title attribute to Type in the artist's name. This sets the component's tooltip.

6. Under Data in the Properties window, select attribute required (make sure it's checked).

The database expects a character string, so you'll use a length validator to make sure it doesn't exceed the maximum
length.

1. Select the JSF Validators/Converters bar on the palette. From the JSF Validators/Converters palette, select
Length Validator and drop it directly on top of the text field artistName. This sets the validator attribute of the
artistName component to #{Page1.lengthValidator1.validate}.

2. Using the Application Outline view, select the validator component (lengthValidator1). In the Properties window,
set its minimum to 1 and its maximum to 36.

3. From the JSF Standard Components palette, select Inline Message and place it on the design canvas directly
under the text field component.

4. In the Properties window attribute, showSummary should be checked.

5. Under Appearance and after the position values in its style attribute, add the following.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; font-style: italic

6. In the Properties window for the inline message component, click the editing box opposite attribute for. Select
artistName from the pop-up dialog and click OK. This tells the message component to display error messages
generated on behalf of component artistName.

7. Now select the component label (componentLabel1) in the Application Outline view. In its Properties window, click
the editing box opposite attribute for. Select artistName from the pop-up dialog and click OK.

Components for Artist Notes

For the Artist Notes field, you'll need the same components. Place them to the right of the artist name components,
directly below each other, as follows.

1. Add a component label and change its embedded output text component's value attribute to Artist Notes.

2. Below this add a text field. Change its id attribute to artistNotes.

3. Set its title attribute to Type in notes about the artist. This sets the component's tooltip.

4. Under Data in the Properties window, select attribute required (make sure it's checked).

The database expects a character string, so you'll use a length validator to make sure it doesn't exceed the maximum
length.

1. From the JSF Validators/Converters palette, select Length Validator and drop it directly on top of component
artistNotes. This sets the validator attribute of the artistNotes component to #{Page1.lengthValidator2.validate}.

(Note that you must use a new length validator here. You can't reuse the validator you applied to the artistName
component, since you have to specify different minimum and maximum values.)

2. Using the Application Outline view, select the validator component (lengthValidator2). In the Properties window,
set its minimum to 1 and its maximum to 200.

3. From the JSF Standard Components palette, select Inline Message and place it on the design canvas directly
under the text field component you just added.

4. In the Properties window, attribute showSummary should be checked.

5. Add the following after the position values in its style attribute.

; font-style: italic

6. In the Properties window for the inline message component, click the editing box opposite attribute for. Select
artistNotes from the pop-up dialog and click OK. This tells the message component to display error messages
generated on behalf of component artistNotes.

7. Select the component label (componentLabel2) from the Application Outline view. In its Properties window, click
the editing box opposite attribute for. Select artistNotes from the pop-up dialog and click OK.

Components for Primary Key

For the primary key field, you'll need the same components. Place them to the right of the artist notes components,
directly below each other, as before. Because the primary key is an integer field, you'll also need an integer converter
for the text field component.

1. Add a component label and change its embedded output text component's value attribute to Primary Key.

2. Below this add a text field. Change its id attribute to pkfield.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Below this add a text field. Change its id attribute to pkfield.

3. Set its title attribute to Type in an integer-value primary key. This sets the component's tooltip.

4. Check attribute required.

The database expects an integer value for the primary key, so you'll use an integer converter to convert the user's
input.

1. From the JSF Validators/Converters palette, select Integer Converter and drop it directly on top of component
pkfield. In the converter field under Data, you should see integerConverter1.

2. From the JSF Standard Components palette, select Inline Message and place it on the design canvas directly
under the text field component you just added.

3. In the Properties window, attribute showSummary should be checked.

4. Add the following after the position values in its style attribute.

; font-style: italic

5. In the Properties window for the inline message component, click the editing box opposite attribute for. Select
pkfield from the pop-up dialog and click OK. This tells the message component to display error messages
generated on behalf of component pkfield.

6. Now select the component label (componentLabel3) from the Application Outline view. In its Properties window,
click the editing box opposite attribute for. Select pkfield from the pop-up dialog and click OK.

Add a Button, Output Text, and a Data Source

1. From the JSF Standard Components palette, select Button and drag it to the design canvas. Position it under the
inline message component for the artist name.

2. Make sure it's selected and type Add New Artist followed by <Enter>. The button's label should now display
these words.

3. From the JSF Standard Components palette, select Message List and drag it to the design canvas. Place it under
the button component. (This component will display messages written to the faces context by methods info()
and error().)

4. From the Data Sources > Music > Tables node in the Server Navigator view, select the RECORDINGARTISTS
table and drag it anywhere in the open design canvas. You are not binding it to any components. The
recordingartistsRowSet component appears in the nonvisual component tray at the bottom of the design canvas.

5. Select the recordingartistsRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

Add Initialization Code

First, right-click in the design canvas and select View Page1 Java Class to bring up Page1.java. Go to the Page1()
constructor. Add initialization statements after the Creator-generated code inside its own try block. The initialization
code includes calls to invoke the execute() and next() methods for the recordingartistsRowSet object. This executes the
query and puts the rowset cursor at the first record. Should the user want to insert more than one row, this ensures
that the rowset is in a valid state.

Copy and paste from your Creator book's file FieldGuide/Examples/Database/snippets/MusicInsert_init.txt.
(The added code is bold.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Page1() {

// Creator-managed initialization code

. . . code omitted . . .

 // Additional user provided initialization code

 try {

 recordingartistsRowSet.execute();

 recordingartistsRowSet.next();

 } catch (Exception ex) {

 throw new FacesException(ex);

 } // end try catch

}

Add Button Event Handler Code

Your one remaining task is to the add the code in the button1's event handler to update the RECORDINGARTISTS table.

1. From the design canvas, double-click the Add New Artist button. This brings up the Java page bean,
Page1.java and places the cursor at the button1_action() event handler.

2. Add the following code to the button1_action() method. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicInsert_button1.txt. (The added code is bold).

public String button1_action() {

 // User event code here...

 try {

 recordingartistsRowSet.moveToInsertRow();

 recordingartistsRowSet.updateInt("RECORDINGARTISTID",

 ((Integer)pkfield.getValue()).intValue());

 recordingartistsRowSet.updateString(

 "RECORDINGARTISTNAME",

 artistName.getValue().toString());

 recordingartistsRowSet.updateString("NOTES",

 artistNotes.getValue().toString());

 recordingartistsRowSet.insertRow();

 recordingartistsRowSet.moveToCurrentRow();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 recordingartistsRowSet.moveToCurrentRow();

 recordingartistsRowSet.commit();

 info("Successful Add to RecordingArtists Table");

 } catch (SQLException ex) {

 error("MusicInsert: " + ex);

 log("MusicInsert: " + ex);

 try {

 recordingartistsRowSet.rollback();

 } catch (SQLException f) {

 log("MusicInsert: " + f);

 }

 }

 return null;

}

(We'll fix the red underline syntax error shortly.) When the user clicks the Add New Artist button, the action event
handler prepares the rowset for insertion and fetches the data from the text fields. At this point we know there are no
conversion or validation errors, but it's possible that the primary key provided by the user is not unique within the
table. If this happens, we catch the SQLException error thrown by the database software. The error message is
displayed in the message list component, and the user gets to try again.

Primary Keys

You might want to have your own method that generates unique primary keys
instead of requesting a key from the user. This would eliminate the problem of
duplicate primary keys.

To insert a new row of data, you must invoke method moveToInsertRow() and then update each field. After the fields
have been updated, you call insertRow().

Note the event handler contains nested catch handlers at the end of the try block. The first catch handler accepts an
SQLException thrown from the database. If this happens, the exception's message is displayed in the message list
component (using method error()). The second catch handler catches possible errors from the call to rollback(). If no
exceptions occur, the database was updated and a success message is shown to the user (using method info()).

To fix the syntax error in the event handler, use Creator's fast import shortcut to have the necessary import statements
included.

1. Click inside the word SQLException in the code you just added.

2. Press <Alt-Shift-I>. In the Import Class dialog, choose the Import Class radio button.

3. Click OK. Creator adds this import statement to your file.

import java.sql.SQLException;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application. Figure 7-19 shows how recording artist ISAM Band is added to the database.

Figure 7-19. After the insert row operation to the RecordingArtists table

After running the MusicInsert web application, you can check the status of the database by inspecting the tables with
Creator's Server Navigator window. Select Data Sources > Music > Tables > RECORDINGARTISTS. Double-click the
RECORDINGARTISTS table. Creator displays the data in the Table View window of the editor pane.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.7 Database Deletions
Four database operations are represented by the acronym CRUD: Create (insert), Read, Update, and Delete. The
previous sections have shown you all these operations except delete.

Deleting is not that different from the other operations. To demonstrate, we'll build a two-page web application that
deletes a database row as dictated by the selection of a listbox component. The listbox is similar to a dropdown list
component because it displays one field and returns another in its getValue() method. We'll work with the
RECORDINGARTISTS table. The listbox will display RECORDINGARTISTNAME and return the primary key field,
RECORDINGARTISTID. The primary key field will determine the row to delete.

Handle Cascading Deletes

When you target a row for deletion that is referenced with a foreign key in another (related) table, you will have to
delete the related records first. For example, to delete a record in the RECORDINGARTISTS table that is referenced in
the RECORDINGS table, you must first delete the related row in the RECORDINGS table. You can locate the row by
matching its foreign key value for RECORDINGARTISTID.

Furthermore, to delete the row in the RECORDINGS table, you'll also have to delete the related rows in the TRACKS
table. These you find by locating all tracks with a foreign key that matches the RECORDINGSID. This "cascading" effect
that trickles through the database is called cascading deletes.

The database enforces data integrity by preventing deletes on rows referenced by other tables. In our example,
deleting a row in the RECORDINGARTIST table means we have to find and delete the related records in the
RECORDINGS table and TRACKS table. This is not difficult to do, but it does require careful coding.

Create a New Project

In the Welcome Page, select button Create New Project. Specify project name as MusicDelete. The selected
project type is J2EE Web Application. Click OK.

Specify Title

After creating the project, Creator comes up in the design view of the editor pane. You can now set the title and
components to the first page.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the text Music DB Delete. Finish by pressing <Enter>.

Add an Output Text Component

Place a heading title on the page with an output text component.

1. From the JSF Standard Components palette, select Output Text. Drag it over to the design canvas and place it
near the top of the page. Don't resize it and make sure it's selected.

2. Type the text Music Database - Delete Recording Artist followed by <Enter>. The component now displays
these words.

3. In the Properties window under Appearance edit the style attribute. After the position settings, add the following.

; font-family: Helvetica; font-size: 18pt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finish with <Enter>. The output text should now display a bold heading in a larger font.

Create the Form's Components

The set of components that you'll place on this page will display records from the RECORDINGARTISTS table. You'll use
a listbox to display the recording artist name, and you'll provide a button to delete the selection from the database
table. You'll also have an output text component to display errors.

When the user successfully deletes an artist, a second web page comes up. The user can return to the original page by
clicking the Back arrow on the browser to perform another delete.

Figure 7-20 shows the first page's design canvas with all the components added.

1. From the JSF Standard Components palette, select Listbox and drag it to the design canvas. Place it below the
output text component on the left side of the page. You don't need to resize it.

2. From the Data Sources > Music > Tables node in the Server Navigator view, select the RECORDINGARTISTS
table and drop it directly on top of the listbox component. A dialog appears.

3. In the dialog, select Fill the List. The text "abc" appears in the listbox indicating that the data is of type VARCHAR
from the database.

4. The recordingartistsRowSet component appears in the nonvisual component tray.

Figure 7-20. Design canvas view with components on page

[View full size image]

Let's see what assumptions Creator has made about the database table.

1. Right-click the listbox component. From the context menu, choose Fill List from Database. You have already
completed the binding in the previous steps, but this action enables you to view the database table's metadata
(its fields and table names). Creator displays a dialog with a database rowset, a Value field, and a Display field,
as shown in Figure 7-21.

Figure 7-21. Bind Display to Data dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The database rowset is recordingartistsRowSet.

The listbox component's value attribute is assigned field RECORDINGARTISTID, which is the primary key. Thus,
you'll get the value of the primary key for the selection when you invoke method

listbox1.getValue();

The listbox's displayed text is the field highlighted under Display field, which is set to RECORDINGARTISTNAME.

2. Click OK to return to the design canvas.

You'll add a button component and an output text component.

1. From the JSF Standard Components palette, select Button and place it under the title on the right side of the
page. Leave plenty of room since you don't know exactly how much space the listbox will consume when
populated with data.

2. With the button still selected, type the label Delete Selection (No Undo) followed by <Enter>.

3. Select Output Text from the palette and place it below the button. Don't resize it. Change its id attribute to
sqlMessage.

Include Additional RowSets

Figure 7-20 on page 252 shows the rowset components for both the RECORDINGS and TRACKS tables (as well as the
RECORDINGARTISTS table you just added). Let's add these two rowset components now.

1. From the Data Sources > Music > Tables node in the Server Navigator view, select the RECORDINGS table and
drop it directly on top of the design canvas. (Don't drop it on any components.)

The recordingsRowSet component appears in the nonvisual component tray.

2. Again from the Data Sources > Music > Tables node in the Server Navigator view, select the TRACKS table and
drop it directly on top of the design canvas.

The tracksRowSet component appears in the nonvisual component tray.

Modify the SQL Queries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you access these tables from the application, you'll perform a query to select only those rows that have matching
foreign keys for the target row deletion in the RECORDINGARTISTS table (for the recordingsRowSet object) or the target
row deletion in the RECORDINGS table (for the tracksRowSet object). Therefore, you'll need to modify the default query
for both of these objects to add query criteria. This is the same type of master-detail relationship you built in the
Music1 and Music2 projects. Let's modify the recordingsRowSet's query first.

1. Double-click the recordingsRowSet object in the nonvisual tray at the bottom of the editor pane. This brings up
the Query Editor.

2. In the spreadsheet view, right-click the RECORDINGARTISTID field and choose Add Query Criteria from the
context menu.

3. The Add Query Criteria dialog appears. Select radio button Parameter and leave the Comparison at the default
(= Equals). Click OK.

This adds a WHERE clause to the query. Here is the modified query as shown at the bottom of the Query Editor.

SELECT ALL ROOT.RECORDINGS.RECORDINGID,

ROOT.RECORDINGS.RECORDINGTITLE,

ROOT.RECORDINGS.RECORDINGARTISTID,

ROOT.RECORDINGS.MUSICCATEGORYID,

ROOT.RECORDINGS.RECORDINGLABEL, ROOT.RECORDINGS.FORMAT,

ROOT.RECORDINGS.NUMBEROFTRACKS, ROOT.RECORDINGS.NOTES

FROM ROOT.RECORDINGS WHERE ROOT.RECORDINGS.RECORDINGARTISTID=?

4. Now click the tab labeled Page1.jsp at the top of the editor pane to return to the design canvas.

5. Double-click the tracksRowSet object to modify the tracksRowSet query.

6. In the spreadsheet view, right-click the RECORDINGID field and choose Add Query Criteria.

7. In the Add Query Criteria dialog, select radio button Parameter and click OK.

Here is the modified query for the tracksRowSet.

SELECT ALL ROOT.TRACKS.TRACKID, ROOT.TRACKS.TRACKNUMBER,

ROOT.TRACKS.TRACKTITLE, ROOT.TRACKS.TRACKLENGTH,

ROOT.TRACKS.RECORDINGID FROM ROOT.TRACKS

WHERE ROOT.TRACKS.RECORDINGID=?

Add Initialization Code

You'll need to add initialization code to the end of the Page1() constructor.

1. Return to the design canvas by selecting the Page1.jsp tab. Right-click in the design canvas to bring up
Page1.java in the Java editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Page1.java in the Java editor.

2. Select the Page1() constructor from the dropdown menu at the top left of the editor pane. Creator puts the
cursor at the beginning of the constructor.

3. Add the following statements after the Creator-generated code. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicDelete_init.txt. (Added code is bold).

public Page1() {

// Creator-managed initialization code

. . . code omitted . . .

// Additional user provided initialization code

 try {

 recordingartistsRowSet.execute();

 recordingartistsRowSet.next();

 } catch (Exception ex) {

 throw new FacesException(ex);

 } // end try catch

}

4. Return to the design canvas by selecting the tab labeled Page1.jsp.

5. Select the recordingartistsRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

6. Select the recordingsRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

7. Select the tracksRowSet component. In the Properties window, change attribute concurrency to
CONCUR_UPDATABLE.

8. From the JSF Standard Components palette, select Message List and place it on the page underneath the
button.

Add Button Event Handler Code

You'll now add the button event handler code. Return to the design canvas by selecting the tab labeled Page1.jsp at
the top of the editor pane.

