
 < Day Day Up >

Windows Admin Scripting Little Black Book, Second
Edition
by Jesse M. Torres ISBN:1932111875

Paraglyph Press © 2004 (460 pages)

This book shows Windows XP and 2003 users and
administrators how to perform Windows management and
administrative tasks using powerful scripts for just about
every important task imaginable.

Table of Contents

Windows Admin Scripting Little Black Book, Second Edition
Introduction
Chapter 1 - The Essentials of Scripting
Chapter 2 - Scripting Workstation Setups
Chapter 3 - Scripting Installations and Updates
Chapter 4 - File Management
Chapter 5 - Automating Windows and Applications
Chapter 6 - Inside the Registry
Chapter 7 - Local System Management
Chapter 8 - Remote System Management
Chapter 9 - Enterprise Management
Chapter 10 - Managing Inventory
Chapter 11 - Security
Chapter 12 - Logging and Alerting
Chapter 13 - Logon Scripts
Chapter 14 - Backups and Scheduling
Chapter 15 - Fun with Multimedia
Chapter 16 - Special Scripting for Windows XP and 2003
Resources
Index
Windows Admin Scripting Little Black Book Quick Reference
List of Figures
List of Tables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Back Cover
Windows Admin Scripting Little Black Book, 2nd Edition, shows Windows XP and 2003 users and
administrators how to perform Windows management and administrative tasks using powerful scripts for
just about every important task imaginable. It covers techniques for working with files, input/output, text
files, and performing various network administrative tasks through scripting. It explains the concept and
necessity of logon scripts, the backbone structure of a good logon script, and how to implement these
scripts in an everyday environment to automate repetitive tasks such as inventory, file modifications,
installations, and system updates. It also provides an in-depth look into the registry and registry editing
tools including locating the important registry keys and values, and modifying them. The book features
example scripts on every new topic covered to reinforce what the reader has just learned. Key scripting
topics include manipulating the Windows XP file system, using powerful third-party scripting tools, creating
scripts for installing service packs and new applications, automating applications from the command line,
and performing Windows XP and 2003 administrative tasks. Everything is included in this book, and users
can easily modify or combine the scripts to perform myriad tasks. A bonus introduction chapter is provided
showing users how to select the best scripting language and how to get the most out of scripting resources.

About the Author

Jesse M. Torres' experience in the computer industry includes the private, corporate, and government
sectors. He served six years in the Air National Guard working in computer maintenance and has since
worked for large corporations such as PricewaterhouseCoopers and United Technologies. His education
includes a specialist's certification in electronic switching systems from the U.S. Air Force, a B.A. in
Versatile Technology from the University of Connecticut, a specialist's certification in Lotus application
development, and an MCSE and MCAD certification from Microsoft.

Jesse has extensively scripted software and OS installations and updates, inventory procedures, desktop
management, maintenance, security, and more. His programming and automation experience includes
shell scripting, KiXtart, Windows Script Host (WSH), Windows Management Instrumentation (WMI), Active
Directory Service Interfaces (ADSI), VBScript, JavaScript, Active Server Pages (ASP), ASP.NET, Veritas
WinINSTALL, PowerQuest DeltaDeploy, Microsoft Systems Management Server (SMS), AutoIt, Microsoft
ScriptIt, Visual Basic, Visual Basic .NET, and SQL. He has also written an article on WSH for Windows and
.NET Magazine's Windows Scripting Solutions.

Currently, Jesse is working for Bridgewater Associates, a global investment manager located in Westport,
CT.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Admin Scripting Little Black Book, Second Edition
Jesse M. Torres

PARAGLYPH PRESS

President: Keith Weiskamp

Editor-at-Large: Jeff Duntemann

Vice President, Sales, Marketing, and Distribution: Steve Sayre

Vice President, International Sales and Marketing: Cynthia Caldwell

Production Manager: Kim Eoff

Cover Designer: Kris Sotelo

Copyright © 2004 Paraglyph Press. All rights reserved.

This book may not be duplicated in any way without the express written consent of the publisher, except in the form of brief
excerpts or quotations for the purposes of review. The information contained herein is for the personal use of the reader and may
not be incorporated in any commercial programs, other books, databases, or any kind of software without written consent of the
publisher. Making copies of this book or any portion for any purpose other than your own is a violation of United States copyright
laws.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in preparing the book and the programs contained in it. These
efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained
in this book.

The author and publisher shall not be liable in the event of incidental or consequential damages in connection with, or arising out
of, the furnishing, performance, or use of the programs, associated instructions, and/or claims of productivity gains.

Trademarks

Trademarked names appear throughout this book. Rather than list the names and entities that own the trademarks or insert a
trademark symbol with each mention of the trademarked name, the publisher states that it is using the names for editorial
purposes only and to the benefit of the trademark owner, with no intention of infringing upon that trademark.

Paraglyph Press, Inc.
4015 N. 78th Street, #115
Scottsdale, Arizona 85251
Phone: 602-749-8787
http://www.paraglyphpress.com

Paraglyph Press
1-932111-87-5

10 9 8 7 6 5 4 3 2 1

About the Scripts

Throughout this book, you'll encounter a number of very useful scripts to help you perform a wide range of administrative tasks
with Windows 2003, XP, 2000, NT, and 98. These scripts have been written with three different scripting tools including Shell
Scripting, KiXtart, and Windows Script Host. To use these scripts, I'll show you how to get the scripting tools you will need in
Chapter 1.

Because some of the scripts are just a line or two of code, you'll likely just type them in. When typing in scripts, be sure to type
them in just as they appear in the text. In some cases, a line of scripting code could not fit on a single line due to the page width of
this book. When this occurred, the line of scripting code was continued on the next line. Any line of code that has been formatted
in this manner has been highlighted in the book. When you type in this code all you have to remember is to type in the highlighted
code as a single line of code.

Since many of the scripts are longer, I have made them available on my personal Web site for you to download. This can save
you a lot of time from having to type in the scripts. You can access my Web site to get updates for the scripts and support material
for the book. In addition, you'll find other scripts, tricks, tips, security documents, music, and more. To visit the site, point your Web
browser to:

http://www.jesseweb.com

In addition, you may also register your book at the site listed above to gain access to more advanced scripts that could not fit into
the book.

Before visiting my Web site, make sure that you also read the appendix provided in this book. Here you'll find a set of resources
and tools to help you with your scripting.

To my wife, Carina:
Your love and smile mean more to me than you could ever know.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To my son, Ryan:
You have helped me realize the really important things in life.

About the Author

Jesse M. Torres' experience in the computer industry includes the private, corporate, and government sectors. He served six
years in the Air National Guard working in computer maintenance and has since worked for large corporations such as
PricewaterhouseCoopers and United Technologies. His education includes a specialist's certification in electronic switching
systems from the U.S. Air Force, a B.A. in Versatile Technology from the University of Connecticut, a specialist's certification in
Lotus application development, and an MCSE and MCAD certification from Microsoft.

Jesse has extensively scripted software and OS installations and updates, inventory procedures, desktop management,
maintenance, security, and more. His programming and automation experience includes shell scripting, KiXtart, Windows Script
Host (WSH), Windows Management Instrumentation (WMI), Active Directory Service Interfaces (ADSI), VBScript, JavaScript,
Active Server Pages (ASP), ASP.NET, Veritas WinINSTALL, PowerQuest DeltaDeploy, Microsoft Systems Management Server
(SMS), AutoIt, Microsoft ScriptIt, Visual Basic, Visual Basic .NET, and SQL. He has also written an article on WSH for Windows
and .NET Magazine's Windows Scripting Solutions.

Currently, Jesse is working for Bridgewater Associates, a global investment manager located in Westport, CT.

Acknowledgments

First, I would like to thank Keith Weiskamp, president of Paraglyph Press for his hard work, guidance, and understanding during
these past few months. Thank you for supporting and believing in this book.

I would also like to thank Peter Sideris, technical reviewer for the book. Your comments, additions, and expertise really helped
polish this book. Thank you for putting up with my insane schedule and bombardment of emails.

Thanks to Ray Dalio, Giselle Wagner, Claude Amadeo, Aaron Meyers, David Schoffstall, James Bookman, Jacques Malette, and
everyone at Bridgewater Associates. You are all a great group of people to work with and help make the "daily grind" challenging
and rewarding.

Thanks to all the software companies and developers (Rudd van Velsen, Microsoft, Sapien Technologies, Executive Software,
Hidden Software, and BellCraft Technologies) for sharing information and making quality products.

Thanks to my family, whose pride in my accomplishments clearly shines through. I love you all. Special thanks to my mom and
dad for their encouragement and support.

Finally, special thanks to my wife, Carina, son Ryan, and our next future child (birth and name still pending) for giving up some of
our time together so I could share this book with the world. At only 16 months old, my son Ryan contributed over 100 pages for
this book. Unfortunately they appear to be in some untranslatable, foreign language and were cut at the last minute from the final
version. I love all of you and will always be here for you, as you've been for me. Thanks again.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Introduction
Welcome to Windows Admin Scripting Little Black Book, Second Edition. This book is specifically designed to teach you how to
quickly turn routine, repetitive, time-consuming, or complex administrative tasks into simple scripts. If you're like me, you probably
don't have the time to spend thumbing through books filled with general examples that you'll never use. Because of its compact
size, this book is free of generic filler material (a common trait of the larger scripting books) and comes packed with information
and examples that you can actually use. Whether you're a basic Windows user or a network administrator in charge of a corporate
infrastructure, this book will teach you how to use scripting to become more productive and recoup some free time from your busy
schedule.

This book is a concise reference detailing various scripting methods and techniques to automate all types of administrative tasks.
At its core, this book explains and illustrates the three major scripting methods: shell scripting, KiXtart, and Windows Script Host. It
will also teach you the inner workings of Active Directory Service Interfaces and Windows Management Instrumentation, and how
to use the provided examples to manage an enterprise. Finally, this book will show you how to use alternative methods, such as
ScriptIt or AutoIt, when conventional scripting just won't cut it. Beyond the extensive scripting examples and information, this book
also provides in-depth coverage of scripting for Windows 2000, XP, and 2003.

Is This Book for You?
If you've read this far, chances are this is the book for you. Out of all the sites where I've worked, only a small percentage of
employees have even thought about using scripting. Perhaps it's because there is a common misconception that you have to be a
programmer or computer genius to write scripts. This couldn't be any further from the truth. Scripts are the simplest form of
programming, and anyone who uses a computer can easily create them.

The examples and information in this book are specifically focused around the daily tasks of the IT professional. For the novice
administrator or scripter, this book will guide you through the world of scripting and administration, while helping you quickly build
your skill set. For the experienced administrator or scripter, this book provides a wealth of information and advanced techniques to
help you manage and standardize your environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Use This Book
This book is divided into 16 chapters. Each chapter begins with a brief overview followed by a set of immediate solutions to help
you automate your tasks.

Chapter 1: Introduction to Scripting

Chapter 1 provides an introduction to the three major scripting methods (shell scripting, KiXtart, and Windows Script Host)
discussed throughout the book. This chapter teaches you about the basics, limitations, and appropriate times to use each
scripting method.

Chapter 2: Scripting Workstation Setups

Chapter 2 covers how to automate hard disk setups and imaging. Immediate solutions include how to script partitioning,
formatting, and boot disk creation. It also includes extensive information on how to script some of today's popular imaging utilities,
such as PowerQuest Drive Image Pro and Norton Ghost.

Chapter 3: Scripting Installations and Updates

Chapter 3 covers how to automate installations and updates. Immediate solutions include how to script installations and updates
using built-in switches, custom routines, and the Microsoft Windows Installer. It also includes information on how to use Autoit
when other scripting methods simply won't work.

Chapter 4: File Management

Chapter 4 covers how to automate file manipulation and management. Immediate solutions include how to script file renaming,
replication, deletion, appending, updating, searching, and attribute modifying. It also includes information on how to use shell
scripting, KiXtart, and Windows Script Host.

Chapter 5: Automating Windows and Applications

Chapter 5 covers how to automate the operating system and its applications. Immediate solutions include how to script Windows
operations and settings, such as Microsoft FTP uploads, defragging, hardware devices, and Control Panel applets. It also includes
information on how to script applications, such as Norton Antivirus, Microsoft Office, Internet Explorer, and Diskeeper Lite.

Chapter 6: Inside the Registry

Chapter 6 covers how to automate changes to the registry. This chapter includes in-depth information about the birth and structure
of the registry while clearing up common misconceptions. Immediate solutions include how to secure, back up, restore, modify,
and search the registry. It also includes information on how to modify common Windows annoyances, for example, how to disable
Dr. Watson or the Welcome screens.

Chapter 7: Local System Management

Chapter 7 covers how to control and automate local system changes. Immediate solutions include how to manage shortcuts,
program groups, profiles, shares, services, permissions, and more through simple scripts. It also includes information on how to
script common system events, such as logging off a user or rebooting a system.

Chapter 8: Remote System Management

Chapter 8 covers how to control and automate remote systems. Immediate solutions include how to manage processes, shares,
services, permissions, and more through simple scripts. This chapter includes in-depth information and examples on how to use
Windows Management Instrumentation. It also includes information on how to script common system events, such as shutting
down or rebooting a system.

Chapter 9: Enterprise Management

Chapter 9 covers how to automate enterprise management. Immediate solutions include how to manage user, group, and
computer accounts through simple scripts. This chapter includes in-depth information and examples on how to use Active
Directory Service Interfaces. It also includes information on Windows 2000/2003 Enterprise networks.

Chapter 10: Managing Inventory

Chapter 10 covers how to gather inventory information without the use of expensive management systems. Immediate solutions
include how to collect software and hardware information, such as battery, operating system, Network Interface Card (NIC),
processor, printer, sound card, and memory information. It also includes information on how to generate inventory reports using
utilities like MSD, WINMSD, MSINFO32, and SRVINFO.

Chapter 11: Security

Chapter 11 covers how to control and automate remote systems. Immediate solutions include how to manage system and domain
security settings; create, apply, and export security templates; and run a security analysis through simple scripts. This chapter
includes in-depth information about authentication protocols and common security practices. It also includes information on how to
use utilities to run operations under the security context of another user, such as the RunAs utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: Logging and Alerting

Chapter 12 covers how to log system events and alert users when events occur. Immediate solutions include how to manage text
logs and the event log through simple scripts. The chapter also includes information on how to script alerts to a single user, group,
or user list through network alerts and email.

Chapter 13: Logon Scripts

Chapter 13 covers how to create and use logon scripts to standardize your environment. Immediate solutions include how to
synchronize the system time, map drives and printers, display logon script progress, and more through simple shell, KiXtart, or
WSH scripts. This chapter also includes in-depth information about the logon process and file replication services.

Chapter 14: Backups and Scheduling

Chapter 14 covers how to automate backups and scheduling tasks or scripts. Immediate solutions include how to script Windows
backups, IIS metabase backups, and task scheduling. It also includes information on how to script third-party backup applications,
such as Backup Exec and ARCserve.

Chapter 15: Fun with Multimedia

Chapter 15 covers how to play and control multimedia files using simple scripts. Immediate solutions include how to script the
Microsoft Media Player and the RealPlayer G2. It also includes information on how to script the Microsoft Office Assistant and
Microsoft Agent characters.

Chapter 16: Windows XP/2003 Only

Chapter 16 covers scripting techniques specifically designed for the new features of Windows XP/2003. It also includes
information about Product Activation, system restores, and the MMC 2.0 automation object model.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The Little Black Book Philosophy
Written by experienced professionals, Paraglyph Little Black Books are terse, easily "thumb-able" question-answerers and
problem solvers. The Little Black Book's unique two-part chapter format-brief technical overviews followed by practical immediate
solutions-is structured to help you use your knowledge, solve problems, and quickly master complex technical issues to become
an expert. By breaking down complex topics into easily manageable components, this format helps you quickly find what you're
looking for.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A Final Note
I hope this book will become your essential reference in streamlining your environment and daily tasks. I welcome your comments,
questions, suggestions, tips, scripts, or anything else you would like to share. Please feel free to visit my web site at
http://www.jesseweb.com for updates.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1: The Essentials of Scripting
This chapter introduces the basic techniques of scripting and the three major scripting tools used throughout this book: Shell
Scripting, KiXtart, and Windows Script Host. By the end of this chapter you'll learn the basics of each approach, the limitations,
and when to use them. Because this book covers a lot of ground, I included this scripting introduction to help you get up to speed
with the tools and basic techniques that I'll be using throughout this book. It also shows you how to write scripts to perform a wide
range of Windows administration tasks.

The Essence of Scripting
Scripts are the simplest form of programming, and anyone who uses a computer can create them with a little practice. I've stated
this before, but I cannot emphasize this enough. Scripting is a fast, simple way to instruct a computer to perform a specific set of
instructions. These instructions can range from simple tasks like "delete temporary files from a computer" to more complex tasks
like "install this application on every machine on the network." A script is merely a text file that contains a set of commands for
performing a specific operation. The best part about scripting is that you can do a lot with a little bit of programming knowledge.
The scripting tools and languages are easy to learn and the skills you develop with one scripting tool can easily be adapted to
another tool. The scripting tools I've selected for this book are all especially designed to be easy to use, yet provide many powerful
features so that you can perform a wide range of tasks.

Scripts vs. Programs

Computers only understand binary operations (on or off, 1 or 0). When a script runs, the scripting engine reads each line of code
and translates it into machine language on the fly. This is why scripts are also called interpreted programs. High level languages
such as Visual Basic .NET and C# must be translated into machine language by a compiler before execution. Because scripts
compile at runtime, they tend to run slower than compiled programs. The good news, however, is that the types of tasks you'll
typically perform with scripts aren't so speed critical and thus the simplicity of using a scripting tool far outweighs the complexity of
using a programming language.

Limitations of Scripting

While high level languages contain an extensive library or set of functions, scripting languages only contain subsets of their
counterparts or comparables. Scripting languages do not usually supply graphical interface elements, such as forms, dropdown
lists, checkboxes, and so on. Finally, scripting languages do not typically provide advanced programming features such as object
orientation, early binding, and threading.

When to Use Scripts

Scripting languages are designed to be lightweight and easier to work with than their compiled counterparts. In some cases,
scripts can even perform tasks more quickly than can be performed with compiled programs simply because scripts do not contain
a lot of extra baggage. Scripting is best used when you need quick solutions without a full blown interface or intensive processing.
If you find a script is using a lot of system resources, taking a long time to complete, or is simply unmanageable due to its size or
complexity, you should consider using a compiled program.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Shell Scripting
Shell scripting involves running a series of commands from within a command shell (e.g., command prompt). Although these
commands can be run from the command line individually (e.g., COPY *.*), they are more often stored within a script or batch file.
A batch file is a text document with a .bat or .cmd extension. Shell scripting has been around since the inception of MS-DOS and
is the easiest scripting method to learn.

Using the Command Shell

A command shell is a text-based, command interpreter application. Similar to MS-DOS, you type a command and the command
shell displays a response. Windows provides two command shells: CMD.exe and COMMAND.com. The Windows command shell,
CMD.exe, is a 32-bit application that contains many built-in commands (e.g., DIR, ECHO, DEL, and COPY). The MS-DOS
command shell, Command.com, is a 16-bit application supplied for backwards compatibility of 16-bit DOS applications. It passes
all commands to CMD.exe for processing, and it does not support long file names. Whenever possible, you should use CMD.exe
because it provides better performance and stability than COMMAND.com. Figure 1.1 shows the window that is displayed when
CMD.exe executes. In this case, the DOS command, DIR, is being executed.

Figure 1.1: The CMD.exe command prompt window.

Tip A quick way to access a command shell is by clicking Start|Run from the Windows Start menu, type "CMD", and click the
"OK" button.

Shell Scripting Example

To help you better understand how shell scripting works, I've created a script to show you how to display the name of your
computer. Later, I'll show you how to perform this same task using the other scripting tools that I will be introducing, KiXtart and
Windows Script Host. This will really help you understand the differences (and similarities) involved in using the different scripting
tools.

Displaying the Computer Name
To display the name of your local computer using shell scripting, proceed as follows:

1. First, you'll need to create a simple script file (.bat file) and place a few commands in the file. Use a text editor
and create a file named "scriptfile.bat." Here, scriptfile is the full path and file name of a script file that should
contain the following commands:
@ECHO OFF
ECHO %COMPUTERNAME%

Make sure that you save the file in the same directory that you will be running the command shell from (Step 2).

By default, the command shell displays (echoes) the called command before displaying the results. To suppress the called
command and only display the results, the @ECHO OFF command is used. The last line uses the ECHO command to display the
contents of the COMPUTERNAME environment variable, which is automatically set by the operating system at boot time.

2. Once you have created and saved the .bat file as instructed in Step 1, you can run your script by starting the
command shell (CMD.exe) and entering the following instruction at the command prompt:
scriptfile

Remember that the quickest way to run the .CMD command shell is to click Start|Run from the Windows Start menu type "CMD",
and click the "OK" button.

Limitations of Shell Scripting

Although shell scripting is easy, it is a limited language. This is something I hate to admit because my scripting roots date back to
the good old days of MS-DOS. Shell scripting is not a collective language, but rather a language consisting of various individual
executables and commands. It has limited logical statements, no debugging capabilities, limited error-handling capabilities, and no
graphical interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When to Use Shell Scripting

Although shell scripting continues to improve over the years, it is best used for simple scripting tasks that do not require complex
calculations or extensive file manipulation. To perform more powerful tasks, you should turn to another scripting tool, such as
KiXtart or Windows Script Host.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

KiXtart
KiXtart is an easy-to-use scripting language available for download from http://www.KiXtart.org. Some of the advanced features of
KiXtart are built-in debugging, the ability to modify the registry, COM automation, and the ability to shut down or reboot systems.
Although primarily used for logon scripting, KiXtart can be used as a standalone scripting solution to automate everyday tasks.

Commands

Like Shell Scripting commands, KiXtart commands are built-in routines used to perform an action. KiXtart contains many
commands similar to Shell Scripting commands (COPY, MOVE DEL, CD), but adds many advanced commands allowing you to
create powerful scripts. Many KiXtart commands return codes that indicate the success or failure of the completed operation. You
can use a KiXtart variable to store and examine the code returned from the executed command:
$RETURNCODE = ClearEventLog("Application")

Variables

Variables are used extensively in KiXtart to store values or return codes. KiXtart variable names consist of a $ sign followed by
text, and should not be the same as any of the built-in KiXtart component names. Optionally, declaring a variable and assigning a
value is identical to doing so in a language like VBScript:
DIM $MYVARIABLE
$MYVARIABLE = "SOME VALUE"

Functions

Imagine if you had to perform a series of twenty steps on more than 1,000 files. What a pain it would be to rewrite those steps so
many times! A function is a procedure used to perform a series of actions and return data. A typical use of a function is to perform
calculations, create objects, or return error codes. A KiXtart function is structured as follows:
Function FunctionName (arguments)
 Code
EndFunction

Here, FunctionName is the name given to the function; arguments are the parameters passed to the function (separated by
commas); and Code is the script action(s) to perform. To return a value outside of the function, you should name a variable from
within your function with the same name as your function and set a value to it.

Macros

KiXtart macros provides various system and user information by accessing Windows Application Programming Interfaces (APIs).
(I'll be discussing Windows APIs a little later in this chapter when we look at the Windows Script Host tool). KiXtart has over 50
built-in macros to easily return various system and network information. All macros are prefixed with an @ symbol. Some of the
more commonly used macros are listed in Table 1.1.

Table 1.1: Commonly used KiXtart macros.

Macro Definition

@ERROR Return code of the last command or function.

@LDRIVE Drive that maps to \\LogonServer\NETLOGON.

@LSERVER Validating Server Name.

@SCRIPTDIR Directory of the currently running script.

@SERROR Description of the last error.

@USERID Username of the current user.

@WKSTA Local computer name.

KiXtart Scripting Example.

Let's revisit our simple example of displaying the name of your local computer to see how KiXtart compares with shell scripting. If
you do not currently have a copy of KiXtart on your computer, you'll need to download a copy from the Web using the instructions
that I have provided.

Displaying the Computer Name
To display the name of the local computer using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Use your favorite text editor to create a new script file. The following instruction should be placed in the file:
? @WKSTA
sleep 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sleep 5

This instruction might look a little unusual but it simply uses the "?" command to display the contents of the
@WKSTA macro.

To finish your script file, simply save it using a filename that you will remember.

4. Now you are ready to run your script. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile should be the full path and file name where your file is stored (Step 3). The SLEEP command is used to pause
script execution for 5 seconds, allowing us to view the results.

Limitations of KiXtart

Since KiXtart is not a built-in Windows feature, you must either copy it to every system or make it available by sharing it across a
network. This isn't difficult but it is an administrative task you'll need to take care of. A KiXtart script also tends to run slower for
remote access or linked site users than a Windows Script Host script. Finally, KiXtart is not currently supported by Microsoft.

When to Use KiXtart

KiXtart is a great alternative to shell scripting due to its built-in debugging, network, file, and registry functions. It's a perfect
solution to simplify complex shell scripting tasks and remains a popular choice for logon scripting. With more and more features
being added to every release, KiXtart's capabilities are slowly reaching those of Windows Script Host.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Script Host
Microsoft's Windows Script Host (WSH) is a language-independent scripting host for 32-bit Windows operating systems. It
provides the most powerful functionality of all the scripting methods discussed so far. Windows Scripting Host works seamlessly
with all scriptable objects available to Windows, allowing you to create complex, scripted applications. By providing extensive
scripting capabilities combined with support for multiple scripting languages, WSH is quickly becoming the scripting method of
choice.

Note By default, Windows Script Host supports two languages: VBScript and JScript. All the Windows Script Host examples
in this book are written in VBScript.

CSCRIPT and WSCRIPT

Windows Script Host is controlled by two executables, CSCRIPT and WSCRIPT. CSCRIPT is the command-line host utility that is
commonly used to run tasks in the background or in a command prompt. WSCRIPT is the graphical host utility commonly used to
interact with the user. These two executables support many command-line parameters, as shown in Table 1.2.

Table 1.2: Windows Script Host parameters.

Parameter Description

//B Disables command prompt user input.

//D Enables active debugging.

//E:engine Uses the specified engine at script execution.

//H:CSCRIPT Sets CSCRIPT as the default execution host.

//H:WSCRIPT Sets WSCRIPT as the default execution host.

//I By default, enables command prompt user input.

//JOB Executes a WSC job.

//LOGO By default, displays logo at script execution.

//NOLOGO Suppresses logo at script execution.

//U For CSCRIPT only, specifies to use UNICODE for I/O operations.

//S Saves options on a per user basis.

//T:seconds Specifies the maximum time, in seconds, a script is allowed to run.

//X Executes the current script within the debugger.

//? Displays help context.

What in the World Is an API?

Before you can start scripting with Windows Script Host, you should have a basic understanding of Application Programming
Interfaces (APIs). An (API) is a collection of functions that the operating system or application can call on to perform many
different tasks. By using a common set of code, applications can perform operations identical to those that the operating system
performs. These APIs are normally stored in DLL files. Although programmers can access DLLs through compiled applications,
scripters need to find another method of access.

Working with COM Objects
An object is simply a collection of functions that perform similar tasks. COM (Component Object Model) objects expose API
methods and properties, providing a way for scripters to access APIs in their scripts. These objects are normally stored in OCX
(OLE custom control) or DLL files. To gain access to a COM object, you use the CreateObject function to load an object into
memory, connect to the object, and set this connection to a variable. This is called instantiating an object and is performed as
follows:
Set variable = CreateObject("object")

Once the instance is created, you can use this variable throughout your script to access all the methods within the object.

The Windows Script Host object model (see Figure 1.2), is a hierarchal, organized collection of objects, mostly stored in a file
called WSHOM.OCX located in the Windows\System or Winnt\System32 directories. Each of the core objects contains its own
methods and properties to perform specific tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.2: The Windows Script Host object model.

The Wscript Object
The Wscript object is the core scripting object. It allows you to collect information about your script, work with arguments, and call
other ActiveX objects. The Wscript object contains the methods to instantiate other objects and is automatically instantiated every
time a script is run. The most commonly used Wscript method is the Echo method, which sends output to the screen:
Wscript.Echo "Some Output"

The WshNetwork Object
The WshNetwork object provides access to Windows network functions. You can use this object to work with network
connections and perform various network-related tasks. The most common tasks used with this function are mapping printers and
drives, and obtaining a computer's network information.

The WshShell Object
The WshShell object provides direct access to Windows and registry functions. You can use this object to work with shortcuts,
display messages to users, manipulate the registry and environment variables, and run external commands.

The FileSystemObject Object
Is there an echo in here? Although not actually a part of the Windows Script Object model, the FileSystemObject object,
contained in SCRRUN.DLL, can be used to access and manipulate the file system. Through this object, you can perform almost
any file management task that you perform manually.

Now that you are familiar with the Windows Script Host Object model, you can start using subroutines to organize your scripts.

Subroutines

Throughout this book, you will find various subroutines reused in examples. Subroutines allow you to take a section of repeated
code and make it accessible by simply calling it. Subroutines accept multiple parameters, allowing you to pass arguments to the
subroutine for manipulation. Windows Script Host provides two types of subroutines: sub procedures and functions.

Sub Procedures
A sub procedure performs a series of actions without returning any data. A typical use of a sub procedure is to perform file
manipulation, working with text files, or to display user prompts. A sub procedure is structured as follows:
Sub SubName (arguments)
 Code
End Sub

Here, SubName is the name given to the sub procedure; arguments are the parameters passed to the sub procedure (separated
by commas); and code is the script action(s) to perform.

Note Any variables used within a sub procedure will not be accessible outside of the sub procedure, unless they are
explicitly declared beforehand.

Functions
Similar to KiXtart, a function is a procedure used to return data. A Windows Script Host function is structured as follows:
Function FunctionName (arguments)
 Code
End Function

Here, FunctionName is the name given to the function; arguments are the parameters passed to the function (separated by
commas); and Code is the script action(s) to perform. To return a value outside of the function, you should name a variable from
within your function with the same name as your function and set a value to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note While the KiXtart closing statement for a function is "EndFunction", Windows Script Host requires a space between the
words "End" and "Function."

Windows Script Host Example

You now probably realize why I've saved the most difficult scripting example for last. As you'll see, using Windows Script Host
requires a bit more set up work but the work is worth it because of all of the flexibility and power that you gain. Let's revisit the task
of displaying the name of your local computer with the help of a WSH script.

Displaying the Computer Name
To display the name of the local computer using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Again, use your favorite text editor to create a new script file. The following instructions should be placed in the
file:
 Set WshNetwork = CreateObject("WScript.Network")
 WScript.Echo WshNetwork.ComputerName

The first line uses the CreateObject method to create an instance of the built-in Wscript.Network object and stores the instance in
a variable called "WshNetwork." The last line accesses the Wscript.Network's ComputerName property and displays it with the
Wscript.Echo method.

To finish your script file, simply save it using a filename that you will remember.
4. Select Start|Run and enter "cscript scriptfile.vbs."

Recall that CSCRIPT is the name of the command-line host utility. Here, scriptfile should be the full path and file name where
your file is stored (Step 3).

Limitations of Windows Script Host

Windows Script Host's built-in graphical support is extremely limited. Although it does offer popup capability, WSH does not
include the custom screen manipulation capabilities that KiXtart has to offer. Finally, as the name implies, Windows Script Host
can only be used under Windows.

When to Use Windows Script Host

Windows Script Host can be used to manipulate windows, work with files, modify the registry, and more. By itself, Windows Script
Host is best suited for background tasks with little or no interface. When combined with COM automation, WMI (Windows
Management Instrumentation), and ADSI (Active Directory Services Interfaces), WSH is a powerful tool that can be used for
almost all of your scripting needs.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2: Scripting Workstation Setups

In Brief
In this chapter you'll learn the quickest methods to automate hard disk setups and images. You'll begin learning the secrets of
Microsoft FDISK and how to create partitions from the command line. You'll also learn about the scripting limitations of Microsoft
FDISK and how to use Free FDISK to script creating and deleting partitions. You'll then learn about different imaging solutions and
how to script those packages to create and restore image files.

In order to implement all the examples in this chapter, you'll need to obtain the following files:

Free FDISK (http://www.23cc.com/free-fdisk/)

PowerQuest Drive Image Pro (http://www.powerquest.com)

Norton Ghost (http://www.symantec.com)

Note All the DOS-related information in this chapter refers to MS-DOS 7.0.

Warning This chapter contains examples on how to partition, format, and image drives. These processes will destroy any
data on a disk.

Setting Up a New Hard Drive

For the typical PC, the core component to store user data and system files is the hard drive. A hard drive is like a wallet or purse-a
place you can store your most valuable assets you need to access quickly. When you receive a new hard drive from the
manufacturer, it is most likely low-level formatted with no data on it. After you install and configure the hard drive properly, you
must partition and format it before you can put any real data on it.

Partitioning
The first step to setting up a new drive is to partition it. Partitioning is the act of dividing up a hard disk into logical sections, which
allows one physical drive to appear as multiple drives. When you partition a new drive, a master boot record (MBR) is created on
the first physical sector on the hard drive. As a computer initially powers up, it calls the routines stored in the BIOS (Basic
Input/Output System). These routines access the system's basic hardware devices (e.g., floppy disk, hard disk, keyboard, video).
After these routines are executed, the BIOS reads and executes instructions from the MBR. The MBR contains the partition table,
which contains four entries, allowing for various partition types.

Partition Types

When scripting the creation of a partition, you must know the type of partition and its dependencies beforehand. There are three
different types of partitions: primary, extended, and logical. Each physical disk can have a maximum of four primary partitions, and
only one can be marked active in order to boot. When a primary partition is marked active, it is automatically assigned the drive
letter C.

Each primary partition can have only one extended partition. Within an extended partition, you can create up to 24 logical
partitions (or 23 logical partitions if you have an active partition on the same drive). Each logical partition is assigned a drive letter
(with A and B reserved for floppy drives).

Note Only one primary and one extended partition are allowed per physical disk.

Partition Hierarchy

Partition types follow a hierarchy: primary, extended, and logical. They can only be created in this order, and can only be deleted
in the opposite order. To begin scripting partitions, you must first familiarize yourself with Microsoft FDISK.

Microsoft FDISK

Microsoft FDISK (Fixed DISK) is a program that an experienced administrator can be all too familiar with. If only I had a nickel for
each time I've used Microsoft FDISK, I'd be as rich as these IT salary surveys say I should be. Microsoft FDISK is the most
commonly used partitioning utility for hard disks, but despite its popularity, most of its functionality remains highly undocumented.
Microsoft FDISK is included in all versions of DOS and Windows. It allows you to create, delete, or view entries in the partition
table. If you've ever used Microsoft FDISK to set up a new hard drive manually, you know how time-consuming it can be
navigating through menus and waiting for drive integrity checks. Microsoft FDISK provides limited support for scripting from the
command line.

Note If you want to change entries in the partition table, you must first delete and then recreate them.

Scripting Limitations

Scripting Microsoft FDISK is like going to the casino-sometimes you win, sometimes you lose, but most of the time you lose.
Microsoft FDISK does support many command-line options, but doesn't work well with command redirection input (for example,
FDISK < COMMANDS.TXT). And although the menu-based portion allows for deleting partitions, there's no way to delete
partitions from the command line. Just as you do when you're at the casino, you have to know when it's time to collect your chips
and move on to the next table. For us, that move is to Free FDISK.

Free FDISK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If Microsoft FDISK were a used car, you could slap a new engine in it and make it run just the way you like. Well, Free FDISK
does just that. Free FDISK offers enhanced functionality over Microsoft's FDISK and is the official FDISK of FreeDOS
(http://www.freedos.org). Free FDISK provides the same standard Microsoft FDISK interface and commandline options, while
adding even more options for batch scripting. After you partition the hard drive, formatting is the last step needed before the drive
is ready for data.

Formatting
Formatting is the process of preparing a disk for reading and writing. FORMAT.COM is the executable used to format both floppy
and hard disks. When you format a disk, a file allocation table (FAT) and a new root directory are created, allowing you to store
and retrieve files. This, in essence, places a file system on a disk for you to use.

The FAT organizes a hard disk into clusters, grouped into 512K sectors. Clusters are the smallest units for storing data and vary in
size depending on the file system. Starting with the Windows 95 OSR2 release, Microsoft Windows supports the following two file
system types: FAT16 and FAT32. FAT16 is a 16-bit file system that typically stores files in 32K clusters, depending on the partition
size. FAT32 is a 32-bit file system that stores files more efficiently in 4K clusters. You should choose a file system that will be
compatible with the various operating systems running, provide the greatest security, and be the most efficient.

After the drive is formatted with a file system, the operating system can be loaded and made ready for deployment.

Imaging

Imaging is the process of taking an exact copy of a reference computer's hard drive or partition and storing it to an image file
(usually compressed). That image can be stored on any storage medium (hard disk, CDR, DVDR) and restored to multiple
computers, creating a standardized software and operating system environment. The basic principle of imaging is very similar to a
simple disk copy.

Tools
For an administrator, deploying new PCs can become a large part of your job. With old PCs being retired and new PCs rolling in,
finding a way to streamline the imaging process can help cut hours from your work day. And when you're dealing with more than a
few PCs, automating the imaging process is not only helpful, but essential. Imaging tools such as PowerQuest's Drive Image Pro
or Norton Ghost make it easy for an administrator to re-image multiple hard drives in a matter of minutes.

PowerQuest's Drive Image Pro

Drive Image Pro (see Figure 2.1) is an imaging and software distribution solution package from PowerQuest Corporation
(http://www.powerquest.com). In addition to running in standard interactive mode, this product can also be run in batch mode,
allowing a script file to send commands to the main program executable (PQDI.EXE).

Figure 2.1: PowerQuest's Drive Image Pro.

Drive Image Pro uses a proprietary scripting language and includes many commands and switches to image your hard disk. The
most commonly used commands are:

SELECT DRIVE number-Selects a drive according to the number specified

SELECT PARTITION x-Selects a partition where x is:

A partition number

A drive letter

A disk label

ALL-Selects all partitions

DELETE-Deletes the partitions specified in the last SELECT command

DELETE x-Deletes partitions within the currently selected drive where x is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALL-To delete all partitions

EXTENDED-To delete the extended partition (if there are no logical drives)

STORE-Stores selected partitions to an image file with no compression

STORE WITH COMPRESSION x-Stores selected partitions to an image file with compression where x is:

OFF-Stores images with no compression

LOW-Stores images with low compression (about 40%)

HIGH-Stores images with high compression (about 50%)

RESIZE IMAGE x-Resizes the partitions being restored where x is:

NO-Turns resizing off

A size in megabytes (for example, 1000)

PROPORTIONAL-Resizes partitions proportionally

MAX-Resizes partitions to the maximum size possible

MOST SPACE-Resizes partitions leaving most free space

RESTORE-Restores selected partitions

REBOOT-Immediately reboots the computer

Tip To see a brief description of all the available switches, type "PQDI /?" at the command prompt.

Symantec's Norton Ghost

Norton Ghost from Symantec (http://www.symantec.com) is the imaging package most commonly used by IT (Information
Technology) professionals. In addition to imaging, Norton Ghost includes cloning functionality, which allows disk-to-disk/partition-
to-partition copying. Unlike Drive Image Pro, which mainly uses script files for automation, Norton Ghost uses only command-line
switches.

The -CLONE switch is the main switch used to create and restore Norton Ghost image files. The basic syntax of the -CLONE
switch is:
GHOST -CLONE,MODE=m,SRC=s,DST=d

Here, m is any mode parameter, s is any source parameter, and d is any destination parameter. The MODE parameters are:

COPY-Copies one disk to another

LOAD-Restores an image to disk

DUMP-Creates an image from disk

PCOPY-Copies one partition to another

PLOAD-Restores an image to partition

PDUMP-Creates an image from partition

The rest of the parameters are dependent on the selected MODE parameter.

The SRC parameters are:

Drive-Specifies a drive number (COPY/DUMP)

File-Specifies a source image file (LOAD)

Drive:partition-Specifies a drive and partition number (PCOPY/PDUMP)

@MTx-Specifies a tape drive where x is the device number (LOAD)

The DST parameters are:

Drive-Specifies a drive number (COPY/LOAD)

File-Specifies a source image file (DUMP/PDUMP)

Drive:partition-Specifies a drive and partition number (PCOPY/PLOAD)

@MTx-Specifies a tape drive where x is the device number (DUMP)

Note Inserting spaces between the CLONE parameters will cause script errors.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Creating Partitions with Microsoft FDISK

Creating a partition with Microsoft FDISK from the command line is like scripting any program from the command line. The basic
syntax to scripting a program from the command line is as follows:
program options

Here, program is the executable to be run, and options are the supported program parameters.

Creating a Primary Partition
To create a primary partition from the command line, enter the following:
FDISK /PRI: size disk

Here, size is the size of the partition in megabytes, and disk is the physical disk number.

Tip Entering a partition size greater than the drive size will set the partition to the maximum size of the drive or the maximum
size allowed by the selected file system. This is useful when creating generic scripts where you will not know the drive
size in advance.

The /PRI option creates the primary partition and automatically sets it active. Any partition under 512MB will be set up as FAT16,
and larger partitions will be set up as FAT32. To override this behavior and set up all partitions as FAT16, you can append an O
(override) to the /PRI switch.
FDISK /PRIO: size disk

To have all partitions set up as FAT32, you can add the /FPRMT switch:
FDISK /FPRMT /PRI: size disk

Creating an Extended Partition
Scripting an extended partition creation is identical to scripting a primary partition creation, with the exception of the /PRI switch.
To script the creation of an extended partition, enter the following:
FDISK /EXT: size disk

Here, size is the size of the partition in megabytes, and disk is the physical disk number.

The /EXT option creates an extended partition.

Note You must already have a primary partition created before you can create an extended partition.

Creating a Logical Partition
To create a logical partition from the command line, enter the following:
FDISK /EXT: size disk /LOG: size

Here, size is the size of the partition in megabytes and must be less than or equal to the remaining free space, and disk is the
physical disk number.

The /EXT switch is required in order to use the /LOG switch.

Note You must already have a primary and extended partition created before you can create a logical partition.

To set up a logical partition with FAT16, you can append an O (override) to the /LOG switch.
FDISK /EXT: size disk /LOGO: size

Combining Switches
You can combine all three partition creation switches to set up a new hard drive with one line of code:
FDISK /PRI: size disk /EXT: size disk /LOG: size

Note You cannot have multiple /LOG switches per one line of code. If you need to create multiple logical drives, you need to
add multiple lines of code.

Rewriting the Master Boot Record
With an undocumented FDISK option, you can rewrite the master boot record without rewriting the partition table. To rewrite the
MBR, proceed as follows:
FDISK /MBR

Undocumented Microsoft FDISK Options
Even though the /? option is supposed to display all available command-line options, Microsoft FDISK has many undocumented
options. Here are some of the most common undocumented options:

/ACTOK-Skips drive integrity check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/EXT:size disk-Creates an extended partition

/FPRMT-Skips the large drive support startup screen

/LOG:size-Creates a logical drive

/MBR-Creates a new Master Boot Record

/PARTN-Saves partition information to partsav.fil

/PRI:size disk-Creates a primary partition

/STATUS-Displays current partition information

Working with Free FDISK

Free FDISK provides the same functionality as Microsoft FDISK while adding more useful features. Tasks like deleting, creating,
and autosizing partitions are just as simple to perform as any other FDISK option.

Creating Auto-Sized Partitions
To create partitions to the maximum size, enter the following:
FDISK /AUTO

Tip You can create individual partitions by following the above command with a partition number.

Deleting All Partitions
To delete all existing partitions (physical, extended, and logical), enter the following:
FDISK /CLEAR

Tip You can delete individual partitions by following the above command with a partition number.

Other Free FDISK Options
Here are some of the most common options:

/ACTIVATE:partition# drive#-Sets the specified partition active

/C-Checks marked bad clusters

/DELETE-Deletes individual partitions

/FS:filesystem-Specifies the file system to format with

/ONCE-Formats a floppy disk without prompting

/REBOOT-Reboots the machine

Scripting Disk Formats

The main purpose of scripting is to streamline a process. Manual disk formats contain user prompts and pauses. Scripting a disk
format allows you to control how much, if any, prompting is allowed.

Scripting a Hard Disk Format
To perform a completely hands-free drive format and label, enter the following:
FORMAT drive /AUTOTEST /V:label

Here, drive is the drive you want to format, and label is the label you want to give the drive.

The /AUTOTEST switch causes the FORMAT command to run while suppressing any prompts. The /V switch is used to assign a
label to a disk. Disk labels can contain a maximum of eleven characters.

Tip You can follow this command with a /S to format the drive as a system drive.

Scripting a Floppy Disk Format
Combining the /AUTOTEST switch with the /V switch does not create labels on floppy disks. Instead, you can use two separate
commands:
FORMAT drive /AUTOTEST LABEL drive alabel

Here, drive is the drive you want to format, and alabel is the label you want to give the disk.

Scripting a Faster Disk Format
If the disk has already been formatted, you can run a quick disk format that simply erases the disk address tables (not the disk
data). To perform a faster disk format, start the command prompt and enter the following:
FORMAT drive /Q /U

Here, drive is the drive you want to format; /Q indicates a quick format; and /U indicates an unconditional format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Format Options
The other commonly used options are:

/BACKUP-Identical to /AUTOTEST except prompts for disk label

/C-Checks for bad clusters

Suppressing Output when Shell Scripting

Although scripting does suppress most prompts, sometimes it does not suppress the command output. You can suppress the
output of a shell command by sending the output to a NUL device. To suppress the output of a drive format, enter:
FORMAT drive /AUTOTEST > NUL

Creating Boot Disks

Any good administrator has a collection of boot disks ready and waiting in time of need. Boot disks are used when you need to
bypass or perform a task before system bootup. Not only can you use scripting to create boot disks, but you can also use powerful
scripts within them.

Creating a Hard Drive Setup Boot Disk
Follow these steps to create a boot disk that will automatically FDISK and format a hard disk:

1. Make a bootable DOS diskette. On Windows XP, this can be done by opening Windows Explorer, right clicking
on the floppy drive, choosing "Format" from the context menu, selecting "Create an MS-DOS startup disk", and
clicking "Start."

2. Copy FREE FDISK to the diskette.

3. Copy FORMAT.COM to the diskette.

4. Copy the script below to a file and save it as A:\AUTOEXEC.BAT:
@ECHO OFF
IF EXIST "A:\FORMAT.TXT" GOTO FORMAT
IF NOT EXIST "A:\FORMAT.TXT" GOTO FDISK

:FDISK
ECHO This system will reboot when complete.
ECHO.
ECHO Deleting all current partitions ...
FDISK /CLEAR > NUL
ECHO Creating new partitions ...
FDISK /AUTO > NUL
ECHO. > A:\FORMAT.TXT
GOTO REBOOT

:REBOOT
FDISK /REBOOT

:FORMAT
ECHO Formatting drive ...
FORMAT drive /AUTOTEST /V:label /S
DEL A:\FORMAT.TXT
GOTO END
:END
CLS
ECHO FINISHED FDISK AND FORMAT

Here, drive is the drive you want to format, and label is the label you want to give the disk.

Warning This disk will automatically FDISK and format all partitions. You should clearly mark this disk and store it in a
secure area. TRUST ME, I KNOW!

Working with the BOOT.INI

The boot.ini is a hidden, read-only, system file stored in the root of the system partition (Windows Boot Drive). It contains options
about which operating system to load and the timeout to load the default selection. At boot up, the boot loader will display the
options contained in the boot.ini, if it contains more than one entry. You can modify the boot.ini directly (not recommended),
through the System Configuration Utility (Start | Run | Msconfig), through the System control panel applet (Control Panel | System
| Advanced | Startup and Recovery - Settings | System Startup), or through the Bootcfg command.

Backing up the Boot.ini
To backup the existing boot.ini, enter the following:
ATTRIIB -S -H DRIVELETTER:\BOOT.INI

COPY DRIVELETTER:\BOOT.INI DRIVELETTER:\BOOT.BAK
ATTRIIB +S +H DRIVELETTER:\BOOT.INI

Here, the ATTRIB command is used to remove and later add the system and hidden attributes of the boot.ini.

Driveletter is the drive that contains the boot.ini file (e.g., C).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Related solution: Found on page:

Setting File or Folder Attributes 57

Displaying the Boot.ini
The TYPE command displays the contents of a text file from the command prompt. To display the contents of the boot.ini using
the TYPE command, enter the following:
TYPE DRIVELETTER:\BOOT.INI

Here, driveletter is the drive that contains the boot.ini file (e.g., C).

Displaying the Boot.ini Using Bootcfg
Bootcfg is a Windows XP/2003 command line tool that allows you to modify the boot.ini file of a local or remote system. To display
the contents of the boot.ini on a remote system using Bootcfg, enter the following:
bootcfg /query

Here, the QUERY option displays the contents of the boot.ini.

Tip Many of Bootcfg options use entry ID numbers to reference each entry. Use the QUERY option to display entry ids.

Scanning and Rebuilding the Boot.ini Using Bootcfg
Bootcfg can scan for existing Windows NT, 2000, XP, and 2003 installations and prompt to have the entries added to the boot.ini.
To scan for existing installations only, enter the following:
bootcfg /scan /s REMOTESYSTEM /u USERDOMAIN\USERNAME /p PASSWORD

Here, the SCAN option displays the discovered Windows NT, 2000, XP, and 2003 installations and remotesystem is the name of
the remote computer that contains the boot.ini file. The U and P options allow you to specify the domain name, user account
name, and user account password of the user account with permissions to the remote computer.

To have Bootcfg scan and prompt to add discovered installations to the boot.ini, you can use the REBUILD option:
bootcfg /rebuild /s REMOTESYSTEM /u USERDOMAIN\USERNAME /p PASSWORD

Tip You can always use the U and P options to run Bootcfg against a remote system.

Adding Safe Mode Entries Using Bootcfg
By default, Windows XP does not contain any safe mode boot.ini entries. To add safe mode entries to the default Windows XP
boot.ini, enter the following:
bootcfg /copy /d "Safe Mode with No Network" /id 1
bootcfg /raw "/safeboot:minimal /sos /bootlog" /id 2

bootcfg /copy /d "Safe Mode with Network" /id 1
bootcfg /raw "/safeboot:network /sos /bootlog" /id 3

Here, the COPY option is used to copy the first entry (id 1). The /RAW option is used to replace any options with a specified
string.

Deleting an Entry Using Bootcfg
To delete an entry, enter the following:
bootcfg /delete /id entrynumber

Here, entrynumber is the ID number of the entry to delete.

Scripting Drive Image Pro

Drive Image Pro provides a command interpreter to allow complete control from the command line. There are two requirements to
script Drive Image Pro: a script file and a command line to run the script. The script file is a basic text file with the custom
commands that control Drive Image Pro. The command line consists of various switches that control how the script will be
executed. Together, they provide a way to automate all the manual tasks of Drive Image Pro.

Creating an Image
To store partition 1 on drive 1 to an image, enter the following:
SELECT DRIVE 1
SELECT PARTITION 1
STORE

To store all partitions on drives 1 and 2 to an image, enter the following:
SELECT DRIVE 1
SELECT PARTITION ALL
STORE
SELECT DRIVE 2
SELECT PARTITION ALL
STORE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STORE

Note The SELECT command can select only one drive or one set of partitions from a drive at a time. It cannot select two
drives simultaneously, hence the need for two STORE commands.

Restoring an Image
To delete all partitions on drive 1 and restore the first image to drive 1's maximum size, enter the following:
SELECT DRIVE 1
DELETE ALL
SELECT FREESPACE FIRST
SELECT IMAGE 1
RESIZE IMAGE MAX
RESTORE

To resize the second image to 500MB and restore it to the free space on drive 1, proceed as follows:
SELECT DRIVE 1
SELECT FREESPACE LAST
SELECT IMAGE 2
RESIZE IMAGE 500
RESTORE

Running a Script
To run a script, enter the following:
PQDI /CMD=scriptfile /IMG=imagefile /LOG=logfile ERR=errorfile

Here, scriptfile is the name of the script file, imagefile is the name of the image used for the STORE and RESTORE commands,
logfile is a file that records the results of the imaging process, and errorfile is a file that logs any errors encountered while
imaging.

Note If the /IMG switch is omitted, the STORE and RESTORE commands will produce an error.

Scripting Norton Ghost

Norton Ghost performs all its scripting from the command line. Although it does support the use of script files, these files are
nothing more than a list of switches that can be performed at the command line.

Creating an Image
To create an image of drive 1 called image.gho on a remote drive Z, enter the following:
GHOST.EXE -CLONE,MODE=DUMP,SRC=1,DST=Z:\IMAGE.GHO

To create an image of the second partition of drive 1 called image.gho on a remote drive Z, enter the following:
GHOST.EXE -CLONE,MODE=PDUMP,SRC=1:2,DST=Z:\IMAGE.GHO

Restoring an Image
To restore an image called image.gho on a remote drive Z to drive 1, enter the following:
GHOST.EXE -CLONE, MODE=LOAD, SRC= Z:\IMAGE.GHO, DST=1

To restore an image called image.gho on a remote drive Z to the second partition on drive 1, enter the following:
GHOST.EXE -CLONE,MODE=PLOAD,SRC= Z:\IMAGE.GHO,DST=1:2

Performing a Drive Copy
To copy drive 1 to drive 2, enter the following:
GHOST.EXE -CLONE,MODE=COPY,SRC=1,DST=2

Performing a Partition Copy
To copy the first partition on drive 2 to the second partition on drive 1, enter the following:
GHOST.EXE -CLONE,MODE=PCOPY,SRC= 2:1,DST=1:2

Logging Errors
Norton Ghost records all errors in a log file called ghost.err. This file is normally stored in the program's root directory, but you can
change the name and location of the file per use by using the -AFILE switch. Here is an example of how to use the -AFILE switch:
GHOST.EXE -CLONE,MODE=PCOPY,SRC= 2:1,DST=1:2 -AFILE=filename

Using a Script File
Norton Ghost can also read a text file that contains all or additional command-line switches. This file must be in text format, and
each command-line switch must be on a different line. Here is an example of a script file:
-AFILE=z:\errorlog.txt
-CLONE,MODE=PCOPY,SRC= 2:1,DST=1:2

To run the script file, enter the following
GHOST.EXE @filename

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GHOST.EXE @filename

Here, filename is the name of the script file.

More Switches
Different versions of Norton Ghost support different switches. To see a brief description of the available switches, type "GHOST -
H" at the command prompt.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3: Scripting Installations and Updates

In Brief
In the previous chapter, you learned how to automate hard disk setups and images. Throughout this chapter, you will use various
scripting methods to create unique scripting solutions to common administrative installations and updates. You will start by
learning how to script installations from the command line. You will then learn how to use send keys to install windows and
wizards using AutoIt.

Scripting Methods

Not all of us have the luxury of working with a centralized management system such as Systems Management Server (SMS) or
Tivoli. With new programs, program updates, service pack updates, and hotfixes constantly coming out, installing all of these
manually can consume most of an administrator's day. Scripting provides a way to automate these tasks with little or no user
intervention.

Microsoft Command-Line Switches

Microsoft installation and update executables support many different switches to allow for shell scripting and installation
customization. Switches are not case-sensitive and, more often than not, they are not standardized. To make matters worse,
Microsoft tends not to document some of the most useful switches (as you saw in Chapter 2). Here are some of the most
common, and possibly undocumented, switches for Microsoft installation and update executables:

/?-Displays unhidden switches and usage

/C-Extracts files to folder specified with /T switch

/C ID-Used to enter a 20-digit product ID

/F-Forces applications to close at shutdown

/K ID-Used to enter an 11-digit CD key

/N-Does not back up files for uninstall

/N name-Used to enter a username for registration

/N:V-Installs without version checking

/O-Overwrites OEM files without prompting

/O organization-Used to enter an organization name for registration

/Q-Runs in quiet mode, skips all prompts

/Q:U-Runs in user quiet mode, shows some dialog boxes

/Q:A-Runs in admin quiet mode, shows no dialog boxes

/R-Reinstalls the application

/R:A-Always reboots

/R:I-Reboots if necessary

/R:N-Does not reboot, even if necessary

/R:S-Reboots without prompting

/T:path-Specifies or extracts files to a temporary working folder

/U-Runs in unattended mode or uninstalls an application, prompts for shared file removal

/UA-Uninstalls an application and shared files, without prompting

/Z-Does not reboot when installation is complete

Windows and Wizards

Many of the tasks of an administrator involve navigating through interactive windows and wizards. Whether installing a new
program or adding a new piece of hardware, these wizards guide the user through a complicated setup process. This process
involves scrolling through selections, clicking check boxes, selecting tabs, browsing, entering text, and more. Although these
wizards are helpful, they frequently do not support scripting.

In the past, administrators used macro recorders to deal with these unscriptable windows and wizards. The main problem with
basic macro utilities is that they are great for performing linear tasks, but they choke when dealing with complex routines that
require decisions. The solution is to use a send-keys utility, such as HiddenSoft's AutoIt.

AutoIt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoIt (http://www.hiddensoft.com/autoit) is a free automation tool used to send key and mouse commands to Windows objects.
AutoIt detects window titles and text and sends commands to specific windows based on that information. AutoIt reads commands
stored in a text-based script file and performs the commands on a line-per-line basis. Although you can use other scripting send-
keys methods, such as Windows Script Host (WSH) or KiXtart, AutoIt provides the easiest way to detect windows and send keys.

Detecting Windows and Text
Sometimes multiple windows can have the same title. Luckily, AutoIt allows you to specify a combination of window title and
window text to specify the exact window you want. Running AutoIt in "Reveal Mode" allows you to see the title, text, sizes, and
mouse coordinates of the currently active window in real time. To run this command, enter:
AUTOIT /REVEAL

For example, suppose you wanted to script the Add New Hardware Wizard window (see Figure 3.1).The /REVEAL switch would
show the window title and text (see Figure 3.2).

Figure 3.1: The Add New Hardware Wizard window.

Figure 3.2: Detecting window title and text with /REVEAL.

Tip You can use the "AutoIt Reveal Mode" shortcut to start AutoIt in reveal mode.

AutoIt [ADLIB] Section

One of the advantages that AutoIt has over using other send-key methods, such as KiXtart or WSH, is the ability to immediately
intercept windows that may occur unexpectedly. This is accomplished through an optional section called [ADLIB]. When the
[ADLIB] section detects an unexpected window, the script breaks out from its current location, executes the [ADLIB] command,
and then returns to the current location.

Convert Script Files to EXEs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Included in the AutoIt installation package is a utility called AUT2.EXE used to convert AutoIt script files into standalone
executables. By converting your scripts, you can prevent users from reading your code and modifying your scripts. The conversion
utility is menu-based and allows you to set your own executable icon, provided that it is 32 by 32 pixels in 16 colors.

Scripting the AutoIt ActiveX Control

You can use the scriptable ActiveX control version of AutoIt with Windows Script Host. To gain access to the AutoIt object, you
must first use the CreateObject function and set it to a variable:
Set variable = CreateObject("AutoItX.Control")

Note For more information and details on usage, see the AutoIt ActiveX control documentation included in the program
install.

Microsoft Windows Installer

Before Windows 2000, installing and managing applications was a complete mess. Software companies created their own
installation interfaces, each with its own set of rules, command-line options, and uninstall functions. This provided headaches for
administrators who attempted to create common scripting solutions for application installations. To help reduce total cost of
ownership (TCO) and provide a standardized set of installation rules, Microsoft created the Windows Installer.

The Windows Installer is a new installation and configuration service for 32-bit Windows platforms that standardizes the way
programs install and uninstall. The Windows Installer is a Zero Administration Windows initiative and is required to conform to the
"Designed for Microsoft Windows" logo standards. Some of the advanced features of the Windows Installer are self-repair,
rollback, and install on demand. The Windows Installer comes packaged with Windows 2000/XP/2003, and is available as a
separate download for Windows 9x and Windows NT.

The Windows Installer runs as a two-part installation utility that consists of a client engine and a system service. The client engine
(MSIEXEC.EXE) runs with user privileges and provides the interface between the system and the installation service.
MSIEXEC.EXE reads the instructions from the installation package (*.MSI) and passes them to the installation service (Windows
Installer).

The installation service enables the system to keep track of all program installations and system changes, providing for cleaner
uninstalls. Because the installation service runs as a system service, it can be given various privileges to allow users to install their
own applications.

Self-Repair
When a program file becomes corrupted or missing, a program installed with the Windows Installer can identify these files and
replace them automatically. This is a handy feature for those of us with troublesome users who like to attempt their own uninstalls.

Rollback
The Windows Installer rollback feature creates a temporary backup and script of any files changed during the installation process.
If a fatal error occurs during the installation, the rollback feature immediately runs the script and returns the system to its original
state. All rollback files are stored in a temporary directory called config.msi, and are automatically deleted when the installation
successfully completes. Rollbacks can take a significant amount of disk space and can be disabled by an administrator.

Tip You can always delete the config.msi folder manually if setup fails to remove it.

Microsoft Windows Installer Switches
The MSIEXEC.EXE supports various command-line switches, allowing you to control the installer from the command shell or
batch file. Here are some of the most common command-line switches for Microsoft Windows Installer:

/I-Installs the program

/F-Repairs an installation

/X-Uninstalls the program

/L*V logfile-Logs all information to a logfile

/QN-No user interface

/QB-Basic user interface

/QF-Full user interface

/? or /H-Displays some switches and copyright information

/X-Uninstalls the program

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Scripting a Silent .NET Framework Installation

Microsoft .NET is a collection of technologies that allow developers to build, deploy, and maintain applications using a standard
set of classes. The .NET framework is the common language runtime and set of classes required to run any application built in
.NET. To automate a silent installation of the .NET framework, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the .NET framework redistributable from http://www.microsoft.com to the new directory.

3. Start the command prompt and enter the following:
 "new directory path\dotnetfx.exe" /q:a /c:"install /l /q"

Here, new directory path is the complete path of the new folder created in step 1.

Scripting a Silent MDACS Installation

MDAC (Microsoft Data Access Components) is a set of drivers used to communicate with databases. While Windows 2000/XP
comes with a version of MDAC, updating your version will provide improved performance and stability, as well as provide access
to new data sources. To automate a silent installation of MDACS, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the MDACS installer from http://www.microsoft.com to the new directory.

3. Start the command prompt and enter the following:

 new directory path\executable
 /q /C:"setup /QN1"

Here, new directory path is the complete path of the new folder created in step 1, and executable is the name of the MDACS
executable downloaded in step 2.

Scripting a Silent Windows 2000/XP Service Pack Installation

The Windows 2000/XP service packs allow you to script an install without forcing you to extract the files first. To automate a silent
installation of a Windows 2000/XP service pack, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest service pack, from http://www.microsoft.com, to the new directory.

3. Start the command prompt and enter the following:
 new directory path\executable -F -N -O -Q

Here, new directory path is the complete path of the new folder created in step 1, and executable is the name of the service
pack executable downloaded in step 2.

Scripting a Silent Windows Management Instrumentation Installation

Windows Management Instrumentation (WMI) is a management service that provides scriptable interfaces to the objects on your
network. To automate a silent installation of WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest version of Windows Management Instrumentation, from http://www.microsoft.com, to the
new directory.

3. Start the command prompt and enter the following:
 new directory path\file /s

Here, new directory path is the complete path of the new folder created in step 1, and file is the name of the WMI installation
executable.

Scripting an Active Directory Services Interface Installation

Active Directory Services Interfaces (ADSI) is a directory service that allows you to identify users and resources in a tree-like
structure. To automate a silent installation of ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest version of Active Directory Directory Services, from http://www.microsoft.com, to the new
directory.

3. Start the command prompt and enter the following:
 new directory path\file /Q:A /R:A

Here, new directory path is the complete path of the new folder created in step 1, and file is the name of the ADSI installation
executable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scripting an Internet Explorer Download

The Internet Explorer setup utility is a 479kb file that downloads only the files needed for your operating system. If you need to
install Internet Explorer on fifty systems, you'll have to sit and wait for it to download fifty times. To automate the download of
Microsoft Internet Explorer 6.x, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Internet Explorer setup file (ie6setup.exe) from http://www.microsoft.com and store it in the new
directory.

3. Start the command prompt and enter the following:
 new directory path\ ie6setup.exe /c:"ie6wzd.exe /d /s:""#E"

Here, new directory path is the complete path of the new folder created in step 1.

Scripting a Silent Internet Explorer Installation

Microsoft Internet Explorer is the most widely used Web browser for Windows and comes included with every Windows operating
system (for now). To automate the installation of Microsoft Internet Explorer 6.x, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Internet Explorer setup file (ie6setup.exe) from http://www.microsoft.com and store it in the new
directory.

3. Start the command prompt and enter the following:
 new directory path\ie6setup.exe /Q:A /R:N

Here, new directory path is the complete path of the new folder created in step 1.

Related solution: Found on page:

Using Microsoft Internet Explorer as a Display Tool 100

Scripting a Silent LiveUpdate Installation

LiveUpdate is a free Symantec application used to automatically update its other software applications. To automate a silent
installation of LiveUpdate, proceed as follows.

Start the command prompt and enter the following:
file path\LUSETUP -S

Here, file path is the complete path of the LiveUpdate installation files.

Scripting a Silent WinZip 8.1 SR-1 Installation

WinZip is the most popular Windows compression utility for the ZIP format. To automate the installation of WinZip 8.1 SR-1
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the WinZip 8.1 SR-1 installation executable (WINZIP81.EXE), from http://www.winzip.com, to the new
directory.

3. Download and install AutoIt, from http://www.hiddensoft.com/autoit, to the new directory.

4. Double click on the scriptfile.

Here, scriptfile is a text file that contains the following:
;REM To automate the installation of WinZip 8.1 SR-1

RUN, WINZIP81.EXE
WinWaitActive, WinZip 8.1 SR-1 Setup
SEND, !S
WinWaitActive, WinZip Setup, Setup will install
SEND, {ENTER}

WinWaitActive, License Agreement
SEND, !Y
WinWaitActive, WinZip Setup, WinZip Quick Start
SEND, !N
WinWaitActive, WinZip Setup, Select
SEND, !C!N
WinWaitActive, WinZip Setup, Click
SEND, !N
WinWaitActive, WinZip Setup, WinZip needs to associate
SEND, !N
WinWaitActive, WinZip Setup, Installation is complete., 5
SEND, {ENTER}

[ADLIB]
;Used to close license agreement
WinZip, Contents, SEND, !FX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

;Used for the evaluation installation
WinZip Setup, Thank you for installing, SEND, {ENTER}

;Used to prevent installation from unexpectedly ending
WinZip Self-Extractor, Abort unzip operation?, SEND, !N
WinZip, Setup is not complete., SEND, !N
WinZip Self-Extractor, This self-extracting Zip file, SEND,
{ENTER}

;Used for upgrading from older version
Setup Complete 1, ,SEND, {ENTER}
Setup Complete message 2, , SEND, {ENTER}
;Used to exit script if still running
WinZip Tip of the Day, , SEND, Exit

Working with the Windows Installer

The Windows Installer replaces the ACME installer, adding more features and functionality. This new installer provides a standard
method for application installations and an easy way for administrators to script installations.

Scripting a Silent Norton AntiVirus 2003 Installation
Norton AntiVirus 2003 is the latest version of antivirus protection from Symantec (http://www.symantec.com). To automate a silent
installation of Norton AntiVirus 2003, proceed as follows.

Start the command prompt and enter the following:
file path\SETUP /QN

Here, file path is the complete path of the Norton AntiVirus 2003 installation files.

Scripting a Silent pcANYWHERE 11.0 Installation
PcANYWHERE 11.0 is the latest version of remote control from Symantec (http://www.symantec.com). To automate a silent
installation of pcANYWHERE 11.0, start the command prompt and enter the following:
MSIEXEC /I filepath\ Symantec pcAnywhere.msi /QN

Here, file path is the complete path of the pcANYWHERE 11.0 installation files.

Scripting a Silent Windows 2000 Resource Kit Installation
The Windows 2000 resource kit provides many tools and utilities that allow you to perform powerful administrative and system
tasks. To automate a silent installation of a Windows 2000 resource kit, start the command prompt and enter the following:
MSIEXEC /I DRIVE:\W2000RKPRO.MSI /QN

Note Using the /QB switch may cause the installer to prompt that it is uninstalling the resource kit when in fact it is installing
it.

Here, DRIVE is the CD-ROM drive letter containing the Windows 2000 resource kit CD.

Tip You can script a silent Microsoft TechNet installation using the same install syntax and replacing the name of the msi file.

Scripting the Windows Installer Installation
Although the Windows Installer redistributable files usually come packaged with a program that uses the Windows Installer, they
can be downloaded and installed individually. To automate the installation of the Windows Installer, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Windows Installer redistributable from
http://www.microsoft.com/msdownload.platformsdk/instmsi.htm.

3. Select Start|Run and enter "new directory path\wiexe /Q:A / R:A."

Here, new directory path is the complete path of the new folder created in step 1, and wiexe is the name of the Windows
Installer redistributable executable.

Scripting Microsoft Office 2000/XP
Microsoft Office 2000 was one of the first applications released by Microsoft to utilize the new Windows Installer. Although the
following examples are focused toward Microsoft Office 2000 and Office XP, they can be applied to any application that utilizes
the new Windows Installer.

Removing Older Versions

The Microsoft Office Removal Wizard can be used to remove older versions of Microsoft Office before installing Microsoft Office
2000/ XP. To automate the removal of older versions of Microsoft Office, start the command prompt and enter the following:
SETUP /S /Q /R /L log file

Here, log file records all activity of the removal process.

Note The Microsoft Office Removal Wizard is included in the Microsoft Office 2000/XP Resource Kit.

Scripting a Silent Installation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To automate the installation of Microsoft Office 2000/XP, start the command prompt and enter the following:
file path\SETUP /QN /L*V
install log COMPANYNAME="company"

Here, file path is the complete path of the Office installation files, install log is the file to store all errors and output, and
company is the name of the company registered for Office.

Tip For more information about Office 2000/XP command-line switches, see the Microsoft TechNet Article Q202946 (Office
2000) and Q283686 (Office XP).

Scripting an Uninstall

To automate the uninstallation of Microsoft Office 2000/XP, start the command prompt and enter the following:
file path\SETUP /QN /X msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to uninstall.

Scripting a Repair

To automate the repair of a Microsoft Office 2000/XP installation, start the command prompt and enter the following:
file path\SETUP /FOCUMS msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to repair.

Scripting a Reinstallation

To automate the reinstallation of Microsoft Office 2000/XP, start the command prompt and enter the following:
file path\SETUP /FECUMS msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to reinstall.

Advertising

Instead of installing an application, you can simply set up the Start menu shortcuts that, when activated, will install the application
on first use. This setup method is called advertising. To advertise Microsoft Office 2000/XP, start the command prompt and enter
the following:
file path\SETUP /QN /JU msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to advertise.

Disabling Windows Installer Rollbacks
To disable the Windows Installer Rollback feature during an installation, start the command prompt and enter the following:
file path\SETUP DISABLEROLLBACK=1

Here, file path is the complete path of the installation files used in the original installation.

Installing the Windows Installer Clean Up Utility
Microsoft has created a utility that allows you to delete Windows Installer registry entries from a system. This is useful when you
have corrupted installations that are preventing you from successfully installing a program. Although the utility's installer states
that it supports the standard Microsoft installation switches, they do not work. To automate the installation of the Windows Installer
Clean Up Utility, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Windows Installer Clean Up Utility from Microsoft.

For Windows 9x:
download.microsoft.com/download/office2000pro/util22/1/W9X/
EN-US/msicu.exe

Note The code above is one continuous statement.

For Windows 2000:
download.microsoft.com/download/office2000pro/util20/1/NT4/
EN-US/msicuu.exe

Note The code above is one continuous statement.

3. Download and extract Microsoft AutoIt, from http://www.microsoft.com, to the new directory.

4. Select Start|Run and enter "new directory path\AutoIt scriptfile."

Here, new directory path is the complete path of the new folder created in step 1, and scriptfile is a text file that contains the
following:
[SCRIPT]
RUN=executable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RUN=executable
Windows Installer+It is strongly=~WINWAITACTIVE#!N
Windows Installer+License=~WINWAITACTIVE#!A!N
Windows Installer+Start=~WINWAITACTIVE#!N
REM The two lines below should be one continuous line
Windows Installer+Windows Installer Clean Up has been
successfully installed=~WINWAITACTIVE#!F

[ADLIB]
REM Used to prevent installation from unexpectedly ending
Windows Installer+Setup is not complete=!R
REM The two lines below should be one continuous line
Windows Installer+Windows Installer Clean Up was
interrupted={ENTER}

REM Used for uninstallation
Windows Installer+This will remove=!N
REM The two lines below should be one continuous line
Windows Installer+Windows Installer Clean Up has been
successfully uninstalled=!F#~EXIT
REM Used if wrong version installation is attempted
Installer Information=!0
Fatal Error={ENTER}#~EXIT

Here, executable is the name of the Windows Installer Clean Up executable.

Note For more information about the Windows Installer Clean Up utility, see the Microsoft TechNet article Q238413 (Office
2000) and Q290301 (Office XP).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4: File Management

In Brief
Files are the backbone of any information system. They hold the data you work with and make up the programs you use. As a
computer user, everything you do involves interacting with files. Finding, deleting, creating, and modifying files are actions you do
every day, often without even noticing it.

As administrators, we've all dealt with users who tried to back up their entire system to the server or start their own MP3 (Motion
Pictures Experts Group Layer-3 Audio) server with their user directory. Although Windows 2000 provides disk quota management,
it does not include a method to target and remove the offending files. In addition to eating a disk's free space, users also have a
tendency to save files with strange names and extensions while storing the data anywhere they please.

And while users are slowly tearing at the file system, the system is also filling the disk with temp files, orphaned files, and system
logs. With more user data and application files being placed on a system daily, keeping the file system healthy is a constant race
that never ends. In this chapter, you will learn how to clean up your file system and perform file-related tasks.

A Word of Caution

This chapter contains many scripting examples on copying and moving files. Copying and moving files and folders has various
affects on NTFS encryption, compression, or permissions. For example, a task as simple as copying a file may cause you to lose
NTFS permissions set on a secure file. The following list explains the affects of copying and moving NTFS files and folders:

Copying Files/Folders within NTFS drives will cause the object to inherit NTFS permissions of the target folder.

Moving Files/Folders between two NTFS drives will cause the object to inherit NTFS permissions of the target
folder.

Moving Files/Folders within the same NTFS drive will cause the object to retain its NTFS permissions.

Copying Compressed Files/Folders within NTFS drives will cause the object to inherit the compression setting of the
target folder.

Moving Compressed Files/Folders between two NTFS drives will cause the object to inherit the compression setting
of the target folder.

Moving Compressed Files/Folders within the same NTFS drive will cause the object to retain its compression.

Copying or Moving Compressed Files/Folders to a non-NTFS drive will cause the object to lose its compression.

Copying or Moving Encrypted Files/Folders within NTFS drives will cause the object to retain its encryption.

Copying or Moving Encrypted Files/Folders to a non-NTFS drive will cause the object to lose its encryption.

Copying Unencrypted Files/Folders to an NTFS Encrypted Folder will cause the object to become encrypted.

Moving Unencrypted Files/Folders to an NTFS Encrypted Folder will not cause the object to become encrypted.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Working with the File System

Files and folders are the building blocks of any system. They contain the data we treasure, the operating system we use, and the
applications we work with. Shell scripting, KiXtart, and Windows Script Host provide many ways of working with the file system.
Although the tasks these scripting methods perform are similar, the commands, syntax, and limitations of each method differ.

Manipulating the File System Using Shell Scripting

Shell scripting provides limited functionality for manipulating the file system. Although Resource Kit utilities extend the capabilities
of shell scripting, it still cannot compare to the more powerful functions of KiXtart and Windows Script Host. So, why use shell
scripting? Shell scripting comes built into every operating system, and you will run into situations where shell scripting is your only
alternative.

Deleting Files Depending on Extension
The Windows 2000/XP DELETE command supports many options that the Windows 9x command does not. To remove files
based on extension in Windows 2000/XP, start the command prompt and enter the following:
DEL *.ext /F /Q /S

Here, ext is the file extension of the files to delete; the /F switch forces the deletion of read-only files; the /Q switch removes
prompts; and the /S switch performs deletions not only in the current directory, but in the subdirectories as well.

Deleting Folders and Subfolders
Windows XP includes the RMDIR (Remove Directory) command that mimics the Windows 9x DELTREE.EXE (Delete Tree)
command. To delete a root folder and all its subfolders with RMDIR, start the command prompt and enter the following:
RMDIR /Q /S directory

Here, directory is the name of the directory to delete; the /Q switch removes prompts; and the /S switch performs the deletion of
all files and subdirectories.

Determining File Versions
FILEVER.EXE is a Resource Kit utility to display file versions from the command line. To determine a file version, start the
command prompt and enter the following:
FILEVER filename

Here, filename is the path and name of file to determine the file version.

Note Remember, only application files have versions.

Updating Program Files Depending on the Version
REPLACE is a command that can be used to update older files with newer file versions. To update a file with a newer version,
start the command prompt and enter the following:
REPLACE /R /S /U source destination

Here, source is the path and name of the source file; destination is the directory to start the replacement; the /R switch allows for
readonly file replacement; the /S switch performs the replacement in the current directory and all subdirectories; and the /U switch
specifies to only replace files with a newer version.

Replicating Files and Directories
You can tell users to back up their files to the server, but whether the users actually do back the files up is a different story.
ROBOCOPY is a Resource Kit utility to copy, move, or replicate files from the command line. To replicate files, start the command
prompt and enter the following:

ROBOCOPY /MIR /ETA /NP /LOG+:logfile source destination

Here, the /MIR mirrors a directory tree; the /ETA switch displays the estimated time of arrival of copied files; the /NP switch causes
no copy progress to be displayed; the /LOG+:logfile outputs the status to the logfile; and destination is the location to replicate
the source to.

Displaying File or Folder Attributes
The ATTRIB command allows you to display file or folder attributes. To display the attributes of a file or folder, start the command
prompt and enter the following:
ATTRIB filefolder

Here, filefolder is the file or folder that contains the attributes you wish to display.

Setting/Removing File or Folder Attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ATTRIB command allows you to set or remove file and folder attributes. To set attributes of a file or folder, start a command
prompt and enter the following:
ATTRIB +R +H +S filefolder

Tip Here, filefolder is the file or folder that contains the attributes you want to set. The +R, +H, and + S set filefolder's Read
Only, Hidden, and System attributes respectively.

To remove attributes of a file or folder, start a command prompt and enter the following:
ATTRIB -R -H -S filefolder

Appending Text Files
Collecting information from log files can be a time-consuming task. Often, these files are properly formatted but simply need to be
collected to a central file. To append the contents of one text file to another, start the command prompt and enter the following:
TYPE file1 >> file2

Here, file1 is the file whose contents you want to append to file2.

Compressing Files and Folders
With Windows NT/2000/XP/2003 and a drive formatted with NTFS (New Technologies File System), you can take advantage of
NTFS compression to save disk space by compressing your files and folders. The COMPACT command allows you to
compress/uncompress NTFS files and folders from the command line. To compress all the files and subfolders of a folder, start a
command prompt and enter the following:
COMPACT /c /s rootfolder*.*

Here, rootfolder is the folder that contains the files and folders you want to compress. The /c option sets the intended action to
compress, and /s specifies that the intended action should be applied to all files and subfolders of the rootfolder.

Manipulating the File System Using KiXtart

KiXtart is a scripting language I introduced in Chapter 1 that is best used when you know the exact file or directory you want to
manipulate. KiXtart provides poor directory parsing capabilities with its limited DIR command and lack of recursive support. To
compensate, you can call external commands for indirect file management and KiXtart commands for direct file management.

Using External Commands
KiXtart provides two statements to run an external 16- or 32-bit application or command: SHELL and RUN. The SHELL statement
will wait for the external command to complete, but the RUN statement will not. Both the SHELL and RUN statements have the
same syntax:
statement "command"

Here, statement is the RUN or SHELL statement, and command is the command to run. To delete all the files in the temp
directory using the RUN statement, you would enter:
RUN "%COMSPEC% /C DEL C:\TEMP*.* /F /Q /S"

Note %COMSPEC% /C is used to run commands from the DOS environment.

Renaming a File or Folder
KiXtart does not contain a function to rename a file or folder. Instead, you can move the current item to a new item with the
desired name, providing an item with the new name does not already exist. To rename a file or folder, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart from http://www.kixtart.org to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and the file name of a script file that contains the following:
REN('oldname', 'newname')

Function REN($OldFileName, $NewFileName)
 MOVE $OldFileName $NewfileName /h
EndFunction

Here, oldname is the name of the file or folder to rename and newname is the name to rename the oldname to. The REN
function uses the MOVE command to rename the file or folder. The /h option specifies to include system and hidden files.

Displaying File or Folder Attributes
The KiXtart command GetFileAttr allows you to display file or folder attributes. To display the attributes of a file or folder, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
DisplayAttr('path)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisplayAttr('path)
Sleep 5

Function DisplayAttr($FileFolder)
 $ReadOnly = 0 $Hidden = 0 $System = 0
 $Dir = 0 $Archive = 0 $Encrypt = 0
 $Normal = 0 $Temp = 0 $Sparse = 0
 $Reparse = 0 $Compress = 0 $Offline = 0

 If GetFileAttr($FileFolder) & 1 $ReadOnly = 1 EndIf
 If GetFileAttr($FileFolder) & 2 $Hidden = 1 EndIf
 If GetFileAttr($FileFolder) & 4 $System = 1 EndIf
 If GetFileAttr($FileFolder) & 16 $Dir = 1 EndIf
 If GetFileAttr($FileFolder) & 32 $Archive = 1 EndIf
 If GetFileAttr($FileFolder) & 64 $Encrypt = 1 EndIf
 If GetFileAttr($FileFolder) & 128 $Normal = 1 EndIf
 If GetFileAttr($FileFolder) & 256 $Temp = 1 EndIf
 If GetFileAttr($FileFolder) & 512 $Sparse = 1 EndIf
 If GetFileAttr($FileFolder) & 1024 $Reparse = 1 EndIf
 If GetFileAttr($FileFolder) & 2046 $Compress = 1 EndIf
 If GetFileAttr($FileFolder) & 4096 $Offline = 1 EndIf

 ? "File: " + $FileFolder
 ? ""
 ? "ReadOnly: " + $ReadOnly
 ? "Hidden: " + $Hidden
 ? "System: " + $System
 ? "Directory: " + $Dir
 ? "Archive: " + $Archive
 ? "Encrypted: " + $Encrypt
 ? "Normal: " + $Normal
 ? "Temporary: " + $Temp
 ? "Sparse: " + $Sparse
 ? "Reparse: " + $Reparse
 ? "Compressed: " + $Compress
 ? "Offline: " + $Offline
EndFunction

Here, path is the file or folder that contains the attributes you wish to display.

Note Windows 2000 adds several new file attributes with NTFS 5. For more information, see Chapter 17 of the Windows
2000 Professional Resource Kit.

Setting File or Folder Attributes
The KiXtart command SetFileAttr allows you to set file or folder attributes. To modify the attributes of a file or folder, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
;Sets Read Only and Hidden attributes
SetAttribs('filefolder',1,1,0,0,0,0)

Function SetAttribs($File, $ReadOnly, $Hidden, $System, $Archive,
 $Temp, $Offline)
$Rcode = SetFileAttr($File,128) ;Reset file to normal

 $Attribs = 0
 If $ReadOnly = 1 $Attribs = $Attribs + 1 EndIf
 If $Hidden = 1 $Attribs = $Attribs + 2 EndIf
 If $System = 1 $Attribs = $Attribs + 4 EndIf
 If $Archive = 1 $Attribs = $Attribs + 32 EndIf
 If $Temp = 1 $Attribs = $Attribs + 256 EndIf
 If $Offline = 1 $Attribs = $Attribs + 4096 EndIf

 $SetAttribs = SetFileAttr($File,$Attribs)
EndFunction

Here, filefolder is the file or folder that contains the attributes you want to set. To modify filefolder's attributes, change the value
of the corresponding input parameters ($ReadOnly, $Hidden, $System, $Archive, $Normal, $Offline) to 1 to enable, or 0 to
disable.

Appending Text Files
To append the contents of one text file to another, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$File1 = "file1"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$File1 = "file1"
$File2 = "file2"

$Rcode = Open(1,$File1)
$Rcode = Open(2,$File2,5)

$File1 = ReadLine(1)
While @Error=0
 If $File1
 $Rcode = WriteLine(2,$File1 + Chr(13) + Chr(10))
 EndIf
 $File1 = ReadLine(1)
Loop

$Rcode = Close(1)
$Rcode = Close(2)

Here, file1 is the file whose contents you want to append to file2.

Searching and Replacing Lines within Files
Replacing specific lines within text files is a common administrative task. To search and replace a line within a text file, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$File = "somefile"
$DLine = 'searchline'
$RLine = 'replaceline'
$TempFile = $File + ".TMP"
$LineNum = 0

$Rcode = OPEN (1, $File, 2)
DEL $TempFile
$Rcode = OPEN (2, $TempFile, 5)

 $Line = READLINE(1)
WHILE @Error = 0

$LineNum = $LineNum + 1
 IF $Line = $DLine
 $Rcode = WRITELINE(2, $RLine + Chr(13) + Chr(10))
 ELSE
 $Rcode = WRITELINE(2, $Line + Chr(13) + Chr(10))
 ENDIF
 $Line = READLINE(1)
LOOP
$Rcode = CLOSE(1)
$Rcode = CLOSE(2)
COPY $TempFile $File
DEL $TempFile

Here, somefile is the file to parse, and replaceline is the text to replace the searchline with.

Searching and Replacing within an INI File
INI files, or initialization files, are text files that were originally created to store configuration information for 16-bit applications.
KiXtart is the easiest scripting method for modifying an INI file because it has two built-in INI functions (READPROFILESTRING
and WRITE PROFILESTRING). To search and replace a value in an INI file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$LoadKey = ReadProfileString("inifile", section, key)
If $LoadKey = oldvalue
 WriteProfileString("inifile ", section, key, newvalue)
EndIf

Here, inifile is the complete name and path of the INI file; section is the name of the INI section to search (without the brackets);
key is the name of the key to search; oldvalue is the value to find; and newvalue is the value to replace it with.

Note WriteProfileString in this example replaces the old value with a new value surrounded by double quotes. If you wish to
clear the value, the new value should be a space surrounded by double quotes. Simply supplying double quotes (no
space) would delete the entire key and value from the INI file.

Manipulating the File System Using Windows Script Host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many of the file management tasks administrators would like to script are too complex or cannot be done with shell scripting or
KiXtart. Through the FileSystemObject object, Windows Script Host (WSH) provides direct access to the file system, allowing you
to create complex and unique file management scripts.

Accessing the FileSystemObject Object
The FileSystemObject object stores all the functions that allow you to manipulate the file system through a script file. To create
an instance of the FileSystemObject, proceed as follows:
Set FSO = CreateObject("Scripting.FileSystemObject")

Going through Subfolders
This subroutine will work through the subfolders of a main directory, calling another subroutine called MainSub:
Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 MainSub objDIR
 For Each eFolder in objDIR.SubFolders
 GoSubFolders eFolder
 Next
 End If
End Sub

Note The System Volume Information Directory is a system directory that stores system files, restores information, and
encryption logs. Since this is an exclusive system directory, scripts that attempt to access it will generate an access
denied error.

Connecting to a File
Before performing certain WSH actions on a file, you must first connect to it using the GetFile method. Here is a function to
connect to a file:
Function GetFile(sFILE)
 On Error Resume Next
 Set GetFile = FSO.GetFile(sFILE)
 If Err.Number <> 0 Then
 Wscript.Echo "Error connecting to: " & sFILE & VBlf & _
 "[" & Err.Number & "] " & Err.Description
 Wscript.Quit Err.Number
 End If
End Function

Tip On Error Resume Next allows the script to continue to the next statement if an error occurs. This allows you to perform
error checking and alerting.

In this script, a connection to a file is attempted, and the user is prompted if any errors occur.

Connecting to a Folder
Before performing certain WSH actions on a folder, you must first connect to it using the GetFolder method. Here is a function to
connect to a folder:
Function GetFolder(sFOLDER)
 On Error Resume Next
 Set GetFolder = FSO.GetFolder(sFOLDER)
 If Err.Number <> 0 Then
 Wscript.Echo "Error connecting to folder: " & sFOLDER & _
 VBlf & "[" & Err.Number & "] " & Err.Description
 Wscript.Quit Err.Number
 End If
End Function

Generating a Random File Name
Most applications use temporary files-files with random and or unique names. During your scripting lifetime, you will need to
generate a random filename to hold temporary data. Here is a function to create a temporary file name:
Function GetRandomName()
 Set FSO = CreateObject("Scripting.FileSystemObject")
 GetRandomName = FSO.GetTempName
End Function

Generating a Directory Listing
To generate a directory list, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sDIR = "directory"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub ListFiles (objDIR)
 For Each efile in objDIR.Files
 Wscript.Echo efile
 Next
End Sub

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 ListFiles objDIR
 For Each eFolder in objDIR.SubFolders
 Wscript.Echo eFolder
 GoSubFolders eFolder
 Next
 End If
End Sub

Here, directory is the root folder containing the files and folders to list. The subprocedure ListFiles rotates through all the files
within the current directory and lists their names.

Note You need to append the GetFolder routine, listed earlier in this chapter, to this script in order for it to run.

Tip If you want to send the directory list to a text file, you can use the DOS append command (>>) when running the script
from the command line (for example, cscript scriptfile.vbs >> textfile.txt).

Deleting a File
To delete a file with WSH, you can use the DeleteFile method. Here is a subroutine to delete a file:
Sub DelFile(sFILE)
 On Error Resume Next
 FSO.DeleteFile sFILE, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error deleting file: " & sFILE
 End If
End Sub

In this script, a file deletion is attempted, and the user is prompted if any errors occur.

Deleting All Files within a Folder

To delete all files within a root folder and its subfolders, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 DelFile efile
 Next
End Sub

Here, directory is the root folder containing the files to delete.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Size

It happens to all of us, but every now and then a user chooses to upload hundred meg files to a public share. To delete all files
within a root folder and its subfolders depending on size, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lSIZE = lowersize
uSIZE = uppersize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uSIZE = uppersize

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 If lSIZE = Null and uSIZE = Null Then
 If efile.Size = 0 Then
 DelFile efile
 End If
 ElseIf lSIZE <> Null and uSIZE = Null Then
 If efile.Size < lSIZE Then
 DelFile efile
 End If
 ElseIf lSIZE = Null and uSIZE <> "" Then
 If efile.Size > uSIZE Then
 DelFile efile
 End If
 ElseIf lSIZE = uSIZE Then
 If efile.Size = lSIZE Then
 DelFile efile
 End If
 Else
 If efile.Size > lSIZE and _
 efile.Size < uSIZE Then
 DelFile efile
 End If
 End If
 Next
End Sub

Here, directory is the folder containing the files to delete, lowersize is the lower size limit, and uppersize is the upper size limit. If
both limits are null, the script will delete all empty files. If just the upper limit is null, the script will delete files smaller than the lower
limit. If just the lower limit is null, the script will delete files larger than the upper limit. If both limits are not null but equal, the script
will delete files equal to the limit. If both limits are not null and not equal, the script will delete files within the two limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Date

A common administrative task is deleting old files from public shares. To delete all files within a root folder and its subfolders
depending on last modified date, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lDATE = "lowerdate"
uDATE = "upperdate"

lDATE = CDate(lDATE)
uDATE = CDate(uDATE)
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR
Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 If lDATE = Null and uDATE = Null Then
 If efile.DateLastModified = Date Then
 DelFile efile
 End If
 ElseIf lDATE <> Null and uDATE = Null Then
 If efile.DateLastModified < lDATE Then
 DelFile efile
 End If
 ElseIf lDATE = Null and uDATE <> Null Then
 If efile.DateLastModified > uDATE Then
 DelFile efile
 End If
 ElseIf lDATE = uDATE Then
 If efile.DateLastModified = lDATE Then
 DelFile efile
 End If
 Else
 If efile.DateLastModified > lDATE and _
 efile.DateLastModified < uDATE Then
 DelFile efile
 End If
 End If
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Here, directory is the folder containing the files to delete, lowerdate is the lower date limit, and upperdate is the upper date limit.
If both limits are null, the script will delete files last modified today. If just the upper limit is null, the script will delete files smaller
than the lower limit. If just the lower limit is null, the script will delete files larger than the upper limit. If both limits are not null but
equal, the script will delete files equal to the limit. If both limits are not null and not equal, the script will delete files within the two
limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Name

From hacker tools to new viruses, deleting files with a specific name is a common administrative task. To delete all files with a
specific name within a root folder and its subfolders, proceed according to the steps on the next page.

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sFILE = "filename"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 If LCase(efile.Name) = LCase(sFILE) Then
 DelFile efile
 End If
 Next
End Sub

Here, directory is the folder containing the files to delete, and filename is the name of the file to search for.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Extension

Cleaning a system of specific file types, such as TMP (Temporary), MP3 (Motion Picture Experts Group Layer 3 Audio), AVI
(Audio Video Interleave), and other file types, is a very common administrative task. To delete all files with a specific extension
within a root folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sEXT = "EXT"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 DelFile efile
 End If
 Next
End Sub

Here, directory is the folder containing the files to delete, and EXT is the file extension to search for. The sub procedure
MainSub rotates through every file within the current directory, checks the file extension, and deletes the file if specified.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting a Folder
To delete a folder with WSH, you can use the DeleteFolder method. Here is a subroutine to delete a folder:
Sub DelFolder(sFOLDER)
 On Error Resume Next
 FSO.DeleteFolder sFOLDER, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error deleting folder: " & sFOLDER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Wscript.Echo "Error deleting folder: " & sFOLDER
End If End Sub

Deleting All Subfolders

To delete all subfolders within a directory, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 DelFolder eFolder
 Next
 End If
End Sub

Here, directory is the folder containing the subfolders to delete.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Folders Depending on Size

By maintaining public shares, you get to notice all the bad habits of a typical user. One of these habits includes leaving empty
folders spread throughout the public share. To delete all folders depending on size within a root folder and its subfolders, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lSIZE = lowersize
uSIZE = uppersize

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 If lSIZE = Null and uSIZE = Null Then
 If efolder.Size = 0 Then
 DelFolder efolder
 End If
 ElseIf lSIZE <> Null and uSIZE = Null Then
 If efolder.Size < lSIZE Then
 DelFolder efolder
 End If
 ElseIf lSIZE = Null and uSIZE <> Null Then
 If efolder.Size > uSIZE Then
 DelFolder efolder
 End If
 ElseIf lSIZE = uSIZE Then
 If efolder.Size = lSIZE Then
 DelFolder efolder
 End If
 Else
 If efolder.Size > lSIZE and _
 efolder.Size < uSIZE Then
 DelFolder efolder
 End If
 End If
 Next
 End If
End Sub

Here, directory is the root folder containing the subfolders to delete, lowersize is the lower size limit, and uppersize is the upper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, directory is the root folder containing the subfolders to delete, lowersize is the lower size limit, and uppersize is the upper
size limit. If both limits are null, the script will delete all subfolders with a size of 0. If just the upper limit is null, the script will delete
subfolders smaller than the lower limit. If just the lower limit is null, the script will delete subfolders larger than the upper limit. If
both limits are not null but equal, the script will delete subfolders equal to the limit. If both limits are not empty and not null, the
script will delete subfolders within the two limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Folders Depending on Date

If you let them, users will leave files and folders forever on a public share. To delete all folders depending on last modified date
within a root folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lDATE = "lowerdate"
uDATE = "upperdate"

lDATE = CDate(lDATE)
uDATE = CDate(uDATE)
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 If lDATE = Null and uDATE = Null Then
 If efolder.DateLastModified = 0 Then
 DelFolder efolder
 End If
 ElseIf lDATE <> Null and uDATE = Null Then
 If efolder.DateLastModified < lDATE Then
 DelFolder efolder
 End If
 ElseIf lDATE = Null and uDATE <> Null Then
 If efolder.DateLastModified > uDATE Then
 DelFolder efolder
 End If
 ElseIf lDATE = uDATE Then
 If efolder.DateLastModified = lDATE Then
 DelFolder efolder
 End If
 Else
 If efolder.DateLastModified > lDATE and _
 efolder.DateLastModified < uDATE Then
 DelFolder efolder
 End If
 End If
 Next
 End If
End Sub

Here, directory is the root folder containing the subfolders to delete, lowerdate is the lower date limit, and upperdate is the
upper date limit. If both limits are null, the script will delete subfolders last modified today. If just the upper limit is null, the script
will delete subfolders smaller than the lower limit. If just the lower limit is null, the script will delete subfolders larger than the upper
limit. If both limits are not null but equal, the script will delete subfolders equal to the limit. If both limits are not null and not equal,
the script will delete subfolders within the two limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Folders Depending on Name

Any user public folder called GAMES or QUAKE is most likely not work-related, unless you have a better job than I do. To delete
all folders with a specific name within a root folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sFOLDER = "foldername"

Set objDIR = GetFolder(sDIR)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 If LCase(eFolder.Name) = LCase(sFOLDER) Then
 DelFolder efolder
 End If
 Next
 End If
End Sub

Note You need to append the GoSubFolders and GetFolder routines, listed earlier in this chapter, to this script in order for
it to run.

Copying a File
To copy a file with WSH, you can use the CopyFile method. Here is a subroutine to copy a file:

Sub CopyFile(sFILE, sDIR)
 If Right(sDIR,1) <> "\" Then sDIR = sDIR & "\"
 On Error Resume Next
 FSO.CopyFile sFILE, sDIR, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error copying file: " & sFILE
 End If
End Sub

Here, sFILE is the file to copy, and sDIR is the location to copy the file to.

Copying a Folder
To copy a folder with WSH, you can use the CopyFolder method. Here is a subroutine to copy a folder:
Sub CopyFolder(sFOLDER, sDIR)
 If Right(sFOLDER,1) = "\" Then
 sFOLDER = Left(sFOLDER,(Len(sFOLDER)-1))
 End If
 If Right(sDIR,1) <> "\" Then sDIR = sDIR & "\"
 On Error Resume Next
 FSO.CopyFolder sFOLDER, sDIR, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error copying folder: " & sFOLDER
 End If
End Sub

Here, sFOLDER is the folder to copy, and sDIR is the location to copy the folder to.

Moving a File
To move a file with WSH, you can use the MoveFile method. Here is a subroutine to move a file:
Sub MoveFile(sFILE, sDIR)
 On Error Resume Next
 FSO.MoveFile sFILE, sDIR
 If Err.Number <> 0 Then
 Wscript.Echo "Error moving file: " & sFILE
 End If
End Sub

Here, sFILE is the file to move, and sDIR is the location to move the file to.

Moving Files with Specific Extensions to a Central Directory

Although certain file types, such as MP3s, do not belong in the public share, you may want to keep them for your own purposes.
To move files with a specific extension to a central directory, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject") sEXT = "extension"
sDIR = "startdir"
sNEW = "enddir"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fNAME = efile
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If LCase(fEXT) = LCase(sEXT) Then
 sEXIST = sNEW & efile.Name
 If ((FSO.FileExists(sEXIST)) AND _
 (efile <> sEXIST)) Then
 DelFile sEXIST
 End If
 On Error Resume Next
 MoveFile efile, sNEW
 End If
 Next
End Sub

Here, extension is the name of the extension to search for, startdir is the name of the directory to start the search, and enddir is
the directory to store all files.

Note You need to append the GoSubFolders, DelFile, MoveFile, and GetFolder routines, listed earlier in this chapter, to
this script in order for it to run.

Moving a Folder
To move a folder with WSH, you can use the MoveFolder method. Here is a subroutine to move a folder:
Sub MoveFolder(sFOLDER, sDIR)
 If Right(sFOLDER,1) = "\" Then
 sFOLDER = Left(sFOLDER,(Len(sFOLDER)-1))
 End If
 If Right(sDIR,1) <> "\" Then sDIR = sDIR & "\"
 On Error Resume Next
 FSO.MoveFolder sFOLDER, sDIR
 If Err.Number <> 0 Then
 Wscript.Echo "Error moving folder: " & sFOLDER
 End If
End Sub

Here, sFOLDER is the folder to move, and sDIR is the location to move the folder to.

Renaming a File
To rename a file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
MoveFile "filename", "newname"

Here, filename is the name of the file to rename, and sname is the name to rename the file.

Note You need to append the MoveFile routine, listed earlier in this chapter, to this script in order for it to run.

Renaming Specific File Extensions
I don't know what planet of bad habits this came from, but some users like to name files with their own personal extensions.
Although this might be beneficial to them when searching for their files, it becomes an administrator's nightmare when these files
are being shared. Unfortunately, the DOS RENAME command does not have the ability to act through subdirectories. To rename
files with specific extensions with a new extension, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sEXT = "oldext"
sNEW = "newext"
sDIR = "directory"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 fNAME=Left(efile.name,(Len(efile.Name)-Len(fEXT)))+sNEW
 efile.name = fNAME
 End If
 Next
End Sub

Here, oldext is the name of the extension to search for, newext is the name of the extension to replace with, and directory is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, oldext is the name of the extension to search for, newext is the name of the extension to replace with, and directory is the
name of the directory to start the search.

Note You need to append the GetFolder and GoSubFolders routines, listed earlier in this chapter, to this script in order for
it to run.

Renaming Files with Short File Names
To rename a file with its short DOS 8.3 name, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
sFILE = "filename"
Set gFILE = GetFile sFILE

ShortName = gFILE.shortname
MoveFile sFile, ShortName

Here, filename is the name of the file to rename. An important thing to know is that you can't rename a file from a long file name
to its short name directly because Windows sees long and short file names collectively, and you can't name a file the same name
as another file in the current directory. In this example, we first append an SN to the file name and then change the file name to its
short name.

Note You need to append the GetFile and MoveFile routines, listed earlier in this chapter, to this script in order for it to run.

Related solution: Found on page:

Using SCANDSKW.EXE to Convert Long File Names to Short 90

Updating Program Files Depending on the Version
To update a program file with a newer version, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sFILE = "filename"

Set nFILE = GetFile(sFILE)
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fVER = FSO.GetFileVersion(efile)
 nVER = FSO.GetFileVersion(sFILE)
 If LCase(efile.Name) = LCase(nFILE.Name) Then
 If fVER = nVER Then
 CopyFile nFILE, efile.ParentFolder
 End If
 End If
 Next
End Sub

Here, directory is the folder containing the files to update, and filename is the file used to update the older file versions.

Note You need to append the GetFile, GetFolder, GoSubFolders, and CopyFile routines, listed earlier in this chapter, to
this script in order for it to run. Remember, only program files have versions.

Getting File Attributes
To display the attributes of a file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set FSO = CreateObject("Scripting.FileSystemObject")
fNAME = "filename"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fNAME = "filename"

Set gFILE = GetFile(fNAME)
gATTRIB = gFILE.Attributes

If gATTRIB and 1 Then ReadOnly = 1 Else ReadOnly = 0
If gATTRIB and 2 Then Hidden = 1 Else Hidden = 0
If gATTRIB and 4 Then System = 1 Else System = 0
If gATTRIB and 5 Then Volume = 1 Else Volume = 0
If gATTRIB and 16 Then Directory = 1 Else Directory = 0
If gATTRIB and 32 Then Archive = 1 Else Archive = 0
If gATTRIB and 64 Then Alias = 1 Else Alias = 0
If gATTRIB and 128 Then Compressed = 1 Else Compressed = 0

Wscript.Echo "FILE: " & UCase(fNAME) & vblf & vblf & _
 "Readonly: " & vbtab & ReadOnly & vblf & _
 "Hidden: " & vbtab & Hidden & vblf & _
 "System: " & vbtab & System & vblf & _
 "Volume: " & vbtab & Volume & vblf & _
 "Directory: " & vbtab & Directory & vblf & _
 "Archive: " & vbtab & Archive & vblf & _
 "Alias: " & vbtab & vbtab & Alias & vblf & _
 "Compressed:" & vbtab & Compressed

Here, filename is the file that contains the attributes you want to get.

Note You need to append the GetFile routine, listed earlier in this chapter, to this script in order for it to run.

Related solution: Found on page:

Getting File or Folder Details 110

Setting File Attributes
To set the attributes of a file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
fNAME = "filename"
ReadOnly= 0
Hidden= 0
System= 0
Archive = 0

Set gFILE = GetFile(fNAME)
gFILE.Attributes = 0
Attribs = 0
If ReadOnly = 1 Then Attribs = Attribs + 1
If Hidden = 1 Then Attribs = Attribs + 2
If System = 1 Then Attribs = Attribs + 4
If Archive = 1 Then Attribs = Attribs + 32
gFILE.Attributes = Attribs

Here, filename is the file that contains the attributes you want to set. To modify filename's attributes, change the value of the
corresponding variable names (ReadOnly, Hidden, System, Archive) to 1 to enable, or 0 to disable.

Note You need to append the GetFile routine, listed earlier in this chapter, to this script in order for it to run.

Setting Attributes to All Files within Folders
To set the attributes of all files within a folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host from http://www.microsoft.com to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sReadOnly = 0
sHidden = 0
sSystem = 0
sArchive = 0

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 Set gFILE = GetFile(efile)
 gFILE.Attributes = 0
 Attribs = 0
 If sReadOnly = 1 Then Attribs = Attribs + 1
 If sHidden = 1 Then Attribs = Attribs + 2
 If sSystem = 1 Then Attribs = Attribs + 4
 If sArchive = 1 Then Attribs = Attribs + 32
 gFILE.Attributes = Attribs
 Next
End Sub

Here, directory contains the files whose attributes you want to set. To modify the attributes, change the values of the
corresponding variable names (ReadOnly, Hidden, System, Archive) to 1 to enable, or 0 to disable.

Note You need to append the GetFile routine, the GetFolder routine, and the GoSubFolders routine listed earlier in this
chapter to this script in order for it to run.

Appending Text Files
To append the contents of one text file to another, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
File1 = "1stfile"
File2 = "2ndfile"

Set txtFile1 = FSO.OpenTextFile(File1, 1)
Set txtFile2 = FSO.OpenTextFile(File2, 8)

Do While txtFile1.AtEndOfline <> True
 txtFile2.WriteLine(txtFile1.Readline & vbcr)
Loop

txtFile1.close
txtFile2.close

Here, 1stfile is the file whose contents you want to append to 2ndfile.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5: Automating Windows and Applications

In Brief
In this chapter, you will first learn how to script applications, Control Panel applets, and Windows and Wizards from the command
line. You will then learn about automation and how to script the Windows shell and most common applications (for example,
Word, Excel, Internet Explorer). Finally, you will learn how to use send-keys to automate applications that do not easily support
conventional scripting methods. In later chapters, you will learn how to automate Windows and applications to perform more
specific tasks (such as adding shares, controlling services, or performing backups).

Automation

Automation was originally created as a method for applications to easily access and control one another. Application automation
originally developed from Dynamic Data Exchange (DDE), grew to Object Linking and Embedding (OLE), developed into OLE
automation, and eventually turned into just Automation. Automation interfaces with applications through Component Object Model
(COM) objects. COM objects are ActiveX controls that contain isolated sections of reusable code. Through automation, you can
create documents, save files, play sounds, and even control the operating system, depending on whether it has an object model.

Visual Basic for Applications
Microsoft Office applications support a scripting language called Visual Basic for Applications (VBA). VBA, which is based on
Visual Basic, is the standard programming language to control Microsoft Office application functions remotely. Application
developers can use VBA to call other application functions from within their projects.

Note Applications that support VBA are known as "customizable applications."

A common method to produce easy VBA code is to record a macro and edit it in the built-in Visual Basic editor. To record a new
macro, start an Office application and select Tools|Macro|Record New Macro. After you have started recording, perform the
functions you would like to code and then stop the macro recording. Next, start the Visual Basic Editor by selecting
Tools|Macro|Visual Basic Editor. After the editor opens, select Tools|Macro, highlight your macro, and click Edit. In Figure 5.1, you
can see the VBA code of all the functions you have just recorded.

Figure 5.1: Editing a recorded Office macro.

Through Windows Script Host, you can use VBScript to call many VBA functions to automate Office applications. There are three
steps to controlling an application through automation: accessing the application object, controlling the application, and closing the
application object.

Accessing the Application Object
The application object is the top-level object, which allows you to send data to an application object and manipulate a program
through it. As you learned in Chapter 1, in order to gain access to an object, you must first use the CreateObject method and set
it to a variable:
Set variable = CreateObject("object.Application")

Once the instance is created, you can use this variable throughout your script to access all the methods within the object. Here is
a list of the most common automation identifiers:

Access.Application-Used to automate Microsoft Access

Excel.Application-Used to automate Microsoft Excel

InternetExplorer.Application-Used to automate Microsoft Internet Explorer

Outlook.Application-Used to automate Microsoft Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PowerPoint.Application-Used to automate Microsoft PowerPoint

Shell.Application-Used to automate Microsoft Windows

Word.Application-Used to automate Microsoft Word

Microsoft Office contains help files on how to use automation with the various Microsoft Office applications. To view these files,
run the Office setup and install the help files for Visual Basic. Run the application's help feature and search for "VBA HELP."

Changing the Application Visibility

After you've instantiated an application object, most of the objects start in hidden mode. This allows you to manipulate the object
and perform various tasks before making the object visible. To make the object visible, set the object's visible state to true:
Variable.Visible = True

Similarly, you can hide the object by setting the visible state to False.

Closing the Application Object
After you are finished with the application object, you should close it to free up system resources. To close an application object,
proceed as follows:
Variable.Quit

If an application object is not closed properly, that application will remain in memory regardless of its visibility or use. You should
leave objects open only if you plan to use them at a later moment, such as using Microsoft Outlook to send admin alerts.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Automating Applications from the Command Line

Most Windows applications support some level of shell scripting. This was originally intended for backward compatibility with DOS
batch files, but is slowly dying with the birth of automation objects. Controlling applications from the command line is extremely
useful when you need to perform simple tasks from within DOS batch files or Windows shortcuts.

Scripting Windows XP/2003 Defrag
When a file or folder is created or modified, pieces of that file or folder are scattered throughout the hard disk. This is known as
disk fragmentation. Although this behavior occurs naturally, fragmentation does slow down data access time. Reorganizing these
files or folders contiguously improves performance and is known as defragmentation. Microsoft XP/2003 includes a scriptable
defragmentation utility, defrag.exe. The command-line options are:

/A-Analyzes the drive and displays a report

/F-Forces defragmentation, event when space is low

/ V-Displays complete reports

Scripting a Windows XP/2003 System Defrag

The following command defrags the C: drive and displays a report when complete:
DEFRAG C: /V

Scripting Norton Antivirus 2003
Although Norton Antivirus 2003 is a Windows graphical antivirus scanner, it does provide support for being scripted from the
command line. The basic syntax for command-line scripting is as follows:

NAVW32.EXE path options

Here, path is any drive, folder, file, or combination of these to be scanned; and options are any valid command-line switches
passed to NAVW32.EXE. Here is a list of the available switches:

/A-Scan all drives except drives A and B. Network drives will be scanned if the Allow Network Scanning option is
selected.

/L-Scan all local drives except drives A and B.

/S-Scan all subfolders specified in the path.

/Moption-Enable or disable memory scanning. Here, option is + for enabling, and − for disabling.

/MEM-Scan only memory.

/Boption-Enable or disable boot sector scanning. Here, option is + for enabling, and - for disabling.

/BOOT-Scan only boot sectors.

/NORESULTS-Do not display scan results.

/DEFAULT-Reset settings to default.

/HEUR:option-Sets the heuristic scanning sensitivity. Here, option can be values 0-4 where 4 is the highest and 0
is disabled.

Scripting FTP
FTP (File Transfer Protocol) is a common method for transferring files between two locations. Although you could use a third-party
FTP client (such as CuteFTP), Microsoft FTP is a more than adequate file transfer tool that supports command-line switches,
commands, and script files. FTP command line switches control how the FTP client starts. The most common command line
switches are:

-i-Interactive mode, turns off interactive prompting during multiple file transfers

-n-Prevents automatic logon

-s: script-Specifies an FTP script to run

-v-Verbose mode, turns on transfer data statistics and responses

To start an FTP client in verbose and interactive more, start a command prompt and enter the following:
ftp -v -i

Once the FTP client is active, you can enter various commands to list, delete, put, retrieve and files. The most common FTP
commands are:

ascii-Selected by default, sets the file transfer type to ASCII (shar, uu)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

binary-Sets the file transfer site to binary (z, arc, tar, zip)

bye-Terminates the current FTP session and exits the FTP program

cd directory-Changes the directory on the remote system

close-Terminates the current FTP session

delete file-Deletes a remote file

get file-Retrieves a single file from the remote system

lcd directory-Changes the directory on the local system

mdelete files-Deletes remote files

mget files-Retrieves multiple files from the remote system

mput files-Uploads local files to a remote system

open host-Establishes a connection to the host name specified

password password-Specifies the password for the account name specified

prompt-Toggles interactive prompting

put file-Uploads a local file to a remote system

user name-Specifies the account name to connect to the remote system

Tip To see the available FTP switches, enter "FTP -?" at the command line.

Scripting an FTP Upload
A common administrative task is uploading daily files to an FTP server. To script an FTP upload, select Start|Run and enter "FTP -
I -S:scriptfile."

Here, -I turns off prompting during multiple file copies; -S: specifies a script file to use; and scriptfile is the full path and file name
of a script file that contains the following:
OPEN
ftpserver
Username Password
CD ftpdirectory
LCD filedirectory
MPUT files
BYE

Here, ftpserver is the server to connect to; username and password are the logon credentials; ftpdirectory is the directory to
upload the files to on the FTP server; filedirectory is the local directory where the files reside; and files are the multiple files to
upload (such as *.*, *.txt, daily.*).

Tip To upload a single file, change the MPUT command to PUT.

Scripting an FTP Download
A common administrative task is downloading files from an FTP server. To script an FTP download, select Start|Run and enter
"FTP -I -S:scriptfile."

Here, -I turns off prompting during multiple file copies; -S: specifies a script file to use; and scriptfile is the full path and file name
of a script file that contains the following:
OPEN
ftpserver
Username
Password
CD ftpdirectory
LCD filedirectory
MGET *.*
BYE

Here, ftpserver is the server to connect to; username and password are the logon credentials; ftpdirectory is the directory to
download files from an FTP server; and filedirectory is the local directory where the files reside.

Scripting an FTP Download of Norton Antivirus Update Files
Many administrators maintain a share that stores the latest version of antivirus updates and then point their user's antivirus
program to the share. This ensures that the administrator can first test the update, as opposed to simply directing the user's
antivirus to the vendor. To download Norton antivirus update files to a central share using FTP and shell scripting, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@Echo Off
Net Use Z: \\server\share
ftp -n -s:ftpscript >> logfile
Net Use Z: /Delete

Here, server is the system containing the network share to store the antivirus update files; logfile is the full path and file name of
a text file to log the FTP transfer, and ftpscript is the full path and file name of a script file containing the following:
open ftp.symantec.com
user anonymous
youremail@yourdomain.com
lcd Z:\
cd \public\english_us_Canada\antivirus_definitions\
norton_antivirus\static
bin
mget *
bye

Note The highlighted code above must be entered on one line.

Scripting an FTP Download of McAfee Antivirus Update Files
To download McAfee antivirus update files to a central share using FTP and shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Net Use Z: \\server\share
ftp -n -s:ftpscript >> logfile
Net Use Z: /Delete

Here, server is the system containing the network share to store the antivirus update files; logfile is the full path and file name of
a text file to log the FTP transfer, and ftpscript is the full path and file name of a script file containing the following:
open ftp.nai.com
user anonymous
youremail@yourdomain.com
lcd Z:\dats
cd \pub\antivirus\datfiles\4.x
prompt
bin
mget *
bye

Note The script above obtains antivirus updates for McAfee VirusScan 4.x. You can change the highlighted code above to
obtain updates for your specific version.

Scripting Control Panel Applets
CONTROL.EXE, located in your Windows directory, is essentially the Windows Control Panel. To open the Control Panel, select
Start|Run and enter "control." Using this executable, you can start any Control Panel applet.

Control Panel applets are stored as CPL (Control Panel) files. To call an applet, select Start|Run and enter "control applet." One
CPL file can actually store multiple applets. To call various applets within one CPL file, select Start|Run and enter "control applet,
@#." Here, # is the number of the applet to call. If you do not specify an applet number, CONTROL.EXE will automatically open
the first one (0).

For applets that contain multiple tabs, you can open the exact tab you want by selecting Start|Run and entering "control applet, ,
#." Here, # is the number of the tab to open. If you do not specify a tab number, CONTROL.EXE will automatically open the first
one (0).

So, what's the big deal about starting a Control Panel applet? After you start an applet, you can use a send-keys utility to perform
the task you want.

Note To find all the applets and functions on your system, search for CPL files and experiment opening the different applets
and tabs.

Modifying Mouse Properties

Here is a quick example to show the use of scripting Control Panel applets combined with using send-keys. To change a mouse to
use left-handed button properties, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract AutoIt, from http://www.hiddensoft.com, to the new directory.

3. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
[SCRIPT]
RUN=CONTROL MOUSE.CPL
Mouse=~WINWAITACTIVE#!L{ENTER}

Scripting Wizards and Dialog Boxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RUNDLL32.EXE is a 32-bit command-line utility that allows you to call functions from DLL files designed to accept calls from it.
You can incorporate these calls in your scripts and combine them with send-keys to complete specific tasks. Table 5.1 shows the
most common RUNDLL32 calls.

Table 5.1: Wizards and dialog boxes.

Task RUNDLL32 calls

Add new printer RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL AddPrinter

Cascade windows RUNDLL32.EXE USER.DLL,cascadechildwindows

Copy a floppy disk RUNDLL32.EXE DISKCOPY.DLL,DiskCopyRunDll

Create new briefcase RUNDLL32.EXE SYNCUI.DLL,Briefcase_Create

Create new dialup connection RUNDLL32.EXE RNAUI.DLL,RnaWizard @1

Create new share RUNDLL32.EXE NTLANUI.DLL,ShareCreate

Disable keyboard RUNDLL32.EXE KEYBOARD,disable

Disable mouse RUNDLL32.EXE MOUSE,disable

Disconnect network drive RUNDLL32.EXE USER.DLL,wnetdisconnectdialog

Format a disk RUNDLL32.EXE SHELL32.DLL,SHFormatDrive

Install new modem RUNDLL32.EXE SHELL32.DLL,Control_RunDLL modem.cpl, ,add

Logoff Windows RUNDLL32.EXE SHELL32.DLL,SHExitWindowsEx 0

Manage a share RUNDLL32.EXE NTLANUI.DLL,ShareManage

Map network drive RUNDLL32.EXE USER.DLL,wnetconnectdialog

Open fonts folder RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL FontsFolder

Open printers folder RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL PrintersFolder

Open with … RUNDLL32.EXE SHELL32.DLL,OpenAs_RunDLL extension

Print Test Page RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL PrintTestPage

Reboot RUNDLL32.EXE SHELL32.DLL,SHExitWindowsEx 2

Refresh RUNDLL32.EXE USER.DLL,repaintscreen

Shut down Windows RUNDLL32.EXE USER.DLL,ExitWindows

Shut down Windows RUNDLL32.EXE SHELL32.DLL,SHExitWindowsEx 1

Shut down Windows (Force) RUNDLL32.EXE KRNL386.EXE,exitkernel

Swap mouse buttons RUNDLL32.EXE USER.DLL,swapmousebutton

Tile windows RUNDLL32.EXE USER.DLL,tilechildwindows

Automating Applications through an Application Object

Most new applications include a scriptable automation object model, allowing user and other applications to script them.

Using Microsoft Internet Explorer as a Display Tool
Other than dialog boxes and a DOS window, Windows Script Host really doesn't have a method to display output to the user. You
can use Microsoft Internet Explorer to display information to the user or to generate HTML documents. To display the contents of
C:\TEMP in Microsoft Internet Explorer, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set MSIE = CreateObject("InternetExplorer.Application")
sDIR = "C:\TEMP"
sTITLE = "Generating Directory List ..."

Set
objDIR = GetFolder(sDIR)
SetupMSIE
MSIE.Document.Write "<HTML><TITLE>" & sTitle & _
 "</TITLE><BODY bgcolor=#C0C0C0>"
MSIE.Document.Write "Displaying the contents of " & _
 'sDIR & ":

<table border=0 width=100% " & _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'sDIR & ":

<table border=0 width=100% " & _
 "cellspacing=0 cellpadding=0>"
GoSubFolders objDIR
MSIE.Document.Write "</table>
End of List" & _
 "</BODY>"

Sub SetupMSIE
 MSIE.Navigate "About:Blank"
 MSIE.ToolBar = False
 MSIE.StatusBar = False
 MSIE.Resizable = False

 Do
 Loop While MSIE.Busy

 SWidth = MSIE.Document.ParentWindow.Screen.AvailWidth
 SHeight = MSIE.Document.ParentWindow.Screen.AvailHeight
 MSIE.Width = SWidth/2
 MSIE.Height = SHeight/2
 MSIE.Left = (SWidth - MSIE.Width)/2
 MSIE.Top = (SHeight - MSIE.Height)/2

 MSIE.Visible = True
End Sub

Sub ListFiles (objDIR)
 For Each efile in objDIR.Files
 MSIE.Document.Write "<tr><td>" & efile & "</td>" & _
 "<td> </td><td align=right>" & efile.size & _
 "</td></tr>"
 Next
End Sub

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 ListFiles objDIR
 For Each eFolder in objDIR.SubFolders
 MSIE.Document.Write "<tr><td>" & _
 efolder & "</td><td><DIR></td><td " & _
 "align=right>" & efolder.size & "</td></tr>"
 GoSubFolders eFolder
 Next
 End If
End Sub

Note You need to append the GetFolder routine, listed earlier in Chapter 4, to this script in order for it to run. In this
example, the window will not be updated until the directory listing is complete.

Creating Detailed Reports in Microsoft Word
You can script Microsoft Word to create logs and reports through Windows Script Host. To delete all temp files from your system
and record the actions in a Microsoft Word document, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set WordApp = CreateObject("Word.Application")
sDIR = "C:\"
sEXT = "TMP"
sTITLE = "Deleting Files"

WordApp.Documents.Add
WordApp.Visible = True
WordApp.Caption = sTITLE
WordApp.Selection.Font.Bold = True
WordApp.Selection.TypeText "Deletion Log:" & sEXT & _
 " Files: "
WordApp.Selection.InsertDateTime
WordApp.Selection.Font.Bold = False
WordApp.Selection.TypeText vblf & vblf

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR
WordApp.Selection.Font.Bold = True
WordApp.Selection.TypeText vblf & "**END OF LOG**"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WordApp.Selection.TypeText vblf & "**END OF LOG**"

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 DelFile efile
 End If
 Next
End Sub

Sub DelFile(sFILE)
 On Error Resume Next
 FSO.DeleteFile sFILE, True
 If Err.Number <> 0 Then
 WordApp.Selection.TypeText "Error deleting: " & _
 sFILE & vblf
 Else
 WordApp.Selection.TypeText "Deleted: " & sFILE & vblf
 End If
End Sub

Note You need to append the GetFolder routine, listed in Chapter 4, to this script in order for it to run.

Creating Detailed Spreadsheets in Microsoft Excel
You can script Microsoft Excel to create spreadsheets through Windows Script Host. To delete all temp files from your system and
record the actions in a Microsoft Excel spreadsheet, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set ExcelApp = CreateObject("Excel.Application")
Row = 1
Column = 1
ExcelApp.Workbooks.Add
ExcelApp.Visible = True

sDIR = "C:\"
sEXT = "TMP"
sTITLE = "Deleting Files"

ExcelApp.caption = sTITLE
ExcelApp.Range("A1").Select
ExcelApp.Selection.Font.Bold = True
ExcelApp.Cells(Row,Column).Value = "Deletion Log:" & sEXT & _
 " Files"
Row = Row + 1 Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR
ExcelApp.Selection.Font.Bold = True
Row = Row + 1
ExcelApp.Cells(Row,Column).Value = "**END OF LOG**"

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 DelFile efile
 End If
 Next
End Sub

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 MainSub objDIR
 For Each eFolder in objDIR.SubFolders
 GoSubFolders eFolder
 Next
 End If
End Sub
Sub DelFile(sFILE)
 On Error Resume Next
 FSO.DeleteFile sFILE, True
 If Err.Number <> 0 Then
 ExcelApp.Cells(Row,Column).Value = "Error deleting: " & _
 sFILE Else
 ExcelApp.Cells(Row,Column).Value = "Deleted: " & sFILE
 End If
 Row = Row + 1
End Sub

Note You need to append the GetFolder routine, listed in Chapter 4, to this script in order for it to run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scripting the Windows Shell
Windows has its own automation object called shell.automation. Although you might assume that you can completely automate
every Windows function, in reality you can control only a limited set of objects available to scripting. To access the Windows shell,
you must instantiate the shell object as follows:
Set variable = CreateObject("Shell.Application")

Controlling System Windows

When an item is opened in Microsoft Windows, it is opened in a system window. The standard window controls include minimize
and maximize functions. You can script these Windows commands and more through the Windows shell object. The following is a
list of the window objects and their functions:

CascadeWindows-Cascade open windows

MinimizeAll-Minimize open windows

TileHorizontally-Tile open windows horizontally

TileVertically-Tile open windows vertically

UndoMinimizeAll-Restore minimized windows

To call any of these methods, proceed as follows:

Set Shell = CreateObject("Shell.Application")
Shell.Method

Browsing for Folders

Using the BrowseForFolder method, you can incorporate the common Browse For Folder Windows dialog box used in most
Windows applications. To call the dialog box, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.BrowseForFolder (handle, "Title", options,_
 RootFolder)
Wscript.Echo "FOLDER: " & Folder.Title & vblf & _
 "PARENT: " & Folder.ParentFolder

Here, RootFolder can be a directory path or a special folder constant.

Table 5.2 lists the special folder constants.

Table 5.2: Special folder constants.

Constant Folder or Directory Path

&H0 All Users Desktop

&H2 All Users Program folder

&H3 Control Panel

&H4 Printers Folder

&H5 Personal Folder

&H6 Favorites Folder

&H7 Startup Folder

&H8 Recent Folder

&H9 SendTo Folder

&Ha Recycle Bin

&Hb Start Menu

&H10 Desktop Directory

&H11 Drives (My Computer)

&H12 Network Neighborhood

&H13 Fonts Folder

&H14 Templates Folder

&H15 Common Start Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

&H16 Common Programs Folder

&H17 Common Programs Folder

&H18 Common Startup Folder

&H19 Common Desktop Directory

&H1a Application Data Folder

&H1b PrintHood Folder

&H1c Local Application Data Folder

&H1d Alt Startup Folder

&H1e Common Alt Startup Folder

&H1f Common Favorites Folder

&H20 Common Internet Cache Folder

&H21 Common Cookies Folder

&H22 History Folder

&H23 Common Application Data Folder

&H24 Windows Folder

&H25 System Folder

&H26 Program Files Folder

&H27 My Pictures Folder

&H28 Profile Folder

Exploring a Folder

To explore a folder through the shell automation object, proceed as follows:

Set Shell = CreateObject("Shell.Application") Shell.Explore RootFolder

Here, RootFolder can be a directory path or a special folder constant.

Opening a Folder

To open a folder through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.Open RootFolder

Here, RootFolder can be a directory path or a special folder constant.

Running a Control Panel Applet

The Control Panel contains various applets you can use to perform various tasks. These applets have .cpl extensions and reside
in your system directory. To call a Control Panel applet through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.ControlPanelItem "applet.cpl"

Calling System Dialog Boxes

System dialog boxes are windows that require user input, such as the Find Files or Run dialog box. You can call one of these
dialog boxes within your script, and combine it with send-keys to perform regular user tasks. To call a system dialog box through
the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.SysDialog

Here, SysDialog consists of the following methods:

FileRun-Calls the Start|Run dialog box

FindComputer-Calls the Start|Find/Search|Computer dialog box

FindFiles-Calls the Start|Find/Search|File or Folders dialog box

SetTime-Calls the Date/Time dialog box

ShutdownWindows-Calls the Start|Shutdown dialog box

TrayProperties-Calls the Tray Properties dialog box

Refreshing the Start Menu

To refresh the contents of the Start menu, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.RefreshMenu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shell.RefreshMenu

Accessing the Taskbar and Start Menu Properties Page

To access the Taskbar and Start Menu properties page through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.TrayProperties

Accessing the Date and Time Properties Page

To access the Date and Time properties page through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.SetTime

Accessing the Find Files Properties Page

To access the Find Files properties page through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.FindFiles

Ejecting a PC

To undock a notebook through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.EjectPC

Suspending a Computer

Most laptops have a feature called suspend, used to place the computer in lower power mode when not in use. To suspend a
computer through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.Suspend

Connecting to a Folder Name Space

In Chapter 4, you learned how to connect to a folder using the GetFolder FileSystemObject method. To connect to a folder
through shell automation, use the NameSpace method and proceed as follows:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace(RootFolder)

Getting File or Folder Details

Although Windows NT/9x only stores basic file and folder information, Windows 2000/XP/2003 store many more pieces of
information. You can use the folder object's GetDetailsOf method on either operating system to obtain information about the file
or folder specified. To connect to a folder through shell automation, use the NameSpace method and proceed as follows:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace(RootFolder)
For Each Item in Folder.Items
 Summary = "Name: " & Item.Name & vblf
 For Count = 1 to 37
 On Error Resume Next
 Detail = Folder.GetDetailsOf(Item,Count)
 If Detail <> "" Then
 Summary = Summary & Folder.GetDetailsOf(0,Count) & _
 ": " & Folder.GetDetailsOf(Item,Count) & vblf
 End If
 Next
 Wscript.Echo Summary
Next

Here, RootFolder can be a directory path or a special folder constant. The output of the script may appear similar to Figure 5.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.2: The GetDetailsOf file and folder output.

Copying and Moving Files and Folders

Whenever you copy or move a file in Windows, graphical dialog boxes appear displaying progress meters and confirmation
windows (see Figure 5.3).

Figure 5.3: Windows file operating dialog box.

Although the FileSystemObject can perform file management operations, it does not display any of these dialog boxes. To use
these dialog boxes in your scripts, you can use the shell automation object. To copy or move files and folders to another folder,
proceed as follows:

Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace(RootFolder)
Folder.Method "Files", Flags

Here, RootFolder can be a directory path or a special folder constant; Method is the CopyHere or MoveHere folder method;
Files are the files or folders to copy or move; and Flags are the optional parameters that control the file operation. You can
concatenate multiple parameters using the + character.

Note You can use the FOF_SILENT flag to suppress the progress dialog box. For more information on the file operation
flags, search Microsoft's Web site for SHFILEOPSTRUCT.

Accessing the Context Menu

Every time you right-click on a file (on a right-handed mouse), you call the context menu. This menu is full of tasks added to the
menu by the system, the media, and any programs you may have installed (see Figure 5.4).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.4: Windows context menu.

You can access these tasks by clicking on them or entering the quick key combination (ALT+the underlined letter). Through shell
automation, you activate any of these tasks:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace("RootFolder")
Set File = Folder.ParseName("File")
File.InvokeVerb("Task")

Here, RootFolder can be a directory path or a special folder constant; File is any file within the RootFolder; and Task is any task
listed in the context menu.

There are two important things to note about the InvokeVerb Task. The first is that if the task contains a quick key, you must
precede that letter with an ampersand (&). For example, to run the Open task for Figure 5.4, you would enter "&Open." The
second is that if the command pulls up a system window (such as a properties window), that window will close as soon as the
script ends.

Automating Applications through Send-Keys

Some applications have been specifically designed without commandline options or automation object models. Without a
scriptable back door to send commands to, another alternative to scripting the unscriptable is by using send-keys.

Scripting a Windows 2000 Drive Defrag
Windows 2000 includes a special, slimmed-down version of Executive Software's Diskeeper, made specifically for Windows 2000.
Unlike Windows XP/2003 defrag, the Windows 2000 defrag utility does not include the scripting capabilities. To script a Windows
2000 drive defrag, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
Run, defragmmc
Winwaitactive, Disk Defrag
Send, {ALTDOWN}A{ALTUP}D
Winwaitactive, Defragmentation Complete
Send, {TAB}{ENTER}
Winwaitactive, Disk Defrag
Send, {ALTDOWN}{F4}{ALTUP}

Here, defragmmc is the full path to DFRG.MSC, usually found in the Winnt\system32 directory.

Changing Internet Explorer's Default Start Page
To change the default start page for Internet Explorer, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
Run, control.exe inetcpl.cpl
WinWaitActive, Internet Properties
Send, http://www.jesseweb.com{Enter}

Browsing the Internet
Whether you have an Internet provider that consistently disconnects you or a program that feeds off active Internet connections,
you may need to have continually active Internet activity. To repeatably browse Internet sites, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
SetTitleMatchMode, 2
Run, C:\\Program Files\\Internet Explorer\\Iexplore.exe
WinWaitActive, Microsoft Internet Explorer
Repeat
 Send, {ALTDOWN}D{ALTUP}www.jesseweb.com{Enter}
 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP}www.fightclub.com{Enter}
 Sleep, 10000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP}www.tylerandjacks.com{Enter}
 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP}www.customtweaks.com{Enter}
 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP} http://www.paraglyphpress.com{Enter}
 Sleep, 10000
EndRepeat

Clearing the Microsoft Internet Explorer Cache
Internet Explorer caches Web pages and previously entered usernames, passwords, and form entries. To delete these items
using the AutoIt ActiveX control, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is a text file that contains the following:
Set Shell = WScript.CreateObject("WScript.Shell")
Set AIT = WScript.CreateObject("AutoItX.Control")

Shell.Run "control.exe inetcpl.cpl", 1, FALSE
AIT .WinWaitActive "Internet Properties", ""
AIT .Send "{ALTDOWN}F{ALTUP}"
AIT .WinWaitActive "Delete Files", ""
AIT .Send "{TAB}{ENTER}"
AIT .WinWaitActive "Internet Properties", ""
AIT .WinClose "Internet Properties", ""
Shell.Run "control.exe inetcpl.cpl, ,2", 1, FALSE
AIT .WinWaitActive "Internet Properties", ""
AIT .Send "{ALTDOWN}U{ALTUP}"
AIT .WinWaitActive "AutoComplete Settings", ""
AIT .Send "{ALTDOWN}C{ALTUP}"
AIT .WinWaitActive "Internet Options", ""
AIT .Send "{ENTER}"
AIT .WinWaitActive "AutoComplete Settings", ""
AIT .Send "{ALTDOWN}L{ALTUP}"
AIT .WinWaitActive "Internet Options", ""
AIT .Send "{ENTER}{ESC}"
AIT .WinWaitActive "Internet Properties", "
AIT .Send "{ESC}"

WScript.Quit

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6: Inside the Registry

In Brief
Most administrators go out of their way to avoid working with the registry, and I don't blame them. The registry is one of those
aspects of Windows you are constantly being warned not to mess with. With the frequent threats of virtual nuclear destruction
combined with the lack of documentation, the registry is a dark and scary place. In this chapter, you will learn the basics of the
registry, how to modify it safely, and the hidden tricks and goodies the registry has to offer.

Holy INI Files, Batman !

In the old days of 16-bit Windows, all settings were stored in initialization files. The two main files for storing settings were the
SYSTEM.INI and WIN.INI files. As each application was installed, it stored its settings in these two files. Unfortunately, these
applications could store only a limited set of entries because of the restrictive 64K size of INI files. To counteract this, application
developers started using their own INI files. Although this might have seemed a good idea at first, as the number of applications
grew, so did the number of INI files; and as each INI file grew, the system would often slow down.

And Then Came the Registry

The registry was born simultaneously with the birth of Windows NT in 1993 and is the answer to Windows INI files. The registry is
a hierarchal, relational database that holds system information, OLE (Object Link Embedding) and Automation information,
application settings, operating system configuration data, and more. The information stored includes everything from your display
settings to your hardware configuration. To speed access time, the registry is stored in binary format and is composed of multiple
files.

Windows 2000/XP/2003 Registry Files

Under Windows 2000/XP/2003, user-related settings are stored in a file called ntuser.dat. This file is stored in the user's profile
directory located in the %USERPROFILE% directory. System settings are stored in the SYSTEM32\CONFIG directory and consist
of the following five files:

Default (HKEY_USERS\DEFAULT)-Stores default settings for new users

SAM (HKEY_LOCAL_MACHINE\SAM)-Stores system security information

Security (HKEY_LOCAL_MACHINE\Security)-Stores network security information

Software (HKEY_LOCAL_MACHINE\Software)-Stores specific application and operating system information

System (HKEY_LOCAL_MACHINE\System)-Stores device driver and system information

The Registry Hierarchy

The registry consists of top-level keys called hives:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

These hives store all the keys (subfolders) that make up the registry. These keys store all the values (entries), which specify all
the individual system settings.

HKEY_LOCAL_MACHINE
HKEY_LOCAL_MACHINE (HKLM) stores all software, hardware, network, security, and Windows system information. This hive is
the largest registry hive and stores two of the main registry hives.

HKEY_CLASSES_ROOT
HKEY_CLASSES_ROOT (HKCR) is actually a virtual link to HKLM\Software\Classes. This hive stores information about all file
extensions, descriptions, icons, associations, shortcuts, automation, class IDs, and more.

HKEY_USERS
HKEY_USERS (HKU) stores information about all users of the system and their individual settings. These individual settings
include environment variables, color schemes, fonts, icons, desktop configuration, Start menu items, network, and more. Each
time a new user logs on, a new key is created based on a default key.

HKEY_CURRENT_USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HKEY_CURRENT_USER (HKCU) is actually a link to the currently logged-in user's key stored in HKEY_USERS. This hive is
named by the user's SID (Security Identifier) value and not by the user's name. This key is rebuilt each time the system reboots.

HKEY_CURRENT_CONFIG
HKEY_CURRENT_CONFIG (HKCC) is actually a link to the currently selected hardware profile stored in
HKEY_LOCAL_MACHINE. Hardware profiles allow you to specify which device drivers are to be loaded for a given Windows
session. Hardware profiles are commonly used with laptops to distinguish RAS, network, and local Windows sessions.

Registry Data Types

Like any other database, the registry contains various data types to store different types of values. Table 6.1, from Windows 2000
Registry Little Black Book (http://www.paraglyphpress.com) lists the various registry data types.

Table 6.1: Registry data types.

Data Type Raw Type Function

REG_NONE Unknown Encrypted data

REG_SZ String Text characters

REG_EXPAND_SZ String Text with variables

REG_BINARY Binary Binary data

REG_DWORD Number Numerical data

REG_DWORD_BIG_ENDIAN Number Non-Intel numbers

REG_LINK String Path to a file

REG_MULTI_SZ Multistring String arrays

REG_RESOURCE_LIST String Hardware resource list

REG_FULL_RESOURCE_DESCRIPTOR String Hardware resource ID

REG_RESOURCE_REQUIREMENTS_LIST String Hardware resource ID

REGEDIT vs. REGEDT32

Because the registry is stored in multiple binary files, it cannot be viewed with a regular text editor. Windows 2000/XP/2003
include two registry editing tools: REGEDIT and REGEDT32. Both of these tools contain various functions, and it's best to know
when to use which one.

Using REGEDIT
REGEDIT is the registry-editing tool that comes included in all of Microsoft's 32-bit operating systems. Using this tool, you can
add, delete, modify, back up, and restore registry keys and values from a local or remote machine. REGEDIT displays all the
registry hives, even the aliased ones (see Figure 6.1). It also has the capability to search for registry keys and values. The most
important thing to remember about REGEDIT is that changes happen immediately. There is no Apply, Cancel, or OK button here.
The moment you make a change, the change is implemented-so be careful.

Figure 6.1: The Windows REGEDIT screen.

Tip REGEDIT includes additional features such as a registry Favorites menu and the capability to remember the last key
viewed before closing REGEDIT.

Warning REGEDIT does not recognize all the registry data types. If you edit an unrecognized data type, it will be converted
to a type that REGEDIT can recognize.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using REGEDT32
REGEDT32 is a registry-editing tool that comes included in Windows 2000/XP/2003 (see Figure 6.2). REGEDT32 displays each
hive in a separate window, and only displays the HKEY_LOCAL_MACHINE and HKEY_USERS hives when accessing a registry
remotely. REGEDT32 includes all the editing features of REGEDIT, but has only a simple find key function. Unlike REGEDIT,
REGEDT32 does not apply changes immediately. It applies changes only as you close the application. Some additional features
include auto-refresh, read-only mode, and the ability to set registry permissions.

Figure 6.2: The Windows REGEDT32 screen.

Note Although remote registry access through REGEDT32 only displays two hives, from within these two hives you can still
access all the aliased hives that REGEDIT normally displays.

Registry Editing Safety Tips

You've heard it a thousand times, but here it is again: editing the registry is dangerous. An incorrect registry setting can leave your
system in shambles (trust me, I know). Here are some helpful registry editing tips:

Back up the entire registry or key you intend to modify. If your system starts acting up, you'll be glad you did.

Update your emergency repair disk (ERD) before you make any registry changes. This proves to be a valuable
asset if your machine refuses to boot up properly.

Do not blindly make changes to the registry. Know what your intended registry change does. Research it.

Make one change at a time. This makes it easier to narrow down the cause of any problems you may have after
editing the registry.

Always use REGEDT32 when you can. REGEDT32 does not apply changes until you exit the application and can
work in read-only mode.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Backing Up and Restoring the Registry

Before modifying the registry, you should perform a backup that you can revert to in case of any system failures. Knowing the
different methods to back up and restore the entire registry properly can save you hours of unnecessary data recovery and
troubleshooting.

Understanding Windows 2000/XP/2003 Registry Backup Misconceptions
Backing up the registry is a tricky subject. Here is a list of some common misconceptions about backing up the registry:

You can back up the entire registry by simply making a copy of the registry files. Unlike Windows 9x, Windows
2000/XP/2003 accesses many sections of the registry directly. These files are open, so you cannot back them up
because they are already in use.

You can back up the entire registry by running RDISK /S. The RDISK (Repair Disk) utility backs up important
system files and parts of the registry to an ERD (Emergency Repair Disk). This disk is used in conjunction with the
setup disks to restore critical parts of the operating system that may be damaged. It cannot and was never intended
to be used as a registry backup utility.

You can use REGEDIT to back up and restore the entire registry. REGEDIT for Windows 2000/XP/2003 does not
support the same switches as the Windows 9x version. Although you may be able to back up the registry manually
into one large REG file, you will not be able to restore it. The registry has special security settings on certain keys
that prevent restoring or modifying.

Backing Up the Windows 2000/XP/2003 Registry
There are two methods to back up the entire Windows 2000/XP/2003 registry. The first method is to use the built-in backup utility
to perform a complete backup of the registry. This will be discussed in more detail in Chapter 14. The second method is to use a
resource kit utility called REGBACK. To perform a complete backup of the registry using REGBACK, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Obtain the latest version of REGBACK.EXE from the resource kit and copy it to the new directory.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
REGBACK C:\REGBACKUP.RBU
if errorlevel 1 echo Error during backup
if errorlevel 0 echo Successfully backed up

Restoring the Windows 2000/XP/2003 Registry
The resource kit utility REGREST is used to restore registry backups created by REGBACK. To restore a registry backup created
by REGREST, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Obtain the latest version of REGREST.EXE from the resource kit and copy it to the new directory.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
REGREST C:\REGBACKUP.RBU C:\REGSAVE.RBU
if errorlevel 1 echo Error during restore
if errorlevel 0 echo Successfully restored

Here, C:\REGSAVE.RBU is an arbitrary name to which your current registry is backed up before restoring your backup.

Modifying the Registry with Shell Scripting

Because shell scripting was created before the birth of the registry, it does not contain any functions to modify the registry. To
manipulate the registry through shell scripting, you can use REG.EXE, included in WindowsXP/2003 and in the Windows 2000
Resource Kit. REG.EXE supports the following parameters:

Add-Adds keys or values

Backup-Identical to the Save parameter

Compare-Compares a registry key or value to another or to a string

Copy-Copies a registry key or value from one machine to another

Delete-Deletes keys and values

Export-Saves keys and values to a REG file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Find-Finds and replaces keys or values

Import-Loads registry keys and values from a REG file

Load-Loads hive files to the registry

Query-Displays the contents of keys and values

Restore-Restores registry keys from hive files

Save-Stores registry keys to hive files

Unload-Removes hive files from the registry

Update-Replaces information in a key or value

Backing Up a Registry Key
To back up a registry key using REG.EXE, start a command prompt and enter the following:
REG SAVE key file

Here, key is the registry key to back up, and file is the hive file to back up the registry key.

Restoring a Registry Key
To restore a registry key using REG.EXE, start a command prompt and enter the following:
REG LOAD file key

Here, file is the hive file to restore; and key is the registry key to which to restore the hive.

Querying the Registry
To display registry keys or values from the command line using REG.EXE, start a command prompt and enter the following:
REG QUERY keyval

Here, keyval is the registry key or value you want to display. For example, to display the current cursor blink rate, start a
command prompt and enter the following:
REG QUERY "HKCU\Control Panel\Desktop\CursorBlinkRate"

Note If a registry entry contains a space, you must surround it with quotation marks.

Searching the Registry
Sometimes the registry stores information you wish it didn't, such as usernames and passwords. You can use the resource kit
utility SCANREG.EXE to search the registry for these values. To search the registry for a key containing a specific phrase,
proceed as follows:
SCANREG string start − k

Here, string is the phrase to search for, and start is where to start searching in the registry.

Customizing Windows 2000/XP/2003
With the introduction of a new operating system come new features, and with new features come new annoyances. To remove
these annoyances, you simply need to make a few registry changes.

Disabling Start Menu Scrolling

When the Start menu grows larger than one column, Windows will simply scroll the column rather than creating a new column.
This can become quite annoying when you have a large Start menu. To disable the Start menu scrolling and have Windows
create a new column to fit the additional Start menu items, start a command prompt and enter the following:
REG UPDATE HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Advanced\StartMenuScrollPrograms=NO

Note The code above must be placed on one line.

Disabling Pop-up Descriptions

An initially helpful but quickly annoying feature are the pop-up descriptions that appear when the mouse pointer remains above
certain objects for a short period of time. To disable the pop-up descriptions using REG.EXE, start a command prompt and enter
the following:

REG UPDATE HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Advanced\ShowInfoTip=0

Note The code above must be placed on one line.

Disabling Balloon Tips

Windows XP balloon tips are another helpful feature that is annoying more often than not. To disable balloon tips using REG.EXE,
start a command prompt and enter the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REG ADD
HKCU \ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer
 \ Advanced \ EnableBalloonTips=0

Note The code above must be placed on one line.

Deleting Registry Keys Using REGEDIT
Although you can use REG.EXE to delete registry keys, you can also use REGEDIT. To delete registry keys using REGEDIT,
select Start|Run and enter "regedit regfile." Here, regfile is a registry file that contains the following:
REGEDIT4
[-COMPLETEKEY]

Here, COMPLETEKEY is the complete registry key to delete, such as HKEY_LOCAL_MACHINE\SOFTWARE\APPLE.

Note The minus sign in front of COMPLETEKEY causes the key to be deleted.

Clearing the Run Dialog List

Every time you run a command through the Start|Run dialog box, that command is stored in a Most Recently Used (MRU) list
within the registry. To delete this list from the registry, select Start|Run and enter "regedit regfile." Here, regfile is a registry file
that contains the following:
REGEDIT4
[-HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Explorer\RunMRU]

Note The highlighted code above must be placed on one line.

Deleting Persistent Drive Mappings

Whenever you map a drive to "reconnect at logon" or map it persistently through the NET USE command, the settings for this
drive mapping are stored within the registry. To remove persistent drive mappings for the current user, select Start|Run and enter
"regedit regfile." Here, regfile is a registry file that contains the following:
REGEDIT4
[-HKEY_CURRENT_USER\Software\Microsoft\Windows NT\
CurrentVersion\Network\Persistent Connections]

Note The highlighted code above must be placed on one line.

Modifying the Registry with REGINI.EXE
REGINI.EXE, included in Windows XP/2003 and the Windows 2000 Resource Kit, is a powerful utility designed to manipulate the
registry through a batch file. It can add or update registry values as well as set registry key permissions. REGINI.EXE interprets
registry hives differently because it only works with kernel mode. See Table 6.2.

Disabling Dr. Watson

Dr. Watson is an annoying debugging utility that appears every so often during application or system crashes. To disable Dr.
Watson, proceed as follows:

1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain the latest version of REGINI.EXE from the Windows 2000 Resource Kit and
copy it to the new directory.

3. Select Start|Run and enter "REGINI scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

Table 6.2: Regular mode versus kernel mode.

Regular Mode Kernel Mode

HKEY_LOCAL_MACHINE \Registry\Machine

HKEY_USERS \Registry\User

\Registry\Machine
 SOFTWARE
 Microsoft
 Windows NT
 CurrentVersion
 AeDebug
 AUTO = REG_SZ 0

Tip To re-enable Dr. Watson, run DRWTSN32 -I from the command prompt.

Securing Recycle Bin Properties

To restrict users from modifying the Recycle Bin properties, proceed as follows:
1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain the latest version of REGINI.EXE from the Windows 2000 Resource Kit and
copy it to the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Select Start|Run and enter "REGINI scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
\Registry\Machine
 SOFTWARE
 Microsoft
 Windows
 CurrentVersion
 Explorer
 BitBucket [1 17 8]

Modifying the Registry with KiXtart

KiXtart provides many functions to manipulate the registry:

AddKey-Adds a subkey to the regsitry

DelKey-Deletes a subkey from the registry

Deltree-Deletes a key and all its subkeys

DelValue-Deletes a value from the registry

EnumKey-Lists the keys within a key or subkey

EnumValue-Lists the values within a key or subkey

ExistKey-Checks for the existence of a subkey

LoadHive-Loads HKEY_LOCAL_MACHINE or HKEY_USER hive information from a REG file

LoadKey-Loads a registry key from a hive file

ReadType-Determines the value type

ReadValue-Reads the data within a registry value

SaveKey-Saves a key to a hive file

WriteValue-Writes data to or creates a registry value

Note For complete usage details, see the KiXtart manual.

Backing Up a Registry Key
To back up a registry key to a hive file using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey = "key"
$RegFile = "file"
SaveKey($RegKey, $RegFile)

Here, key is the registry key to back up, and file is the hive file to back up the registry key.

Restoring a Registry Key
To restore a registry key from a hive file using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey = "key"
$RegFile = "file"
LoadKey($RegKey, $RegFile)

Here, key is the registry key to restore, and file is the hive file to restore from.

Disabling the Welcome Screen
Microsoft has made it a habit to greet every new user to a machine running its operating system through the Welcome screen.
Although this greeting seems like a good idea, it can quickly become annoying to users as they travel from machine to machine.
To disable the Welcome screen, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Policies\Explorer"
WriteValue($RegKey, "NoWelcomeScreen", "1", "REG_DWORD")

Note The highlighted code above must be placed on one line.

Working with Icons
Microsoft Windows includes many default icons on the desktop for your convenience. You can easily delete or hide these icons or
modify their properties by manipulating the registry.

Removing the My Computer Icon from the Desktop

To remove the My Computer icon from the desktop, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "HKEY_CLASSES_ROOT\CLSID\
{20D04FE0-3AEA-1069-A2D8-08002B30309D}"
Deltree($RegKey)

Note The highlighted code above must be placed on one line.

Removing the Dial-Up Networking Icon from My Computer

To remove the Windows 2000 Dial-Up Networking icon from My Computer, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\ Explorer\MyComputer\NameSpace\
{a4d92740-67cd-11cf-96f2-00aa00a11dd9}"
Deltree($RegKey)

Note The highlighted code above must be placed on one line.

Removing the Scheduled Tasks Icon from My Computer

To remove the Windows 2000 Scheduled Tasks icon from My Computer, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

$RegKey
= "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\ Explorer\MyComputer\NameSpace\
{D6277990-4C6A-11CF-8D87-00AA0060F5BF}"
Deltree($RegKey)

Note The highlighted code above must be placed on one line.

Hiding the Windows 2000 Network Neighborhood Icon

To hide the Windows 2000 Network Neighborhood icon from the desktop for the current user, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\Explorer"
WriteValue($RegKey, "NoNetHood", "1", "REG_DWORD")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WriteValue($RegKey, "NoNetHood", "1", "REG_DWORD")

Note The highlighted code above must be placed on one line.

Hiding All Windows 2000 Desktop Icons

To hide all Windows 2000 desktop icons for the current user, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\Explorer"
WriteValue($RegKey, "NoDesktop", "1", "REG_DWORD")

Note The highlighted code above must be placed on one line.