1. From the Page1.jsp design canvas, double-click the Delete Selection button. This brings up the Java page
bean, Page1.java and places you at the button1_action() event handler.

2. Add the following code to the button1_action() method. Copy and paste from your Creator book's file
FieldGuide/Examples/Database/snippets/MusicDelete_button1.txt. (The added code is bold). Make
sure you delete the return null statement at the end of the method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public String button1_action() {

 // User event code here...

 int pK = ((Integer)listbox1.getValue()).intValue();

 try {

 recordingartistsRowSet.execute();

 while (recordingartistsRowSet.next()) {

 if (pK == recordingartistsRowSet.getInt(

 "RECORDINGARTISTID")) {

 cascadeDelete(pK);

 recordingartistsRowSet.deleteRow();

 recordingartistsRowSet.commit();

 break;

 }

 }

 } catch (SQLException ex) {

 log("MusicDelete: " + ex);

 error("MusicDelete: " + ex);

 try {

 tracksRowSet.rollback();

 recordingsRowSet.rollback();

 recordingartistsRowSet.rollback();

 } catch (SQLException f) {

 log("MusicDelete: rollback exception " + f);

 }

 return null;

 }

 return "deleteOK";

}

(We'll fix the red underline syntax errors shortly.) When the user clicks the Delete Selection button, the action event
handler prepares the rowset for the delete operation. The while loop gets the value from the listbox and compares it to
the primary key in the rowset's current row. When a match is found, the code inside the while loop calls method
cascadeDelete(pK), deletes the row, and breaks out of the loop. If there are no errors, the method returns string
"deleteOK".

After you add the code for method cascadeDelete(), the red underlines will disappear. Let's fix the error with
SQLException first. You'll use Creator's fast import shortcut to add the necessary import statement.

1. Click inside the word SQLException in the code you just added.

2. Press <Alt-Shift-I>. In the Import Class dialog, choose the Import Class radio button.

3. Click OK. Creator adds this import statement to your file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import java.sql.SQLException;

Add Method Cascade Delete

Now let's look at the cascadeDelete() method. Its argument is a key, specifically, the RECORDINGARTISTID
corresponding to the selected row in the RECORDINGARTISTS table. This method finds the related records in both the
RECORDINGS and TRACKS tables.

Creator Tip

Method cascadeDelete() may not be necessary for some database configurations.
Check with your database software.

Method cascadeDelete() has a throws clause. This allows you to call RowSet object methods without creating a new try
block. Since the button event handler calls cascadeDelete() within its own try block, it will catch any thrown exceptions
from cascadeDelete(). Inside the method, nested while loops iterate through the data. The outer while loop steps through
the recordingsRowSet object and finds the related records in the TRACKS table. The inner while loop steps through the
tracksRowSet.

Here is the code for the cascadeDelete() method, which you can place in front of or after the button handler. Copy and
paste your Creator book's file FieldGuide/Examples/Database/snippets/MusicDelete_cascade.txt.

private void cascadeDelete(int foreignKey) throws SQLException

{

 recordingsRowSet.setInt(1, foreignKey);

 recordingsRowSet.execute();

 while (recordingsRowSet.next()) {

 tracksRowSet.setInt(1, recordingsRowSet.getInt(

 "RECORDINGID"));

 tracksRowSet.execute();

 while (tracksRowSet.next()) {

 tracksRowSet.deleteRow();

 tracksRowSet.commit();

 }

 // delete matching recording

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // delete matching recording

 recordingsRowSet.deleteRow();

 recordingsRowSet.commit();

 }

}

Set Up the Second Page

Let's create the second page, add a navigation rule, and add an output text component to the page.

1. From the design canvas, right-click anywhere in the background and choose Page Navigation.

2. The Page Navigation editor comes up and displays Page1.jsp. Click anywhere in the background and choose
New Page. Accept the default name, Page2.

3. Click inside Page1.jsp and draw a navigation arrow to Page2.jsp. Specify case label deleteOK (the string that
matches the button event handler return value). This is the only navigation rule you'll define for this project.

4. Now double-click inside Page2.jsp. Creator brings up the design canvas for Page2.

5. Select Output Text from the palette and drop it onto the design canvas. Type the text Record was
successfully deleted from the database table followed by <Enter>. The text will appear on the page.

6. In the Properties window under Appearance, edit the style attribute. After the position settings, add the following.

; font-family: Helvetica; font-size: 14pt

7. Press <Enter>. The output text now displays a bold heading in a larger font.

Deploy and Run

From the main menu bar, select Build > Run Project to deploy project MusicDelete. Figure 7-22 shows the application
as the user is about to remove Steely Dan from the database by clicking the Delete Selection button.

Figure 7-22. MusicDelete application's initial page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After running the MusicDelete web application, you can check the status of the database by inspecting the tables with
Creator's Server Navigator window. Select Data Sources > Music > Tables > RECORDINGARTISTS. Double-click the
RECORDINGARTISTS table. Creator displays the data in the Table View window of the editor pane. Inspect tables
RECORDINGS and TRACKS using the same key strokes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.8 Key Point Summary

The Java Database Connectivity (JDBC) and JDBC RowSets technology provide a portable way to access a
relational database using SQL.

A JDBC RowSet object is a connected rowset that extends a ResultSet object.

When you select a data source from Creator's Server Navigator window, Creator generates code in the Java
page bean to access this data through RowSet objects. The default access is read-only.

The Music Collection Database consists of four related tables, as diagrammed in Figure 7-1 on page 207.
Relational databases use foreign keys to relate records from one table to records of another table.

A dropdown list creates a selection menu from a fixed list of choices. You can bind the component to a rowset to
obtain the selection choices from a database.

A listbox component creates a fixed list of choices that are all displayed. You can also bind this component to a
rowset.

Selection components (such as dropdown and listbox) let you specify a database field for display and a different
database field for its value. This allows meaningful text to be displayed to the user and at the same time the
selection is automatically tied to a row's primary key.

Adding a data table (a Data Source) to your Creator project creates a rowset, which is a nonvisual component.

Creator generates code in the page bean constructor to initialize the database rowset object. Creator also
generates close() statements in the afterRenderResponse() method to close the connection to the database.

You can add a data table component and bind it to a database rowset. You can modify which columns are
displayed and the embedded component to use with the data table (output text is the default). You can also
apply data converters to a column.

You can control the data that is returned by invoking the Query Editor.

You can use the Query Editor to sort the rowset, add a criterion based on a parameter or a fixed value, or
create a JOIN by adding additional database tables.

You can edit and update data in your underlying database when you bind a data table component to a rowset
and edit the fields in the component.

You can insert or delete rows in a database by manipulating the data's RowSet object.

Database applications that perform delete operations must handle cascading delete situations when the
database contains related tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Customizing Applications with Creator
Topics in This Chapter

Localizing and Internationalizing Applications

Setting Up Properties Files

Locales and Languages

Configuring Your Browser

Setting a Locale from Your Application

Creating Custom Validation

Accessing a Custom Validation Method

Using Localized Error Messages

An IDE like Creator is only as good as its supporting technology. Fortunately, Creator is built on the solid foundation of
JSF, and under that, live a host of other Java technologies that we've touched upon. One area that you'll explore in this
chapter is the duo of localization and internationalization.

Another important facet of web application design is providing custom validation. We show you how to write a custom
validator method for your Creator project. You'll be able to validate a component's input, control error message display
with a message component, and use localized error messages.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 Localizing an Application
Localization means that you customize an application to a given locale. The Java programming language has the
concept of a locale that affects many objects. For example, the String class has a version of toLowerCase() that takes a
Locale object as its argument. When you supply this argument, toLowerCase() uses the Locale's idea of translating a
String to lowercase letters. More commonly, you use Locale to control the format of a Date object or a monetary
amount, using the local currency symbol.

Consider the following Java code fragment.

import java.util.*;

import java.text.*;

. . .

Locale currentLocale = new Locale("en", "US");

Date myDate = new Date();

DateFormat df = DateFormat.getDateInstance(

 DateFormat.LONG, currentLocale);

System.out.println(df.format(myDate));

The DateFormat class uses the locale argument (if provided) to determine how to format the date. Here we provide a
locale language ("en" for English) and country ("US" for the United States). The println statement produces

April 2, 2004

But if we change the country locale to "GB" for Great Britain, the output becomes

02 April 2004

to reflect the customary British date format. Furthermore, if we use Spanish and Spain ("es" and "ES" for español and
España, respectively), we get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

España, respectively), we get

2 de abril de 2004

However, it's not good enough to simply customize an application for a specific locale. You also need to make your
application language independent. To accomplish this task, you gather all the text messages, error messages, and
labels from your web page and put them in a "properties" file. Each properties file isolates messages for a specific
Locale. To run a program, you "bundle" those messages that are specific to the user's Locale. This creates a
ResourceBundle containing locale-specific objects.

The project example in this section shows you how to

create the property file that holds localized messages;

configure your application to accept localized messages;

create and load the resource bundle that makes the localized messages available to the pages in your
application; and

allow the user to dynamically change the locale.

A Word About Locales

Locales designate both a language and a country (or region). Many readers are aware of the differences between British
English and American English, for example, so specifying just a language isn't always good enough. The Spanish spoken
in Mexico is different from that spoken in Spain. Similarly, the French spoken in Montreal is distinct from the French
spoken in Paris.

On the other hand, specifying a generic language (without a country) may be just fine. A locale may represent just a
language or a language and a country.

You can learn more about internationalization[1] from the following tutorial.

[1] The term "i18n" refers to the word internationalization: the 18 letters sandwiched between the initial i and the
final n.

http://java.sun.com/docs/books/tutorial/i18n/index.html

To learn about internationalization support in Java, visit

http://java.sun.com/j2se/corejava/intl/index.jsp

Localize Application Labels and Text

Much of the time we forget to plan ahead for localization and are therefore forced to localize an application after it's
already written. For our first example, let's localize project Login2 from Chapter 5. Then we'll internationalize it and
provide a way for the user to select the application's language

Localizing an application means that the messages and labels on the page are determined by the locale. When there are
no explicit instructions to use a particular locale, a properly localized application simply uses the default locale.

Let's start with opening up project Login2 from Chapter 5

Copy the Project

To avoid starting from scratch, copy project Login2 to a new project called Login3. This step is optional. If you don't
want to copy the project, simply skip this section and continue making modifications to the Login2 project.

1. Bring up Creator and open project Login2 from Chapter 5

2. From the File menu, select Save Project As and provide the new name Login3. You'll make changes to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. From the File menu, select Save Project As and provide the new name Login3. You'll make changes to the
Login3 project.

Specify Title

In the design view of the editor pane, change the title.

1. Click in the middle of the design canvas.

2. Select Title in the Properties window and type in the new title Login 3. Finish with <Enter>.

Isolate Labels and Text Messages

Go ahead and deploy project Login3 unchanged. Recall that the project consists of three pages: the initial page
(Page1.jsp), the page you get when you successfully login (LoginGood.jsp), and the login failure page
(LoginBad.jsp). Provide input for a successful login as well as errors. (For a successful login, type "rave4u" for both
the username and password fields.) Note that you get validation errors when you fail to provide any input. (Fortunately,
the JSF validators are already localized components. You'll notice that when you provide support for different locales,
these components automatically provide locale-specific text.)

To isolate the text in a web page, you must extract each label or message and put it in a property file. Let's look at the
localized property file in English for this application.

Listing 8.1. asg.messages.login3.properties

welcomeGreeting = Welcome

loginPageTitle = Members Login Page

usernameLabel = Username

passwordLabel = Password

usernameTip = Please type in your username

passwordTip = Please type in your password

loginButtonLabel = Login

resetButtonLabel = Reset

badLogin = Invalid username or password. To try again click

hereHyperlink = HERE

Fortunately, there are not many messages and component labels to extract, but the format is important. The format is
a key (for example, welcomeGreeting listed above), an equal sign (=), followed by the message or label text. Spaces
around the equal sign are optional. You place these key/value pairs in a text file and give it a name with a .properties
extension. If the file represents the default locale, the name doesn't need a locale identifier. Otherwise, append
_LOCALE to the base filename.

With English as the default locale, the name of this file is login3.properties (with no locale designation) in package
asg.messages. Later, you'll implement translations to German and Spanish. These files will have the names
login3_de.properties (for German) and login3_es.properties (for Spanish).

With country codes as well as language codes, use login3_es_ES.properties (for Spanish in Spain) and
login3_de_DE.properties for German in Germany. (By the way, American English is login3_en_US.properties and
British English is login3_en_GB.properties.) Adding country-specific translations involves creating additional
translations with the country-specific filename. You can easily add these to your application later.

Accessing the login3.properties File

The login3.properties file is in the JAR file you added as a Library Reference during the building of project Login2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The login3.properties file is in the JAR file you added as a Library Reference during the building of project Login2
(see "Add a Library Reference to Your Project" on page 133). Creator lets you view the file as a key-value database in
the editor pane, showing all of the locales. Here's how you can view it.

1. In the Project Navigator window under Library References, expand the Bean_Examples > asg.jar > asg >
messages nodes.

2. Under folder messages, select login3.properties file and double-click. Creator displays the key-value data in
the editor as shown in Figure 8-1.

Figure 8-1. Viewing the properties file in Creator's editor pane

[View full size image]

You can use the editor to modify any of the key-value entries, as well as add or remove entries. To add a new key-
value pair, click button New Property and fill in the New Property's dialog, as shown in Figure 8-2. Click OK.

Figure 8-2. New Property dialog for properties files

Create a New Properties File

You can also create a new properties file and add it to your project. Here's how (you don't need to create a properties
file for this project since you imported it using the library reference).

1. In the Project Navigator window, expand Java Sources and select your project's default package name.

2. Right-click on the package name and select New > All Templates.

3. Expand the Java Classes option and select properties.properties. Click Next.

4. Specify a name (mybundle, for example) and click Finish. Creator creates file mybundle.properties and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Specify a name (mybundle, for example) and click Finish. Creator creates file mybundle.properties and
brings it up in the properties file editor. From the editor, you can add key/value pairs, as shown in Figure 8-2 on
page 268

Localize the JSF Source

Once you've created a properties file for at least one locale, you must tell your program where to access these
messages. JSF has a loadBundle tag that accomplishes this. Let's put a <f:loadBundle/> tag in each of your page's JSF
source files, as follows.

1. Bring up the Page1.jsp page in the design editor.

2. Click the Source tab at the bottom of the editor pane. This brings up the JSF source tags for this page.

3. Directly after the <f:view/> tag, open a new line and add the following loadBundle tag. (Put the tag all on one
line.)

<f:loadBundle basename="asg.messages.login3"

 var="messages"/>

The loadBundle tag appears in the Application Outline view under Page1.

With the loadBundle tag, JSF loads the resource bundle from the properties file with basename login3 in package
asg.messages. This selects the properties file that corresponds to the current locale. If no locale is specified, JSF loads
resource property file login3.properties.

The var property specifies how you'll refer to the message text in the rest of the JSF source. Here you've set var to
"messages," so the JSF EL that grabs the text corresponding to the key welcomeGreeting is

#{messages.welcomeGreeting}

Note that messages is the value of the var property and welcomeGreeting is the key in the properties file that corresponds
to the text you want.

Creator Tip

There is a big advantage to having a distinct var property specify a "handle" to the
properties file. If the properties file name changes, you only have to modify the
basename attribute of the loadBundle tag. All of the JSF EL expressions for your
application's components remain unaffected, since they reference the var property.

Now add the same loadBundle tag to the pages LoginGood.jsp and LoginBad.jsp. Go to the Project Navigator window,
double-click the filename, and click the Source tab at the bottom of the editor pane. Copy and paste the loadBundle tag
into each JSP source file at the same spot.

Modify JSF Components for Localized Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You've created the properties file with the localized text. Next, you'll modify the project's components to use it.

1. Bring up the design canvas for the initial page, Page1.jsp.

2. Select the component that displays the page's title, outputText1.[2] Bring up the Property window. Its value is set
to Members Login. Select the small editing square to bring up the dialog box. In the field labeled Current value
setting, change the value to

[2] For each of these steps, you can also use the Property Bindings dialog. Select the component in the
design canvas, right-click, and select Property Bindings. Choose the property you want bind to in the
Select bindable property window. Under New binding expression, specify the binding as indicated. Click
Apply, then Close.

#{messages.loginPageTitle}

Click OK. (Note that the text in the label is removed from the design pane and only the box remains.)

3. Select the component that displays the label for username input, componentLabel1Text. Its value is currently
Username. Change it to

#{messages.usernameLabel}

4. Repeat this process for the component that displays the label for password input (componentLabel2Text), the login
button component (login), and the reset button (reset). Use the following JSF EL expressions for their values.