Modifying the Registry with Windows Script Host

Windows Script Host provides the easiest way to manipulate the registry. You can modify the registry using the WScript object.
This object contains three simple registry methods:

RegDelete-Deletes registry keys and values

RegRead-Reads registry keys or values

RegWrite-Writes registry keys or values

Note Windows Script Host does not include any methods to back up or restore registry keys or values.

Disabling Windows Security Menu Options
Once Windows is up and running, you can press Ctrl+Alt+Del to call up the Windows security menu to perform common tasks.
Although this is convenient for users, you may want to selectively disable these options for guest or kiosk stations.

Disabling the Lock Workstation Button

To disable the Lock Workstation button, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKCU\Software\Microsoft\Windows\" & _
"CurrentVersion\Policies\System\DisableLockWorkstation"
SHELL.RegWrite RegValue, 1, "REG_DWORD"

Disabling the Change Password Button

To disable the Change Password button, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKCU\Software\Microsoft\Windows\" & _
"CurrentVersion\Policies\System\DisableChangePassword"
SHELL.RegWrite
RegValue, 1, "REG_DWORD"

Disabling the Logoff Button

To disable the Logoff button, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKCU\Software\Microsoft\Windows\" & _
"CurrentVersion\Policies\System\NoLogOff"
SHELL.RegWrite
RegValue, 1, "REG_DWORD"

Modifying NTFS Properties
NTFS includes many benefits over the regular FAT file system. The price of these benefits is the extra overhead and access time
of the file system. You can modify the registry to disable some of these features.

Disabling 8.3 File Naming

When a file is created, it retains both long and short (DOS 8.3) file names. If you do not use DOS programs, you can disable 8.3
file naming to increase performance. To disable 8.3 file naming, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKLM\System\CurrentControlSet\Control\FileSystem\" & _
"NTFSDisable8dot3NameCreation"
SHELL.RegWrite
RegValue, 1, "REG_DWORD"

Related solution: Found on page:

Renaming Files with Short File Names 82

Disabling the Last Access Time Stamp

When a file is accessed, a time stamp is placed on that file. If you do not need this information, you can disable the last access
time stamp to increase performance. To disable the last access time stamp, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKLM\System\CurrentControlSet\Control\FileSystem\" & _
 "NTFSDisableLastAccessUpdate"
SHELL.RegWrite RegValue, 1, "REG_DWORD"

Modifying the Context Menu
A context menu is the menu that appears when you right click on almost anything in Windows (file, folder, URL, and so on). Some
typical context menu items are "Open", "Print", and "Properties." Context menu items and their associated commands are stored
in the registry. You can modify the registry to add your own, modify, or remove existing context menu items.

Adding a Windows XP/2003 "Defrag" Context Menu Item

To add a context menu item used to defrag a partition, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objShell = CreateObject("WScript.Shell")

Command = "DEFRAG.EXE %1"

objShell.RegWrite "HKCR\Drive\Shell\Defrag\Command\", Command
objShell.RegWrite "HKCR\Drive\Shell\Defrag\", "Defrag"

After running this script, you can right click on any partition and a "Defrag" item should appear in the context menu. Selecting this
item will defrag the partition you right clicked on.

Adding an "Email Attachment" Context Menu Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Outlook includes various command line options to create, open, and print email messages. To add a context menu item
which uses Outlook to attach a file to a new email message, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objShell = CreateObject("WScript.Shell")

'Get Outlook's default open command
Command = objShell.RegRead("HKCR\outlook\shell\open\command\")

'Now modify the command to attach a file
Command = REPLACE(Command,CHR(34) & " " & CHR(34),CHR(34) & _
" /a " & CHR(34))

objShell.RegWrite "HKCR*\Shell\EmailAttachment\Command\", Command
objShell.RegWrite "HKCR*\Shell\EmailAttachment\", _
"Email Attachment"

After running this script, you can right click on any file and an "Email Attachment" item should appear in the context menu.
Selecting this item will create a new email message and attach the file you right clicked on.

Tip See Microsoft Knowledge Base Article Q296192 to learn about Outlook's additional command line switches.

Adding an "Open with Notepad" Context Menu Item

When you attempt to open a file an unknown or missing file extension, Windows will prompt you to select a program to open the
file and or associate with it. To add a context menu item to open any file with notepad, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objShell = CreateObject("WScript.Shell")

Command = "NOTEPAD.EXE %1"

objShell.RegWrite "HKCR*\Shell\OpenWithNotepad\Command\", Command
objShell.RegWrite "HKCR*\Shell\OpenWithNotepad\"_
"Open With Notepad"

After running this script, you can right click on any file and a "Open with Notepad" item should appear in the context menu.
Selecting this item will open the file you right clicked on in Notepad.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7: Local System Management

In Brief
It's such a shame. You spend months creating the perfect drive image for your company, only to have users and fellow
administrators destroy it little by little through installing new applications, deleting files, and disorganizing the file system. Almost
brings a tear to your eye. In this chapter, you will learn how to reorganize the disorganized, secure your systems, and perform
updates to keep your imaged systems and servers healthy and clean.

Common Locations

Microsoft uses a common organized structure to store user data. If you know the locations of these directories and the quickest
way to access them, you can easily modify their contents within your scripts. Table 7.1 lists common locations for Windows
2000/XP/2003.

Table 7.1: Common data storage paths in Windows 2000/XP/2003.

Data Type Path

All Users Desktop %ALLUSERSPROFILE%\Desktop

All Users Start Menu %ALLUSERSPROFILE%\Start Menu

Desktop %USERPROFILE%\Desktop

Favorites %USERPROFILE%\Favorites

NetHood %USERPROFILE%\NetHood

PrintHood %USERPROFILE%\PrintHood

Quick Launch %USERPROFILE%\Application Data\Microsoft\Internet Explorer\Quick Launch

Start Menu %USERPROFILE%\Start Menu

Accessing SpecialFolders with Windows Script Host
The WshShell object contains a property called SpecialFolders used to access these common locations. To access the
SpecialFolders property, proceed as follows:
Set SHELL = CreateObject("WScript.Shell")
Set SF = SHELL.SpecialFolders

Here is a list of the folders available to the SpecialFolder property:

AllUsersDesktop

AllUsersStartMenu

AllUsersPrograms

AllUsersStartup

AppData

Desktop

Favorites

Fonts

MyDocuments

NetHood

PrintHood

Programs

Recent

SendTo

StartMenu

Startup

Templates

Here is an example of how to access these special folders in Windows Script Host:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set SHELL = CreateObject("WScript.Shell")
Set SF = SHELL.SpecialFolders
Wscript.Echo "Desktop: " & SF ("Desktop")

Note Access to these folders is dependent on your version of Windows. For example, there is no AllUsersDesktop folder for
Windows 9x.

Sharing

Sharing is the basic principle to networking: making resources easily available to multiple users. Windows allows you to share
files, folders, and even devices to allow others to access your resources over the network.

Note Because Windows 2000 Professional and Windows XP allows only 10 concurrent network connections, this is the
maximum number of simultaneous users that can access a share. The limit for a Windows 2000/2003 Server is
dependent on the number of concurrent licenses you have for each server.

To share a resource, right-click the resource and choose "Sharing" for Windows 2000 or "Sharing and Security" for Windows XP.
Select "Share This Folder" and specify a share name. Resources are shared by their share names. Share names do not need to
be the same name as the actual resource. For example, a folder called FILES can have a share name called MYFILES. To
remain compatible with the DOS naming convention, your share names should not exceed eight characters.

Once a resource is shared, you can control access to it by modifying its share permissions. When a resource is shared, the
default settings are to share that object with everyone. You can set varying access levels for your shared resources, and the
process is identical to modifying NTFS permissions. Although NTFS is not required to set share permissions, you can increase
security and functionality by using it.

NTFS Overview

The NTFS (NT File System) file system contains significant improvements over the previous Windows file systems (FAT and
FAT32). Some of these improvements include:

Maximum size: 16 exabytes

Long file name support

File, folder, and volume security

Compression

Bad cluster recovery

Disk quotas-Disk usage limits you can set on a per-user basis

Encryption-A method to make data unreadable for unauthorized viewers using the 56 Bit DES (Data Encryption
Standard)

Reparse points-An enhancement to file objects that allows developers to extend file system functionality

Sparse files-Files that can be created at any size, but which grow only as needed

Change Journal-Originally called the Update Sequence Number (USN) journal, a hidden journal that records
changes to the file system

Converting to NTFS
If you are currently using the FAT (File Allocation Table) file system, you can gain the benefits of NTFS by safely converting to it
using CONVERT.EXE. To convert from FAT to NTFS, start a command prompt and enter the following:
CONVERT drive /FS:NTFS

Here, drive is the drive to convert to NTFS (for example, C:).

Warning This is a one-way conversion process. Microsoft does not provide any method to convert an NTFS volume to FAT
or FAT32. Remember, NTFS drives are not accessible from Windows 95, 98, and ME.

NTFS Security
NTFS stores extra information such as file ownership and uses access control lists (ACLs) to secure its files and folders from
users and groups. The ACL contains access control entries (ACEs) that determine which type of access will be given. NTFS
provides different ACEs for files and folders. To view the different ACEs you can set, open Windows Explorer and select
Properties|Security|Permissions for a specific file or folder (see Figure 7.1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.1: Editing NTFS general permissions.

In addition to the default NTFS permissions, you can specifically set individual permissions through the Type of Access|Special
Access selection, as shown in Figure 7.2.

Figure 7.2: Editing NTFS special access permissions.

Warning Setting "No Access" to the group Everyone will prevent even administrators from accessing the affected resources.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Interacting with the User

When scripting, you might often need the ability to prompt or ask the user for input. This is useful when you need to inform the
user that the script has ended, display error messages, ask for the location of a directory, and more.

Using Dialog Boxes with Shell Scripting
Shell scripting does not contain any built-in method to create dialog boxes from the command line. Msgbox.exe is a freeware utility
that you can use to create dialog boxes from the command line. The basic syntax of msgbox is as follows:
Msgbox /commands "title" text

Here, title is the dialog box window title. Any characters after title will display text in the body of the dialog box. Multiple quoted
phrases of text will result in multiple body lines of text. The available commands are as follows:

/BARI-Displays Abort, Retry, and Ignore buttons

/BO-Displays the OK button

/BOC-Displays the OK and Cancel buttons

/BRC-Displays the Retry and Cancel buttons

/BYN-Displays the Yes and No buttons

/BYNC-Displays the Yes, No, and Cancel buttons

/Dx-Selects a default button where x is the button number, from left to right

/F1-Sets the dialog box to the foreground before input

/F2-Sets the dialog box to the foreground after input

/H-Hides the console window during the prompt

/I!-Displays the exclamation icon

/II-Displays the information icon

/IQ-Displays the question icon

/IS-Displays the stop icon

/MA-Normal display (Application Modal)

/MS-On top display (System Modal)

/MT-Normal display, includes title icon (Task Modal)

/Tx-Times out after x seconds

To create a batch file example to illustrate the use of msgbox.exe, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download msgbox.exe from http://www.jsiinc.com to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@Echo Off
:Start

MSGBOX /H /MT /BO /I! "MSGBOX Example"
 "This example illustrates how to make"
 "dialog boxes from the command line."

MSGBOX /H /MT /BARI /IS "Fake Error"
 "Non critical program error."
 "Pressing a button will continue the example."

MSGBOX /H /MT /BYN /D2 /IQ "Repeat Example?"
 "Would you like to repeat this example?"

If errorlevel 5 goto End
If errorlevel 2 goto Start

:End

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Dialog Boxes with KiXtart
The KiXtart command MessageBox allows you to display a dialog box to the user. To display a dialog box using KiXtart, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
MessageBox("This is a dialog box.", "DIALOG BOX", 0)

Note The MessageBox command supports many functions, such as allowing for different buttons and icons. See the KiXtart
manual for all the included features.

Using Dialog Boxes with Windows Script Host
Windows Script Host provides several methods to display dialog boxes. In the previous chapters, you have seen the Wscript.Echo
used to display command prompt lines of text to the user when invoked using CSCRIPT.EXE, the command-line Windows Script
Host. If you start your scripts with WSCRIPT.EXE, the line of text will be displayed in a message box:
WScript.Echo "This is a dialog box."

Another method of displaying dialog boxes is using WshShell's PopUp:
Set SHELL = CreateObject("WScript.Shell")
SHELL.PopUp "Window Text", 0, "Window Title", 0

Note PopUp is very similar to KiXtart's MessageBox. See the WSH documentation for all the included features.

Accepting User Input with Shell Scripting
Shell scripting does not include any method to accept user input, aside from creating temporary files and then parsing the files.
Included in the resource kit is a utility called CHOICE.EXE that allows you to accept user choices (one key press) from the
command line:

CHOICE /C:ABC
IF ERRORLEVEL 1 ECHO You pressed A
IF ERRORLEVEL 2 ECHO You pressed B
IF ERRORLEVEL 3 ECHO You pressed C

Here, the /C switch states which keys are allowed for input (for example, /C:ABC). You can determine which key has been
pressed by checking the appropriate errorlevel. The first key allowed, in this example A, is associated with the first errorlevel
(errorlevel 1), and so on.

Accepting User Input with KiXtart
The KiXtart command GETS allows you to store a line of user input to a variable. To accept user input using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
GETS $variable FLUSHKB

Here, variable is the variable to store the user input. The FLUSHKB command clears the keyboard buffer.

Tip You can use the KiXtart command Get to accept a single key of input.

Accepting User Input with Windows Script Host
The Windows Script Host command InputBox allows you to store a line of user input to a variable. To accept user input using
Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Name = InputBox("Please type enter your name:",
"YOUR NAME REQUIRED", "JOHN BREYAN")
Wscript.Echo "Hello " + Name

Note The highlighted code above must be placed on one line.

Changing the Desktop Wallpaper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

KiXtart includes a command called SETWALLPAPER to change the desktop wallpaper for the current user. To change the
desktop wallpaper using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
SETWALLPAPER("wallpaper")

Here, wallpaper is the complete path and file name of the bitmap to use.

Working with Shortcuts

Shortcuts are merely pointers to the files and folders you use most often. Shortcuts are easily identified by their .lnk extension and
are the building blocks of the Start menu. Most users live and breathe shortcuts, and would be lost without them. Through shell
scripting and Windows Script Host, you can easily modify or create shortcuts anywhere on a system.

Creating Shortcuts Using Shell Scripting
SHORTCUT.EXE is a freeware utility you can use to create shortcuts from the command line. To create a shortcut using
SHORTCUT.EXE, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download shortcut.exe from http://www.jsiinc.com to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
SHORTCUT /F:"name" /A:Create /T:"target" /W:"directory" /D:"description"

Note Here, name is the full path and name of the shortcut; target is the full path and name of the item to create a shortcut to;
directory is the full directory path to start the target in; and description is the comment for the shortcut.

Tip SHORTCUT.EXE supports many command-line parameters. Type "shortcut.exe /?" for more information.

Creating Shortcuts Using KiXtart
KiXtart does not have the ability to create shortcuts, other than within the Start menu. If you want to create a shortcut somewhere
else, you can create a Start menu shortcut, copy the shortcut to the desired location, and then delete the original shortcut. To
create a shortcut using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$SName = "name"
$STarget = "target"
$SDir = "directory"
$SDest = "destination"
$RCODE = AddProgramItem($STarget,$SName,"",0,$SDir,0,0)
Copy "SMPDIR\$SName.lnk" $SDest
$RCODE = DelProgramItem($SName)

Here, name is the name of the shortcut without the extension or path; target is the full path and name of the item to create a
shortcut to; directory is the full directory path to start the target in; smpdir is the full path of the Start Menu\Programs directory;
and destination is where to store the shortcut.

Tip If you just want to create a shortcut in the Start menu, simply use the AddProgramItem command.

Creating Shortcuts Using Windows Script Host
To create a shortcut using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set Shell = CreateObject("WScript.Shell")
sNAME = "name"
sTARGET = "target"
sDIR = "directory"
sICON = "icon"
sHKEY = "hotkey"

Set Scut = Shell.CreateShortcut(sNAME)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Scut = Shell.CreateShortcut(sNAME)
Scut.TargetPath = Shell.ExpandEnvironmentStrings(sTARGET)
Scut.WorkingDirectory = Shell.ExpandEnvironmentStrings(sDIR)
Scut.WindowStyle = 4
Scut.IconLocation = Shell.ExpandEnvironmentStrings(sICON)
Scut.HotKey = sHKEY
Scut.Save

Here, name is the complete path and name of the shortcut; target is the item to place a shortcut to; directory is the item's
working directory; icon is the shortcut icon to use; and hotkey is the quick key combination to activate the shortcut (for example,
ALT+SHIFT+Q).

Deleting Broken Shortcuts
Shortcuts are merely pointers to a file or folder on your system, and when those target items get moved or deleted, those
shortcuts are useless. To delete a broken shortcut using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set Shell = CreateObject("Wscript.Shell")
sDIR = directory

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase("lnk") Then
 Set Shortcut = Shell.CreateShortcut(efile)
 If NOT FSO.FileExists(Shortcut.TargetPath) Then
 If NOT FSO.FolderExists(Shortcut.TargetPath) Then
 DelFile efile
 End If
 End If
 End If
 Next
End Sub

Here, directory is the location to start searching for broken shortcuts.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed in Chapter 4, to this script in order for
it to run.

Tip You can use the resource kit utility CHKLNKS.EXE to perform the same task manually.

Controlling the Start Menu

The Start menu is the central point for organizing application and system shortcuts. For every new application installed, more than
likely an associated shortcut or two is installed in the Start menu. Users can spend a good portion of their day navigating through
this menu to get to the application or data they want, so it is important to organize this data effectively.

Adding a Program Group with KiXtart
As you learned in the previous section, you can create Start menu shortcuts using the commandAddProgramItem. KiXtart also
includes a function calledAddProgramGroup to create folders in the Start menu:
AddProgramGroup("Folder", Location)

Here, folder is the name of the group to create, and location specifies whether to place the group in the common or user Start
menu. A value of 0 specifies the user Start menu, whereas a value of 1 specifies the common Start menu.

Moving All Uninstall Shortcuts to a Central Directory
When an application installer places its shortcuts in the Start menu, an uninstall icon is normally included to uninstall this product
quickly and easily. Unfortunately, a user quickly browsing through the Start menu might click on an uninstall icon and accidentally
remove or damage application or system files. To move the uninstall shortcuts from the Start menu to a central directory, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set Shell = CreateObject("Wscript.Shell")
sMENU = Shell.SpecialFolders("Programs")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sMENU = Shell.SpecialFolders("Programs")
sDIR = "C:\UNINSTALL"
 If Not FSO.FolderExists(sDIR) Then
 FSO.CreateFolder sDIR
 End If

Set objDIR = GetFolder(sMENU)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 fNAME = LCase(FSO.GetBaseName(efile.Path))
 Folder = FSO.GetBaseName(objDIR)
 If LCase(fEXT) = LCase("lnk") Then
 If InStr(fNAME, "uninstall") <> 0 Then
 If fNAME = "uninstall" Then
 efile.Name = fNAME & " " & Folder & "." & fEXT
 End If
 MoveFile efile, sDIR
 End If
 End If
 Next
End Sub

Note You need to append the GoSubFolders, MoveFile, and GetFolder routines, listed in Chapter 3, to this script in order
for it to run.

Deleting Old User Profiles
Whenever a new user logs on, a user profile is created. User profiles consist of the user's own personal Start menu, shortcuts,
and user registry. As time progresses, profiles can take up a good portion of hard drive space. DELPROF.EXE is a Windows 2000
resource kit utility that allows you to delete old profiles that haven't been used for a while. To delete old user profiles, proceed as
follows:
DELPROF /Q /I /D:days

Here, /Q disables prompting during profile deletion; /I instructs DELPROF to ignore errors and continue deletion; and /D indicates
to delete profiles inactive more than the specified number of days.

Note If a specific user profile cannot be deleted by DELPROF, it might be in use. This includes the current user profile and
profiles belonging to accounts associated with running services. You will need administrative privileges to delete other
user's profiles.

Managing Services from the Command Line

Services are processes that run in the background, independent of a user logon. Normally, these services are managed manually
through the Control Panel|Services applet, but in this section you will learn how to manage services from the command line.

Installing a Service
INSTSRV.EXE is a resource kit utility to install a service from the command line. To install a service, start a command prompt and
enter the following:
INSTSRV name exe − a account − p password

Here, name is the name to give the service; exe is the path and name of the executable to run; account is the name of the
account to run the service under; and password is the password of the account.

Note After you install a service with INSTRV.EXE, the service is not automatically started. See the following section on
starting services from the command line.

Uninstalling a Service
To uninstall a service, start a command prompt and enter the following:
INSTSRV name Remove

Here, name is the name of the service to uninstall. The keyword remove instructs INSTSRV to uninstall the service.

Related solution: Found on page:

Deleting a Service 189

Starting a Service
You can use the NET command to control services from the command line. To start a service from the command line, start a
command prompt and enter the following:
NET START "service"

Here, service is the name of the service to start.

Related solution: Found on page:

Starting Services 186

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pausing a Service
To pause a started service from the command line, start a command prompt and enter the following:
NET PAUSE "service"

Here, service is the name of the started service to pause.

Related solution: Found on page:

Pausing Services 188

Resuming a Service
To resume a paused service from the command line, start a command prompt and enter the following:
NET CONTINUE "service"

Here, service is the name of the paused service to resume.

Related solution: Found on page:

Resuming Services 189

Stopping a Service
To stop a started service from the command line, start a command prompt and enter the following:
NET STOP "service"

Here, service is the name of the started service to stop.

Related solution: Found on page:

Stopping Services 187

Managing NTFS from the Command Line

In Chapter 4, you learned how to modify file and folder properties. NTFS adds additional properties that you can modify through
scripting.

Modifying NTFS Permissions
The Windows 2000 resource kit utility XCACLS.EXE allows you to change NTFS permissions from the command line. Most
administrators use this utility in a batch file to lock down their desktops and servers. To secure the %WINDIR%\Repair directory
access to just administrators, start a command prompt and enter the following:
XCACLS C:\%WINDIR%\REPAIR*.* /G administrators:F

Tip XCACLS contains many command-line parameters. Enter "XCACLS /?" for more information.

Changing a File Owner
The resource kit utility SUBINACL.EXE allows you to view or modify file, registry, and service security properties. You can use this
utility to change the NTFS owner of a file. To set a new owner using SUBINACL.EXE, start a command prompt and enter the
following:
SUBINACL /FILE/filename/SETOWNER=ownername

Here, filename is the full path and name of the file whose ownership is to be changed.

Managing NTFS Encryption

Although NTFS permissions allow you to secure your files and folders from other users, several methods are available to bypass
this security (for example, NTFSDOS). Windows 2000/XP/2003 uses an encrypting file system (EFS) to secure your files.

Tip The Microsoft Knowledge Base article Q255742 explains several methods to recover data from encrypted files, even if
the private key is lost.

Encrypting Files from the Command Line
CIPHER.EXE is a utility that allows you to encrypt/decrypt your files from the command line. This utility supports the following
parameters:

/A-Specifies to act on files and folders

/D-Decrypts files and folders

/E-Encrypts files and folders

/F-Forces encryption, even on files already encrypted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/H-Includes system and hidden files

/I-Ignores errors

/K-Creates a new encryption key for the current user

/Q-Runs in silent mode

/S-Performs action on the current folder and all subfolders

Warning Encrypted files cannot be read during the boot process. Encrypting files that the system needs to access while
booting will cause your system not to boot.

To silently encrypt all the files and folders within a directory, start a command prompt and enter the following:
CIPHER /E /A /S /F /Q /H "directory"

Here, directory is the folder to encrypt.

Decrypting Files from the Command Line
To decrypt all the files within a directory, start a command prompt and enter the following:
CIPHER /D /A /S /Q "directory"

Here, directory is the folder to encrypt.

Managing Shares from the Command Line

Shares allow users to access resources from one common source on the network. As more and more systems and devices are
added and shared on your network, managing shares can become an intensive chore.

Listing Shares
You can list shares from the command line using the built-in NET command. To list all shares from the command line, start a
command prompt and enter the following:
NET SHARE

Adding Shares
Sharing a resource makes that object available on the network. To share a resource from the command line, start a command
prompt and enter the following:
NET SHARE name=path /USERS:maxnum /REMARK:"comment"

Here, name is the name of the share; path is the path to create the share to; maxnum is the maximum number of users allowed
to simultaneously access the share; and comment is the comment to give the share.

Tip If you want to allow an unlimited number of users to access the share simultaneously, replace the /users:maxnum
switch with the /unlimited switch.

Related solution: Found on page:

Creating a Share 180

Removing Shares
To delete a share from the command line, start a command prompt and enter the following:
NET name /DELETE

Here, name is the name of the share.

Tip /D is the abbreviated form of the /DELETE switch. When you delete a share, you are only disabling sharing for that
resource, not deleting that resource.

Related solution: Found on page:

Deleting a Share 181

Copying Share Permissions
Currently, there is no Microsoft method to set share permissions from the command line. However, you can use the resource kit
utility PERMCOPY.EXE to copy permissions from one share to another. To use PERMCOPY.EXE to copy permissions from one
share to another, start a command prompt and enter the following:
PERMCOPY \\source sname \\destination dname

Here, source is the computer containing the share (sname) with proper permissions; and destination is the computer containing
the share (dname) to copy permissions to.

Tip Supplying both the source and destination with the local computer name will copy permissions from one local share to
another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Warning Do not use PERMCOPY.EXE to copy permissions on administrative shares (for example, C$). This will cause
SERVICES.EXE to crash.

Creating Shares with Permissions
Currently, there is no Microsoft method to create shares with permissions from the command line. RMTSHARE.EXE is a Windows
2000 resource kit utility to create shares with permissions on remote stations. You can provide this utility with the local computer
name to create shares with permissions on the local station. To use RMTSHARE.EXE to create shares with permissions, start a
command prompt and enter the following:
RMTSHARE \\computer\name=path /GRANT guser:permission
/REMOVE ruser

Note The code above must be placed on one line. Here, computer is the computer name to create the share on; name is
the name of the share; path is the path to create the share to; guser is the username to grant permissions to; and
ruser is the username to deny share access to.

Tip RMTSHARE.EXE also supports the same switches as the NET SHARE command.

Calling System Events

In Chapter 5, you learned how to call system events (for example, shutdown, restart) using DLL calls. In this section, you will learn
how to call these events without using DLL calls.

Shutting Down/Restarting the Computer in Windows 2000
The resource kit utility SHUTDOWN.EXE allows you to shut down or restart Windows. The basic syntax of the SHUTDOWN
command is:
SHUTDOWN parameters

The available parameters for SHUTDOWN.EXE are as follows:

"message" -Displays a message prior to shutdown

/A-Used to abort a shutdown performed with the /T switch

/C-Force-closes all running applications

/L-Specifies to work with the local computer

/R-Restarts the computer after shutdown

/T:seconds-Performs a shutdown after the number of seconds specified

/Y-Answers YES to any dialog box prompts

Warning Using the /C switch will close all applications without saving and might result in losing data. Use this switch only
when you are certain that the local machine does not have any open unsaved files.

Related solution: Found on page:

Shutting Down a System 191

Logging Off a User
The resource kit utility LOGOFF.EXE allows you to log off a user from a current Windows session. The basic syntax of the
LOGOFF command is:
LOGOFF /F /N

Here, /F force-closes all running applications and /N removes any user prompts.

Warning Using the /F switch will close all applications without saving and may result in losing data. Use this switch only
when you are certain that the local machine does not have any open unsaved files.

Shutting Down/Restarting the Computer in Windows XP/2003
Windows XP/2003 includes the SHUTDOWN command, which you can use to shut down or restart Windows. The basic syntax of
the SHUTDOWN command is:
SHUTDOWN parameters

The available parameters for SHUTDOWN.EXE are as follows:

-A-Used to abort a shutdown

-C-Used to display a message prior to shutdown

-D code-Reason code for the shutdown

-F-Force-closes all running applications

-I-Displays a GUI Interface

-L-Logs off the current user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-M \\computername-Specifies the remote computer name

-R-Restarts the computer after shutdown

-T:seconds-Performs a shutdown after the number of seconds specified

Warning Using the -F switch will close all applications without saving and might result in losing data. Use this switch only
when you are certain that the local machine does not have any open unsaved files.

Related solution: Found on page:

Shutting Down a System 161

Logging Off a User in Windows XP/2003
To log off the current user session using the SHUTDOWN command, start a command prompt and enter the following:
SHUTDOWN -L

Windows XP/2003 also provides the LOGOFF command to log off a user from a Windows session. To log off the current user
session using the LOGOFF command, start a command prompt and enter the following:
LOGOFF

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8: Remote System Management

In Brief
Remote management is essential to becoming a good administrator. When you're working at a site with 300 or more systems,
visiting and updating every single system becomes an impossible task. In this chapter, you will learn how to manage remote
systems from the command line and through Windows Management Instrumentation.

Administrative Shares

By default, Windows 2000/XP/2003 creates special shares so that administrators can perform various tasks remotely. These
special shares are called administrative shares and are automatically created when you install the operating system and whenever
you add a nonremovable drive or partition. Administrative shares are hidden shares that only administrators can access. The
permissions, names, and settings for these shares cannot be modified, and these shares can only be removed by making special
registry entries. The most common administrative shares are:

ADMIN$-Shares the directory Windows was installed in (for example, C:\WINNT)

DRIVE$-Shares all available drives, where drive is the specific drive letter

IPC$-Share that represents the named pipes communication mechanism

PRINT$-Share for shared printer drivers

REPL$-Shares replication directory on a server

Attaching to Shares
Many remote administrative tasks can be performed through network share access. Once you attach to a share, you can perform
tasks on these shares as if they were local resources. The process of attaching to a network share and assigning that connection
a drive letter is called mapping. Mapping a drive requires that you specify the complete Universal Naming Convention (UNC) path
of the share and the available drive letter to which you want to map it.

Once you map a drive to a share, you will be able to perform many of the tasks you perform on your drives locally. To map a drive
from within Windows, right-click Network Neighborhood and select Map Drive. The Map Network Drive dialog box will appear (see
Figure 8.1).

Figure 8.1: Mapping a network drive.

To map a drive from the command line, start a command prompt and enter the following:
NET USE DRIVE: \\COMPUTER\SHARE

Here, DRIVE is the drive letter you want to map the SHARE name to, and COMPUTER is the system holding the shared resource.

You can also map a drive as a different user:
NET USE DRIVE: \\COMPUTER\SHARE /USER:DOMAIN\USERNAME PASSWORD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NET USE DRIVE: \\COMPUTER\SHARE /USER:DOMAIN\USERNAME PASSWORD

Performing Tasks through a Share
Once a remote share has been mapped, you can perform commandline tasks on it as if it were a local drive. Here is an example
to delete all the files within a directory on a remote system:
NET USE DRIVE: \\COMPUTER\SHARE
DEL DRIVE:*.*

Once a drive is successfully mapped, you can utilize any of the file management methods that were detailed in Chapter 4.

Disconnecting Mapped Shares
When you no longer need to access the resources of a mapped share, you can disconnect it to free up available drives. To
disconnect a mapped drive from within Windows, right-click Network Neighborhood and select Disconnect Drive. When the
Disconnect Network Drive dialog box appears (see Figure 8.2), select the drive and click OK.

Figure 8.2: Disconnecting a mapped drive.

To disconnect a mapped share from the command line, start a command prompt and enter the following:
NET USE DRIVE: /DELETE

Here, DRIVE is the drive letter mapped to the share that you want to disconnect.

Tip sol;D is the abbreviated form of the /DELETE switch.

Windows Management Instrumentation

As enterprises grow larger, they become more difficult to manage. WebBased Enterprise Management (WBEM) is an initiative to
provide an environment-independent solution to manage data and devices. WBEM was developed by the Desktop Management
Task Force (DMTF), a collective organization consisting of Microsoft, Compaq, and other large corporations. Windows
Management Instrumentation (WMI) is Microsoft's Windows implementation of the WBEM initiative.

What Is WMI?
WMI, formerly called WBEM, provides scripters and developers with a standardized method to monitor and manage local and
remote resources. It comes included in Windows 98 and Windows 2000/XP/ 2003, and is available as a download for Windows 95
and Windows NT (Service Pack 5 or higher). WMI provides a standard, scriptable interface to various resources. The devices and
applications controlled by WMI are known as managed objects. Managed objects can be anything from hardware, such as a hub
or motherboard, to software, such as the operating system or an application.

The WMI Process
The executable that provides all the functionality of WMI is called WINMGMT.EXE. WINMGMT.EXE runs as a standard
executable on Windows 9x (because Windows 9x does not support services) and as a service on Windows NT/2000/XP/2003
systems. When a script or application (known as a consumer) issues calls to the WMI namespace, the executable awakes and
passes these calls to the CIM Object Manager (CIMOM). The CIMOM is the entrance to the WMI infrastructure. It allows for the
initial object creation and provides a uniform method to access managed objects. When CIMOM receives a request to control a
managed object, it first checks the CIMOM object repository.

The CIMOM object repository is a storage area for the Common Information Model (CIM). The CIM contains the WMI object
models and a description of all the available managed objects, called the management schema. This repository is full of all the
different access methods and properties of manageable objects, known as static management data. If the information requested
cannot be found in the repository, the repository passes the request down to the object provider.

A provider is the interface between the device to be managed and the CIMOM. The provider collects the information from a device
and makes it available to the CIMOM. This information is known as dynamic management data. Developers create providers
when the CIM does not contain methods to access a managed resource. Several providers come packaged with WMI:

Active Directory provider

Event Log provider

Performance Counter provider

Registry provider

SNMP provider

View provider

WDM provider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 provider

Windows Installer provider

Once the provider has completed processing the request, it sends all results back to the originating script or application.

Scripting WMI
In Chapter 1, you learned how to connect to a WSH object. The process of connecting to the WMI object model is similar to
connecting to the WSH object model. To gain access to an object, you use the GetObject function and set it to a variable. This is
called instantiating an object, as in the following example:
Set variable = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\namespace").ExecQuery
(WQL)

Note The code above must be placed on one line.

Here, variable is the variable used throughout your script to access all the properties and methods within the object. The
winmgmts namespace specifies a call to the WMI service.

Impersonation

{Impersonationlevel=impersonate}! instructs WMI to execute the script with the credentials of the caller (person who executed
the script) and not the credentials of the currently logged-on user of the targeted system. This instruction is extremely useful when
administrators are running remote scripts on systems and the logged on user does not have sufficient privileges to perform all the
specified requests.

Tip {Impersonationlevel=impersonate}! is the default impersonation level on Windows 2000/ XP/2003, and therefore can be
omitted from your scripts if you are running Windows 2000. It is included in the scripts in this book only for Windows NT
compatibility. Impersonations are not supported by Windows 9x because the operating system does not support user
privileges.

Namespaces

Computer is the name of the target system to run the script on, and \ROOT\namespace specifies which namespace to connect
to within the CIMOM object repository. Namespaces are organized containers of information within a schema. Namespace
hierarchy runs from left to right and is separated with backslashes. ROOT is the parent namespace for WMI and contains all the
child namespaces. WMI includes three child namespaces:

Cimv2-Stores Win32 system classes

Default-Stores system classes

Security-Stores WMI security classes

Most of your WMI scripting will include the Cimv2 namespace, because it holds many classes and instances for a Win32 system.

WMI Query Language

WMI uses a rich query language called the WMI Query Language (WQL). This language, similar to SQL (Structured Query
Language), allows you to query WMI information. The basic syntax for a WQL statement is as follows:
.ExecQuery("select propmeth from class")

Tip In addition to the select and from statements above, you can use many statements and keywords based on SQL.

ExecQuery runs the WQL statement, which is stored in quotes and surrounded by parentheses. Propmeth specifies the property
or method to retrieve from the specified class. Classes are organized containers for properties and methods of a manageable
device. For example, the Win32_TapeDrive class contains all the properties and methods to manage tape drives.

In addition to the ExecQuery, you can also use the ExecNotification-Query to perform WQL queries. The
ExecNotificationQuery method is used to detect when instances of a class are modified. In plain English, this method allows you
to poll for events. Combined with WQL, you can use this method to monitor the event log, CPU, memory, and more based on a
specified interval.

The WMI SDK: Worth Its Weight in Gold
Microsoft creates software developer kits (SDKs) to assist third-party application developers in creating Windows applications.
The WMI SDK includes the core WMI installation, documentation, utilities, and examples. You can obtain the WMI SDK free from
msdn.microsoft.com.

WMI Object Browser

The WMI Object Browser (see Figure 8.3) is a Web application to explore WMI namespaces. Through it, you can view and
manipulate all the classes and their properties and methods. The application runs within a Web browser and allows you to
connect to any namespace on a local or remote system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.3: The WMI Object Browser.

Note The WMI Object Browser is an intensive Web application. If it seems to be frozen when navigating through the various
classes, it may actually be loading the properties, methods, and subclasses into memory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Working with the MMC

Microsoft Management Console (MMC) is a multi-document interface (MDI) shell that hosts applications called snapins. Windows
2000/XP/2003 comes with many snapins, from Device Management to User Management. While by default most snapins connect
to the local system, you can use the command line to connect a snapin to a remote system.

Opening the "Computer Management" MMC Snapin
To open the computer management MMC snapin for a remote system, start a command prompt and enter the following:
mmc %windir%\system32\compmgmt.msc -s /computer:\\computer

Here, computer is the name of the remote system.

Opening the "Event Viewer" MMC Snapin
To open the event viewer MMC snapin for a remote system, start a command prompt and enter the following:
mmc %windir%\system32\eventvwr.msc /computer=\\computer

Here, computer is the name of the remote system.

Tip The Local Users and Computers (lusrmgr.msc) and Services (services.msc) snapins also support the /computer= option.

Remote Management from the Command Line

Most local system management is performed through the MMC or the Control Panel on Windows 2000/XP/2003 systems.
Although most of these tools include remote management capability, you can also use command-line utilities to create scripts for
remote management.

Installing the Remote Console
Remote Console is a Windows 2000 resource kit utility that allows you to run a client/server command-prompt session between
two systems, similar to a telnet session. To install the Remote Console, start a command prompt and enter the following:
RSETUP \\computer

Installing the Remote Command
Remote Command is a resource kit utility that allows you to run a program and a command prompt session on a remote computer
from your local station. In essence, you call up a command prompt window on your machine that will run commands on the
remote machine. To install the remote command service, start a command prompt and enter the following:
RCMDSVC -INSTALL
NET START "Remote Command Service"

Executing Commands on a Remote System
You can start commands on a remote system using either the remote command (RCMD) or Remote Console utilities. The remote
command utility allows you to start either a batch file or a program on a remote system. To start a command on a remote system
using the remote command, start a command prompt and enter the following:
RCMD \\computer program

The Remote Console utility allows you to start a batch file on a remote system. To start a batch file on a remote system using
Remote Console, start a command prompt and enter the following:
RCLIENT \\computer /RUNBATCH program

Here, computer is the remote system to run the program on.

Listing Shares and Permissions
SRVCHECK.EXE is a resource kit utility to list shares and permissions on a remote system. To view the shares and permission on
a remote system, start a command prompt and enter the following:
SRVCHECK \\computer

Here, computer is the name of the remote system.

Related solution: Found on page:

Listing Shares 213

Creating Shares with Permissions
RMTSHARE.EXE is a resource kit utility to create shares with permissions on remote stations. To use RMTSHARE.EXE to create
shares with permissions, start a command prompt and enter the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RMTSHARE \\computer\name=path/GRANT
guser:permission/REMOVE ruser

Note The code above must be placed on one line.

Here, computer is the computer name to create the share on; name is the name of the share; path is the path to create the share
to; guser is the username to grant permissions to; and ruser is the username to deny share access to.

Tip RMTSHARE.EXE also supports the same switches as the NET SHARE command.

Related solution: Found on page:

Creating Shares with Permissions 176

Listing Processes
PULIST.EXE is a Windows 2000 resource kit utility that allows you to list running processes and their associated IDs on a remote
system. To display remote processes, start a command prompt and enter the following:

PULIST \\COMPUTER

Terminating Processes
The Windows 2000 resource kit provides a service called RKILLSRV.EXE that allows you to view and terminate processes on a
remote PC. Unfortunately, not all of us are lucky enough to have the time or authority to install any services we like. PSKILL.EXE
is a free utility from Sysinternals (http://www.sysinternals.com) that allows you to terminate a process or a remote station without
having to add any additional services or configuration. To terminate a process on a remote system, start a command prompt and
enter the following:
PSKILL \\computer -U username -P password process

Here, computer is the name of the remote system, username and password are the administrative credentials for the remote
system, and process is the name or process ID to terminate. Here is a quick example to terminate a user running Notepad:
PSKILL \\computer -U username -P password notepad

Listing Services
SCLIST.EXE is a Windows 2000 resource kit utility that allows you to list running services on a remote system. To display remote
services, start a command prompt and enter the following:
SCLIST \\computer parameters

Here, computer is the name of the remote system to display services. The available parameters for SCLIST are as follows:

/M-Displays all services

/R-Displays running services

/S-Displays stopped services

Alternatively, you can use the resource kit utility NETSVC to list services:
NETSVC /LIST

Managing Services
NETSVC is a Windows 2000 resource kit utility that allows you to manage services on remote systems. The basic syntax for
NETSVC is:

NETSVC parameter service \\computer

Here, parameter is the action to perform; service is the specific service to work with; and computer is the remote system to
manage. Here is a list of available NETSVC parameters:

/CONTINUE-Restarts a service

/LIST-Lists services, do not specify a service name

/PAUSE-Pauses a service

/QUERY-Displays the status of a service

/START-Starts a service

/STOP-Stops a service

Related solution: Found on page:

Managing Services from the Command Line 155

Connecting to a Remote System through "Remote Desktop"
Remote Desktop allows you to access and control a remote Windows 2000 Server/XP Professional/2003 system. To connect to a
remote system through remote desktop, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. For Windows 2000 only, download and install the latest version of Remote Desktop Connection Software from
http://www.microsoft.com.

2. Start a command prompt and enter the following:
%windir%\system32\mstsc.exe /F /V:computer

Here, the /F option specifies fullscreen mode and the /V option is used to connect to a remote system, computer.

Note You must enable remote control functionality on the remote system before connecting with remote desktop. See the
Microsoft Knowledge Base article Q306624 for Windows 2000/ 2003 server and Q315328 for Windows XP
Professional.

Connecting to a Remote System through VNC
VNC (Virtual Network Computing) is a free, remote control software, similar to pcAnywhere. To connect to a remote system
through VNC, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest version of VNC from http://www.realvnc.com, to the new directory.

3. Install and configure VNC on the local and remote system.

4. Start a command prompt and enter the following:
installdir\vncviewer.exe -FULLSCREEN computer

Here, installdir is the full path where VNC was installed on the local system. The FULLSCREEN option specifies fullscreen mode
and computer is the name of the remote system.

Remote Management through WMI

WMI provides a standard scriptable interface to your local and network resources. Using WMI, you can monitor and manipulate
many settings on any resource on your network.

Listing Shares
The Win32_Share class manages all shared resources on a system. These devices include directories, drives, printers,
removable media, or any other shareable resource. To list all shares on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"List Shares", "localhost")

Set Shares = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Share")
For each Share in Shares
 SList = SList & Share.Caption & " = " & Share.Path & VBlf
Next

WScript.Echo "Shares:" & VBlf & VBlf & SList

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Listing Shares 213

Creating a Share
The Create method for Win32_Share allows you to share a resource. To create a share using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the code shown on the next page.
On Error Resume Next
Computer = InputBox("Enter the computer name", "Create Share",
"localhost")

SName = InputBox("Enter the name of the share", "Share Name",
"Temp")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"Temp")

SPath = InputBox("Enter the path of the share", "Share Path",
"C:\Temp")

TypeMenu = "Choose a share type:" & VBlf & VBlf & _
 "0 - Disk Drive" & VBlf & _
 "1 - Print Queue" & VBlf & _
 "2 - Device" & VBlf & _
 "3 - IPC" & VBlf & _
 "2147483648 - Disk Drive Admin" & VBlf & _
 "2147483649 - Print Queue Admin" & VBlf & _
 "2147483650 - Device Admin" & VBlf & _
 "2147483651 - IPC Admin"
SType = InputBox(TypeMenu, "Share Type", 0)
SMax = InputBox("Enter the maximum number of users",
"Maximum Users", 10)

SDescribe = InputBox("Enter the description of the share",
"Share Description", "Temp Share")

SPass = InputBox("Enter the password to access the share",
"Share Password", "Temp Password")

Set Security = GetObject("winmgmts:{impersonationLevel=
impersonate,(Security)}!\\" & Computer & "\root\cimv2")

Set Share = Security.Get("Win32_Share")
Set Methods = Share.Methods_("Create").
InParameters.SpawnInstance_()
 Methods.Properties_.Item("Description") = SDescribe
 Methods.Properties_.Item("MaximumAllowed") = SMax
 Methods.Properties_.Item("Name") = SName
 Methods.Properties_.Item("Password") = SPass
 Methods.Properties_.Item("Path") = SPath
 Methods.Properties_.Item("Type") = SType
Set Complete = Share.ExecMethod_("Create", Methods)

Note The highlighted code above must be placed on one line. The (Security) statement is necessary because this script
modifies share access.

Related solution: Found on page:

Adding Shares 159

Deleting a Share
The Delete method for Win32_Share allows you to delete a share from a manageable system. To delete a share using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Delete Share", "localhost")

SName = InputBox("Enter the name of the share",
"Delete Share")

Set Shares = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Share where Name = ‘" & SName & "‘")

For each Share in Shares
 Share.Delete()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Removing Shares 159

Listing Processes
The Win32_Process class manages all running processes on a system. These processes include all running applications,
background tasks, and hidden system processes. To list all running processes using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"List Processes", "localhost")
Set Processes = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Process")

For each Process in Processes
 PList = PList & Process.Description & VBlf
Next

WScript.Echo "Processes:" & VBlf & VBlf & UCase(PList)

Note The highlighted code above must be placed on one line.

Creating a Process
The Create method for Win32_Process allows you to create a new process. The key benefit of this method is the ability to launch
an application, such as a virus scanner or an application update, on a remote system. To create a process using WMI, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Start Process", "localhost")

AName = InputBox("Enter the executable to run",
"Start Process", "explorer")

Set Process = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2:Win32_Process")

Process.Create AName,null,null,null

Note The highlighted code above must be placed on one line.

Terminating a Process
The Terminate method for Win32_Process allows you to end a process and all its threads. The key benefit of this method is the
ability to forcibly close a running application, such as an unauthorized port scanner or a corrupted program, on a remote system.
To terminate a process using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Terminate Process", "localhost")

PName = InputBox("Enter the name of the process",
"Terminate Process")

Set Processes = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Process where Name = '" & PName & "'")

For each Process in Processes
 Process.Terminate
Next

Note The highlighted code above must be placed on one line.

Changing Process Priority
The SetPriority method for Win32_Process allows you to change the execution priority of a running process. Table 8.1 lists the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SetPriority method for Win32_Process allows you to change the execution priority of a running process. Table 8.1 lists the
available priorities and their corresponding values.

Table 8.1: Process priority values.

Value Name

256 Realtime

128 High

32768 Above Normal

32 Normal

16384 Below Normal

64 Low/Idle

To change the priority of a process using WMI, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Process Priority", "localhost")

PName = InputBox("Enter the name of the process",
"Process Priority")

Set Processes = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Process where Name = '" & PName & "'")

For each Process in Processes
 Process.SetPriority(PriorityValue)
Next

Here, priorityvalue is the value from Table 8.1 to assign to the process Pname.

Note The highlighted code above must be placed on one line.

Listing Services
The Win32_Service class manages all services installed on a system. This class does not apply to Windows 9x, because
Windows 9x does not support services. To list all installed services using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"List Services", "localhost")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service")

For each Service in Services
 If Service.State = "Paused" Then
 PList = PList & Service.Description & VBlf
 End If
 If Service.State = "Running" Then
 RList = RList & Service.Description & VBlf
 End If
 If Service.State = "Stopped" Then
 SList = SList & Service.Description & VBlf
 End If
Next

WScript.Echo "Paused Services: " & VBlf & VBlf & PList
WScript.Echo "Running Services: " & VBlf & VBlf & RList
WScript.Echo "Stopped Services: " & VBlf & VBlf & SList

Note The highlighted code above must be placed on one line.

Starting Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The StartService method for Win32_Service allows you to start a stopped service. This method applies only to stopped services;
paused services have their own method for resumption. To start a stopped service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Start Service", "localhost")

SName = InputBox("Enter the name of the service",
"Start Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.StartService()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Starting a Service 156

Stopping Services
The StopService method for Win32_Service allows you to stop a service. Through this method, you can stop a running or
paused service. To stop a service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Computer = InputBox("Enter the computer name",
"Stop Service", "localhost")

SName = InputBox("Enter the name of the service",
"Stop Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.StopService()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Stopping a Service 156

Pausing Services
The PauseService method for Win32_Service allows you to pause a running service. This method will not place a stopped
service into paused mode. To pause a running service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Pause Service", "localhost")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"Pause Service", "localhost")

SName = InputBox("Enter the name of the service",
"Pause Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.PauseService()
Next

Note The highlighted code above must be placed on one line.

Resuming Services
The ResumeService method for Win32_Service allows you to resume a paused service. This method will not start a stopped
service. To create a process using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Resume Service", "localhost")

SName = InputBox("Enter the name of the service",
"Resume Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
Service.ResumeService()
Next

Note The highlighted code above must be placed on one line.

Deleting a Service
The Delete method for Win32_Services allows you to remove a service from your system. This method will happen immediately,
regardless of whether a service is running. To delete a service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Delete Service", "localhost")

SName = InputBox("Enter the name of the service",
"Delete Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.Delete()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Uninstalling a Service 155

Rebooting a System
The Win32_OperatingSystem class manages many aspects of the Windows operating system, from the serial number to the
service pack. The Reboot method for Win32_OperatingSystem allows you to shut down and restart a manageable system. To
reboot a system using WMI, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Reboot System", "localhost")

Set OS = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_ OperatingSystem where Primary=true")

For each System in OS
 System.Reboot()
Next

Here, Primary=True is a check to ensure that Windows is the primary operating system currently running.

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Shutting Down/Restarting the Computer 191

Shutting Down a System
The ShutDown method for Win32_OperatingSystem allows you to shut down a computer to the prompt "It is now safe to turn off
your computer." To shut down a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Reboot System", "localhost")

Set OS = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_ OperatingSystem where Primary=true")
For each System in OS
 System.Shutdown()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Shutting Down/Restarting the Computer 161

Monitoring CPU Utilization
To monitor CPU utilization using the WMI ExecNotificationQuery method, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"CPU Monitor", "localhost")

CPULoad = InputBox("Enter the CPU overload threshold",
"CPU Threshold", "75")

Poll = InputBox("Enter the polling interval",
"Poll Interval", "5")
If Computer = "" Then Computer = "Localhost"
If CPULoad = "" Then CPULoad = 75
If Poll = "" Then Poll = 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If Poll = "" Then Poll = 5
Set ProLoad = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").
ExecNotificationQuery("SELECT * FROM __
InstanceModificationEvent WITHIN " & Poll & " WHERE
TargetInstance ISA 'Win32_Processor' and
TargetInstance .LoadPercentage > " & CPULoad)
If Err.Number <> 0 then
 WScript.Echo Err.Description, Err.Number, Err.Source
End If

Do
 SetILoad = ProLoad.nextevent
 If Err.Number <> 0 then
 WScript.Echo Err.Number, Err.Description, Err.Source
 Exit Do
 Else
 AMessage = ILoad.TargetInstance.DeviceID & _
 " is overloaded at " & _
 & ILoad.TargetInstance.LoadPercentage & "%!"
 Wscript.Echo "Event Alert: " & AMessage
 End If
Loop

Note The highlighted code above must be placed on one line.

Here, computer is the name of the system to monitor; CPULoad is the CPU utilization threshold to monitor for (1-100); and poll is
the amount of seconds to check for events.

Related solution: Found on page:

Scripting Microsoft Agent Using Windows Script Host 366

Assigning a Static IP Address
To assign a static IP address to a remote system's network cards using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer =
InputBox("Enter the computer name", "Assign Static", "localhost")
IPAddress=InputBox("Enter the IP Address","IP Address", "192.168.1.50")
SubnetMask=InputBox("Enter the Subnet Mask","Subnet Mask", "255.255.255.0")
Gateway=InputBox("Enter the Gateway","Gateway", "192.168.1.1")
DNS1=InputBox("Enter the Primary DNS Server","Primary DNS", "192.168.1.2")
DNS2=InputBox("Enter the Secondary DNS","Secondary DNS", "192.168.1.3")

Set Adapters=GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &__
 Computer & "\root\cimv2").ExecQuery("select * from
Win32_NetworkAdapterConfiguration where IPEnabled=true")

IPArray = Array(IPAddress)
MaskArray = Array(SubnetMask)
GatewayArray = Array(Gateway)
GatewayMetric = Array(1)
DNSArray = Array (DNS1,DNS2)

For each NIC in Adapters
 NIC.EnableStatic IPArray, MaskArray
 NIC.SetGateways GatewayArray, Gatewaymetric
 NIC.SetDNSServerSearchOrder DNSArray
Next

Note The highlighted code above must be placed on one line.

Switching to DHCP
To change a remote system's network cards from a Static IP to DHCP using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Computer = InputBox("Enter the computer name",
"Enable DHCP", "localhost")
Set Adapters = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_NetworkAdapterConfiguration where IPEnabled=true")

For each NIC in Adapters
 NIC.EnableDHCP()
Next

Note The highlighted code above must be placed on one line.

Renewing DHCP Leases
To renew the DHCP leases of a remote system's network cards using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Renew DHCP", "localhost")

Set Adapters = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_NetworkAdapterConfiguration where IPEnabled=true")

For each NIC in Adapters
 NIC.RenewDHCPLease()
Next

Note The highlighted code above must be placed on one line.

Installing Software
The Install method for Win32_Product allows you to install a Windows Installer package. To install a Windows Installer package
using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Install Software", "localhost")

InstallPath = InputBox("Enter the complete software path",
"Install Software", "")

Set Products = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2 ")

Set Software = Products.Get("Win32_Product")
Software.Install InstallPath, ,True

Note The highlighted code above must be placed on one line.

Uninstalling Software
To uninstall a Windows Installer package using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Uninstall Software", "localhost")

sName=InputBox ("Enter the name of the software", "uninstall
software", "")
Set Products = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Product where Name = '" & SName & "'")
For each Software in Products

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For each Software in Products
 Software.Uninstall()
Next

Note The highlighted code above must be placed on one line.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9: Enterprise Management

In Brief
Corporations spend millions of dollars a year on packaged applications and manpower to keep their computing environments
running like finely tuned engines. Although most third-party solutions provide the tools to assist in enterprise management, they
often come overloaded with fancy reporting features and are limited in actual functionality. And when you finally find a package
that is really helpful in your administrative tasks, you'd be lucky to get the budget approval passed in this lifetime.

In this chapter, you will learn about all the important aspects of managing an enterprise environment, and how to maintain it
without expensive third-party solutions. You will also learn how to accomplish most of your administrative tasks with simple scripts.

Understanding Windows 2000 Networks

The biggest advantage of a Windows 2000/2003 network as opposed to Windows NT is its restructuring and use of directory
services. Windows 2000/2003 gives you several new ways to organize and centrally manage your network.

Trees and Forests
Windows 2000/2003 allows you to organize your domains into hierarchical groups called trees. Trees share a common schema,
global catalog, replication information, and DNS namespace (for example, http://www.jesseweb.com). Once trees are established,
you can organize your trees into hierarchical groups called forests. Forests also share a common schema, global catalog, and
replication information, but do not share a common DNS namespace. This allows you to combine the resources of two completely
separate Internet domains (for example, http://www.mydomain.com and http://www.yourdomain.com). Through trees and forests,
Windows 2000 automatically establishes two-way trusts between all domains.

Objects
Windows 2000/2003 treats all resources as objects. These objects can consist of any of the various resources on a network, such
as users, computers, printers, and shares. Each object contains its own set of attributes, functions, and properties as set by the
schema. Whenever you access a resource, the schema sets which properties and features are presentable. For example, a user
account has a lockout property but a share does not, as instructed by the schema.

Organizational Units
Windows 2000/2003 allows you to organize network objects into logical containers called Organizational Units (OUs). OUs can
contain any network resource, such as accounts, groups, queues, shares, and even other OUs. Through OUs, you can delegate
administration and assign permissions to the OU or the individual objects within. The most common use of organizational units is
to organize company resources by department.

Global Catalog
Windows 2000/2003 stores information about the objects in a tree or forest in a common database, called a global catalog. Global
catalog servers reduce network searches and object query time by processing these requests directly. The first domain controller
within a forest stores the global catalog, and is called a global catalog server. You can assign additional global catalog servers to
help network queries.

Warning Global catalog servers synchronize their information through replication. A large quantity of catalog servers can
cripple a network with replication traffic.

ADSI
Active Directory Services Interfaces (ADSI), previously OLE Directory Services, is Microsoft's implementation of a directory service
that organizes an enterprise into a tree-like structure. A directory service provides a standard, consistent method to manage and
locate network resources. Directory services are actually databases that store information about all the resources on your network.
Whenever a request for a network resource is made, the directory service interprets and processes the request. ADSI comes
packaged with Windows 2000/ XP/2003 and is available as a free, separate download from Microsoft for Windows 9x/NT.

The ADSI Process

When a script or application issues a call to ADSI, the call is first sent to the ADSI client, as shown in Figure 9.1. The ADSI client
is included in all versions of Windows 2000/XP/2003 and is available as a download for Windows 9x/NT systems. Do not confuse
the ADSI client with the Active Directory Services Interface. The client is used to access a directory service, whereas the Active
Directory Services Interface is the directory service itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.1: The ADSI process.

Note Windows 2000/2003 Server contains both the Active Directory Services Interfaces and the ADSI client.

Once the client receives the call, it passes it to the object model, called a router. The router interprets the request and passes it to
the appropriate provider. The provider is then responsible to take the appropriate action based on the request.

Providers

ADSI provides a common interface to manage the network, regardless of directory service type. ADSI uses components called
providers to communicate with other directory services. These providers are stored in DLL files and are loaded when ADSI is
installed. The various providers included with ADSI are as follows:

IIS (Adsiis.dll)-Provider for Internet Information Server

LDAP (Adsldp.dll, Adsldpc.dll, and Adsmext.dll)-Provider for Windows 2000/2003 Server and other LDAP-compliant
applications

NWCompat (Adsnw.dll)-Provider to Netware Bindery servers

NDS (Adsnds.dll)-Provider for Novell NDS servers

WinNT (Adsnt.dll)-Provider for Windows NT domains and Windows 2000/2003 local resources

Note The provider names, specified in parentheses above, are case-sensitive.

The next section will give you a brief overview of the two main Windows providers: LDAP and WinNT.

The LDAP Provider

Lightweight Directory Access Protocol (LDAP) was developed in 1990 as a simple alternative to the complex X.500 directory
standard. The LDAP provider is used to manage Windows 2000/2003 Active Directory servers, Exchange 5.5 or higher servers,
Lotus Notes servers, Netscape directory servers, and other LDAP-compliant applications or servers. The basic syntax to bind to
the LDAP provider is:
Set variable = GetObject("LDAP:OU=orgunit, DC=Domain")

Here, variable is an arbitrary variable that you can use to access the LDAP provider; orgunit is the name of the organizational
unit; and domain is the name of the domain you want to connect to.

Windows 2000/2003 uses Internet domain names, such as marketing. jesseweb.com. Each of the domain levels must be
separated by commas and in descending hierarchy, as follows:
Set variable = GetObject("LDAP:OU=orgunit, DC=marketing,
DC=jesseweb, DC=com")

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With LDAP, you can avoid specifying domain names by binding to the directory tree directly:

Set variable = GetObject("LDAP://rootDSE")

The WinNT Provider

The WinNT provider is used to manage Windows NT domain resources and Windows 2000/2003 local resources. This provider is
provided for backward compatibility with Windows NT domains and cannot access Windows 2000/2003 Internet domain names.
The basic syntax to bind to the WinNT provider is:
Set variable = GetObject("WinNT://Domain/Computer/
Object,Class")

Note The highlighted code above must be placed on one line.

Here, variable is an arbitrary variable that you can use to access the WinNT provider; domain is the name of the domain you
want to connect to; computer is the name of the system to connect to; object is the object that you want to connect to; and class
is the class type you want to connect to (for example, user, group, computer). Any parameters specified after the provider name,
in this case WinNT:, are optional.

If you are working outside your domain or need to use a different account to access the domain, you must use the
OpenDSObject function:
Set NTObj = GetObject("WinNT:")
Set variable = NTObj.OpenDSObject("WinNT://Domain/Server/
Object, username, password, ADS_SECURE_CREDENTIALS")

Note The highlighted code above must be placed on one line.

Here, password is the password of the username to connect with.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Managing Computer Accounts from the Command Line

Computer accounts, like user accounts, allow the system to be part of the domain and access its resources. When a computer
joins a domain, a computer account is created establishing a one-way trust and allowing the computer to access the domain.
Although computer account management is usually done through the administrative tools of the operating system, computer
account management can be scripted from the command line.

Managing Computer Accounts with the NET Command
The built-in NET.EXE command allows you to manage computer accounts from the command line on any domain controller. The
basic syntax of the NET command to add computer accounts is:
NET COMPUTER \\compname/commands

Here, compname is the computer account to manage, and the available commands are:

/ADD-Adds a computer account to the domain

/DELETE-Removes a computer account from the domain

Tip You can use one of the remote management methods discussed in Chapter 8 to run this command on a remote domain
controller.

Managing Computer Accounts with the NETDOM Utility
NETDOM is a Windows 2000 Resource Kit Utility/Windows XP Support Tool used to manage computer accounts from the
command line. The basic syntax of NETDOM is:
NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /commands

Note The highlighted code on the previous page must be placed on one line.

Here, computer is the computer account to manage; password is the password of the domain\user account with privileges to
manage computer accounts on the specified domain; and the available commands are as follows:

/ADD-Adds a computer account to the domain

/DELETE-Removes a computer account from the domain

/JOINDOMAIN-Joins the computer to the domain

/QUERY-Retrieves information on an existing computer account

To connect to the domain and add a computer account, you would enter:
NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /JOINDOMAIN

NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /ADD

Note The highlighted code above must be placed on one line.

To connect to the domain and remove a computer account, you would enter:
NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /JOINDOMAIN

NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /DELETE

Note The highlighted code above must be placed on one line.

Managing User Accounts from the Command Line

User accounts allow users to access domain and local system resources with a valid username and password. Although user
management is mostly done through the administrative tools of the operating system, scripting user account management from
the command line is significantly faster when dealing with remote systems and multiple modifications.

Managing Computer Accounts with the NET Command
One of the most unused command-line utilities to manage user accounts is the NET command. The basic syntax of the NET
command to manage user accounts is:
NET USER USERNAME PASSWORD /commands

Here, username is the user account to manage; password is either the password of the account or an asterisk (*) to be prompted
for a password; and the available commands are as follows:

/ACTIVE:X-Controls the activation of an account where X is YES or NO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/ADD-Adds a user account.

/DELETE-Removes a user account.

/DOMAIN-Creates the account in the currently active domain.

/COMMENT: "X" -Sets the account description where X is the comment.

/COUNTRYCODE:X-Sets the account's country code.

/USERCOMMENT: "X"-Sets the user comment where X is the comment.

/EXPIRES:X-Sets the expiration date of the account where X is either NEVER or a date in the format of MM/DD/YY.
This format may differ depending on your country code.

/FULLNAME: "X"-Sets the full account name where X is the name.

/HOMEDIR:X-Sets the home directory where X is the path.

/PASSWORDCHG:X-Controls the user's ability to change the password where X is YES or NO.

/PASSWORDREQ:X-Sets whether a password is required where X is YES or NO.

/PROFILEPATH:X-Sets the profile directory where X is the path.

/SCRIPTPATH:X-Sets the logon script directory where X is the path.

/TIMES:X-Sets the hours a user may log on where X is either ALL or days and times separated by commas.

Here is an example showing how to add an account using the NET command:
NET USER "Tyler" TEMPPASSWORD /ADD /COMMENT:"Project Account"
/ACTIVE:NO /EXPIRES:12/31/03 /FULLNAME:"Tyler Durden"
/HOMEDIR:C:\ /PASSWORDCHG:NO /PASSWORDREQ:YES
/PROFILEPATH:C:\PROFILES\TD /USERCOMMENT:"Corporate Sponsor"
/WORKSTATIONS:STATION1 /SCRIPTPATH:SOMEWHERE\OUTTHERE
/TIMES:MONDAY-THURSDAY,8AM-5PM

Note The highlighted code above must be placed on one line.

Managing Computer Accounts with the ADDUSERS Utility
ADDUSERS.EXE is a Windows 2000 resource kit utility to manage user accounts from the command line. This utility reads
command-delimited text files and can create or delete user accounts. The basic syntax of ADDUSERS to manage user accounts
is:
ADDUSERS \\computer commands file

Here, computer is the computer account to manage; file is the name of the comma-delimited text file to use; and the available
commands are as follows:

/C-Creates user accounts or groups specified in the file

/D-Dumps the user account or group information to the file

/E-Deletes user account specified in the file

/P:X-If combined with /C, specifies the creating parameters where X is:

C-User cannot change password

D-Account disabled

E-Password never expires

L-Do not change password at next logon

Tip To add a user account to the local computer, omit the computer name from the command line.

The basic syntax of the comma-delimited file is:
[User]
UserName,FullName,Password,Comment,Home,Profile,Script,

Here, Comment is the account description; Home is the path to the user home directory; Profile is the path to the user's profile;
Script is the name of the logon script to use; and UserNames are the user names (separated by commas) to add to the groups.

The following example adds a user called JFROST to the computer BOB:
ADDUSERS \\BOB/C file

Here, file is the full path and file name of a text file that contains the following:
[User]
JFROST,Jack E. Frost,Password,Project Manager,\\SERVER\HOME\
JFROST,\\SERVER\PROFILE\JFROST,LOGON.KIX,

Note The highlighted code above must be placed on one line.

Managing User Accounts with the CURSMGR Utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURSMGR.EXE is a Windows 2000 resource kit utility to modify current account or group properties. This utility supports many
switches, all of which are case-sensitive. The basic syntax of CURSMGR is:
CURSMGR -u username -m \\computer commands

Here, username is the user account to manage; computer is the computer name on which to perform management; and the
available commands are as follows:

-C-Sets user comment

-D-Deletes a user account

-F-Sets user full name

-h-Sets the path to the user's home directory

-H-Sets the drive letter to map the user's home directory

-n-Sets the path to the logon script's directory

-p-Sets a random password

-P-Sets the password to Password

+-S-Use the +S or -S to set or reset the following properties

AccountLockout-Locks/unlocks a user account

MustChangePassword-Sets/resets the User Must Change Password At Next Logon option

CanNotChangePassword-Sets/resets the User Cannot Change Password option

PasswordNeverExpires -Sets/resets the Password Never Expires option

AccountDisabled-Disables/enables an account

RASUser-Enables/disables remote access dial-in

-U-Sets the path to the user's profile directory

Here is an example of how to modify a user account:
CUSRMGR -u
name -m \\computer -h \\server\homeshare -f
"fullname" -c "description" -H Q

Note The highlighted code above must be placed on one line.

Here, name is the user name; computer is the system that holds the account; \\server\homeshare is where the user's home
directory resides; fullname is the user's fullname; and description is the account description.

Managing Groups from the Command Line

Groups allow administrators a method of organizing and assigning user account privileges. Groups are also helpful when
attempting to identify a collection of users with a common trait (for example, temporary employees). You can script group
management from the command line to automate your daily tasks.

Managing Groups with the NET Command
The built-in NET.EXE command allows you to manage local and global groups from the command line. The basic syntax of the
NET command to manage global groups is:
NET type name commands

Here, type is the keyword GROUP for global or LOCALGROUP for local group management; name is the group to manage, and
the available commands are as follows:

/ADD-Adds user accounts to the specified group where multiple user accounts are separated by spaces

/COMMENT: "X"-Sets the group comment

/DELETE-Deletes a group or removes the user account from the specified group

/DOMAIN-Performs the operation on the primary domain controller

username-Specifies a user account to add or remove from the group

Managing Groups with the ADDUSERS Utility
Earlier in this chapter, you learned how to use the resource kit utility ADDUSERS.EXE to manage user accounts from the
command line. This utility can also be used to add groups and group members from the command line. The basic syntax of
ADDUSERS to add groups is:
ADDUSERS \\computer /C file

Here, computer is the computer account to manage, and file is the name of the comma-delimited text file to use. The basic
syntax of the comma-delimited file is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Global]
Name,Comment,UserNames,
[Local]
Name,Comment,UserNames,

Here, the [GLOBAL] sections add global groups; name is the name of the group to add; comment is the group description; and
usernames are the users, separated by commas, to add to the group.

Managing Groups with the USRTOGRP Utility
USRTOGRP.EXE is an NT resource kit utility to add user accounts to groups from the command line. The basic syntax of the
USRTOGRP utility is:
USRTOGRP file

Here, file is a text file with the following format:
DOMAIN: computer grouptype: group users

Here, computer is the name of the system or domain that contains the specified group; grouptype specifies the group type as
either LOCALGROUP or GLOBALGROUP; group is the name of the group; and users are the usernames, separated by spaces,
to add to the group.

Here is a quick example to add two users to the Domain Admins group in the PROJECT domain:
USRTOGRP file

Here, file is the full path and file name of a text file that contains the following:
DOMAIN: PROJECT GLOBALGROUP: Domain Admins JACK TYLER

Managing the Enterprise with ADSI

Prior to ADSI, your only alternatives to manage network resources were command-line utilities and administrative tools. Through
ADSI, you can create simple scripts to control all the resources of your network.

Listing Shares
To list shares using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/lanmanserver,
FileService")

For each Share in DomObj
 List = List & Share.Name & VBlF
Next
Wscript.echo List

Note The highlighted code above must be placed on one line.

Here, domain is the name of the domain, and computer is the computer name containing the shares to list.

Related solution: Found on page:

Listing Shares 179

Creating a Share
To create a share using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/
lanmanserver")
Set Share = DomObj.Create("fileshare", "ShareName")
Share.Path = "SharePath"
Share.Description = "ShareDescribe"
Share.MaxUserCount = maxnum
Share.SetInfo

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, domain is the name of the domain; computer is the computer name on which you want to create shares; sharename is the
name of the share to create; sharepath is the path to the new share; sharedescribe is the share comment; and maxnum is the
maximum number of simultaneous connections to the share.

Related solution: Found on page:

Listing Shares 179

Deleting a Share
To delete a share using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/lanmanserver")
DomObj.Delete "fileshare", "ShareName"

Here, domain is the name of the domain; computer is the computer name on which you want to create shares; and sharename
is the name of the share to delete.

Related solution: Found on page:

Removing Shares 159

Listing Computer Accounts
To list computer accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain)
DomObj.Filter = Array("computer")

For Each Computer In DomObj
 wscript.echo Computer.name
Next

Here, domain is the name of the domain to query.

Creating a Computer Account
To create a computer account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
Set Computer = DomObj.Create("Computer", "name")
Computer.SetInfo

Here, domain is the name of the domain, and name is the computer name to assign to the computer account.

Deleting a Computer Account
To delete a computer account, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
DomObj.Delete "Computer", "name"

Here, domain is the name of the domain, and name is the name of the computer account to delete.

Setting a User's Domain Password
To set a user's domain password using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Name,user")
DomObj.SetPassword "pswd"

Here, domain is the name of the domain; name is the user account to modify; and pswd is the new password to assign.

Changing the Local Administrator Password
A common administrative task is to change the local administrator password on a system. To change the local administrator
password using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/
Administrator,user")
DomObj.SetPassword "pswd"

Note The highlighted code above must be placed on one line.

Here, domain is the name of the domain; computer is the computer containing the local administrator account; Administrator is
the name of the local administrator account; and pswd is the new password to assign.

Listing User Accounts
To list user accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain)
DomObj.Filter = Array("user")

For Each User In DomObj
 wscript.echo User.name
Next

Here, domain is the name of the domain to query.

Creating a User Account
To create a user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
Set User = DomObj.Create("User", "Name")
User.SetPassword("pswd")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User.SetPassword("pswd")
User.FullName = "fullname"
User.HomeDirectory = "homedir"
User.Profile = "profiledir"
User.LoginScript = "script"
User.Description = "describe"
User.SetInfo

Here, domain is the name of the domain; name is the name of the user account to create; pswd is the password to assign to the
new account; fullname is the user's full name; homedir is the path of the user's home directory; profiledir is the path of the
user's profile; script is the name of the logon script; and describe is the user description.

Tip You can create new users with initial blank passwords by omitting the highlighted line in the script above.

Deleting a User Account
To delete a user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
DomObj.Delete "User", "name"

Here, domain is the name of the domain, and name is the name of the user account to delete.

Unlocking a User Account
To unlock a user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set User = GetObject("WinNT://Domain/Name,User")
User.Put "UserFlags", User.Get("UserFlags") - 16
User.SetInfo

Here, domain is the name of the domain, and name is the name of the user account to unlock.

Note Although ADSI can unlock a user account, it cannot lock an account.

Disabling a User Account
To disable an active user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set User = GetObject("WinNT://Domain/Name,User")
If User.AccountDisabled = "False" Then
 User.Put "UserFlags", User.Get("UserFlags") + 2
 User.SetInfo
End If

Here, domain is the name of the domain, and name is the name of the user account to unlock.

Tip To enable a disabled account, change the False to True and the + 2 to -2 in the above script.

Listing a User's Groups
To list the groups a user belongs to using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next
Set User = GetObject("WinNT://" & Domain & "/" & Name & ",user")
For Each Group in User.Groups
 wscript.echo Group.Name
Next

Here, domain is the name of the domain, and name is the name of the user account.

Listing Groups
To list user accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain)
DomObj.Filter = Array("group")

For Each User In DomObj
 wscript.echo User.name
Next

Here, domain is the name of the domain to query.

Creating Groups
To create a global group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
Set Group = DomObj.Create("group", "name")
Group.GroupType = 4
Group.Description = "describe"
Group.SetInfo

Here, domain is the name of the domain; name is the name of the group to create; and describe is the group description.

Tip To create a local group, omit the highlighted line in the script above.

Deleting Groups
To delete a group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
DomObj.Delete "group", "name"

Here, domain is the name of the domain, and name is the name of the group to delete.

Adding a User Account to a Group
To add a user account to a group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Group = GetObject("WinNT://Gdomain/groupname,group")
Group.Add "WinNT://UDomain/useraccount,User"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Group.Add "WinNT://UDomain/useraccount,User"

Here, gdomain is the name of the domain containing the specified groupname, and udomain is the domain containing the
useraccount to add to the specified group.

Removing a User Account from a Group
To remove a user account from a group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Group = GetObject("WinNT://gdomain/groupname,group")
Group.Remove "WinNT://udomain/useraccount,User"

Here, gdomain is the name of the domain containing the specified groupname, and udomain is the domain containing the
useraccount to remove from the specified group.

Listing Groups Members
To list the user accounts that belong to a particular group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain & "/" & Group)
For Each User In DomObj.Members
 wscript.echo User.name
Next

Here, domain is the name of the domain and group is the name of the group.

Managing Windows 2000/2003 through LDAP
Most of the previous ADSI examples merely need the binding statement changed in order to convert a WinNT provider script to an
LDAP provider script. This section will illustrate a few of the changes you need to make to use these scripts in a Windows
2000/2003 domain.

Note Remember, you can still use the WinNT provider to manage a Windows 2000/2003 domain.

Creating OUs under Windows 2000/2003

To create an organizational unit under Windows 2000/2003, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get ("defaultNamingContext"))
Set OU = DomObj.Create("organizationalUnit", "OU=name")
OU.Description = "describe"
OU.SetInfo

Note The highlighted code above must be placed on one line.

Here, name is the name of the organizational unit to create, and describe is the OU description.

Deleting OUs under Windows 2000/2003

To delete an organizational unit under Windows 2000/2003, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" &
Root.Get("defaultNamingContext"))
DomObj.Delete "organizationalUnit", "OU=name"

Note The highlighted code above must be placed on one line.

Here, name is the name of the organizational unit to delete.