#{messages.passwordLabel}

#{messages.loginButtonLabel}

#{messages.resetButtonLabel}

5. The two input components have tooltips. Change the title attribute for components userName and password to the
following.

#{messages.usernameTip}

#{messages.passwordTip}

Each of the other two pages contains components as well.

6. Bring up the design canvas for page LoginGood.jsp. Select the output component that's on the page (there's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Bring up the design canvas for page LoginGood.jsp. Select the output component that's on the page (there's
only one) and change its value to (keep it on a single line)

#{messages.welcomeGreeting},

#{SessionBean1.loginBean.username}!

This expression concatenates the welcome greeting text with the user's login name. Figure 8-3 shows the
modified design canvas for page LoginGood.jsp.

Figure 8-3. Using localized messages and property binding

7. Bring up the design canvas for page LoginBad.jsp. There are two components: an output text component and
a link action component.

8. Change the value attribute of the output text component to

#{messages.badLogin}

9. Change the value attribute of the nested output text component (it's under the link action component) to

#{messages.hereHyperlink}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Ok, you've completed the steps for localization, so now it's time to deploy and run the application. If you've done
everything right, you should not see any changes from the Login2 application. The messages are still in English and
the login procedure is unchanged. Underneath, however, there is a big difference. No hard-wired English labels or
messages appear on the page. Everything is read from the properties file you reference for the default locale. The next
step is internationalization.

Creator Tip

If you're having trouble with your application working correctly, here are some
things to check. First, if deploying throws an exception, open the Page1.jsp file in
source mode and make sure you have the asg.messages.login3 properties file
spelled correctly in the <f:loadBundle> tag. Check the other pages, too. If the
application deploys but doesn't work properly, use the Properties window or the JSP
source in Creator to check that all the JSF EL expressions are correct.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 Internationalizing an Application
A localized application is much easier to internationalize than one that is not localized. Since you've already extracted
the messages and labels, it won't be difficult to configure your application to access translated versions of the text.

Provide Translations

Fortunately, you can provide translations at any time once you've isolated the text that requires translation. (This is
when you hire a bank of native speakers who can translate your English language text into the target languages.) Here
is our translation for Spanish, in file login3_es.properties.

Listing 8.2. asg.messages.login3_es.properties

welcomeGreeting = !Bienvenido

loginPageTitle = Página del Registro Para Los Miembros

usernameLabel = Username

passwordLabel = Contraseña

usernameTip = Proporcione por favor su Username

passwordTip = Proporcione por favor su Contraseña

loginButtonLabel = Conexión

resetButtonLabel = Despeje

badLogin = Username o contraseña inválido. Para tratar otra vez escoge

hereHyperlink = Aquí

Here is the translation for German, in file login3_de.properties.

Listing 8.3. asg.messages.login3_de.properties

welcomeGreeting = Willkommen

loginPageTitle = LOGIN-Seite Des Mitgliedes

usernameLabel = Username

passwordLabel = Kennwort

usernameTip = Tippen Sie bitte Ihr Username ein

passwordTip = Tippen Sie bitte Ihr Kennwort ein

loginButtonLabel = LOGIN

resetButtonLabel = Zurückstellen

badLogin = Unzulässiges Username oder Kennwort. Um es erneut zu versuchen klicken Sie

hereHyperlink = HIER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the text keys are unchanged from the original version. In any properties file, the keys remain consistent
across all translations. With Spanish and German text isolated into properties files (they're already installed in our JAR
file, asg.jar), the only step left is to tell JSF which locales the application supports.

Specify Supported Locales

Once your configuration is done, you can set up your browser for one of the supported locales. To do this, use an XML
configuration file called faces-config.xml and install it in the same directory as the other configuration files that
Creator generates. Here are the contents. We've included the source in
FieldGuide/Examples/Custom/login3_faces-config.xml (note the different file name here).

Listing 8.4. faces-config.xml

<faces-config>

 <application>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>es</supported-locale>

 <supported-locale>de</supported-locale>

 </locale-config>

 </application>

</faces-config>

Here, the default locale is English (en), and Spanish (es) and German (de) are supported locales.

To install file faces-config.xml in your project, follow these steps.

1. In the Project Navigator window, select the top node Login3, right-click, and select New Item . . . ; Creator
brings up the New Wizard dialog.

2. Under Select a Template, expand node Resources and select XML Document. Click Next.

3. For Target Location, expand path <...>Projects/Login3/src/web and select Web-INF. (Scroll down to the
end of the file list.)

4. At the top of the dialog, specify faces-config for Name. Click Next.

5. Under Select Document Type, choose radio button Well-formed Document and click Finish.

Creator brings up the XML editor for you. Open the login3_faces-config.xml file in your Creator book's download
directory FieldGuide/Examples/Custom and copy and paste the contents into the XML editor pane. Paste over any
XML tags that are already there (use <Ctrl-V>). When you build your project, Creator makes this configuration file
available to JSF.

Configure Your Browser

If you use Internet Explorer, do this:

1. Select Tools > Internet Options > Languages. Click the Add button and select the following lines in the
supported languages box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Spanish [es]

English [en]

German [de]

2. Click OK.

3. To change your locale, select the target language and move it to the top with the Move Up button.

If you use Netscape Navigator as your browser, do this:

Select Edit > Preferences > Languages. Provide the same locale specifications as for Internet Explorer. Select
the target locale and move it to the top with the Move Up button.

Deploy and Run

With the preceding changes, you can run the application in either English, Spanish, or German by configuring your
browser for these different locales. Note that if you don't supply a username or password, the application displays the
error message in the selected language. This is because the JSF validator is already configured to get its text from
locale-specific messages.

Figure 8-4 shows a successful login page in the Spanish version.

Figure 8-4. A successful login with the Spanish version

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Controlling the Locale from the Application
You may want users of your web application to select a language directly without having to modify browser
configurations or change default locale settings. In this example (still Login3), you'll add a dropdown list component to
the initial page that offers language selection for the application. Since the web application has already been
internationalized (for three languages, at least), these modifications are minor.

Here's the approach. You'll use a dropdown list to hold the locale choices. When the user changes the locale, you save
the choice as a property in session scope. Then, when the user returns to the application's initial page, you make sure
that the language choice is still selected in the dropdown component. This save-restore step is similar to the save-
restore you coded in projects Music1 and Music2. Your first step, then, is to add a property to session scope.

Add a SessionBean1 Property

In this project, you will save the dropdown list's current selection in session scope. Call the property myLocale; it will be
type String. Here are the steps to add property myLocale to SessionBean1.

1. In the Project Navigator window, expand Java Sources > login1 (the package name).

2. Right-click on SessionBean1.java and select Add > Property. Creator displays the New Property Pattern
dialog.

3. Fill in the fields as follows. Specify myLocale for Name. Select String from the dropdown list for Type. Select
Read/Write for Mode. Make sure the options Generate Field, Generate Return Statement, and Generate Set
Statement are all checked.

4. Click OK.

Now you need to provide the instantiation with operator new for property myLocale in SessionBean1.java.

1. From the Project Navigator window, double-click file SessionBean1.java to bring it up in the Java source
editor.

2. Add instantiation with operator new for property myLocale inside the SessionBean1() constructor, as follows.

// Additional user provided initialization code

myLocale = new String();

This instantiates an empty String.

Add a Dropdown List Component

Now, let's add a dropdown list component with three language choices.

1. Bring up Page1.jsp in the design canvas.

2. From the JSF Standard Components palette, select component Dropdown List and drag it onto the design
canvas of page Page1.jsp. Place it under the inline message component.

3. In the Application Outline view, select item dropdown1DefaultItems (it's at the bottom of the Application Outline
view).

4. In the Properties window, select the small editing box under items. A dialog pops up. Add the following.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

English [en]

Deutsch [de]

Español [es]

5. Remove the default items in the list and click OK.

6. Select the dropdown list component. Right-click and select Edit Event Handler > processValueChange from the
context menu. This action generates a processValueChange() method for the dropdown list component in the Java
page bean, Page1.java.

Creator Tip

The code you are about to add will cause the Java source editor to complain
because it doesn't have all of the necessary import statements. After you add
the code, we'll show you how to make Creator generate the import statements
for you.

7. Add the following code to method dropdown1_processValueChange(). Copy and paste from file
FieldGuide/Examples/Custom/snippets/Login3_dropdown.txt. The added code is bold.

public void dropdown1_processValueChange(ValueChangeEvent vce)

{

 // User event code here...

 FacesContext context = FacesContext.getCurrentInstance();

 UIViewRoot viewRoot = context.getViewRoot();

 String loc = dropdown1.getValue().toString();

 viewRoot.setLocale(new Locale(

 loc.substring(loc.indexOf('[')+ 1,loc.indexOf(']'))));

 getSessionBean1().setMyLocale(

 (String)dropdown1.getValue());

 }

This method retrieves the faces context and the root view (the top level for all the components on the page).
From the dropdown list's value, it parses the String to extract the locale designation that's between the square
brackets ([de] for German, for example). After setting the locale, the method saves the dropdown list's value in
session scope using property myLocale.

The code you just added is underlined in red because the Java page bean file is lacking three import statements. Here's
how to fix them.

1. First, click anywhere inside the word FacesContext and press <Alt-Shift-I>. Creator pops up the Import Class
dialog and displays javax.faces.context.FacesContext. Choose radio button Import Package and click OK.

2. Repeat this step with the class UIVewRoot. Press <Alt-Shift-I>, and choose Import Package for
javax.faces.component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

javax.faces.component.

3. Choose class Locale and choose Import Package for java.util.

Creator adds the following import statements along with the others in file Page1.java. The red underlines in
your code should go away now.

import java.util.*;

import javax.faces.component.*;

import javax.faces.context.*;

Method dropdown1_processValueChange() saves the new locale selection in session scope as property myLocale. It's the
constructor's job to make sure the dropdown list's selection is initialized to the requested locale. Place this code in the
Page1() constructor after the comment as indicated. Here's the code. Copy and paste from file
FieldGuide/Examples/Custom/snippets/Login3_init.txt. The added code is bold.

public Page1() {

// omitted code . . .

 // Additional user provided initialization code

 if (getSessionBean1().getMyLocale().length() != 0) {

 dropdown1.setValue(getSessionBean1().getMyLocale());

 }

}

Make the following final modifications to your project.

1. Return to the design canvas and select the dropdown list component.

2. Right-click and check Auto-submit on change (it is currently unchecked). This submits the page when the
dropdown list selection changes.

3. Select the secret text component, passWord.

4. In the Properties window, uncheck the required attribute. (Because a dropdown list component was added, you
don't want the validator to flag an error when the password field is empty. An empty password is still an invalid
password submission, so if the user leaves the field blank, the application behaves properly. With this change,
you don't have to supply a password before selecting the target language.)

Delete file faces-config.xml from your project. This is to prevent the locale settings performed by the event handler
from interfering with the settings indicated by your browser. Without the configuration information in faces-
config.xml, the dropdown component's event handler will determine the current locale.

1. In the Server Navigator window, right-click Login3, the top node. Select Show File System View.

2. Expand nodes src > src > WEB-INF. Under WEB-INF, right-click file faces-config.xml and select Delete.
(Click OK to the confirmation.)

3. Right-click Login3 again and now select Clean Project (this removes faces-config.xml from the project's
build).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application. You can now select the target language without configuring your browser. Figure 8-5
shows the initial page (still in English) as the user is about to select German.

Figure 8-5. Setting the locale from the application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Creating Custom Validation
Sometimes you need to provide your own validation for input. There are two approaches to take here. One is to write
your own custom validator that you can use with other projects. Writing your own validator is a lot more work, but it
does give you a reusable component. The other approach is to write a validation method and add it to your page bean.
This is appropriate for input validation that you don't expect to use with other pages or other applications. It's the
easier of the two approaches and a good first step if you're thinking about creating your own custom validator.

Let's see how you can write your own validation method. It's not difficult to do and it gets you up and running quickly.
You can convert it to a validation component later if you want.

You've just learned about localization and internationalization in the previous sections. We're also going to show you
how to make your validation method access the current locale for error messages and post messages to the faces
context. Using the current locale allows you to provide international support for your validator error messages. By
posting error messages to the faces context you can use message components to report validation errors generated by
your custom validation method.

You'll accomplish all this with a simple application that uses a JavaBeans component called ColorBean to store red-
green-blue (RGB) color values. Each color property of ColorBean stores its value as a two-digit hexadecimal string. A
getColor() method returns a String that sets HTML colors. The String's format is #rrggbb, where rr is a two-digit hex value
for red, gg is a two-digit hex value for green, and bb is a two-digit hex value for blue.

The user can modify the two-digit value of any color, but a custom validator makes sure that the user's input is only
two digits and that the digits are valid. The validator also allows upper- and lowercase input for the hex digits a through
f.

This application comes up with all color properties set to the String "ff" (white). See Figure 8-6 for the page layout.
When the user modifies an RGB color value, the background color of the enclosing Grid Panel changes to the new color.

Figure 8-6. Using custom validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a Project

Let's start by creating a project called Color1. When the design canvas comes up, change the Page1.jsp's page title to
Color 1.

Add a Library Reference to Your Project

Before you add components, configure properties files, and create a faces-config.xml file, add a library reference to
your project. You'll use the same JAR file from the previous project. This JAR file contains ColorBean.java (the source
for your JavaBeans component), ColorBean.class (the compiled class file), and the .properties files you'll need to
internationalize the application.

1. Open up the Project Navigator window. This window displays all the resources, pages, Java sources, and
references used by your project.

2. Expand the Library References node (if it's not already expanded). Creator lists several different libraries used
by your project. You're going to add the asg.jar file as a new library reference.

3. Right-click the Library References node and select Create New Library Reference. Creator pops up the Create
New Library Reference dialog. (See Figure 8-7.)

Figure 8-7. Create New Library Reference dialog

4. For Library Name, specify Bean_Examples. Scope should be set to Project.

5. Select tab Class Libraries and click Add. The Open dialog is displayed.

6. Browse to the location of your Creator book's examples. Under directory FieldGuide/Examples select asg.jar
and click Open. Creator adds the JAR file path to the Path Name field. Click OK.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bean_Examples now appears under the Library References node. If you expand it, you'll see the added JAR file,
asg.jar.

Add a ColorBean Property to SessionBean1

Now that you've added the library reference containing the ColorBean class file, you'll need to make it accessible within
your project. Since you want ColorBean to have session scope, let's add it to the managed bean SessionBean1 as a
property. This enables JSF to automatically instantiate the bean when it instantiates SessionBean1. The bean will also
become available to the GUI components as a SessionBean1 property.

Creator Tip

Why put ColorBean in session scope? Although the web project we are building is a
single page application, users will submit the page multiple times. If we want the
previous settings to carry over to each new rendering of the page, then ColorBean's
state must be saved in session scope.

1. In the Project Navigator window, expand the Java Sources folder and then the color1 folder. You'll see the Java
page bean source for your project, Page1.java.

2. You'll also see "template" beans ApplicationBean1.java and SessionBean1.java for beans at application and
session scope, respectively.

3. Right-click the file node SessionBean1.java and select Add > Property. Creator pops up the New Property
Pattern dialog (see Figure 8-8).

Figure 8-8. New Property Pattern dialog

4. Fill in the dialog as follows. Under Name specify colorBean, under Type specify ColorBean, and under Mode,
select Read/Write.

Creator Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

Since Name and Type are case sensitive, make sure you copy the capitalizations
exactly.

5. Options Generate Field, Generate Return Statement, and Generate Set Statement should all be checked. Click
OK to add property colorBean to SessionBean1.

6. Still in the Project Navigator window, double-click the file node SessionBean1.java. This brings up the file in
the Java source editor. Here are the getter /setter methods Creator generated.

/**

 * Getter for property colorBean.

 * @return Value of property colorBean.

 */

public ColorBean getColorBean() {

 return this.colorBean;

}

/**

 * Setter for property colorBean.

 * @param colorBean New value of property colorBean.

 */

public void setColorBean(ColorBean colorBean) {

 this.colorBean = colorBean;

}

You'll note that the code is marked with syntax errors because type ColorBean is unknown in the current compilation
scope. Here's how to fix the errors.

1. In the Java source editor for file SessionBean1.java, click the cursor in the ColorBean class reference.

2. Press the shortcut keys <Alt-Shift-I>. Creator's Java source editor displays the Import Class dialog box as
shown in Figure 8-9.

Figure 8-9. Import Class dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Make sure that asg.bean_examples.ColorBean and radio button Import Class are selected. Click OK.

This adds an import statement for the ColorBean class near the top of source file SessionBean1.java, as
shown below. The added import statement is bold. The red underlines should disappear.

package color1;

import asg.bean_examples.ColorBean;

. . .

Now you'll add the Java code that instantiates (with operator new) the ColorBean object.

1. Still editing file SessionBean1.java, place the cursor after the comment line in the SessionBean1() constructor.

2. Add instantiation with operator new for property colorBean, as follows.

// Additional user provided initialization code

colorBean = new ColorBean();

The code that you added to SessionBean1.java makes the colorBean object a property of SessionBean1. Thus, to
access the redColor property of colorBean (for example), use the following JSF EL expression.

#{SessionBean1.colorBean.redColor}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is how you'll bind ColorBean's properties with the GUI components on your web page. Before you specify binding
for the components, however, let's look at the source code for ColorBean.java.

ColorBean.java Code

The source for ColorBean.java is included in the asg.jar JAR file. Since the JAR file is installed in your project as a
library reference, you can easily view the file in Creator's Java source editor.

1. In the Project Navigator window under Library References, expand nodes Bean_Examples > asg.jar > asg >
bean_examples.

2. Double-click file ColorBean.java. Creator brings it up in the Java source editor as a read-only file for you.

Listing 8.5 shows the source for ColorBean.java.

Listing 8.5. ColorBean.java

// ColorBean.java

package asg.bean_examples;

public class ColorBean {

 private String redColor;

 private String greenColor;

 private String blueColor;

 /** Creates a new instance of ColorBean */

 public ColorBean() {

 redColor = "ff";

 greenColor = "ff";

 blueColor = "ff";

 }

 // Setters

 public void setRedColor(String c) { redColor = c; }

 public void setGreenColor(String c) { greenColor = c; }

 public void setBlueColor(String c) { blueColor = c; }

 // Getters

 public String getRedColor() { return redColor; }

 public String getGreenColor() { return greenColor; }

 public String getBlueColor() { return blueColor; }

 public String getColor() {

 return "#" + redColor + greenColor + blueColor;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return "#" + redColor + greenColor + blueColor;

 }

}

ColorBean has four properties: three are read/write and the fourth is a read-only property (color). All properties have
String values. You will bind three text field components to the properties redColor, greenColor, and blueColor. You'll also
bind the background color of a grid panel to the color property.

Isolate Localized Text

This time you're going to plan ahead for localization. Your application will have a page title, labels for three text field
components, a button label, and two different error messages that result from validation. The properties file will contain
the labels and error messages in English. The name of this file is color1.properties, and it lives in the asg.jar library
under package asg.messages. (You can also find it in your Creator book's download at
FieldGuide/Examples/asg/messages/color1.properties.) The code for this file is shown in Listing 8.6.

Listing 8.6. asg.messages.color1.properties

pageTitleLabel = Color Fun

redValueLabel = Red Value

greenValueLabel = Green Value

blueValueLabel = Blue Value

updateButtonLabel = Update Color

lengthError = Hex numbers must be two digits exactly.

digitError = Hex characters must be [0-9][A-F][a-f] only.

Creator Tip

You can also view the properties file with Creator. In the Project Navigator window
under Library References, expand the asg.jar > asg > messages folders. Double-
click file color1.properties. Creator displays each key-value pair for both the
default locale and the Spanish locale in the editor pane.

Let's add the JSF loadBundle tag to your Page1.jsp source page. This tells JSF to use the resource bundle from the
current locale. Here are the steps.

1. Bring up Page1.jsp in the design canvas.

2. Select the tab labeled Source at the bottom of the design window.

3. Add the <f:loadBundle> tag after the <f:view> tag in the JSP source. Here's the JSF tag. (Put the tag all on one
line.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<f:loadBundle basename="asg.messages.color1"

 var="messages"/>

Now you'll be able to bind the text messages in the .properties file to the components that you place on the page.

Adding Components to the Page

With all the setup work complete, it's time to add the components, event handling code, and validation method to the
page bean. To help you add components to the page, Figure 8-10 shows the design canvas with the components you
need.

1. Bring up the design canvas for the project.

2. From the JSF Standard Components palette, select Output Text and drag the component to the canvas.

3. Change the component's id attribute to pageTitle.

4. Add the following to its style attribute.

; font-family: Helvetica; font-size: 24pt

5. Bind its value attribute to the localized messages, using

#{messages.pageTitleLabel}

(Select the small editing square opposite attribute value. Click OK when finished.)

6. Add component Grid Panel to the page. This component lets you format components within a grid.

7. In the Properties window, change cellpadding to 3, border to 3, and columns to 3.

8. Bind the grid panel's bgcolor attribute to the ColorBean color property. Select the grid panel component, right-
click, and choose Property Bindings. Use the dialog box to select the bgcolor property in component gridpanel1
and bind it to the colorBean.color property under SessionBean1. (See Figure 8-11 for the Property Bindings dialog
box.) Click Apply and Close. The JSF EL expression should be the following.

#{SessionBean1.colorBean.color}

Figure 8-11. Property Bindings dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-10. Design canvas with components added to Page1.jsp for project Color1

[View full size image]

Add Components for Input

For each of the three color values (red, green, and blue) you'll need a component label, a text field component to
gather input, and an inline message component for validation. Each color will occupy a column in the grid panel you
placed on the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

placed on the page.

There are a lot of components to add here, so it's best to place all three labels on the page first, followed by all three
text field components, and finally all three inline message components. As you add the components, check the
Application Outline view to make sure you're not nesting components inappropriately.

Creator Tip

Drag each JSF component from the Design Palette and drop it directly onto
gridPanel1 in the Application Outline window. This is much safer than dropping the
components onto the grid in the design pane, since with the latter technique you
can't control their placement as easily. When you're finished, all the components
should be at the same "level" under the grid panel component (except for the
component label's embedded output text components). Figure 8-12 shows the
Application Outline view after all the components have been added.

Figure 8-12. Application Outline view for project Color1

Table 8.1 shows the component labels, their properties, and the embedded output text component used to display the
label's text.

Table 8.1. Component labels
Component Property Setting

component label (componentLabel1) for redInput

embedded output text value #{messages.redValueLabel}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

embedded output text
(componentLabel1Text)

value #{messages.redValueLabel}

component label (componentLabel2) for greenInput

embedded output text
(componentLabel2Text)

value #{messages.greenValueLabel}

component label (componentLabel3) for blueInput

embedded output text
(componentLabel3Text)

value #{messages.blueValueLabel}

With the component labels, you'll need to specify the setting of property for after you've added the text field
components from Table 8.2. When you set the values for the embedded output text components (componentLabel1Text,
for instance), select the component first in the Application Outline view and then set the value property in the
Properties window. Note that the value attribute for each component matches the associated key from the
color1.properties file (see Listing 8.6 on page 287.)

Table 8.2. Text field components for color input
Component Property Setting

text field id redInput

required true (checked)

validator #{Page1.validateHexString}

value #{SessionBean1.colorBean.redColor}

text field id greenInput

required true (checked)

validator #{Page1.validateHexString}

value #{SessionBean1.colorBean.greenColor}

text field id blueInput

required true (checked)

validator #{Page1.validateHexString}

value #{SessionBean1.colorBean.blueColor}

Table 8.2 shows the text field components and settings you'll use for gathering color value input. All text field
components specify validators, but the validator specification is not one of the standard JSF validators. Instead, the
validator property references custom method validateHexString()

Creator Tip

The Properties window assumes that you will use one of the standard validators.
For custom validators, set the property manually in the JSP source file. Click the
Source tab at the bottom of the editor pane and add the tag validator="#
{Page1.validateHexString}" to each text field.

To bind the value attribute of the text field components to the color properties of ColorBean, select the text field
component and right-click. Select Property Bindings. Creator displays the Property Bindings dialog. Expand the colorBean
property under SessionBean1 and select the desired property as shown in Figure 8-13 (here we show component
blueInput). Make sure you click Apply followed by Close.

Figure 8-13. Property Bindings dialog to specify binding for text field blueInput

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the third row in the grid panel, Table 8.3 shows the inline message components and settings to report validation
errors. Each of the three text field components has an associated inline message component.

Table 8.3. Inline message components
Component Property Setting

inline message for redInput

(inlineMessage1) style font-style:

italic

 showSummary checked (true)

inline message for greenInput

(inlineMessage2) style font-style:

italic

 showSummary checked (true)

inline message for blueInput

(inlineMessage3) style font-style:

italic

 showSummary checked (true)

The grid panel is now set. It has three component labels, three text fields, and three inline messages.

Add a Button and an Output Text Component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's add a button component and an output text component to the page. Place these components below the grid
panel. Allow plenty of space between the grid panel and the button since the grid panel's size changes dynamically,
depending on its embedded components. For example, if the validator detects an error, the error message appears in
the grid panel, expanding its size. Table 8.4 shows the button and output text components. Note that the button's label
is bound to the localized messages file and the output text's label is bound to ColorBean's color property.

Table 8.4. Button and output text components
Component Property Setting

button (button1) value #{messages.updateButtonLabel}

output text (outputText1) value #{SessionBean1.colorBean.color}

This example does not require an action method associated with the button component. That's because we just want
the page to be submitted when the user clicks the button. All the work is done by input validation and component
binding.

Add a Validation Method

To "hook" into JSF's component validation process, all custom validation methods must conform to the correct format.
Specifically, they must accept arguments that include the faces context, the input component that's being validated,
and the input string that's being validated.

Furthermore, to keep with the stipulation that all messages are localized, you'll have to access the resource bundle from
the current context to build the error message. Once the error message is formed, we add the message to the faces
context and mark the component "not valid."

Custom method validateHexString() calls toLowerCase() to convert possible uppercase values to lower case. Note that we
supply the optional Locale argument to the call.

Listing 8.7 shows the source to add to the Java page bean, Page1.java. (Copy and paste from file
FieldGuide/Examples/Custom/snippets/Color1_validateHex.txt.) Open the Page1.java file and place this
method at the end of the page bean file after the Page1() constructor.

Listing 8.7. Method validateHexString()

public void validateHexString(FacesContext context,

 UIComponent toValidate, Object value) {

 String hexString = value.toString().toLowerCase(

 context.getViewRoot().getLocale());

 boolean valid = true;

 String message = "";

 if (hexString.length() != 2) {

 valid = false;

 message = hexString + ": " +

 lookup_message(context, "lengthError");

 }

 else {

 for (int i = 0; i < 2; i++) {

 char hd = hexString.charAt(i);

 int v = Character.digit(hd, 16);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int v = Character.digit(hd, 16);

 if (v < 0 || v > 15) {

 valid = false;

 message = hexString + ": " +

 lookup_message(context, "digitError");

 break;

 }

 }

 }

 if (!valid) {

 ((UIInput)toValidate).setValid(false);

 context.addMessage(toValidate.getClientId(context),

 new FacesMessage(message));

 }

}

After you paste in the method code, the Java source editor will show red underlines for any unknown classes. We'll
show you how to fix this after you add the code for the lookup_message() method.

Method lookup_message() is a private helper function that looks up the resource bundle associated with this context and
locale. It finds the message text with the key from the resource bundle.

Listing 8.8 shows the source to add to the Java page bean, Page1.java. (Use file
FieldGuide/Examples/Custom/snippets/Color1_lookup.txt).

Listing 8.8. Method lookup_message()

private String lookup_message(

 FacesContext context, String key) {

 String text = null;

 try {

 ResourceBundle bundle =

 ResourceBundle.getBundle("asg.messages.color1",

 context.getViewRoot().getLocale());

 text = bundle.getString(key);

 } catch (Exception e) {

 text = "???" + key + "???";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 text = "???" + key + "???";

 }

 return text;

}

Next, you'll add import statements to the Page1.java source file. These imports will eliminate the editor's unresolved
symbol errors. (Use the Java Source editor shortcut <Alt-Shift-I> to make Creator generate the import statements for
you.) Here are the imports you need.

import java.util.ResourceBundle;

import javax.faces.application.FacesMessage;

import javax.faces.component.*;

import javax.faces.context.FacesContext;

import javax.faces.validator.*;

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Figure 8-14 shows the page after the user
changes the color to yellow (#ffff00) and then supplies invalid input for the red color value.

Figure 8-14. Custom validation with localized error messages in English

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

If you're having trouble with your application working correctly, here are some
things to check. First, if deploying throws an exception, open the Page1.jsp file in
source mode and make sure you have the asg.messages.color1 properties file
spelled correctly in the <f:loadBundle> tag. If the application deploys but doesn't
work properly, use the Properties window in Creator to check that all the property
bindings are correct. Make sure you click Apply when using the Property Bindings
dialog.

Internationalize for Spanish

In keeping with our two-step process for internationalization (localization being the first step), let's look at the Spanish
text for the keys we already created in the default color1.properties file. We'll call this file color1_es_ES.properties
(for Spanish as it's spoken in Spain). The file is already in the asg.jar file installed in your project. You can view it at
FieldGuide/Examples/asg/messages/color1_es_ES.properties. Here is the properties file. (You can also view it
in the editor pane by expanding the asg.jar library reference in the Project Navigator window. Double-click the
color1.properties file to bring it up in the editor.)

Listing 8.9. asg.messages.color1_es_ES.properties

pageTitleLabel = Diversión con color

redValueLabel = Valor Rojo

greenValueLabel = Valor Verde

blueValueLabel = Valor Azul

updateButtonLabel = Fije el Color

lengthError = Los números hexadecimales deben ser dos dígitos

 exactamente.

digitError = Los caracteres hexadecimales deben ser

 [0-9][A-F][a-f] solamente.

Specify Supported Locales

You'll need to specify which locale you want since your project has multiple color1.properties files. This step isn't
necessary with just a default locale, but if you want to configure your browser to use a different locale, you'll have to
tell the application which locales are supported.

You'll also need to install a faces-config.xml file in your project directory. Here is the
FieldGuide/Examples/Custom/color1_faces-config.xml file from your Creator book download. (Note the different
file names.)

Listing 8.10. faces-config.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.10. faces-config.xml

<faces-config>

 <application>

 <locale-config>

 <default-locale>en_US</default-locale>

 <supported-locale>es_ES</supported-locale>

 </locale-config>

 </application>

</faces-config>

To install the faces-config.xml file in your project, follow these steps.

1. In the Project Navigator window, select the top node Color1, right-click, and select New Item . . . ; Creator
brings up the New Wizard dialog.

2. Under Select a Template, expand node Resources and select XML Document. Click Next.

3. For Target Location, expand path <...>Projects/Color1/src/web and select Web-INF.

4. At the top of the dialog, specify faces-config for Name. Click Next.

5. Under Select Document Type, choose radio button Well-formed Document and click Finish.

Creator brings up the XML editor for you. Open the color1_faces-config.xml file in your Creator book's download
directory FieldGuide/Examples/Custom and copy and paste the contents into the XML editor pane. Paste over any
XML tags that are already there (use <Ctrl-V>). When you build your project, Creator makes this configuration file
available to JSF.

Configure Your Browser

If you use Internet Explorer as your browser, follow these steps.

1. Select Tools > Internet Options > Languages.

2. In the Language Preference window, click the Add button and type the following lines in the User defined box.

es-ES

en-US

3. Make sure you use a hyphen (-) and not an underline (__) here. Click OK.

4. To change your locale, select the target language you want and move it to the top with the Move Up button.

If you use Netscape Navigator, follow these steps.

1. Select Edit > Preferences > Languages.

2. Provide the same locale specifications as above.

3. Select the target locale and move it to the top with the Move Up button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploy and Run

Deploy and run the application by clicking the green chevron on the toolbar. Figure 8-15 shows the page after the user
changes the color to yellow (#ffff00) and then supplies invalid input for the red color value. When you configure your
browser for Spanish, the custom validator displays the messages you supplied for the Spanish locale.

Figure 8-15. Custom validation with localized error messages in Spanish

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.5 Key Point Summary

Localization and internationalization enable your applications to run in a global environment.

Java uses a Locale to customize an application for a target language and country.

To localize an application, first isolate all textual labels and messages and organize them into key-value pairs.

Java uses a properties file to hold key-value pairs of text to identify text data.

Use the loadBundle JSF tag to identify the resource bundle of the current locale.

To internationalize an application, translate the messages and labels in the properties file to the target
languages you intend to support.

Each supported locale has its own properties file.

Components access message keys in the properties file instead of using literal text. JSF uses value binding for
this.

When you want to support more than one locale by configuring your browser, specify the supported locales in
an XML configuration file.

You can also control the locale programmatically by invoking the setLocale() method of UIViewRoot.

You can provide custom validation by writing a validation method in your Java page bean.

You must modify a component's validator attribute to use a custom validator method.

The custom validator method should access the current locale to obtain localized error messages.

The custom validator should add error messages to the faces context so that you can use message components
to display them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Debugging with Creator
Topics in This Chapter

Planning for Debugging

Running the Debugger

Setting Breakpoints

Stepping Through Your Code

Tracking Variables

Setting Watches

Using the Call Stack

Detecting Exceptions

Using Log Files

Let's face it, everyone makes mistakes. Designing and coding a web application is certainly no exception. Even simple
web applications can be complex to work with, and there are lots of things to keep track of. As a programmer you have
to be conversant with Java programming as well as XML. If all goes well, there's no problem. But when things don't
work right, you can use all the help you can get.