Listing Computer Accounts under Windows 2000/2003

To list computer accounts using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

Set objCMD = CreateObject("ADODB.Command")
objCMD.ActiveConnection = objConn
objCMD.CommandText = "<LDAP://" &
DomObj & ">;(objectCategory=computer);name;subtree"
objCMD.Properties("Page Size") = 1000
objCMD.Properties("Timeout") = 30
objCMD.Properties("Cache Results") = False

Set objRS = objCMD.Execute
objRS.MoveFirst
While Not objRS.EOF
 wscript.echo objRS.Fields("name")
 objRS.MoveNext
Wend

Creating Computer Accounts under Windows 2000/2003

To create a computer account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get
("defaultNamingContext"))
Set Computer = DomObj.Create("computer", "CN=name")
Computer.samAccountName = "name"
Computer.SetInfo

Here, name is the name of the computer account to create.

Note The highlighted code above must be placed on one line.

Deleting Computer Accounts under Windows 2000/2003

To delete a computer account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from"http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get
("defaultNamingContext"))
Set Computer = DomObj.Create("computer", "CN=name")
Computer.samAccountName = "name"
Computer.SetInfo

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, name is the name of the computer account to delete.

Listing User Accounts under Windows 2000/2003

To list computer accounts using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

Set objCMD = CreateObject("ADODB.Command")
objCMD.ActiveConnection = objConn
objCMD.CommandText = "<LDAP://" &
DomObj & ">;
(&(objectClass=user)(objectCategory=person));name;subtree"
objCMD.Properties("Page Size") = 1000
objCMD.Properties("Timeout") = 30
objCMD.Properties("Cache Results") = False

Set objRS = objCMD.Execute
objRS.MoveFirst
While Not objRS.EOF
 wscript.echo objRS.Fields("name")
 objRS.MoveNext
Wend

Note The highlighted code above must be placed on one line.

Note The LDAP ObjectClass contains both user and computer accounts. To query for only user accounts, we must use "(&
(objectClass=user)(objectCategory=person))" as in the example above.

Creating User Accounts under Windows 2000/2003

To create a user account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get ("defaultNamingContext"))
Set User = DomObj.Create("user", "CN=fullname")
User.samAccountName = "name"
User.SetInfo

Here, name is the name of the user account to create, and fullname is the user's full name.

Deleting User Accounts under Windows 2000/2003

To delete a user account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get ("defaultNamingContext"))
DomObj.Delete "user", "CN=name"

Note The highlighted code above must be placed on one line.

Here, name is the name of the user account to delete.

Listing Groups under Windows 2000/2003

To list computer accounts using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

Set objCMD = CreateObject("ADODB.Command")
objCMD.ActiveConnection = objConn
objCMD.CommandText = "<LDAP://" &
DomObj & ">;(objectCategory=group);name;subtree"
objCMD.Properties("Page Size") = 1000
objCMD.Properties("Timeout") = 30
objCMD.Properties("Cache Results") = False

Set objRS = objCMD.Execute
objRS.MoveFirst
While Not objRS.EOF
 wscript.echo objRS.Fields("name")
 objRS.MoveNext
Wend

Note The highlighted code above must be placed on one line.

Listing Group Members under Windows 2000/2003

To list the user accounts that belong to a particular group using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objGroup = GetObject("LDAP://CN=Domain Admins,CN=Users," & _
DomObj)
For each objMember in objGroup.Members
 Wscript.Echo Replace(objMember.Name,"CN=","")
Next

The example above lists the members of the Domain Admins group.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10: Managing Inventory

In Brief
Managing inventory in an enterprise is an extremely involved task. Although several expensive inventory management packages
are available, many companies cannot afford to purchase these systems and train employees to implement them. In this chapter,
you will learn how to inventory your enterprise with simple, customizable scripts. In the previous chapters, you learned how to
collect information about various items such as files, folders, shares, and services. In this chapter, you will learn how to collect
information from various system and device components, such as a battery, mouse, monitor, sound card, printer, and more.

Windows System Tools

Microsoft Windows contains many tools you can use to view and modify system resource information. Each tool provides a central
location to easily identify resources and conflicts, and modify device settings and drivers.

Microsoft System Information
Windows 98 included a utility called Microsoft System Information (MSI). MSI was first introduced with Microsoft Office 97 and can
be started by clicking Start|Run and entering MSINFO32. This utility included quick links to other diagnostic tools (Dr. Watson and
ScanDisk) under the Tools menu. One of the most valuable features of this tool was the History page. Under this page you would
find a history of system changes that you could use to diagnose system malfunctions.

Windows 2000/XP/2003 follows Windows 98 and uses an updated version of Microsoft System Information. MSI is an invaluable
system tool that uses WMI to provide an easy method to locate drivers, resources, components, and sources of system errors, to
print reports, and more. Some advanced features include remote system connectivity and report generation. You can start this
utility by clicking Start|Run and entering MSINFO32 or by entering WINMSD. MSI is actually a Microsoft Management Console
(MMC) snap-in, stored as C:\Program Files\Common Files\Microsoft Shared\MSInfo\MSInfo32.msc.

Within the same directory is a file called MSINFO32.EXE, used to run MSI from the command line. You can use MSINFO32 to
connect to a remote computer or store system information to an NFO (Information) file. The basic syntax of the MSINFO32
command is:
MSINFO32 /commands

Here, the available commands are:

/CATEGORIES +/- name-Displays (+) or does not display (-) the category name specified. Supplying the name ALL
will display all categories.

/CATEGORY name-Specifies the category to open at launch.

/COMPUTER name-Connects to the specified computer name.

/MSINFO_FILE=file-Opens an NFO or CAB file.

/NFO file-Sends output to an NFO file.

/REPORT file-Generates a report to the specified file.

Warning MSInfo32 is a memory-intensive application and might use up valuable system resources.

Device Manager
Windows 2000/XP/2003 include a graphical utility called Device Manager (see Figure 10.1) to manipulate the various devices on
your system. From within this utility, you can view or modify system settings, device properties, device drivers, and more. Device
Manager displays its items in a tree-like structure, allowing you to easily view dependencies. This utility is most commonly used
among administrators to determine resource conflicts (noted by yellow exclamation points) and update device drivers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.1: The Windows 2000 Device Manager.

Microsoft Systems Management Server

Microsoft Systems Management Server (SMS) is a complete enterprise inventory and management package. Some of the
advanced features include remote control, software licensing, and electronic software distribution (ESD). Although this product is
extremely helpful, many companies cannot afford to pay for the training or licensing of SMS (about $1800 for 25 users). As related
to this chapter, SMS performs system inventory using Windows Management Instrumentation. In this chapter, you will learn how
to perform similar WMI queries to gather the system information you need-for free.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Gathering Information with Shell Scripting

Shell scripting is very limited when it comes to gathering system resource information. Most new devices are designed specifically
to work with Windows, not DOS, and most resource configuration tools are GUI-controlled and not command-line controllable.
However, there are still several tools and methods you can utilize to collect and report resource information through shell scripting.

Collecting Information Using SRVINFO
SRVINFO is a resource kit utility to display various system information from the command line. The basic syntax of the SRVINFO
command is:
SRVINFO /commands \\computer

Here, computer is the name of the computer to collect information from, and the available commands are:

-D-Displays service drivers

-NS-Does not display service information

-S-Displays shares

-V-Displays Exchange and SQL version information

Here is an example to display all the information SRVINFO can report:
SRVINFO -S -V -D

Collecting BIOS Information
To collect BIOS (Basic Input/Output System) information from the command line, you can use REG.EXE to extract the appropriate
information. To display processor information using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain REG.EXE from the Windows 2000 Resource Kit and copy it to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
Reg Query HKLM\HARDWARE\DESCRIPTION\System\
SystemBiosVersion > BIOS.TXT
Set Count=3
:Count
For /f "tokens=%Count%" %%I in ('TYPE BIOS.TXT'
) Do Set Version=%Version% %%I
Set /A Count+=1
If %Count% LSS 10 Goto Count
Echo BIOS Version: %Version%

Reg Query HKLM\HARDWARE\DESCRIPTION\System\
SystemBiosDate > BIOS.TXT

For /f "tokens=3" %%I in ('TYPE BIOS.TXT'
) Do Echo BIOS Date: %%I
Del BIOS.txt > Nul
Set Count=
Set Version=

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Modifying the Registry with Shell Scripting 124

Collecting Memory Information
PSTAT is a Windows 2000 resource kit utility used to display running threads from the command line. You can use this tool to
display memory information. To display memory information using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Obtain PSTAT.EXE from the Resource Kit and copy it to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
PSTAT | Find " Memory: " > MEM.TXT
For /F "tokens=2" %%M In ('Type MEM.txt') Do Echo Memory: %%M

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For /F "tokens=2" %%M In ('Type MEM.txt') Do Echo Memory: %%M
Del MEM.txt > Nul

Collecting Processor Information
To collect processor information from the command line, you can use REG.EXE to extract the appropriate information. To display
processor information using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain REG.EXE from the Windows 2000 Resource Kit and copy it to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
for /f "Tokens=4,5" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v Identifier') do set_
family=%%j

for /f "Tokens=6,7" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v Identifier') do set_
model=%%j

for /f "Tokens=8,9" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v Identifier') do set_
step=%%j

for /f "Tokens=2*" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v ~MHZ') do set _
speed=%%j
SET /a speed=%speed%

SET PType=Unknown

IF %family% EQU 5 (
 IF %model% LSS 4 SET PType=Pentium
 IF %model% GEQ 4 SET PType=Pentium MMX
)
IF %family% EQU 6 (
 IF %model% LSS 3 SET PType=Pentium Pro
 IF %model% GEQ 3 (
 IF %model% LSS 5 (
 SET PType=Pentium II
)
 IF %model% EQU 5 (
 If %Step% EQU 0 Set PTYPE=Pentium II or Celeron
 If %Step% EQU 1 Set PTYPE=Pentium II or Celeron
 If %Step% EQU 2 Set PTYPE=Pentium II or Pentium II Xeon
 If %Step% EQU 3 Set PTYPE=Pentium II or Pentium II Xeon
)
 IF %model% EQU 6 SET PType=Celeron
 IF %model% GTR 6 SET PType=Pentium III or Pentium III Xeon
 IF %model% EQU A SET PType=Pentium III Xeon
)
)
IF %family% EQU 15 (
 IF %model% GEQ 0 SET PType=Pentium 4
)

ECHO Processor Type: %PType%
ECHO Processor Speed: %SPEED% MHZ

Note The highlighted code on the previous page must be placed on one line. The routine to determine the processor type
was derived from various Intel processor spec sheets.

Gathering Information with KiXtart

KiXtart provides many macros to retrieve user information, but only a few of these macros can be used to retrieve resource
information. By combining KiXtart macros and registry commands, you can collect and report various resource information through
simple scripts.

Collecting BIOS Information
KiXtart does not provide any direct method to collect BIOS information. Alternatively, you can query the registry and extract the
BIOS information you want using KiXtart. To collect printer information using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
; Get the system BIOS type
$SBiosType = READVALUE("HKEY_LOCAL_MACHINE\HARDWARE\
DESCRIPTION\System","SystemBiosVersion")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESCRIPTION\System","SystemBiosVersion")

; Get the system BIOS date
$SBiosDate = READVALUE("HKEY_LOCAL_MACHINE\HARDWARE\
DESCRIPTION\System","SystemBiosDate")

? "BIOS Type: $SBiosType"
? "BIOS Date: $SBiosDate"
SLEEP 10

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Modifying the Registry with KiXtart 129

Collecting Drive Information
Although KiXtart provides no built-in method to determine all system drives and their total size, you can perform checks for
available drives and free disk space. An available drive is considered to be any drive with media present. For example, a drive
without a floppy or CD-ROM is an unavailable drive. To collect information on available drives using KiXtart, proceed as follows.

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$DLetter = 67
While $DLetter < 91
 $Drive = CHR($DLetter) + ":"
If Exist ($Drive)
 $DiskSpace = GETDISKSPACE($Drive)
 SELECT
 CASE $DiskSpace = 0
 $DiskSpace = "0 Bytes"
 CASE $DiskSpace < 1024
 $DiskSpace = $DiskSpace * 100
 $DiskSpace = "$DiskSpace KB"
 CASE $DiskSpace => 1024 and $DiskSpace < 1048576
 $DiskSpace = ($DiskSpace * 100) / 1024
 $DiskSpace = "$DiskSpace MB"
 CASE $DiskSpace => 1048576
 $DiskSpace = $DiskSpace / 10486
 $DiskSpace = "$DiskSpace GB"
 ENDSELECT
 $DiskSpace = SUBSTR($DiskSpace, 1, LEN($DiskSpace) - 5)
 + "." + SUBSTR($DiskSpace,LEN($DiskSpace)-4, 5)
 ?"Drive $Drive Free Space: $DiskSpace"
 EndIf
 $DLetter = $DLetter + 1
Loop
Sleep 5

Note The highlighted code above must be placed on one line.

Notice that the drive letter count ($Dletter) starts at 67 and runs until 91. These numbers represent ASCII characters C to Z. If you
start $Dletter with 65 (A), your script might pause and you might be prompted for a floppy disk if none is present.

Collecting Operating System Information
To collect OS information using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
; Initialize variables
$SUITE = ""
SELECT ; Product Suite?
 CASE @PRODUCTSUITE = 1
 $SUITE = "Small Business"
 CASE @PRODUCTSUITE = 2
 $SUITE = "Enterprise"
 CASE @PRODUCTSUITE = 4
 $SUITE = "BackOffice"
 CASE @PRODUCTSUITE = 8
 $SUITE = "CommunicationServer"
 CASE @PRODUCTSUITE = 16
 $SUITE = "Terminal Server"
 CASE @PRODUCTSUITE = 32
 $SUITE = "Small Business (Restricted)"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $SUITE = "Small Business (Restricted)"
 CASE @PRODUCTSUITE = 64
 $SUITE = "EmbeddedNT"
 CASE @PRODUCTSUITE = 128
 $SUITE = "DataCenter"
 CASE @PRODUCTSUITE = "256"
 $SUITE = "Single user Terminal Server"
 CASE @PRODUCTSUITE = 512
 $SUITE = "Home Edition"
 CASE @PRODUCTSUITE = 1024
 $SUITE = "Blade Server"
 CASE 1
 $SUITE = "UNDETERMINED"
ENDSELECT

? "Operating System: @PRODUCTTYPE" ; Display OS type
? "Build: @BUILD" ; Display the build number
? "Suite: " + $SUITE ; Display the product suite
? "Service Pack: @CSD" ; Display the service pack
SLEEP 10

Collecting Printer Information
KiXtart does not provide any direct method to collect information about all the printers installed on a system. Alternatively, you can
query the registry and extract the printer information you want using KiXtart. To collect printer information using KiXtart, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Printers="HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Print\Printers\"
$Index=0

:GatherInfo
$Printer=enumkey("$Printers",$Index)
If @Error=0
 $Desc = Readvalue("$Printers\$Printer","Description")
 $Loc = Readvalue("$Printers\$Printer","Location")
 $Port = Readvalue("$Printers\$Printer","Port")
 $Share = Readvalue("$Printers\$Printer","Share Name")
 ? "Printer: $Printer"
 ? "Description: $Desc"
 ? "Location: $Loc"
 ? "Port: $Port"
 ? "Share: $Share"
 ?
 ?$Index = $Index + 1
 Goto GatherInfo
EndIf
Sleep 10

Note The highlighted code above must be placed on one line.

Collecting Processor Information
KiXtart includes the @CPU and @MHZ macros to provide the name and speed of the primary processor installed on a system.
Additionally, you can query the registry and extract the processor count using KiXtart. To collect processor information using
KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
; Get the number of processors
$ProCount = 0
$Count = 0
WHILE $Count < 65
 $ProTemp = EXISTKEY("HKEY_LOCAL_MACHINE\HARDWARE\
 DESCRIPTION\System\CentralProcessor\$ProCount")
 IF $ProTemp = 0
 $ProCount = $ProCount + 1
 ENDIF
 $Count = $Count + 1
LOOP

; The code below is to simply display the final results
? "Processor Count: $ProCount"
? "Processor Name: " + TRIM(@CPU)
? "Processor Speed: @MHZ MHZ"
SLEEP 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SLEEP 10

Note The highlighted code above must be placed on one line.

Gathering Information with WMI

Windows Management Instrumentation provides centralized management system for almost all the resources on your system.
Through various WMI classes and Windows Script Host, you can collect and report various resource information through simple
scripts.

Tip The examples in the following sections illustrate only a few of the classes and class properties that WMI has to offer.
Consult the WMI SDK documentation for a complete list of classes and their properties.

Collecting Battery Information
The Win32_Battery class allows you to query laptop battery and Uninterruptible Power Supply (UPS) information through WMI.
To collect battery information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set BatterySet = GetObject("winmgmts:").InstancesOf
("Win32_Battery")
For each Battery in BatterySet
 Select Case Battery.Chemistry
 Case 1
 BType = "Other"
 Case 2
 BType = "Unknown"
 Case 3
 BType = "Lead Acid"
 Case 4
 BType = "Nickel Cadmium"
 Case 5
 BType = "Nickel Metal Hydride"
 Case 6
 BType = "Lithium-ion"
 Case 7
 BType = "Zinc air"
 Case 8
 BType = "Lithium Polymer"
 End Select
 Select Case Battery.BatteryStatus
 Case 1
 BStatus = "Other"
 Case 2
 BStatus = "Unknown"
 Case 3
 BStatus = "Fully Charged"
 Case 4
 BStatus = "Low"
 Case 5
 BStatus = "Critical"
 Case 6
 BStatus = "Charging"
 Case 7
 BStatus = "Charging and High"
 Case 8
 BStatus = "Charging and Low"
 Case 9
 BStatus = "Charging and Critical"
 Case 10
 BStatus = "Undefined"
 Case 11
 BStatus = "Partially Charged"
 End Select
WScript.Echo "Name: " & Battery.Description & VBlf & _
 "Type: " & BType & VBlf & _
 "% Left: " & Battery.EstimatedChargeRemaining & VBlf & _
 "Minutes Left: " & Battery.ExpectedLife & VBlf & _
 "Status: " & BStatus
Next

Note The highlighted code above must be placed on one line.

Collecting BIOS Information
The Win32_BIOS class allows you to query BIOS information through WMI. To collect BIOS information on a system using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set BIOSSet = GetObject("winmgmts:").InstancesOf
("Win32_BIOS")
For each BIOS in BIOSSet
 BDate = Left(BIOS.ReleaseDate,8)
 BDate = Mid(BDate,5,2) & "/" & Mid(BDate,7,2) & "/" & _
 Mid(BDate,1,4)
 WScript.Echo "Name: " & BIOS.Name & VBlf & _
 "Manufacturer: " & BIOS.Manufacturer & VBlf & _
 "Date: " & BDate & VBlf & _
 "Version: " & BIOS.Version & VBlf & _
 "Status: " & BIOS.Status
Next

Note The highlighted code above must be placed on one line.

Collecting CD-ROM Information
The Win32_CDROMDrive class allows you to query CD-ROM information through WMI. To collect CD-ROM information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set CDSet = GetObject("winmgmts:").InstancesOf
("Win32_CDROMDrive")

For each CD in CDSet
 WScript.Echo "Name: " & CD.Name & VBlf & _
 "Drive: " & CD.Drive & VBlf & _
 "Status: " & CD.Status
Next

Note The highlighted code above must be placed on one line.

Collecting Chassis Information
The Win32_SystemEnclosure class allows you to query system enclosure information through WMI. To collect system enclosure
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set SystemSet = GetObject("winmgmts:").InstancesOf
("Win32_SystemEnclosure")
For each
Chassis in SystemSet
 For Each ChassisType in Chassis.ChassisTypes
 Select Case ChassisType
 Case 1
 Wscript.Echo "Other"
 Case 2
 Wscript.Echo "Unknown"
 Case 3
 Wscript.Echo "Desktop"
 Case 4
 Wscript.Echo "Low Profile Desktop"
 Case 5
 Wscript.Echo "Pizza Box"
 Case 6
 Wscript.Echo "Mini Tower"
 Case 7
 Wscript.Echo "Tower"
 Case 8
 Wscript.Echo "Portable"
 Case 9
 Wscript.Echo "Laptop"
 Case 10
 Wscript.Echo "Notebook"
 Case 11
 Wscript.Echo "Hand Held"
 Case 12

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 12
 Wscript.Echo "Docking Station"
 Case 13
 Wscript.Echo "All in One"
 Case 14
 Wscript.Echo "Sub Notebook"
 Case 15
 Wscript.Echo "Space-Saving"
 Case 16
 Wscript.Echo "Lunch Box"
 Case 17
 Wscript.Echo "Main System Chassis"
 Case 18
 Wscript.Echo "Expansion Chassis"
 Case 19
 Wscript.Echo "SubChassis"
 Case 20
 Wscript.Echo "Bus Expansion Chassis"
 Case 21
 Wscript.Echo "Peripheral Chassis"
 Case 22
 Wscript.Echo "Storage Chassis"
 Case 23
 Wscript.Echo "Rack Mount Chassis"
 Case 24
 Wscript.Echo "Sealed-Case PC"
 End Select
 Next
Next

Note The highlighted code above must be placed on one line.

Collecting Drive Information
The Win32_LogicalDisk class allows you to query disk information through WMI. To inventory disks on a system using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set DiskSet = GetObject("winmgmts:").InstancesOf
("Win32_LogicalDisk")
For each Disk in DiskSet
 Select Case Disk.DriveType
 Case 0
 DType = "Unknown"
 Case 1
 DType = "No Root Directory"
 Case 2
 DType = "Removable Disk"
 Case 3
 DType = "Local Disk"
 Case 4
 DType = "Network Drive"
 Case 5
 DType = "Compact Disc"
 Case 6
 DType = "RAM Disk"
 End Select
 WScript.Echo "Drive: " & Disk.DeviceID & VBlf & _
 "Name: " & Disk.Description & VBlf & _
 "Type: " & DType & VBlf & _
 "File System: " & Disk.FileSystem & VBlf & _
 "Size: " & Disk.Size & VBlf & _
 "Free Space: " & Disk.FreeSpace & VBlf & _
 "Compressed: " & Disk.Compressed
Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Memory Information
The Win32_LogicalMemoryConfiguration class allows you to query memory information through WMI. To collect memory
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set MemorySet = GetObject("winmgmts:").InstancesOf.
("Win32_LogicalMemoryConfiguration")

For each Memory in MemorySet
 WScript.Echo "Total: " & _
 Memory.TotalPhysicalMemory/1024 & VBlf & _
 "Virtual: " & Memory.TotalVirtualMemory/1024 & VBlf & _
 "Page: " & Memory.TotalPageFileSpace/1024
Next

Note The highlighted code above must be placed on one line.

Collecting Modem Information
The Win32_POTSModem class allows you to query modem information through WMI. To collect modem information on a system
using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set ModemSet = GetObject("winmgmts:").InstancesOf
("Win32_POTSModem")

For each Modem in ModemSet
 WScript.Echo "Name: " & Modem.Name & VBlf & _
 "Port: " & Modem.AttachedTo & VBlf & _
 "Type: " & Modem.DeviceType & VBlf & _
 "Status: " & Modem.Status
Next

Note The highlighted code above must be placed on one line.

Collecting Monitor Information
The Win32_DesktopMonitor class allows you to query information on computer monitors through WMI. To collect monitor
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set MonitorSet = GetObject("winmgmts:").InstancesOf
("Win32_DesktopMonitor")

For each Monitor in MonitorSet
 WScript.Echo "Name: " & Monitor.Name & VBlf & _
 "Height: " & Monitor.ScreenHeight & VBlf & _
 "Width: " & Monitor.ScreenWidth & VBlf & _
 "Status: " & Monitor.Status
Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Mouse Information
The Win32_PointingDevice class allows you to query mouse, trackball, touch screen, touch pad, and other pointing device
information through WMI. To collect pointing device information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set MouseSet = GetObject("winmgmts:").InstancesOf
("Win32_PointingDevice")

For each Mouse in MouseSet
 WScript.Echo "Name: " & Mouse.Name & VBlf & _
 "Manufacturer: " & Mouse.Manufacturer & VBlf & _
 "Type: " & Mouse.HardwareType & VBlf & _
 "Buttons: " & Mouse.NumberofButtons & VBlf & _
 "Status: " & Mouse.Status
Next

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collecting Network Adapter Information
The Win32_NetworkAdapter class allows you to query information on network adapters through WMI. To collect Network
Interface Card (NIC) information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set NICSet = GetObject("winmgmts:").InstancesOf
("Win32_NetworkAdapter")

For each NIC in NICSet
 WScript.Echo "Name: " & NIC.Name & VBlf & _
 "Type: " & NIC.AdapterType & VBlf & _
 "Speed: " & NIC.Speed & VBlf & _
 "MAC: " & NIC.MACAddress & VBlf & _
 "Addresses: " & NIC.NetworkAddresses
Next

Note The highlighted code above must be placed on one line.

Collecting Operating System Information
The Win32_OperatingSystem class allows you to query various operating system information through WMI. To collect CD-ROM
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set OSSet = GetObject("winmgmts:").InstancesOf
("Win32_OperatingSystem")

For each OS in OSSet
 WScript.Echo "OS: " & OS.Caption & VBlf & _
 "Build: " & OS.BuildNumber & VBlf & _
 "Version: " & OS.Version & VBlf & _
 "Service Pack: " & OS.CSDVersion & VBlf & _
 "ProdID: " & OS.SerialNumber & VBlf & _
 "Install Date: " & OS.InstallDate & VBlf & _
 "Last Bootup: " & OS.LastBootUpTime
Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Printer Information
The Win32_Printer class allows you to query printer information through WMI. To collect printer information on a system using
WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set PrinterSet = GetObject("winmgmts:").InstancesOf
("Win32_Printer")

For each Printer in PrinterSet
 WScript.Echo "Name: " & Printer.Name & VBlf & _
 "Location: " & Printer.Location & VBlf & _
 "Share: " & Printer.ShareName & VBlf & _
 "Status: " & Printer.Status
Next

Note The highlighted code above must be placed on one line.

Collecting Processor Information
The Win32_Processor class allows you to query processor information through WMI. To collect processor information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set ProSet = GetObject("winmgmts:").InstancesOf
("Win32_Processor")

For each Pro in ProSet
 WScript.Echo "Name: " & Pro.Name & VBlf & _
 "Speed: " & Pro.MaxClockSpeed & VBlf & _
 "Cache: " & Pro.L2CacheSize & " Cache" & VBlf & _
 "Processor ID: " & Pro.ProcessorId
Next

Note The highlighted code above must be placed on one line.

Collecting Sound Card Information
The Win32_SoundDevice class allows you to query sound card information through WMI. To collect sound card information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set SoundSet = GetObject("winmgmts:").InstancesOf
("Win32_SoundDevice")

For each Sound in SoundSet
 WScript.Echo "Card: " & Sound.ProductName & VBlf & _
 "Manufacturer: " & Sound.Manufacturer
Next

Note The highlighted code above must be placed on one line.

Collecting Tape Drive Information
The Win32_TapeDrive class allows you to query tape drive information through WMI. To collect tape drive information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set TapeSet = GetObject("winmgmts:").InstancesOf
("Win32_TapeDrive")

For each Tape in TapeSet
 WScript.Echo "Name: " & Tape.Name & VBlf & _
 "Hardware Compression: " & Tape.Compression & VBlf & _
 "Needs Cleaning: " & Tape.NeedsCleaning & VBlf & _
 "Status: " & Tape.Status
Next

Note The highlighted code above must be placed on one line.

Collecting USB Information
The Win32_PnPEntity class allows you to query USB device information through WMI. To collect USB device information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set USBSet = GetObject("winmgmts:").InstancesOf
("Win32_PnPEntity")

For each USB in USBSet
 WScript.Echo "Name: " & USB.Name & VBlf & _
 "Manufacturer: " & USB.Manufacturer
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Video Card Information
The Win32_VideoController class allows you to query video card information through WMI. To collect video card information on
a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set VideoSet = GetObject("winmgmts:").InstancesOf
("Win32_VideoController")

For each Video in VideoSet
 WScript.Echo "Card: " & Video.Description & VBlf & _
 "Current: " & Video.VideoModeDescription
Next

Note The highlighted code above must be placed on one line.

Listing Installed Software
The Win32_Product class allows you to query installed software information through WMI. This class can only retrieve
information on products installed with the Windows installer. To collect Installed software information on a system using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set Software= GetObject("winmgmts:").InstancesOf
("Win32_Product")
For each Application in Software
 Wscript.Echo "Name: " & Application.Name & VBCRLF & _
 "Vendor: " & Application.Vendor & VBCRLF & _
 "Install Date: " & Mid(Application.InstallDate2, 5, 2) & "/" & _
 Mid(Application.InstallDate2, 7, 2) & "/" & _
 Mid(Application.InstallDate2, 1, 4)
Next

Note The highlighted code on the previous page must be placed on one line.

Listing Hotfixes
The Win32_QuickFixEngineering class allows you to query installed hotfix and update information through WMI. To collect
installed software information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set HotFixes= GetObject("winmgmts:").InstancesOf
("Win32_QuickFixEngineering")
For each HotFix in HotFixes
 Wscript.Echo "ID: " & HotFix.HotFixID & VBCRLF & _
 "Description: " & HotFix.Description
Next

Note The highlighted code above must be placed on one line.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11: Security

In Brief
As sad as I am to admit this, the attitude of most administrators is "security through obscurity." This expression means that the
best way of dealing with security holes is ignoring them, hoping no one will find them, and praying they will go away. Unfortunately,
this attitude never works. It seems nowadays there is a new virus or security hole being publicized daily. The days of merely
running FDISK /MBR or deleting PWL files are over. Viruses and intruders are more sophisticated than ever. In this chapter, you
will learn about the Windows security architecture and how to decrease the chances of unauthorized entry.

Hackers and Crackers

If you can think of system security as a war, then hackers and crackers are your opponents. Before you go into battle, it's always
good to know a little about your opponents. Here is the truth about a common myth: Hackers never intentionally damage data.
Hackers are knowledgeable computer users whose pure goal is to solve problems and continually learn about the inner workings
of operating systems, applications, and transmission methods. Although their methods of obtaining information may be
questionable, they tend to create tools to identify or improve upon system weaknesses. Hackers like to document and publicly
share their information with all who are willing to learn. Hackers usually receive bad press because people don't understand the
difference between the terms "hackers" and "crackers."

Crackers are knowledgeable computer users whose goal is to break into systems and damage or steal data. They tend to reverse-
engineer programs and illegally use them for even more illicit purposes. Cracking techniques usually do not involve skillful or
complicated methods, but rather crude methods such as stealing files from trash bins or tricking other users into handing them
information. Examples of crackers are users who sniff the network for passwords, pirate software, write Trojan horse programs or
viruses, or crash the network with broadcasts or email bombs.

Tip For more information about hackers and crackers, visit http://www.hackers.com.

Security Configuration and Analysis Tool

The Microsoft Security Configuration and Analysis tool (MSSCE) provides a centralized method to analyze or modify a system's
security settings. Figure 11.1 shows this tool. MSSCE is a Microsoft Management Console (MMC) snap-in that allows you to
create or use security templates to apply to your environment. These security settings are stored in configuration files and can be
applied to all the machines in your environment.

Figure 11.1: The Security Configuration and Analysis tool.

Predefined Security Templates
The MSSCE includes several predefined templates in the %WINDIR%\Security\Templates directory. The security templates
included with the MSSCE are:

Basicdc.inf-Default domain controller

Basicsv.inf-Default server

Basicwk.inf-Default workstation

These three basic security templates contain the standard security settings for each system.

Compatws.inf-Compatible workstation or server

The compatibility template contains lower security settings to allow regular users maximum control of installed applications.
Applying the compatibility template will remove all users from the power users group.

Dedicadc.inf-Dedicated domain controller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dedicated template contains security settings for domain controllers that will not be running server-based applications.

Hisecdc.inf-Highly secure domain controller

Hisecws.inf-Highly secure workstation or server

The high security templates provide the maximum security settings for the system. Applying this template on a Windows 2000
system will prevent that system from communicating with other Windows NT systems.

Securedc.inf-Secure domain controller

Securews.inf-Secure workstation or server

The secure templates are the recommended security settings.

Important Security Practices

Here is a list of several security practices to help protect your environment:

Administrators should always lock their system when not in use. This should be a top priority for administrators. It
takes only a few seconds of distraction for an intruder to go to work under your logged-on account.

Do not allow other accounts to access or log on to an administrator's system. If another user can access your
system (even if you are not logged on), he or she can potentially extract passwords, grab your files, and more.

Always use the latest security patches and service pack. It seems Microsoft is always releasing security patches
and service packs to combat system exploits. These patches don't do any good unless they are actually loaded
onto your system.

Increase the minimum password length. To slow down bruteforce password utilities, you can force users to use
longer passwords by increasing the minimum password length.

Passwords should be a mix of upper- and lowercase, letters, and numbers. The more complex your passwords are,
the longer it takes for a password-cracking program to guess a password.

Do not use dictionary-based passwords (for example, MyKids). Dictionary-based passwords are the easiest and
usually the first passwords determined through password-guessing utilities.

Use the New Technology File System (NTFS). In addition to increased reliability, NTFS provides dramatically
increased security compared to the other Windows file systems.

Set your system BIOS to boot from the hard drive only. Even if you use NTFS, a hacker can access all your
protected files by booting from removable media.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Setting the Boot Timeout

Allowing users to choose other operating systems (OS) at bootup is a security risk because the other operating systems can be
used to bypass or defeat Windows security.

Setting the Boot Timeout Using Bootcfg
To set the boot timeout using Bootcfg from a Windows XP/2003 system, start a command prompt and enter the following:
Bootcfg /timeout 0

Related solution: Found on page:

Displaying the Boot.ini using Bootcfg 28

Setting the Boot Timeout Using KiXtart
To set the boot timeout using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$File = "C:\boot.ini"

$RCode = SetFileAttr($File,128)
WriteProfileString($File, "boot loader", "timeout", "0")
$RCode = SetFileAttr($File,1)

This script first clears any file attributes on BOOT.INI, modifies the boot timeout, and then marks the file as read-only.

Related solution: Found on page:

Setting File or Folder Attributes 60

Setting the Boot Timeout Using WMI
To set the boot timeout to zero using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name", "Boot Timeout" ,
"localhost")

Set Boot = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").
ExecQuery("select * from Win32_ComputerSystem")

For each Item in Boot
 Item.SystemStartupDelay = 0
 Item.Put_()
Next

Note The highlighted code above must be placed on one line.

Removing POSIX and OS/2 Subsystems

By default, Windows 2000 includes three environment subsystems: OS/2, POSIX, and Win32 subsystems. Originally developed
by Microsoft, OS/2 is IBM's operating system for the personal computer. POSIX stands for Portable Operating System Interface
for Unix and is a set of interface standards used by developers to design applications and operating systems.

Win32 is the main subsystem used by Windows, whereas the others are merely present for compatibility with other operating
systems and applications. To remove the POSIX and OS/2 subsystems from the command line, proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
RMDIR /Q /S "%WINDIR%\System32\OS2"
DEL /F /Q "%WINDIR%\SYSTEM32\PSXDLL.DLL"
DEL /F /Q "%WINDIR%\SYSTEM32\PSXSS.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\POSIX.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\PSXSS.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\OS2.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\OS2SRV.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\OS2SS.EXE"

ECHO REGEDIT4 > C:\OS2.REG
ECHO [-HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
OS/2 Subsystem for NT] >>
C:\OS2.REG
REGEDIT /S C:\OS2.REG
DEL /F /Q C:\OS2.REG

Note The highlighted code above must be placed on one line.

Removing Administrative Shares

Administrative shares are hidden shares created by the system to allow administrators to access files remotely. Although these
shares are hidden, they are no secret to the savvy user and should be removed for maximum security. To remove administrative
shares, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
Set Drives = FSO.Drives

For Each Drive in Drives
 SHELL.Run "NET SHARE " & Drive & "\ /D", 0, False
 SHELL.Run "NET SHARE " & Drive & "\WINNT /D", 0, False
Next

Warning Certain programs use administrative shares and might not work if they are removed.

Related solution: Found on page:

Removing Shares 159

Locking Down Administrative Tools

Administrative tools, such as User Manager and REGEDT32, should be locked down for administrative access only. To lock down
various administrative tools, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Copy XCACLS.EXE from the Windows 2000 resource kit to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
XCACLS "%WINDIR%\POLEDIT.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\REGEDIT.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\CACLS.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\CLIPBRD.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\NCADMIN.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\NTBACKUP.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\REGEDT32.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\RASADMIN.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\RDISK.EXE" /G
Administrators:F;F /Y

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\SYSKEY.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\USRMGR.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\WINDISK.EXE" /G
Administrators:F;F /Y

Note The highlighted code above must be placed on one line. Although this script prevents an ordinary user from accessing
these tools, they could always bring them in and run them from an alternate source, such as a floppy disk.

Related solution: Found on page:

Modifying NTFS Permissions 157

Running Commands under Different Security Contexts

Every time someone logs on to the network with an administrator account, it creates a big security risk. Malicious ActiveX
components from the Web, Trojan horses, or even a hidden batch file can wipe out an entire server, database, and more when
run under administrative privileges. If you think about it, you don't really need administrative privileges when you are checking your
mail or surfing the Net. A common solution to this security problem is to log on with a regular user account and use a utility to run
trusted applications under the security context of an administrative account.

A security context specifies all the rights and privileges granted to a user. For administrators, this security context allows them to
manage users, groups, trusts, and domains. The process of switching to the security context of another user is known as
impersonation. Impersonation is mostly used by system services.

Using the RunAs Command
Windows 2000/XP/2003 includes the utility RUNAS.EXE, which allows users to run applications under the security context of a
different user. This utility is integrated into the Windows shell, which allows you to set up shortcuts to utilize the RUNAS utility. The
basic syntax of the RUNAS utility is:
RUNAS /commands program

Here, program is the shortcut, Control Panel applet, MMC console, or application to run. The available commands are:

/ENV-Keep the current environment

/NETONLY-Specifies for remote access only

/PROFILE-Loads the specified user's profile

/USER:username-Specifies the username to run application as. Valid name formats are domain\user or
user@domain

Note Once you have entered the command, you will be prompted for the password associated with the account.

To start an instance of User Manager using an administrator account called ADMIN@MYDOMAIN.COM, enter the following:
RUNAS /USERNAME:ADMIN@MYDOMAIN.COM USRMGR

Using the SECEDIT Utility

The SECEDIT.EXE utility is the command-line version of the Microsoft security configuration editor that allows you to run security
configuration and analysis from the command line.

Running a Security Analysis
The basic syntax to run an analysis using SECEDIT is as follows:
secedit /analyze /commands

Here, the available commands are:

/DB filename-Required, specifies the database to compare against

/CFG filename-Valid with /DB, specifies the security template to be imported

/LOG logpath-Specifies the log file to use

/VERBOSE-Specifies to include more detail to the log or output

/QUIET-Runs the analysis with no screen or log output

Here is an example to run a system analysis against the high security template for a domain controller:
Secedit /analyze /DB "%WINDIR%\Security\Database\hisecdc.sdb"
/CFG "%WINDIR%\Security\Templates\hisecdc.inf"
/LOG "%WINDIR%\Security\Logs\hisecdc.log" /VERBOSE

Note The code above must be placed on one line.

Reapplying a Group Policy
To reapply a local or user policy, start a command prompt and enter the following:
SECEDIT /REFRESHPOLICY policy/ENFORCE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SECEDIT /REFRESHPOLICY policy/ENFORCE

Here, /ENFORCE forces the policy to be reapplied, even if no security changes were found.

Note For Windows XP/2003, the GPUpdate command is the preferred method to reapply a group policy.

Applying a Security Template
The basic syntax to apply a security template using SECEDIT is as follows:
secedit /configure /commands

Here, the available commands are:

/AREAS name-Specifies the specific security areas to apply, where name is:

FILESTORE-Local file security

GROUP_MGMT-Group settings

REGKEYS-Local registry security

SECURITYPOLICY-Local or domain policy

SERVICES-Local services security

USER_RIGHTS-User's rights and privileges

/CFG filename-Valid with /DB; specifies the security template to be imported

/DB filename-Required; specifies the database containing the template to be applied

/OVERWRITE-Valid with /CFG; specifies to overwrite templates in the database

/LOG logpath-Specifies the log file to use

/VERBOSE-Specifies to include more detail to the log or output

/QUIET-Runs the analysis with no screen or log output

Fixing Security on a Windows NT to Windows 2000 Upgrade
When you upgrade from Windows NT to Windows 2000, the security settings on the system are not modified. This means none of
the intended Windows 2000 security settings are implemented. To apply the Windows 2000 basic security settings, start a
command prompt and enter the following:
Secedit /configure
/db "%WINDIR%\Security\Database\basicwk.sdb"
/cfg "%WINDIR%\Security\Templates\basicwk.inf"
/log "%WINDIR%\Security\Logs\basicwk.log"
/verbose

Note The code above must be placed on one line.

Exporting Security Settings
The basic syntax to export security settings using SECEDIT is as follows:

secedit /export /commands

Here, the available commands are:

/AREAS name-Specifies the specific security areas to export, where name is:

FILESTORE-Local file security

GROUP_MGMT-Group settings

REGKEYS-Local registry security

SECURITYPOLICY-Local or domain policy

SERVICES-Local services security

USER_RIGHTS-User's rights and privileges

/DB filename-Required; specifies the database containing the template to be exported

/CFG filename-Valid with /DB; specifies the security template to export to

/MERGEDPOLICY-Valid with /CFG; specifies to overwrite templates in the database

/LOG logpath-Specifies the log file to use

/VERBOSE-Specifies to include more detail to the log or output

/QUIET-Runs the analysis with no screen or log output

Here is an example of how to export the local registry security area to the registry template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Secedit /export /mergedpolicy
/db "%WINDIR%\Security\Database\security.sdb"
/cfg "%WINDIR%\Security\Templates\registry.inf"
/log "%WINDIR%\Security\Logs\registry.log"
/verbose

Using the NET ACCOUNTS Command

The built-in NET command has an ACCOUNTS parameter to modify the password and logon requirements for the local computer
or a specified domain. The basic syntax of the NET ACCOUNTS utility is:
NET ACCOUNTS /commands

Here, the available commands are:

/DOMAIN-If used, performs the specified operations on the primary domain controller of the current domain;
otherwise, performs the operations on the local computer.

/FORCELOGOFF:min-Sets the number of minutes before a user session is terminated where min is either the
number of minutes or NO to specify no forced logoff.

/MAXPWAGE:days-Specifies the maximum duration a password is valid where days is either the number of days
(1 through 49,710) or UNLIMITED to set no maximum time.

/MINPWAGE:days-Specifies the minimum duration before a user can change his or her password, where days is
either the number of days (1 through 49,710) or UNLIMITED to set no time limit. This value must be less than the
MAXPWAGE.

/MINPWLEN:length-Specifies the minimum password length.

/SYNC-Forces backup domain controllers to synchronize their password and logon requirements with those set on
the primary domain controller.

/UNIQUEPW:changes-Specifies that users cannot repeat the same password for the specified amount of
password changes (0 through 24).

For example, to modify the logon and password requirements using the NET ACCOUNTS command, you would enter the
following command:
NET ACCOUNTS /DOMAIN /MAXPWAGE:30 /MINPWAGE:UNLIMITED
/MINPWLEN:14

Note The highlighted code above must be placed on one line.

Tip When the administrator has specified a forced logoff, the user receives a warning that a domain controller will force a
logoff shortly.

Managing Security through ADSI

Active Directory Services Interfaces provides another medium to control security. In Chapter 9, you learned how to manage
shares, groups, and user accounts through ADSI. In the following section, you will learn how to manage security through ADSI.

Setting the Minimum Password Length
For maximum security, you should set your domain password minimum length to the maximum value, 14. To set the minimum
password length for the domain using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "MinPasswordLength", max
objDomain.SetInfo

Here, domain is the name of the domain, and max is the maximum password length to set. Again, you should set max equal to
14 for maximum security.

Setting the Password Age
For maximum security, you should implement a policy to force users to change their password regularly. To set the password age
for the domain using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next

Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "MinPasswordAge", Min * (60*60*24)
objDomain.Put "MaxPasswordAge", Max * (60*60*24)
objDomain.SetInfo

Here, domain is the name of the domain; min is the minimum duration in days before a user can change his or her password;
and max is the maximum duration in days a password is valid. The formula 60 x 60 x 24 is the calculation from seconds to days
(60 seconds x 60 minutes x 24 hours).

Setting Unique Password Changes
For maximum security, you should implement a policy to force users to select passwords different from their previous passwords.
To set the unique password duration for the domain using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "PasswordHistoryLength", min
objDomain.SetInfo

Here, domain is the name of the domain, and min is the minimum number of passwords used before a user can repeat that
previous password. The formula 60 x 60 x 24 is the calculation from seconds to days (60 seconds x 60 minutes x 24 hours).

Setting the Account Lockout Policy
For maximum security, you should implement a policy to lock out accounts after a certain number of bad attempts. To implement
an account lockout policy using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next

Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "MaxBadPasswordAllowed", Max
objDomain.SetInfo

Here, domain is the name of the domain. The formula 60 x 60 x 24 is the calculation from seconds to days (60 seconds x 60
minutes x 24 hours).

Searching for Locked-Out Accounts
It's good practice to regularly search the domain for locked-out accounts. To search for locked-out accounts using ADSI, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objDomain = GetObject("WinNT://Domain")

For Each Item in objDomain
 If Item.Class = "User" Then
 If Item.IsAccountLocked = "True" Then
 Wscript.Echo "Name: " & Item.Name & VBlf & _
 "Bad Password Attempts: " & _
 Item.BadPasswordAttempts & VBlf & _
 "Last Login: " & Item.LastLogin
 End If
 End If
Next

Here, domain is the name of the domain.

Related solution: Found on page:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlocking a User Account 219

Renaming the Administrator Account
Windows creates a default administrative account called "Administrator" to be the master account for that system. This account
cannot be deleted, but should be renamed to foil hackers attempting to gain access through this account. To rename the
administrator account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next

Set objDomain = GetObject("WinNT://Computer")
Set objUser = ObjDomain.GetObject("User", "Administrator")
objDomain.MoveHere objUser.AdsPath, Name

Here, computer is the name of the computer holding the account, and name is the new name to give the account.

Tip You can use this script to rename any account simply by replacing the word ADMINISTRATOR with the user account
name desired.

Searching for Unused Accounts
It's good practice to regularly search the domain for accounts that have either been logged on for a long duration of time or have
not logged on in a long time. To search for unused accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Days = amount
Set objDomain = GetObject("WinNT://Domain")

For Each Item in objDomain
 If Item.Class="User" Then
 DUR = DateDiff("D", Item.LastLogin, Date)
 If DUR > Days Then
 Wscript.Echo "Name: " & Item.Name & VBlf & _
 "Account Disabled: " & Item.AccountDisabled & VBlf & _
 "Last Login: " & Item.LastLogin & VBlf & _
 "Amount of days: " & DUR
 End If
 End If
Next

Here, domain is the name of the domain to search, and amount is the least number of days since the last logon.

Using the Microsoft Script Encoder

The Microsoft Script Encoder allows you to protect your scripts using a simple encoding scheme. This encoding scheme is not
intended to prevent advanced cracking techniques, but to merely make your scripts unreadable to the average user. The default
supported file types are asa, asp, cdx, htm, html, js, sct, and vbs. The basic syntax of the script encoder is as follows:
SCRENC inputfile outputfile

Here, inputfile is the file to encode and outputfile is the encoded result. Microsoft Script Encoder supports many command-line
parameters, as shown in Table 11.1.

Table 11.1: Microsoft Script Encoder parameters.

Parameter Description

/E extension Specifies a known extension for unrecognized input file types

/F Specifies to overwrite the input file with the encoded version

/L language Specifies to use the scripting language Jscript or VBScript

/S Specifies to work in silent mode

/X1 Specifies not to include to @language directive to ASP files

Warning Always back up your scripts before encoding them. Once a script is overwritten with an encoded version,
there is no way to return it to its original state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Security Scripts

Some of the scripts included in previous chapters can increase your system security. These scripts are shown in Table 11.2.

Table 11.2: Security scripts.

Chapter Script

Chapter 6 Disabling 8.3 File Naming

Chapter 6 Disabling the Lock Workstation Button

Chapter 6 Disabling the Change Password Button

Chapter 6 Disabling the Logoff Button

Chapter 6 Modifying the Registry with REGINI.EXE

Chapter 7 Managing NTFS Encryption

Chapter 7 Modifying NTFS Permissions

Chapter 9 Changing the Local Administrator Password

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 12: Logging and Alerting

In Brief
The purpose of logging is to record the status of an operation generated by the system or an application. Along with many scripts
and applications, Windows 2000/XP/2003 has a built-in method to log events and errors. Managing event logs across an
enterprise can become an involved process. Third-party utilities such as Dorian Software's Event Archiver allow you to read, write,
modify, and archive event logs and entries. Although these utilities are available at a modest price, this chapter will show you how
to access and control the event log through simple scripts, for free.

Logs provide a good method of recording events, but they are only as good as the time and frequency with which you check them.
Alerting is the method of notifying a user when an event occurs. In this chapter, you will learn the various methods to create alerts
to keep you informed of the many events that occur in your environment.

Inside The Event Log

Windows 2000/XP/2003 includes a built-in event-logging system known as the event log. Before an interaction with the event log
is performed, a request is sent to the Service Control Manager (SCM). SCM is controlled by
%WINDIR%\System32\SERVICES.EXE. When the system first boots up, the event log service is started and the event log files
are opened. Once the service receives the request, it processes it by storing or modifying an event in the proper event log.

Types of Logs
The event log is divided into three categories:

Application Log (AppEvent.Evt)-Stores application and system events, such as application errors

Security Log (SecEvent.Evt)-Stores audited security events, such as clearing the event log

System Log (SysEvent.Evt)-Stores operating-system-related events, such as creating a new user

These logs are stored in a proprietary binary format and reside in the %WINDIR%\System32\Config directory. Although all users
can view the application and system logs, only administrators can view and clear the security event log.

Note The event log files cannot merely be copied and opened on another system. When the system opens the event logs, it
modifies the file headers and doesn't reset the header until the file is closed. To copy the event log, use the Save Log
As option from the File menu of the Event Viewer.

The Event Viewer
The Event Viewer is a built-in Windows 2000/XP/2003 tool to easily view the three separate event log files (see Figure 12.1). The
Event Viewer executable (EVENTVWR.EXE) resides in the %WINDIR%\System32 directory. To start the Event Viewer, open
Administrative Tools and run the Event Viewer. From within the Event Viewer, you can view, delete, archive, or import an entire
event log or entry. The most common use of the event log is to troubleshoot system errors, such as service failures.

Figure 12.1: The Windows 2000 Event viewer.

Note The executable called EVENTVWR.EXE is actually just a pointer to the MMC snap-in EVENTVWR.MSC.

Event Log Entries
Event log entries consist of an event ID that categorizes the type of event, and an event description that is the actual error or
event text. The event type specifies the following classification of recorded events:

Error-Indicates critical errors and corruption of data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Failure Audit-Combined with auditing, indicates a failed security event, such as a bad password

Information-Indicates a successful operation, such as a successful driver load

Success Audit-Combined with auditing, indicates a successful security event, such as a successful logon

Warning-Indicates a non-critical warning, such as a failed attempt to obtain a browse list

Other items logged with each event are:

Computer-The name of the target computer

Date-Date the event was written

Source Type-The source of the event

Time-Time the event was written

User Name-The currently logged-on user

Event Log Etiquette
The event log is a logging system that stores critical and important system and application events. The original intent of this log
system was only for the system and applications to write events. Some systems might be set up to overwrite events or to crash
the system when the event log is full. Storing routine messages like "Logon script completed successfully" might overwrite critical
events or cause a system to crash because the event log is full.

Understanding NetBIOS

Logging provides a method to record events, and alerting provides a method to send event messages to users. A common
method of sending messages over a network is to use Network Basic Input Output System (NetBIOS). NetBIOS is a non-routable
interface that allows various types of computers to communicate over the local area network (LAN). NetBIOS was created by IBM
and Sytek during the mid-1980s and has since become an industry standard for network communication. Microsoft Windows
currently implements NetBIOS on the following protocols: NetBIOS Enhanced User Interface (NetBEUI), Internetwork Packet
Exchange/Sequenced Packet Exchange (IPX/SPX), and Transmission Control Protocol/Internet Protocol (TCP/IP).

Note A common use of NetBIOS is the Network Neighborhood.

NetBIOS Communication Modes
NetBIOS contains two modes of communication: session or datagram. Session mode establishes a reliable channel between two
systems, and uses error checking to ensure proper data transfer. Datagram mode is a one-way communication method that
transmits small messages without error checking. This type of communication is commonly referred to as connectionless
communication. A datagram is a container used to transmit data across a network.

Note The term datagram is interchangeable with the term packet.

Windows includes the ability to send command-line messages to other users or computers through NetBIOS using a utility called
NET.EXE. These messages are sent in datagrams to other NetBIOS computer or user names. NetBIOS messages have a
restricted size of 128 characters, whereas NetBIOS names are restricted to 15 characters (with a 16th hidden character used by
the operating system).

Tip Windows 2000/XP/2003 monitors these messages through the Messenger Service. If the system experiences errors
while transmitting or receiving NetBIOS messages, you should first check the Messenger Service.

Understanding MAPI

MAPI (Messaging Application Program Interface) is an interface that provides a standard method for applications to send email.
MAPI includes a standard set of functions, such as logging on, creating new messages, and reading messages, that developers
can call directly in their applications using C or C++. MAPI is a built-in part of Windows 2000/XP/2003. Simple MAPI is a slimmed-
down version of MAPI that can be accessed using C, C++, Visual Basic, or Visual Basic for Applications (VBA).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Using Logs with Shell Scripting

Currently, shell scripting contains no built-in methods to access the event log. Fortunately, you can create your own text logs or
use resource kit utilities to access the event log.

Writing to Text Logs
The simplest way to log events in shell scripting is to append text to a text log. The basic syntax to append text to a text log is as
follows:
Command >> textlog

Here, command is either an echoed statement or the output of a command, and textlog is the complete path and file name of the
log file. Here is a quick example to send a message to a log file called log.txt:
@Echo Off
Echo This is a test to log an event. >> log.txt

Tip To clear the log, simply delete the file (DEL textlog).

Related solution: Found on page:

Appending Text Files 57

Writing to Text Logs with the Date and Time
Recording the date and time within a log is essential to determine the exact moment of a particular event. To place the date and
time into an environment variable using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
For /F "Delims= Tokens=1" %%I in ('Date /T')
Do Set Dtime=%%I

For /F "Delims= Tokens=1" %%I in ('Time /T')
Do Set Dtime=%Dtime%%%I

Note The highlighted code above must be placed on one line.

To log an event using the date and time, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Copy the date time script above to a file called SETDTIME.BAT.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
Call setdtime.bat
Echo %Dtime% message >> textlog

Here, message is the alert message to log, and textlog is the complete path and file name of the log file.

Tip To clear the date and time variable (dtime), add the following line at the end of your entire script: SET %Dtime%=.

Using LOGEVENT to Write to the Event Log
LOGEVENT.EXE is a Windows 2000 resource kit utility to write events to the event log from the command line. The basic syntax
of LOGEVENT.EXE is as follows:
logevent -m \\computer -s
type -c category -r source -e id -t time "message"

Note The highlighted code above must be placed on one line.

Here, computer is the name of a remote system to connect to; source specifies the origin of the event; id indicates the entry ID
number (0-65535); category is the number for the desired category; message is the text to include in the entry; time is the
amount of seconds the system waits before an exit; and type specifies one of the following event types:

E-Error

F-Failure

I-Information

S-Success

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

W-Warning

Tip LogEvent will accept either the full name or the first letter of the event type. Example, you can specify -S ERROR or -S
E.

Here is an example of how to write an event to the event log:
logevent -S ERROR -C 3 -E 10 -R ShellScript "Some Event Text"

Using EVENTCREATE to Write to the Event Log
EVENTCREATE.EXE is a built-in Windows XP/2003 utility to write events to the event log from the command line. The basic
syntax of EVENTCREATE.EXE is as follows:
eventcreate /s computer /u domain\username /p password /t type /l
logname /so source /Id eventid /d "message"

Note The highlighted code above must be placed on one line.

Here, computer is the name of a remote system to connect to; domain\username and password specifies the credentials to use
when writing the event; source specifies the origin of the event; eventid indicates the entry ID number (0-65535); logname is the
name of the event log to write to; message is the text to include in the entry; and type specifies one of the following event types:

Error

Information

Warning

Here is an example of how to write an event to the event log:
eventcreate /t ERROR /l application /so SHELLSCRIPT /Id 10 /d
 "Some Event Text"

Using Dumpel to Back Up the Event Log
Dumpel is a Windows 2000 resource kit utility that allows you to back up an event log in text format from the command line. The
basic syntax for using Dumpel is as follows:
Dumpel -F textfile -L logtype commands

Here, textfile is the complete path and file name to back up the event log to; logtype is the type of log to back up (Application,
System, or Security); and commands are any of the following optional commands:

-D days-Displays only the last number of days specified where days must be larger than zero

-E ID-Displays only the specified event IDs where ID may be up to ten various event IDs

-M name-Displays only the events with the name specified

-R-Specifies to filter by sources of records

-S computer-Specifies the computer to connect to

-T-Separates values using tabs as opposed to spaces

To back up security log events from the past ten days using Dumpel, start a command prompt and enter the following:
Dumpel -F "C:\DUMP.TXT" -L "Security" -D 10

Using Logs with KiXtart

KiXtart provides several methods to write text logs and to access the event log. Through KiXtart, you can write to, back up, and
clear the event logs.

Writing to Text Logs
Text logs allow all users, regardless of operating system, to write, modify, and read logged events. To log an event to a text log
using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = Open(1, "textlog", 5)
$RCODE = WriteLine(1, @Date + " " + @Time
+ "message" + Chr(13) + Chr(10))
$RCODE = Close(1)

Note The highlighted code above must be placed on one line.

Here, message is the alert message to log, and textlog is the complete path and file name of the log file. Notice that the first line
opens and sets the text log to file number 1, the next line writes to file number 1, and then the final line closes file number 1. All
three steps are necessary to write to a text file. Failure to include the close statement will result in wasted memory space.

Tip To clear the log, simply delete the file (DEL textlog).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Related solution: Found on page:

Appending Text Files 57

Writing an Event to the Event Log
LogEvent is a KiXtart command that allows you to write entries to the event log. The basic syntax for using the LogEvent
command is as follows:
LOGEVENT (type, ID, event, computer, source)

Note All events are stored in the application log and cannot be redirected to the system or security logs.

Here, ID is the entry ID number to assign; event is the text event entry; computer is an optional parameter specifying the name of
a remote system to write events to; source specifies the event source; and type specifies one of the following event types:

0-SUCCESS

1-ERROR

2-WARNING

4-INFORMATION

8-AUDIT_SUCCESS

16-AUDIT_FAILURE

To write an event to the event log using KiXtart, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = LogEvent(0, 10, "This stuff is easy!",
"", "New Event")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error writing event"
EndIf

Note The highlighted code above must be placed on one line.

Backing Up the Event Log
BackUpEventLog is a KiXtart command that allows you to back up the event log in the standard event log binary format. The
basic syntax for using the BackUpEventLog command is as follows:
BackUpEventLog ("logtype", "textfile")

Here, logtype is the type of log to back up (Application, System, or Security), and textfile is the complete path and file name to
back up the event log to. To back up the security log to a file called Backup.evt using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = BackUpEventLog ("Security", "C:\BACKUP.EVT")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error backing up log"
EndIf

Clearing the Event Log
ClearEventLog is a KiXtart command that allows you to clear the contents of an event log. The basic syntax for using the
ClearEventLog command is as follows:
ClearEventLog ("logtype")

Tip You can clear the event log of a remote computer by including the UNC path before the log type, for example:
ClearEventLog ("\\computer\Security").

Here, logtype is the type of log to clear (Application, System, or Security). To clear the event log using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$RCODE = ClearEventLog ("Security")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error clearing the event log"
EndIf

Using Logs with Windows Script Host

Windows Script Host allows you to write events to a text log and the event log using simple script files. This allows you to store
critical events in the event log, while storing less severe events to a text log.

Note Windows Script Host does not contain any methods to read or modify events in the event log.

Writing to Text Logs
Text logs provide an easy way to record events and share the file with others, regardless of operating system. To log an event to a
text log using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")
txtlog = "textlog"

If FSO.FileExists(txtlog) Then
 Set LogFile = FSO.OpenTextFile(txtlog, 8)
Else
 Set LogFile = FSO.CreateTextFile(txtlog, True)
End If

LogFile.WriteLine Date & " " & Time & " message"
LogFile.Close

Here, message is the alert message to log, and textlog is the complete path and file name of the log file.

Related solution: Found on page:

Appending Text Files 57

Writing an Event to the Event Log
You can use Wscript.Shell's LogEvent method to write events to the event log. The basic syntax for using the LogEvent method
is as follows:
LogEvent(type,event,computer)

Note All events are stored in the application log, and cannot be redirected to the system or security logs.

Here, event is the text event entry; computer is an optional parameter specifying the name of a remote system to write events to;
and type specifies one of the following event types:

SUCCESS (0)

ERROR (1)

WARNING (2)

INFORMATION (4)

AUDIT_SUCCESS (8)

AUDIT_FAILURE (16)

Tip You can use the corresponding numbers, as opposed to key words, to specify event types.

When you use LogEvent to create an event log entry, the following is recorded:

Category-Logged as None

Computer-The name of the target computer

Date-Date the event was written

Event-Logged as 0

Source Type-Logged as WSH

Time-Time the event was written

Type-Type of event entry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User Name-Logged as N/A

Here is a subroutine to write an event:
Sub WriteLog(Ltype, Ldesc)
 On Error Resume Next
 Set SHELL = CreateObject("WScript.Shell")

LEvent = SHELL.LogEvent(Ltype, Ldesc)
 If Err.Number <> 0 Or LEvent = False Then
 Wscript.Echo "Error writing event"
 End If
End Sub

Note Because Windows 9x does not contain an event log, all written events will be stored in %WINDIR%\wsh.log.

Here, ltype is the type of event, and ldesc is the event text to write. Using the following command combined with the subroutine
above will write a success event to the event log:
WriteLog 0, "This stuff is cool!"

Accessing the Event Log Using WMI

The Win32_NTLogEvent class manages the event logs on Windows 2000/XP/2003 systems. Through this class, you can view,
write, modify, delete, and back up the event log through simple scripts.

Backing Up an Event Log in Binary Mode
The BackupEventLog method allows you to back up an event log to a file in standard event log binary format. To create a
backup of the event log in standard event log binary format using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")
LogType = InputBox("Enter the log to backup", "Log Type" ,
"application")

BFile = InputBox("Enter file to backup to", "Backup File" ,
"C:\BACKUP.LOG")
 If FSO.FileExists(BFile) Then
 FSO.DeleteFile BFile
 End If
Set EventLog = GetObject("winmgmts:{impersonationLevel=
impersonate,(Backup)}").ExecQuery("select * from
Win32_NTEventLogFile where LogfileName='" & LogType & "'")
For each Entry in EventLog
 Entry.BackupEventLog BFile
Next
Wscript.Echo "Done"

Note The highlighted code above must be placed on one line. The (Backup) privilege is explicitly included in the example
above to allow you to use the BackUpEventLog method.

Here, LogType is the event log to back up (application, security, or system), and Bfile is the complete path and filename to back
up to.

Backing Up the Entire Event Log in Text Mode
In the previous sections, you learned that the BackUpEventLog method and the Dumpel utility back up the event log to a text file
in binary format. Although this format conforms to the standard event log storage format, it does not allow you to easily view the
contents of the backup. To create a backup of the event log in plain-text, tabdelimited format using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set EventLog = GetObject("winmgmts:{impersonationLevel=
impersonate}").ExecQuery("select * from Win32_NTLogEvent")

Set FSO = CreateObject("Scripting.FileSystemObject")
Set txt = FSO.CreateTextFile("textfile", True)
For each Entry in EventLog
 If Len(Entry.Message) > 0 Then
 For x = 1 to Len(Entry.Message)
 Char = Mid(Entry.Message,x,1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Char = Mid(Entry.Message,x,1)
 If Asc(Char) = 10 Then
 MSG = MSG & " "
 ElseIf Asc(Char) <> 13 Then
 MSG = MSG & Char
 End If
 Next
 EDate = Mid(Entry.TimeGenerated,5,2) & "/" & _
 Mid(Entry.TimeGenerated,7,2) & "/" & _
 Mid(Entry.TimeGenerated,1,4)
 ETime = Mid(Entry.TimeGenerated,9,2) & ":" & _
 Mid(Entry.TimeGenerated,11,2) & ":" & _
 Mid(Entry.TimeGenerated,13,2)
 ETime = FormatDateTime(ETime,3)

 IfIsNull(Entry.User) Then
 User = "N/A"
 Else
 User = Entry.User
 End If

 IfIsNull(Entry.CategoryString) Then
 Category = "none"
 Else
 Category =Entry.CategoryString
 End If

 EVT = Entry.LogFile & VBtab & _
 Entry.Type & VBtab & _
 EDate & VBtab & _
 ETime & VBtab & _
 Entry.SourceName & VBtab & _
 Category & VBtab & _
 Entry.EventCode & VBtab & _
 User & VBtab & _
 Entry.ComputerName & VBtab & _
 MSG
 txt.writeline EVT

 EVT = Null
 Char = Null
 MSG = Null
 End If
Next
txt.close
Wscript.echo "Done"

Note The highlighted code above must be placed on one line.

Here, textfile is the complete path and file name to back up the event log to.

Clearing an Event Log
The ClearEventLog method allows you to clear individual event log entries. To clear the entire contents of an event log using
WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
LogType = InputBox("Enter the log to clear", "Clear Log"
, "application")

Set EventLog = GetObject("winmgmts:{impersonationLevel=
impersonate}").ExecQuery("select * from
Win32_NTEventLogFile where LogfileName='" & LogType & "'")
For each Entry in EventLog
 Entry.ClearEventlog()
Next
Wscript.Echo "Done"

Note The highlighted code above must be placed on one line.

Here, LogType is the event log to clear (Application, Security, or System).

Sending Alerts Using Shell Scripting

Shell scripting does not include a method to send alerts from the command line. Microsoft Windows includes the NET.EXE utility
to allow you to send messages to users or computers over the network.

Sending Alerts to a Single User or Computer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To send a message over the network, start a command prompt and enter the following:

NET SEND name message

Note NetBIOS messages have a maximum limit of 128 characters.

Here, message is the message to send, and name is the NetBIOS name of a computer or user ID.

Sending Alerts to Multiple Users and Computers
You can also use the asterisk symbol (*) to send messages to all computers on the local network:
Net Send * message

Here, message is the message to send. As opposed to specifying a name or asterisk, you can use one of the following
commands to send messages to multiple users or computers:

/DOMAIN-Sends a message to the local domain

/DOMAIN:name-Sends a message to a specified domain

/USERS-Sends messages to users connected to the server

Here is an example to send a message to the JESSEWEB domain:
Net Send /DOMAIN:JESSEWEB message

Note Sending messages to the entire network or domain will not only utilize a good portion of your network's bandwidth but it
is also annoying to all the other users.

Sending Alerts to Specific Multiple Users and Computers
Although the Net Send command contains methods to send messages to multiple users, it does not contain a method to send
messages to specific user and computer names. To send an alert to an exact list of user or computer names using shell scripting,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

@Echo Off
For /F %%N in (textfile) Do (Echo Sending Message to
%%N... & Net Send %%N Message)

Note The highlighted code above must be placed on one line.

Here, textfile is the name of a text file with each line containing a user or computer name, and message is the message to send.

Sending Alerts Using KiXtart

KiXtart includes a command called SendMessage that allows you to send NetBIOS messages to users or computers over the
network. This command transports messages in a similar fashion to the Microsoft NET.EXE utility.

Sending Alerts to a Single User or Computer
To send an alert to a single user using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = SENDMESSAGE ("name", "message")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error sending message"
EndIf

Here, name is the user or computer name to send a message to.

Sending Alerts to Multiple Users or Computers
To send an alert to multiple users using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$COUNT = 4 ; User Array Count
DIM $NAME[$COUNT] ; User Array
$NAME[0] = "name1"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$NAME[0] = "name1"
$NAME[1] = "computer1"
$NAME[2] = "computer2"
$NAME[3] = "name2"

$NETMESSAGE = "This is a test message."

$Index = 0
WHILE $Index <> $COUNT
 $RCODE = SENDMESSAGE ($NAME[$Index], $NETMESSAGE)
 If @ERROR <> 0 or $RCODE <> 0
 ? "Error sending message"
 EndIf
 $Index = $Index + 1
LOOP

Here, $count is the size of the array. This is the number of users you want to send messages to. This number must exactly match
the number of users that you send messages to, or an error will result. $name is the array that holds the user or computer names
to send messages to, and $netmessage is the message to send.

Note The array size is limited to the amount of memory the system has. Remember, the contents of an array start at 0, not
at 1. Using versions older than KiXtart 3.62 will cause a script error when attempting to create an array.

Sending Alerts Using Windows Script Host

Windows Script Host does not include any methods to send messages to users or computers. Through Windows Script Host, you
can call upon the NET.EXE utility or use automation to send messages.

Sending an Alert to a Single User or Computer
To send an alert to a single user or computer using WSH, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Shell = CreateObject("Wscript.Shell")

RCV = "name"
MSG = "message"

SHELL.Run "Net Send " & Name & " " & MSG, 0, False

Here, RCV is the user or computer name to send a message to, and MSG is the message to send.

Sending Alerts to Multiple Users or Computers
To send an alert to multiple user or computer names using WSH, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Shell = CreateObject("Wscript.Shell")

Dim Name(2)
Name(0) = "name1"
Name(1) = "name2"

MSG = "message"

For X = 0 to UBound(Name)
 SHELL.Run "Net Send " & Name(X) & " " & MSG, 0, False
Next

Here, Name is the array that holds the user or computer names to send messages to. The size of this array should be equal to the
number of users or computers you want to send messages to. MSG is the message to send.

Sending an Email Using Outlook Automation
To send an email using Outlook automation, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"
SUB = "subject"
MSG = "message"

Set Outlook = CreateObject("Outlook.Application")
Set MAPI = Outlook.GetNameSpace("MAPI")
Set NewMail = Outlook.CreateItem(0)
NewMail.Subject = SUB
NewMail.Body = MSG
NewMail.Recipients.Add RCP

MAPI.Logon "profile", "password"
NewMail.Send
MAPI.Logoff

Here, RCP stores the email address to email; SUB is the email subject; MSG is the message to send; and profile and
password are the logon credentials to send the email.

Tip You can omit the highlighted lines above if you do not need to log on to a mail server or if your information is cached.

Sending an Email with Attachments Using Outlook Automation
To send an email to multiple users with attachments using Outlook, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"

Dim File(2)
File(0) = "file1"
File(1) = "file2"

SUB = "subject"
MSG = "message"

Set Outlook = CreateObject("Outlook.Application")
Set MAPI = Outlook.GetNameSpace("MAPI")
Set NewMail = Outlook.CreateItem(0)
NewMail.Subject = SUB
NewMail.Body = MSG
NewMail.Recipients.Add RCP

For X = 0 to (UBound(File)-1)
 NewMail.Attachments.Add(file(X))
Next

MAPI.Logon "profile", "password"
NewMail.Send
MAPI.Logoff

Here, file is the array that holds the file names to attach to the message; RCP stores the email address to email; SUB is the
email subject; MSG is the message to send; and profile and password are the logon credentials to send the email.

Tip You can omit the highlighted lines above if you do not need to log on to a mail server or if your information is cached.

Sending Emails and Attachments to Multiple Recipients Using Outlook Automation
To send an email to multiple users with attachments using Outlook, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Dim Name(2)
Name(0) = "emailaddress1"
Name(1) = "emailaddress2"

Dim File(2)
File(0) = "file1"
File(1) = "file2"

SUB = "subject"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SUB = "subject"
MSG = "message"

Set Outlook = CreateObject("Outlook.Application")
Set MAPI = Outlook.GetNameSpace("MAPI")
Set NewMail = Outlook.CreateItem(0)
NewMail.Subject = SUB
NewMail.Body = MSG

For X = 0 to (UBound(Name)-1)
 NewMail.Recipients.Add Name(X)
Next

For X = 0 to (UBound(File)-1)
 NewMail.Attachments.Add(file(X))
Next

MAPI.Logon "profile", "password"
NewMail.Send
MAPI.Logoff

Here, name is the array that holds the email addresses to email; file is the array that holds the file names to attach to the
message;

SUB is the email subject; MSG is the message to send; and profile and password are the logon credentials to send the email.

Tip You can omit the highlighted lines above if you do not need to log on to a mail server or if your information is cached.

Sending an Email Using CDOSYS
Collaboration Data Objects for Windows (CDOSYS) is a built-in messaging object library (CDOSYS.dll) which allows developers
and scripters to send email on Windows 2000/XP/2003 without having Outlook or any other email client installed. To send an
email using CDOSYS, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"
FROM = "myemailaddress"
SUB = "subject"
MSG= "message"

Set NewMail = CreateObject("CDO.Message")
NewMail.Subject = SUB
NewMail.Sender = FROM
NewMail.To = RCP
NewMail.TextBody = MSG

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusing") = 2

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/smtpserver") =
"mailserver"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/authenticate") = 1
NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusername") =
"username"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendpassword") =
"password"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration
smtpconnectiontimeout") = 60

NewMail.Configuration.Fields.Update

NewMail.Send

Note The highlighted code above must be placed on one line.

Here, FROM stores the email address of the sender; RCP stores the email address to email; SUB is the email subject; MSG is
the message to send; mailserver is the name or IP address of your email server; and username and password are the logon
credentials to send the email.

Sending an Email with Attachment Using CDOSYS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To send an email with attachment using CDOSYS, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"
FROM = "myemailaddress"
SUB = "subject"
MSG= "message"
ATCH="attachmentfilepath"

Set NewMail = CreateObject("CDO.Message")
NewMail.Subject = SUB
NewMail.Sender = FROM
NewMail.To = RCP

NewMail.TextBody = MSG
NewMail.AddAttachment = ATCH

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusing") = 2

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/smtpserver") =
"mailserver"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/authenticate") = 1

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusername") =
"username"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendpassword") =
"password"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration
smtpconnectiontimeout") = 60
NewMail.Configuration.Fields.Update

NewMail.Send

Note The highlighted code above must be placed on one line.

Here, FROM stores the email address of the sender; RCP stores the email address to email; SUB is the email subject; MSG is
the message to send; ATCH stores the file path of the attachment to send; mailserver is the name or IP address of your email
server; and username and password are the logon credentials to send the email.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 13: Logon Scripts

In Brief
A logon script is a script that runs automatically each time a user logs on to the network. This script can contain various
commands or programs that process on the local station, such as mapping printers or updating the local system time. In this
chapter, you will learn how to create logon scripts to easily standardize and update your environment automatically.

Tip Although this chapter discusses tasks specifically geared toward logon scripts, you can use any of the scripts within this
book in a logon script.

Common Logon Script Tasks

The difference between a regular script and a logon script is that a logon script performs its functions when the user logs on.
Logon scripts are not limited in functionality, but actually contain the same functionality as any other script. Although logon scripts
can perform many different tasks, several tasks are commonly performed in logon scripts:

Synchronize the local time

Manage network printers and drives

Update drivers or settings

Access or modify the registry

Perform hardware or software inventory

Set or modify environment variables

Update antivirus files

Synchronizing the Local Time
Time synchronization is essential when planning to perform enterprise-wide tasks simultaneously, such as remote updates.
Windows 2000/XP/2003 uses a service called time synchronization to update the local system time with that of a network time
source. A time source is any object providing the time to another object.

Time Source Hierarchy

Time synchronization is performed in a hierarchal format (see Figure 13.1). At the top of the hierarchy is the top-level time source
that contains the accurate, universal time, such as the Atomic Clock. Primary time sources, usually a domain controller,
synchronize their local time with the top-level time source. Below the primary time sources aresecondary time sources and clients.
Secondary time sources are basically backup primary time sources that obtain their time from a primary time source. Secondary
time sources are typically resource domain controllers that obtain their time from the master domain. Underneath the time sources
are the clients that synchronize their local time with a secondary or primary time source

Figure 13.1: The time synchronization hierarchy.

Environment Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Environment variables are basically keyword shortcuts that the system and users use to easily access files, directories, and
values. You can use these variables in your logon scripts to easily identify the operating system, computer name, domain name,
and more. Generally there are two types of environment variables: user and system. User environment variables are set per user,
whereas system environment variables are set to the system level and affect all users who log on to the system. These variables
are called static variables and are actually stored as registry entries: HKEY_CURRENT_USER\ Environment for user variables
and HKEY_LOCAL_MACHINE\ System\CurrentControlSet\Control\Session Manager\Environment for system variables. Dynamic
variables, created by the SET command, are stored in memory and are applicable for the current command prompt session. Table
13.1 is a list of common environment variables.

Table 13.1: Registry data types.

Variable Name Description

ComputerName Specifies the name of the local system

HomeDrive Specifies the drive letter to map the user's home directory

HomePath Specifies the local path to the user's home directory

HomeShare Specifies the share path to the user's home directory

OS Specifies the operating system

UserDomain Specifies the name of the domain the user is currently logged on to

UserName Specifies the user ID of the currently logged on user

WinDir Specifies the directory where the operating system is installed

Tip To see the current environment variables from the command prompt, enter SET

Norton Antivirus
Although most antivirus products include auto-updating features, updating antivirus files through a logon script provides a backup
mechanism to ensure your clients are always up to date. Norton Antivirus is an advanced antivirus utility from Symantec
(http://www.symantec.com), designed for both home and corporate use. This utility's antivirus signature files can be easily updated
with an executable called Intelligent Updater. This executable supports the following command-line switches:

/EXTRACT location-Extracts files from the executable to the location specified

/Q-Undocumented switch, specifies to install the update silently

/TEMP=path-Specifies the temporary directory to use

McAfee VirusScan
McAfee VirusScan is a popular antivirus utility from NAI (http://www.nai.com), for both home and corporate use. NAI releases
updates to their antivirus engine and signature files (.DAT extension) in a self-extracting executable (for example, sdat9999.exe)
called SuperDAT. They also release a version of the SuperDAT without the engine update (for example, 9999xdat.exe) to reduce
the size of the update file and to supply updated signature files simply. These files provide an easy way to update antivirus
software because they first stop running antivirus services, update the antivirus files, and then restart the antivirus services.

The two executables just described support the following command line switches:

/E location-Extracts files from the executable to the specified location

/F-Forces an updating of existing files

/LOGFILE textfile-Logs the status to a text file

/PROMPT-Displays a prompt dialog before reboot

/REBOOT-Reboots if necessary

/SILENT-Runs the executable in silent mode, with no prompting

/V-Displays information about the executable

The Windows 2000/2003 Logon Process

The logon sequence is initiated on a Windows 2000/2003 machine when the user enters the secure command sequence (SCS),
better known as Ctrl+Alt+Del. After the user enters the username and password, the Kerberos client encrypts the password
through a one-way function (OWF) using the DES-CBC-MD5 algorithm (Data Encryption Standard Cipher Block Channel Message
Digest 5). The client then converts the password to an encryption key.

The Kerberos client then sends the encryption key, username, a time stamp, and the authentication request to the Key
Distribution Center (KDC), which is a service running on the authenticating server. The user name is then checked for a valid
name stored in the active directory database, the password is verified, and the time stamp is checked to ensure the request is not
old or falsified.

Once the user account has been validated, the KDC then sends back a Kerberos authentication response. This response is called
a ticket granting number (TGT) and includes an encrypted copy of the KDC's encryption key. The client finally stores this ticket
into memory and is allowed into the domain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Replication

Replication helps to easily distribute logon scripts to all your servers based on a regular schedule. The purpose of replication is to
synchronize the contents of one file location with the contents of another. Replication is a service that performs one-way transfers,
ensuring that all child locations are synchronized with the parent location. This synchronization includes file additions,
modifications, and deletions.

Note The master replication server replicates files to itself, from the export to the import directory.

File Replication Service
Windows 2000 uses the file replication service (FRS) to perform file replication. FRS is a replication service that is used to
replicate system policies and logon scripts to the System Volume directory (SYSVOL). FRS can be used to replicate files in
addition to policies and logon scripts. The FRS synchronizes immediately within sites and synchronizes on a schedule between
sites. File replication service is a robust replication service that works well for all types of data files.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Creating Logon Scripts with Shell Scripting

Shell scripting is the original source of logon scripting for Windows. Although it may lack some of the more complex features of
other scripting languages, its main advantage is compatibility. Unlike KiXtart or Windows Script Host, shell scripting does not
require any installed client files to run (other than the operating system). Shell scripting provides a simple, logon script solution for
quick and easy deployment.

Setting the Window Title
Windows 2000/XP/2003 supports the title command to change the title of a shell prompt window. The basic syntax of the title
command is as follows:
Title name

Here, name is the name to give the current command-prompt window. Here is an example to change the shell prompt title to
"Logon Script":
If "%OS%"=="Windows_NT" Title Logon Script

Here, %OS% is an environment variable that indicates the operating system type.

Changing the Background and Foreground Colors
Windows 2000/XP/2003 supports the color command to change the background and foreground in a shell prompt. The basic
syntax of the color command is as follows:
COLOR BF

Here, B is the background color value and F is the foreground color value. The color command supports the following color
values:

0-Black

1-Blue

2-Green

3-Aqua

4-Red

5-Purple

6-Yellow

7-White

8-Gray

9-Light Blue

A-Light Green

B-Light Aqua

C-Light Red

D-Light Purple

E-Light Yellow

F-Bright White

Here is an example to change the shell prompt colors to bright white text on a blue background:
IF "%OS%"= ="Windows_NT" COLOR 1F

Here, %OS% is an environment variable that indicates the operating system type.

Synchronizing the Local System Time
Synchronizing the local system to a central time source allows you to perform enterprise-wide tasks simultaneously. The basic
syntax to synchronize the local clock with a specified time source is as follows:
Net Time \\server/commands

Here, \\server is the name of the time source server to sync with. This parameter is only necessary when syncing with a specific
server. If this parameter is omitted (Net Time), the system will search the local domain for a time source server. /commands are
any of the following parameters:

/SET-Sets the local time to the time source server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/Y-Forces to sync the time with the server specified, regardless of whether the server is a time source server or not

/DOMAIN:domainname-Searches the specified domain for a time source server

The following script attempts to sync the local system time with the server named servername. If this fails, the domain will be
searched for a time source to sync with. To execute this script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS ; Clears the screen
Set TServer=ServerName

Echo Syncing the time with %TServer%...
Net Time \\%TServer% /set /yes
If %errorlevel% NEQ 0 CLS && Goto Domain
CLS && Echo Sync Successful
Goto End

:Domain
Echo Searching the local domain for a time-server...
Net Time /set /yes
If %errorlevel% EQU 0 CLS && Echo Sync Successful && Goto End
CLS && Echo Time Sync Error

:End

Here, tserver is a variable containing the name of the time source server; NEQ is the "not equal to" operator; and && allows you
to run a second command after the first has completed.

Mapping Universal Drives
Mapping common drives for all users allows you to present a central resource location for applications or data. In Chapter 8, you
learned how to map network drives from within Windows and the command prompt. To map a network drive and display the
status from the command prompt, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS ; Clears the screen
Set Drive=DriveLetter
Set Share=\\server\sharename

Echo Mapping drive %Drive% to %Share%
Net Use %Drive%: /Delete && CLS
Net Use %Drive%: %Share%
If %errorlevel% EQU 0 CLS && Echo Map Successful && Goto End
CLS && Echo Error mapping drive %Drive% to %Share%

:End

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Mapping Drives by Group
Mapping drives by group membership allows you to control which drives and resources will be available to which users. The
resource kit utility IfMember allows you to determine a user's group membership from the command line. The basic syntax of the
IfMember utility is as follows:
IfMember /Commands Groups

Here, Groups are any group, separated by spaces, whose membership you want to check. An errorlevel of 1 indicates the user is
a member of the specified group. The available commands are as follows:

/List-Lists all groups the user belongs to

/Verbose-Displays all group matches

To map a network drive according to group membership and display the status from the command prompt, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS ; Clears the screen
Fullpath\IfMember GroupName > Nul

If Not %errorlevel% EQU 1 Goto End
Set Drive=DriveLetter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Drive=DriveLetter
Set Share=\\server\sharename

Echo Mapping drive %Drive% to %Share%
Net Use %Drive%: /Delete && CLS
Net Use %Drive%: %Share%
If %errorlevel% EQU 0 CLS && Echo Map Successful && Goto End
CLS && Echo Error mapping drive %Drive% to %Share%

:End

Here, fullpath is the full path where the IfMember utility is located; GroupName is the name of the group to check membership;
driveletter is the drive letter to map a share to; NEQ is the "not equal to" operator; EQU is the "equal to" operator; server
contains the sharename you want to map to; and && allows you to run a second command after the first has completed.

Mapping Printers Using Con2PRT
Mapping printers through a logon script provides an easy method to remotely update printer connections. Con2PRT (Connect To
Port) is a Windows 2000 Resource Kit utility used to control printer connections from the command line. The basic syntax of the
con2PRT utility is as follows:
Con2prt /commands \\server\printer

Here, server is the name of the printer server containing the shared printer to map. The available commands are:

/F-Removes all printer connections

/C-Connects to the printer specified

/CD-Connects to the printer specified and marks it as the default printer

To remove all current printer connections and map a default printer using con2PRT, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Set Pserver=server
Set DPrinter=Printer
fullpath\con2prt /F
fullpath\con2prt /CD \\%server%\%printer%

Here, pserver is the variable holding the printer server name; dprinter is the variable holding the name of the printer share; and
fullpath is the full path where con2prt is located.

Adding Printers Using the PrintUI DLL
Windows 2000/XP/2003 includes the PrintUI.dll to add and remove printers from the command line. To use the PrintUI.dll, you
must call the PrintUIEntry function through the rundll32 command. To add a default printer using the PrintUI DLL, start a
command prompt and enter the following:
rundll32 printui.dll,PrintUIEntry /in /y /n \\pserver\dprinter

Here, pserver is the name of the print server and dprinter is name of the printer share.

Checking for Remote Access
Determining whether a client is logging in through the network or remote access helps you specify which parts of the script to run.
CheckRAS is a command-line, SMS resource kit utility to determine whether a user is using remote access. To determine whether
the current user is using remote access during a logon script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:

@Echo Off
CLS ; Clears the screen
Set RAS=NO
fullpath\CheckRAS > Nul
If %errorlevel% EQU 1 Set RAS=YES

Here, fullpath is the full path where the CheckRAS utility is located, and RAS indicates whether the current user is using remote
access or not.

Displaying Time-Based Greetings
Although it's not essential, many administrators like to display a greeting to the user depending on the time of day. To display a
time-based greeting from the command line, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@Echo Off
CLS
For /F "Delims=: Tokens=1" %%I in ('Time /T') Do Set Hour=%%I
For /F "Delims=: Tokens=2" %%I in ('Time /T') Do Set Min=%%I
For /F "Delims=0,1,2,3,4,5,6,7,8,9 Tokens=2" %%I in
('Set Min') Do Set AP=%%I

If %AP% EQU p Goto PM
Set Greet=Good Morning
Goto End

:PM
If %Hour% EQU 12 Set Hour=0
If %Hour% LSS 12 Set Greet=Good Evening
If %Hour% LSS 6 Set Greet=Good Afternoon

:End
Echo %Greet%
Set Hour=
Set Min=
Set AP=

Note The highlighted code above should be placed on one line.

Here, the Time /T command indicates the local system time.

Updating McAfee Antivirus Files
To update your McAfee antivirus engine and/or signature files with shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS
Set SDAT="superdat"
Set DAT="datfile"
Set NAILOG="textlog"
Set DDAY="DOTW"

For /F "Tokens=1" %%I in ('Date /T') Do Set Day=%%I

If %DAY% EQU %DDAY% Goto UENGINE
%DAT% /F /PROMPT /REBOOT /SILENT /LOGFILE
%NAILOG%
GOTO END

:UENGINE
%SDAT% /F /PROMPT /REBOOT /SILENT /LOGFILE %NAILOG%
GOTO END

:END
Set SDAT=
Set DAT=
Set NAILOG=
Set DAY=

Here, SDAT is a variable containing the complete path and file name of the SuperDAT executable; DAT is a variable containing
the complete path and file name of the DAT executable; NAILOG is a variable containing the complete path and file name of the
status log text file; and DDAY is the day of the week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) to run the SuperDAT as opposed to the
daily DAT file.

Updating Norton Antivirus Files
To update your Norton antivirus files with shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest Intelligent Updater file from http://www.symantec.com to the new directory.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Set IUPDATER=iufile

%IUPDATER% /Q > Nul

Here, IUPDATER is a variable containing the complete path and file name of the Intelligent Updater executable.

Creating Logon Scripts with KiXtart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

KiXtart is a powerful scripting tool primarily focused and used for logon scripts. KiXtart contains many built-in methods and macros
to retrieve quick information; other scripting languages would require external tools or extensive scripting to retrieve the same
information.

Setting Up the Environment
When creating a logon script, it is important to make sure the script looks and feels as it was intended. KiXtart includes several
commands to customize the logon script environment. To set up a customized logon script environment using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
CLS ; Clear screen
BREAK OFF ; Logoff user when attempt to close logon box
$RCODE= SETCONSOLE("ALWAYSONTOP") ; Set box on top
$RCODE = SETASCII("ON") ; Turn on ASCII characters

This script first clears the screen (CLS) and sets the logon script box to log off the current user if he/she attempts to close the box.
The logon script box is then set to be on top of all other windows. The final command turns on ASCII characters. This is a new
feature included with KiXtart 3.62 and higher that allows you to change the look of text by turning ASCII on or off.

Changing the Background and Foreground Colors
KiXtart supports the color command to change the background and foreground in a shell prompt. The basic syntax of the color
command is as follows:
COLOR Fx/By

Here, F is the foreground color value, x is an optional indicator to increase the color intensity if a plus sign (+) is specified, B is the
background color value, and y is an optional indicator that causes the background to blink if a plus sign (+) is specified. The color
command supports the following color values:

N-Black

B-Blue

G-Green

C-Cyan

R-Red

M-Magenta

Y-Yellow/Brown

W-White

Here is an example to change the shell prompt colors to bright white text on a blue background:
COLOR W+/B

Synchronizing the Local System Time
Synchronizing the local system to a central time source allows you to perform enterprise-wide tasks simultaneously. KiXtart
includes the SetTime command to synchronize the local system time to a time source. The basic syntax of the SetTime command
is as follows:
SetTime source

Here, source is any one of the following types:

\\Server-Specifies the name of a time source server

DomainName-Searches the specified domain for a time source

"*"-Specifies to search the local domain for a time source

The following script attempts to sync the local system time with the logon server. If this fails, the domain will be searched for a
time source to sync with. To execute this script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

? "Syncing the time with @LSERVER..."
SETTIME "@LSERVER"
If @ERROR <> 0
 ? "Searching the local domain for a time-server..."
 SETTIME "*"
 If @ERROR <> 0
 ? "Time Sync Error"
 Else
 ? "Sync Successful"
 EndIf
EndIf

Mapping Universal Drives
Mapping common drives for all users allows you to present a central resource location for applications or data. In Chapter 8, you
learned how to map network drives from within Windows and the command prompt. KiXtart includes the use command, similar to
the Net Use command, to attach a drive letter to a network share. To map a network drive and display the status using KiXtart,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Drive="DriveLetter"
$Share="\\server\sharename"

? " Mapping drive $Drive to $Share"
Use " $Drive: " /Delete
Use " $Drive: " $Share
If @Error = 0
 ? " Map Successful"
Else
 ? " Error mapping drive $Drive to $Share"
EndIf

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Mapping Drives by Group
Mapping drives by group membership allows you to control which drives and resources will be available to which users. KiXtart
includes the InGroup command, similar to the IfMember resource kit utility, to determine group membership. To map a network
drive according to group membership and display the status using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Drive="DriveLetter"
$Share="\\server\sharename"

If InGroup("GroupName")
 ? "Mapping drive $Drive to $Share"
 Use "$Drive: "/Delete
 Use "$Drive: "$Share
 If @Error = 0
 ? "Map Successful"
 Else
 ? "Error mapping drive $Drive to $Share"
 EndIf
EndIf

Here, GroupName is the name of the group to check membership; driveletter is the drive letter to map a share to; and server
contains the sharename you want to map to.

Mapping Printers
Mapping printers through a logon script provides an easy method to remotely update printer connections. KiXtart contains several
commands to add, remove, and set default printers. To map a printer using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Pserver="Server"
$DPrinter="Printer"

If AddPrinterConnection("\\$PServer\$DPrinter") = 0
 ? "Added printer $DPrinter"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ? "Added printer $DPrinter"
Else
 ? "Error adding $DPrinter"
EndIf

Here, pserver is the variable holding the printer server name, and dprinter is the variable holding the name of the printer share.

Checking for Remote Access
Determining whether a client is logging in through the network or remote access helps you specify which parts of the script to run.
KiXtart includes the @RAS macro to the number of remote access connections. To determine whether a user is logging on
through remote access using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
If @RAS = 0
 ? " You are logging in through the local network. "
Else
 ? "You are logging on through remote access"
EndIf

Displaying Time-Based Greetings
Although it's not essential, many administrators like to display a greeting to the user depending on the time of day. To display a
time-based greeting using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
SELECT
 CASE ((@TIME > "00:00:00") AND (@TIME < "12:00:00"))
 ? "Good Morning @FULLNAME"
 CASE ((@TIME > "12:00:00") AND (@TIME < "18:00:00"))
 ? "Good Afternoon @FULLNAME"
 CASE 1
 ? "Good Evening @FULLNAME"
ENDSELECT

Here, the @TIME macro indicates the current time, and @FULLNAME indicates the full name of the current user.

Updating McAfee Antivirus Files
To update your McAfee antivirus engine and/or signature files with KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$SDAT="superdat"
$DAT="datfile"
$NAILOG="textlog"
$DDAY="DOTW"

If @DAY = $DDAY
 SHELL "%COMSPEC% /C $SDAT /F /PROMPT /REBOOT /SILENT
 /LOGFILE $NAILOG"
Else
 SHELL "%COMSPEC% /C $DAT /F /PROMPT /REBOOT /SILENT
 /LOGFILE $NAILOG"
EndIf

Here, SDAT is a variable containing the complete path and file name of the SuperDAT executable; DAT is a variable containing
the complete path and file name of the DAT executable; NAILOG is a variable containing the complete path and file name of the
status log text file; and DDAY is the day of the week (Monday-Sunday) to run the SuperDAT as opposed to the daily DAT file.

Updating Norton Antivirus Files
To update your Norton antivirus files with KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest Intelligent Updater file from http://www.symantec.com to the new directory.

3. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

4. Select Start|Run and enter "kix32 scriptfile."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$IUPDATER = "iufile"
SHELL "%COMSPEC% /C $IUPDATER /Q"

Here, IUPDATER is a variable containing the complete path and file name of the Intelligent Updater executable.

Creating Logon Scripts with Windows Script Host

Windows Script Host is a relatively new scripting language and is rather limited with logon scripts. Although you can call external
functions or custom COM objects to perform specific logon script tasks, WSH does not contain many of the standard logon script
functions other scripting languages may have, such as a time synchronization command.

Synchronizing the Local System Time
Windows Script Host does not have a time synchronization command to sync the local system time with a network time source.
You can use the shell run command to call external commands, such as the Net Time command, and use a return variable to
indicate whether the command was successful. The following script attempts to sync the local system time with the server named
servername using the Net Time command. If this synchronization fails, the domain will be searched for a time source to sync
with. To execute this script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
TServer="ServerName"

Wscript.Echo "Syncing the time with " & TServer & "..."
ELevel = Shell.Run("Net Time \\" & TServer &
" /Set /Yes",0,True)

If (ELevel <> 0) Then
 Wscript.Echo "Searching the local domain for a " & _
 "time-server..."
 ELevel = Shell.Run("Net Time / Set /Yes",0,True)
If (ELevel = 0) Then
 Wscript.Echo "Sync Successful"
Else
 Wscript.Echo "Time Sync Error"
 End If
Else
 Wscript.Echo "Sync Successful"
End If

Note The highlighted code above must be placed on one line.

Mapping Universal Drives
Mapping common drives for all users allows you to present a central resource location for applications or data. In Chapter 8, you
learned how to map network drives from within Windows and the command prompt. You can use the Windows Script Host
network object to attach a drive letter to a network share. To map a network drive and display the status using Windows Script
Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Network = CreateObject("WScript.Network")
Drive = "DriveLetter:"
Share = "\\server\sharename"

Wscript.Echo "Mapping drive " & Drive & " to " & Share
Network.MapNetworkDrive Drive, Share
If Err.Number = 0 Then
 Wscript.Echo "Map Successful"
Else
 Wscript.Echo "Error mapping drive " & Drive & " to " & _
 Share
End If

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Mapping Drives by Group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapping drives by group membership allows you to control which drives and resources will be available to which users. Windows
Script Host does contain a method to determine group membership. Although you can use the ADSI IfMember method, this
method can be slow on larger networks. Alternatively, you can use the WSH shell run command to call external commands, such
as the IfMember resource kit utility, and use a return variable to indicate whether the command was successful. To map a network
drive according to group membership and display the status using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
Set Network = CreateObject("WScript.Network")
Drive = "DriveLetter:"
Share = "\\server\sharename"
DGroup = "groupname"

ELevel = Shell.Run("fullpath\IfMember " & DGroup,0,True)
If (ELevel = 1) Then
 Wscript.Echo "Mapping drive " & Drive & " to " & Share
 Network.MapNetworkDrive Drive, Share
 If Err.Number = 0 Then
 Wscript.Echo "Map Successful"
 Else
 Wscript.Echo "Error mapping drive " & Drive & " to " & _
 Share
 End If
End If

Here, fullpath is the full path where the IfMember utility is located; GroupName is the name of the group to check membership;
driveletter is the drive letter to map a share to; and server contains the sharename you want to map to.

Mapping Printers
Mapping printers through a logon script provides an easy method to remotely update printer connections. Starting with version 2,
Windows Script Host provides several commands to add, remove, and set default printers. To map a printer using Windows Script
Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
PServer = "Server"
DPrinter = "Printer"
Port = "LPT1"
Set Network = CreateObject("Wscript.Network")

Network.AddPrinterConnection Port, "\\" & PServer & "\" &
Printer
If Err.Number <> 0 Then
 Wscript.Echo "Added printer " & Printer
Else
 Wscript.Echo "Error adding printer " & Printer
End If

Note The highlighted code above must be placed on one line.

Here, pserver is the variable holding the printer server name, and dprinter is the variable holding the name of the printer share.

Tip You can use the AddWindowsPrinterConnection method to add printers to Windows NT/2000 systems without having
to supply a port.

Checking for Remote Access
Determining whether a client is logging in through the network or remote access helps you specify which parts of the script to run.
Windows Script Host does not contain a method to detect remote access connections. CheckRAS is a command-line, SMS
resource kit utility to determine whether a user is using remote access. To determine whether the current user is using remote
access during a logon script using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")

ELevel = Shell.Run("fullpath\CheckRAS",0,True)
If (ELevel = 0) Then
 RAS = "YES"
Else
 RAS = "NO"
End If

Here, fullpath is the full path where the CheckRAS utility is located, and RAS indicates whether the current user is using remote
access or not.

Displaying Time-Based Greetings
Although it's not essential, many administrators like to display a greeting to the user depending on the time of day. To display a
time-based greeting using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
If Hour(Now) < 12 Then
 Wscript.Echo "Good Morning"
ElseIf Hour(Now) < 18 Then
 Wscript.Echo "Good Afternoon"
Else
 Wscript.Echo "Good Evening"
End If

Updating McAfee Antivirus Files
To update your McAfee antivirus engine and/or signature files with shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host from http://www.microsoft.com to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")

SDAT="superdat"
DAT="datfile"
NAILOG="textlog"
DDAY="DOTW"

If WeekDayName(WeekDay(Date)) = DDAY
 Shell.Run CHR(34) & SDAT & CHR(34) & " /F /PROMPT /REBOOT
 /SILENT /LOGFILE NAILOG",1,True
Else
 Shell.Run CHR(34) & DAT & CHR(34) & " /F /PROMPT /REBOOT
 /SILENT /LOGFILE NAILOG",1,True
EndIf

Note The highlighted code above must be placed on one line. Chr(34) translates the ASCII code character 34 into a
quotation mark ("). This is necessary when using the Shell.Run command with long file names.

Here, SDAT is a variable containing the complete path and file name of the SuperDAT executable; DAT is a variable containing
the complete path and file name of the DAT executable; NAILOG is a variable containing the complete path and file name of the
status log text file; and DDAY is the day of the week (Monday-Sunday) to run the SuperDAT as opposed to the daily DAT file.

Updating Norton Antivirus Files
To update your Norton antivirus files with Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest Intelligent Updater file from http://www.symantec.com to the new directory.

3. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next Set
SHELL = CreateObject("WScript.Shell")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHELL = CreateObject("WScript.Shell")

IUPDATER = "iufile"
Shell.Run CHR(34) & IUPDATER & CHR(34) & " /Q",1,True

Note Chr(34) translates the ASCII code character 34 into a quotation ("). This is necessary when using the Shell.Run
command with long file names.

Here, IUPDATER is a variable containing the complete path and file name of the Intelligent Updater executable.

Using Microsoft Internet Explorer as a Logon Script Box
Through Automation, you can use Internet Explorer to display logon script status to the user. To use Internet Explorer as a logon
script box using the previous WSH logon scripts, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Network = CreateObject("WScript.Network")
Set MSIE = CreateObject("InternetExplorer.Application")
sTITLE = "Processing Logon Script, please wait..."
Drive = "DriveLetter:"
Share = "\\server\sharename"

SetupMSIE
MSIE.Document.Write "<HTML><TITLE>" & sTitle & _
 "</TITLE><BODY bgcolor=#C0C0C0>"

IfHour(Now) < 12 Then
 MSIE.Document.Write "Good Morning " & _
 Network.UserName & "

"
ElseIf Hour(Now) < 18 Then
 MSIE.Document.Write "Good Afternoon " & _
 Network.UserName & "

"
Else
 MSIE.Document.Write "Good Evening " & _
 Network.UserName & "

"
End If

MSIE.Document.Write "Mapping drive " & Drive & " to " & _
 Share & "...
"

Network.MapNetworkDrive Drive, Share
If Err.Number = 0 Then
 MSIE.Document.Write " Mapping Successful
"
Else
 MSIE.Document.Write " Error mapping drive " & Drive & _
 " to " & Share & "
"
End If

MSIE.Document.Write "
Closing in 3 seconds
"
Wscript.Sleep 3000
MSIE.Quit

Sub SetupMSIE
 MSIE.Navigate "About:Blank"
 MSIE.ToolBar = False
 MSIE.StatusBar = False
 MSIE.Resizable = False
 Do
 Loop While MSIE.Busy
 SWidth = MSIE.Document.ParentWindow.Screen.AvailWidth
 SHeight = MSIE.Document.ParentWindow.Screen.AvailHeight
 MSIE.Width = SWidth/2
 MSIE.Height = SHeight/2
 MSIE.Left = (SWidth - MSIE.Width)/2
 MSIE.Top = (SHeight - MSIE.Height)/2
 MSIE.Visible = True
End Sub

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Related solution: Found on page:

Using Microsoft Internet Explorer as a Display Tool 100

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 14: Backups and Scheduling

In Brief
Most companies and people couldn't continue to be in business or do their work if all their data were lost. Backups provide an
easy method to restore a system or a set of files after some corruption, deletion, or hardware failure has taken place. Backups are
an extremely important part of your task as an administrator-something that no one likes to do, but everyone appreciates when
needed. Although many third-party backup tools are available, a limited budget or compatibility issues might prevent you from
using them.

In previous chapters, you learned how to back up files and the registry using simple scripts. In this chapter, you will learn how to
automate backups and ERDs (Emergency Repair Disks). You will also learn how to schedule your backups and scripts to run
automatically.

Backups under Windows 2000/XP/2003

NTBackup (New Technology Backup) is a utility that allows you to back up your registry and data files. These backups are stored
using the Microsoft Tape Format (MTF). NTBackup can read and restore any backup stored in this format. This includes many of
today's third-party backup programs that comply to this format, such as Veritas Backup Exec. Before performing any backup, you
should decide which type of backup you would like to perform. NTBackup supports the following backup types:

Full-Also called a normal backup, backs up all the files specified. The archive bit is cleared for all files backed up.
This provides the most complete backup but also takes the most time and occupies the greatest amount of storage
space on the backup media. This backup type provides the quickest restore method.

Incremental-Only backs up files that have changed since the last full and incremental backup. The archive bit is
cleared for all files backed up. This backup type requires marginal time and backup space but provides the longest
restore method because the full backup and all other incremental backups must be restored sequentially.

Differential-Only backs up files that have changed since the last full backup. The archive bit is not cleared for any
files. This is the most common backup method used and provides an average restore time because the full backup
must be restored before a differential backup can be restored.

Daily-Only backs up files modified on the day the backup is performed. The archive bit is not modified.

Custom-Allows you to specify which files to back up. This method is most commonly used on an on-demand basis
when a small number of files are to be backed up.

Copy-Copies files to the backup media. The archive bit is not cleared because you are merely copying files. This
method is best used when you want to perform backups in combination with other backup utilities, and do not want
the archive bit to be modified.

Note An archive bit is a file attribute that is cleared when a file is modified. This is a signal to all backup programs that this
file needs to be backed up.

New and Improved
Starting with Windows 2000, NTBackup supports many new features, such as scheduling and UNC support. In addition to tape
devices, NTBackup can now back up data to removable media, such as a Jaz or Zip drive, using Remote Storage Management
(RSM). You can back up to any removable media that RSM supports and that does not require special formatting at the time of
backup. RSM cannot back up to CD-R (Compact Disc Recordable), CD-RW (Compact Disc ReWritable), or DVD-RAM (Digital
Versatile Disc Random Access Memory) because it sees these devices as read-only. As with both versions of NTBackup, a major
drawback to this backup utility is that you can only back up folders, not files.

Note You cannot restore files from the command line using NTBackup.

Best Backup Practices
The following list describes the best backup practices to help protect your data:

Secure your backups. Many companies protect their servers and yet leave their backup tapes in an open cabinet. If
an intruder can access your backup tapes, he or she can access your data.

Perform backup verifies. Verify compares the contents of the backup media with the targeted files backed up, and
reports any corruption or differences.

Test your backups and hardware regularly. Although your backup software may state that your backups are
successfully running, there is no real indication of this until you perform a restore.

Rotate your backups offsite. If something happens to your office building or location where you store your backups,
you'll be glad you stored more tapes in another location.

Store your backups in a fire/water-proof container. Tapes are very sensitive to corruption, especially heat. Storing
your tapes in fire/water-proof containers helps protect your backups from damage.

Remember that backups can be subpoenaed. Only back up files you wouldn't mind discussing in court.

Establish a written backup policy and stick to it. This helps ensure that all the backup practices mentioned here, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Establish a written backup policy and stick to it. This helps ensure that all the backup practices mentioned here, and
many others, are clearly understood and followed daily.

Scheduling Windows NT/2000 Tasks

The AT command is a command line utility that allows you to schedule applications to run based on a predetermined schedule.
You can use this command to automatically launch your backups, scripts, or any other tasks you can think of. The AT command
works with the schedule service to monitor the system time, start tasks, and run the programs under the security context of the
specified account.

The Evolution of the AT Command
Originally, the AT command worked with a service called schedule (ATSVC.EXE) that, by default, was configured as a system
service. You could later configure this service to run under a specific administrative domain account, allowing your tasks to run for
all users regardless of user privilege.

The New and Improved Task Scheduler

If you have at least Windows 2000 or Microsoft Internet Explorer 4, the schedule service is replaced with the Task Scheduler
service (MSTASK.EXE). This service does not need to be configured with a specific account because you can now specify these
credentials with each new task you create. For backward compatibility with tasks created by the AT command, you can still set the
Task Scheduler service to run under a specified account.

The new task scheduler also adds a control panel applet called Scheduled Tasks, that provides a graphical interface to create,
view, and modify scheduled tasks created by the AT command or task scheduler. These tasks are stored in the %WINDIR%\tasks
directory. Although you can view and modify tasks under the Scheduled Tasks applet, the AT command does not recognize tasks
created by the new task scheduler. This is because tasks created by the task scheduler can use additional features and require a
specific user account to run. Any task created by the AT command will be converted to a task created by the task scheduler if a
specific user account is specified or if any of the task scheduler's additional features are used, such as power management.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Managing NTBackup

The NTBackup utility supports multiple switches for performing backups from the command line. Here is a list of the available
switches:

/A-Appends backups

/D "label"-Specifies a backup set label

/DS "server"-Backs up the Microsoft Exchange directory service for the specified server name

/F "name"-Specifies full path and file name of the backup file

/G "tapeID"-Specifies to overwrite or append to the tape based on the specified tape id

/HC:x-Controls hardware compression where x is ON or OFF

/IS "server"-Backs up the Microsoft Exchange information store for the specified server name

/J "job"-Specifies a descriptive job name to record in the log file

/L:x-specifies the type of log file where x is:

F-Complete logging

S-Summary logging

N-No logging

/M:x-Specifies the backup type where x is:

copy-Back up files and do not clear their archive flag

daily-Back up today's changed files and do not clear their archive flag

differential-Back up changed files and do not clear their archive flag

incremental-Back up changed files then clear their archive flag

normal-Back up files then clear their archive flag

/N "name"-Specifies a new name to give the tape

/P "name"-Specifies the name of the media pool to use

/R:x-Restricts tape access to the tape owner or administrators, where x is YES or NO

/RS x-Specifies to back up the removable storage database, where x is YES or NO

/T "tapename"-Specifies to overwrite or append to the tape based on the specified tape name

/UM-Specifies to find and format the find media available

/V:x-Performs backup verification, where x is YES or NO

Running NTBackup with Shell Scripting
To automate a full backup using NTBackup and shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Set BList=folders
Set BFile=backupfile
Set BComment=BackupComment

fullpath\NTBACKUP.EXE Backup %BList% /d "%BComment%" /l:F
/F "%BFile%" /V:YES

Set BList=
Set BFile=
Set BComment=

Note The highlighted code above must be placed on one line.

Here, folders are the folders to back up; backupfile is the complete path and file name of the backup file to create (typically
stored with a BKS extension); BackupComment is the comment to give the backup; and fullpath is the complete path to the
NTBackup utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running NTBackup with KiXtart
To automate a full backup using NTBackup and KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$BList = "folders"
$BFile = "backupfile"
$BComment = "BackupComment"

$BCommand = "fullpath\NTBACKUP.EXE Backup $BList /d " +
 chr(34) + "$BComment" + chr(34) + " /l:F /F " +
 chr(34) + "$BFile" + chr(34) + " /V:YES"
Run $Bcommand

Note The highlighted code above must be placed on one line. Chr(34) translates the ASCII code character 34 into a
quotation mark ("). This is necessary when you are using the Run command with long file names.

Here, folders are the folders to back up; backupfile is the complete path and file name of the backup file to create (typically
stored with a BKS extension); BackupComment is the comment to give the backup; and fullpath is the complete path to the
NTBackup utility.

Running NTBackup with Windows Script Host
To automate a full backup using NTBackup and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Set Shell = CreateObject("Wscript.Shell")

BList = "folders"
BFile = "backupfile "
BComment = "BackupComment"

BCommand = "fullpath\NTBACKUP.EXE Backup " & _

BList & " /d " & chr(34) & BComment & chr(34) & _

 " /l:F /F " & chr(34) & BFile & chr(34) & " /V:YES"

Shell.Run BCommand, 0, TRUE

Note You cannot completely hide the NTBackup process with Windows Script Host.

Here, folders are the folders to back up; backupfile is the complete path and file name of the backup file to create (typically
stored with a BKS extension); BackupComment is the comment to give the backup; and fullpath is the complete path to the
NTBackup utility.

Backing Up the IIS Metabase Using Windows Script Host
The Internet Information Server Metabase is a database like structure used to store IIS configuration settings. To automate a
backup of the IIS metabase using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
NextVersion = &HFFFFFFFF
BackupFlags = 0

Set objComputer = GetObject("IIS://" & ComputerName)
objComputer.Backup backupfile, NextVersion, BackupFlags

Here, computername is the name of the IIS server and backupfile is the name of the backup file to create.

Restoring the IIS Metabase Using Windows Script Host
To restore the most recent backup of the IIS metabase using Windows Script Host, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
HighestVersion = &HFFFFFFFE
BackupFlags = 0

Set objComputer = GetObject("IIS://" & ComputerName)
objComputer.Restore backuplocation, HighestVersion, BackupFlags

Here, computername is the name of the IIS server and backuplocation is the complete path where the IIS metabase backup is
stored.

Controlling Backup Exec from the Command Line

Backup Exec is a complete backup solution from Veritas (http://www.veritas.com) that includes advanced backup functionality,
such as virus scanning. The BackupExec executable (BKUPEXEC.EXE) allows you to run a scheduled job from the command
line. The basic syntax of BKUPEXEC is as follows:
BkupExec /J:"jobname"

Here, /J indicates to run BackupExec in command-line mode, and jobname is the name of the scheduled backup job.

Note If the BackupExec program is running or the jobname does not exist, the BkupExec command will not work.

Consolidating BackUp Exec Logs

Whenever BackUp Exec performs a task, it records the progress in an individual log file stored in the program's data directory.
Call me lazy, but I hate having to go to the server room, log onto multiple servers, and then check the job status. To remotely
consolidate these log files to a central Excel spreadsheet (right from your desk), proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")
Set objXL = CreateObject("Excel.Application")

BEPath = "logpath"
Server = "servername"
SDays = InputBox("Please enter the number of days to report")
SDays = Int(SDays) - 1

Column = 1
Row = 1
SetupXL 'Setup Excel Sheet

BEFolder = "\\" & Server & "\" & BEPath
ChkBkUp BEFolder
Wscript.Echo "Complete."
Wscript.Quit

Sub SetupXL 'Setup and format Excel Sheet
 objXL.Workbooks.Add
 objXL.Columns(1).ColumnWidth = 20
 objXL.Columns(2).ColumnWidth = 10
 objXL.Columns(3).ColumnWidth = 15
 objXL.Columns(4).ColumnWidth = 10
 objXL.Columns(5).ColumnWidth = 15
 objXL.Columns(6).ColumnWidth = 10

 objXL.Cells(1,Column).Value = "Server"
 objXL.Cells(1,Column+1).Value = "Job"
 objXL.Cells(1,Column+2).Value = "Type"
 objXL.Cells(1,Column+3).Value = "Start Date"
 objXL.Cells(1,Column+4).Value = "Start Time"
 objXL.Cells(1,Column+5).Value = "Status"
 objXL.Cells(1,Column+6).Value = "Size"
 objXL.Range("A1:K1").Select
 objXL.Selection.Font.Bold = True 'Bold top row
 objXL.Selection.Interior.ColorIndex = 1
 objXL.Selection.Interior.Pattern = 1
 objXL.Selection.Font.ColorIndex = 2
End Sub

Sub ChkBkUp(BEFolder) 'Check if log folder exists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub ChkBkUp(BEFolder) 'Check if log folder exists
 If FSO.FolderExists(BEFolder) Then
 Set objDirectory = FSO.GetFolder(BEFolder)
 Set DirFiles = objDirectory.Files
 ExcelSheet(DirFiles)
 Else
 Wscript.echo "Could not access folder: " & BEFolder
 End If
End Sub

Sub ExcelSheet(DirFiles) 'Enter info to Excel sheet
 For Each objFile in DirFiles
 objXL.Visible = True
 FEXT = FSO.GetExtensionName(objFile.Path)
 fDate = DateDiff("d", objFile.DateCreated, Date)
 'Check if log date is within the search days specified
 If (LCase(FEXT) = "txt") AND ((fDate <= SDays) AND _
 (fDate > 0)) Then
 Verify = 0
 strSize = 0
 'Open log and transfer data to Excel sheet
 Set ts = FSO.OpenTextFile(objFile, 1)
 Do while ts.AtEndOfStream <> true
 s =ts.ReadLine
 If InStr(s, "Job server: ") <> 0 Then
 Row = Row + 1
 objXL.Cells(Row,Column).Value = Mid(s, 13)
 ElseIf InStr(s, "Job type: ") <> 0 Then
 objXL.Cells(Row,Column+1).Value = Mid(s, 11)
 ElseIf InStr(s, "Job name: ") <> 0 Then
 objXL.Cells(Row,Column+2).Value = Mid(s, 11)
 ElseIf InStr(s, "Job started: ") <> 0 Then
 dTemp = InStr(s, ", ")
 tTemp = InStr(s, " at ")
 dTemp = dTemp + 2
 dEnd = tTemp - dTemp
 objXL.Cells(Row,Column+3).Value = Mid(s, dTemp,dEnd)
 tTemp = tTemp + 4
 objXL.Cells(Row,Column+4).Value = Mid(s, tTemp)
 ElseIfS = "Job Operation - Verify" Then
 Verify = 1
 ElseIf (Verify = 1) AND _
 InStr(s, "Processed ") <> 0 Then
 myarray = Split(s)
 If IsNumeric(myarray(1)) Then
 strSize = strSize + _
 (LEFT((myarray(1)/1073741824),6))/1
 End If
 ElseIf InStr(s, "Job completion status: ") <> 0
 Verify = 0
 objXL.Cells(Row,Column+6).Value = strSize
 objXL.Cells(Row,Column+5).Value = Mid(s, 24)
 'If backup failed, bold and highlight red
 If LCase(Mid(s, 24)) = LCase("Failed") Then
 tRange = "A" & Row & ":G" & Row
 objXL.Range(tRange).Select
 objXL.Selection.Font.Bold = True
 objXL.Selection.Font.ColorIndex = 3
 'If backup not successful, bold
 ElseIf LCase(Mid(s, 24)) <> LCase("Successful") Then
 tRange = "A" & Row & ":G" & Row
 objXL.Range(tRange).Select
 objXL.Selection.Font.Bold = True
 End If
 End If
 Loop
 ts.Close 'Close log file
 End If
 Next
 End Sub

Here, servername is the name of the server to connect to, and logpath is the administrative share and complete path where the
logs are stored (typically c$\Program Files\Veritas\Backup Exec\NT\Data).

Related solution: Found on page:

Creating Detailed Spreadsheets in Microsoft Excel 103

Controlling ARCserve 2000 from the Command Line

ARCserve 2000 is an advanced backup utility from Computer Associates (http://www.cai.com). ARCbatch, included with
ARCserve, is a command-line utility that runs backup script files or templates. The basic syntax of the ARCbatch command is as
follows:
ARCbatch /H=server /S=script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, server is the name of the server to run the specified script. Script is the full name and path to the ARCbatch script or
template file. ARCbatch scripts have an ASX extension and are created with the ARCserve manager. ARCbatch templates are INI
files you can create to perform or schedule backups and restores. To immediately run a full backup using ARCbatch, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Start a command prompt and enter "fullpath\ARCbatch H=server/S=template."

Here, fullpath is the full path to the ARCbatch utility; server is the name of the server to run the specified script; and template is
the full path and file name of a template file that contains the following:
[GENERAL]
HOST=*
JOBTYPE=BACKUP
JOBDESCRIPTION=description

[SOURCE_BACKUP]
NODE_NUM=1
BKMETHOD=1
VERIFICATION=2

[NODE_1]
DOMAINNAME=*
NODENAME=$HOST$
NODETYPE=NTAGENT

[DESTINATION_BACKUP]
TAPENAME=tape
GROUPNAME=group

[MEDIA_OPTIONS]
FIRSTTAPEOPTIONS=2

Here, description is the comment to add to the job; tape is the name of the tape; and group is the name of the device group.

Tip ARCbatch templates support numerous entries. Visit http://www.cai.com for more information.

Scheduling Tasks with the AT Command

The AT command allows you to schedule tasks from the command line. The basic syntax of the AT command is as follows:
AT \\remote ID /COMMANDS "fullpath"

Tip To display a list of schedule tasks from the command line, start a command prompt and enter "AT."

Here, remote is an optional name of a remote system of which tasks to control; ID specifies a task ID to modify; fullpath is the
complete path and file name of the item to schedule; and the available commands are as follows:

/DELETE-Removes a scheduled job.

/YES-Combined with /DELETE, suppresses all jobs cancellation prompt.

/INTERACTIVE-Sets the job to interact with the desktop. This switch must be set if you want the user to have any
interactivity with the scheduled task.

/EVERY:x-Recurrently runs the command on the specified day (x).

/NEXT:x-Runs the command on the next specified date (x).

To schedule a script file to run at a specified time every work day, start a command prompt and enter the following:
AT \\remote time /interactive /every:M,T,W,TH,F scriptfile

Here, remote is the name of the system to store the scheduled task; time is the time to run the task; and scriptfile is the full path
and name of the script to run.

Tip You can use the Windows 2000 Resource Kit Utility WINAT to graphically control and view scheduled tasks.

Creating Tasks Using SCHTASKS

SCHTASKS is a Windows XP/2003 command line utility that allows you to create, delete, or view scheduled tasks. To create a
scheduled daily task using SCHTASKS, start a command prompt and enter the following:
schtasks /create /tn "taskname" /tr fullpath /sc daily /st miltime

Here, taskname is the name of the task to create; fullpath is the full path and file name of the program to execute; and miltime is
the time to schedule a task to run (in military format).

Listing Tasks Using SCHTASKS

To list tasks on a remote system using SCHTASKS, start a command prompt and enter the following:
schtasks /query /s computer

Here, computer is the name of the computer to query.

Deleting Tasks Using SCHTASKS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To delete a scheduled task on a remote system using SCHTASKS, start a command prompt and enter the following:
schtasks /delete /tn "taskname" /s computer

Here, taskname is the name of the task to delete and computer is the name of the remote system.

Tip You can use the /tn * parameter to delete all scheduled tasks.

Creating Tasks with WMI

The Win32_ScheduledJob class allows you to create, delete, or view scheduled tasks. This class is extremely limited in
functionality, incorrectly documented, and difficult to work with. There is no method to modify an existing task and there are only a
few available parameters when creating a task. This class also only recognizes and can create tasks compatible with the AT
command. For whatever reason, to create a scheduled task using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
DTime = MilTime

Set TZone = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2").ExecQuery
("select * from Win32_TimeZone")

For each Zone in TZone
 TBias = Zone.bias + 60 'Compensates for daylight savings
Next

STime = "********" & DTime & "00.000000" & TBias

Set ScheduledJob = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2:Win32_ScheduledJob")
 Set method = ScheduledJob.Methods_("Create")
 SetinParam = method.inParameters.SpawnInstance_()
 inParam.Command = "fullpath"
 inParam.StartTime = STime
 inParam.RunRepeatedly = rp
 inParam.DaysOfWeek = dow
 Set outParam = ScheduledJob.ExecMethod_("Create", inParam)

Note The highlighted code above must be placed on one line.

Here, miltime is the time to schedule a task to run (in military format); fullpath is the full path and file name of the program to
execute; rp is a binary entry (0 or 1) that specifies whether to create a reoccurring task; and dow are the days of the week to run
the task. Dow does not accept abbreviated day names (M,T,W,…), but must be entered in binary format where the days of the
week are as follows:

Monday-1

Tuesday-2

Wednesday-4

Thursday-8

Friday-16

Saturday-32

Sunday-64

To schedule a task to run on a specific day, simply add up the day values and enter the total. For example, to run a task on
Tuesday, Friday, and Saturday, you would enter 50 (2+16+32).

Listing Tasks in Internet Explorer Using WMI

The Win32_ScheduledJob class can retrieve and display information on any task previously created using the
Win32_ScheduledJob class or AT command. To list these scheduled tasks within a formatted Internet Explorer window, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of WMI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set FSO = CreateObject("Scripting.FileSystemObject")
Set MSIE = CreateObject("InternetExplorer.Application")
Set ScheduledJob = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2").ExecQuery("select *
from Win32_ScheduledJob")

SetupMSIE
MSIE.Document.Write "<HTML><TITLE>Scheduled Jobs" & _
 "</TITLE><BODY bgcolor=#ffffff>"
MSIE.Document.Write "Displaying tasks created " & _
 "with WMI or the AT command:

" & _
 "<table border=0 width=100% cellspacing=0 " & _
 "cellpadding=0>"
 For each ejob in ScheduledJob
 IEWrite "Caption", EJob.Caption
 IEWrite "Command", EJob.Command
 IEWrite "Days Of Month", EJob.DaysOfMonth
 IEWrite "Days Of Week", EJob.DaysOfWeek
 IEWrite "Description", EJob.Description
 IEWrite "Install Date" ,EJob.InstallDate
 IEWrite "Interact With Desktop", EJob.InteractWithDesktop
 IEWrite "Job ID", EJob.JobID
 IEWrite "Job Status", EJob.JobStatus
 IEWrite "Name", EJob.Name
 IEWrite "Notify", EJob.Notify
 IEWrite "Owner", EJob.Owner
 IEWrite "Priority", EJob.Priority
 IEWrite "Run Repeatedly", EJob.RunRepeatedly
 IEWrite "Start Time", EJob.StartTime
 IEWrite "Status", EJob.Status
 IEWrite "Time Submitted", EJob.TimeSubmitted
 IEWrite "Until Time", EJob.UntilTime
 IEWrite " ", " "
 Next

 MSIE.Document.Write "</table>
End of List" & _
 "</BODY>"

 Sub SetupMSIE
 MSIE.Navigate "About:Blank"
 MSIE.ToolBar = False
 MSIE.StatusBar = False
 MSIE.Resizable = False

 Do
 Loop While MSIE.Busy

 SWidth = MSIE.Document.ParentWindow.Screen.AvailWidth
 SHeight = MSIE.Document.ParentWindow.Screen.AvailHeight
 MSIE.Width = SWidth/2
 MSIE.Height = SHeight/2
 MSIE.Left = (SWidth - MSIE.Width)/2
 MSIE.Top = (SHeight - MSIE.Height)/2

 MSIE.Visible = True
 End Sub
 Sub IEWrite(Caption,Prop)
 MSIE.Document.Write "<tr><td>" & Caption & "</td>" & _
 "<td> </td><td align=right>" & Prop & _
 "</td></tr>"
 End Sub

Note The highlighted code above must be placed on one line.

Here, computer is the name of the computer containing the tasks to list.

Related solution: Found on page:

Using Microsoft Internet Explorer as a Display Tool 100

Deleting Tasks Using WMI

The Win32_ScheduledJob class can delete any task previously created with the Win32_ScheduledJob class or AT command.
To delete all of these scheduled tasks using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of WMI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set ScheduledJob = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2").ExecQuery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

impersonate}!\\computer\root\cimv2").ExecQuery
("select * from Win32_ScheduledJob")

For each ejob in ScheduledJob
 ejob.Delete()
Next

Note The highlighted code above must be placed on one line.

Here, computer is the name of the computer containing the tasks to delete.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 15: Fun with Multimedia

In Brief
If you're not having complete and utter fun yet, this chapter is for you. In this chapter, you will learn how to use simple scripts to
play and control multimedia files. You will also learn how to script the Office Assistant and Microsoft Agent characters to interact
with your users.

The Dreaded Office Assistant

Office assistants are animated characters designed to help and entertain users of Microsoft Office. These characters provide tips,
accept natural language queries (such as "How do I hide the Office Assistant?"), and perform animations based on the actions of
the user. In theory, these assistants sound like a good idea. However, soon after the release of these assistants with Office 97, a
flood of complaints followed denouncing them. The main problem was the over-interaction of these assistants.

To turn on the Office Assistant, choose Help/Show the Office Assistant. Once the assistant is visible, right-click on it and choose
Options. Under the Options tab, you can disable the Office Assistant by unchecking Use the Office Assistant. Under the Gallery
tab, you can choose which assistant you want to use. The default assistant is called Clippit, a hyperactive paper clip that doesn't
know when to be quiet.

The Office Assistant Object Model
The Office Assistant object model is a limited one. At the top of the model is the assistant object. An instance of the Office
Assistant object model is created whenever an instance of an office application is created. Once the instance is created, you can
make the assistant visible by setting the Visible property to True:
officeapp. Assistant. Visible - True

Once the assistant is visible, you can move, resize, or animate the assistant:
officeapp.Assistant.Left - 500
officeapp.Assistant.Top - 500

Office assistants display messages to users through the Balloon object. You can use the NewBalloon property to create an
instance of the Balloon object:
Set Balloon - officeapp.Assistant.NewBalloon

Once an instance of the Balloon object has been created, you can create text messages and check boxes, and then show these
messages using the Show property:
Balloon.Heading - "Some Text Heading"
Balloon. Text - "Some Body Text"
Balloon.CheckBoxes(1). Text - "An example check box"
Balloon.Show

Tip If you have Microsoft Office 2000 with the VBA help files installed, the complete Office Assistant object model can be
found in the file VBA0FF9.CHM.

Under Office 97, office assistants are stored in actor files, with an ACT (Actor) extension (typically located in C:/Program
Files/Microsoft Office/Office). Office 2000 uses the Microsoft Agent ActiveX technology and stores its assistants in ACS (Agent
Character) files, allowing for more animations and interaction with the user.

Microsoft Agent

Microsoft Agent, originally called Microsoft Interactive Agent, is an ActiveX technology that allows you to display and animate
characters to interact with the computer user. Agent characters are cartoon-like animations stored in agent character (ACS) files.
Each character contains its own set of animations and voice patterns. You can use Microsoft Agent within Microsoft Office, script
files, Web pages, and applications.

The Microsoft Agent Support Files
In order to run Microsoft Agent, you need to download and install the following items:

Microsoft Agent core components-These are the core components that allow you to access and control a Microsoft
Agent character.

Microsoft Agent character files-These are the agent characters you can use to interact with the computer user.

Text-to-speech engines-These engines allow the Microsoft Agent characters to translate text to speech, giving
these characters the ability to "speak."

You can obtain these components from the Microsoft Agent Web site, http://msdn.microsoft.com/workshop/imedia/agent/.

The Microsoft Agent Process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All agent character commands and requests are exposed through the agent object model, MSAgent.ocx. After you create an
instance of the object model, the character can be loaded and is ready to receive requests. When a request for a character
animation is made, the data provider (AgentDPV.dll) decompresses the graphic and audio files, and passes them to the
automation server (AgentSvr.exe). The automation server renders the files to use transparent backgrounds and borders, giving
them the appearance of hovering on top of the screen.

Scripting the Microsoft Agent Using Windows Script Host
The first step to accessing the Microsoft Agent character methods is to create an instance of the Microsoft Agent Control:
Set ACTL - CreateObject ("Agent.Control.2")

Once a connection has been established, you can load one of the preinstalled Microsoft Agent characters and set a reference to
it:
ACTL. Characters.Load charactername. "charactername.acs"
Set CREF - ACTL. Characters(charactername)

Here, charactername is the name of the Microsoft Agent character, such as Merlin or Peedy. After the character has been
loaded, you can make the character visible using the Show method:
CREF.Show

Once the character is visible, you can call on any of the character's methods to perform an animation or to speak. Each agent
contains a set of unique animations. To make a character use a specific animation, you use the Play method:
CREF.Play "animation"

Note For a complete list of animations, consult the character's animation reference file.

Here, animation is the type of animation to perform, such as greet or sad. You can use the Speak method to make the character
say a specific phrase:
CREF.Speak "text"

Finally, you can cause the character to move to a specific location using the MoveTo method:
CREF.MoveTo x.y

Here, x is the horizontal pixel location, and y is the vertical pixel location.

Tip Specifying 0,0 will move the characters to the upper left corner of the screen.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Playing an Audio File Using KiXtart

KiXtart has the built-in ability to play a WAV or SPK file using the Play command. To play an audio file using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Aud - "filename"
Play File $Aud

Here, filename is the full path and file name of the WAV or SPK file to play.

Scripting the Microsoft Media Player

Windows 2000/XP/2003 includes a free application called Media Player, designed to play audio and video files. Mplay32.exe is
the 32-bit version of the standard Media Player, and this utility can play audio, video, and DirectShow files. This utility supports a
limited amount of command-line switches.

Microsoft Media Player 9 is a Windows add-on that provides extremely enhanced functionality when compared to the older
Windows multimedia players. Some of these features include media rights, MP3 (Motion Pictures Expert Group Layer 3 Audio)
support, video streaming, radio tuners, and play list support. This player is intended to be the core Windows multimedia player
and manager while replacing the older, built-in multimedia players, such as CDPlayer.exe and Mplay32.exe. This utility has limited
support for Windows Script Host.

Playing a Media File from the Command Line
To play and then close a media file using Mplay32.exe and shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
MPLAY32 /PLAY /CLOSE "filename"

Here, filename is the full path and file name to play.

Playing a Media File Using Windows Script Host
To play and then close a media file using Mplay32.exe and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")

SHELL.Run "MPLAY32 /PLAY /CLOSE filename". 0

Here, filename is the full path and file name to play. The value 0 within the Run command causes the media player to be hidden.

Playing Multiple Media Files Using a Play List
Many new audio players (for example, winamp) utilize play lists to play one audio file after another. To play multiple media files
using a play list, Mplay32.exe, and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
PlayList ("playlist")

SUB PlayList (TXTfile)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SUB PlayList (TXTfile)
 Set SHELL - CreateObject ("wscript.shell")
 Set FSO - CreateObject ("Scripting.FileSystemObject")
 Set readfile - FSO.OpenTextFile(TXTfile, 1, false)

Do while readfile.AtEndOfStream <> true
 contents - Trim(readfile.Readline)
 If contents <> "" Then
 SHELL.RUN "MPLAY32 /PLAY /CLOSE " & contents,3, True
 End If
 Loop
End Sub

Here, playlist is the full path and file name of a playlist file. Each line of this file contains the full path and file name of an audio file
to play.

Tip The value 3 within the SHELL.RUN command specifies to maximize the player. You can change this value to 0 if you
would like the player hidden.

Ejecting a CD Using Windows Script Host
Microsoft Media Player 9 does not currently support access through Windows Script Host. You can, however, use the Media
Player 9 object model to display information and control the CD player. To eject a CD using the Media Player 9 object model and
Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install Microsoft Media Player 9 and the latest version of Windows Script Host, from
http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set MPlayer - CreateObject("WMPlayer.OCX")

MPlayer.cdromCollection.item(x).eject()

Here, x is the number of the CD-ROM drive (starting at 0).

Ejecting All CDs Using Windows Script Host
To eject all CDs using the Media Player 9 object model and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install Microsoft Media Player 9 and the latest version of Windows Script Host, from
http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set MPlayer - CreateObject("WMPlayer.OCX")
Set FSO - CreateObject("Scripting.FileSystemObject")
Count- 1

For Each Drive in FSO.Drives
 If Drive.DriveType - 4 Then
 Count-Count+1
 End If
Next

If Count > -1 Then
 For x - 0 to Count
 MPlayer.cdromCollection.item(x).eject()
 Next
End If

Here, a DriveType value of 4 indicates a CD-ROM player.

Scripting RealOne

RealOne is an advanced multimedia player from RealNetworks (http://www.real.com). Although this player is commonly used to
play streaming media on the Internet, you can use these same ActiveX control calls to script RealPlayer using Windows Script
Host.

Playing an Audio File
To play an audio file using the RealPlayer ActiveX control and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Download and install the latest version of RealOne, from http://www.real.com, to the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set RPlayer - CreateObject ("rmocx.RealPlayer G2 Control.1")

RPlayer.SetSource "file:filename"
RPlayer.DoPlay

Wscript.Echo "Press OK to end."

Here, filename is the full path and file name to play.

Playing an Audio File with Windows Script Host Controls
To play an audio file with basic controls using the RealPlayer ActiveX control and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Download and install the latest version of RealOne, from http://www.real.com, to the new directory.

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set RPlayer - CreateObject("rmocx.RealPlayer G2 Control.1")

CMD - 2

Do While CMD <> 10
 Select Case CMD
 Case 0
 RPlayer.DoPlay
 Case 1
 RPlayer.DoPause
 Case 2
If AUD - "" Then AUD - "filename"
AUD - InputBox("Please enter the name of the audio file
to play", "Audio File", AUD)
RPlayer.SetSource "file:" & AUD
 Case 3
 WScript.Quit
 End Select
 Message - "Choose a command:" & vblf & vblf & _
 "0: Play file" & vblf & _
 "1: Pause file" & vblf & _
 "2: Choose file" & vblf & _
 "3: Quit" & vblf
 CMD - InputBox(Message, "RealPlayer Commands", "0")
Loop

Note The highlighted code above must be entered as one paragraph.

Here, filename is the full path and file name to play.

Playing Multiple Audio Files Using a Play List
Many new audio players (for example, winamp) utilize play lists to play one audio file after another. To play multiple media files
using a play list, the RealPlayer ActiveX control, and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Download and install the latest version of RealOne, from http://www.real.com, to the new directory.

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set RPlayer - CreateObject("rmocx.RealPlayer G2 Control.1")
Set FSO - CreateObject("Scripting.FileSystemObject")
Set readfile - FSO.OpenTextFile(TXTfile, 1, false)

PlayList ("playlist")
Wscript.Echo "Press OK to end."

SUB PlayList(TXTfile)
 Do while readfile.AtEndOfStream <> true
 filename - Trim(readfile.Readline)
 If filename <> "" Then
 RPlayer.SetSource "file:filename"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RPlayer.SetSource "file:filename"
 RPlayer.DoPlay
 End If
 Loop
End Sub

Here, filename is the full path and file name to play.

Scripting the Office Assistant

The Office Assistant is an interactive animated character used to help and entertain users of Microsoft Office. You can only
access the assistant object model through an Office application object model. This means that you must have an Office
application installed in order to automate an office assistant. To script the Office Assistant in Excel using Windows Script Host,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Install the latest version of Microsoft Excel.

3. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

4. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO - CreateObject("Scripting.FileSystemObject")
Set objXL - CreateObject("Excel.Application")

objXL.Workbooks.Add
objXL.Visible - False
objXL.Assistant.Visible - True

With objXL.Assistant
 .Reduced - True
 .Left - 300
 .Top - 300
 .MoveWhenInTheWay - True
End With

Set Balloon -
objXL.Assistant.NewBalloon

Balloon.Heading - "Multiple Selections"
Balloon.Text - "Please make a selection"
Balloon.CheckBoxes(1).Text - "Selection 1"
Balloon.CheckBoxes(2).Text - "Selection 2"
Balloon.Show

If Balloon.CheckBoxes(1).Checked Then
 Wscript.Echo "You selected check box 1."
End If
If Balloon.CheckBoxes(2).Checked Then
 Wscript.Echo "You selected check box 2."
End If

objXL.quit

Related solution: Found on page:

Automating Applications through an Application Object 100

Scripting Microsoft Agent Using Windows Script Host

Microsoft Agent is an ActiveX technology that allows you to use animated characters to present information to your users. This
technology can be used in presentations, logon scripts, new user setups, and any other situation where an interaction is needed.

Scripting a Character to Speak
Many developers use Microsoft Agent to entertain, educate, or guide their users through a process. To script a Microsoft Agent
character to speak using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your "& _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters.Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
CREF.Speak "Hello there!"

WScript.Echo "Press OK to close"

Here, charname is the name of the agent character to use.

Scripting a Character to Speak a WAV File
Microsoft Agent has the ability to accept a WAV (WAVeform Audio) file and appear to speak it based on the gaps of silence
detected. This allows you to use a real voice, as opposed to a synthesized voice, to speak to your users. To use Microsoft Agent
to speak a WAV file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system" & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
CREF.Speak "", "WAVFile"

WScript.Echo "Press OK to close"

Here, charname is the name of the agent character to use, and WAVFile is the full path and file name of the WAV file to use.

Scripting a Character to Sing
You can make the Microsoft Agent appear to sing by modifying the pitch and speed of the agent's voice. To make a Microsoft
Agent character sing the Imperial March from Star Wars, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")

ACTL.Connected - True
 If Not IsObject(ACTL) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
CREF.Speak "\Chr-""Monotone""\\Map-""\Pit-98\\Spd-50\DUN DUN
\Spd-134\DUN \Spd-50\DUN \Pit-78\DUN \Pit-117\\Spd-200\DUN
\Pit-98\\Spd-50\DUN \Pit-78\DUN \Pit-117\\Spd-150\DUN
\Pit-98\\Spd-50\DUN" "-" "" "\"

CREF.Speak "\Chr-""Monotone""\\Map-""\Pit-147\\Spd-50\DUN
DUN DUN \Pit-156\\Spd-67\DUN \Pit-117\\Spd-134\DUN
\Pit-92\\Spd-67\DUN \Pit-78\\Spd-80\DUN \Pit-117
\\Spd-77\DUN \Pit-98\\Spd-67\DUN""-""""\"

Wscript.Echo "Press OK to end the show"

Note The highlighted code above must be placed on one line.

Here, charname is the name of the agent character to use.

Scripting a Character to Read
You can make the Microsoft Agent speak any text that you can interpret in Windows Script Host. To make a Microsoft Agent
character read a text file using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
ReadTXT ("textfile")

WScript.Echo "Press OK to close"

SUB ReadTXT(TXTfile)
 Set FSO - CreateObject("Scripting.FileSystemObject")
 Set readfile - FSO.OpenTextFile(TXTfile, 1, false)
 Do while readfile.AtEndOfStream <> true
 contents - readfile.Readline
 If contents <> "" THEN
 CREF.Speak contents
 End IF
 Loop

 contents - NULL
 readfile.close
End Sub

Here, charname is the name of the agent character to use, and textfile is the full path and file name of the text file to read.

Scripting a Character to Check for Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Chapter 8, you learned how to check for events using Windows Management Instrumentation. To make a Microsoft Agent
character notify you of events using WMI and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, the Merlin Microsoft Agent
character, and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "Merlin"

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Wscript.Echo "Press CTRL+C to end this script."

Set CREF - ACTL.Characters(aCHAR)
CREF.MoveTo 200,200
CREF.Show
CREF.Play "Wave"
CREF.Play "Restpose"
CREF.Speak "Hello, my name is Merlin!"
CREF.Play "Greet"
CREF.Play "Restpose"
CREF.Speak "I am your personal CPU monitoring assistant!"
CREF.Play "Announce"
CREF.Play "Restpose"
CREF.MoveTo 0.0
CREF.Speak "I will now monitor your CPU usage and notify" & _
 "you when an overload occurs."
CREF.Play "StartListening"

Computer - InputBox("Enter the computer name",
"CPU Monitor", "localhost")

CPULoad - InputBox("Enter the CPU overload threshhold",
"CPU threshhold", "75")

Poll - InputBox("Enter the polling interval",
"Poll Interval", "5")
If Computer - "" Then Computer - "Localhost"
If CPULoad - "" Then CPULoad - 75
If Poll - "" Then Poll - 5

Set ProLoad - GetObject("winmgmts:{impersonationLevel-
impersonate}!\\" &
Computer & "\root\cimv2")
.ExecNotificationQuery("SELECT * FROM
___InstanceModificationEvent WITHIN " & Poll & " WHERE
TargetInstance ISA `Win32_Processor' and
TargetInstance .LoadPercentage > " &
CPULoad)
If Err.Number <> 0 then
 WScript.Echo Err.Description, Err.Number, Err.Source
End If

Do
 Set ILoad - ProLoad.nextevent
 If Err.Number <> 0 then
 WScript.Echo Err.Number, Err.Description, Err.Source
 Exit Do
Else
 AMessage - ILoad.TargetInstance.DeviceID & _
 " is overloaded at " & _
 ILoad.TargetInstance.LoadPercentage & "%!"
 CREF.Stop
 CREF.Show
 CREF.Play "GetAttention"
 CREF.Play "GetAttentionContinued"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREF.Play "GetAttentionContinued"
 CREF.Play "GetAttentionReturn"
 CREF.Speak AMessage
 RandomAction
 End If
Loop

Sub RandomAction()
 ulimit - 5.0
 llimit - 1.0

 Randomize
 X - Int((ulimit - llimit)*Rnd() + llimit)
 Select Case X
 Case 1
 CREF.Play "Acknowledge"
 Case 2
 CREF.Play "Alert"
 Case 3
 CREF.Play "Explain"
 Case 4
 CREF.Play "Sad"
 Case 5
 CREF.Play "Uncertain"
 End Select
End Sub

Note The highlighted code above must be placed on one line.

Here, computer is the name of the system to monitor; CPULoad is the CPU utilization threshold to monitor for (1-100); and poll is
the number of seconds to set as the polling interval to check for events. The subprocedure RandomAction creates a random
number and then specifies an animation based on that number.

Warning If you run this script with WSCRIPT, you will only be able to terminate the script by ending the WSCRIPT.EXE
process through the Task Manager.

Related solution: Found on page:

Monitoring CPU Utilization 192

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 16: Special Scripting for Windows XP and 2003

In Brief
It seems a new operating system comes out almost every year. While the constant upgrading, bugs, and change makes support
more difficult, the new and improved features can help ease some of your pain. This final chapter will show you scripting
techniques and examples designed specifically for the new features of Windows XP and 2003. And who said having the "latest
and greatest" doesn't have its benefits?

Product Activation

Software piracy continues to be a huge problem for software vendors. Product activation is a technology designed to reduce the
piracy of Microsoft applications and operating systems. Through product activation, Microsoft is ensured that their end users have
legally obtained the software, and their end users are ensured that they have obtained an official, supported product from
Microsoft. Microsoft has included this protection mechanism in their products since Windows XP.

How Product Activation Works
Before using a protected product, the product first needs to be "activated." Without activation, a product will stop working after a
certain time frame or usage amount (grace period) and may prevent you from using the entire product or advanced features. The
activation process generates a "hardware code" which is unique to the hardware installed in your computer. This code is
transmitted to Microsoft over the Internet. (It can also be transmitted by phone.) Once transmitted, it is verified by Microsoft
servers and a confirmation ID is returned when successful. Once the ID is returned, the product has been activated.

The Activation Blues
While activation may help Microsoft reduce piracy for its products, it also causes aggravation for its users. With every rebuild of
your system, you will have to reactivate your protected product. Since the "hardware code" is based on the hardware configuration
in your computer, you may also be forced to reactivate after adding or removing a few hardware components. Finally, users
without Internet access will be forced to call Microsoft every time they need to activate.

System Restore

Windows XP and 2003 include a feature called System Restore designed to quickly resolve problems to the operating system.
Originally introduced in Windows ME, System Restore provides a method to revert a system back to a previously known working
state in the event a serious issue occurs.

Restore Points
A restore point is a compressed snapshot of your system's key files and registry entries. System restore creates restore points
daily, on demand, and when certain events occur. These events include application installs that use the windows installer, updates
applied by Windows Update (http://windowsupdate.microsoft.com), and when System Restore rolls back to a restore point.

MMC 2.0

Windows XP and 2003 contain the latest version of the Microsoft Management Console (MMC), version 2.0. MMC 2.0 includes
many new features such as automatic saving of settings, smaller console file sizes, view extensions, enhanced drag and drop
support, and the much needed Automation Object Model.

Automation Object Model
The MMC 2.0 Automation object allows you interface with the MMC through scripting. This is the first time Microsoft has exposed
the MMC to scripting. The object model allows you to modify console files, snapins, documents, views, and more.

As you learned in Chapter 1, in order to gain access to an object, you must first use the CreateObject method and set it to a
variable:
Set variable = CreateObject("MMC20.Application")

While the application object is not the only object in the MMC 2.0 Automation object model, for administrators it is the most
important as it allows us to initiate, control, and terminate MMC sessions. For more information about the MMC 2.0 Automation
object model, please visit the following site:

http://msdn.microsoft.com/library/default.asp?url=/library/enus/mmc/mmc/document_object.asp

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Working with Windows Product Activation

While working with Windows XP/2003 Windows Product Activation (WPA), you will definitely run into your share of "activation"
support calls. Luckily, Microsoft has had the foresight to include the ability to script common activation tasks.

Determining Windows Product Activation Status
To determine the activation status using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:{impersonationLevel=impersonate}!\\"
 & computer & "\root\cimv2")
Set objWPA = objWMI.ExecQuery("Select * from
 Win32_WindowsProductActivation")

For Each PA in objWPA
 If PA.ActivationRequired = 0 Then
 Wscript.Echo "Product Already Activated"
 Else
 Wscript.Echo "Product Not Activated" & vbcrlf & _
 "Remaining Evaluation Period: " & PA.RemainingEvaluationPeriod & _
 vbcrlf & _
 "Remaining Grace Period: " & PA.RemainingGracePeriod
 End If
Next

Note The highlighted code above must be placed on one line.

Here, computer is the computer name to query.

Disabling Windows Product Activation Notices
To prevent Windows Product Activation notices reminding you to activate using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:{impersonationLevel=
 impersonate}!\\" & computer & "\root\cimv2")
Set objWPA = objWMI.ExecQuery("Select * from
 Win32_WindowsProductActivation")

For Each PA in objWPA
 PA.SetNotification(0)
Next

Here, computer is the computer name to disable notices.

Note The highlighted code above must be placed on one line. Disabling activation notices does not prevent the need to
activate; it only prevents the reminder notices.

Activating Windows
To activate Windows XP/2003 using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set objWMI = GetObject("winmgmts:{impersonationLevel= _
 impersonate}!\\" & computer & "\root\cimv2")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 impersonate}!\\" & computer & "\root\cimv2")
Set objWPA = objWMI.ExecQuery("Select * from _
 Win32_WindowsProductActivation")
For Each PA in objWPA
 PA.ActivateOnline()
Next

Here, computer is the computer name to activate.

Scripting the System Restore

While system restores are normally performed through the System Restore Utility, you can also script restores through WMI. The
WMI system restore class (SystemRestore) provides methods to enable/ disable the system restore feature, create restore points,
list restore points, and roll back to a restore point.

Enabling/Disabling System Restore
To enable system restore on all drives through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:\\" & computer & "\root\default")
Set objSR = objWMI.Get("SystemRestore")
objSR.Enable("")

Here, computer is the name of the remote computer.

To disable system restore on all drives, change the method name "Enable" to "Disable."

Creating a System Restore Point
To create a restore point through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:\\" & computer & _
 "\root\default:SystemRestore")
objWMI.CreateRestorePoint "Scripted Restore Point", 0, 100

Here, computer is the name of the remote computer.

Listing All System Restore Points
To list all system restore points through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objSR = GetObject("winmgmts:\\" & computer & _
 "\root\default").InstancesOf("SystemRestore")
If objSR.Count = 0 Then
 WScript.Echo "No restore points found."
Else
 Set objWMIDate = CreateObject("WbemScripting.SWbemDateTime")
 For Each RP in objSR
 Select Case RP.RestorePointType
 Case 0
 RPT = "Application install"
 Case 1
 RPT = "Application Uninstall"
 Case 2
 RPT = "Desktop Settings"
 Case 3
 RPT = "Accessibility Settings"
 Case 4
 RPT = "Outlook Express Settings"
 Case 5
 RPT = "Application Run"
 Case 6
 RPT = "Restore"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RPT = "Restore"
 Case 7
 RPT = "Checkpoint"
 Case 8
 RPT = "Windows Shutdown"
 Case 9
 RPT = "Windows Boot"
 Case 10
 RPT = "Device Drive install"
 Case 11
 RPT = "First Run"
 Case 12
 RPT = "Modify Settings"
 Case 13
 RPT = "Cancelled Operation"
 Case 14
 RPT = "Backup Recovery"
 Case Else
 RPT = "Unknown"
 End Select

 objWMIDate.Value = RP.CreationTime

 Wscript.Echo "Date: " & objWMIDate.GetVarDate & vbcrlf & _
 "Number: " & RP.SequenceNumber & vbcrlf & _
 "Description: " & RP.Description & vbcrlf & _
 "Type: " & RPT
 Next
End If

Here, computer is the name of the remote computer.

Rollback to a Restore Point
To roll back to an existing restore point through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:\\" & computer & _
 "\root\default:SystemRestore")
objWMI.Restore RestoreNumber

Set OS = GetObject("winmgmts:{impersonationLevel=impersonate}!\\"
 & computer & "\root\cimv2").ExecQuery
("select * from Win32_ OperatingSystem where Primary=true")
For each System in OS
 System.Reboot()
Next

Here, computer is the name of the remote computer and RestoreNumber is the restore point sequence number. The actual
restore occurs during the reboot process.

Note The highlighted code on the previous page must be placed on one line.

Related solution: Found on page:

Rebooting a System 190

Scripting the MMC Using Windows Script Host

In Chapter 8 you learned how to script the MMC from the command line. This section will show you how to script the MMC using
the MMC 2.0 Automation object and Window Script Host.

Loading a Console File
To load a console file using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objMMC = CreateObject("MMC20.Application")
objMMC.Load("ConsoleFile")
objMMC.Show
objMMC.UserControl = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

objMMC.UserControl = 1

Here, ConsoleFile is the location of the console file to load.