Fortunately, Creator has a built-in debugger that can assist you in troubleshooting your web applications. The debugger
is smart, includes lots of features, and has a user-friendly interface. You can use the debugger to monitor program flow,
find out why variables aren't set to proper values, and help decipher why you're getting a Java exception. All this is not
difficult if you know what to do. This chapter shows you how. And if you haven't used a debugger before, don't worry,
we take it one step at a time.

This chapter shows you the different features of the Creator debugger as we look at an application that you've already
seen. We'll examine breakpoints, watches, call stacks, variable tracking and show you how to apply the debugging
features of Creator while your web application is running. To make it easier to follow, we include lots of screen shots so
you can see what's going on. You are also welcome to perform each step as you read along, too.

Before we begin, however, let's talk about debugging in general.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 Planning for Debugging
Unless you are very bold and confident, it's best to plan ahead for debugging. This mode of operation is often called
defensive programming. Although this is a broad topic that covers many things, the main philosophy here is to simply
plan ahead. Don't be too fancy with your code and follow some simple rules. Here are some of ours.

Keep methods short in size. Call other methods as needed (this practice is often called stepwise refinement).

Use local variables to store important data so that it's easier to track the data with a debugger.

Use assertions in your program at places where disaster can occur if something goes wrong.

Use log files to store important data, monitor program flow, and document the capture of a critical exception in
a catch handler.

Provide catch handlers to capture uncaught or unexpected exceptions early in your designs.

Although we won't show you all these suggestions in this chapter, here are several to look at.

Local Variables

public double getPayment() {

 double monthly_interest = this.rate / 1200;

 int months = this.years * 12;

 return this.amount * (monthly_interest /

 (1-Math.pow(1+monthly_interest,-1*months)));

}

In the above method, the calculation of a monthly interest payment is performed in the return statement. This
approach makes it difficult to access the payment amount in a debugger. A better approach for debugging is to store
the payment in a local variable before returning its value.

public double getPayment() { {

 double monthly_interest = this.rate / 1200;

 int months = this.years * 12;

 double pmt = this.amount * (monthly_interest /

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 double pmt = this.amount * (monthly_interest /

 (1-Math.pow(1+monthly_interest,-1*months)));

 return pmt;

}

Now you can track the pmt variable in memory as you test out the algorithm with different input values. A class field,
rather than a local variable, can also be used here.

Assertions

Another programming technique for debugging is a Java assertion.[1] There are two formats.

[1] Java assertions were introduced in JDK 1.4.

assert expression1;

assert expression1 : expression2;

An assertion is a boolean expression that is expected to be true at run time. In the first format, an AssertionError is
thrown if expression1 evaluates to false. The second format customizes the message for AssertionError from expression2,
which is typically a String.

There are many ways to use assertions in Java. Here's an example with a private class method that tests a
precondition.

private void myMethod(int arg) {

 assert arg >=0 && arg <= 100 : "Bad argument: " + arg;

 // rest of code here...

}

Log Files

The last example of defensive programming is a simple output print statement, strategically placed where it might be
important to see in a log file or in a message window. To do this, use System.out.println(). Here's an example.

System.out.println("button was clicked");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator also provides a log() method.

log("button was clicked");

We show both methods in "Using Log Files" on page 321.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.10 Finish Debugging
To finish your debugging session, click Debug on the Creator menu bar and select Finish Sessions. A popup menu may
appear with details about the debugging session. Click the checkbox if you want to suppress this popup menu in future
calls.

TroubleShooting Tip

A good way to end a debugging session is to clear all breakpoints before you select
Finish. In the Breakpoints display of the Debugger window, you can either disable
your breakpoints or delete them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.11 Key Point Summary

Defensive programming means that you plan ahead for debugging.

An assertion is a boolean expression that is expected to be true at run time. If an assertion fails, the Java
Virtual Machine throws an AssertionError.

You can run and deploy programs with Creator in debug mode.

Creator has debugging features with which you can set breakpoints, step through code, track variables, and set
watches.

The Creator Debugger window enables you to examine sessions, threads, the call stack, local variables,
watches, classes, breakpoints, and properties.

A breakpoint is a spot in your program at which the debugger stops the execution of your program.

The Creator debugger can step you through your code one line at a time. You can also step in or out of a
method or run your program to a selected line.

Tracking allows you to follow the creation and initialization of a local variable in a method. Tracking is a handy
way to see if a method is working correctly for a range of test values.

Watches let you monitor key variables as they change values during the execution of a program. Creator lets
you display watches as your program runs.

The Call Stack shows you the order of method calls as your program runs, with the most recent method at the
top. Call stacks are useful for determining when a method was called and which method threw an exception.

The Creator debugger lets you select exception breakpoints from a wide variety of different Java packages.

In debugging mode, you can set a breakpoint when an exception is caught, uncaught, or both.

Creator lets you view the server log to which you can write from your code. Log files are useful to monitor
program flow, show intermediate data, and determine whether an event occurred.

The log() method is handy for displaying log information during debugging. This method can only be called from
Creator's preconfigured managed bean files.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 Running the Debugger
Before you run your project with the debugger, let's show you the debugging commands in Creator and what they
mean. We'll also discuss the contents of the Debugger Window, which gives you a visual look at your running program.

Debugging Commands

The Debug menu on the Creator menu bar lists the following debugging commands. Most of these commands also have
hotkeys listed in the menu.

Debug Project

Finish Sessions

Pause

Continue

Step Into

Step Over

Step Out

Run to Cursor

Fix

Stack

New Breakpoint

New Watch

Debug Project runs Creator in debugging mode, and Finish Sessions stops the debugging session. Most of the other
commands deal with breakpoints, a central concept in a debugger. A breakpoint is a spot in your program at which you
can stop the execution of your program. Once you're at a breakpoint, you can examine the values of program variables
or monitor program flow by means of a call stack of method calls. Breakpoints allow you to use other debugging
commands to find out why your code is not working correctly. Here is a description of the debugging commands that
affect breakpoints.

Pause – Temporarily halt the execution of your program.

Continue – Execute to the next breakpoint or if there are no more breakpoints, run until the program
completes.

Step Into – Execute only the next statement, but if it's a method, pause before executing the first statement in
the method.

Step Over – Execute only the next statement, then pause again. If the statement is a method call, execute the
entire method code and pause after returning from it.

Step Out – Execute the rest of the current method and pause in the method that called it.

Run to Cursor – Execute up to the point where the cursor is positioned.

We'll show you later how to set breakpoints and use these debugging commands.

Open Project and Files

Let's start our tour of the Creator Debugger with the Monthly Payment Calculator program from Chapter 5 (see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's start our tour of the Creator Debugger with the Monthly Payment Calculator program from Chapter 5 (see
"LoanBean Component" on page 144). Here's what you do.

1. In the Welcome Page, open project Payment1 from the list of projects.

2. You should see the Page1.jsp page appear.

3. In the design view, right-click the page and select View Page1 Java Class.

4. In the Project Navigator window, click the '+' for Java Sources, the '+' for asg, and the '+' for
bean_examples. Double-click LoanBean.java to see the Java code for this file.

5. You'll need to see line numbers in both Java files, so right-click anywhere in the left margin column of the Java
source file window and select Show Line Numbers.

Run and Deploy in Debug Mode

Now let's run the Payment program in debug mode with Creator.

In the Creator toolbar, select Debug, then Debug Project.

Creator will compile and deploy the system. If the server is already running, Creator will stop the server and restart it in
debug mode. After deployment, the Calculator page appears in the browser window. You can execute the program by
typing in various input values for the loan amount, interest rate, and loan term (in years).

Open the Debugger Window

Click the Page1.jsp tab to the see the design canvas for the Calculator application. A debugger window should be at
the bottom of your screen. If it's not there, go to View in the Creator toolbar and select Debugger Window. Or, click the
Debugger icon at the bottom of your screen.

At the far left of the Debugger window, you will see three columns of icons. The first column contains shortcut icons for
Creator's debugging commands. The second column shows icons for the various displays that are available in the
Debugger window. The last column is a list of class visibility icons. If you place the cursor over any icon, Creator tells
you what it means.

The display icons (second column) control what you see in the Debugger window. Let's show you the list of display
icons now. (You may have to make the Debugger window larger to see them all.)

Sessions

Threads

Call Stack

Local Variables

All in One

Watches

Classes

Breakpoints

We show you how to use most of these features shortly, but for now let's just learn how to manipulate the display. If
you hold your mouse over any of the icons, a pop-up will tell you what they are. Clicking the icon is a toggle to display
or not display. If you click the Watches display icon, for instance, the Watches display disappears. Clicking the icon
again brings it back.

You can also change the display format of the Debugger window. The top right corner of the Debugger window has
several icons. The red X removes the debugger window (you can always get it back with View on the Creator toolbar).
The other icons widen the Debugger window and display it vertically or horizontally. Figure 9-1 shows the Debugger
window as a horizontal display with only the Call Stack and Local Variables.

Figure 9-1. The Debugger window

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Now you are ready to work with the Debugger window and learn its features. Let's start with breakpoints.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Setting Breakpoints
Go to the Calculator Page and exit the browser to end the current session. Switch back to Creator. The first thing you'll
do now is set a breakpoint. Recall that a breakpoint is a place in your program at which the debugger stops the
execution of your program. In Creator, you can set a breakpoint for any of the following.

Line

Method

Exception

Variable

Thread

Class

With any breakpoint, the program stops before the breakpoint is executed (in other words, before a line is reached, a
method is called, an exception is thrown, etc.)

Let's set breakpoints for a line[2] and a method in our Java code. Here's what you do.

[2] The format of your program may be slightly different than ours. If so, use your line numbers from the same
spots in the program.

1. Click the LoanBean.java tab to open the window with the Java code.

2. Set a breakpoint at the line where the amount field is initialized. Right-click Line 46 and select Toggle
Breakpoint. Creator will highlight Line 46 in red for you, showing that a breakpoint has been set.

3. Move the cursor down to the getPayment() method at line 107. Put the cursor on the line and click the left button
of the mouse.

4. Select Debug on the Creator toolbar and choose New Breakpoint.

5. You will see a Breakpoint Type selection menu at the top of the New Breakpoint window. Select Method from
this list. This is how you set a breakpoint to a Java method. This means that the Creator debugger will stop the
execution of your program when the method is called, as shown in Figure 9-2.

Figure 9-2. New Breakpoint dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Click the OK button to finish setting your breakpoint.

7. Right-click Line 107 and select Toggle Breakpoint. Creator will highlight Line 107 in red for you. (This step is not
necessary here, but we're doing it so you can see where all the breakpoints are set in your code.)

Figure 9-3 shows you the LoanBean.java code with the breakpoints. Note that the breakpoints at Lines 46 and 107
are marked in red (shown as dark lines in the figure) for you.

Figure 9-3. Setting breakpoints

[View full size image]

You are now ready to run and deploy the program again, so click Debug Project in the Debug toolbar of Creator.
Several things will happen. First, a Start New Session Dialog appears. This gives you several choices. You can restart
the current debugging session, start up an additional one, or cancel and continue debugging the current session.
Choose Finish & Start to restart your debugging session.

Next, Line 46 changes color from red to green in the LoanBean.java window. This means that the first breakpoint was
reached and the program has been stopped. Since we are inside the LoanBean constructor at this point and Creator has
not finished initializing the LoanBean object, the Calculator JSP page cannot be rendered. Hence, your browser window
is empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is empty.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Stepping Through the Code
Debuggers typically allow you to execute your code one line at a time as it executes. This is called stepping. Let's step
through the LoanBean constructor code now with the Creator debugger to initialize the LoanBean's fields. This is where
we'll use the Debugger window, so make sure you have that window open. Here's what this window displays for you.

Call Stack

Local Variables

Watches

Classes

Breakpoints

Click the Call Stack icon in the left column of the Debugger window to make the Call Stack display go away. We'll just
look at the Local Variables display for now. Here's what you do.

1. Click the '+' for the this reference. Underneath this name, you will see the fields for the LoanBean constructor:
amount, rate, years, and payment.

2. From the Debug toolbar, select Step Over (you may also hit the F10 key). This makes the Creator debugger
execute Line 46 and stop at Line 47, which will now be green in color.

In the Local Variables display, the amount field should be set to 100000.0.

3. Now Step Over Line 47 to Line 48, and then Step Over again to Line 49.

4. In the Local Variables display, the rate field should now be 5.0 and the years field should be 15.

Figure 9-4 shows you what the screen looks like after the LoanBean constructor has finished executing.

Figure 9-4. Displaying LoanBean fields

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creator Tip

It's easy to change the value of a local variable in memory with Creator. Just click
the rounded box on the right of any variable and use the custom editor to modify
the value. This feature can be very handy for checking out boundary conditions and
algorithm correctness during debugging.

Creator Tip

There are other ways to step through your code in Creator. You can, for instance,
Step Into a method or Step Out of a method. You can also move the cursor to a line
and select Run to Cursor.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Tracking Variables
Now let's make Creator execute our program to the next breakpoint. To do this, click Continue from the Debug menu.
The Continue command makes the Creator debugger continue execution from the current breakpoint to the next one.

Inside the LoanBean.java window, you'll see that Creator has stopped execution at the second breakpoint. This is the
first statement in the getPayment() method (Line 108), and is highlighted in green. Note that this method calculates the
loan payment, using local variables to store data. Let's see how to monitor these variables with a Creator debugger
feature called tracking. Here are the steps.

1. Click the '+' for the this reference in the Local Variables window. You should see the same values for the
LoanBean fields as before.

2. Click Step Over from the Debug toolbar. This moves the focus to Line 109.

In the Local Variables display of the Debugger window, a new entry appears above the this reference. The local
variable monthly_interest shows up with a value of 0.00416666.

3. Click Step Over from the Debug toolbar. This moves the focus to Line 110.

The local variable months appears in the Local Variables display with a value of 180.

4. Click Step Over one more time. The LoanBean payment field changes to a value of 790.79362. Figure 9-5 shows
the result.

Figure 9-5. Displaying getPayment() local variables

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Click Continue from the Debug toolbar and switch to the Calculator page in your browser. You will see a Loan
Payment of $790.79 displayed on the page.

TroubleShooting Tip

You can repeat this whole exercise again by changing any of the input fields on the
Calculator page. When you click the Calculate button and return to the Creator
screen, you will see the program stop at the same breakpoint. By stepping through
getPayment() as before, you can see the changed values in the Local Variables
display. When you click Continue in the debugger, the Calculator page will show the
new payment. This is a handy way to test an algorithm and see whether a method
is working correctly for a wide range of input test values.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Setting Watches
There are several local variables inside the getPayment() method, but the LoanBean payment field is the most important.
Since this field holds the payment amount that will be displayed on our web page, let's use another feature of the
Creator debugger called a watch. With watches, you can monitor key variables as they change values during the
execution of a program. Whereas the Local Variables window shows values for variables in the currently executing
method, the Watch window monitors values of variables selected by you (including class fields). Here's how to set a
watch.

1. In the second column of the Debugger window, click the Local Variables icon to make the display go away.

2. Now click the Watches icon to make this display show up.

3. Click the Breakpoints icon to show the current list of breakpoints. (You may have to make the Debugger window
larger.)

4. In the Breakpoints display, disable all the breakpoints by clicking the checkboxes underneath the Enabled
heading. (Alternatively, you can right-click in the Breakpoints display and select Disable All.)

5. Put a new breakpoint at line 112 in LoanBean.java where payment is set to the new calculated amount. To do
this, place the cursor at the line, right-click, and choose Toggle Breakpoint. Line 112 should now be highlighted
in red.

6. Right-click line 112 on the payment variable and select New Watch. The Watch Expression dialog should display
the payment variable.

7. Click OK to make payment a watch variable.

The payment variable should appear in the Watches display of the Debugger window. Note that its value is not
defined at this point.

Now return to your browser to interact with the Calculator page. Supply the following input: 100000 for Loan Amount,
5.0 for Interest Rate, and 30 for Loan Term. Click the Calculate button and switch back to the Creator screen. Figure 9-
6 shows the result for the Watches and Breakpoints display. In the Watches display, the value of the payment field is
now set to the current payment. (If you didn't supply the same input fields on the Calculator page, your payment
variable will have a different value from ours.)

Figure 9-6. Monitoring watches

[View full size image]

Click Continue on the Creator toolbar. When you go back to the Calculator page, you will see the same loan payment
amount displayed. Now type in various input values for the amount, interest rate, and loan term. Click the Calculate
button again and switch back to the Creator screen. Click Continue when the breakpoint at line 112 is reached and is
highlighted in green. Each time you do this, the payment watch variable displays the new loan payment. This is the same
value that is printed on the Calculator web page in your browser.