Saving a Console File
To save a console file using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objMMC = CreateObject("MMC20.Application")
Set objDOC = objMMC.Document

objDOC.SaveAs("ConsoleFile")
objDOC .Close(true)

Here, ConsoleFile is the location of the console file to save.

Adding a Snapin
To add a snapin to an MMC using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objMMC = CreateObject("MMC20.Application")
Set objDOC = objMMC.Document

objDOC.SnapIns.Add "snapinname"
objMMC.show
objMMC.UserControl = 1

Here, snapinname is the name of the snapin to add (i.e. "Event Viewer", "Local Users and Groups").

WMI Improvements

Starting with Windows XP/2003, Microsoft has included a few new classes and objects to WMI. While the sections below explore
a few additions, you can visit the following site for a complete list:

http://msdn.microsoft.com/library/default.asp?url=/library/enus/wmisdk/wmi/what_s_new_in_wmi.asp

Converting WMI Dates
WMI uses the Common Information Model (CIM) DateTime format for date and time values which displays dates and times as
yyyymmddHHMMSS.mmmmmmsUUU or yyyy-mm-dd HH:MM:SS:mmm. You can use the sWbemDateTime object to translate
CIM formatted dates and time. To translate a WMI CIM formatted date and time using the sWbemDateTime object, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objDT = CreateObject("WbemScripting.SWbemDateTime")
Set objWMI = GetObject("winmgmts:\\" & Computer & "\root\cimv2")
Set objOS = objWMI.ExecQuery("Select LocalDateTime from
 Win32_OperatingSystem")

For Each OS in objOS
 objDT.Value = OS.LocalDateTime
 WScript.Echo "Original: " & OS.LocalDateTime & vbcrlf & _
 "Formatted: " & objDT.GetVarDate
Next

Note The highlighted code above must be placed on one line.

Here, computer is the name of the remote system. The example above retrieves the current time of the remote computer and
displays both the original CIM formatted date/time and the translated date/time.

Pinging a Network Device
You can use the WMI Win32_PingStatus class to ping a network device and retrieve the returned results through scripting. To
ping a network device and display the results using WMI, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
set objPING = GetObject("winmgmts:{impersonationLevel=impersonate}")._
 ExecQuery ("select * from Win32_PingStatus where address ='"_
 & NetworkDevice & "'")

For Each PING In objPing
 Select Case PING.StatusCode
 Case 0
 Wscript.Echo "Reply from " & PING.ProtocolAddress & _
 ": bytes=" & PING.BufferSize & " " & _
 "time=" & PING.ResponseTime & " " & _
 "TTL=" & PING.ResponseTimeToLive
 Case 11001
 wscript.echo "Buffer Too Small"
 Case 11002
 wscript.echo "Destination Net Unreachable"
 Case 11003
 wscript.echo "Destination Host Unreachable"
 Case 11004
 wscript.echo "Destination Protocol Unreachable"
 Case 11005
 wscript.echo "Destination Port Unreachable"
 Case 11006
 wscript.echo "No Resources"
 Case 11007
 wscript.echo "Bad Option"
 Case 11008
 wscript.echo "Hardware Error"
 Case 11009
 wscript.echo "Packet Too Big"
 Case 11010
 wscript.echo "Request Timed Out"
 Case 11011
 wscript.echo "Bad Request"
 Case 11012
 wscript.echo "Bad Route"
 Case 11013
 wscript.echo "TimeToLive Expired Transit"
 Case 11014
 wscript.echo "TimeToLive Expired Reassembly"
 Case 11015
 wscript.echo "Parameter Problem"
 Case 11016
 wscript.echo "Source Quench"
 Case 11017
 wscript.echo "Option Too Big"
 Case 11018
 wscript.echo "Bad Destination"
 Case 11032
 wscript.echo "Negotiating IPSEC"
 Case 11050
 wscript.echo "General Failure"
 End Select
Next

Here, networkdevice is the name or IP address of the device to ping.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Resources
This appendix lists various web sites and newsgroups where you can gather more information or download some of the tools used
in this book.

ADSI
The following sites provide information on Active Directory Services Interface (ADSI):

http://www.msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000413

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/adsilinks.asp

Newsgroups

http://www.microsoft.public.adsi.general

http://www.microsoft.public.platformsdk.adsi

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Antivirus
The following sites provide information on antivirus:

http://www.networkassociates.com/us/security/vil.htm

http://www.symantec.com/avcenter/

Newsgroups

http://www.alt.comp.virus

http://www.alt.comp.virus.source.code

http://www.microsoft.public.scripting.virus.discussion

http://www.symantec.support.winnt.nortonantivirus.general

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

KiXtart
The sites on the following page provide information on KiXtart.

KiXtart.org

KiXtart.org, formerly kixtart.to, is the premiere Web site for KiXtart scripting. The heart of this site is its bulletin board where you
can find hundreds of KiXtart tips, tricks, facts, and scripts.

Site: http://www.KiXtart.org

Visual KiXtart Editor

Visual KiXtart Editor, by Version Zero Software, is a compact script editor designed just for KiXtart scripting. Although it lacks
some of the advanced features of other editors, this program provides for fast editing and little overhead at a reasonable price.

Site: http://www.versionzero.romanweb.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft Agent
The following sites provide information on Microsoft Agent.

The Agentry

The Agentry is the Web's core location for everything that is Microsoft Agent. Here you will find the Net's largest collection of
Microsoft Agent characters, along with tools, book links, newsgroups, applications, and more.

Site: http://www.agentry.net

MASH (Microsoft Agent Scripting Helper)

MASH, by BellCraft Technologies, is the easiest and quickest way to script Microsoft Agent. This advanced tool allows you to
browse through character animations and create complex script files with absolutely no prior scripting or programming experience.

Site: http://www.bellcraft.com

Microsoft Agent Web Ring

The Microsoft Agent Web Ring is the one place on the Web that tries to bring all Microsoft Agent Web sites together. This site is
full of examples, applications, characters, and links to other Microsoft Agent Web sites.

Site: http://www.msagentring.org

Microsoft Agent in the MSDN Library

This is the official site for Microsoft Agent. Here you will find the latest news and downloads regarding Microsoft Agent.

Site: http://www.microsoft.com/msagent/default.asp

Newsgroups

http://www.microsoft.public.msagent

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Other
The following sites provide information on other helpful sites.

ActiveWin.com

This site is truly an Internet resource center for the Windows platform. Here you will find all sorts of information, drivers, articles,
tools, tips, and tricks for the Windows operating system of your choice.

Site: http://www.activewin.com

JesseWeb

This is my own personal Web site. Here you will find updates and support material for the book, scripts, tricks, tips, security
documents, music, and more. If you visit any site on this page, this should be the place to start.

Site: http://www.jesseweb.com

JSIInc

Glad to see that this site is still alive and well. JSIInc contains an extensive amount of registry tips, tricks, and hacks. The site also
contains administrative utilities, tips, and tricks for almost anything you can think of. A definite bookmark.

Site: http://www.jsiinc.com/reghack.htm

Sysinternals

The site for the true Windows administrator. From the guys that brought you NTFSDOS, ERD Commander, and FAT32 for
Windows NT (http://www.wininternals.com), this site contains many free and invaluable utilities that you may find yourself using on
a daily basis.

Site: http://www.sysinternals.com

FAQ for Windows

Formerly Windows 2000 FAQ, this site contains the answers to hundreds of Windows 2000/XP/2003 questions on just about
every topic. A good site for quick questions and answers.

Site: http://www.winnetmag.com/windowsnt20002003faq/

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Shell Scripting
The following sites provide information on shell scripting.

BatFiles

It's amazing that with the growth of all the other scripting languages, a site like this could still exist. BatFiles is a Web site purely
devoted to the DOS shell scripter. Here you will find tons of examples, tricks, FAQs, links, and downloads.

Site: http://www.bigfoot.com/~batfiles/

DOS Batch Programming

A simple site full of tips, tricks, and techniques. There's even a section purely devoted to NT shell scripting.

Site: http://www.calweb.com/~webspace/batch/

The DOS Command Index

This site contains a comprehensive list of shell scripting commands and their usage.

Site: http://www.easydos.com/dosindex.html

Newsgroups

http://www.alt.msdos.batch

http://www.alt.msdos.batch.nt

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Scripting: General
The following sites provide information on scripting in general.

AutoIt

AutoIt is a free automation tool to send key presses, manipulate the mouse, modify files and the registry, control dialog boxes and
more.

Site: http://www.hiddensoft.com/AutoIt/

Brainbuzz

Dubbed "The Mother of All Tech Sites", the Brainbuzz site truly lives up to its name. Filled with IT news, products, tools, jobs,
links, and more, this site has a section purely devoted to scripting.

Site: http://www.brainbuzz.com

DevGuru

DevGuru is an Internet learning center providing downloads, tutorials, and references for scripters and ASP developers.

Site: http://www.devguru.com

Microsoft Windows Script Technologies

This Web site is Microsoft's central location to obtain scripting downloads, documentation, news, and support. Here you can
download the latest versions of Windows Script Host, Microsoft Script Encoder, and the complete VBScript documentation.

Site: http://www.msdn.microsoft.com/scripting/

PrimalSCRIPT

PrimalSCRIPT, by Sapien Technologies, is by far the leader of script editors. Packed with advanced features and providing
support for more than 30 scripting languages, PrimalSCRIPT is the tool of choice for scripting professionals.

Site: http://www.sapien.com

UltraEdit-32

UltraEdit-32, by IDM Computer Solutions, Inc., is an award-winning script editor that provides for quick and painless editing. This
compact editing tool contains many of the advanced features of other editors, at a fraction of the cost. With features like project
management, macros, keyboard mapping, automatic backup, and unlimited file sizes, this little tool packs a big punch.

Site: http://www.ultraedit.com

Win32 Scripting

Win32 Scripting is the Web center for the serious scripter. Packed with code and custom tools for all types of scripting languages,
this site proves that nothing is unscriptable.

Site: http://www.cwashington.netreach.net

Windows Scripting Solutions

Windows and .NET Magazine's Windows Scripting Solutions is a 15-page monthly publication focused on task automation for the
Windows administrator. The site is generally restricted to its publication subscribers, but is full of scripting articles and examples.

Site: http://www.winnetmag.com/WindowsScripting/

Newsgroups

http://www.microsoft.public.scripting.vbscript

http://www.microsoft.public.scripting.jscript

http://www.microsoft.public.scripting.remote

http://www.microsoft.public.scripting.scriptlets

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Management Instrumentation
The following sites provide information on Windows Management Instrumentation (WMI):

http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_start_page.asp

http://www.microsoft.com/whdc/hwdev/driver/wmi/default.mspx

Newsgroups

http://www.microsoft.public.wbem

http://www.microsoft.public.dotnet.framework.wmi

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Script Host
The following sites provide information on Windows Script Host.

Windows Script Host Bazaar

Gunter Born's Windows Script Host Bazaar is packed with samples, ActiveX controls, book reviews, newsletters, tools, links, and
more.

Site: http://www.borncity.de/WSHBazaar/

Windows Script Host FAQ

This site is an excellent resource for anyone interested in Windows Script Host. This site is loaded with information, tutorials,
FAQs, links, reviews, and more. A definite starting point for the new WSH scripter.

Site: http://www.groups.msn.com/windowsscript

WinScripter

Although most of the scripts at this site are written in Jscript (and the scripts in this book were written in VBScript), this site is an
excellent resource for articles, tutorials, and examples.

Site: http://www.winscripter.com

Newsgroups

http://www.Microsoft.Public.Scripting.wsh

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Security
The following sites provide information on security issues.

Microsoft Security

Microsoft's official security site providing the latest security news, fixes, and links.

Site: http://www.microsoft.com/security/

SANS (System Administration, Networking, and Security)

SANS is a research community, composed of over 156,000 security personnel and system administrators. Here you'll find the
latest security news, events, resources, and more.

Site: http://www.sans.org

Windows IT Security

Windows 2000 Magazine's central site for IT security news, FAQS, files, articles, and more.

Site: http://www.winnetmag.com/WindowsSecurity/

Newsgroups

http://www.microsoft.public.security

http://www.microsoft.public.win2000.security

http://www.microsoft.public.windowsxp.security_admin

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

VBA
The following sites provide information on Visual Basic for Applications (VBA).

http://www.directory.google.com/Top/Computers/Programming/Languages/VBA/outlookvba.com

Newsgroups

http://www.microsoft.public.word.vba.beginners

http://www.microsoft.public.word.vba.customization

http://www.microsoft.public.word.vba.general

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

Symbols and Numbers
-CLONE switch, understanding, 19
8.3 File Naming, disabling with Windows Script Host, 135-136
/REVEAL, detecting windows and text with, 36-37

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

A
Active Directory Services Interface (ADSI)

with Microsoft Windows, 202-203
process, 203
providers, 203-205
silent installation, scripting, 42
understanding, 202-205

ADDUSERS utility, managing groups with, 212
Administrative shares

attaching to, 167-168
common, 167
defining, 167
disconnecting mapped, 169
performing tasks through, 168
removing, 265-266

Administrative Tools, locking down, 266-267
ADSI. See Active Directory Services Interface (ADSI).
Alerts

sending to multiple users/computers with KiXtart, 299-300
sending to multiple users/computers with shell scripting, 298-299
sending to multiple users/computers with Windows Script Host, 301-302
sending to single user/computer with KiXtart, 299
sending to single user/computer with shell scripting, 297-298
sending to single user/computer with Windows Script Host, 300-301
sending with KiXtart, 299-300
sending with shell scripting, 297-299
sending with Windows Script Host, 300-307

API, 8
Application logs, understanding, 281-282
Application objects

accessing, 91
closing, 92
visibility of, 92

Application Programming Interface (API), defining, 8
Applications

automating from command line, 93-99
automating objects through, 100-112
automating send-keys through, 112-115

ARCserve 2000, controlling from command line, 354-355
At command

evolution of, 344-345
scheduling from command line, 356

Attributes, setting all files within folders, 86-87
Audio files

in play list, playing, 373-374
playing using RealPlayer, 372
playing using Windows Script Host controls, 372-373
playing with KiXtart, 368

Auto-sized partitions, creating, 23
AutoIt

ActiveX Control, scripting, 37
[ADLIB] section, 36-37
versus KiXtart, 36-37
script files, converting standalone executables to, 37
understanding, 35-37
Web site, 35
versus Windows Script Host, 36-37

Automation
evolution of, 90
identifiers, 91-92

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

B
Backup Exec

consolidating logs, 351-354
controlling from command line, 350

Backups
best types of, 343-344
performing, 344
rotating, 344
securing, 343
storing, 344
subpoenaing, 344
testing, 344
written policies for, 344

Batch file, defining, 2
Batteries, collecting information on with Windows Management Instrumentation, 241-243
BIOS

collecting information on with
KiXtart, 236-237
collecting information on with shell scripting, 233-234
collecting information on with
Windows Management Instrumentation, 243-244

Boot Disks, creating, 26-27
Boot Timeout

setting from Windows 2003
system, 263
setting from Windows XP system, 263
setting with Bootcfg, 263
setting with KiXtart, 263-264
setting with Windows Management
Instrumentation, 264

Bootcfg
adding with safe mode entries, 29
deleting entries with, 29
displaying with Boot.ini, 28
scanning and rebuilding with Boot.ini, 28-29
setting with Boot Timeout, 263

Boot.ini
backing up, 27
displaying, 28
displaying with bootfcg, 28
scanning and rebuilding with bootcfg, 28-29
working with, 27-29

buttons
Change Password, 135
Lock Workstation, 134
Logoff, 135

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

C
CD-ROMs

collecting information on with Windows Management Instrumentation, 244
ejecting with Windows Script Host, 370-371

CDOSYS, 305-307
Central directory, moving uninstall shortcuts, 153-154
Change Password button, disabling with Windows Script Host, 135
Chassis, collecting information on with Windows Management Instrumentation, 244-246
CIPHER.EXE, list of supported parameters, 158
CMD.exe

defining, 2-3
running, 3-4

Collaboration Data Objects for Windows (CDOSYS), sending email, 305-307
Colors

background and foreground, changing with KiXtart, 325
background and foreground, changing with shell scripting, 316-317

COM. See Component Object Model (COM) Objects.
Command line

decrypting and encrypting files from, 158
NTFS permissions, managing from, 157
services, managing from, 155-157
shares, managing from, 159-160

Command shells
defining, 2
types of, 2-3
using, 2-3

COMMAND.com, defining, 2-3
Commands, running under security contexts, 267-268
Component Object Model (COM) Objects

accessing, 9
types of, 9-10
working with, 9-10

Computer accounts
creating in Microsoft Windows 2000 and 2003, 225
creating with Active Directory Services Interface, 215-216
deleting in Microsoft Windows 2000 and 2003, 225-226
deleting with Active Directory Services Interface, 216
listing in Microsoft Windows 2000 and 2003, 224-225
listing with Active Directory Services Interface, 215
managing from command line, 206-207
NET command, managing with, 206
NETDOM utility, managing with, 206-207

"Computer Management" MMC Snapin, opening, 174
Computers, suspending with shell automation, 109
Console files

loading using Windows Script Host, 393
saving using Windows Script Host, 393-394

Context menu, accessing with shell automation, 111-112
Control Panel Applets

running with shell automation, 108
scripting, 98-99

Copy backup, 343
CPUs

monitoring utilization with converting, 192-193
rebooting with converting, 190-191
shutting down with Windows Management Instrumentation, 191-192

Crackers, defining, 259
CSCRIPT command-line host utility, defining, 8
Custom backup, 343

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

D
Daily backup, 343
data, list of storage paths, 141
Date and Time

accessing properties page with shell automation, 109
writing to text logs with shell scripting, 285-286

"Defrag" Context menu, adding with Windows Script Host, 137
Device Manager

understanding, 231
Windows, using in, 231

DHCP. See Dynamic Host Configuration Protocol (DHCP).
Dial-Up Networking icon, removing with KiXtart, 132
Dialog boxes, scripting, 99-100
Differential backup, 343
Directories, replicating, 56-58
Directory listing, generating, 66
Disk formats

faster, 25
floppy, 25
hard, 24-25
options, 25
scripting, 24-25

Domain passwords, setting with Active Directory Services Interface, 216
Drive copy, performing in Symantec's Norton Ghost, 31
Drives

collecting information on Windows Management Instrumentation, 246-247
collecting information on with KiXtart, 237-238
by group, mapping with KiXtart, 327-328
by group, mapping with Windows Script Host, 333-334
universal, mapping by group with shell scripting, 318-319
universal, mapping with KiXtart, 326-327
universal, mapping with Windows Script Host, 332-333

DST parameters, 20
Dynamic Host Configuration Protocol (DHCP)

reviewing leases with, 195
switching with Windows Management Instrumentation, 194-195

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

E
Email

Collaboration Objects for Windows, sending with, 305-307
Microsoft automation, sending with Windows Script Host, 302-305

"Email Attachment" Context menu item, adding with Windows Script Host, 137-138
Enterprise, managing with Active Directory Services Interface, 213-228
Environment variables

list of, 312-313
system, 312
user, 312

Errors, logging in Symantec's Norton Ghost, 32
Event logs

backing up with KiXtart, 290-291
binary mode, backing up with Windows Management Instrumentation, 294-295
clearing with KiXtart, 291
clearing with Windows Management Instrumentation, 297
DUMPEL, backing up with shell scripting, 288
entries, 282-283
etiquette, 283
Event Viewer with, 282
EVENTCREATE, writing to with shell scripting, 287-288
LOGEVENT, writing to with shell scripting, 286-287
in Microsoft Windows, 281
text mode, backing up with Windows Management Instrumentation, 295-297
types of, 281-282
understanding, 281-283
writing to shell scripting, 286-288
writing to using Windows Script Host, 292-294
writing to with KiXtart, 289-290

Event Viewer
Microsoft Windows, 282
opening MMC Snapin, 174
understanding, 282

EVENTCREATE
event logs, writing to with shell scripting, 287-288
event logs, writing with, 287-288

Extended partitions, creating, 22
External commands, running, 58

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

F
Faster disk formats, scripting, 25
FAT, versus NT File System, 143
FAT32, versus NT File System, 143
File extensions, 81-82
File systems

manipulating, 64-87
manipulating with KiXtart, 58-63
manipulating with shell scripting, 55-58
manipulating with Windows Script Host, 64-87
working with, 55

File Transfer Protocol (FTP)
command line switches, list of, 94
commands, list of, 94-95
download of McAfee Antivirus Update files, scripting, 97-98
download of Norton Antivirus Update files, scripting, 96-97
downloads, scripting, 96
scripting, 94-95
uploads, scripting, 95-96

Files
attributes, displaying, 57, 59-60, 83-85
attributes, removing, 57
attributes, renaming, 57
attributes, setting, 57, 60, 85-86
compressing, 58
connecting, 64-65
copying, 77-78
copying with shell automation, 110
defining, 53
deleting, 67-72
deleting by date, 69-70
deleting by extensions, 55, 71-72
deleting by name, 70-71
deleting by size, 68-69
deleting within folders, 67-68
details, obtaining with shell automation, 110
moving, 78-80
moving with extensions, 79-80
moving with shell automation, 110
names, randomly generating, 65
renaming, 59, 80-81
renaming with short file names, 82
replicating, 56-58
versions, determining, 56

FileSystem object, understanding, 10
FileSystemObject object, accessing, 64
Find Files properties page, accessing with shell automation, 109
Floppy Disk Formats, scripting, 25
Folder Name Space, connecting to with shell automation, 109-110
Folders

attributes, displaying, 57, 59-60
attributes, removing, 57
attributes, renaming, 57
attributes, setting, 57, 60-61
browsing, with shell automation, 106-107
compressing, 58
connecting, 65
constants, list of, 106-107
copying, 78
copying with shell automation, 110-111
deleting, 56, 72-77
deleting by date, 75-76
deleting by name, 77
deleting by size, 73-75
details, obtaining with shell automation, 110
exploring with shell automation, 107-108
moving, 80
moving with shell automation, 110-111
opening with shell automation, 108

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

renaming, 59
Forests, understanding, 201
Free FDISK

enhanced functionality of, 17
versus Microsoft FDISK, 17
Web site, 15, 17
working with, 23-24

FTP. See File Transfer Protocol (FTP).
Full backup, 342
Functions

defining, 5, 11
structure of, 11

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

G
Global catalog

Windows 2000, working with, 202
Windows 2003, working with, 202

Groups
adding user accounts with Active
Directory Services Interface, 221-222
creating with Active Directory Services Interface, 221
deleting with Active Directory Services Interface, 221
listing in Microsoft Windows 2000 and 2003, 227-228
listing members in Microsoft Windows 2000 and 2003, 228
listing members with Active Directory Services Interface, 222-223
listing users with Active Directory Services Interface, 220
listing with Active Directory Services Interface, 220
managing from command line, 211-213
managing with ADDUSERS utility, 212
managing with NET command, 211-212
removing user accounts with Active Directory Services Interface, 222
USRTOGRP utility, managing with, 212-213

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

H
Hackers, defining, 259
Hard disks formats, scripting, 24-25
Hard Drive Setup Boot Disk, creating, 26-27
Hard drives

formatting, 17
imaging, 18-20
partitioning, 15-17
setting up, 15-17

HKCC, 120
HKCR, 119
HKCU, 120
HKEY_CLASSES_ROOT (HKCR), understanding, 119
HKEY_CURRENT_CONFIG (HKCC), understanding, 120
HKEY_CURRENT_USER (HKCU), understanding, 120
HKEY_LOCAL_MACHINE (HKLM), understanding, 119
HKEY_USERS (HKU), understanding, 119
HKLM, 119
HKU, 119
Hotfixes, listing with Windows Management Instrumentation, 255

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

I-J
Icons

Dial-Up Networking, removing with KiXtart, 132
My Computer, removing with KiXtart, 131-132
Network Neighborhood, hiding with KiXtart, 133
Scheduled Task, removing with KiXtart, 132-133
Windows 2000 icons, hiding with KiXtart, 133-134

IE. See Microsoft Internet Explorer (IE).
IIS Metabase

backing up with Windows Script Host, 349
restoring with Windows Script Host, 350
Images creating in PowerQuest Drive Image Pro, 29-30
creating in Symantec's Norton Ghost, 31
restoring in PowerQuest Drive Image Pro, 30
restoring in Symantec's Norton Ghost, 31

Imaging
hard drives, 18-20
process of, 18
tools, 18-20
understanding, 18-20

Impersonation level, understanding, 171
Incremental backup, 342
Information

collecting on with KiXtart, 236-241
collecting on with shell scripting, 233-236
collecting on with Windows Management Instrumentation, 241-255

ini files
evolution of, 118
searching and replacing within, 63

Internet, browsing, 113-114
Interpreted programs. See Scripts.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

K
KiXtart

advanced features of, 5
alerts, sending, 299-300
audio files, playing with, 368
versus AutoIt, 36-37
BIOS, collecting information on with, 236-237
Boot Timeout, setting with, 263-264
collecting information on, 236-241
commands, 5
defining, 5
dialog boxes, using with, 147
drives, collecting information on with, 237-238
event logs, writing to, 289-291
external commands, running, 58
file or folder attributes, displaying, 59-60
file or folder attributes, setting, 60-61
file system, manipulating, 58-63
files or folders, renaming, 59
functions, 5-6
icons, working with, 131-134
ini files, searching and replacing within, 63
limitations of, 7
lines with files, searching and replacing, 62-63
logon scripts, creating, 324-331
logs, using, 288-291
macros, defining, 6
macros, types of, 6
macros, using, 6
NTBackup, running with, 348
operating systems, collecting information on with, 238-239
printers, collecting information on with, 239-240
processors, collecting information on with, 240-241
Program groups, adding, 153
registry, modifying, 129-134
registry functions, list of, 129-130
registry key, backing up, 130
registry key, restoring, 130-131
shortcuts, creating, 150-151
text files, appending, 61-62
text logs, writing to, 288-289
understanding, 5-7
user input, accepting, 148
variables, 5-6
wallpaper, changing, 149
Web site, 5
Welcome screen, disabling, 131
when to use, 7

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

L
Last Access Time Stamp, disabling with Windows Script Host, 136
LDAP. See Lightweight Directory Access Protocol (LDAP).
Lightweight Directory Access Protocol (LDAP)

computer accounts, creating in Microsoft Windows 2000 and 2003, 225
computer accounts, deleting in Microsoft Windows 2000 and 2003, 225-226
computer accounts, listing in Microsoft Windows 2000 and 2003, 224-225
by groups, listing in Microsoft Windows 2000 and 2003, 227-228
listing group members in Microsoft Windows 2000 and 2003, 228
managing Windows 2000 and 2003 through, 223-228
providers, understanding, 204-205
user accounts, creating in Microsoft Windows 2000 and 2003, 226-227
user accounts, deleting in Microsoft Windows 2000 and 2003, 227
user accounts, listing in Microsoft Windows 2000 and 2003, 226

Lines with files, searching and replacing, 62-63
LiveUpdate, scripting silent installation, 43
Local system time

synchronizing with KiXtart, 326
synchronizing with shell scripting, 317-318
synchronizing with Windows Script Host, 331-332

Lock Workstation button, disabling with Windows Script Host, 134
LOGEVENT, writing to event log using, 286-287
Logical partitions, creating, 22
Logoff button, disabling with Windows Script Host, 135
Logon script environment, setting up in KiXtart, 324-325
logon scripts

creating with KiXtart, 324-331
creating with shell scripting, 316-324
creating with Windows Script Host, 331-339
tasks of, 311-314

Logon scripts, versus scripts, 311
Logs, writing to with shell scripting, 286-287

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

M
MAPI, 284
mapped shares

disconnecting, 169
working with, 167-169

mapping, defining, 167
Master Boot Record, rewriting, 23
McAfee Antivirus

updating files with KiXtart, 329-330
updating files with shell scripting, 323
VirusScan feature of, 313-314

McAfee Antivirus Update files, scripting File Transfer Protocol download, 97-98
McAfee Antivirus, updating files with Windows Script Host, 336-337
MDACs, 40-41
Media files

playing from command line with Windows Script Host, 369
playing from the command line with shell scripting, 369
playing play lists using, 369-370

Memory
collecting information on with shell scripting, 234-235
collecting information on with Windows Management Instrumentation, 247

Message Application Programming Interface (MAPI), understanding, 284
Mice

collecting information on with Windows Management Instrumentation, 249
properties, modifying, 99

Microsoft Agent
entertaining with, 376-383
process of, 366
running, 365-366
scripting with Windows Script Host, 366-367, 376-383

Microsoft Command Line Switches, list of, 34-35
Microsoft Data Access Components (MDACs), scripting silent installation, 40-41
Microsoft Excel, creating spreadsheets, 103-105
Microsoft FDISK

versus Free FDISK, 17
options of, undocumented, 23
partitions using, creating, 21-23
scripting limitations of, 17
understanding, 16-17

Microsoft Internet Explorer (IE)
cache, clearing, 114-115
Default start page, changing, 113
display tool, using as, 100-102
download, scripting, 42
logon script box, using with Windows
Script Host, 337-339
silent installation, scripting, 43

Microsoft Management Console (MMC) 2.0
defining, 174
remote management from the command line, 175-179
scripting using Windows Script Host, 393-394
snapins, adding to, 394
snapins, opening, 174
understanding, 387
working with, 174

Microsoft Media Player, scripting, 368-371
Microsoft Office, older versions, 46-47
Microsoft Office 2000

advertising, 48
reinstallation, scripting, 48
repair, scripting, 47
scripting, 46-48
silent installation, scripting, 47
uninstall, scripting, 47

Microsoft Office XP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

advertising, 48
reinstallation, scripting, 48
repair, scripting, 47
scripting, 46-48
silent installation, scripting, 47
uninstall, scripting, 47

Microsoft Outlook Automations, sending email, 302-305
Microsoft Script Encoder

parameters, list of, 277-278
using, 277-278

Microsoft Security Configuration and Analysis (MSSCE)
security templates, list of, 260-261
understanding, 260

Microsoft Windows
system information, 230-231
tools, 230-231

Microsoft Windows 2000
Active Directory Services Interface, understanding, 202-205, Seen also Active Directory Services Interface (ADSI)
administrative shares in, 167
backing up, 123-124
computer accounts, creating and deleting with Lightweight Directory Access Protocol, 225-226
computer accounts, listing with Lightweight Directory Access Protocol, 224-225
data storage paths, list of, 141
data types, list of, 120
Device Manager, 231
Drive Defrag, scripting, 112
encrypting files, 157-158
event logs, 281-283
Event Viewer, 282
forests, understanding, 201
global catalog, understanding, 201
groups, listing with Lightweight Directory Access Protocol, 227-228
listing group members with Lightweight Directory Access Protocol, 228
logging off users, 161-162
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
networks, understanding, 201-205
objects, understanding, 201
Organizational Units, creating and deleting, 223-224
Organizational Units, understanding, 201
REGEDIT versus REGEDT32, 120-122
registry backup misconceptions, understanding, 123
registry editing, 122
registry files, 118-119
registry hierarchy, 119-120
remote management from the command line, 175-179
restarting computers, 161
restoring, 123-124
RunAs command, using, 268
security, fixing with SECEDIT, 270
shutting down computers, 161
system information utility, 230-231
trees, understanding, 201
user accounts, creating and deleting with Lightweight Directory Access Protocol, 226-227
user accounts, listing with Lightweight Directory Access Protocol, 226

Microsoft Windows 2003
activating using Windows Script Host, 389
Active Directory Services Interface, understanding, 202-205
administrative shares in, 167
backing up, 123-124
computer accounts, creating and deleting with Lightweight Directory Access Protocol, 225-226
computer accounts, listing with Lightweight Directory Access Protocol, 224-225
data storage paths, list of, 141
data types, list of, 120
Defrag, command line options, 93
Device Manager, 231
encrypting files, 157-158
event logs, 281-283
Event Viewer, 282
global catalog, understanding, 201
group members, listing with Lightweight Directory Access Protocol, 228
groups, listing with Lightweight Directory Access Protocol, 227-228
logging off users, 162-163
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
networks, understanding, 201-205
objects, understanding, 201
Organizational Units, creating and deleting, 223-224

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Organizational Units, understanding, 201
product activation, 386, 389
REGEDIT versus REGEDT32, 120-122
registry, editing, 122
registry backup misconceptions, understanding, 123
registry files, 118-119
registry hierarchy, 119-120
remote management from the command line, 175-179
restarting computers, 162
restoring, 123-124
RunAs command, using, 268
shutting down computers, 162
supported parameters, 162
system information utility, 230-231
System Restore, 387
trees and forests, understanding, 201
user accounts, creating and deleting with Lightweight Directory Access Protocol, 226-227
user accounts, listing with Lightweight Directory Access Protocol, 226
Windows Product Activation notices, disabling using Windows Script Host, 389
Windows Product Activation status, determining using Windows Script Host, 388

Microsoft Windows Installer
Clean Up utility, installing, 48-50
features of, 38-39
installation, scripting, 46
Rollbacks, disabling, 48
Rollbacks, features of, 38-39
Self-Repair, features of, 38
switches, list of, 39
understanding, 38-39
working with, 45-50

Microsoft Windows NT
Active Directory Services Interface, understanding, 202-205
security, fixing with SECEDIT, 270

Microsoft Windows 9x, understanding Active Directory Services Interface, 202-203
Microsoft Windows XP

activating using Windows Script Host, 389
Active Directory Services Interface, understanding, 202-203
administrative shares in, 167
backing up, 123-124
Boot Timeout, setting in, 263
data storage paths, list of, 141
data types, list of, 120
Defrag, command line options, 93
Defrag, scripting, 93
Device Manager, 231
encrypting files, 157-158
event logs, 281-283
Event Viewer, 282
logging off users, 162-163
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
product activation, 386, 389
REGEDIT versus REGEDT32, 120-122
registry backup misconceptions, understanding, 123
registry editing, 122
registry files, 118-119
registry hierarchy, 119-120
remote management from the command line, 175-179
restarting computers, 162
restoring, 123-124
RunAs command, using, 268
shutting down computers, 162
supported parameters, 162
system information utility, 230-231
System Restore, 387
Windows Product Activation notices, disabling using Windows Script Host, 389
Windows Product Activation status, determining using Windows Script Host, 388

Microsoft Windows XP Service Pack, scripting silent installation, 41
Microsoft Word, creating reports, 102-103
MMC. See Microsoft Management Console (MMC) 2.0.
MODE parameters, 19-20
Modems, collecting information on with Windows Management Instrumentation, 248
Monitors, collecting information on with Windows Management Instrumentation, 248-249
MSSCE. See Microsoft Security Configuration and Analysis (MSSCE).
My Computer icon, removing with KiXtart, 131-132

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

N
Namespaces, list of, 171-172
NET ACCOUNTS command, using, 271
NET command

computer accounts, managing with, 206
Groups, managing with, 211-212

.NET framework, scripting silent installation, 40
NetBIOS. See Network Basic Input Output System.
NETDOM utility, managing computer accounts with, 206-207
Network adapters, collecting information on with Windows Management Instrumentation, 249-250
Network Basic Input Output System (NetBIOS)

communication modes of, 284
understanding, 283-284

Network drives, mapping, 167-169
Network Neighborhood icon, hiding with KiXtart, 133
Norton Antivirus

command line switches, list of, 94-95
File Transfer Protocol download, scripting, 96-97
Intelligent Updater feature of, 313
scripting, 93-94
silent installation, scripting, 45
updating files with KiXtart, 330-331
updating files with shell scripting, 324
updating files with Windows Script Host, 337

NT File System (NTFS)
converting to, 143-144
encryption, managing, 157-158
versus FAT and FAT32, 143
file owners, changing from the command line, 157
files and folders, copying and moving, 53-54
improvements, list of, 143
permissions, modifying from the command line, 157
security, 144

NTBackup
backups, supported types of, 342-343
defining, 342
features of, 343
managing, 346-350
running with KiXtart, 348
running with shell scripting, 347
running with Windows Script Host, 348
supported switches, 346-347

NTFS. See NT File System (NTFS).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

O
Objects

defining, 9
instantiating, 9
Windows 2000, working with, 202
Windows 2003, working with, 202

Office Assistant
object model of, 364-365
scripting, 374-375
understanding, 364-365

"Open with Notepad" context menu item, adding with Windows Script Host, 138
Operating systems

collecting information on with KiXtart, 238-239
collecting information on with Windows Management Instrumentation, 250-251

Organizational Units (OUs)
Windows 2000, working with, 202
Windows 2003, working with, 202

OS/2 Subsystems, removing, 264-265
OUs. See Organizational Units.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

P-Q
Partitions

auto-sized, 23
copy, performing in Symantec's Norton Ghost, 31
defining, 15
deleting, 24
extended, 16, 22
hard drives, 15-17
hierarchy of, 16
logical, 16, 22
primary, 16, 21
types of, 16, 21-23
understanding, 15-17

Passwords
account lockout policy, setting, 274-275
administrator account, renaming, 276
age, setting, 273-274
domain, setting with Active Directory
Services Interface, 216
length of, setting, 273
local administrator, changing with Active Directory Services Interface, 216-217
locked-out accounts, setting, 275
unique changes, setting, 274
unused accounts, searching for, 276-277

pcANYWHERE 11.0, scripting silent installation, 45
PCs, ejecting with shell automation, 109
Permissions, listing on a remote system, 176
Portable Operating System Interface for UNIX (POSIX), removing, 264-265
POSIX, S264-265
PowerQuest Drive Image Pro

commands, 18-19
scripting, 29-31
understanding, 18-19
Web site, 15, 18

Primary partitions, creating, 21
Printers

collecting information on with KiXtart, 239-240
collecting information on with Windows Management Instrumentation, 251
Con2 PRT, mapping with shell scripting, 320-321
mapping with KiXtart, 328
mapping with Windows Script Host, 334
Print UI DLL, mapping with shell scripting, 321

Processes
creating with Windows Management Instrumentation, 183
listing on a remote system, 176-177
listing with Windows Management Instrumentation, 182-183
priority, changing with Windows Management Instrumentation, 184-185
priority values, list of, 184-185
terminating on a remote system, 176
terminating with Windows Management Instrumentation, 184

Processors
collecting information on with KiXtart, 240-241
collecting information on with shell scripting, 235-236
collecting information on with Windows Management Instrumentation, 251-252

Program files, updating, 56, 82-83
Program groups, adding with KiXtart, 153
Programs, versus scripts, 1-2

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

R
RealOne, scripting, 372-374
RealPlayer, playing audio files, 372
REGEDIT

versus REGEDT32, 120-122
using, 121

REGEDT32
versus REGEDIT, 120-122
using, 121

REG.EXE, list of supported parameters, 124-125
Registry

backing up, 123-124
backup misconceptions, understanding, 123
data types, list of, 120
editing, 122
files, 118-119
hierarchy of, 119-120
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
REGEDIT versus REGEDT32, 120-122
restoring, 123-124
understanding, 118

Remote access
checking with KiXtart, 328-329
checking with shell scripting, 321-322
checking with Windows Script Host, 335

Remote Command, executing on remote systems, 175-176
Remote Console

commands, executing in, 175-176
installing, 175

Remote Desktop, connecting using Remote system, 178
Remote Management

commands, executing from the command line, 175-176
connecting through Windows Management Instrumentation, 179-197
processes, listing from the command line, 176-177
processes, terminating from the command line, 177
Remote Command, installing from the command line, 175
Remote Console, installing from the command line, 175
Remote Desktop, connecting to, 178
services, listing, 177
services, managing, 177-178
shares and permissions, listing and creating, 176
Virtual Network Computing, connecting through, 178-179

RunAs command, using with Windows XP, 268
RUNDLL32 calls, list of, 99-100

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

S
Scheduled Task icon, removing with KiXtart, 132-133
SCHTASKS, creating, listing, and deleting tasks with, 357
Scripting methods, understanding, 34-35
Scripts

creating, 1-2
defining, 1
limitations of, 2
versus logon scripts, 311
versus programs, 1-2
running in PowerQuest Drive Image Pro, 30-31
understanding, 1-2
using in Symantec's Norton Ghost, 32
when to use, 2

SDKs, 172-173
SECEDIT utility

fixing Windows 2000 upgrade security with, 269-270
fixing Windows NT security with, 269-270
group policy, reapplying with, 269
security analysis, using with, 269
security settings, explaining, 270-271
Security Template, applying with, 269-270
using, 268-271

Security
logs, understanding, 281-282
managing through Active Directory Services Interface, 272-277
Microsoft Windows 2000, fixing upgrade with SECEDIT on, 270
password length, setting, 273
priorities, list of, 261-262
scripts, list of, 278
templates in Microsoft Security Configuration and Analysis, types of, 260-261
Windows NT, fixing with SECEDIT on, 270

Services
deleting with Windows Management Instrumentation, 189-190
installing from the command line, 155
listing on a remote system, 177
listing with Windows Management Instrumentation, 185-186
managing on a remote system, 177-178
parameters for listing, 177
parameters for managing, 178
pausing from the command line, 156
pausing with Windows Management Instrumentation, 188-189
resuming from the command line, 156
resuming with Windows Management Instrumentation, 189
starting from the command line, 156
starting with Windows Management Instrumentation, 186-187
stopping from the command line, 156-157
stopping with Windows Management Instrumentation, 187-188
uninstalling from the command line, 155

Shares
adding from the command line, 159
copying permissions from the command line, 160
creating with Active Directory Services Interface, 214
creating with permissions from the command line, 160
creating with permissions on a remote system, 176
creating with Windows Management Instrumentation, 180-181
deleting with Active Directory Services Interface, 214-215
deleting with Windows Management Instrumentation, 181-182
listing from the command line, 159
listing on a remote system, 176
listing with Active Directory Services Interface, 213-214
listing with Windows Management Instrumentation, 179-180
removing from the command line, 159

Shell automation
computers, suspending, 109
Context menu, accessing, 111-112
control panel applets, running, 108
Date and Time properties page, accessing, 109
file details, obtaining, 110
files, copying and moving, 110

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Find Files properties page, accessing, 109
folder details, obtaining, 110
Folder Name Space, connecting to, 109-110
folders, browsing, 105-106
folders, copying, 110-111
folders, exploring, 107-108
folders, moving, 110-111
folders, opening, 108
PCs, ejecting, 109
Start menu, refreshing, 109
Start menu properties page, accessing, 109
system dialog boxes, calling, 108
system windows, controlling, 105-106
Taskbar properties page, accessing, 109

Shell scripting
alerts, sending, 297-299
BIOS, collecting information on with, 233-234
collecting information on with, 233-236
commands, list of, 145-146
defining, 2
dialog boxes, using with, 145-146
event logs, writing to, 286-288
example, 3-4
file and folder attributes, displaying, setting, or renaming, 57
file system, manipulating, 55-58
file versions, determining, 56
files and directories, replicating, 57-58
files and folders, compressing, 58
files depending on extensions, deleting, 55
folders and subfolders, deleting, 56
limitations of, 4
logon scripts, creating, 316-324
logs, using, 285-288
media files, playing from the command line, 369
memory, collecting information about, 234-235
NTBackup, running with, 347
output, suppressing, 25
processors, collecting information about, 235-263
program files, updating, 56
registry, modifying, 124-129
registry, modifying with REGINI.EXE, 128-129
registry, querying, 125-126
registry, searching, 126
registry keys, backing up, 125
registry keys, deleting with REGEDIT, 127-128
registry keys, restoring, 125
shortcuts, creating, 149-150
SRVINFO utility, collecting information with, 233
text files, appending, 57
text logs, writing to, 285
understanding, 2-4
user input, accepting, 147-148
when to use, 4
Windows 2000, customizing, 126-127
Windows 2003, customizing, 126-127
Windows XP, customizing, 126-127

Shortcuts
broken, deleting, 152-153
creating with KiXtart, 150-151
creating with shell scripting, 149-150
creating with Windows Script Host, 151-152
uninstall, moving to Central Directory, 153-154
working with, 149-153

SHUTDOWN.EXE, list of supported parameters, 161
Silent installations

of Active Directory Services Interface, 42
of Internet Explorer, 43
of LiveUpdate, 43
of Microsoft Data Access Components, 40-41
of Microsoft Office 2000/XP, 47
of .NET framework, 40
of Norton Antivirus 2003, 45
of pcANYWHERE 11.0, 45
of Windows 2000 Resource Kit, 45-46
of Windows 2000 Service Pack, 41
of Windows 2000 XP Service Pack, 41
of Windows Management Instrumentations, 41-42
of Windows XP Service Pack, 41
of WinZip 8.1 SR-1, 43-45

SMS, 231

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Software
installed, listing with Windows Management Instrumentation, 254-255
installing with Windows Management Instrumentation, 195-196
uninstalling with Windows Management Instrumentation, 196-197

Software developer's kits (SDKs), Windows Management Instrumentation and, 172-173
Sound cards, collecting information on with Windows Management Instrumentation, 252
SpecialFolder property, list of available folders, 141-142
SRC parameters, 20
SRVINFO, collecting information on with shell scripting, 233
Start menu

controlling, 153-155
properties page, accessing with shell automation, 109
refreshing with shell automation, 109

Static IP addresses, assigning with Windows Management Instrumentation, 193-194
Sub procedures

structure of, 10-11
understanding, 10-11

Subfolders
accessing, 64
deleting, 56, 73

Subroutines
defining, 10
types of, 10-11
understanding, 10-11

Switches
combining, 22-23
using in Symantec's Norton Ghost, 32

Symantec's Norton Antivirus. See Norton Antivirus.
Symantec's Norton Ghost

DST parameters, 20
image files, creating and storing, 19
MODE parameters, 19-20
scripting, 31-32
SRC parameters, 20
understanding, 19
Web site, 15, 19

System dialog boxes, calling with shell automation, 108
System events, calling, 161-163
System information utility, understanding, 230-231
System information utility, using in Windows, 230-231
System logs, understanding, 281-282
System Manager Server (SMS), understanding, 231
System Restore

enabling/disabling through Windows Management Improvements, 390
points, creating through Windows Management Improvements, 390
points, listing through Windows Management Improvements, 391-392
scripting through Windows Management Improvements, 390-393
understanding, 387

System Restore Points
creating through Windows Management Improvements, 390
listing all through Windows Management Improvements, 391-392
rolling back through Windows Management Improvements, 392-393

System Windows, controlling with shell automation, 105-106

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

T
Tape drives, collecting information on with Windows Management Instrumentation, 253
Task scheduler, understanding, 344-345
Taskbar, accessing the properties page with shell automation, 109
Tasks

creating, listing, and deleting with SCHTASKS, 357
creating with Windows Management Instrumentation, 357-359
deleting with Windows Management Instrumentation, 361
listing in Internet Explorer with Windows Management Instrumentation, 359-361

Text files
appending, 57, 61-62
applying, 87

Text logs
Date and Time, writing to with shell scripting, 285-286
using with shell scripting, 285-286
using with Windows Script Host, 292
writing to KiXtart, 288-289
writing to shell scripting, 285-286

Time
hierarchy of, 311-312
synchronization, understanding, 311-312

Time-based greetings
displaying with KiXtart, 329
displaying with shell scripting, 322-323
displaying with Windows Script Host, 335-336

Trees, understanding, 201

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

U
USBs, collecting information on Windows Management Instrumentation, 253-254
User accounts

ADDUSERS utility, managing with, 209-210
creating in Microsoft Windows 2000 and 2003, 226-227
creating with Active Directory Services Interface, 217-218
CURSMGR utility, managing with, 210-211
deleting in Microsoft Windows 2000 and 2003, 227
deleting with Active Directory Services Interface, 218
disabling with Active Directory Services Interface, 219-220
listing in Microsoft Windows 2000 and 2003, 226
listing with Active Directory Services Interface, 217
managing from command line, 207-211
NET command, managing with, 208-209
unlocking with Active Directory Services Interface, 219

User profiles, deleting, 154-155
Users, interacting with when scripting, 145-149
USRTOGRP utility, managing groups with, 212-213

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

V
VBA, 90-91
Video cards, collecting information on with Windows Management Instrumentation, 254
Virtual Network Computing (VNC)

Remote Management (from the command line), connecting through, 178-179
Remote system, connecting to through, 178-179

Visual Basic for Applications (VBA), understanding, 90-91
VNC. See Virtual Network Computing (VNC).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

W-Z
Wallpaper, changing in KiXtart, 149
Window titles, setting with shell scripting, 316
Windows

navigating through, 35-37
NT File System overview, 143-144
sharing resources, 142-143

Windows 2000
backing up, 342-344
logon processes of, 314-315
Microsoft Media Player, scripting, 368-371
replication, purpose of, 314-315
time synchronization, 311-312
window titles, setting with shell scripting, 316

Windows 2003
backing up, 342-344
Boot Timeout, setting, 263
Microsoft Management Console 2.0, using, 387
Microsoft Media Player, scripting, 368-371
time synchronization, 311-312
window titles, setting with shell scripting, 316
Windows Management Improvements, working with, 394-397

Windows 2000 Resource Kit, scripting silent installation, 45-46
Windows 2000 Service Pack, scripting silent installation, 41
Windows Management Instrumentation (WMI)

batteries, collecting information on, 241-243
BIOS, collecting information on, 243-244
Boot Timeout, setting with, 264
CD-ROMs, collecting information on, 244
chassis, collecting information on, 244-246
CPUs, working with, 190-193
creating tasks with, 357-359
dates, converting, 395
defining, 169-170
deleting tasks with, 361
drives, collecting information on, 246-247
event logs, accessing with, 294-297
Hotfixes, listing, 255
impersonation level, 171
improvements to, 394-397
information, collecting, 241-245
Internet Explorer, listing tasks with, 359-361
memory, collecting information on, 247
mice, collecting information on, 249
modems, collecting information on, 248
monitors, collecting information on, 248-249
namespaces, list of, 171-172
network adapters, collecting information on, 249-250
object browser, 173
operating systems, collecting information on, 250-251
pinging network devices in, 395-397
printers, collecting information on, 251
processes, working with, 182-185
processes of, 170-171
processors, collecting information on, 251-252
Query Language, 172

See also Windows Management Instrumentation Query Language.
See also Windows Management Instrumentation Query Language.

remote management through, 179-197
scripting, 171-172
services, working with, 185-190
shares, working with, 179-182
silent installation, scripting, 41-42
software developer's kits and, 172-173
software installed, listing, 254-255
sound cards, collecting information on, 252
tape drives, collecting information on, 253
understanding, 169-173
USBs, collecting information on, 253-254
video cards, collecting information on, 254

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows NT
At command, scheduling tasks with, 344-345
NTBackup features, 343
providers, understanding, 205
scheduling tasks, 344-345

Windows Product Activation (WPA)
determining status using Windows Script Host, 388
disabling notices using Windows Script Host, 389
understanding, 386
working with, 388-389

Windows Script Host (WSH)
alerts, sending, 300-307
API and, 8-10
attributes, setting, 86-87
audio files, playing, 372-373
versus AutoIt, 36-37
CDs, ejecting, 370-371
context menu, modifying, 136-138
defining, 7
dialog boxes, using with, 147
directory listing, generating, 66
event logs, writing to, 292-293
example, 11-12
file attributes, displaying, 83-85
file attributes, setting, 85-86
file extensions, renaming, 81-82
file system, manipulating, 64-87
files, connecting to, 64-65
files, copying, 77-78
files, deleting, 67-72
files, deleting depending on date, 69-70
files, deleting depending on extension, 71-72
files, deleting depending on name, 70-71
files, deleting depending on size, 68-69
files, deleting within folders, 67-68
files, moving, 78-80
files, moving with extensions, 79-80
files, renaming, 80-81
files, renaming with short file names, 82
FileSystemObject object, accessing, 64
folders, connecting to, 65
folders, copying, 78
folders, deleting, 72-77
folders, deleting depending on date, 75-76
folders, deleting depending on name, 77
folders, deleting depending on size, 73-75
folders, moving, 80
languages of, 8
limitations of, 12
logon scripts, creating, 331-339
logs, using, 291-294
media files, playing from the command line, 369
Microsoft Agent, scripting with, 366- 367, 376-383
NTBackup, running with, 348-349
NTFS properties, modifying, 135-136
object model, 9
parameters of, 8
program files, updating versions of, 82-83
purpose of, 7
random file names, generating, 65
registry, modifying, 134-138
shortcuts, creating, 151-152
SpecialFolders, accessing, 141-142
subfolders, accessing through, 64
subfolders, deleting, 73
subroutines of, 10-11
text files, applying, 87
text logs, writing to, 292
understanding, 7-12
user input, accepting, 148-149
when to use, 12
Windows Security menu options, disabling, 134-135

Windows shell, scripting, 105-112
Windows XP

backing up, 342-344
Microsoft Management Console 2.0, using, 387
Microsoft Media Player, scripting, 368-371
time synchronization, 311-312
window titles, setting with shell scripting, 316
Windows Management Improvements, working with, 394-397

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WinZip 8.1 SR-1, scripting silent installation, 43-45
Wizards

navigating through, 35-37
scripting, 99-100

WMI. See Windows Management Instrumentation; Windows Management Instrumentation (WMI).
WMI Query language (WQL), Windows Management Instrumentation and, 172.
WPA. See Windows Product Activation (WPA).
WSCRIPT command-line host utility, defining, 8
WScript object

registry methods, list of, 134
understanding, 9-10

WSH. See Windows Script Host (WSH).
WshNetwork object, understanding, 10
WshShell object, understanding, 10

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Admin Scripting Little Black Book Quick Reference

Administrative Shares
By default, Windows 2000/XP/2003 creates hidden administrative shares so that administrators can perform various tasks
remotely. Table 1 lists the most common administrative shares.

Table 1: Administrative shares.

Share Description

ADMIN$ Shares the directory Windows was installed to (for example, C:\WINNT)

DRIVE$ Shares all available drives

IPC$ Share that represents the named pipes communication mechanism

PRINT$ Share for shared printer drivers

REPL$ Shares replication directory on a server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The AT Command
The AT command allows you to schedule tasks from the command line. The basic syntax of the AT command is as follows:
AT \\remote ID /PARAMETERS "fullpath"

Here, remote is an optional name of a remote system on which to control tasks; ID specifies a task ID to modify; and fullpath is
the complete path and file name of the item to schedule. Table 2 lists the available parameters.

Table 2: The AT command parameters.

Parameter Description

/DELETE Removes a scheduled job.

/EVERY:x Recurrently runs the command on the specified day (x).

/INTERACTIVE Sets the job to interact with the desktop. This switch must be set if you want the user to have any
interactivity with the scheduled task.

/NEXT:x Runs the command on the next specified date (x).

/YES Combined with /DELETE, suppresses all jobs cancellation prompt.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The Cipher Utility
Cipher is a utility that allows you to encrypt/decrypt your files from the command line. This utility supports various command-line
parameters, as shown in Table 3.

Table 3: Cipher parameters.

Parameter Description

/A Acts on files and folders

/D Decrypts files and folders

/E Encrypts files and folders

/F Forces encryption, even on files already encrypted

/H Includes system and hidden files

/I Ignores errors

/K Creates a new encryption key for the current user

/Q Runs in silent mode

/S Performs action on the current folder and all subfolders

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Common Locations
Microsoft uses a common organized structure to store user data. By knowing the locations of these directories and the quickest
way to access them, you can easily modify their contents within your scripts. Tables 4 lists the most common locations.

Table 4: Windows paths.

Name Location

All Users %ALLUSERSPROFILE%\Profiles\All Users\Desktop

Desktop

All Users %ALLUSERSPROFILE%\ Profiles\All Users\

Start Menu Start Menu

Desktop %USERPROFILE%\Desktop

Favorites %USERPROFILE%\Favorites

NetHood %USERPROFILE%\NetHood

PrintHood %USERPROFILE%\PrintHood

Quick Launch %USERPROFILE%\Application Data\Microsoft\Internet Explorer\Quick Launch

SendTo %USERPROFILE%\SendTo

Start Menu %USERPROFILE%\Start Menu

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft FDISK
Microsoft FDISK (Fixed DISK) is a program that allows you to create, delete, or view entries in the partition table. Microsoft FDISK
supports many command-line parameters, as shown in Table 5.

Table 5: Microsoft FDISK parameters.

Parameter Description

/ACTOK Skips drive integrity check

/EXT:size disk Creates an extended partition

/FPRMT Skips the large drive support startup screen and sets up all partitions set up as FAT32

/LOG: size Combined with /EXT, creates a logical partition of the specified size

/MBR Creates a new Master Boot Record

/PARTN Saves partition information to PARTSAV.FIL

/PRI:size disk Creates a primary partition

/STATUS Displays current partition information

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft Script Encoder
The Microsoft Script Encoder allows you to protect your scripts using a simple encoding scheme. The default supported file types
are ASA, ASP, CDX, HTM, HTML, JS, SCT, and VBS. The basic syntax of the script encoder is as follows:
SCRENC
inputfile outputfile

Here, inputfile is the file to encode and outputfile is the encoded result. Microsoft Script Encoder supports many command-line
parameters, as shown in Table 6.

Table 6: Microsoft Script Encoder parameters.

Parameter Description

/E extension Specifies a known

extension for unrecognized input file types

/F Specifies to overwrite the input file with the encoded version

/Llanguage Specifies to use the scripting language Jscript or VBScript

/S Specifies to work in silent mode

/X1 Specifies not to include the @language directive in ASP files

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft Windows Installer
The Windows Installer is an installation and configuration service for 32-bit Windows platforms that standardizes the way
programs install and uninstall. The Windows Installer supports various command-line parameters, as shown in Table 7.

Table 7: Microsoft Windows Installer parameters.

Parameter Description

/I Installs the program

/F Repairs an installation

/X Uninstalls the program

/L*V logfile Logs all information to a logfile

/QN Displays no user interface

/QB Displays basic user interface

/QF Displays full user interface

/? or /H Displays some switches and copyright information

/X Uninstalls the program

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

SCHTasks
SCHTASKS is a Windows XP/2003 command line utility that allows you to create, delete, or view scheduled tasks.

SCHTasks supports various command-line parameters, as shown in Table 8.

Table 8: SCHTasks parameters.

Parameter Description

/CREATE Creates a scheduled task

/DELETE Deletes a scheduled task

/QUERY Displays information about all scheduled tasks

/CHANGE Modifies a scheduled task

/RUN Runs a scheduled task

/END Stops a running scheduled task

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Scripting FTP
FTP (File Transfer Protocol) is a common method for transferring files between two locations. The FTP client supports many
command-line switches, as listed in Table 9, to control how it starts.

Table 9: Common FTP switches.

Parameter Description

-i Interactive mode, turns off interactive prompting during multiple file transfers

-n Prevents automatic logon

-s Specifies an FTP script to run

-v Verbose mode, turns on transfer data statistics and responses

Once the FTP client is active, you can enter various commands to list, delete, put, and retrieve files.

Table 10 lists the most common FTP commands.

Table 10: Common FTP commands.

Parameter Description

ascii Selected by default, sets the file transfer site to use ASCII format (shar, uu)

binary Sets the file transfer site to use binary format (Z, ARC, TAR, ZIP)

bye Terminates the current FTP session and exits the FTP program

cd directory Changes the directory on the remote system

close Terminates the current FTP session

delete file Deletes a remote file

get file Retrieves a single file from the remote system

lcd directory Changes the directory on the local system

mdelete files Deletes remote files

mget files Retrieves multiple files from the remote system

mput files Uploads local files to a remote system

open host Establishes a connection to the host name specified

password Specifies the password for the account name

password specified

prompt Toggles interactive prompting

put file Uploads a local file to a remote system

user name Specifies the account name to connect to the remote system

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows NTBackup
Windows NTBackup is a utility that allows you to back up your registry and data files. The NTBackup utility supports multiple
command-line parameters for performing backups, as listed in Table 11.

Table 11: Windows NTBackup parameters.

Parameter Description

/A Appends backups

/Dlabel Specifies a backup set label

/DS server Backs up the Microsoft Exchange directory service for the specified server name

/F name Specifies full path and file name of the backup file

/G tapeID Specifies to overwrite or append to the tape based on the specified tapeID

/HC:x Controls hardware compression where x is ON or OFF

/IS server Backs up the Microsoft Exchange information store for the specified server name

/J job Specifies a descriptive job name to record in the log file

/L:F Specifies to perform complete logging

/L:S Specifies to perform summary logging

/L:N Specifies to not perform logging

/M copy Backs up files and does not clear their archive flag

/M daily Backs up today's changed files and does not clear their archive flag

/M differential Backs up changed files and does not clear their archive flag

/M incremental Backs up changed files and then clears their archive flag

/M normal Backs up files and then clears their archive flag

/N name Specifies a new name to give the tape

/P name Specifies the name of the media pool to use

/R:x Restricts tape access to the tape owner or administrators, where x is YES or NO

/RS x Specifies to back up the removable storage database, where x is YES or NO

/T tapename Specifies to overwrite or append to the tape based on the specified tapename

/UM Specifies to find and format the media available

/V:x Performs backup verification, where x is YES or NO

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Script Host
Windows Script Host is a language-independent scripting host for 32-bit Windows operating systems. The Windows Script Host
CSCRIPT command-line utility and the WSCRIPT graphical utility support many command-line parameters, as shown in Table 12.

Table 12: Windows Script Host parameters.

Parameter Description

//B Disables command prompt user input

//D Enables active debugging

//E:engine Uses the specified engine at script execution

//H:CSCRIPT Sets CSCRIPT as the default execution host

//H:WSCRIPT Sets WSCRIPT as the default execution host

//I By default, enables command prompt user input

//JOB Executes a WSC job

//LOGO By default, displays logo at script execution

//NOLOGO Suppresses logo at script execution.

//U For CSCRIPT only, specifies to use Unicode for I/O operations

//S Saves options on a per-user basis

//T:seconds Specifies the maximum time, in seconds, a script is allowed to run

//X Executes the current script within the debugger

//? Displays help context

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

For More Information
You can visit http://www.jesseweb.com to view the latest information, scripts, and changes concerning this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

List of Figures

Chapter 1: The Essentials of Scripting
Figure 1.1: The CMD.exe command prompt window.

Figure 1.2: The Windows Script Host object model.

Chapter 2: Scripting Workstation Setups
Figure 2.1: PowerQuest's Drive Image Pro.

Chapter 3: Scripting Installations and Updates
Figure 3.1: The Add New Hardware Wizard window.

Figure 3.2: Detecting window title and text with /REVEAL.

Chapter 5: Automating Windows and Applications
Figure 5.1: Editing a recorded Office macro.

Figure 5.2: The GetDetailsOf file and folder output.

Figure 5.3: Windows file operating dialog box.

Figure 5.4: Windows context menu.

Chapter 6: Inside the Registry
Figure 6.1: The Windows REGEDIT screen.

Figure 6.2: The Windows REGEDT32 screen.

Chapter 7: Local System Management
Figure 7.1: Editing NTFS general permissions.

Figure 7.2: Editing NTFS special access permissions.

Chapter 8: Remote System Management
Figure 8.1: Mapping a network drive.

Figure 8.2: Disconnecting a mapped drive.

Figure 8.3: The WMI Object Browser.

Chapter 9: Enterprise Management
Figure 9.1: The ADSI process.

Chapter 10: Managing Inventory
Figure 10.1: The Windows 2000 Device Manager.

Chapter 11: Security
Figure 11.1: The Security Configuration and Analysis tool.

Chapter 12: Logging and Alerting
Figure 12.1: The Windows 2000 Event viewer.

Chapter 13: Logon Scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.1: The time synchronization hierarchy.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

List of Tables

Chapter 1: The Essentials of Scripting
Table 1.1: Commonly used KiXtart macros.

Table 1.2: Windows Script Host parameters.

Chapter 5: Automating Windows and Applications
Table 5.1: Wizards and dialog boxes.

Table 5.2: Special folder constants.

Chapter 6: Inside the Registry
Table 6.1: Registry data types.

Table 6.2: Regular mode versus kernel mode.

Chapter 7: Local System Management
Table 7.1: Common data storage paths in Windows 2000/XP/2003.

Chapter 8: Remote System Management
Table 8.1: Process priority values.

Chapter 11: Security
Table 11.1: Microsoft Script Encoder parameters.

Table 11.2: Security scripts.

Chapter 13: Logon Scripts
Table 13.1: Registry data types.

Windows Admin Scripting Little Black Book Quick Reference
Table 1: Administrative shares.

Table 2: The AT command parameters.

Table 3: Cipher parameters.

Table 4: Windows paths.

Table 5: Microsoft FDISK parameters.

Table 6: Microsoft Script Encoder parameters.

Table 7: Microsoft Windows Installer parameters.

Table 8: SCHTasks parameters.

Table 9: Common FTP switches.

Table 10: Common FTP commands.

Table 11: Windows NTBackup parameters.

Table 12: Windows Script Host parameters.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Back Cover
Windows Admin Scripting Little Black Book, 2nd Edition, shows Windows XP and 2003 users and
administrators how to perform Windows management and administrative tasks using powerful scripts for
just about every important task imaginable. It covers techniques for working with files, input/output, text
files, and performing various network administrative tasks through scripting. It explains the concept and
necessity of logon scripts, the backbone structure of a good logon script, and how to implement these
scripts in an everyday environment to automate repetitive tasks such as inventory, file modifications,
installations, and system updates. It also provides an in-depth look into the registry and registry editing
tools including locating the important registry keys and values, and modifying them. The book features
example scripts on every new topic covered to reinforce what the reader has just learned. Key scripting
topics include manipulating the Windows XP file system, using powerful third-party scripting tools, creating
scripts for installing service packs and new applications, automating applications from the command line,
and performing Windows XP and 2003 administrative tasks. Everything is included in this book, and users
can easily modify or combine the scripts to perform myriad tasks. A bonus introduction chapter is provided
showing users how to select the best scripting language and how to get the most out of scripting resources.

About the Author

Jesse M. Torres' experience in the computer industry includes the private, corporate, and government
sectors. He served six years in the Air National Guard working in computer maintenance and has since
worked for large corporations such as PricewaterhouseCoopers and United Technologies. His education
includes a specialist's certification in electronic switching systems from the U.S. Air Force, a B.A. in
Versatile Technology from the University of Connecticut, a specialist's certification in Lotus application
development, and an MCSE and MCAD certification from Microsoft.

Jesse has extensively scripted software and OS installations and updates, inventory procedures, desktop
management, maintenance, security, and more. His programming and automation experience includes
shell scripting, KiXtart, Windows Script Host (WSH), Windows Management Instrumentation (WMI), Active
Directory Service Interfaces (ADSI), VBScript, JavaScript, Active Server Pages (ASP), ASP.NET, Veritas
WinINSTALL, PowerQuest DeltaDeploy, Microsoft Systems Management Server (SMS), AutoIt, Microsoft
ScriptIt, Visual Basic, Visual Basic .NET, and SQL. He has also written an article on WSH for Windows and
.NET Magazine's Windows Scripting Solutions.

Currently, Jesse is working for Bridgewater Associates, a global investment manager located in Westport,
CT.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Admin Scripting Little Black Book, Second Edition
Jesse M. Torres

PARAGLYPH PRESS

President: Keith Weiskamp

Editor-at-Large: Jeff Duntemann

Vice President, Sales, Marketing, and Distribution: Steve Sayre

Vice President, International Sales and Marketing: Cynthia Caldwell

Production Manager: Kim Eoff

Cover Designer: Kris Sotelo

Copyright © 2004 Paraglyph Press. All rights reserved.

This book may not be duplicated in any way without the express written consent of the publisher, except in the form of brief
excerpts or quotations for the purposes of review. The information contained herein is for the personal use of the reader and may
not be incorporated in any commercial programs, other books, databases, or any kind of software without written consent of the
publisher. Making copies of this book or any portion for any purpose other than your own is a violation of United States copyright
laws.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in preparing the book and the programs contained in it. These
efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained
in this book.

The author and publisher shall not be liable in the event of incidental or consequential damages in connection with, or arising out
of, the furnishing, performance, or use of the programs, associated instructions, and/or claims of productivity gains.

Trademarks

Trademarked names appear throughout this book. Rather than list the names and entities that own the trademarks or insert a
trademark symbol with each mention of the trademarked name, the publisher states that it is using the names for editorial
purposes only and to the benefit of the trademark owner, with no intention of infringing upon that trademark.

Paraglyph Press, Inc.
4015 N. 78th Street, #115
Scottsdale, Arizona 85251
Phone: 602-749-8787
http://www.paraglyphpress.com

Paraglyph Press
1-932111-87-5

10 9 8 7 6 5 4 3 2 1

About the Scripts

Throughout this book, you'll encounter a number of very useful scripts to help you perform a wide range of administrative tasks
with Windows 2003, XP, 2000, NT, and 98. These scripts have been written with three different scripting tools including Shell
Scripting, KiXtart, and Windows Script Host. To use these scripts, I'll show you how to get the scripting tools you will need in
Chapter 1.

Because some of the scripts are just a line or two of code, you'll likely just type them in. When typing in scripts, be sure to type
them in just as they appear in the text. In some cases, a line of scripting code could not fit on a single line due to the page width of
this book. When this occurred, the line of scripting code was continued on the next line. Any line of code that has been formatted
in this manner has been highlighted in the book. When you type in this code all you have to remember is to type in the highlighted
code as a single line of code.

Since many of the scripts are longer, I have made them available on my personal Web site for you to download. This can save
you a lot of time from having to type in the scripts. You can access my Web site to get updates for the scripts and support material
for the book. In addition, you'll find other scripts, tricks, tips, security documents, music, and more. To visit the site, point your Web
browser to:

http://www.jesseweb.com

In addition, you may also register your book at the site listed above to gain access to more advanced scripts that could not fit into
the book.

Before visiting my Web site, make sure that you also read the appendix provided in this book. Here you'll find a set of resources
and tools to help you with your scripting.

To my wife, Carina:
Your love and smile mean more to me than you could ever know.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To my son, Ryan:
You have helped me realize the really important things in life.

About the Author

Jesse M. Torres' experience in the computer industry includes the private, corporate, and government sectors. He served six
years in the Air National Guard working in computer maintenance and has since worked for large corporations such as
PricewaterhouseCoopers and United Technologies. His education includes a specialist's certification in electronic switching
systems from the U.S. Air Force, a B.A. in Versatile Technology from the University of Connecticut, a specialist's certification in
Lotus application development, and an MCSE and MCAD certification from Microsoft.

Jesse has extensively scripted software and OS installations and updates, inventory procedures, desktop management,
maintenance, security, and more. His programming and automation experience includes shell scripting, KiXtart, Windows Script
Host (WSH), Windows Management Instrumentation (WMI), Active Directory Service Interfaces (ADSI), VBScript, JavaScript,
Active Server Pages (ASP), ASP.NET, Veritas WinINSTALL, PowerQuest DeltaDeploy, Microsoft Systems Management Server
(SMS), AutoIt, Microsoft ScriptIt, Visual Basic, Visual Basic .NET, and SQL. He has also written an article on WSH for Windows
and .NET Magazine's Windows Scripting Solutions.

Currently, Jesse is working for Bridgewater Associates, a global investment manager located in Westport, CT.

Acknowledgments

First, I would like to thank Keith Weiskamp, president of Paraglyph Press for his hard work, guidance, and understanding during
these past few months. Thank you for supporting and believing in this book.

I would also like to thank Peter Sideris, technical reviewer for the book. Your comments, additions, and expertise really helped
polish this book. Thank you for putting up with my insane schedule and bombardment of emails.

Thanks to Ray Dalio, Giselle Wagner, Claude Amadeo, Aaron Meyers, David Schoffstall, James Bookman, Jacques Malette, and
everyone at Bridgewater Associates. You are all a great group of people to work with and help make the "daily grind" challenging
and rewarding.

Thanks to all the software companies and developers (Rudd van Velsen, Microsoft, Sapien Technologies, Executive Software,
Hidden Software, and BellCraft Technologies) for sharing information and making quality products.

Thanks to my family, whose pride in my accomplishments clearly shines through. I love you all. Special thanks to my mom and
dad for their encouragement and support.

Finally, special thanks to my wife, Carina, son Ryan, and our next future child (birth and name still pending) for giving up some of
our time together so I could share this book with the world. At only 16 months old, my son Ryan contributed over 100 pages for
this book. Unfortunately they appear to be in some untranslatable, foreign language and were cut at the last minute from the final
version. I love all of you and will always be here for you, as you've been for me. Thanks again.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Introduction
Welcome to Windows Admin Scripting Little Black Book, Second Edition. This book is specifically designed to teach you how to
quickly turn routine, repetitive, time-consuming, or complex administrative tasks into simple scripts. If you're like me, you probably
don't have the time to spend thumbing through books filled with general examples that you'll never use. Because of its compact
size, this book is free of generic filler material (a common trait of the larger scripting books) and comes packed with information
and examples that you can actually use. Whether you're a basic Windows user or a network administrator in charge of a corporate
infrastructure, this book will teach you how to use scripting to become more productive and recoup some free time from your busy
schedule.

This book is a concise reference detailing various scripting methods and techniques to automate all types of administrative tasks.
At its core, this book explains and illustrates the three major scripting methods: shell scripting, KiXtart, and Windows Script Host. It
will also teach you the inner workings of Active Directory Service Interfaces and Windows Management Instrumentation, and how
to use the provided examples to manage an enterprise. Finally, this book will show you how to use alternative methods, such as
ScriptIt or AutoIt, when conventional scripting just won't cut it. Beyond the extensive scripting examples and information, this book
also provides in-depth coverage of scripting for Windows 2000, XP, and 2003.

Is This Book for You?
If you've read this far, chances are this is the book for you. Out of all the sites where I've worked, only a small percentage of
employees have even thought about using scripting. Perhaps it's because there is a common misconception that you have to be a
programmer or computer genius to write scripts. This couldn't be any further from the truth. Scripts are the simplest form of
programming, and anyone who uses a computer can easily create them.

The examples and information in this book are specifically focused around the daily tasks of the IT professional. For the novice
administrator or scripter, this book will guide you through the world of scripting and administration, while helping you quickly build
your skill set. For the experienced administrator or scripter, this book provides a wealth of information and advanced techniques to
help you manage and standardize your environment.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Use This Book
This book is divided into 16 chapters. Each chapter begins with a brief overview followed by a set of immediate solutions to help
you automate your tasks.

Chapter 1: Introduction to Scripting

Chapter 1 provides an introduction to the three major scripting methods (shell scripting, KiXtart, and Windows Script Host)
discussed throughout the book. This chapter teaches you about the basics, limitations, and appropriate times to use each
scripting method.

Chapter 2: Scripting Workstation Setups

Chapter 2 covers how to automate hard disk setups and imaging. Immediate solutions include how to script partitioning,
formatting, and boot disk creation. It also includes extensive information on how to script some of today's popular imaging utilities,
such as PowerQuest Drive Image Pro and Norton Ghost.

Chapter 3: Scripting Installations and Updates

Chapter 3 covers how to automate installations and updates. Immediate solutions include how to script installations and updates
using built-in switches, custom routines, and the Microsoft Windows Installer. It also includes information on how to use Autoit
when other scripting methods simply won't work.

Chapter 4: File Management

Chapter 4 covers how to automate file manipulation and management. Immediate solutions include how to script file renaming,
replication, deletion, appending, updating, searching, and attribute modifying. It also includes information on how to use shell
scripting, KiXtart, and Windows Script Host.

Chapter 5: Automating Windows and Applications

Chapter 5 covers how to automate the operating system and its applications. Immediate solutions include how to script Windows
operations and settings, such as Microsoft FTP uploads, defragging, hardware devices, and Control Panel applets. It also includes
information on how to script applications, such as Norton Antivirus, Microsoft Office, Internet Explorer, and Diskeeper Lite.

Chapter 6: Inside the Registry

Chapter 6 covers how to automate changes to the registry. This chapter includes in-depth information about the birth and structure
of the registry while clearing up common misconceptions. Immediate solutions include how to secure, back up, restore, modify,
and search the registry. It also includes information on how to modify common Windows annoyances, for example, how to disable
Dr. Watson or the Welcome screens.

Chapter 7: Local System Management

Chapter 7 covers how to control and automate local system changes. Immediate solutions include how to manage shortcuts,
program groups, profiles, shares, services, permissions, and more through simple scripts. It also includes information on how to
script common system events, such as logging off a user or rebooting a system.

Chapter 8: Remote System Management

Chapter 8 covers how to control and automate remote systems. Immediate solutions include how to manage processes, shares,
services, permissions, and more through simple scripts. This chapter includes in-depth information and examples on how to use
Windows Management Instrumentation. It also includes information on how to script common system events, such as shutting
down or rebooting a system.

Chapter 9: Enterprise Management

Chapter 9 covers how to automate enterprise management. Immediate solutions include how to manage user, group, and
computer accounts through simple scripts. This chapter includes in-depth information and examples on how to use Active
Directory Service Interfaces. It also includes information on Windows 2000/2003 Enterprise networks.

Chapter 10: Managing Inventory

Chapter 10 covers how to gather inventory information without the use of expensive management systems. Immediate solutions
include how to collect software and hardware information, such as battery, operating system, Network Interface Card (NIC),
processor, printer, sound card, and memory information. It also includes information on how to generate inventory reports using
utilities like MSD, WINMSD, MSINFO32, and SRVINFO.

Chapter 11: Security

Chapter 11 covers how to control and automate remote systems. Immediate solutions include how to manage system and domain
security settings; create, apply, and export security templates; and run a security analysis through simple scripts. This chapter
includes in-depth information about authentication protocols and common security practices. It also includes information on how to
use utilities to run operations under the security context of another user, such as the RunAs utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: Logging and Alerting

Chapter 12 covers how to log system events and alert users when events occur. Immediate solutions include how to manage text
logs and the event log through simple scripts. The chapter also includes information on how to script alerts to a single user, group,
or user list through network alerts and email.

Chapter 13: Logon Scripts

Chapter 13 covers how to create and use logon scripts to standardize your environment. Immediate solutions include how to
synchronize the system time, map drives and printers, display logon script progress, and more through simple shell, KiXtart, or
WSH scripts. This chapter also includes in-depth information about the logon process and file replication services.

Chapter 14: Backups and Scheduling

Chapter 14 covers how to automate backups and scheduling tasks or scripts. Immediate solutions include how to script Windows
backups, IIS metabase backups, and task scheduling. It also includes information on how to script third-party backup applications,
such as Backup Exec and ARCserve.

Chapter 15: Fun with Multimedia

Chapter 15 covers how to play and control multimedia files using simple scripts. Immediate solutions include how to script the
Microsoft Media Player and the RealPlayer G2. It also includes information on how to script the Microsoft Office Assistant and
Microsoft Agent characters.

Chapter 16: Windows XP/2003 Only

Chapter 16 covers scripting techniques specifically designed for the new features of Windows XP/2003. It also includes
information about Product Activation, system restores, and the MMC 2.0 automation object model.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The Little Black Book Philosophy
Written by experienced professionals, Paraglyph Little Black Books are terse, easily "thumb-able" question-answerers and
problem solvers. The Little Black Book's unique two-part chapter format-brief technical overviews followed by practical immediate
solutions-is structured to help you use your knowledge, solve problems, and quickly master complex technical issues to become
an expert. By breaking down complex topics into easily manageable components, this format helps you quickly find what you're
looking for.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A Final Note
I hope this book will become your essential reference in streamlining your environment and daily tasks. I welcome your comments,
questions, suggestions, tips, scripts, or anything else you would like to share. Please feel free to visit my web site at
http://www.jesseweb.com for updates.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1: The Essentials of Scripting
This chapter introduces the basic techniques of scripting and the three major scripting tools used throughout this book: Shell
Scripting, KiXtart, and Windows Script Host. By the end of this chapter you'll learn the basics of each approach, the limitations,
and when to use them. Because this book covers a lot of ground, I included this scripting introduction to help you get up to speed
with the tools and basic techniques that I'll be using throughout this book. It also shows you how to write scripts to perform a wide
range of Windows administration tasks.

The Essence of Scripting
Scripts are the simplest form of programming, and anyone who uses a computer can create them with a little practice. I've stated
this before, but I cannot emphasize this enough. Scripting is a fast, simple way to instruct a computer to perform a specific set of
instructions. These instructions can range from simple tasks like "delete temporary files from a computer" to more complex tasks
like "install this application on every machine on the network." A script is merely a text file that contains a set of commands for
performing a specific operation. The best part about scripting is that you can do a lot with a little bit of programming knowledge.
The scripting tools and languages are easy to learn and the skills you develop with one scripting tool can easily be adapted to
another tool. The scripting tools I've selected for this book are all especially designed to be easy to use, yet provide many powerful
features so that you can perform a wide range of tasks.

Scripts vs. Programs

Computers only understand binary operations (on or off, 1 or 0). When a script runs, the scripting engine reads each line of code
and translates it into machine language on the fly. This is why scripts are also called interpreted programs. High level languages
such as Visual Basic .NET and C# must be translated into machine language by a compiler before execution. Because scripts
compile at runtime, they tend to run slower than compiled programs. The good news, however, is that the types of tasks you'll
typically perform with scripts aren't so speed critical and thus the simplicity of using a scripting tool far outweighs the complexity of
using a programming language.

Limitations of Scripting

While high level languages contain an extensive library or set of functions, scripting languages only contain subsets of their
counterparts or comparables. Scripting languages do not usually supply graphical interface elements, such as forms, dropdown
lists, checkboxes, and so on. Finally, scripting languages do not typically provide advanced programming features such as object
orientation, early binding, and threading.

When to Use Scripts

Scripting languages are designed to be lightweight and easier to work with than their compiled counterparts. In some cases,
scripts can even perform tasks more quickly than can be performed with compiled programs simply because scripts do not contain
a lot of extra baggage. Scripting is best used when you need quick solutions without a full blown interface or intensive processing.
If you find a script is using a lot of system resources, taking a long time to complete, or is simply unmanageable due to its size or
complexity, you should consider using a compiled program.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Shell Scripting
Shell scripting involves running a series of commands from within a command shell (e.g., command prompt). Although these
commands can be run from the command line individually (e.g., COPY *.*), they are more often stored within a script or batch file.
A batch file is a text document with a .bat or .cmd extension. Shell scripting has been around since the inception of MS-DOS and
is the easiest scripting method to learn.

Using the Command Shell

A command shell is a text-based, command interpreter application. Similar to MS-DOS, you type a command and the command
shell displays a response. Windows provides two command shells: CMD.exe and COMMAND.com. The Windows command shell,
CMD.exe, is a 32-bit application that contains many built-in commands (e.g., DIR, ECHO, DEL, and COPY). The MS-DOS
command shell, Command.com, is a 16-bit application supplied for backwards compatibility of 16-bit DOS applications. It passes
all commands to CMD.exe for processing, and it does not support long file names. Whenever possible, you should use CMD.exe
because it provides better performance and stability than COMMAND.com. Figure 1.1 shows the window that is displayed when
CMD.exe executes. In this case, the DOS command, DIR, is being executed.

Figure 1.1: The CMD.exe command prompt window.

Tip A quick way to access a command shell is by clicking Start|Run from the Windows Start menu, type "CMD", and click the
"OK" button.

Shell Scripting Example

To help you better understand how shell scripting works, I've created a script to show you how to display the name of your
computer. Later, I'll show you how to perform this same task using the other scripting tools that I will be introducing, KiXtart and
Windows Script Host. This will really help you understand the differences (and similarities) involved in using the different scripting
tools.

Displaying the Computer Name
To display the name of your local computer using shell scripting, proceed as follows:

1. First, you'll need to create a simple script file (.bat file) and place a few commands in the file. Use a text editor
and create a file named "scriptfile.bat." Here, scriptfile is the full path and file name of a script file that should
contain the following commands:
@ECHO OFF
ECHO %COMPUTERNAME%

Make sure that you save the file in the same directory that you will be running the command shell from (Step 2).

By default, the command shell displays (echoes) the called command before displaying the results. To suppress the called
command and only display the results, the @ECHO OFF command is used. The last line uses the ECHO command to display the
contents of the COMPUTERNAME environment variable, which is automatically set by the operating system at boot time.

2. Once you have created and saved the .bat file as instructed in Step 1, you can run your script by starting the
command shell (CMD.exe) and entering the following instruction at the command prompt:
scriptfile

Remember that the quickest way to run the .CMD command shell is to click Start|Run from the Windows Start menu type "CMD",
and click the "OK" button.

Limitations of Shell Scripting

Although shell scripting is easy, it is a limited language. This is something I hate to admit because my scripting roots date back to
the good old days of MS-DOS. Shell scripting is not a collective language, but rather a language consisting of various individual
executables and commands. It has limited logical statements, no debugging capabilities, limited error-handling capabilities, and no
graphical interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When to Use Shell Scripting

Although shell scripting continues to improve over the years, it is best used for simple scripting tasks that do not require complex
calculations or extensive file manipulation. To perform more powerful tasks, you should turn to another scripting tool, such as
KiXtart or Windows Script Host.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

KiXtart
KiXtart is an easy-to-use scripting language available for download from http://www.KiXtart.org. Some of the advanced features of
KiXtart are built-in debugging, the ability to modify the registry, COM automation, and the ability to shut down or reboot systems.
Although primarily used for logon scripting, KiXtart can be used as a standalone scripting solution to automate everyday tasks.

Commands

Like Shell Scripting commands, KiXtart commands are built-in routines used to perform an action. KiXtart contains many
commands similar to Shell Scripting commands (COPY, MOVE DEL, CD), but adds many advanced commands allowing you to
create powerful scripts. Many KiXtart commands return codes that indicate the success or failure of the completed operation. You
can use a KiXtart variable to store and examine the code returned from the executed command:
$RETURNCODE = ClearEventLog("Application")

Variables

Variables are used extensively in KiXtart to store values or return codes. KiXtart variable names consist of a $ sign followed by
text, and should not be the same as any of the built-in KiXtart component names. Optionally, declaring a variable and assigning a
value is identical to doing so in a language like VBScript:
DIM $MYVARIABLE
$MYVARIABLE = "SOME VALUE"

Functions

Imagine if you had to perform a series of twenty steps on more than 1,000 files. What a pain it would be to rewrite those steps so
many times! A function is a procedure used to perform a series of actions and return data. A typical use of a function is to perform
calculations, create objects, or return error codes. A KiXtart function is structured as follows:
Function FunctionName (arguments)
 Code
EndFunction

Here, FunctionName is the name given to the function; arguments are the parameters passed to the function (separated by
commas); and Code is the script action(s) to perform. To return a value outside of the function, you should name a variable from
within your function with the same name as your function and set a value to it.

Macros

KiXtart macros provides various system and user information by accessing Windows Application Programming Interfaces (APIs).
(I'll be discussing Windows APIs a little later in this chapter when we look at the Windows Script Host tool). KiXtart has over 50
built-in macros to easily return various system and network information. All macros are prefixed with an @ symbol. Some of the
more commonly used macros are listed in Table 1.1.

Table 1.1: Commonly used KiXtart macros.

Macro Definition

@ERROR Return code of the last command or function.

@LDRIVE Drive that maps to \\LogonServer\NETLOGON.

@LSERVER Validating Server Name.

@SCRIPTDIR Directory of the currently running script.

@SERROR Description of the last error.

@USERID Username of the current user.

@WKSTA Local computer name.

KiXtart Scripting Example.

Let's revisit our simple example of displaying the name of your local computer to see how KiXtart compares with shell scripting. If
you do not currently have a copy of KiXtart on your computer, you'll need to download a copy from the Web using the instructions
that I have provided.

Displaying the Computer Name
To display the name of the local computer using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Use your favorite text editor to create a new script file. The following instruction should be placed in the file:
? @WKSTA
sleep 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sleep 5

This instruction might look a little unusual but it simply uses the "?" command to display the contents of the
@WKSTA macro.

To finish your script file, simply save it using a filename that you will remember.

4. Now you are ready to run your script. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile should be the full path and file name where your file is stored (Step 3). The SLEEP command is used to pause
script execution for 5 seconds, allowing us to view the results.

Limitations of KiXtart

Since KiXtart is not a built-in Windows feature, you must either copy it to every system or make it available by sharing it across a
network. This isn't difficult but it is an administrative task you'll need to take care of. A KiXtart script also tends to run slower for
remote access or linked site users than a Windows Script Host script. Finally, KiXtart is not currently supported by Microsoft.

When to Use KiXtart

KiXtart is a great alternative to shell scripting due to its built-in debugging, network, file, and registry functions. It's a perfect
solution to simplify complex shell scripting tasks and remains a popular choice for logon scripting. With more and more features
being added to every release, KiXtart's capabilities are slowly reaching those of Windows Script Host.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Script Host
Microsoft's Windows Script Host (WSH) is a language-independent scripting host for 32-bit Windows operating systems. It
provides the most powerful functionality of all the scripting methods discussed so far. Windows Scripting Host works seamlessly
with all scriptable objects available to Windows, allowing you to create complex, scripted applications. By providing extensive
scripting capabilities combined with support for multiple scripting languages, WSH is quickly becoming the scripting method of
choice.

Note By default, Windows Script Host supports two languages: VBScript and JScript. All the Windows Script Host examples
in this book are written in VBScript.

CSCRIPT and WSCRIPT

Windows Script Host is controlled by two executables, CSCRIPT and WSCRIPT. CSCRIPT is the command-line host utility that is
commonly used to run tasks in the background or in a command prompt. WSCRIPT is the graphical host utility commonly used to
interact with the user. These two executables support many command-line parameters, as shown in Table 1.2.

Table 1.2: Windows Script Host parameters.

Parameter Description

//B Disables command prompt user input.

//D Enables active debugging.

//E:engine Uses the specified engine at script execution.

//H:CSCRIPT Sets CSCRIPT as the default execution host.

//H:WSCRIPT Sets WSCRIPT as the default execution host.

//I By default, enables command prompt user input.

//JOB Executes a WSC job.

//LOGO By default, displays logo at script execution.

//NOLOGO Suppresses logo at script execution.

//U For CSCRIPT only, specifies to use UNICODE for I/O operations.

//S Saves options on a per user basis.

//T:seconds Specifies the maximum time, in seconds, a script is allowed to run.

//X Executes the current script within the debugger.

//? Displays help context.

What in the World Is an API?

Before you can start scripting with Windows Script Host, you should have a basic understanding of Application Programming
Interfaces (APIs). An (API) is a collection of functions that the operating system or application can call on to perform many
different tasks. By using a common set of code, applications can perform operations identical to those that the operating system
performs. These APIs are normally stored in DLL files. Although programmers can access DLLs through compiled applications,
scripters need to find another method of access.

Working with COM Objects
An object is simply a collection of functions that perform similar tasks. COM (Component Object Model) objects expose API
methods and properties, providing a way for scripters to access APIs in their scripts. These objects are normally stored in OCX
(OLE custom control) or DLL files. To gain access to a COM object, you use the CreateObject function to load an object into
memory, connect to the object, and set this connection to a variable. This is called instantiating an object and is performed as
follows:
Set variable = CreateObject("object")

Once the instance is created, you can use this variable throughout your script to access all the methods within the object.

The Windows Script Host object model (see Figure 1.2), is a hierarchal, organized collection of objects, mostly stored in a file
called WSHOM.OCX located in the Windows\System or Winnt\System32 directories. Each of the core objects contains its own
methods and properties to perform specific tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.2: The Windows Script Host object model.

The Wscript Object
The Wscript object is the core scripting object. It allows you to collect information about your script, work with arguments, and call
other ActiveX objects. The Wscript object contains the methods to instantiate other objects and is automatically instantiated every
time a script is run. The most commonly used Wscript method is the Echo method, which sends output to the screen:
Wscript.Echo "Some Output"

The WshNetwork Object
The WshNetwork object provides access to Windows network functions. You can use this object to work with network
connections and perform various network-related tasks. The most common tasks used with this function are mapping printers and
drives, and obtaining a computer's network information.

The WshShell Object
The WshShell object provides direct access to Windows and registry functions. You can use this object to work with shortcuts,
display messages to users, manipulate the registry and environment variables, and run external commands.

The FileSystemObject Object
Is there an echo in here? Although not actually a part of the Windows Script Object model, the FileSystemObject object,
contained in SCRRUN.DLL, can be used to access and manipulate the file system. Through this object, you can perform almost
any file management task that you perform manually.

Now that you are familiar with the Windows Script Host Object model, you can start using subroutines to organize your scripts.

Subroutines

Throughout this book, you will find various subroutines reused in examples. Subroutines allow you to take a section of repeated
code and make it accessible by simply calling it. Subroutines accept multiple parameters, allowing you to pass arguments to the
subroutine for manipulation. Windows Script Host provides two types of subroutines: sub procedures and functions.

Sub Procedures
A sub procedure performs a series of actions without returning any data. A typical use of a sub procedure is to perform file
manipulation, working with text files, or to display user prompts. A sub procedure is structured as follows:
Sub SubName (arguments)
 Code
End Sub

Here, SubName is the name given to the sub procedure; arguments are the parameters passed to the sub procedure (separated
by commas); and code is the script action(s) to perform.

Note Any variables used within a sub procedure will not be accessible outside of the sub procedure, unless they are
explicitly declared beforehand.

Functions
Similar to KiXtart, a function is a procedure used to return data. A Windows Script Host function is structured as follows:
Function FunctionName (arguments)
 Code
End Function

Here, FunctionName is the name given to the function; arguments are the parameters passed to the function (separated by
commas); and Code is the script action(s) to perform. To return a value outside of the function, you should name a variable from
within your function with the same name as your function and set a value to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note While the KiXtart closing statement for a function is "EndFunction", Windows Script Host requires a space between the
words "End" and "Function."

Windows Script Host Example

You now probably realize why I've saved the most difficult scripting example for last. As you'll see, using Windows Script Host
requires a bit more set up work but the work is worth it because of all of the flexibility and power that you gain. Let's revisit the task
of displaying the name of your local computer with the help of a WSH script.

Displaying the Computer Name
To display the name of the local computer using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Again, use your favorite text editor to create a new script file. The following instructions should be placed in the
file:
 Set WshNetwork = CreateObject("WScript.Network")
 WScript.Echo WshNetwork.ComputerName

The first line uses the CreateObject method to create an instance of the built-in Wscript.Network object and stores the instance in
a variable called "WshNetwork." The last line accesses the Wscript.Network's ComputerName property and displays it with the
Wscript.Echo method.

To finish your script file, simply save it using a filename that you will remember.
4. Select Start|Run and enter "cscript scriptfile.vbs."

Recall that CSCRIPT is the name of the command-line host utility. Here, scriptfile should be the full path and file name where
your file is stored (Step 3).

Limitations of Windows Script Host

Windows Script Host's built-in graphical support is extremely limited. Although it does offer popup capability, WSH does not
include the custom screen manipulation capabilities that KiXtart has to offer. Finally, as the name implies, Windows Script Host
can only be used under Windows.

When to Use Windows Script Host

Windows Script Host can be used to manipulate windows, work with files, modify the registry, and more. By itself, Windows Script
Host is best suited for background tasks with little or no interface. When combined with COM automation, WMI (Windows
Management Instrumentation), and ADSI (Active Directory Services Interfaces), WSH is a powerful tool that can be used for
almost all of your scripting needs.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2: Scripting Workstation Setups

In Brief
In this chapter you'll learn the quickest methods to automate hard disk setups and images. You'll begin learning the secrets of
Microsoft FDISK and how to create partitions from the command line. You'll also learn about the scripting limitations of Microsoft
FDISK and how to use Free FDISK to script creating and deleting partitions. You'll then learn about different imaging solutions and
how to script those packages to create and restore image files.

In order to implement all the examples in this chapter, you'll need to obtain the following files:

Free FDISK (http://www.23cc.com/free-fdisk/)

PowerQuest Drive Image Pro (http://www.powerquest.com)

Norton Ghost (http://www.symantec.com)

Note All the DOS-related information in this chapter refers to MS-DOS 7.0.

Warning This chapter contains examples on how to partition, format, and image drives. These processes will destroy any
data on a disk.

Setting Up a New Hard Drive

For the typical PC, the core component to store user data and system files is the hard drive. A hard drive is like a wallet or purse-a
place you can store your most valuable assets you need to access quickly. When you receive a new hard drive from the
manufacturer, it is most likely low-level formatted with no data on it. After you install and configure the hard drive properly, you
must partition and format it before you can put any real data on it.

Partitioning
The first step to setting up a new drive is to partition it. Partitioning is the act of dividing up a hard disk into logical sections, which
allows one physical drive to appear as multiple drives. When you partition a new drive, a master boot record (MBR) is created on
the first physical sector on the hard drive. As a computer initially powers up, it calls the routines stored in the BIOS (Basic
Input/Output System). These routines access the system's basic hardware devices (e.g., floppy disk, hard disk, keyboard, video).
After these routines are executed, the BIOS reads and executes instructions from the MBR. The MBR contains the partition table,
which contains four entries, allowing for various partition types.

Partition Types

When scripting the creation of a partition, you must know the type of partition and its dependencies beforehand. There are three
different types of partitions: primary, extended, and logical. Each physical disk can have a maximum of four primary partitions, and
only one can be marked active in order to boot. When a primary partition is marked active, it is automatically assigned the drive
letter C.

Each primary partition can have only one extended partition. Within an extended partition, you can create up to 24 logical
partitions (or 23 logical partitions if you have an active partition on the same drive). Each logical partition is assigned a drive letter
(with A and B reserved for floppy drives).

Note Only one primary and one extended partition are allowed per physical disk.

Partition Hierarchy

Partition types follow a hierarchy: primary, extended, and logical. They can only be created in this order, and can only be deleted
in the opposite order. To begin scripting partitions, you must first familiarize yourself with Microsoft FDISK.

Microsoft FDISK

Microsoft FDISK (Fixed DISK) is a program that an experienced administrator can be all too familiar with. If only I had a nickel for
each time I've used Microsoft FDISK, I'd be as rich as these IT salary surveys say I should be. Microsoft FDISK is the most
commonly used partitioning utility for hard disks, but despite its popularity, most of its functionality remains highly undocumented.
Microsoft FDISK is included in all versions of DOS and Windows. It allows you to create, delete, or view entries in the partition
table. If you've ever used Microsoft FDISK to set up a new hard drive manually, you know how time-consuming it can be
navigating through menus and waiting for drive integrity checks. Microsoft FDISK provides limited support for scripting from the
command line.

Note If you want to change entries in the partition table, you must first delete and then recreate them.

Scripting Limitations

Scripting Microsoft FDISK is like going to the casino-sometimes you win, sometimes you lose, but most of the time you lose.
Microsoft FDISK does support many command-line options, but doesn't work well with command redirection input (for example,
FDISK < COMMANDS.TXT). And although the menu-based portion allows for deleting partitions, there's no way to delete
partitions from the command line. Just as you do when you're at the casino, you have to know when it's time to collect your chips
and move on to the next table. For us, that move is to Free FDISK.

Free FDISK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If Microsoft FDISK were a used car, you could slap a new engine in it and make it run just the way you like. Well, Free FDISK
does just that. Free FDISK offers enhanced functionality over Microsoft's FDISK and is the official FDISK of FreeDOS
(http://www.freedos.org). Free FDISK provides the same standard Microsoft FDISK interface and commandline options, while
adding even more options for batch scripting. After you partition the hard drive, formatting is the last step needed before the drive
is ready for data.

Formatting
Formatting is the process of preparing a disk for reading and writing. FORMAT.COM is the executable used to format both floppy
and hard disks. When you format a disk, a file allocation table (FAT) and a new root directory are created, allowing you to store
and retrieve files. This, in essence, places a file system on a disk for you to use.

The FAT organizes a hard disk into clusters, grouped into 512K sectors. Clusters are the smallest units for storing data and vary in
size depending on the file system. Starting with the Windows 95 OSR2 release, Microsoft Windows supports the following two file
system types: FAT16 and FAT32. FAT16 is a 16-bit file system that typically stores files in 32K clusters, depending on the partition
size. FAT32 is a 32-bit file system that stores files more efficiently in 4K clusters. You should choose a file system that will be
compatible with the various operating systems running, provide the greatest security, and be the most efficient.

After the drive is formatted with a file system, the operating system can be loaded and made ready for deployment.

Imaging

Imaging is the process of taking an exact copy of a reference computer's hard drive or partition and storing it to an image file
(usually compressed). That image can be stored on any storage medium (hard disk, CDR, DVDR) and restored to multiple
computers, creating a standardized software and operating system environment. The basic principle of imaging is very similar to a
simple disk copy.

Tools
For an administrator, deploying new PCs can become a large part of your job. With old PCs being retired and new PCs rolling in,
finding a way to streamline the imaging process can help cut hours from your work day. And when you're dealing with more than a
few PCs, automating the imaging process is not only helpful, but essential. Imaging tools such as PowerQuest's Drive Image Pro
or Norton Ghost make it easy for an administrator to re-image multiple hard drives in a matter of minutes.

PowerQuest's Drive Image Pro

Drive Image Pro (see Figure 2.1) is an imaging and software distribution solution package from PowerQuest Corporation
(http://www.powerquest.com). In addition to running in standard interactive mode, this product can also be run in batch mode,
allowing a script file to send commands to the main program executable (PQDI.EXE).

Figure 2.1: PowerQuest's Drive Image Pro.

Drive Image Pro uses a proprietary scripting language and includes many commands and switches to image your hard disk. The
most commonly used commands are:

SELECT DRIVE number-Selects a drive according to the number specified

SELECT PARTITION x-Selects a partition where x is:

A partition number

A drive letter

A disk label

ALL-Selects all partitions

DELETE-Deletes the partitions specified in the last SELECT command

DELETE x-Deletes partitions within the currently selected drive where x is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALL-To delete all partitions

EXTENDED-To delete the extended partition (if there are no logical drives)

STORE-Stores selected partitions to an image file with no compression

STORE WITH COMPRESSION x-Stores selected partitions to an image file with compression where x is:

OFF-Stores images with no compression

LOW-Stores images with low compression (about 40%)

HIGH-Stores images with high compression (about 50%)

RESIZE IMAGE x-Resizes the partitions being restored where x is:

NO-Turns resizing off

A size in megabytes (for example, 1000)

PROPORTIONAL-Resizes partitions proportionally

MAX-Resizes partitions to the maximum size possible

MOST SPACE-Resizes partitions leaving most free space

RESTORE-Restores selected partitions

REBOOT-Immediately reboots the computer

Tip To see a brief description of all the available switches, type "PQDI /?" at the command prompt.

Symantec's Norton Ghost

Norton Ghost from Symantec (http://www.symantec.com) is the imaging package most commonly used by IT (Information
Technology) professionals. In addition to imaging, Norton Ghost includes cloning functionality, which allows disk-to-disk/partition-
to-partition copying. Unlike Drive Image Pro, which mainly uses script files for automation, Norton Ghost uses only command-line
switches.

The -CLONE switch is the main switch used to create and restore Norton Ghost image files. The basic syntax of the -CLONE
switch is:
GHOST -CLONE,MODE=m,SRC=s,DST=d

Here, m is any mode parameter, s is any source parameter, and d is any destination parameter. The MODE parameters are:

COPY-Copies one disk to another

LOAD-Restores an image to disk

DUMP-Creates an image from disk

PCOPY-Copies one partition to another

PLOAD-Restores an image to partition

PDUMP-Creates an image from partition

The rest of the parameters are dependent on the selected MODE parameter.

The SRC parameters are:

Drive-Specifies a drive number (COPY/DUMP)

File-Specifies a source image file (LOAD)

Drive:partition-Specifies a drive and partition number (PCOPY/PDUMP)

@MTx-Specifies a tape drive where x is the device number (LOAD)

The DST parameters are:

Drive-Specifies a drive number (COPY/LOAD)

File-Specifies a source image file (DUMP/PDUMP)

Drive:partition-Specifies a drive and partition number (PCOPY/PLOAD)

@MTx-Specifies a tape drive where x is the device number (DUMP)

Note Inserting spaces between the CLONE parameters will cause script errors.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Creating Partitions with Microsoft FDISK

Creating a partition with Microsoft FDISK from the command line is like scripting any program from the command line. The basic
syntax to scripting a program from the command line is as follows:
program options

Here, program is the executable to be run, and options are the supported program parameters.

Creating a Primary Partition
To create a primary partition from the command line, enter the following:
FDISK /PRI: size disk

Here, size is the size of the partition in megabytes, and disk is the physical disk number.

Tip Entering a partition size greater than the drive size will set the partition to the maximum size of the drive or the maximum
size allowed by the selected file system. This is useful when creating generic scripts where you will not know the drive
size in advance.

The /PRI option creates the primary partition and automatically sets it active. Any partition under 512MB will be set up as FAT16,
and larger partitions will be set up as FAT32. To override this behavior and set up all partitions as FAT16, you can append an O
(override) to the /PRI switch.
FDISK /PRIO: size disk

To have all partitions set up as FAT32, you can add the /FPRMT switch:
FDISK /FPRMT /PRI: size disk

Creating an Extended Partition
Scripting an extended partition creation is identical to scripting a primary partition creation, with the exception of the /PRI switch.
To script the creation of an extended partition, enter the following:
FDISK /EXT: size disk

Here, size is the size of the partition in megabytes, and disk is the physical disk number.

The /EXT option creates an extended partition.

Note You must already have a primary partition created before you can create an extended partition.

Creating a Logical Partition
To create a logical partition from the command line, enter the following:
FDISK /EXT: size disk /LOG: size

Here, size is the size of the partition in megabytes and must be less than or equal to the remaining free space, and disk is the
physical disk number.

The /EXT switch is required in order to use the /LOG switch.

Note You must already have a primary and extended partition created before you can create a logical partition.

To set up a logical partition with FAT16, you can append an O (override) to the /LOG switch.
FDISK /EXT: size disk /LOGO: size

Combining Switches
You can combine all three partition creation switches to set up a new hard drive with one line of code:
FDISK /PRI: size disk /EXT: size disk /LOG: size

Note You cannot have multiple /LOG switches per one line of code. If you need to create multiple logical drives, you need to
add multiple lines of code.

Rewriting the Master Boot Record
With an undocumented FDISK option, you can rewrite the master boot record without rewriting the partition table. To rewrite the
MBR, proceed as follows:
FDISK /MBR

Undocumented Microsoft FDISK Options
Even though the /? option is supposed to display all available command-line options, Microsoft FDISK has many undocumented
options. Here are some of the most common undocumented options:

/ACTOK-Skips drive integrity check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/EXT:size disk-Creates an extended partition

/FPRMT-Skips the large drive support startup screen

/LOG:size-Creates a logical drive

/MBR-Creates a new Master Boot Record

/PARTN-Saves partition information to partsav.fil

/PRI:size disk-Creates a primary partition

/STATUS-Displays current partition information

Working with Free FDISK

Free FDISK provides the same functionality as Microsoft FDISK while adding more useful features. Tasks like deleting, creating,
and autosizing partitions are just as simple to perform as any other FDISK option.

Creating Auto-Sized Partitions
To create partitions to the maximum size, enter the following:
FDISK /AUTO

Tip You can create individual partitions by following the above command with a partition number.

Deleting All Partitions
To delete all existing partitions (physical, extended, and logical), enter the following:
FDISK /CLEAR

Tip You can delete individual partitions by following the above command with a partition number.

Other Free FDISK Options
Here are some of the most common options:

/ACTIVATE:partition# drive#-Sets the specified partition active

/C-Checks marked bad clusters

/DELETE-Deletes individual partitions

/FS:filesystem-Specifies the file system to format with

/ONCE-Formats a floppy disk without prompting

/REBOOT-Reboots the machine

Scripting Disk Formats

The main purpose of scripting is to streamline a process. Manual disk formats contain user prompts and pauses. Scripting a disk
format allows you to control how much, if any, prompting is allowed.

Scripting a Hard Disk Format
To perform a completely hands-free drive format and label, enter the following:
FORMAT drive /AUTOTEST /V:label

Here, drive is the drive you want to format, and label is the label you want to give the drive.

The /AUTOTEST switch causes the FORMAT command to run while suppressing any prompts. The /V switch is used to assign a
label to a disk. Disk labels can contain a maximum of eleven characters.

Tip You can follow this command with a /S to format the drive as a system drive.

Scripting a Floppy Disk Format
Combining the /AUTOTEST switch with the /V switch does not create labels on floppy disks. Instead, you can use two separate
commands:
FORMAT drive /AUTOTEST LABEL drive alabel

Here, drive is the drive you want to format, and alabel is the label you want to give the disk.

Scripting a Faster Disk Format
If the disk has already been formatted, you can run a quick disk format that simply erases the disk address tables (not the disk
data). To perform a faster disk format, start the command prompt and enter the following:
FORMAT drive /Q /U

Here, drive is the drive you want to format; /Q indicates a quick format; and /U indicates an unconditional format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Format Options
The other commonly used options are:

/BACKUP-Identical to /AUTOTEST except prompts for disk label

/C-Checks for bad clusters

Suppressing Output when Shell Scripting

Although scripting does suppress most prompts, sometimes it does not suppress the command output. You can suppress the
output of a shell command by sending the output to a NUL device. To suppress the output of a drive format, enter:
FORMAT drive /AUTOTEST > NUL

Creating Boot Disks

Any good administrator has a collection of boot disks ready and waiting in time of need. Boot disks are used when you need to
bypass or perform a task before system bootup. Not only can you use scripting to create boot disks, but you can also use powerful
scripts within them.

Creating a Hard Drive Setup Boot Disk
Follow these steps to create a boot disk that will automatically FDISK and format a hard disk:

1. Make a bootable DOS diskette. On Windows XP, this can be done by opening Windows Explorer, right clicking
on the floppy drive, choosing "Format" from the context menu, selecting "Create an MS-DOS startup disk", and
clicking "Start."

2. Copy FREE FDISK to the diskette.

3. Copy FORMAT.COM to the diskette.

4. Copy the script below to a file and save it as A:\AUTOEXEC.BAT:
@ECHO OFF
IF EXIST "A:\FORMAT.TXT" GOTO FORMAT
IF NOT EXIST "A:\FORMAT.TXT" GOTO FDISK

:FDISK
ECHO This system will reboot when complete.
ECHO.
ECHO Deleting all current partitions ...
FDISK /CLEAR > NUL
ECHO Creating new partitions ...
FDISK /AUTO > NUL
ECHO. > A:\FORMAT.TXT
GOTO REBOOT

:REBOOT
FDISK /REBOOT

:FORMAT
ECHO Formatting drive ...
FORMAT drive /AUTOTEST /V:label /S
DEL A:\FORMAT.TXT
GOTO END
:END
CLS
ECHO FINISHED FDISK AND FORMAT

Here, drive is the drive you want to format, and label is the label you want to give the disk.

Warning This disk will automatically FDISK and format all partitions. You should clearly mark this disk and store it in a
secure area. TRUST ME, I KNOW!

Working with the BOOT.INI

The boot.ini is a hidden, read-only, system file stored in the root of the system partition (Windows Boot Drive). It contains options
about which operating system to load and the timeout to load the default selection. At boot up, the boot loader will display the
options contained in the boot.ini, if it contains more than one entry. You can modify the boot.ini directly (not recommended),
through the System Configuration Utility (Start | Run | Msconfig), through the System control panel applet (Control Panel | System
| Advanced | Startup and Recovery - Settings | System Startup), or through the Bootcfg command.

Backing up the Boot.ini
To backup the existing boot.ini, enter the following:
ATTRIIB -S -H DRIVELETTER:\BOOT.INI

COPY DRIVELETTER:\BOOT.INI DRIVELETTER:\BOOT.BAK
ATTRIIB +S +H DRIVELETTER:\BOOT.INI

Here, the ATTRIB command is used to remove and later add the system and hidden attributes of the boot.ini.

Driveletter is the drive that contains the boot.ini file (e.g., C).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Related solution: Found on page:

Setting File or Folder Attributes 57

Displaying the Boot.ini
The TYPE command displays the contents of a text file from the command prompt. To display the contents of the boot.ini using
the TYPE command, enter the following:
TYPE DRIVELETTER:\BOOT.INI

Here, driveletter is the drive that contains the boot.ini file (e.g., C).

Displaying the Boot.ini Using Bootcfg
Bootcfg is a Windows XP/2003 command line tool that allows you to modify the boot.ini file of a local or remote system. To display
the contents of the boot.ini on a remote system using Bootcfg, enter the following:
bootcfg /query

Here, the QUERY option displays the contents of the boot.ini.

Tip Many of Bootcfg options use entry ID numbers to reference each entry. Use the QUERY option to display entry ids.

Scanning and Rebuilding the Boot.ini Using Bootcfg
Bootcfg can scan for existing Windows NT, 2000, XP, and 2003 installations and prompt to have the entries added to the boot.ini.
To scan for existing installations only, enter the following:
bootcfg /scan /s REMOTESYSTEM /u USERDOMAIN\USERNAME /p PASSWORD

Here, the SCAN option displays the discovered Windows NT, 2000, XP, and 2003 installations and remotesystem is the name of
the remote computer that contains the boot.ini file. The U and P options allow you to specify the domain name, user account
name, and user account password of the user account with permissions to the remote computer.

To have Bootcfg scan and prompt to add discovered installations to the boot.ini, you can use the REBUILD option:
bootcfg /rebuild /s REMOTESYSTEM /u USERDOMAIN\USERNAME /p PASSWORD

Tip You can always use the U and P options to run Bootcfg against a remote system.

Adding Safe Mode Entries Using Bootcfg
By default, Windows XP does not contain any safe mode boot.ini entries. To add safe mode entries to the default Windows XP
boot.ini, enter the following:
bootcfg /copy /d "Safe Mode with No Network" /id 1
bootcfg /raw "/safeboot:minimal /sos /bootlog" /id 2

bootcfg /copy /d "Safe Mode with Network" /id 1
bootcfg /raw "/safeboot:network /sos /bootlog" /id 3

Here, the COPY option is used to copy the first entry (id 1). The /RAW option is used to replace any options with a specified
string.

Deleting an Entry Using Bootcfg
To delete an entry, enter the following:
bootcfg /delete /id entrynumber

Here, entrynumber is the ID number of the entry to delete.

Scripting Drive Image Pro

Drive Image Pro provides a command interpreter to allow complete control from the command line. There are two requirements to
script Drive Image Pro: a script file and a command line to run the script. The script file is a basic text file with the custom
commands that control Drive Image Pro. The command line consists of various switches that control how the script will be
executed. Together, they provide a way to automate all the manual tasks of Drive Image Pro.

Creating an Image
To store partition 1 on drive 1 to an image, enter the following:
SELECT DRIVE 1
SELECT PARTITION 1
STORE

To store all partitions on drives 1 and 2 to an image, enter the following:
SELECT DRIVE 1
SELECT PARTITION ALL
STORE
SELECT DRIVE 2
SELECT PARTITION ALL
STORE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STORE

Note The SELECT command can select only one drive or one set of partitions from a drive at a time. It cannot select two
drives simultaneously, hence the need for two STORE commands.

Restoring an Image
To delete all partitions on drive 1 and restore the first image to drive 1's maximum size, enter the following:
SELECT DRIVE 1
DELETE ALL
SELECT FREESPACE FIRST
SELECT IMAGE 1
RESIZE IMAGE MAX
RESTORE

To resize the second image to 500MB and restore it to the free space on drive 1, proceed as follows:
SELECT DRIVE 1
SELECT FREESPACE LAST
SELECT IMAGE 2
RESIZE IMAGE 500
RESTORE

Running a Script
To run a script, enter the following:
PQDI /CMD=scriptfile /IMG=imagefile /LOG=logfile ERR=errorfile

Here, scriptfile is the name of the script file, imagefile is the name of the image used for the STORE and RESTORE commands,
logfile is a file that records the results of the imaging process, and errorfile is a file that logs any errors encountered while
imaging.

Note If the /IMG switch is omitted, the STORE and RESTORE commands will produce an error.

Scripting Norton Ghost

Norton Ghost performs all its scripting from the command line. Although it does support the use of script files, these files are
nothing more than a list of switches that can be performed at the command line.

Creating an Image
To create an image of drive 1 called image.gho on a remote drive Z, enter the following:
GHOST.EXE -CLONE,MODE=DUMP,SRC=1,DST=Z:\IMAGE.GHO

To create an image of the second partition of drive 1 called image.gho on a remote drive Z, enter the following:
GHOST.EXE -CLONE,MODE=PDUMP,SRC=1:2,DST=Z:\IMAGE.GHO

Restoring an Image
To restore an image called image.gho on a remote drive Z to drive 1, enter the following:
GHOST.EXE -CLONE, MODE=LOAD, SRC= Z:\IMAGE.GHO, DST=1

To restore an image called image.gho on a remote drive Z to the second partition on drive 1, enter the following:
GHOST.EXE -CLONE,MODE=PLOAD,SRC= Z:\IMAGE.GHO,DST=1:2

Performing a Drive Copy
To copy drive 1 to drive 2, enter the following:
GHOST.EXE -CLONE,MODE=COPY,SRC=1,DST=2

Performing a Partition Copy
To copy the first partition on drive 2 to the second partition on drive 1, enter the following:
GHOST.EXE -CLONE,MODE=PCOPY,SRC= 2:1,DST=1:2

Logging Errors
Norton Ghost records all errors in a log file called ghost.err. This file is normally stored in the program's root directory, but you can
change the name and location of the file per use by using the -AFILE switch. Here is an example of how to use the -AFILE switch:
GHOST.EXE -CLONE,MODE=PCOPY,SRC= 2:1,DST=1:2 -AFILE=filename

Using a Script File
Norton Ghost can also read a text file that contains all or additional command-line switches. This file must be in text format, and
each command-line switch must be on a different line. Here is an example of a script file:
-AFILE=z:\errorlog.txt
-CLONE,MODE=PCOPY,SRC= 2:1,DST=1:2

To run the script file, enter the following
GHOST.EXE @filename

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GHOST.EXE @filename

Here, filename is the name of the script file.

More Switches
Different versions of Norton Ghost support different switches. To see a brief description of the available switches, type "GHOST -
H" at the command prompt.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3: Scripting Installations and Updates

In Brief
In the previous chapter, you learned how to automate hard disk setups and images. Throughout this chapter, you will use various
scripting methods to create unique scripting solutions to common administrative installations and updates. You will start by
learning how to script installations from the command line. You will then learn how to use send keys to install windows and
wizards using AutoIt.

Scripting Methods

Not all of us have the luxury of working with a centralized management system such as Systems Management Server (SMS) or
Tivoli. With new programs, program updates, service pack updates, and hotfixes constantly coming out, installing all of these
manually can consume most of an administrator's day. Scripting provides a way to automate these tasks with little or no user
intervention.

Microsoft Command-Line Switches

Microsoft installation and update executables support many different switches to allow for shell scripting and installation
customization. Switches are not case-sensitive and, more often than not, they are not standardized. To make matters worse,
Microsoft tends not to document some of the most useful switches (as you saw in Chapter 2). Here are some of the most
common, and possibly undocumented, switches for Microsoft installation and update executables:

/?-Displays unhidden switches and usage

/C-Extracts files to folder specified with /T switch

/C ID-Used to enter a 20-digit product ID

/F-Forces applications to close at shutdown

/K ID-Used to enter an 11-digit CD key

/N-Does not back up files for uninstall

/N name-Used to enter a username for registration

/N:V-Installs without version checking

/O-Overwrites OEM files without prompting

/O organization-Used to enter an organization name for registration

/Q-Runs in quiet mode, skips all prompts

/Q:U-Runs in user quiet mode, shows some dialog boxes

/Q:A-Runs in admin quiet mode, shows no dialog boxes

/R-Reinstalls the application

/R:A-Always reboots

/R:I-Reboots if necessary

/R:N-Does not reboot, even if necessary

/R:S-Reboots without prompting

/T:path-Specifies or extracts files to a temporary working folder

/U-Runs in unattended mode or uninstalls an application, prompts for shared file removal

/UA-Uninstalls an application and shared files, without prompting

/Z-Does not reboot when installation is complete

Windows and Wizards

Many of the tasks of an administrator involve navigating through interactive windows and wizards. Whether installing a new
program or adding a new piece of hardware, these wizards guide the user through a complicated setup process. This process
involves scrolling through selections, clicking check boxes, selecting tabs, browsing, entering text, and more. Although these
wizards are helpful, they frequently do not support scripting.

In the past, administrators used macro recorders to deal with these unscriptable windows and wizards. The main problem with
basic macro utilities is that they are great for performing linear tasks, but they choke when dealing with complex routines that
require decisions. The solution is to use a send-keys utility, such as HiddenSoft's AutoIt.

AutoIt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoIt (http://www.hiddensoft.com/autoit) is a free automation tool used to send key and mouse commands to Windows objects.
AutoIt detects window titles and text and sends commands to specific windows based on that information. AutoIt reads commands
stored in a text-based script file and performs the commands on a line-per-line basis. Although you can use other scripting send-
keys methods, such as Windows Script Host (WSH) or KiXtart, AutoIt provides the easiest way to detect windows and send keys.

Detecting Windows and Text
Sometimes multiple windows can have the same title. Luckily, AutoIt allows you to specify a combination of window title and
window text to specify the exact window you want. Running AutoIt in "Reveal Mode" allows you to see the title, text, sizes, and
mouse coordinates of the currently active window in real time. To run this command, enter:
AUTOIT /REVEAL

For example, suppose you wanted to script the Add New Hardware Wizard window (see Figure 3.1).The /REVEAL switch would
show the window title and text (see Figure 3.2).

Figure 3.1: The Add New Hardware Wizard window.

Figure 3.2: Detecting window title and text with /REVEAL.

Tip You can use the "AutoIt Reveal Mode" shortcut to start AutoIt in reveal mode.

AutoIt [ADLIB] Section

One of the advantages that AutoIt has over using other send-key methods, such as KiXtart or WSH, is the ability to immediately
intercept windows that may occur unexpectedly. This is accomplished through an optional section called [ADLIB]. When the
[ADLIB] section detects an unexpected window, the script breaks out from its current location, executes the [ADLIB] command,
and then returns to the current location.

Convert Script Files to EXEs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Included in the AutoIt installation package is a utility called AUT2.EXE used to convert AutoIt script files into standalone
executables. By converting your scripts, you can prevent users from reading your code and modifying your scripts. The conversion
utility is menu-based and allows you to set your own executable icon, provided that it is 32 by 32 pixels in 16 colors.

Scripting the AutoIt ActiveX Control

You can use the scriptable ActiveX control version of AutoIt with Windows Script Host. To gain access to the AutoIt object, you
must first use the CreateObject function and set it to a variable:
Set variable = CreateObject("AutoItX.Control")

Note For more information and details on usage, see the AutoIt ActiveX control documentation included in the program
install.

Microsoft Windows Installer

Before Windows 2000, installing and managing applications was a complete mess. Software companies created their own
installation interfaces, each with its own set of rules, command-line options, and uninstall functions. This provided headaches for
administrators who attempted to create common scripting solutions for application installations. To help reduce total cost of
ownership (TCO) and provide a standardized set of installation rules, Microsoft created the Windows Installer.

The Windows Installer is a new installation and configuration service for 32-bit Windows platforms that standardizes the way
programs install and uninstall. The Windows Installer is a Zero Administration Windows initiative and is required to conform to the
"Designed for Microsoft Windows" logo standards. Some of the advanced features of the Windows Installer are self-repair,
rollback, and install on demand. The Windows Installer comes packaged with Windows 2000/XP/2003, and is available as a
separate download for Windows 9x and Windows NT.

The Windows Installer runs as a two-part installation utility that consists of a client engine and a system service. The client engine
(MSIEXEC.EXE) runs with user privileges and provides the interface between the system and the installation service.
MSIEXEC.EXE reads the instructions from the installation package (*.MSI) and passes them to the installation service (Windows
Installer).

The installation service enables the system to keep track of all program installations and system changes, providing for cleaner
uninstalls. Because the installation service runs as a system service, it can be given various privileges to allow users to install their
own applications.

Self-Repair
When a program file becomes corrupted or missing, a program installed with the Windows Installer can identify these files and
replace them automatically. This is a handy feature for those of us with troublesome users who like to attempt their own uninstalls.

Rollback
The Windows Installer rollback feature creates a temporary backup and script of any files changed during the installation process.
If a fatal error occurs during the installation, the rollback feature immediately runs the script and returns the system to its original
state. All rollback files are stored in a temporary directory called config.msi, and are automatically deleted when the installation
successfully completes. Rollbacks can take a significant amount of disk space and can be disabled by an administrator.

Tip You can always delete the config.msi folder manually if setup fails to remove it.

Microsoft Windows Installer Switches
The MSIEXEC.EXE supports various command-line switches, allowing you to control the installer from the command shell or
batch file. Here are some of the most common command-line switches for Microsoft Windows Installer:

/I-Installs the program

/F-Repairs an installation

/X-Uninstalls the program

/L*V logfile-Logs all information to a logfile

/QN-No user interface

/QB-Basic user interface

/QF-Full user interface

/? or /H-Displays some switches and copyright information

/X-Uninstalls the program

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Scripting a Silent .NET Framework Installation

Microsoft .NET is a collection of technologies that allow developers to build, deploy, and maintain applications using a standard
set of classes. The .NET framework is the common language runtime and set of classes required to run any application built in
.NET. To automate a silent installation of the .NET framework, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the .NET framework redistributable from http://www.microsoft.com to the new directory.

3. Start the command prompt and enter the following:
 "new directory path\dotnetfx.exe" /q:a /c:"install /l /q"

Here, new directory path is the complete path of the new folder created in step 1.

Scripting a Silent MDACS Installation

MDAC (Microsoft Data Access Components) is a set of drivers used to communicate with databases. While Windows 2000/XP
comes with a version of MDAC, updating your version will provide improved performance and stability, as well as provide access
to new data sources. To automate a silent installation of MDACS, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the MDACS installer from http://www.microsoft.com to the new directory.

3. Start the command prompt and enter the following:

 new directory path\executable
 /q /C:"setup /QN1"

Here, new directory path is the complete path of the new folder created in step 1, and executable is the name of the MDACS
executable downloaded in step 2.

Scripting a Silent Windows 2000/XP Service Pack Installation

The Windows 2000/XP service packs allow you to script an install without forcing you to extract the files first. To automate a silent
installation of a Windows 2000/XP service pack, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest service pack, from http://www.microsoft.com, to the new directory.

3. Start the command prompt and enter the following:
 new directory path\executable -F -N -O -Q

Here, new directory path is the complete path of the new folder created in step 1, and executable is the name of the service
pack executable downloaded in step 2.

Scripting a Silent Windows Management Instrumentation Installation

Windows Management Instrumentation (WMI) is a management service that provides scriptable interfaces to the objects on your
network. To automate a silent installation of WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest version of Windows Management Instrumentation, from http://www.microsoft.com, to the
new directory.

3. Start the command prompt and enter the following:
 new directory path\file /s

Here, new directory path is the complete path of the new folder created in step 1, and file is the name of the WMI installation
executable.

Scripting an Active Directory Services Interface Installation

Active Directory Services Interfaces (ADSI) is a directory service that allows you to identify users and resources in a tree-like
structure. To automate a silent installation of ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest version of Active Directory Directory Services, from http://www.microsoft.com, to the new
directory.

3. Start the command prompt and enter the following:
 new directory path\file /Q:A /R:A

Here, new directory path is the complete path of the new folder created in step 1, and file is the name of the ADSI installation
executable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scripting an Internet Explorer Download

The Internet Explorer setup utility is a 479kb file that downloads only the files needed for your operating system. If you need to
install Internet Explorer on fifty systems, you'll have to sit and wait for it to download fifty times. To automate the download of
Microsoft Internet Explorer 6.x, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Internet Explorer setup file (ie6setup.exe) from http://www.microsoft.com and store it in the new
directory.

3. Start the command prompt and enter the following:
 new directory path\ ie6setup.exe /c:"ie6wzd.exe /d /s:""#E"

Here, new directory path is the complete path of the new folder created in step 1.

Scripting a Silent Internet Explorer Installation

Microsoft Internet Explorer is the most widely used Web browser for Windows and comes included with every Windows operating
system (for now). To automate the installation of Microsoft Internet Explorer 6.x, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Internet Explorer setup file (ie6setup.exe) from http://www.microsoft.com and store it in the new
directory.

3. Start the command prompt and enter the following:
 new directory path\ie6setup.exe /Q:A /R:N

Here, new directory path is the complete path of the new folder created in step 1.

Related solution: Found on page:

Using Microsoft Internet Explorer as a Display Tool 100

Scripting a Silent LiveUpdate Installation

LiveUpdate is a free Symantec application used to automatically update its other software applications. To automate a silent
installation of LiveUpdate, proceed as follows.

Start the command prompt and enter the following:
file path\LUSETUP -S

Here, file path is the complete path of the LiveUpdate installation files.

Scripting a Silent WinZip 8.1 SR-1 Installation

WinZip is the most popular Windows compression utility for the ZIP format. To automate the installation of WinZip 8.1 SR-1
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the WinZip 8.1 SR-1 installation executable (WINZIP81.EXE), from http://www.winzip.com, to the new
directory.

3. Download and install AutoIt, from http://www.hiddensoft.com/autoit, to the new directory.

4. Double click on the scriptfile.

Here, scriptfile is a text file that contains the following:
;REM To automate the installation of WinZip 8.1 SR-1

RUN, WINZIP81.EXE
WinWaitActive, WinZip 8.1 SR-1 Setup
SEND, !S
WinWaitActive, WinZip Setup, Setup will install
SEND, {ENTER}

WinWaitActive, License Agreement
SEND, !Y
WinWaitActive, WinZip Setup, WinZip Quick Start
SEND, !N
WinWaitActive, WinZip Setup, Select
SEND, !C!N
WinWaitActive, WinZip Setup, Click
SEND, !N
WinWaitActive, WinZip Setup, WinZip needs to associate
SEND, !N
WinWaitActive, WinZip Setup, Installation is complete., 5
SEND, {ENTER}

[ADLIB]
;Used to close license agreement
WinZip, Contents, SEND, !FX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

;Used for the evaluation installation
WinZip Setup, Thank you for installing, SEND, {ENTER}

;Used to prevent installation from unexpectedly ending
WinZip Self-Extractor, Abort unzip operation?, SEND, !N
WinZip, Setup is not complete., SEND, !N
WinZip Self-Extractor, This self-extracting Zip file, SEND,
{ENTER}

;Used for upgrading from older version
Setup Complete 1, ,SEND, {ENTER}
Setup Complete message 2, , SEND, {ENTER}
;Used to exit script if still running
WinZip Tip of the Day, , SEND, Exit

Working with the Windows Installer

The Windows Installer replaces the ACME installer, adding more features and functionality. This new installer provides a standard
method for application installations and an easy way for administrators to script installations.

Scripting a Silent Norton AntiVirus 2003 Installation
Norton AntiVirus 2003 is the latest version of antivirus protection from Symantec (http://www.symantec.com). To automate a silent
installation of Norton AntiVirus 2003, proceed as follows.

Start the command prompt and enter the following:
file path\SETUP /QN

Here, file path is the complete path of the Norton AntiVirus 2003 installation files.

Scripting a Silent pcANYWHERE 11.0 Installation
PcANYWHERE 11.0 is the latest version of remote control from Symantec (http://www.symantec.com). To automate a silent
installation of pcANYWHERE 11.0, start the command prompt and enter the following:
MSIEXEC /I filepath\ Symantec pcAnywhere.msi /QN

Here, file path is the complete path of the pcANYWHERE 11.0 installation files.

Scripting a Silent Windows 2000 Resource Kit Installation
The Windows 2000 resource kit provides many tools and utilities that allow you to perform powerful administrative and system
tasks. To automate a silent installation of a Windows 2000 resource kit, start the command prompt and enter the following:
MSIEXEC /I DRIVE:\W2000RKPRO.MSI /QN

Note Using the /QB switch may cause the installer to prompt that it is uninstalling the resource kit when in fact it is installing
it.

Here, DRIVE is the CD-ROM drive letter containing the Windows 2000 resource kit CD.

Tip You can script a silent Microsoft TechNet installation using the same install syntax and replacing the name of the msi file.

Scripting the Windows Installer Installation
Although the Windows Installer redistributable files usually come packaged with a program that uses the Windows Installer, they
can be downloaded and installed individually. To automate the installation of the Windows Installer, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Windows Installer redistributable from
http://www.microsoft.com/msdownload.platformsdk/instmsi.htm.

3. Select Start|Run and enter "new directory path\wiexe /Q:A / R:A."

Here, new directory path is the complete path of the new folder created in step 1, and wiexe is the name of the Windows
Installer redistributable executable.

Scripting Microsoft Office 2000/XP
Microsoft Office 2000 was one of the first applications released by Microsoft to utilize the new Windows Installer. Although the
following examples are focused toward Microsoft Office 2000 and Office XP, they can be applied to any application that utilizes
the new Windows Installer.

Removing Older Versions

The Microsoft Office Removal Wizard can be used to remove older versions of Microsoft Office before installing Microsoft Office
2000/ XP. To automate the removal of older versions of Microsoft Office, start the command prompt and enter the following:
SETUP /S /Q /R /L log file

Here, log file records all activity of the removal process.

Note The Microsoft Office Removal Wizard is included in the Microsoft Office 2000/XP Resource Kit.

Scripting a Silent Installation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To automate the installation of Microsoft Office 2000/XP, start the command prompt and enter the following:
file path\SETUP /QN /L*V
install log COMPANYNAME="company"

Here, file path is the complete path of the Office installation files, install log is the file to store all errors and output, and
company is the name of the company registered for Office.

Tip For more information about Office 2000/XP command-line switches, see the Microsoft TechNet Article Q202946 (Office
2000) and Q283686 (Office XP).

Scripting an Uninstall

To automate the uninstallation of Microsoft Office 2000/XP, start the command prompt and enter the following:
file path\SETUP /QN /X msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to uninstall.

Scripting a Repair

To automate the repair of a Microsoft Office 2000/XP installation, start the command prompt and enter the following:
file path\SETUP /FOCUMS msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to repair.

Scripting a Reinstallation

To automate the reinstallation of Microsoft Office 2000/XP, start the command prompt and enter the following:
file path\SETUP /FECUMS msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to reinstall.

Advertising

Instead of installing an application, you can simply set up the Start menu shortcuts that, when activated, will install the application
on first use. This setup method is called advertising. To advertise Microsoft Office 2000/XP, start the command prompt and enter
the following:
file path\SETUP /QN /JU msifile

Here, file path is the complete path of the Office installation files originally used to install Office, and msifile is the name of the
msi package to advertise.

Disabling Windows Installer Rollbacks
To disable the Windows Installer Rollback feature during an installation, start the command prompt and enter the following:
file path\SETUP DISABLEROLLBACK=1

Here, file path is the complete path of the installation files used in the original installation.

Installing the Windows Installer Clean Up Utility
Microsoft has created a utility that allows you to delete Windows Installer registry entries from a system. This is useful when you
have corrupted installations that are preventing you from successfully installing a program. Although the utility's installer states
that it supports the standard Microsoft installation switches, they do not work. To automate the installation of the Windows Installer
Clean Up Utility, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the Windows Installer Clean Up Utility from Microsoft.

For Windows 9x:
download.microsoft.com/download/office2000pro/util22/1/W9X/
EN-US/msicu.exe

Note The code above is one continuous statement.

For Windows 2000:
download.microsoft.com/download/office2000pro/util20/1/NT4/
EN-US/msicuu.exe

Note The code above is one continuous statement.

3. Download and extract Microsoft AutoIt, from http://www.microsoft.com, to the new directory.

4. Select Start|Run and enter "new directory path\AutoIt scriptfile."

Here, new directory path is the complete path of the new folder created in step 1, and scriptfile is a text file that contains the
following:
[SCRIPT]
RUN=executable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RUN=executable
Windows Installer+It is strongly=~WINWAITACTIVE#!N
Windows Installer+License=~WINWAITACTIVE#!A!N
Windows Installer+Start=~WINWAITACTIVE#!N
REM The two lines below should be one continuous line
Windows Installer+Windows Installer Clean Up has been
successfully installed=~WINWAITACTIVE#!F

[ADLIB]
REM Used to prevent installation from unexpectedly ending
Windows Installer+Setup is not complete=!R
REM The two lines below should be one continuous line
Windows Installer+Windows Installer Clean Up was
interrupted={ENTER}

REM Used for uninstallation
Windows Installer+This will remove=!N
REM The two lines below should be one continuous line
Windows Installer+Windows Installer Clean Up has been
successfully uninstalled=!F#~EXIT
REM Used if wrong version installation is attempted
Installer Information=!0
Fatal Error={ENTER}#~EXIT

Here, executable is the name of the Windows Installer Clean Up executable.

Note For more information about the Windows Installer Clean Up utility, see the Microsoft TechNet article Q238413 (Office
2000) and Q290301 (Office XP).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4: File Management

In Brief
Files are the backbone of any information system. They hold the data you work with and make up the programs you use. As a
computer user, everything you do involves interacting with files. Finding, deleting, creating, and modifying files are actions you do
every day, often without even noticing it.

As administrators, we've all dealt with users who tried to back up their entire system to the server or start their own MP3 (Motion
Pictures Experts Group Layer-3 Audio) server with their user directory. Although Windows 2000 provides disk quota management,
it does not include a method to target and remove the offending files. In addition to eating a disk's free space, users also have a
tendency to save files with strange names and extensions while storing the data anywhere they please.

And while users are slowly tearing at the file system, the system is also filling the disk with temp files, orphaned files, and system
logs. With more user data and application files being placed on a system daily, keeping the file system healthy is a constant race
that never ends. In this chapter, you will learn how to clean up your file system and perform file-related tasks.

A Word of Caution

This chapter contains many scripting examples on copying and moving files. Copying and moving files and folders has various
affects on NTFS encryption, compression, or permissions. For example, a task as simple as copying a file may cause you to lose
NTFS permissions set on a secure file. The following list explains the affects of copying and moving NTFS files and folders:

Copying Files/Folders within NTFS drives will cause the object to inherit NTFS permissions of the target folder.

Moving Files/Folders between two NTFS drives will cause the object to inherit NTFS permissions of the target
folder.

Moving Files/Folders within the same NTFS drive will cause the object to retain its NTFS permissions.

Copying Compressed Files/Folders within NTFS drives will cause the object to inherit the compression setting of the
target folder.

Moving Compressed Files/Folders between two NTFS drives will cause the object to inherit the compression setting
of the target folder.

Moving Compressed Files/Folders within the same NTFS drive will cause the object to retain its compression.

Copying or Moving Compressed Files/Folders to a non-NTFS drive will cause the object to lose its compression.

Copying or Moving Encrypted Files/Folders within NTFS drives will cause the object to retain its encryption.

Copying or Moving Encrypted Files/Folders to a non-NTFS drive will cause the object to lose its encryption.

Copying Unencrypted Files/Folders to an NTFS Encrypted Folder will cause the object to become encrypted.

Moving Unencrypted Files/Folders to an NTFS Encrypted Folder will not cause the object to become encrypted.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Working with the File System

Files and folders are the building blocks of any system. They contain the data we treasure, the operating system we use, and the
applications we work with. Shell scripting, KiXtart, and Windows Script Host provide many ways of working with the file system.
Although the tasks these scripting methods perform are similar, the commands, syntax, and limitations of each method differ.

Manipulating the File System Using Shell Scripting

Shell scripting provides limited functionality for manipulating the file system. Although Resource Kit utilities extend the capabilities
of shell scripting, it still cannot compare to the more powerful functions of KiXtart and Windows Script Host. So, why use shell
scripting? Shell scripting comes built into every operating system, and you will run into situations where shell scripting is your only
alternative.

Deleting Files Depending on Extension
The Windows 2000/XP DELETE command supports many options that the Windows 9x command does not. To remove files
based on extension in Windows 2000/XP, start the command prompt and enter the following:
DEL *.ext /F /Q /S

Here, ext is the file extension of the files to delete; the /F switch forces the deletion of read-only files; the /Q switch removes
prompts; and the /S switch performs deletions not only in the current directory, but in the subdirectories as well.

Deleting Folders and Subfolders
Windows XP includes the RMDIR (Remove Directory) command that mimics the Windows 9x DELTREE.EXE (Delete Tree)
command. To delete a root folder and all its subfolders with RMDIR, start the command prompt and enter the following:
RMDIR /Q /S directory

Here, directory is the name of the directory to delete; the /Q switch removes prompts; and the /S switch performs the deletion of
all files and subdirectories.

Determining File Versions
FILEVER.EXE is a Resource Kit utility to display file versions from the command line. To determine a file version, start the
command prompt and enter the following:
FILEVER filename

Here, filename is the path and name of file to determine the file version.

Note Remember, only application files have versions.

Updating Program Files Depending on the Version
REPLACE is a command that can be used to update older files with newer file versions. To update a file with a newer version,
start the command prompt and enter the following:
REPLACE /R /S /U source destination

Here, source is the path and name of the source file; destination is the directory to start the replacement; the /R switch allows for
readonly file replacement; the /S switch performs the replacement in the current directory and all subdirectories; and the /U switch
specifies to only replace files with a newer version.

Replicating Files and Directories
You can tell users to back up their files to the server, but whether the users actually do back the files up is a different story.
ROBOCOPY is a Resource Kit utility to copy, move, or replicate files from the command line. To replicate files, start the command
prompt and enter the following:

ROBOCOPY /MIR /ETA /NP /LOG+:logfile source destination

Here, the /MIR mirrors a directory tree; the /ETA switch displays the estimated time of arrival of copied files; the /NP switch causes
no copy progress to be displayed; the /LOG+:logfile outputs the status to the logfile; and destination is the location to replicate
the source to.

Displaying File or Folder Attributes
The ATTRIB command allows you to display file or folder attributes. To display the attributes of a file or folder, start the command
prompt and enter the following:
ATTRIB filefolder

Here, filefolder is the file or folder that contains the attributes you wish to display.

Setting/Removing File or Folder Attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ATTRIB command allows you to set or remove file and folder attributes. To set attributes of a file or folder, start a command
prompt and enter the following:
ATTRIB +R +H +S filefolder

Tip Here, filefolder is the file or folder that contains the attributes you want to set. The +R, +H, and + S set filefolder's Read
Only, Hidden, and System attributes respectively.

To remove attributes of a file or folder, start a command prompt and enter the following:
ATTRIB -R -H -S filefolder

Appending Text Files
Collecting information from log files can be a time-consuming task. Often, these files are properly formatted but simply need to be
collected to a central file. To append the contents of one text file to another, start the command prompt and enter the following:
TYPE file1 >> file2

Here, file1 is the file whose contents you want to append to file2.

Compressing Files and Folders
With Windows NT/2000/XP/2003 and a drive formatted with NTFS (New Technologies File System), you can take advantage of
NTFS compression to save disk space by compressing your files and folders. The COMPACT command allows you to
compress/uncompress NTFS files and folders from the command line. To compress all the files and subfolders of a folder, start a
command prompt and enter the following:
COMPACT /c /s rootfolder*.*

Here, rootfolder is the folder that contains the files and folders you want to compress. The /c option sets the intended action to
compress, and /s specifies that the intended action should be applied to all files and subfolders of the rootfolder.

Manipulating the File System Using KiXtart

KiXtart is a scripting language I introduced in Chapter 1 that is best used when you know the exact file or directory you want to
manipulate. KiXtart provides poor directory parsing capabilities with its limited DIR command and lack of recursive support. To
compensate, you can call external commands for indirect file management and KiXtart commands for direct file management.

Using External Commands
KiXtart provides two statements to run an external 16- or 32-bit application or command: SHELL and RUN. The SHELL statement
will wait for the external command to complete, but the RUN statement will not. Both the SHELL and RUN statements have the
same syntax:
statement "command"

Here, statement is the RUN or SHELL statement, and command is the command to run. To delete all the files in the temp
directory using the RUN statement, you would enter:
RUN "%COMSPEC% /C DEL C:\TEMP*.* /F /Q /S"

Note %COMSPEC% /C is used to run commands from the DOS environment.

Renaming a File or Folder
KiXtart does not contain a function to rename a file or folder. Instead, you can move the current item to a new item with the
desired name, providing an item with the new name does not already exist. To rename a file or folder, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart from http://www.kixtart.org to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and the file name of a script file that contains the following:
REN('oldname', 'newname')

Function REN($OldFileName, $NewFileName)
 MOVE $OldFileName $NewfileName /h
EndFunction

Here, oldname is the name of the file or folder to rename and newname is the name to rename the oldname to. The REN
function uses the MOVE command to rename the file or folder. The /h option specifies to include system and hidden files.

Displaying File or Folder Attributes
The KiXtart command GetFileAttr allows you to display file or folder attributes. To display the attributes of a file or folder, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
DisplayAttr('path)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisplayAttr('path)
Sleep 5

Function DisplayAttr($FileFolder)
 $ReadOnly = 0 $Hidden = 0 $System = 0
 $Dir = 0 $Archive = 0 $Encrypt = 0
 $Normal = 0 $Temp = 0 $Sparse = 0
 $Reparse = 0 $Compress = 0 $Offline = 0

 If GetFileAttr($FileFolder) & 1 $ReadOnly = 1 EndIf
 If GetFileAttr($FileFolder) & 2 $Hidden = 1 EndIf
 If GetFileAttr($FileFolder) & 4 $System = 1 EndIf
 If GetFileAttr($FileFolder) & 16 $Dir = 1 EndIf
 If GetFileAttr($FileFolder) & 32 $Archive = 1 EndIf
 If GetFileAttr($FileFolder) & 64 $Encrypt = 1 EndIf
 If GetFileAttr($FileFolder) & 128 $Normal = 1 EndIf
 If GetFileAttr($FileFolder) & 256 $Temp = 1 EndIf
 If GetFileAttr($FileFolder) & 512 $Sparse = 1 EndIf
 If GetFileAttr($FileFolder) & 1024 $Reparse = 1 EndIf
 If GetFileAttr($FileFolder) & 2046 $Compress = 1 EndIf
 If GetFileAttr($FileFolder) & 4096 $Offline = 1 EndIf

 ? "File: " + $FileFolder
 ? ""
 ? "ReadOnly: " + $ReadOnly
 ? "Hidden: " + $Hidden
 ? "System: " + $System
 ? "Directory: " + $Dir
 ? "Archive: " + $Archive
 ? "Encrypted: " + $Encrypt
 ? "Normal: " + $Normal
 ? "Temporary: " + $Temp
 ? "Sparse: " + $Sparse
 ? "Reparse: " + $Reparse
 ? "Compressed: " + $Compress
 ? "Offline: " + $Offline
EndFunction

Here, path is the file or folder that contains the attributes you wish to display.

Note Windows 2000 adds several new file attributes with NTFS 5. For more information, see Chapter 17 of the Windows
2000 Professional Resource Kit.

Setting File or Folder Attributes
The KiXtart command SetFileAttr allows you to set file or folder attributes. To modify the attributes of a file or folder, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
;Sets Read Only and Hidden attributes
SetAttribs('filefolder',1,1,0,0,0,0)

Function SetAttribs($File, $ReadOnly, $Hidden, $System, $Archive,
 $Temp, $Offline)
$Rcode = SetFileAttr($File,128) ;Reset file to normal

 $Attribs = 0
 If $ReadOnly = 1 $Attribs = $Attribs + 1 EndIf
 If $Hidden = 1 $Attribs = $Attribs + 2 EndIf
 If $System = 1 $Attribs = $Attribs + 4 EndIf
 If $Archive = 1 $Attribs = $Attribs + 32 EndIf
 If $Temp = 1 $Attribs = $Attribs + 256 EndIf
 If $Offline = 1 $Attribs = $Attribs + 4096 EndIf

 $SetAttribs = SetFileAttr($File,$Attribs)
EndFunction

Here, filefolder is the file or folder that contains the attributes you want to set. To modify filefolder's attributes, change the value
of the corresponding input parameters ($ReadOnly, $Hidden, $System, $Archive, $Normal, $Offline) to 1 to enable, or 0 to
disable.

Appending Text Files
To append the contents of one text file to another, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$File1 = "file1"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$File1 = "file1"
$File2 = "file2"

$Rcode = Open(1,$File1)
$Rcode = Open(2,$File2,5)

$File1 = ReadLine(1)
While @Error=0
 If $File1
 $Rcode = WriteLine(2,$File1 + Chr(13) + Chr(10))
 EndIf
 $File1 = ReadLine(1)
Loop

$Rcode = Close(1)
$Rcode = Close(2)

Here, file1 is the file whose contents you want to append to file2.

Searching and Replacing Lines within Files
Replacing specific lines within text files is a common administrative task. To search and replace a line within a text file, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$File = "somefile"
$DLine = 'searchline'
$RLine = 'replaceline'
$TempFile = $File + ".TMP"
$LineNum = 0

$Rcode = OPEN (1, $File, 2)
DEL $TempFile
$Rcode = OPEN (2, $TempFile, 5)

 $Line = READLINE(1)
WHILE @Error = 0

$LineNum = $LineNum + 1
 IF $Line = $DLine
 $Rcode = WRITELINE(2, $RLine + Chr(13) + Chr(10))
 ELSE
 $Rcode = WRITELINE(2, $Line + Chr(13) + Chr(10))
 ENDIF
 $Line = READLINE(1)
LOOP
$Rcode = CLOSE(1)
$Rcode = CLOSE(2)
COPY $TempFile $File
DEL $TempFile

Here, somefile is the file to parse, and replaceline is the text to replace the searchline with.

Searching and Replacing within an INI File
INI files, or initialization files, are text files that were originally created to store configuration information for 16-bit applications.
KiXtart is the easiest scripting method for modifying an INI file because it has two built-in INI functions (READPROFILESTRING
and WRITE PROFILESTRING). To search and replace a value in an INI file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$LoadKey = ReadProfileString("inifile", section, key)
If $LoadKey = oldvalue
 WriteProfileString("inifile ", section, key, newvalue)
EndIf

Here, inifile is the complete name and path of the INI file; section is the name of the INI section to search (without the brackets);
key is the name of the key to search; oldvalue is the value to find; and newvalue is the value to replace it with.

Note WriteProfileString in this example replaces the old value with a new value surrounded by double quotes. If you wish to
clear the value, the new value should be a space surrounded by double quotes. Simply supplying double quotes (no
space) would delete the entire key and value from the INI file.

Manipulating the File System Using Windows Script Host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many of the file management tasks administrators would like to script are too complex or cannot be done with shell scripting or
KiXtart. Through the FileSystemObject object, Windows Script Host (WSH) provides direct access to the file system, allowing you
to create complex and unique file management scripts.

Accessing the FileSystemObject Object
The FileSystemObject object stores all the functions that allow you to manipulate the file system through a script file. To create
an instance of the FileSystemObject, proceed as follows:
Set FSO = CreateObject("Scripting.FileSystemObject")

Going through Subfolders
This subroutine will work through the subfolders of a main directory, calling another subroutine called MainSub:
Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 MainSub objDIR
 For Each eFolder in objDIR.SubFolders
 GoSubFolders eFolder
 Next
 End If
End Sub

Note The System Volume Information Directory is a system directory that stores system files, restores information, and
encryption logs. Since this is an exclusive system directory, scripts that attempt to access it will generate an access
denied error.

Connecting to a File
Before performing certain WSH actions on a file, you must first connect to it using the GetFile method. Here is a function to
connect to a file:
Function GetFile(sFILE)
 On Error Resume Next
 Set GetFile = FSO.GetFile(sFILE)
 If Err.Number <> 0 Then
 Wscript.Echo "Error connecting to: " & sFILE & VBlf & _
 "[" & Err.Number & "] " & Err.Description
 Wscript.Quit Err.Number
 End If
End Function

Tip On Error Resume Next allows the script to continue to the next statement if an error occurs. This allows you to perform
error checking and alerting.

In this script, a connection to a file is attempted, and the user is prompted if any errors occur.

Connecting to a Folder
Before performing certain WSH actions on a folder, you must first connect to it using the GetFolder method. Here is a function to
connect to a folder:
Function GetFolder(sFOLDER)
 On Error Resume Next
 Set GetFolder = FSO.GetFolder(sFOLDER)
 If Err.Number <> 0 Then
 Wscript.Echo "Error connecting to folder: " & sFOLDER & _
 VBlf & "[" & Err.Number & "] " & Err.Description
 Wscript.Quit Err.Number
 End If
End Function

Generating a Random File Name
Most applications use temporary files-files with random and or unique names. During your scripting lifetime, you will need to
generate a random filename to hold temporary data. Here is a function to create a temporary file name:
Function GetRandomName()
 Set FSO = CreateObject("Scripting.FileSystemObject")
 GetRandomName = FSO.GetTempName
End Function

Generating a Directory Listing
To generate a directory list, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sDIR = "directory"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub ListFiles (objDIR)
 For Each efile in objDIR.Files
 Wscript.Echo efile
 Next
End Sub

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 ListFiles objDIR
 For Each eFolder in objDIR.SubFolders
 Wscript.Echo eFolder
 GoSubFolders eFolder
 Next
 End If
End Sub

Here, directory is the root folder containing the files and folders to list. The subprocedure ListFiles rotates through all the files
within the current directory and lists their names.