TroubleShooting Tip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TroubleShooting Tip

Watches are a handy way to monitor how a variable changes during the execution
of a program. Use Continue in Creator to step through the breakpoints as you do
this.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.7 Using the Call Stack
The Java Virtual Machine executes your Java code and maintains a call stack list. This list shows the order of method
calls that have been invoked but have not yet returned (this type of list is often called a call chain). The current method
is at the top of the list, and the invocations of each parent method appears below it as you work down the call list.

To see the Call Stack in action, click the Calculate button on the Calculator web page in your browser. Now switch back
to Creator and make sure line 112 is highlighted in green. Click the Call Stack icon in the second column of the
Debugger window and remove the other displays (click the Watches and Breakpoints icons). Figure 9-7 shows the
result. At the top of the Call Stack is the current method LoanBean.getPayment(), which was called from a series of native
methods in the underlying system. If you scroll through this display, you'll see various calls to binder methods, UI
components, and servlets. At the very bottom of the Call Stack is Thread.run(), which starts it all.

Figure 9-7. Displaying the Call Stack

[View full size image]

Creator also lets you manipulate the Call Stack. When you click Debug on the Creator menu bar, you'll see a choice
called Stack on the dropdown list. With the Call Stack, you can select from any of the following.

Make Callee Current

Make Caller Current

Pop Topmost Call

The first two commands let you change the current method of the call stack. The pop command removes the current
method from the top of the stack.

TroubleShooting Tip

The Call Stack display is useful when your program calls a method and you aren't
sure why. When you set a breakpoint at a method and run your program, the Call
Stack tells you the call chain of methods up to and including the breakpoint. You
can learn a lot about how things happen by taking a closer look at the Call Stack.
Call stacks are also handy when you need to determine which method threw an
exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.8 Detecting Exceptions
When using Creator's debugger, you can detect and track thrown exceptions. We'll show you how to do this now.

Our working Calculator program doesn't throw any exceptions directly, but it does generate an internal exception that is
handled by JSF. This happens when you don't type anything in one of the input text fields and click the Calculate
button. In this case, an error message appears on the Calculator page, because an exception was thrown and handled.

Here are the steps for detecting an exception with the debugger.

1. Remove all breakpoints. To do this, open the Debugger window and bring up the Breakpoint display. Right-click
anywhere in the Breakpoint display, and select Delete All. A pop-up window appears to prompt you for the
deletion. Answer Yes.

2. Click on the Debug toolbar and select New Breakpoint.

3. In the checkbox for Breakpoint Type, select Exception.

4. In the checkbox for Package Name, select java.util.

5. In the checkbox for Exception Class Name, choose MissingResourceException.

6. In the checkbox for Stop On, choose Exception Caught, as shown in Figure 9-8.

Figure 9-8. Setting a breakpoint on a caught exception

7. Click the OK button. In the Breakpoint display of the Debugger window, you should see the exception enabled.

8. If line 112 is still highlighted in green, click Continue from the Debug toolbar.

9. Switch to the Calculator page and clear the input for the Interest Rate field. Click the Calculate button.

Figure 9-9 shows you what the Call Stack in the Debugger window looks like when you switch back to Creator. At the
bottom of the screen, you see this error message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exception java.util.MissingResourceException reached at line ? in class java.util

.ResourceBundle . . .

Figure 9-9. Exception caught

[View full size image]

Because you did not type anything into the interest rate input field, a MissingResourceException was caught by the
ResourceBundle() method. The line number appears as ? in the error message because the source code for this method is
not available to Creator. At the top of the Call Stack, you will see ResourceBundle.getObject() as the current method.

Go to the Breakpoint display in the Debugger window and disable the Exception breakpoint by unchecking the Enabled
checkbox. Now click Continue from the Debug toolbar and execution resumes. In the Calculator page, the following
error message appears from the Validator since the exception was handled.

Validation Error: "interestRate": Value is required.

Creator Tip

In Creator, click New Breakpoint again from the Debug toolbar. In the dialog box,
choose Exception at the top and then peruse the choices in the checkbox for
Package Name. Note that there are lots of choices. If you scroll down and select
javax.faces, for instance, you'll see the choices for Exception Class Name change,
too. (The only choice here is FacesException.) If you examine the checkbox for Stop
On, you'll notice that you can monitor uncaught exceptions as well as caught
exceptions, or both. All this gives you a variety of ways to track exceptions as you
debug your applications with Creator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.9 Using Log Files
There are two ways to write debugging information to your application server's log file. You can use a Java
System.out.println() statement or Creator's log() method. Let's look at Java print statements first, since they can be used
in any Java source file (including your own JavaBeans components, such as LoanBean).

Method System.out.println()

It's easy to write to a Creator log file with simple Java print statements. Here are some examples.

System.out.println("amount = " + this.amount);

System.out.println("button1_action called");

System.out.println("input: " + (Double)inputText1.getValue());

Let's assume that Creator is installed on the C: drive. If you are using the J2EE application server, the log file is

C:\Sun\Creator\SunAppServer8\domains\creator\logs\server.log

On our system, we use the following commands to examine the output from Java println() statements.

$ cd C:\Sun\Creator\SunAppServer8\domains\creator\logs

$ tail -30 server.log

. . .

...amount = 120000

...button1_action called

...input: 4.5

The Unix tail command displays the last 30 lines of the log file.

Creator Tip

The server log file is also accessible from the Server Navigator window in Creator.
Right-click localhost under Deployment Servers and select View Server Log. The
server log is displayed at the bottom of your screen in its own Output window.

Let's write to the log file now from the application to show you how it works. Here's what you need to do.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's write to the log file now from the application to show you how it works. Here's what you need to do.

1. Bring up the Page1.jsp screen in Creator.

2. Double-click the Calculate button. This makes Creator write Java code for the button action method.

Creator opens the Page1.java file and puts the cursor in the calculate_action() method.

3. Add the following println() statement to the button handler.

public java.lang.String calculate_action() {

 System.out.println("button clicked");

 return null;

}

You don't need a button handler in this program, but we include it to show you how to write to log files. All the println()
statement does is write to the log file. When the user clicks the Calculate button, JSF submits the page. If no validation
errors occur, JSF invokes the button handler method. The println() output tells us that the calculate_action() method was
invoked.

Recompile and redeploy the program. Click the Calculate button with valid entries for the amount, interest rate, and
loan term.[3] The loan payment should appear on the Calculator page. When you examine the log file, the last line in
the file should contain

[3] Remember that validation errors cause the life cycle process to skip some of life cycle stages and
calculate_action() won't be called (see "JSF Request-Response Life Cycle Process" on page 185).

button clicked

Method log()

The log() method, defined in FacesBean, is another way to write debugging information to the server log file. This
method, however, can only be called from Creator's preconfigured managed bean files, since they extend the
FacesBean class. Calls to log(), therefore, are valid only in Page1.java, SessionBean1.java, ApplicationBean1.java,
or other page beans that you create in your project.

The log() method has two formats.

void log(java.lang.String);

void log(java.lang.String, java.lang.Throwable);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first format is handy for printing event information (such as "button clicked"). The second format is useful in catch
handlers with thrown exceptions.

catch (Exception e) {

 log("SQL ROWSET UPDATE ERROR", e);

 throw new FacesException(e);

}

Note that this form of the log() method uses the Exception object with the textual message you want to use.

The information from the log() method is available in Creator's output window. To see what this looks like, replace the
System.out.println() statement in your button handler with a call to log(), as follows.

public java.lang.String calculate_action() {

 log("button clicked");

 return null;

}

Now deploy and run the application. After you click the Calculate button and return to Creator, here's how to display the
log file. From the Server Navigator window, select Deployment Servers > localhost:4848 [running] and right- click.
Choose View Server Log. Near the end of the file you should see output similar to the following.

[#|2004-05-14T17:48:32.328-0700|INFO|

sun-appserver-pe8.0.0_01|

javax.enterprise.system.container.web|_ThreadID=12;

|WebModule[/Payment1]button clicked|#]

Note that the output from the log() method shows you more than the text you called it with. The output includes date
and time information, the thread ID of your application, and the web module name (project name).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright
© 2004 Gail Anderson and Paul Anderson

Published by Prentice Hall PTR

Prentice-Hall, Inc.

Upper Saddle River, NJ 07458

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and it's licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions as set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 55.227.19. The products described in this book may
be protected by one or more U.S. patents, foreign patents, or pending patents.

TRADEMARKS—HotJava, Java, Java Development Kit, J2EE, JSP, JavaServer Pages, Enterprise JavaBeans, EJB, JDBC,
J2SE, Solaris, SPARC, SunOS, and SunSoft are trademarks of Sun Microsystems, Inc. All other products or services
mentioned in this book are the trademarks or service marks of their respective companies or organizations.

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact U.S. Corporate and Government Sales, 1-800-382-3419,
corpsales@pearsontechgroup.com. For sales outside of the U.S., please contact International Sales, 1-317-581-3793,
international@pearsontechgroup.com.

Acquisitions Editor: Gregory G. Doench

Editorial Assistant: Raquel Kaplan

Sun Microsystems Press Publisher: Myrna Rivera

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—CRS—0807060504

First printing, June 2004

Sun Microsystems Press

A Prentice Hall Title
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How This Book Is Organized
Chapter 1 introduces the world of Java and its supporting technologies. Creator depends on these well-established Java
technologies to do its job. With the Java programming language and XML, JavaServer Faces component system, and
NetBeans tool building technology, Creator has tapped the available standards. Here we provide a gentle introduction to
these topics, so you'll get the "big picture" of how Creator fits into the Java world. We also spend ample time on the
Java programming language since you will use Java often with Creator. If you come from another programming
environment, we want you to feel comfortable right away with the myriad of pieces that make up a Java-based web
application.

Chapter 2 introduces Creator, with the aim of getting you up to speed with its various windows, the design canvas, and
its editors. A good tool lets you accomplish tasks in the order that's best for the developer. Knowing how to move about
within a Creator project will quickly make you productive. You'll also build your first project from scratch.

Chapter 3 is your "Components Catalog." This reference chapter lets you choose the best component for your
application from Creator's store of components, validators, and data converters. All the projects that you build use
these components, so as we discuss each one, we'll point you to places in the book where you can see how they work.

Chapter 4 introduces Page Navigation in Creator. You'll learn how to specify page flow in a web application and
understand which components are suitable for page navigation. We'll also discuss Creator's navigation model and
illustrate page navigation with several projects that you can build.

Chapter 5 explains JavaBeans components (beans). JavaBeans components provide one of the key supporting
technologies that Creator uses. Developers who understand the advantages of JavaBeans components can build robust
applications with reusable components for related or evolving applications.

Chapter 6 shows you how to access a web service from a Creator-built application. Creator bundles a full selection of
web services, which are all readily usable once you add them to your project. In this chapter, you'll build an application
that uses the Google Search Web Service.

Chapter 7 shows you how to use a database with Creator. You'll build projects with essential database operations, such
as read, update, insert, and delete. Web applications that tie into databases are an important and common need for
today's developer. Creator's data-aware components make linking to a database easy and straightforward.

Chapter 8 shows you how to customize a web application from Creator. You'll learn how to localize an application and
how to internationalize it. We also show you how to write and install custom validation methods.

Chapter 9 shows you defensive programming techniques for web development and how to use Creator's debugger in
your projects. You'll learn how to set breakpoints, look at the server log file, and respond to exceptions. Although this
chapter is at the end of the book, we expect you to refer to it as soon as you start doing serious web development

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Examples
Java Studio Creator Field Guide is an example-driven book. You may certainly download and run all the projects in the
chapters, but the real value of this book comes from doing these examples yourself, step by step. You can always check
your work against our examples as you build your projects, too.

The database chapter includes a sample Music database, which we also provide in the download bundle. The example
code is available at an FTP site for all the projects in this book. Check your firewall to ensure that you can access the
FTP site. You can download the example code from our web site at

http://www.asgteach.com
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Stay Current with Creator!
Creator is an evolving product, so make sure that you visit our web site at the above URL. We'll give you updated
example projects, including new code (which may be different than what's here in the book). We'll also keep you up to
date with the newest features of Creator and any changes to the product. Don't forget to check in with us!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Notational Conventions
We've applied a rather "light hand" with font conventions in an attempt to keep the page uncluttered. Here are the
conventions we follow.

Element Font and Example

attribute name value attribute, cellpadding attribute

code comments // User event code here . . .

component name text field loanAmount

Creator components output text, text field, dropdown list

filename color1.properties, Page1.jsp

Java class String, Object, Integer

Java code username.setValue("rave4u")

JavaBeans components LoginBean, ColorBean, Page1

JSF EL expressions #{Page1.colorBean.redValue}

JSP code, HTML code <f:loadBundle>,

key combinations press <Alt-Shift-I>; press <Enter>

menu selections View Page1 Java Class, Music > Tables

project name Login1, Echo

user input Type the text Music1, specify loginBean

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Front Cover
I.M. Pei's Glass Pyramid is an apt symbol for a book on Java Studio Creator. The pyramid serves as the entrance to the
Louvre Museum in Paris. Truly international, it was designed by a Chinese-American, who is both an engineer and an
artist. We were drawn to its elegant simplicity of glass and light, its multiple facets, and the blending of a structure that
is modern yet simultaneously representative of Ancient Egypt.

Java Studio Creator is built on the same concept of layered architecture. Based on JavaServer Faces technology,
Creator leverages the existing Java 2 Platform Enterprise Edition (J2EE) architecture and of course, the solid
foundations of Java and its runtime environment. Likewise, the Glass Pyramid is an extraordinary example of layered
architecture whose backdrop is a traditional Renaissance palace. The Louvre itself houses artistic treasures dating from
antiquity, perhaps none more famous than Leonardo da Vinci's Mona Lisa.

Gail and Paul Anderson
Anderson Software Group, Inc.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

abbreviations, Editors
abstract method
abstraction
AbstractPageBean class 2nd
action attribute 2nd 3rd
action event
 and page navigation
action method
 and page navigation
 for a button 2nd
 format of
add a web service to Creator
Add Data Source dialog, (table)
Add Table menu item, Query Editor
add XML document to project 2nd
Admin Console
afterRenderResponse() method 2nd
Ant build tool 2nd
Application Outline view
 as a target for dropping components
application scope 2nd
application server 2nd 3rd
 debug mode
 log file
ApplicationBean1
architecture
 J2EE
 JSF
argument list
asg.jar JAR file 2nd 3rd 4th
AssertionError
assertions
Auto-submit on change 2nd 3rd
 Dropdown List
 Listbox
 Multi Select Listbox 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

background color 2nd
basename attribute, loadBundle tag
beforeProcessValidations() method
beforeRenderResponse() method
bgcolor attribute 2nd
Bind Display to Data dialog
 (figure)
binding
binding attribute
Boolean Converter
boolean property
border attribute 2nd
breakpoints, setting 2nd
 (figure)
browser
 configure for different locales 2nd
Build menu
 Run Project command
build output window
build.xml 2nd
business logic, separation from presentation logic
Button 2nd 3rd 4th
 with dynamic navigation
 with image file 2nd
 with simple navigation
Byte Converter

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

call stack (debugging) 2nd
cascadeDelete() method
cascading deletes
casting
catch keyword
cellpadding attribute 2nd
cellspacing attribute 2nd
Character Converter
Checkbox
Checkbox List
class construct 2nd
Clips palette
 accessing objects in different scopes
 Concatenate Strings
close() database connection
code completion , Java source editor
Color1 project
color1.properties file
ColorBean 2nd
ColorBean.java
columns attribute
Component Label 2nd 3rd 4th
 with secret field
 with text field 2nd
components
 action attribute
 bgcolor attribute
 binding attribute
 border attribute
 Button 2nd 3rd 4th 5th 6th 7th 8th
 cellpadding attribute
 cellspacing attribute
 Checkbox
 Checkbox List
 columns attribute
 common attributes
 compare Link Action and Hyperlink
 Component Label 2nd 3rd 4th 5th 6th 7th
 composite
 converter attribute
 Data Table 2nd 3rd 4th 5th
 data-aware 2nd
 delete
 Dropdown List 2nd 3rd 4th 5th 6th
 Formatted Output
 Grid Panel 2nd 3rd
 Group Panel
 Hidden Field
 Hyperlink 2nd
 id attribute
 Image 2nd
 Inline Message 2nd 3rd 4th 5th
 Link Action 2nd
 Listbox 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 localizing text
 maxlength attribute
 Message List 2nd
 Multi Line Text Area
 Multi Select Listbox
 Multi Select Menu
 nested
 onchange attribute
 Output Text 2nd 3rd 4th 5th 6th
 Page Fragment Box
 Radio Button List
 required attribute
 resizing
 Secret Field 2nd 3rd
 style attribute
 Text Field 2nd 3rd 4th 5th 6th 7th 8th
 title attribute (tooltip) 2nd
 validator attribute
 value attribute
 valueChangeListener attribute
Components window
composite components
composite primary key
Concatenate Strings clip 2nd
configure workspace
constructors
context root
Continue command
Continue debugging command
conversion model
converter attribute
converters 2nd 3rd
 Boolean Converter
 Byte Converter
 Character Converter
 Date Time Converter
 Double Converter 2nd
 Float Converter
 Integer Converter 2nd
 Long Converter
 Number Converter 2nd
 Short Converter
Converters palette
create a new web page
create new navigation rules
Create New Project command 2nd
Creator windows
 Application Outline view
 build output window
 Clips palette
 Debugger window 2nd
 design canvas
 docking
 editor pane
 file tab
 Help System
 hiding
 JSF Standard Components
 JSF Validators/ Converters window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 palette 2nd
 Project Navigator window
 Properties window
 Server Navigator window
Creator, additional documentation
CRUD database operations
custom validate method 2nd
custom validation 2nd
 validator tag

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data Source
 add a 2nd
 add to project 2nd 3rd
 Choose Target dialog
 configure alternate
 Test Connection
Data Sources node 2nd
 Add Data Source 2nd
 JDBC 3.0-compliant drivers
 Remove Data Source
 View Data
Data Table 2nd 3rd 4th 5th
 bgcolor attribute
 Bind to Data 2nd
 Choose Target dialog 2nd 3rd
 embedded column component
 Input Text (editable)
 Output Text (read-only)
 Table Layout dialog 2nd 3rd
 (figure) 2nd
 Table Layout Paging dialog
 (figure)
data-aware components
 and converters
database
 fundamentals 2nd
 metadata
database operations
 cascading deletes
 CRUD
 database joins 2nd
 dataTableModel
 deletions 2nd
 master-detail relationship
 row inserts 2nd
 updates 2nd
Database sample
 Music Collection database
dataTableModel
Date Time Converter
 pattern
DateFormat class documentation
DB2 JDBC driver
Debug menu
 Continue command
 Debug Project command
 Finish command
 New Breakpoint menu item
debug mode
Debug Project debugging command
Debugger window 2nd
debugging
 AssertionError
 assertions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 call stack 2nd
 commands
 defensive programming
 exceptions 2nd
 local variables
 log file
 log() method
 planning for 2nd
 setting breakpoints 2nd
 setting watches 2nd
 Step Over
 stepping
 System.out.println() method
 tracking variables
 Watch window
default constructor 2nd
default-locale element
defensive programming
delete component
delete database operations 2nd
Deployed Components node
deployment
Deployment Servers node
derived property
design canvas
 Page Navigation context menu
 View Java Class context menu
docking windows
documentation
 Creator
 DateFormat class
 Google Web Service
 internationalization
 J2EE Tutorial
 Java API
 Java programming language
 JavaServer Faces
 MessageFormat class
 NetBeans
doGoogleSearch() method
 parameters (table)
Double Converter 2nd
Double Range Validator 2nd
download examples
drag and drop components
Dropdown List 2nd
 Auto-submit on change
 database binding
 Fill the List
 specifying default items 2nd
 used with navigation
 value change event 2nd
dynamic binding
dynamic navigation 2nd 3rd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Echo project
Edit Event Handler
 action 2nd
 processValueChange
editor pane
Editors
 abbreviations
 Java source
 JSP source
 line numbers
 NetBeans
 Page Navigation 2nd 3rd
 Query 2nd
 XML source
encapsulation
error message 2nd
escape attribute 2nd
event
 action
 value change 2nd
 value change vs. action
event handler code
 and page navigation
event listener
event model
event object
event source
examples
 download
exception handling 2nd 3rd
 and debugging 2nd
 AssertionError
 NumberFormatException
 SQLException 2nd
extends keyword

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

faces-config.xml 2nd
FacesBean superclass
FacesContext object
facet tag, Data Table component
fast import <Alt-Shift-I> editor short cut 2nd 3rd
fields 2nd
file tab
 Close option
FileSystem View
Finish command
Finish Sessions debugging command
Float Converter
fora editor abbreviation
foreign key
Formatted Output
from-outcome element
from-view-id element

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

garbage collection
getNavigationHandler() method
getter
global variables
Google logo
Google Web Service
 add to project
 documentation
 license key
 registration
 URL
Google1 project
Google2 project
Google3 project
Google4 project
GoogleSearchResult object
 public methods (table)
GoogleSearchService
Grid Panel 2nd
 with nested button components
Group Panel

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Help menu
 Help Contents
Help System
 Index
Hidden Field
hiding windows
HTML table
HTML tags
 with Output Text
Hyperlink 2nd
 compare with Link Action

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

id attribute 2nd 3rd
Image
 Google logo
image attribute, Button
image file, using with Button 2nd
implements keyword
Import Class dialog 2nd
import statement
include file for JSP pages
Index tab, Help System
indexed property
inheritance 2nd
Inline Message 2nd 3rd 4th 5th
INNER JOIN statement
Integer Converter 2nd
interface
internationalization 2nd 3rd 4th
 configure browser 2nd
 documentation
Internet Explorer 2nd
is-a relationship

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

J2EE
 architecture
 Tutorial
J2EE application server
 administration console
JAR files 2nd
 add to project
Java API documentation
Java Data Base Connectivity [See JDBC]
Java file
 add to project
 double click to edit
Java package
 add to project
Java programming language 2nd 3rd
 abstraction
 casting
 classes 2nd
 constructors
 encapsulation
 exception handling 2nd 3rd
 fields 2nd
 import statement
 inheritance 2nd
 interface
 methods 2nd
 object oriented programming 2nd
 objects
 outside view
 package
 private
 public
 references
 this keyword
 void return type
Java Servlet technology
Java source editor 2nd
 code completion
 dropdown menu
 Editor Settings
 fast import short cut 2nd 3rd
 Javadoc retrieval
 Show Line Numbers
 toggle breakpoint
Java Sources folder
 add Java file
JavaBeans 2nd 3rd
 advantages of
 binding
 ColorBean 2nd
 default constructor 2nd
 derived property
 getter
 LoanBean 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LoginBean 2nd
 preconfigured
 property 2nd
 property binding
 scoping rules
 setter
Javadoc retrieval
JavaScript element, this.form.submit() 2nd 3rd
JavaServer Faces (JSF) 2nd 3rd
 aaa] [See also JavaServer Faces (JSF)]
 documentation
JavaServer Pages (JSP)
JDBC
 3.0-compliant drivers
 database server
 ResultSet object
JDBC RowSets 2nd 3rd 4th
 close()
 concurrency attribute
 initialization code
JSF
 architecture
 component validation process
 conversion model
 converters 2nd
 Creator-generated tags
 event model
 Expression Language (EL) 2nd 3rd
 facet tag
 Life Cycle Process 2nd
 (figure)
 loadBundle tag 2nd
 navigation model 2nd
 Standard Components window
 validation model
 validators 2nd
 Validators / Converters window
JSF context
 error messages 2nd
JSP source editor

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

key/value pairs in properties files

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Length Validator 2nd 3rd 4th
libraries
 in projects
Library References node 2nd
 libraries
Life Cycle Process 2nd
 methods for tapping into (table)
line numbers in source files
 setting breakpoints
Link Action
 compare with Hyperlink
 with page navigation
Listbox 2nd
 database binding
 Fill the List 2nd
 value change event
loadBundle tag 2nd
LoanBean 2nd
LoanBean.java
local variables, using in debugging
locale
 configure from application 2nd
 specify supported
localhost
localization 2nd
 properties file
log file
log() method
Logical View
Login1 project 2nd
Login2 project
Login3 project
login3.properties file
LoginBean 2nd
LoginBean.java
Long Converter
Long Range Validator 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

managed beans
 add to project
 configuration
 preconfigured
Managed Beans node
Managed Session Bean dialog
managed-bean-class element
managed-bean-name element
managed-bean-scope element
managed-beans.xml 2nd
Margin editor contextual menu
master-detail relationship
maximum, validator attribute 2nd
maxlength attribute
Message List
 validation errors for multiple components
MessageFormat class documentation
metadata 2nd
methods 2nd
 abstract
 argument list
 signature of
minimum, validator attribute 2nd
model view
Multi Line Text Area
Multi Select Listbox
Multi Select Menu
Music Categories table
Music Collection Database
 (figure)
 schema
 SQL script
Music1 project
Music2 project
MusicDelete project
MusicInsert project
MusicUpdate project

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Navigate1 project
Navigate2 project
navigation
 handler
 labels
 model 2nd
navigation.xml
NetBeans 2nd
Netscape Navigator 2nd
new 2nd
New Breakpoint menu item
New Page menu item 2nd
New Property Pattern dialog
non-command components and page navigation 2nd
none, scope
null return value
 and page navigation
Number Converter 2nd
 pattern 2nd
NumberFormatException

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

object oriented programming 2nd
 abstraction
 encapsulation
 outside view
objects
onchange attribute
Open an Existing Project
operator new 2nd
Oracle JDBC driver
ORDER BY clause
Output Text 2nd 3rd 4th
 with Data Table 2nd
 with HTML tags 2nd
 with number converter
outside view
override methods

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

package
page bean 2nd
 Creator-generated Java code
Page Fragment Box
page navigation
 action method
 dynamic navigation 2nd
 event handler code
 null return value
 simple 2nd
 UML activity diagram
 with non-command components 2nd
Page Navigation editor 2nd 3rd
 create new page 2nd
 create new rules
 editor pane (figure) 2nd 3rd
 Properties window (figure)
Page Request Life Cycle 2nd
Page1
palette
 Clips
 JSF Components
 JSF Validators/ Converters
parameter, SQL query 2nd
parseInt() method
pattern, Number Converter
Pause debugging command
Payment1 project 2nd
PointBase 2nd
position attribute
presentation view
primary key 2nd 3rd
private
Process Validations life cycle phase
processValueChange
project
 add Java file to
 add library to 2nd
 add managed session bean to
 add package to
 add XML document to 2nd
 Create New Project
 Open an Existing Project
Project Navigator window
 add XML file to project 2nd
 FileSystem View
 Library References node 2nd
 Logical View
 Managed Beans node
 References node 2nd
 Resources node
Projects
 Color1
 Echo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Google1
 Google2
 Google3
 Google4
 Login1 2nd
 Login2
 Login3
 Music1
 Music2
 MusicDelete
 MusicInsert
 MusicUpdate
 Navigate1
 Navigate2
 Payment1 2nd
properties file
 for project Color1
 for project Login3 2nd 3rd
 format
Properties window
property 2nd
 add to bean component
 boolean
 indexed
 simple
property binding 2nd 3rd 4th 5th 6th
 concatenating with a string
Property Bindings dialog 2nd 3rd 4th
 (figure)
public
Publish-Subscribe pattern

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Query Editor 2nd 3rd
 (figure)
 Add Query Criteria dialog 2nd
 Add Table
 INNER JOIN
 modify default query
 ORDER BY clause
 parameter 2nd
 query text
 Sort Type
 spreadsheet view
 table view
 WHERE clause 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Radio Button List
read access
Recording Artists table
recordingartistsRowSet 2nd 3rd
Recordings table 2nd
recordingsRowSet
references
Remove Data Source menu item
Render Response life cycle phase
request scope
required attribute 2nd 3rd
ResourceBundle 2nd 3rd
Resources node
ResultElement object
 public methods (table)
ResultSet object
RowSets [See JDBC RowSets]
Run to Cursor debugging command

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

scope 2nd
 accessing objects clips
Secret Field 2nd
 collect password
Server Navigator window
 Data Sources node 2nd
 Deployed Components node
 Deployment Servers node
 Google Web Service
 log file
 Show Admin Console command
 Undeploy application
 Web Services node 2nd
Servlets, Java
session scope 2nd
 saving data in 2nd
 SessionBean1 2nd 3rd
SessionBean1 2nd
 add properties to 2nd 3rd
setter
Short Converter
Show Admin Console
Show Line Numbers context menu item
signature, method
simple navigation 2nd
Simple Object Access Protocol (SOAP) 2nd
simple property
SOAP
sort for SQL query
SQL
SQL query 2nd
 add parameter 2nd
SQL Server JDBC driver
SQLException 2nd
Step Into debugging command
Step Out debugging command
Step Over
Step Over debugging command
stepping (debugging)
stepwise refinement
style attribute 2nd
subclass
superclass
supported-locale element
Sybase JDBC driver
System.out.println() method

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

10572
 FGC
 Figure 5-1 Login web application using JavaBean LoginBean 2nd
10726
 FGC
 Figure 8-13 Table Layout dialog: changing the component type
11134
 NL1
 1. From either the design canvas or the Application Outline view, select text
11716
 FGC
 Figure 2-15 Value Binding dialog box
11724
 FGC
 Figure 7-3 The Music Collection Database after selecting title Graceland
12408
 FGC
 Figure 2-6 Creator's Document Outline window for project Login1
13151
 CN1
 1
13250
 H2
 Add a Library Reference to Your Project 2nd
13813
 FGC
 Figure 8-9 School Client and Student message driven bean
14209
 FigureHeading
 Figure 1.2: JSF Lifecycle Process 2nd
15126
 FGC
 Figure 6-2 A successful login session
15446
 FGC
 Figure 7-9 Adding a property to SessionBean1
15499
 FGC
 Figure 3-6 Multi line text area on a web page
16163
 FGC
 Figure 3-10 Multi-select menu allows multiple and non-adjacent selections
16533
 H1
 9.9 Using Log Files
16588
 H2
 Page Navigation
16817
 CT
 Accessing Databases
16918
 FGC
 Figure 8-6 Query Editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17008
 FGC
 Figure 7-6 Screen shot showing the added Recording Artist data
18385
 FGC
 Figure 8-11 Table Layout dialog for dataTable2 component
18521
 FGC
 Figure 4-6 Design canvas showing components for project Login1
18677
 FGC
 Figure 8-3 Setting breakpoints
18891
 H2
 Page Navigation
19486
 H2
 Add a Validator
19737
 FGC
 Figure 2-9 WebForm1.java Java source editor
20606
 FGC
 Figure 8-4 Setting breakpoints
20893
 FGC
 Figure 8-2 Bind Display to Data dialog box
21751
 FGC
 Figure 5-2 Login page web application 2nd
22685
 FGC
 Figure 6-2 Login page web application using JavaBean LoginBean
22795
 FGC
 Figure 3-1 Using checkbox with a component label
22859
 FGC
 Figure 9-4 Displaying LoanBean fields
23144
 CN1
 8
23417
 H2
 Components for Input
24227
 H2
 Add a Data Table
24584
 H2
 Scope of Web Applications
24717
 H2
 Add Components to Page LoginBad
25625
 FGC
 Figure 7-1 Creator's design canvas view showing project Google1's components
25874
 FGC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Figure 6-3 Screen shot showing latest version of the Google Web Search application
25999
 CT
 Page Navigation
26010
 FGC
 Figure 3-3 Table Layout dialog box
26171
 FGC
 Figure 9-8 Setting a breakpoint on a caught exception
26454
 H2
 Interest Rate and Term Components
26605
 FGC
 Figure 2-10 Page navigation editor for project Login1
26652
 NL
 6. Click Close
27018
 H2
 Bind Input Components
27390
 FGC
 Figure 2-11 Java source editor list of abbreviations
29032
 FGC
 Figure 3-10 Using radio button list components in an application
29853
 FGC
 Figure 9-4 Custom validation with localized error messages
30844
 FGC
 Figure 5-3 Simple navigation web application
30945
 H2
 Localized Text for JSF Components
31173
 FGC
 Figure 8-19 Bind Display to Data dialog box
31419
 H1
 8.4 Custom Validation
32295
 H2
 Modifying the SQL Query
32668
 H2
 Add the Google Logo
32882
 H2
 A Word About Locales
33115
 H2
 Add a Validation Method
33225
 FGC
 Figure 8-17 Design canvas view with components on Page2.jsp
33234

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FGC
 Figure 8-18 Design canvas view with components on page
35110
 FGC
 Figure 3-2 Binding component data table with an external data base table
35594
 FGC
 Figure 3-8 Multi Select Listbox allows multiple and non-adjacent selections
35793
 H2
 Data Table
35970
 FGC
 Figure 8-14 Design canvas view after changing the table layout
36398
 H2
 Creating the Form's Input Components
36461
 FGC
 Figure 4-5 Import Class dialog box
36768
 FGC
 Figure 3-8 Select Page Fragment dialog
36831
 FGC
 Figure 3-10 Using text field components with other components
36934
 H2
 Property Binding
37372
 FGC
 Figure 2-1 Creator's initial window layout
38525
 FGC
 Figure 7-5 Screen shot after the insert row operation to the RecordingArtists Table
38650
 FGC
 Figure 6-4 Screen shot showing latest version of the Google Web Search application
39106
 H2
 Adding a Data Source
39487
 H2
 Add Query Criteria
39859
 H2
 Add a Second Data Table
40480
 FGC
 Figure 2-3 Creator's design canvas showing project Login1
41312
 FGC
 Figure 8-1 The Debugger Window
41508
 FGC
 Figure 2-11 Build Output window for project Login1
42238
 FGC
 Figure 8-6 Design canvas with components added to Page1.jsp for project Color1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

42820
 FGC
 Figure 2-7 Creator's Project Navigator window for project Login1
43786
 CN1
 7
44258
 FGC
 Figure 8-7 Value Bindings dialog to specify binding for text field blueInput
44367
 FGC
 Figure 8-1 Dropping RECORDINGARTIST table on dataTable2
44817
 FGC
 Figure 8-5 Data-aware table component bound to TRACKS table
46641
 FGC
 Figure 6-2 Select File or URL dialog for image component
47751
 FGC
 Figure 2-2 Creator's Welcome window
47761
 FGC
 Figure 2-5 JSF Standard Components window
48118
 FGC
 Figure 8-3 Using localized messages and property binding
48929
 H1
 8.1 Localization
49290
 H2
 Modify Event Handler
49618
 NL
 5. Select the username property under loginBean. Click Apply
50129
 FGC
 Figure 7-2 Add Data Source window
50215
 FGC
 Figure 4-2 Music Collection Database Schema
51207
 FGC
 Figure 3-5 Table Layout dialog: specifying paging
52103
 FGC
 Figure 8-4 Table Layout dialog box
52141
 FGC
 Figure 2-10 Java source editor code completion
52580
 FGC
 Figure 3-2 Using checkbox with a component label
52618
 Heading2
 Copy a Project 2nd 3rd
52640
 H2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Creating the Form's Components
52843
 H2
 Add a Dropdown List Component
52888
 H2
 Add a Listbox Component
53601
 FGC
 Figure 2-15 Selecting View Data under the Data Sources node
53796
 H2
 Add Button and Output Text Components
54176
 H2
 Add a Dropdown List Component
54306
 H2
 Adding Components to the Page
54345
 FGC
 Figure 8-1 A successful login using the Spanish version
54490
 FGC
 Figure 4-4 Properties window for a navigation rule
54659
 H2
 Binding
54951
 FGC
 Figure 8-6 Displaying the call stack
55624
 H2
 Add a Hyperlink and an Image
56680
 FGC
 Figure 5-2 Property Bindings dialog
57606
 FGC
 Figure 6-2 Screen shot showing the Google Web Search application 2nd 3rd
60413
 FGC
 Figure 5-5 Project Payment1 running in a browser
60800
 FGC
 Figure 3-3 Docuemnt Outline with component nesting
60804
 FGC
 Figure 10-5 Monitoring watches
61473
 FGC
 Figure 8-7 Query Editor
61520
 FGC
 Figure 3-11 Using the Date Time Converter
61653
 CN1
 8
61714

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 H2
 Message List
62643
 FGC
 Figure 8-1 A successful login using the Spanish version
63026
 H2
 Building HTML Output
63441
 FGC
 Figure 3-2 Component nesting with grid panel and group panel
64562
 H2
 Life Cycle Issues
66379
 FGC
 Figure 2-19 Web application Echo running in a browser
66475
 FGC
 Figure 6-2 Document Outline view of the JSF components, converters, and validators
67055
 FGC
 Figure 8-2 New Property dialog for properties files
68220
 FGC
 Figure 2-8 Creator's Project Navigator window for project Login1
68275
 H2
 Introducing JDBC
68396
 H2
 Isolate Labels and Text Messages
68574
 FGC
 Figure 2-4 Properties window for component 'Login'
69969
 H1
 1.8 JavaBeans
71285
 H2
 Creating the Form's Input Components
72281
 FGC
 Figure 2-20 Code completion helping out
73367
 H2
 Creating the Form's Input Components
73395
 H2
 Inheritance
73417
 FGC
 Figure 3-3 Supply text for selection items for a Listbox component
73913
 H1
 10.8 Exceptions
73975
 FGC
 Figure 8-10 Dropping RECORDINGARTIST table on dataTable2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

75579
 FGC
 Figure 3-11 Fill List from Database dialog applied to multi-select menu component
75799
 FGC
 Figure 8-2 Setting the locale from the application
76110
 H2
 Checkbox List
76178
 FGC
 Figure 2-8 WebForm1.jsp Source window
77865
 H2
 Button and Output Text Components
78032
 H2
 Add Output Text Components
78039
 CT
 Creator Basics
78186
 FGC
 Figure 9-3 Custom validation with localized error messages in English
78650
 H2
 Add a Button Component
79007
 CN1
 3
79849
 FGC
 Figure 9-3 Custom validation with localized error messages
79986
 FGC
 Figure 9-2 New Breakpoint dialog
81413
 H1
 5.4 Dynamic Navigation
81715
 FGC
 Figure 2-12 Server Navigator window
82636
 FGC
 Figure 2-20 Creator Help window
83434
 H2
 Radio Button Group
83510
 H2
 Add Button Components
85192
 FGC
 Figure 8-3 RECORDINGS Table View
85746
 H2
 Add an Input Text Component
85922
 H2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Validators and Converters
86849
 FGC
 Figure 3-11 Using radio button list components in an application
86921
 H2
 Add SessionBean1 Properties
87948
 H2
 Bind Input Components
88002
 FGC
 Figure 1-2 JSF Architecture
88142
 FGC
 Figure 5-8 New Property Pattern dialog
88587
 FGC
 Figure 8-9 Application Outline view for project Color1
88830
 FGC
 Figure 6-1 Login web application using JavaBean LoginBean
89015
 FGC
 Figure 2-11 Java Basics Clips Palette
89275
 FGC
 Figure 5-5 Using a dropdown list component for navigation
89609
 H2
 Add a Message List Component
89631
 CN1
 5
89732
 FGC
 Figure 8-5 New Property Pattern dialog 2nd
89991
 H2
 Inline Message
90256
 FGC
 Figure 7-5 Design canvas showing component layout for project Google4
90383
 H2
 Add a Message Component
90487
 FGC
 Figure 3-1 Using text field components with other components
90540
 FGC
 Figure 7-4 The Music Collection Database: updating the Music Categories table
90557
 FGC
 Figure 5-4 Navigating from page WebForm1.jsp
90960
 CN1
 6
92120

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 H2
 Add an Output Link Component
93577
 H2
 Add a Grid Panel Component
93717
 FGC
 Figure 8-20 MusicDelete application's initial page
98453
 CT
 Debugging with Creator
98695
 H2
 Add a Dropdown List
99085
 H1
 5.3 LoanBean
99443
 FGC
 Figure 8-8 Value Bindings dialog to specify binding for text field blueInput
99556
 FGC
 Figure 8-4 Create New Library Reference dialog 2nd
99611
 FGC
 Figure 5-6

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Table Layout dialog
 (figure)
Table Layout Paging dialog
 (figure)
Table View database viewer
Test Connection to Data Source
Text Field 2nd 3rd 4th 5th
 collect username
 required attribute 2nd
 with Data Table 2nd
thin clients
this keyword
throw keyword
throw point
throws clause
Title attribute
title attribute (tooltip) 2nd
to-view-id element
Toggle Breakpoint editor option
Tools menu
 Options
tooltip
tracking variables (debugging)
Tracks table
translations of text in properties file
try keyword

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI
UML activity diagram, page navigation
Undeploy application
Universal Description, Discovery, and Integration (UDDI) 2nd
URL in browser

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

validateHexString() custom validation method 2nd
validation model
validator attribute
validator tag
validators 2nd 3rd
 custom validate method
 custom validation 2nd
 Double Range Validator 2nd
 Length Validator 2nd 3rd 4th
 Long Range Validator 2nd
 maximum
 minimum
Validators/Converters window
value attribute 2nd
value binding
 localizing components' text
Value Bindings dialog
value change event 2nd 3rd 4th
 vs. action event
valueChangeListener 2nd 3rd
valueChangeListener attribute
var attribute, loadBundle tag
VARCHAR data type 2nd 3rd
variables
 tracking (debugging)
View Data
View Java Class context menu
View menu
 Debugger window 2nd
views, configure Creator's workspace
void return type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WAR file
Watch window (debugging)
watches, setting (debugging) 2nd
web services 2nd
 add to Creator
 nonvisual component tray
Web Services Description Language (WSDL) 2nd
Web Services node 2nd
Welcome window 2nd
WHERE clause 2nd
windows, configure Creator workspace
workspace, configure
write access

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML
XML Document 2nd
XML editor
XML file
 build.xml 2nd
 faces-config.xml 2nd
 managed-beans.xml 2nd
 navigation.xml

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zero-length string

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
Java™ Studio Creator Field Guide

By Gail Anderson, Paul Anderson

Publisher: Addison Wesley

Pub Date: June 28, 2004

ISBN: 0-13-149168-7

Pages: 368

Sun's Java Studio Creator (formerly Project Rave) offers you a remarkably productive visual environment for building,
integrating, and delivering business-critical applications. Direct from Sun, Java (TM) Studio Creator Field Guide is
your definitive guide to Java Studio Creator. Leading Java platform instructors and consultants Gail and Paul Anderson
help you use Java Studio Creator to simplify and accelerate your entire development process.

One step at a time, the Andersons walk you through

Mastering Java Studio Creator's interface and workflow

Simplifying Web development with JavaServer(TM) Faces components, validators, and data converters

Controlling Web application page flow with the Page Navigation editor

Building Creator projects with JavaBeans(TM) components

Accessing Web services using XML-based open standards: a case study using Google Web Service APIs

Using databases and data-aware components--including detailed coverage of new JDBC(TM) RowSets

Customizing applications: localization, internationalization, and custom validation

Debugging with Creator's built-in debugger

With Java Studio Creator and this book, you'll spend less time on application "plumbing"--leaving more time for the
high-value tasks you really care about. Simply put, you'll get more done, faster...and have more fun doing it.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Foreword
The developers who set out to build Java Studio Creator had a very difficult task: to make the creation of sophisticated
enterprise applications easy.

The set of technologies that comprise Java2 Enterprise Edition (J2EE) is huge. The good side is that J2EE is battle
hardened and field proven to be an excellent base for large scale mission critical applications. There are many excellent
books that cover all of the aspects of J2EE in great detail. But all of this leads to the bad side of J2EE: it can be difficult
and time-consuming to learn and use. Tremendous effort goes into making J2EE as simple as possible, but it remains
daunting.

Java Studio Creator is a huge leap in the simplification of the process of developing J2EE based web applications.
Developers don't need to deal with all of the gory details: Creator just handles them. Instead, developers can focus on
what their application does and looks like in a very simple and straightforward way. They weave together data sources
through a simple drag-and-drop interface. Very little knowledge of Java or J2EE is required to develop applications in
Creator. Creator not only simplifies the process: it also accelerates it.

This book contains all that you need to know to generate enterprise applications using Creator. It doesn't require that
you know anything about J2EE or even Java: there are gentle introductory chapters that lead you through what you
need to know. This is a great entry point for developers from other platforms (like Visual Basic!) to enter the world of
large-scale, mission-critical applications. It's fun. Take the plunge.

James Gosling
Sun Microsystems, Inc.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
You're about to embark on a journey that we hope will prove both enjoyable and fruitful. Certainly the aim of any
application development tool is to help developers become efficient and allow them to spend time on creative tasks
while the tool silently generates the drudgery for them. To that end, we hope this book will teach you the ins and outs
of Creator so that you can quickly begin to build web applications. Before you start, we'd like to take a moment to
explain the organization of the book and the "method behind the madness" of our project examples.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Working on this project has given new meaning to the terms multitasking, bandwidth, and distributed processing!
Without the help of others, not only would this text be lacking in timeliness and accuracy, but its very existence is
questionable.

We'd like to thank our editor at Prentice Hall, Greg Doench, for approaching us with this project idea when neither
Creator nor its name even existed. He trusted that we could write at breakneck speed and promised support from both
Prentice Hall and Sun Microsystems. He delivered on his promises.

Valerie Lipman at Sun Microsystems gave us crucial technical support throughout the entire writing and testing cycle.
From Creator's first technology preview release to the latest and greatest bits hot from the amazing engineers that built
this product, Valerie supported us with quick turn-around emails and phone calls. Without Valerie's assistance, patience,
and invested effort, we could not have finished on time (not even close!).

Thank you also to Jim Inscore at Sun Microsystems. His work behind the scenes and his recognition in the importance
of a companion book to Creator helped smooth the tie-ins with Sun.

Thank you to our copy editor, Mary Lou Nohr, who is a wizard with words. Her speed and accuracy at zipping through a
300-page manuscript is impressive.

We'd also like to thank Bill Higgins, who provided helpful suggestions from a reader's viewpoint and Paul Fleck, who
knows a bit about the world of VB. John Fuller at Pearson Technology Group and Brett Linton from Courier Companies
helped with production. Vicky Hilpert of Vietsbronn, Germany helped with the German translations and Blanca Lazaro
helped with the Spanish. Thanks also to our children (who are not children anymore), Sara and Kellen.

Lastly, we'd like to thank James Gosling for giving us all Java.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
Java™ Studio Creator Field Guide

By Gail Anderson, Paul Anderson

Publisher: Addison Wesley

Pub Date: June 28, 2004

ISBN: 0-13-149168-7

Pages: 368

 Copyright

 Foreword

 Preface

 How This Book Is Organized

 About the Examples

 Stay Current with Creator!

 Notational Conventions

 About the Front Cover

 Acknowledgments

 Chapter 1. Java Technology Overview

 Section 1.1. Introduction

 Section 1.2. The Java Programming Language

 Section 1.3. JavaBeans Components

 Section 1.4. NetBeans Software

 Section 1.5. The XML Language

 Section 1.6. The J2EE Architecture

 Section 1.7. Java Servlet Technology

 Section 1.8. JavaServer Pages Technology

 Section 1.9. JDBC API and JDBC RowSets

 Section 1.10. JavaServer Faces Technology

 Section 1.11. Ant Build Tool

 Section 1.12. Web Services

 Section 1.13. Key Point Summary

 Chapter 2. Creator Basics

 Section 2.1. Examples Installation

 Section 2.2. Creator Views

 Section 2.3. Sample Application

 Section 2.4. Key Point Summary

 Chapter 3. JSF Standard Components

 Section 3.1. JSF Overview

 Section 3.2. Components

 Section 3.3. Component Catalog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.3. Component Catalog

 Section 3.4. JSF Validators

 Section 3.5. JSF Data Converters

 Section 3.6. Key Point Summary

 Chapter 4. Page Navigation

 Section 4.1. Navigation Model

 Section 4.2. Simple Navigation

 Section 4.3. Noncommand Components

 Section 4.4. Dynamic Navigation

 Section 4.5. Key Point Summary

 Chapter 5. JavaBeans Components

 Section 5.1. What Is a Bean?

 Section 5.2. LoginBean Component

 Section 5.3. LoanBean Component

 Section 5.4. Key Point Summary

 Chapter 6. Accessing Web Services

 Section 6.1. Google Web Services

 Section 6.2. Validation

 Section 6.3. HTML with Output Text

 Section 6.4. Displaying Multiple Pages

 Section 6.5. Key Point Summary

 Chapter 7. Accessing Databases

 Section 7.1. Database Fundamentals

 Section 7.2. Data Sources

 Section 7.3. Accessing the Music Database

 Section 7.4. Database Joins

 Section 7.5. Database Updates

 Section 7.6. Database Row Inserts

 Section 7.7. Database Deletions

 Section 7.8. Key Point Summary

 Chapter 8. Customizing Applications with Creator

 Section 8.1. Localizing an Application

 Section 8.2. Internationalizing an Application

 Section 8.3. Controlling the Locale from the Application

 Section 8.4. Creating Custom Validation

 Section 8.5. Key Point Summary

 Chapter 9. Debugging with Creator

 Section 9.1. Planning for Debugging

 Section 9.2. Running the Debugger

 Section 9.3. Setting Breakpoints

 Section 9.4. Stepping Through the Code

 Section 9.5. Tracking Variables

 Section 9.6. Setting Watches

 Section 9.7. Using the Call Stack

 Section 9.8. Detecting Exceptions

 Section 9.9. Using Log Files

 Section 9.10. Finish Debugging

 Section 9.11. Key Point Summary

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