Note You need to append the GetFolder routine, listed earlier in this chapter, to this script in order for it to run.

Tip If you want to send the directory list to a text file, you can use the DOS append command (>>) when running the script
from the command line (for example, cscript scriptfile.vbs >> textfile.txt).

Deleting a File
To delete a file with WSH, you can use the DeleteFile method. Here is a subroutine to delete a file:
Sub DelFile(sFILE)
 On Error Resume Next
 FSO.DeleteFile sFILE, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error deleting file: " & sFILE
 End If
End Sub

In this script, a file deletion is attempted, and the user is prompted if any errors occur.

Deleting All Files within a Folder

To delete all files within a root folder and its subfolders, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 DelFile efile
 Next
End Sub

Here, directory is the root folder containing the files to delete.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Size

It happens to all of us, but every now and then a user chooses to upload hundred meg files to a public share. To delete all files
within a root folder and its subfolders depending on size, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lSIZE = lowersize
uSIZE = uppersize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uSIZE = uppersize

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 If lSIZE = Null and uSIZE = Null Then
 If efile.Size = 0 Then
 DelFile efile
 End If
 ElseIf lSIZE <> Null and uSIZE = Null Then
 If efile.Size < lSIZE Then
 DelFile efile
 End If
 ElseIf lSIZE = Null and uSIZE <> "" Then
 If efile.Size > uSIZE Then
 DelFile efile
 End If
 ElseIf lSIZE = uSIZE Then
 If efile.Size = lSIZE Then
 DelFile efile
 End If
 Else
 If efile.Size > lSIZE and _
 efile.Size < uSIZE Then
 DelFile efile
 End If
 End If
 Next
End Sub

Here, directory is the folder containing the files to delete, lowersize is the lower size limit, and uppersize is the upper size limit. If
both limits are null, the script will delete all empty files. If just the upper limit is null, the script will delete files smaller than the lower
limit. If just the lower limit is null, the script will delete files larger than the upper limit. If both limits are not null but equal, the script
will delete files equal to the limit. If both limits are not null and not equal, the script will delete files within the two limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Date

A common administrative task is deleting old files from public shares. To delete all files within a root folder and its subfolders
depending on last modified date, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lDATE = "lowerdate"
uDATE = "upperdate"

lDATE = CDate(lDATE)
uDATE = CDate(uDATE)
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR
Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 If lDATE = Null and uDATE = Null Then
 If efile.DateLastModified = Date Then
 DelFile efile
 End If
 ElseIf lDATE <> Null and uDATE = Null Then
 If efile.DateLastModified < lDATE Then
 DelFile efile
 End If
 ElseIf lDATE = Null and uDATE <> Null Then
 If efile.DateLastModified > uDATE Then
 DelFile efile
 End If
 ElseIf lDATE = uDATE Then
 If efile.DateLastModified = lDATE Then
 DelFile efile
 End If
 Else
 If efile.DateLastModified > lDATE and _
 efile.DateLastModified < uDATE Then
 DelFile efile
 End If
 End If
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Here, directory is the folder containing the files to delete, lowerdate is the lower date limit, and upperdate is the upper date limit.
If both limits are null, the script will delete files last modified today. If just the upper limit is null, the script will delete files smaller
than the lower limit. If just the lower limit is null, the script will delete files larger than the upper limit. If both limits are not null but
equal, the script will delete files equal to the limit. If both limits are not null and not equal, the script will delete files within the two
limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Name

From hacker tools to new viruses, deleting files with a specific name is a common administrative task. To delete all files with a
specific name within a root folder and its subfolders, proceed according to the steps on the next page.

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sFILE = "filename"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 If LCase(efile.Name) = LCase(sFILE) Then
 DelFile efile
 End If
 Next
End Sub

Here, directory is the folder containing the files to delete, and filename is the name of the file to search for.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Files Depending on Extension

Cleaning a system of specific file types, such as TMP (Temporary), MP3 (Motion Picture Experts Group Layer 3 Audio), AVI
(Audio Video Interleave), and other file types, is a very common administrative task. To delete all files with a specific extension
within a root folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sEXT = "EXT"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 DelFile efile
 End If
 Next
End Sub

Here, directory is the folder containing the files to delete, and EXT is the file extension to search for. The sub procedure
MainSub rotates through every file within the current directory, checks the file extension, and deletes the file if specified.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting a Folder
To delete a folder with WSH, you can use the DeleteFolder method. Here is a subroutine to delete a folder:
Sub DelFolder(sFOLDER)
 On Error Resume Next
 FSO.DeleteFolder sFOLDER, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error deleting folder: " & sFOLDER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Wscript.Echo "Error deleting folder: " & sFOLDER
End If End Sub

Deleting All Subfolders

To delete all subfolders within a directory, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 DelFolder eFolder
 Next
 End If
End Sub

Here, directory is the folder containing the subfolders to delete.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Folders Depending on Size

By maintaining public shares, you get to notice all the bad habits of a typical user. One of these habits includes leaving empty
folders spread throughout the public share. To delete all folders depending on size within a root folder and its subfolders, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lSIZE = lowersize
uSIZE = uppersize

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 If lSIZE = Null and uSIZE = Null Then
 If efolder.Size = 0 Then
 DelFolder efolder
 End If
 ElseIf lSIZE <> Null and uSIZE = Null Then
 If efolder.Size < lSIZE Then
 DelFolder efolder
 End If
 ElseIf lSIZE = Null and uSIZE <> Null Then
 If efolder.Size > uSIZE Then
 DelFolder efolder
 End If
 ElseIf lSIZE = uSIZE Then
 If efolder.Size = lSIZE Then
 DelFolder efolder
 End If
 Else
 If efolder.Size > lSIZE and _
 efolder.Size < uSIZE Then
 DelFolder efolder
 End If
 End If
 Next
 End If
End Sub

Here, directory is the root folder containing the subfolders to delete, lowersize is the lower size limit, and uppersize is the upper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, directory is the root folder containing the subfolders to delete, lowersize is the lower size limit, and uppersize is the upper
size limit. If both limits are null, the script will delete all subfolders with a size of 0. If just the upper limit is null, the script will delete
subfolders smaller than the lower limit. If just the lower limit is null, the script will delete subfolders larger than the upper limit. If
both limits are not null but equal, the script will delete subfolders equal to the limit. If both limits are not empty and not null, the
script will delete subfolders within the two limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Folders Depending on Date

If you let them, users will leave files and folders forever on a public share. To delete all folders depending on last modified date
within a root folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
lDATE = "lowerdate"
uDATE = "upperdate"

lDATE = CDate(lDATE)
uDATE = CDate(uDATE)
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 If lDATE = Null and uDATE = Null Then
 If efolder.DateLastModified = 0 Then
 DelFolder efolder
 End If
 ElseIf lDATE <> Null and uDATE = Null Then
 If efolder.DateLastModified < lDATE Then
 DelFolder efolder
 End If
 ElseIf lDATE = Null and uDATE <> Null Then
 If efolder.DateLastModified > uDATE Then
 DelFolder efolder
 End If
 ElseIf lDATE = uDATE Then
 If efolder.DateLastModified = lDATE Then
 DelFolder efolder
 End If
 Else
 If efolder.DateLastModified > lDATE and _
 efolder.DateLastModified < uDATE Then
 DelFolder efolder
 End If
 End If
 Next
 End If
End Sub

Here, directory is the root folder containing the subfolders to delete, lowerdate is the lower date limit, and upperdate is the
upper date limit. If both limits are null, the script will delete subfolders last modified today. If just the upper limit is null, the script
will delete subfolders smaller than the lower limit. If just the lower limit is null, the script will delete subfolders larger than the upper
limit. If both limits are not null but equal, the script will delete subfolders equal to the limit. If both limits are not null and not equal,
the script will delete subfolders within the two limits.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed earlier in this chapter, to this script in
order for it to run.

Deleting Folders Depending on Name

Any user public folder called GAMES or QUAKE is most likely not work-related, unless you have a better job than I do. To delete
all folders with a specific name within a root folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sFOLDER = "foldername"

Set objDIR = GetFolder(sDIR)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 If objDIR <> "\System Volume Information" Then
 For Each eFolder in objDIR.SubFolders
 If LCase(eFolder.Name) = LCase(sFOLDER) Then
 DelFolder efolder
 End If
 Next
 End If
End Sub

Note You need to append the GoSubFolders and GetFolder routines, listed earlier in this chapter, to this script in order for
it to run.

Copying a File
To copy a file with WSH, you can use the CopyFile method. Here is a subroutine to copy a file:

Sub CopyFile(sFILE, sDIR)
 If Right(sDIR,1) <> "\" Then sDIR = sDIR & "\"
 On Error Resume Next
 FSO.CopyFile sFILE, sDIR, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error copying file: " & sFILE
 End If
End Sub

Here, sFILE is the file to copy, and sDIR is the location to copy the file to.

Copying a Folder
To copy a folder with WSH, you can use the CopyFolder method. Here is a subroutine to copy a folder:
Sub CopyFolder(sFOLDER, sDIR)
 If Right(sFOLDER,1) = "\" Then
 sFOLDER = Left(sFOLDER,(Len(sFOLDER)-1))
 End If
 If Right(sDIR,1) <> "\" Then sDIR = sDIR & "\"
 On Error Resume Next
 FSO.CopyFolder sFOLDER, sDIR, True
 If Err.Number <> 0 Then
 Wscript.Echo "Error copying folder: " & sFOLDER
 End If
End Sub

Here, sFOLDER is the folder to copy, and sDIR is the location to copy the folder to.

Moving a File
To move a file with WSH, you can use the MoveFile method. Here is a subroutine to move a file:
Sub MoveFile(sFILE, sDIR)
 On Error Resume Next
 FSO.MoveFile sFILE, sDIR
 If Err.Number <> 0 Then
 Wscript.Echo "Error moving file: " & sFILE
 End If
End Sub

Here, sFILE is the file to move, and sDIR is the location to move the file to.

Moving Files with Specific Extensions to a Central Directory

Although certain file types, such as MP3s, do not belong in the public share, you may want to keep them for your own purposes.
To move files with a specific extension to a central directory, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject") sEXT = "extension"
sDIR = "startdir"
sNEW = "enddir"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fNAME = efile
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If LCase(fEXT) = LCase(sEXT) Then
 sEXIST = sNEW & efile.Name
 If ((FSO.FileExists(sEXIST)) AND _
 (efile <> sEXIST)) Then
 DelFile sEXIST
 End If
 On Error Resume Next
 MoveFile efile, sNEW
 End If
 Next
End Sub

Here, extension is the name of the extension to search for, startdir is the name of the directory to start the search, and enddir is
the directory to store all files.

Note You need to append the GoSubFolders, DelFile, MoveFile, and GetFolder routines, listed earlier in this chapter, to
this script in order for it to run.

Moving a Folder
To move a folder with WSH, you can use the MoveFolder method. Here is a subroutine to move a folder:
Sub MoveFolder(sFOLDER, sDIR)
 If Right(sFOLDER,1) = "\" Then
 sFOLDER = Left(sFOLDER,(Len(sFOLDER)-1))
 End If
 If Right(sDIR,1) <> "\" Then sDIR = sDIR & "\"
 On Error Resume Next
 FSO.MoveFolder sFOLDER, sDIR
 If Err.Number <> 0 Then
 Wscript.Echo "Error moving folder: " & sFOLDER
 End If
End Sub

Here, sFOLDER is the folder to move, and sDIR is the location to move the folder to.

Renaming a File
To rename a file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
MoveFile "filename", "newname"

Here, filename is the name of the file to rename, and sname is the name to rename the file.

Note You need to append the MoveFile routine, listed earlier in this chapter, to this script in order for it to run.

Renaming Specific File Extensions
I don't know what planet of bad habits this came from, but some users like to name files with their own personal extensions.
Although this might be beneficial to them when searching for their files, it becomes an administrator's nightmare when these files
are being shared. Unfortunately, the DOS RENAME command does not have the ability to act through subdirectories. To rename
files with specific extensions with a new extension, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sEXT = "oldext"
sNEW = "newext"
sDIR = "directory"

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 fNAME=Left(efile.name,(Len(efile.Name)-Len(fEXT)))+sNEW
 efile.name = fNAME
 End If
 Next
End Sub

Here, oldext is the name of the extension to search for, newext is the name of the extension to replace with, and directory is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, oldext is the name of the extension to search for, newext is the name of the extension to replace with, and directory is the
name of the directory to start the search.

Note You need to append the GetFolder and GoSubFolders routines, listed earlier in this chapter, to this script in order for
it to run.

Renaming Files with Short File Names
To rename a file with its short DOS 8.3 name, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
sFILE = "filename"
Set gFILE = GetFile sFILE

ShortName = gFILE.shortname
MoveFile sFile, ShortName

Here, filename is the name of the file to rename. An important thing to know is that you can't rename a file from a long file name
to its short name directly because Windows sees long and short file names collectively, and you can't name a file the same name
as another file in the current directory. In this example, we first append an SN to the file name and then change the file name to its
short name.

Note You need to append the GetFile and MoveFile routines, listed earlier in this chapter, to this script in order for it to run.

Related solution: Found on page:

Using SCANDSKW.EXE to Convert Long File Names to Short 90

Updating Program Files Depending on the Version
To update a program file with a newer version, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sFILE = "filename"

Set nFILE = GetFile(sFILE)
Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fVER = FSO.GetFileVersion(efile)
 nVER = FSO.GetFileVersion(sFILE)
 If LCase(efile.Name) = LCase(nFILE.Name) Then
 If fVER = nVER Then
 CopyFile nFILE, efile.ParentFolder
 End If
 End If
 Next
End Sub

Here, directory is the folder containing the files to update, and filename is the file used to update the older file versions.

Note You need to append the GetFile, GetFolder, GoSubFolders, and CopyFile routines, listed earlier in this chapter, to
this script in order for it to run. Remember, only program files have versions.

Getting File Attributes
To display the attributes of a file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set FSO = CreateObject("Scripting.FileSystemObject")
fNAME = "filename"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fNAME = "filename"

Set gFILE = GetFile(fNAME)
gATTRIB = gFILE.Attributes

If gATTRIB and 1 Then ReadOnly = 1 Else ReadOnly = 0
If gATTRIB and 2 Then Hidden = 1 Else Hidden = 0
If gATTRIB and 4 Then System = 1 Else System = 0
If gATTRIB and 5 Then Volume = 1 Else Volume = 0
If gATTRIB and 16 Then Directory = 1 Else Directory = 0
If gATTRIB and 32 Then Archive = 1 Else Archive = 0
If gATTRIB and 64 Then Alias = 1 Else Alias = 0
If gATTRIB and 128 Then Compressed = 1 Else Compressed = 0

Wscript.Echo "FILE: " & UCase(fNAME) & vblf & vblf & _
 "Readonly: " & vbtab & ReadOnly & vblf & _
 "Hidden: " & vbtab & Hidden & vblf & _
 "System: " & vbtab & System & vblf & _
 "Volume: " & vbtab & Volume & vblf & _
 "Directory: " & vbtab & Directory & vblf & _
 "Archive: " & vbtab & Archive & vblf & _
 "Alias: " & vbtab & vbtab & Alias & vblf & _
 "Compressed:" & vbtab & Compressed

Here, filename is the file that contains the attributes you want to get.

Note You need to append the GetFile routine, listed earlier in this chapter, to this script in order for it to run.

Related solution: Found on page:

Getting File or Folder Details 110

Setting File Attributes
To set the attributes of a file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
fNAME = "filename"
ReadOnly= 0
Hidden= 0
System= 0
Archive = 0

Set gFILE = GetFile(fNAME)
gFILE.Attributes = 0
Attribs = 0
If ReadOnly = 1 Then Attribs = Attribs + 1
If Hidden = 1 Then Attribs = Attribs + 2
If System = 1 Then Attribs = Attribs + 4
If Archive = 1 Then Attribs = Attribs + 32
gFILE.Attributes = Attribs

Here, filename is the file that contains the attributes you want to set. To modify filename's attributes, change the value of the
corresponding variable names (ReadOnly, Hidden, System, Archive) to 1 to enable, or 0 to disable.

Note You need to append the GetFile routine, listed earlier in this chapter, to this script in order for it to run.

Setting Attributes to All Files within Folders
To set the attributes of all files within a folder and its subfolders, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host from http://www.microsoft.com to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
sDIR = "directory"
sReadOnly = 0
sHidden = 0
sSystem = 0
sArchive = 0

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 Set gFILE = GetFile(efile)
 gFILE.Attributes = 0
 Attribs = 0
 If sReadOnly = 1 Then Attribs = Attribs + 1
 If sHidden = 1 Then Attribs = Attribs + 2
 If sSystem = 1 Then Attribs = Attribs + 4
 If sArchive = 1 Then Attribs = Attribs + 32
 gFILE.Attributes = Attribs
 Next
End Sub

Here, directory contains the files whose attributes you want to set. To modify the attributes, change the values of the
corresponding variable names (ReadOnly, Hidden, System, Archive) to 1 to enable, or 0 to disable.

Note You need to append the GetFile routine, the GetFolder routine, and the GoSubFolders routine listed earlier in this
chapter to this script in order for it to run.

Appending Text Files
To append the contents of one text file to another, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
File1 = "1stfile"
File2 = "2ndfile"

Set txtFile1 = FSO.OpenTextFile(File1, 1)
Set txtFile2 = FSO.OpenTextFile(File2, 8)

Do While txtFile1.AtEndOfline <> True
 txtFile2.WriteLine(txtFile1.Readline & vbcr)
Loop

txtFile1.close
txtFile2.close

Here, 1stfile is the file whose contents you want to append to 2ndfile.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5: Automating Windows and Applications

In Brief
In this chapter, you will first learn how to script applications, Control Panel applets, and Windows and Wizards from the command
line. You will then learn about automation and how to script the Windows shell and most common applications (for example,
Word, Excel, Internet Explorer). Finally, you will learn how to use send-keys to automate applications that do not easily support
conventional scripting methods. In later chapters, you will learn how to automate Windows and applications to perform more
specific tasks (such as adding shares, controlling services, or performing backups).

Automation

Automation was originally created as a method for applications to easily access and control one another. Application automation
originally developed from Dynamic Data Exchange (DDE), grew to Object Linking and Embedding (OLE), developed into OLE
automation, and eventually turned into just Automation. Automation interfaces with applications through Component Object Model
(COM) objects. COM objects are ActiveX controls that contain isolated sections of reusable code. Through automation, you can
create documents, save files, play sounds, and even control the operating system, depending on whether it has an object model.

Visual Basic for Applications
Microsoft Office applications support a scripting language called Visual Basic for Applications (VBA). VBA, which is based on
Visual Basic, is the standard programming language to control Microsoft Office application functions remotely. Application
developers can use VBA to call other application functions from within their projects.

Note Applications that support VBA are known as "customizable applications."

A common method to produce easy VBA code is to record a macro and edit it in the built-in Visual Basic editor. To record a new
macro, start an Office application and select Tools|Macro|Record New Macro. After you have started recording, perform the
functions you would like to code and then stop the macro recording. Next, start the Visual Basic Editor by selecting
Tools|Macro|Visual Basic Editor. After the editor opens, select Tools|Macro, highlight your macro, and click Edit. In Figure 5.1, you
can see the VBA code of all the functions you have just recorded.

Figure 5.1: Editing a recorded Office macro.

Through Windows Script Host, you can use VBScript to call many VBA functions to automate Office applications. There are three
steps to controlling an application through automation: accessing the application object, controlling the application, and closing the
application object.

Accessing the Application Object
The application object is the top-level object, which allows you to send data to an application object and manipulate a program
through it. As you learned in Chapter 1, in order to gain access to an object, you must first use the CreateObject method and set
it to a variable:
Set variable = CreateObject("object.Application")

Once the instance is created, you can use this variable throughout your script to access all the methods within the object. Here is
a list of the most common automation identifiers:

Access.Application-Used to automate Microsoft Access

Excel.Application-Used to automate Microsoft Excel

InternetExplorer.Application-Used to automate Microsoft Internet Explorer

Outlook.Application-Used to automate Microsoft Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PowerPoint.Application-Used to automate Microsoft PowerPoint

Shell.Application-Used to automate Microsoft Windows

Word.Application-Used to automate Microsoft Word

Microsoft Office contains help files on how to use automation with the various Microsoft Office applications. To view these files,
run the Office setup and install the help files for Visual Basic. Run the application's help feature and search for "VBA HELP."

Changing the Application Visibility

After you've instantiated an application object, most of the objects start in hidden mode. This allows you to manipulate the object
and perform various tasks before making the object visible. To make the object visible, set the object's visible state to true:
Variable.Visible = True

Similarly, you can hide the object by setting the visible state to False.

Closing the Application Object
After you are finished with the application object, you should close it to free up system resources. To close an application object,
proceed as follows:
Variable.Quit

If an application object is not closed properly, that application will remain in memory regardless of its visibility or use. You should
leave objects open only if you plan to use them at a later moment, such as using Microsoft Outlook to send admin alerts.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Automating Applications from the Command Line

Most Windows applications support some level of shell scripting. This was originally intended for backward compatibility with DOS
batch files, but is slowly dying with the birth of automation objects. Controlling applications from the command line is extremely
useful when you need to perform simple tasks from within DOS batch files or Windows shortcuts.

Scripting Windows XP/2003 Defrag
When a file or folder is created or modified, pieces of that file or folder are scattered throughout the hard disk. This is known as
disk fragmentation. Although this behavior occurs naturally, fragmentation does slow down data access time. Reorganizing these
files or folders contiguously improves performance and is known as defragmentation. Microsoft XP/2003 includes a scriptable
defragmentation utility, defrag.exe. The command-line options are:

/A-Analyzes the drive and displays a report

/F-Forces defragmentation, event when space is low

/ V-Displays complete reports

Scripting a Windows XP/2003 System Defrag

The following command defrags the C: drive and displays a report when complete:
DEFRAG C: /V

Scripting Norton Antivirus 2003
Although Norton Antivirus 2003 is a Windows graphical antivirus scanner, it does provide support for being scripted from the
command line. The basic syntax for command-line scripting is as follows:

NAVW32.EXE path options

Here, path is any drive, folder, file, or combination of these to be scanned; and options are any valid command-line switches
passed to NAVW32.EXE. Here is a list of the available switches:

/A-Scan all drives except drives A and B. Network drives will be scanned if the Allow Network Scanning option is
selected.

/L-Scan all local drives except drives A and B.

/S-Scan all subfolders specified in the path.

/Moption-Enable or disable memory scanning. Here, option is + for enabling, and − for disabling.

/MEM-Scan only memory.

/Boption-Enable or disable boot sector scanning. Here, option is + for enabling, and - for disabling.

/BOOT-Scan only boot sectors.

/NORESULTS-Do not display scan results.

/DEFAULT-Reset settings to default.

/HEUR:option-Sets the heuristic scanning sensitivity. Here, option can be values 0-4 where 4 is the highest and 0
is disabled.

Scripting FTP
FTP (File Transfer Protocol) is a common method for transferring files between two locations. Although you could use a third-party
FTP client (such as CuteFTP), Microsoft FTP is a more than adequate file transfer tool that supports command-line switches,
commands, and script files. FTP command line switches control how the FTP client starts. The most common command line
switches are:

-i-Interactive mode, turns off interactive prompting during multiple file transfers

-n-Prevents automatic logon

-s: script-Specifies an FTP script to run

-v-Verbose mode, turns on transfer data statistics and responses

To start an FTP client in verbose and interactive more, start a command prompt and enter the following:
ftp -v -i

Once the FTP client is active, you can enter various commands to list, delete, put, retrieve and files. The most common FTP
commands are:

ascii-Selected by default, sets the file transfer type to ASCII (shar, uu)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

binary-Sets the file transfer site to binary (z, arc, tar, zip)

bye-Terminates the current FTP session and exits the FTP program

cd directory-Changes the directory on the remote system

close-Terminates the current FTP session

delete file-Deletes a remote file

get file-Retrieves a single file from the remote system

lcd directory-Changes the directory on the local system

mdelete files-Deletes remote files

mget files-Retrieves multiple files from the remote system

mput files-Uploads local files to a remote system

open host-Establishes a connection to the host name specified

password password-Specifies the password for the account name specified

prompt-Toggles interactive prompting

put file-Uploads a local file to a remote system

user name-Specifies the account name to connect to the remote system

Tip To see the available FTP switches, enter "FTP -?" at the command line.

Scripting an FTP Upload
A common administrative task is uploading daily files to an FTP server. To script an FTP upload, select Start|Run and enter "FTP -
I -S:scriptfile."

Here, -I turns off prompting during multiple file copies; -S: specifies a script file to use; and scriptfile is the full path and file name
of a script file that contains the following:
OPEN
ftpserver
Username Password
CD ftpdirectory
LCD filedirectory
MPUT files
BYE

Here, ftpserver is the server to connect to; username and password are the logon credentials; ftpdirectory is the directory to
upload the files to on the FTP server; filedirectory is the local directory where the files reside; and files are the multiple files to
upload (such as *.*, *.txt, daily.*).

Tip To upload a single file, change the MPUT command to PUT.

Scripting an FTP Download
A common administrative task is downloading files from an FTP server. To script an FTP download, select Start|Run and enter
"FTP -I -S:scriptfile."

Here, -I turns off prompting during multiple file copies; -S: specifies a script file to use; and scriptfile is the full path and file name
of a script file that contains the following:
OPEN
ftpserver
Username
Password
CD ftpdirectory
LCD filedirectory
MGET *.*
BYE

Here, ftpserver is the server to connect to; username and password are the logon credentials; ftpdirectory is the directory to
download files from an FTP server; and filedirectory is the local directory where the files reside.

Scripting an FTP Download of Norton Antivirus Update Files
Many administrators maintain a share that stores the latest version of antivirus updates and then point their user's antivirus
program to the share. This ensures that the administrator can first test the update, as opposed to simply directing the user's
antivirus to the vendor. To download Norton antivirus update files to a central share using FTP and shell scripting, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@Echo Off
Net Use Z: \\server\share
ftp -n -s:ftpscript >> logfile
Net Use Z: /Delete

Here, server is the system containing the network share to store the antivirus update files; logfile is the full path and file name of
a text file to log the FTP transfer, and ftpscript is the full path and file name of a script file containing the following:
open ftp.symantec.com
user anonymous
youremail@yourdomain.com
lcd Z:\
cd \public\english_us_Canada\antivirus_definitions\
norton_antivirus\static
bin
mget *
bye

Note The highlighted code above must be entered on one line.

Scripting an FTP Download of McAfee Antivirus Update Files
To download McAfee antivirus update files to a central share using FTP and shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Net Use Z: \\server\share
ftp -n -s:ftpscript >> logfile
Net Use Z: /Delete

Here, server is the system containing the network share to store the antivirus update files; logfile is the full path and file name of
a text file to log the FTP transfer, and ftpscript is the full path and file name of a script file containing the following:
open ftp.nai.com
user anonymous
youremail@yourdomain.com
lcd Z:\dats
cd \pub\antivirus\datfiles\4.x
prompt
bin
mget *
bye

Note The script above obtains antivirus updates for McAfee VirusScan 4.x. You can change the highlighted code above to
obtain updates for your specific version.

Scripting Control Panel Applets
CONTROL.EXE, located in your Windows directory, is essentially the Windows Control Panel. To open the Control Panel, select
Start|Run and enter "control." Using this executable, you can start any Control Panel applet.

Control Panel applets are stored as CPL (Control Panel) files. To call an applet, select Start|Run and enter "control applet." One
CPL file can actually store multiple applets. To call various applets within one CPL file, select Start|Run and enter "control applet,
@#." Here, # is the number of the applet to call. If you do not specify an applet number, CONTROL.EXE will automatically open
the first one (0).

For applets that contain multiple tabs, you can open the exact tab you want by selecting Start|Run and entering "control applet, ,
#." Here, # is the number of the tab to open. If you do not specify a tab number, CONTROL.EXE will automatically open the first
one (0).

So, what's the big deal about starting a Control Panel applet? After you start an applet, you can use a send-keys utility to perform
the task you want.

Note To find all the applets and functions on your system, search for CPL files and experiment opening the different applets
and tabs.

Modifying Mouse Properties

Here is a quick example to show the use of scripting Control Panel applets combined with using send-keys. To change a mouse to
use left-handed button properties, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract AutoIt, from http://www.hiddensoft.com, to the new directory.

3. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
[SCRIPT]
RUN=CONTROL MOUSE.CPL
Mouse=~WINWAITACTIVE#!L{ENTER}

Scripting Wizards and Dialog Boxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RUNDLL32.EXE is a 32-bit command-line utility that allows you to call functions from DLL files designed to accept calls from it.
You can incorporate these calls in your scripts and combine them with send-keys to complete specific tasks. Table 5.1 shows the
most common RUNDLL32 calls.

Table 5.1: Wizards and dialog boxes.

Task RUNDLL32 calls

Add new printer RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL AddPrinter

Cascade windows RUNDLL32.EXE USER.DLL,cascadechildwindows

Copy a floppy disk RUNDLL32.EXE DISKCOPY.DLL,DiskCopyRunDll

Create new briefcase RUNDLL32.EXE SYNCUI.DLL,Briefcase_Create

Create new dialup connection RUNDLL32.EXE RNAUI.DLL,RnaWizard @1

Create new share RUNDLL32.EXE NTLANUI.DLL,ShareCreate

Disable keyboard RUNDLL32.EXE KEYBOARD,disable

Disable mouse RUNDLL32.EXE MOUSE,disable

Disconnect network drive RUNDLL32.EXE USER.DLL,wnetdisconnectdialog

Format a disk RUNDLL32.EXE SHELL32.DLL,SHFormatDrive

Install new modem RUNDLL32.EXE SHELL32.DLL,Control_RunDLL modem.cpl, ,add

Logoff Windows RUNDLL32.EXE SHELL32.DLL,SHExitWindowsEx 0

Manage a share RUNDLL32.EXE NTLANUI.DLL,ShareManage

Map network drive RUNDLL32.EXE USER.DLL,wnetconnectdialog

Open fonts folder RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL FontsFolder

Open printers folder RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL PrintersFolder

Open with … RUNDLL32.EXE SHELL32.DLL,OpenAs_RunDLL extension

Print Test Page RUNDLL32.EXE SHELL32.DLL, SHHelpShortcuts_RunDLL PrintTestPage

Reboot RUNDLL32.EXE SHELL32.DLL,SHExitWindowsEx 2

Refresh RUNDLL32.EXE USER.DLL,repaintscreen

Shut down Windows RUNDLL32.EXE USER.DLL,ExitWindows

Shut down Windows RUNDLL32.EXE SHELL32.DLL,SHExitWindowsEx 1

Shut down Windows (Force) RUNDLL32.EXE KRNL386.EXE,exitkernel

Swap mouse buttons RUNDLL32.EXE USER.DLL,swapmousebutton

Tile windows RUNDLL32.EXE USER.DLL,tilechildwindows

Automating Applications through an Application Object

Most new applications include a scriptable automation object model, allowing user and other applications to script them.

Using Microsoft Internet Explorer as a Display Tool
Other than dialog boxes and a DOS window, Windows Script Host really doesn't have a method to display output to the user. You
can use Microsoft Internet Explorer to display information to the user or to generate HTML documents. To display the contents of
C:\TEMP in Microsoft Internet Explorer, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set MSIE = CreateObject("InternetExplorer.Application")
sDIR = "C:\TEMP"
sTITLE = "Generating Directory List ..."

Set
objDIR = GetFolder(sDIR)
SetupMSIE
MSIE.Document.Write "<HTML><TITLE>" & sTitle & _
 "</TITLE><BODY bgcolor=#C0C0C0>"
MSIE.Document.Write "Displaying the contents of " & _
 'sDIR & ":

<table border=0 width=100% " & _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'sDIR & ":

<table border=0 width=100% " & _
 "cellspacing=0 cellpadding=0>"
GoSubFolders objDIR
MSIE.Document.Write "</table>
End of List" & _
 "</BODY>"

Sub SetupMSIE
 MSIE.Navigate "About:Blank"
 MSIE.ToolBar = False
 MSIE.StatusBar = False
 MSIE.Resizable = False

 Do
 Loop While MSIE.Busy

 SWidth = MSIE.Document.ParentWindow.Screen.AvailWidth
 SHeight = MSIE.Document.ParentWindow.Screen.AvailHeight
 MSIE.Width = SWidth/2
 MSIE.Height = SHeight/2
 MSIE.Left = (SWidth - MSIE.Width)/2
 MSIE.Top = (SHeight - MSIE.Height)/2

 MSIE.Visible = True
End Sub

Sub ListFiles (objDIR)
 For Each efile in objDIR.Files
 MSIE.Document.Write "<tr><td>" & efile & "</td>" & _
 "<td> </td><td align=right>" & efile.size & _
 "</td></tr>"
 Next
End Sub

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 ListFiles objDIR
 For Each eFolder in objDIR.SubFolders
 MSIE.Document.Write "<tr><td>" & _
 efolder & "</td><td><DIR></td><td " & _
 "align=right>" & efolder.size & "</td></tr>"
 GoSubFolders eFolder
 Next
 End If
End Sub

Note You need to append the GetFolder routine, listed earlier in Chapter 4, to this script in order for it to run. In this
example, the window will not be updated until the directory listing is complete.

Creating Detailed Reports in Microsoft Word
You can script Microsoft Word to create logs and reports through Windows Script Host. To delete all temp files from your system
and record the actions in a Microsoft Word document, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set WordApp = CreateObject("Word.Application")
sDIR = "C:\"
sEXT = "TMP"
sTITLE = "Deleting Files"

WordApp.Documents.Add
WordApp.Visible = True
WordApp.Caption = sTITLE
WordApp.Selection.Font.Bold = True
WordApp.Selection.TypeText "Deletion Log:" & sEXT & _
 " Files: "
WordApp.Selection.InsertDateTime
WordApp.Selection.Font.Bold = False
WordApp.Selection.TypeText vblf & vblf

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR
WordApp.Selection.Font.Bold = True
WordApp.Selection.TypeText vblf & "**END OF LOG**"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WordApp.Selection.TypeText vblf & "**END OF LOG**"

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 DelFile efile
 End If
 Next
End Sub

Sub DelFile(sFILE)
 On Error Resume Next
 FSO.DeleteFile sFILE, True
 If Err.Number <> 0 Then
 WordApp.Selection.TypeText "Error deleting: " & _
 sFILE & vblf
 Else
 WordApp.Selection.TypeText "Deleted: " & sFILE & vblf
 End If
End Sub

Note You need to append the GetFolder routine, listed in Chapter 4, to this script in order for it to run.

Creating Detailed Spreadsheets in Microsoft Excel
You can script Microsoft Excel to create spreadsheets through Windows Script Host. To delete all temp files from your system and
record the actions in a Microsoft Excel spreadsheet, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set ExcelApp = CreateObject("Excel.Application")
Row = 1
Column = 1
ExcelApp.Workbooks.Add
ExcelApp.Visible = True

sDIR = "C:\"
sEXT = "TMP"
sTITLE = "Deleting Files"

ExcelApp.caption = sTITLE
ExcelApp.Range("A1").Select
ExcelApp.Selection.Font.Bold = True
ExcelApp.Cells(Row,Column).Value = "Deletion Log:" & sEXT & _
 " Files"
Row = Row + 1 Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR
ExcelApp.Selection.Font.Bold = True
Row = Row + 1
ExcelApp.Cells(Row,Column).Value = "**END OF LOG**"

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase(sEXT) Then
 DelFile efile
 End If
 Next
End Sub

Sub GoSubFolders (objDIR)
 If objDIR <> "\System Volume Information" Then
 MainSub objDIR
 For Each eFolder in objDIR.SubFolders
 GoSubFolders eFolder
 Next
 End If
End Sub
Sub DelFile(sFILE)
 On Error Resume Next
 FSO.DeleteFile sFILE, True
 If Err.Number <> 0 Then
 ExcelApp.Cells(Row,Column).Value = "Error deleting: " & _
 sFILE Else
 ExcelApp.Cells(Row,Column).Value = "Deleted: " & sFILE
 End If
 Row = Row + 1
End Sub

Note You need to append the GetFolder routine, listed in Chapter 4, to this script in order for it to run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scripting the Windows Shell
Windows has its own automation object called shell.automation. Although you might assume that you can completely automate
every Windows function, in reality you can control only a limited set of objects available to scripting. To access the Windows shell,
you must instantiate the shell object as follows:
Set variable = CreateObject("Shell.Application")

Controlling System Windows

When an item is opened in Microsoft Windows, it is opened in a system window. The standard window controls include minimize
and maximize functions. You can script these Windows commands and more through the Windows shell object. The following is a
list of the window objects and their functions:

CascadeWindows-Cascade open windows

MinimizeAll-Minimize open windows

TileHorizontally-Tile open windows horizontally

TileVertically-Tile open windows vertically

UndoMinimizeAll-Restore minimized windows

To call any of these methods, proceed as follows:

Set Shell = CreateObject("Shell.Application")
Shell.Method

Browsing for Folders

Using the BrowseForFolder method, you can incorporate the common Browse For Folder Windows dialog box used in most
Windows applications. To call the dialog box, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.BrowseForFolder (handle, "Title", options,_
 RootFolder)
Wscript.Echo "FOLDER: " & Folder.Title & vblf & _
 "PARENT: " & Folder.ParentFolder

Here, RootFolder can be a directory path or a special folder constant.

Table 5.2 lists the special folder constants.

Table 5.2: Special folder constants.

Constant Folder or Directory Path

&H0 All Users Desktop

&H2 All Users Program folder

&H3 Control Panel

&H4 Printers Folder

&H5 Personal Folder

&H6 Favorites Folder

&H7 Startup Folder

&H8 Recent Folder

&H9 SendTo Folder

&Ha Recycle Bin

&Hb Start Menu

&H10 Desktop Directory

&H11 Drives (My Computer)

&H12 Network Neighborhood

&H13 Fonts Folder

&H14 Templates Folder

&H15 Common Start Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

&H16 Common Programs Folder

&H17 Common Programs Folder

&H18 Common Startup Folder

&H19 Common Desktop Directory

&H1a Application Data Folder

&H1b PrintHood Folder

&H1c Local Application Data Folder

&H1d Alt Startup Folder

&H1e Common Alt Startup Folder

&H1f Common Favorites Folder

&H20 Common Internet Cache Folder

&H21 Common Cookies Folder

&H22 History Folder

&H23 Common Application Data Folder

&H24 Windows Folder

&H25 System Folder

&H26 Program Files Folder

&H27 My Pictures Folder

&H28 Profile Folder

Exploring a Folder

To explore a folder through the shell automation object, proceed as follows:

Set Shell = CreateObject("Shell.Application") Shell.Explore RootFolder

Here, RootFolder can be a directory path or a special folder constant.

Opening a Folder

To open a folder through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.Open RootFolder

Here, RootFolder can be a directory path or a special folder constant.

Running a Control Panel Applet

The Control Panel contains various applets you can use to perform various tasks. These applets have .cpl extensions and reside
in your system directory. To call a Control Panel applet through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.ControlPanelItem "applet.cpl"

Calling System Dialog Boxes

System dialog boxes are windows that require user input, such as the Find Files or Run dialog box. You can call one of these
dialog boxes within your script, and combine it with send-keys to perform regular user tasks. To call a system dialog box through
the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.SysDialog

Here, SysDialog consists of the following methods:

FileRun-Calls the Start|Run dialog box

FindComputer-Calls the Start|Find/Search|Computer dialog box

FindFiles-Calls the Start|Find/Search|File or Folders dialog box

SetTime-Calls the Date/Time dialog box

ShutdownWindows-Calls the Start|Shutdown dialog box

TrayProperties-Calls the Tray Properties dialog box

Refreshing the Start Menu

To refresh the contents of the Start menu, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.RefreshMenu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shell.RefreshMenu

Accessing the Taskbar and Start Menu Properties Page

To access the Taskbar and Start Menu properties page through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.TrayProperties

Accessing the Date and Time Properties Page

To access the Date and Time properties page through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.SetTime

Accessing the Find Files Properties Page

To access the Find Files properties page through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.FindFiles

Ejecting a PC

To undock a notebook through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.EjectPC

Suspending a Computer

Most laptops have a feature called suspend, used to place the computer in lower power mode when not in use. To suspend a
computer through the shell automation object, proceed as follows:
Set Shell = CreateObject("Shell.Application")
Shell.Suspend

Connecting to a Folder Name Space

In Chapter 4, you learned how to connect to a folder using the GetFolder FileSystemObject method. To connect to a folder
through shell automation, use the NameSpace method and proceed as follows:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace(RootFolder)

Getting File or Folder Details

Although Windows NT/9x only stores basic file and folder information, Windows 2000/XP/2003 store many more pieces of
information. You can use the folder object's GetDetailsOf method on either operating system to obtain information about the file
or folder specified. To connect to a folder through shell automation, use the NameSpace method and proceed as follows:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace(RootFolder)
For Each Item in Folder.Items
 Summary = "Name: " & Item.Name & vblf
 For Count = 1 to 37
 On Error Resume Next
 Detail = Folder.GetDetailsOf(Item,Count)
 If Detail <> "" Then
 Summary = Summary & Folder.GetDetailsOf(0,Count) & _
 ": " & Folder.GetDetailsOf(Item,Count) & vblf
 End If
 Next
 Wscript.Echo Summary
Next

Here, RootFolder can be a directory path or a special folder constant. The output of the script may appear similar to Figure 5.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.2: The GetDetailsOf file and folder output.

Copying and Moving Files and Folders

Whenever you copy or move a file in Windows, graphical dialog boxes appear displaying progress meters and confirmation
windows (see Figure 5.3).

Figure 5.3: Windows file operating dialog box.

Although the FileSystemObject can perform file management operations, it does not display any of these dialog boxes. To use
these dialog boxes in your scripts, you can use the shell automation object. To copy or move files and folders to another folder,
proceed as follows:

Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace(RootFolder)
Folder.Method "Files", Flags

Here, RootFolder can be a directory path or a special folder constant; Method is the CopyHere or MoveHere folder method;
Files are the files or folders to copy or move; and Flags are the optional parameters that control the file operation. You can
concatenate multiple parameters using the + character.

Note You can use the FOF_SILENT flag to suppress the progress dialog box. For more information on the file operation
flags, search Microsoft's Web site for SHFILEOPSTRUCT.

Accessing the Context Menu

Every time you right-click on a file (on a right-handed mouse), you call the context menu. This menu is full of tasks added to the
menu by the system, the media, and any programs you may have installed (see Figure 5.4).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.4: Windows context menu.

You can access these tasks by clicking on them or entering the quick key combination (ALT+the underlined letter). Through shell
automation, you activate any of these tasks:
Set Shell = CreateObject("Shell.Application")
Set Folder = Shell.NameSpace("RootFolder")
Set File = Folder.ParseName("File")
File.InvokeVerb("Task")

Here, RootFolder can be a directory path or a special folder constant; File is any file within the RootFolder; and Task is any task
listed in the context menu.

There are two important things to note about the InvokeVerb Task. The first is that if the task contains a quick key, you must
precede that letter with an ampersand (&). For example, to run the Open task for Figure 5.4, you would enter "&Open." The
second is that if the command pulls up a system window (such as a properties window), that window will close as soon as the
script ends.

Automating Applications through Send-Keys

Some applications have been specifically designed without commandline options or automation object models. Without a
scriptable back door to send commands to, another alternative to scripting the unscriptable is by using send-keys.

Scripting a Windows 2000 Drive Defrag
Windows 2000 includes a special, slimmed-down version of Executive Software's Diskeeper, made specifically for Windows 2000.
Unlike Windows XP/2003 defrag, the Windows 2000 defrag utility does not include the scripting capabilities. To script a Windows
2000 drive defrag, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
Run, defragmmc
Winwaitactive, Disk Defrag
Send, {ALTDOWN}A{ALTUP}D
Winwaitactive, Defragmentation Complete
Send, {TAB}{ENTER}
Winwaitactive, Disk Defrag
Send, {ALTDOWN}{F4}{ALTUP}

Here, defragmmc is the full path to DFRG.MSC, usually found in the Winnt\system32 directory.

Changing Internet Explorer's Default Start Page
To change the default start page for Internet Explorer, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
Run, control.exe inetcpl.cpl
WinWaitActive, Internet Properties
Send, http://www.jesseweb.com{Enter}

Browsing the Internet
Whether you have an Internet provider that consistently disconnects you or a program that feeds off active Internet connections,
you may need to have continually active Internet activity. To repeatably browse Internet sites, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "autoit2 scriptfile."

Here, autoit2 is the complete path and name of the autoit executable, and scriptfile is a text file that contains the following:
SetTitleMatchMode, 2
Run, C:\\Program Files\\Internet Explorer\\Iexplore.exe
WinWaitActive, Microsoft Internet Explorer
Repeat
 Send, {ALTDOWN}D{ALTUP}www.jesseweb.com{Enter}
 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP}www.fightclub.com{Enter}
 Sleep, 10000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP}www.tylerandjacks.com{Enter}
 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP}www.customtweaks.com{Enter}
 Sleep, 10000
 Send, {ALTDOWN}D{ALTUP} http://www.paraglyphpress.com{Enter}
 Sleep, 10000
EndRepeat

Clearing the Microsoft Internet Explorer Cache
Internet Explorer caches Web pages and previously entered usernames, passwords, and form entries. To delete these items
using the AutoIt ActiveX control, proceed as follows:

1. Download and install AutoIt, from http://www.hiddensoft.com.

2. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is a text file that contains the following:
Set Shell = WScript.CreateObject("WScript.Shell")
Set AIT = WScript.CreateObject("AutoItX.Control")

Shell.Run "control.exe inetcpl.cpl", 1, FALSE
AIT .WinWaitActive "Internet Properties", ""
AIT .Send "{ALTDOWN}F{ALTUP}"
AIT .WinWaitActive "Delete Files", ""
AIT .Send "{TAB}{ENTER}"
AIT .WinWaitActive "Internet Properties", ""
AIT .WinClose "Internet Properties", ""
Shell.Run "control.exe inetcpl.cpl, ,2", 1, FALSE
AIT .WinWaitActive "Internet Properties", ""
AIT .Send "{ALTDOWN}U{ALTUP}"
AIT .WinWaitActive "AutoComplete Settings", ""
AIT .Send "{ALTDOWN}C{ALTUP}"
AIT .WinWaitActive "Internet Options", ""
AIT .Send "{ENTER}"
AIT .WinWaitActive "AutoComplete Settings", ""
AIT .Send "{ALTDOWN}L{ALTUP}"
AIT .WinWaitActive "Internet Options", ""
AIT .Send "{ENTER}{ESC}"
AIT .WinWaitActive "Internet Properties", "
AIT .Send "{ESC}"

WScript.Quit

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6: Inside the Registry

In Brief
Most administrators go out of their way to avoid working with the registry, and I don't blame them. The registry is one of those
aspects of Windows you are constantly being warned not to mess with. With the frequent threats of virtual nuclear destruction
combined with the lack of documentation, the registry is a dark and scary place. In this chapter, you will learn the basics of the
registry, how to modify it safely, and the hidden tricks and goodies the registry has to offer.

Holy INI Files, Batman !

In the old days of 16-bit Windows, all settings were stored in initialization files. The two main files for storing settings were the
SYSTEM.INI and WIN.INI files. As each application was installed, it stored its settings in these two files. Unfortunately, these
applications could store only a limited set of entries because of the restrictive 64K size of INI files. To counteract this, application
developers started using their own INI files. Although this might have seemed a good idea at first, as the number of applications
grew, so did the number of INI files; and as each INI file grew, the system would often slow down.

And Then Came the Registry

The registry was born simultaneously with the birth of Windows NT in 1993 and is the answer to Windows INI files. The registry is
a hierarchal, relational database that holds system information, OLE (Object Link Embedding) and Automation information,
application settings, operating system configuration data, and more. The information stored includes everything from your display
settings to your hardware configuration. To speed access time, the registry is stored in binary format and is composed of multiple
files.

Windows 2000/XP/2003 Registry Files

Under Windows 2000/XP/2003, user-related settings are stored in a file called ntuser.dat. This file is stored in the user's profile
directory located in the %USERPROFILE% directory. System settings are stored in the SYSTEM32\CONFIG directory and consist
of the following five files:

Default (HKEY_USERS\DEFAULT)-Stores default settings for new users

SAM (HKEY_LOCAL_MACHINE\SAM)-Stores system security information

Security (HKEY_LOCAL_MACHINE\Security)-Stores network security information

Software (HKEY_LOCAL_MACHINE\Software)-Stores specific application and operating system information

System (HKEY_LOCAL_MACHINE\System)-Stores device driver and system information

The Registry Hierarchy

The registry consists of top-level keys called hives:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

These hives store all the keys (subfolders) that make up the registry. These keys store all the values (entries), which specify all
the individual system settings.

HKEY_LOCAL_MACHINE
HKEY_LOCAL_MACHINE (HKLM) stores all software, hardware, network, security, and Windows system information. This hive is
the largest registry hive and stores two of the main registry hives.

HKEY_CLASSES_ROOT
HKEY_CLASSES_ROOT (HKCR) is actually a virtual link to HKLM\Software\Classes. This hive stores information about all file
extensions, descriptions, icons, associations, shortcuts, automation, class IDs, and more.

HKEY_USERS
HKEY_USERS (HKU) stores information about all users of the system and their individual settings. These individual settings
include environment variables, color schemes, fonts, icons, desktop configuration, Start menu items, network, and more. Each
time a new user logs on, a new key is created based on a default key.

HKEY_CURRENT_USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HKEY_CURRENT_USER (HKCU) is actually a link to the currently logged-in user's key stored in HKEY_USERS. This hive is
named by the user's SID (Security Identifier) value and not by the user's name. This key is rebuilt each time the system reboots.

HKEY_CURRENT_CONFIG
HKEY_CURRENT_CONFIG (HKCC) is actually a link to the currently selected hardware profile stored in
HKEY_LOCAL_MACHINE. Hardware profiles allow you to specify which device drivers are to be loaded for a given Windows
session. Hardware profiles are commonly used with laptops to distinguish RAS, network, and local Windows sessions.

Registry Data Types

Like any other database, the registry contains various data types to store different types of values. Table 6.1, from Windows 2000
Registry Little Black Book (http://www.paraglyphpress.com) lists the various registry data types.

Table 6.1: Registry data types.

Data Type Raw Type Function

REG_NONE Unknown Encrypted data

REG_SZ String Text characters

REG_EXPAND_SZ String Text with variables

REG_BINARY Binary Binary data

REG_DWORD Number Numerical data

REG_DWORD_BIG_ENDIAN Number Non-Intel numbers

REG_LINK String Path to a file

REG_MULTI_SZ Multistring String arrays

REG_RESOURCE_LIST String Hardware resource list

REG_FULL_RESOURCE_DESCRIPTOR String Hardware resource ID

REG_RESOURCE_REQUIREMENTS_LIST String Hardware resource ID

REGEDIT vs. REGEDT32

Because the registry is stored in multiple binary files, it cannot be viewed with a regular text editor. Windows 2000/XP/2003
include two registry editing tools: REGEDIT and REGEDT32. Both of these tools contain various functions, and it's best to know
when to use which one.

Using REGEDIT
REGEDIT is the registry-editing tool that comes included in all of Microsoft's 32-bit operating systems. Using this tool, you can
add, delete, modify, back up, and restore registry keys and values from a local or remote machine. REGEDIT displays all the
registry hives, even the aliased ones (see Figure 6.1). It also has the capability to search for registry keys and values. The most
important thing to remember about REGEDIT is that changes happen immediately. There is no Apply, Cancel, or OK button here.
The moment you make a change, the change is implemented-so be careful.

Figure 6.1: The Windows REGEDIT screen.

Tip REGEDIT includes additional features such as a registry Favorites menu and the capability to remember the last key
viewed before closing REGEDIT.

Warning REGEDIT does not recognize all the registry data types. If you edit an unrecognized data type, it will be converted
to a type that REGEDIT can recognize.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using REGEDT32
REGEDT32 is a registry-editing tool that comes included in Windows 2000/XP/2003 (see Figure 6.2). REGEDT32 displays each
hive in a separate window, and only displays the HKEY_LOCAL_MACHINE and HKEY_USERS hives when accessing a registry
remotely. REGEDT32 includes all the editing features of REGEDIT, but has only a simple find key function. Unlike REGEDIT,
REGEDT32 does not apply changes immediately. It applies changes only as you close the application. Some additional features
include auto-refresh, read-only mode, and the ability to set registry permissions.

Figure 6.2: The Windows REGEDT32 screen.

Note Although remote registry access through REGEDT32 only displays two hives, from within these two hives you can still
access all the aliased hives that REGEDIT normally displays.

Registry Editing Safety Tips

You've heard it a thousand times, but here it is again: editing the registry is dangerous. An incorrect registry setting can leave your
system in shambles (trust me, I know). Here are some helpful registry editing tips:

Back up the entire registry or key you intend to modify. If your system starts acting up, you'll be glad you did.

Update your emergency repair disk (ERD) before you make any registry changes. This proves to be a valuable
asset if your machine refuses to boot up properly.

Do not blindly make changes to the registry. Know what your intended registry change does. Research it.

Make one change at a time. This makes it easier to narrow down the cause of any problems you may have after
editing the registry.

Always use REGEDT32 when you can. REGEDT32 does not apply changes until you exit the application and can
work in read-only mode.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Backing Up and Restoring the Registry

Before modifying the registry, you should perform a backup that you can revert to in case of any system failures. Knowing the
different methods to back up and restore the entire registry properly can save you hours of unnecessary data recovery and
troubleshooting.

Understanding Windows 2000/XP/2003 Registry Backup Misconceptions
Backing up the registry is a tricky subject. Here is a list of some common misconceptions about backing up the registry:

You can back up the entire registry by simply making a copy of the registry files. Unlike Windows 9x, Windows
2000/XP/2003 accesses many sections of the registry directly. These files are open, so you cannot back them up
because they are already in use.

You can back up the entire registry by running RDISK /S. The RDISK (Repair Disk) utility backs up important
system files and parts of the registry to an ERD (Emergency Repair Disk). This disk is used in conjunction with the
setup disks to restore critical parts of the operating system that may be damaged. It cannot and was never intended
to be used as a registry backup utility.

You can use REGEDIT to back up and restore the entire registry. REGEDIT for Windows 2000/XP/2003 does not
support the same switches as the Windows 9x version. Although you may be able to back up the registry manually
into one large REG file, you will not be able to restore it. The registry has special security settings on certain keys
that prevent restoring or modifying.

Backing Up the Windows 2000/XP/2003 Registry
There are two methods to back up the entire Windows 2000/XP/2003 registry. The first method is to use the built-in backup utility
to perform a complete backup of the registry. This will be discussed in more detail in Chapter 14. The second method is to use a
resource kit utility called REGBACK. To perform a complete backup of the registry using REGBACK, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Obtain the latest version of REGBACK.EXE from the resource kit and copy it to the new directory.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
REGBACK C:\REGBACKUP.RBU
if errorlevel 1 echo Error during backup
if errorlevel 0 echo Successfully backed up

Restoring the Windows 2000/XP/2003 Registry
The resource kit utility REGREST is used to restore registry backups created by REGBACK. To restore a registry backup created
by REGREST, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Obtain the latest version of REGREST.EXE from the resource kit and copy it to the new directory.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
REGREST C:\REGBACKUP.RBU C:\REGSAVE.RBU
if errorlevel 1 echo Error during restore
if errorlevel 0 echo Successfully restored

Here, C:\REGSAVE.RBU is an arbitrary name to which your current registry is backed up before restoring your backup.

Modifying the Registry with Shell Scripting

Because shell scripting was created before the birth of the registry, it does not contain any functions to modify the registry. To
manipulate the registry through shell scripting, you can use REG.EXE, included in WindowsXP/2003 and in the Windows 2000
Resource Kit. REG.EXE supports the following parameters:

Add-Adds keys or values

Backup-Identical to the Save parameter

Compare-Compares a registry key or value to another or to a string

Copy-Copies a registry key or value from one machine to another

Delete-Deletes keys and values

Export-Saves keys and values to a REG file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Find-Finds and replaces keys or values

Import-Loads registry keys and values from a REG file

Load-Loads hive files to the registry

Query-Displays the contents of keys and values

Restore-Restores registry keys from hive files

Save-Stores registry keys to hive files

Unload-Removes hive files from the registry

Update-Replaces information in a key or value

Backing Up a Registry Key
To back up a registry key using REG.EXE, start a command prompt and enter the following:
REG SAVE key file

Here, key is the registry key to back up, and file is the hive file to back up the registry key.

Restoring a Registry Key
To restore a registry key using REG.EXE, start a command prompt and enter the following:
REG LOAD file key

Here, file is the hive file to restore; and key is the registry key to which to restore the hive.

Querying the Registry
To display registry keys or values from the command line using REG.EXE, start a command prompt and enter the following:
REG QUERY keyval

Here, keyval is the registry key or value you want to display. For example, to display the current cursor blink rate, start a
command prompt and enter the following:
REG QUERY "HKCU\Control Panel\Desktop\CursorBlinkRate"

Note If a registry entry contains a space, you must surround it with quotation marks.

Searching the Registry
Sometimes the registry stores information you wish it didn't, such as usernames and passwords. You can use the resource kit
utility SCANREG.EXE to search the registry for these values. To search the registry for a key containing a specific phrase,
proceed as follows:
SCANREG string start − k

Here, string is the phrase to search for, and start is where to start searching in the registry.

Customizing Windows 2000/XP/2003
With the introduction of a new operating system come new features, and with new features come new annoyances. To remove
these annoyances, you simply need to make a few registry changes.

Disabling Start Menu Scrolling

When the Start menu grows larger than one column, Windows will simply scroll the column rather than creating a new column.
This can become quite annoying when you have a large Start menu. To disable the Start menu scrolling and have Windows
create a new column to fit the additional Start menu items, start a command prompt and enter the following:
REG UPDATE HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Advanced\StartMenuScrollPrograms=NO

Note The code above must be placed on one line.

Disabling Pop-up Descriptions

An initially helpful but quickly annoying feature are the pop-up descriptions that appear when the mouse pointer remains above
certain objects for a short period of time. To disable the pop-up descriptions using REG.EXE, start a command prompt and enter
the following:

REG UPDATE HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Advanced\ShowInfoTip=0

Note The code above must be placed on one line.

Disabling Balloon Tips

Windows XP balloon tips are another helpful feature that is annoying more often than not. To disable balloon tips using REG.EXE,
start a command prompt and enter the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REG ADD
HKCU \ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer
 \ Advanced \ EnableBalloonTips=0

Note The code above must be placed on one line.

Deleting Registry Keys Using REGEDIT
Although you can use REG.EXE to delete registry keys, you can also use REGEDIT. To delete registry keys using REGEDIT,
select Start|Run and enter "regedit regfile." Here, regfile is a registry file that contains the following:
REGEDIT4
[-COMPLETEKEY]

Here, COMPLETEKEY is the complete registry key to delete, such as HKEY_LOCAL_MACHINE\SOFTWARE\APPLE.

Note The minus sign in front of COMPLETEKEY causes the key to be deleted.

Clearing the Run Dialog List

Every time you run a command through the Start|Run dialog box, that command is stored in a Most Recently Used (MRU) list
within the registry. To delete this list from the registry, select Start|Run and enter "regedit regfile." Here, regfile is a registry file
that contains the following:
REGEDIT4
[-HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Explorer\RunMRU]

Note The highlighted code above must be placed on one line.

Deleting Persistent Drive Mappings

Whenever you map a drive to "reconnect at logon" or map it persistently through the NET USE command, the settings for this
drive mapping are stored within the registry. To remove persistent drive mappings for the current user, select Start|Run and enter
"regedit regfile." Here, regfile is a registry file that contains the following:
REGEDIT4
[-HKEY_CURRENT_USER\Software\Microsoft\Windows NT\
CurrentVersion\Network\Persistent Connections]

Note The highlighted code above must be placed on one line.

Modifying the Registry with REGINI.EXE
REGINI.EXE, included in Windows XP/2003 and the Windows 2000 Resource Kit, is a powerful utility designed to manipulate the
registry through a batch file. It can add or update registry values as well as set registry key permissions. REGINI.EXE interprets
registry hives differently because it only works with kernel mode. See Table 6.2.

Disabling Dr. Watson

Dr. Watson is an annoying debugging utility that appears every so often during application or system crashes. To disable Dr.
Watson, proceed as follows:

1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain the latest version of REGINI.EXE from the Windows 2000 Resource Kit and
copy it to the new directory.

3. Select Start|Run and enter "REGINI scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

Table 6.2: Regular mode versus kernel mode.

Regular Mode Kernel Mode

HKEY_LOCAL_MACHINE \Registry\Machine

HKEY_USERS \Registry\User

\Registry\Machine
 SOFTWARE
 Microsoft
 Windows NT
 CurrentVersion
 AeDebug
 AUTO = REG_SZ 0

Tip To re-enable Dr. Watson, run DRWTSN32 -I from the command prompt.

Securing Recycle Bin Properties

To restrict users from modifying the Recycle Bin properties, proceed as follows:
1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain the latest version of REGINI.EXE from the Windows 2000 Resource Kit and
copy it to the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Select Start|Run and enter "REGINI scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
\Registry\Machine
 SOFTWARE
 Microsoft
 Windows
 CurrentVersion
 Explorer
 BitBucket [1 17 8]

Modifying the Registry with KiXtart

KiXtart provides many functions to manipulate the registry:

AddKey-Adds a subkey to the regsitry

DelKey-Deletes a subkey from the registry

Deltree-Deletes a key and all its subkeys

DelValue-Deletes a value from the registry

EnumKey-Lists the keys within a key or subkey

EnumValue-Lists the values within a key or subkey

ExistKey-Checks for the existence of a subkey

LoadHive-Loads HKEY_LOCAL_MACHINE or HKEY_USER hive information from a REG file

LoadKey-Loads a registry key from a hive file

ReadType-Determines the value type

ReadValue-Reads the data within a registry value

SaveKey-Saves a key to a hive file

WriteValue-Writes data to or creates a registry value

Note For complete usage details, see the KiXtart manual.

Backing Up a Registry Key
To back up a registry key to a hive file using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey = "key"
$RegFile = "file"
SaveKey($RegKey, $RegFile)

Here, key is the registry key to back up, and file is the hive file to back up the registry key.

Restoring a Registry Key
To restore a registry key from a hive file using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey = "key"
$RegFile = "file"
LoadKey($RegKey, $RegFile)

Here, key is the registry key to restore, and file is the hive file to restore from.

Disabling the Welcome Screen
Microsoft has made it a habit to greet every new user to a machine running its operating system through the Welcome screen.
Although this greeting seems like a good idea, it can quickly become annoying to users as they travel from machine to machine.
To disable the Welcome screen, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Policies\Explorer"
WriteValue($RegKey, "NoWelcomeScreen", "1", "REG_DWORD")

Note The highlighted code above must be placed on one line.

Working with Icons
Microsoft Windows includes many default icons on the desktop for your convenience. You can easily delete or hide these icons or
modify their properties by manipulating the registry.

Removing the My Computer Icon from the Desktop

To remove the My Computer icon from the desktop, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "HKEY_CLASSES_ROOT\CLSID\
{20D04FE0-3AEA-1069-A2D8-08002B30309D}"
Deltree($RegKey)

Note The highlighted code above must be placed on one line.

Removing the Dial-Up Networking Icon from My Computer

To remove the Windows 2000 Dial-Up Networking icon from My Computer, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\ Explorer\MyComputer\NameSpace\
{a4d92740-67cd-11cf-96f2-00aa00a11dd9}"
Deltree($RegKey)

Note The highlighted code above must be placed on one line.

Removing the Scheduled Tasks Icon from My Computer

To remove the Windows 2000 Scheduled Tasks icon from My Computer, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

$RegKey
= "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\ Explorer\MyComputer\NameSpace\
{D6277990-4C6A-11CF-8D87-00AA0060F5BF}"
Deltree($RegKey)

Note The highlighted code above must be placed on one line.

Hiding the Windows 2000 Network Neighborhood Icon

To hide the Windows 2000 Network Neighborhood icon from the desktop for the current user, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\Explorer"
WriteValue($RegKey, "NoNetHood", "1", "REG_DWORD")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WriteValue($RegKey, "NoNetHood", "1", "REG_DWORD")

Note The highlighted code above must be placed on one line.

Hiding All Windows 2000 Desktop Icons

To hide all Windows 2000 desktop icons for the current user, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RegKey
= "SOFTWARE\Microsoft\Windows\CurrentVersion\
Policies\Explorer"
WriteValue($RegKey, "NoDesktop", "1", "REG_DWORD")

Note The highlighted code above must be placed on one line.

Modifying the Registry with Windows Script Host

Windows Script Host provides the easiest way to manipulate the registry. You can modify the registry using the WScript object.
This object contains three simple registry methods:

RegDelete-Deletes registry keys and values

RegRead-Reads registry keys or values

RegWrite-Writes registry keys or values

Note Windows Script Host does not include any methods to back up or restore registry keys or values.

Disabling Windows Security Menu Options
Once Windows is up and running, you can press Ctrl+Alt+Del to call up the Windows security menu to perform common tasks.
Although this is convenient for users, you may want to selectively disable these options for guest or kiosk stations.

Disabling the Lock Workstation Button

To disable the Lock Workstation button, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKCU\Software\Microsoft\Windows\" & _
"CurrentVersion\Policies\System\DisableLockWorkstation"
SHELL.RegWrite RegValue, 1, "REG_DWORD"

Disabling the Change Password Button

To disable the Change Password button, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKCU\Software\Microsoft\Windows\" & _
"CurrentVersion\Policies\System\DisableChangePassword"
SHELL.RegWrite
RegValue, 1, "REG_DWORD"

Disabling the Logoff Button

To disable the Logoff button, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKCU\Software\Microsoft\Windows\" & _
"CurrentVersion\Policies\System\NoLogOff"
SHELL.RegWrite
RegValue, 1, "REG_DWORD"

Modifying NTFS Properties
NTFS includes many benefits over the regular FAT file system. The price of these benefits is the extra overhead and access time
of the file system. You can modify the registry to disable some of these features.

Disabling 8.3 File Naming

When a file is created, it retains both long and short (DOS 8.3) file names. If you do not use DOS programs, you can disable 8.3
file naming to increase performance. To disable 8.3 file naming, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKLM\System\CurrentControlSet\Control\FileSystem\" & _
"NTFSDisable8dot3NameCreation"
SHELL.RegWrite
RegValue, 1, "REG_DWORD"

Related solution: Found on page:

Renaming Files with Short File Names 82

Disabling the Last Access Time Stamp

When a file is accessed, a time stamp is placed on that file. If you do not need this information, you can disable the last access
time stamp to increase performance. To disable the last access time stamp, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
RegValue = "HKLM\System\CurrentControlSet\Control\FileSystem\" & _
 "NTFSDisableLastAccessUpdate"
SHELL.RegWrite RegValue, 1, "REG_DWORD"

Modifying the Context Menu
A context menu is the menu that appears when you right click on almost anything in Windows (file, folder, URL, and so on). Some
typical context menu items are "Open", "Print", and "Properties." Context menu items and their associated commands are stored
in the registry. You can modify the registry to add your own, modify, or remove existing context menu items.

Adding a Windows XP/2003 "Defrag" Context Menu Item

To add a context menu item used to defrag a partition, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objShell = CreateObject("WScript.Shell")

Command = "DEFRAG.EXE %1"

objShell.RegWrite "HKCR\Drive\Shell\Defrag\Command\", Command
objShell.RegWrite "HKCR\Drive\Shell\Defrag\", "Defrag"

After running this script, you can right click on any partition and a "Defrag" item should appear in the context menu. Selecting this
item will defrag the partition you right clicked on.

Adding an "Email Attachment" Context Menu Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Outlook includes various command line options to create, open, and print email messages. To add a context menu item
which uses Outlook to attach a file to a new email message, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objShell = CreateObject("WScript.Shell")

'Get Outlook's default open command
Command = objShell.RegRead("HKCR\outlook\shell\open\command\")

'Now modify the command to attach a file
Command = REPLACE(Command,CHR(34) & " " & CHR(34),CHR(34) & _
" /a " & CHR(34))

objShell.RegWrite "HKCR*\Shell\EmailAttachment\Command\", Command
objShell.RegWrite "HKCR*\Shell\EmailAttachment\", _
"Email Attachment"

After running this script, you can right click on any file and an "Email Attachment" item should appear in the context menu.
Selecting this item will create a new email message and attach the file you right clicked on.

Tip See Microsoft Knowledge Base Article Q296192 to learn about Outlook's additional command line switches.

Adding an "Open with Notepad" Context Menu Item

When you attempt to open a file an unknown or missing file extension, Windows will prompt you to select a program to open the
file and or associate with it. To add a context menu item to open any file with notepad, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objShell = CreateObject("WScript.Shell")

Command = "NOTEPAD.EXE %1"

objShell.RegWrite "HKCR*\Shell\OpenWithNotepad\Command\", Command
objShell.RegWrite "HKCR*\Shell\OpenWithNotepad\"_
"Open With Notepad"

After running this script, you can right click on any file and a "Open with Notepad" item should appear in the context menu.
Selecting this item will open the file you right clicked on in Notepad.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7: Local System Management

In Brief
It's such a shame. You spend months creating the perfect drive image for your company, only to have users and fellow
administrators destroy it little by little through installing new applications, deleting files, and disorganizing the file system. Almost
brings a tear to your eye. In this chapter, you will learn how to reorganize the disorganized, secure your systems, and perform
updates to keep your imaged systems and servers healthy and clean.

Common Locations

Microsoft uses a common organized structure to store user data. If you know the locations of these directories and the quickest
way to access them, you can easily modify their contents within your scripts. Table 7.1 lists common locations for Windows
2000/XP/2003.

Table 7.1: Common data storage paths in Windows 2000/XP/2003.

Data Type Path

All Users Desktop %ALLUSERSPROFILE%\Desktop

All Users Start Menu %ALLUSERSPROFILE%\Start Menu

Desktop %USERPROFILE%\Desktop

Favorites %USERPROFILE%\Favorites

NetHood %USERPROFILE%\NetHood

PrintHood %USERPROFILE%\PrintHood

Quick Launch %USERPROFILE%\Application Data\Microsoft\Internet Explorer\Quick Launch

Start Menu %USERPROFILE%\Start Menu

Accessing SpecialFolders with Windows Script Host
The WshShell object contains a property called SpecialFolders used to access these common locations. To access the
SpecialFolders property, proceed as follows:
Set SHELL = CreateObject("WScript.Shell")
Set SF = SHELL.SpecialFolders

Here is a list of the folders available to the SpecialFolder property:

AllUsersDesktop

AllUsersStartMenu

AllUsersPrograms

AllUsersStartup

AppData

Desktop

Favorites

Fonts

MyDocuments

NetHood

PrintHood

Programs

Recent

SendTo

StartMenu

Startup

Templates

Here is an example of how to access these special folders in Windows Script Host:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set SHELL = CreateObject("WScript.Shell")
Set SF = SHELL.SpecialFolders
Wscript.Echo "Desktop: " & SF ("Desktop")

Note Access to these folders is dependent on your version of Windows. For example, there is no AllUsersDesktop folder for
Windows 9x.

Sharing

Sharing is the basic principle to networking: making resources easily available to multiple users. Windows allows you to share
files, folders, and even devices to allow others to access your resources over the network.

Note Because Windows 2000 Professional and Windows XP allows only 10 concurrent network connections, this is the
maximum number of simultaneous users that can access a share. The limit for a Windows 2000/2003 Server is
dependent on the number of concurrent licenses you have for each server.

To share a resource, right-click the resource and choose "Sharing" for Windows 2000 or "Sharing and Security" for Windows XP.
Select "Share This Folder" and specify a share name. Resources are shared by their share names. Share names do not need to
be the same name as the actual resource. For example, a folder called FILES can have a share name called MYFILES. To
remain compatible with the DOS naming convention, your share names should not exceed eight characters.

Once a resource is shared, you can control access to it by modifying its share permissions. When a resource is shared, the
default settings are to share that object with everyone. You can set varying access levels for your shared resources, and the
process is identical to modifying NTFS permissions. Although NTFS is not required to set share permissions, you can increase
security and functionality by using it.

NTFS Overview

The NTFS (NT File System) file system contains significant improvements over the previous Windows file systems (FAT and
FAT32). Some of these improvements include:

Maximum size: 16 exabytes

Long file name support

File, folder, and volume security

Compression

Bad cluster recovery

Disk quotas-Disk usage limits you can set on a per-user basis

Encryption-A method to make data unreadable for unauthorized viewers using the 56 Bit DES (Data Encryption
Standard)

Reparse points-An enhancement to file objects that allows developers to extend file system functionality

Sparse files-Files that can be created at any size, but which grow only as needed

Change Journal-Originally called the Update Sequence Number (USN) journal, a hidden journal that records
changes to the file system

Converting to NTFS
If you are currently using the FAT (File Allocation Table) file system, you can gain the benefits of NTFS by safely converting to it
using CONVERT.EXE. To convert from FAT to NTFS, start a command prompt and enter the following:
CONVERT drive /FS:NTFS

Here, drive is the drive to convert to NTFS (for example, C:).

Warning This is a one-way conversion process. Microsoft does not provide any method to convert an NTFS volume to FAT
or FAT32. Remember, NTFS drives are not accessible from Windows 95, 98, and ME.

NTFS Security
NTFS stores extra information such as file ownership and uses access control lists (ACLs) to secure its files and folders from
users and groups. The ACL contains access control entries (ACEs) that determine which type of access will be given. NTFS
provides different ACEs for files and folders. To view the different ACEs you can set, open Windows Explorer and select
Properties|Security|Permissions for a specific file or folder (see Figure 7.1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.1: Editing NTFS general permissions.

In addition to the default NTFS permissions, you can specifically set individual permissions through the Type of Access|Special
Access selection, as shown in Figure 7.2.

Figure 7.2: Editing NTFS special access permissions.

Warning Setting "No Access" to the group Everyone will prevent even administrators from accessing the affected resources.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Interacting with the User

When scripting, you might often need the ability to prompt or ask the user for input. This is useful when you need to inform the
user that the script has ended, display error messages, ask for the location of a directory, and more.

Using Dialog Boxes with Shell Scripting
Shell scripting does not contain any built-in method to create dialog boxes from the command line. Msgbox.exe is a freeware utility
that you can use to create dialog boxes from the command line. The basic syntax of msgbox is as follows:
Msgbox /commands "title" text

Here, title is the dialog box window title. Any characters after title will display text in the body of the dialog box. Multiple quoted
phrases of text will result in multiple body lines of text. The available commands are as follows:

/BARI-Displays Abort, Retry, and Ignore buttons

/BO-Displays the OK button

/BOC-Displays the OK and Cancel buttons

/BRC-Displays the Retry and Cancel buttons

/BYN-Displays the Yes and No buttons

/BYNC-Displays the Yes, No, and Cancel buttons

/Dx-Selects a default button where x is the button number, from left to right

/F1-Sets the dialog box to the foreground before input

/F2-Sets the dialog box to the foreground after input

/H-Hides the console window during the prompt

/I!-Displays the exclamation icon

/II-Displays the information icon

/IQ-Displays the question icon

/IS-Displays the stop icon

/MA-Normal display (Application Modal)

/MS-On top display (System Modal)

/MT-Normal display, includes title icon (Task Modal)

/Tx-Times out after x seconds

To create a batch file example to illustrate the use of msgbox.exe, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download msgbox.exe from http://www.jsiinc.com to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@Echo Off
:Start

MSGBOX /H /MT /BO /I! "MSGBOX Example"
 "This example illustrates how to make"
 "dialog boxes from the command line."

MSGBOX /H /MT /BARI /IS "Fake Error"
 "Non critical program error."
 "Pressing a button will continue the example."

MSGBOX /H /MT /BYN /D2 /IQ "Repeat Example?"
 "Would you like to repeat this example?"

If errorlevel 5 goto End
If errorlevel 2 goto Start

:End

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Dialog Boxes with KiXtart
The KiXtart command MessageBox allows you to display a dialog box to the user. To display a dialog box using KiXtart, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
MessageBox("This is a dialog box.", "DIALOG BOX", 0)

Note The MessageBox command supports many functions, such as allowing for different buttons and icons. See the KiXtart
manual for all the included features.

Using Dialog Boxes with Windows Script Host
Windows Script Host provides several methods to display dialog boxes. In the previous chapters, you have seen the Wscript.Echo
used to display command prompt lines of text to the user when invoked using CSCRIPT.EXE, the command-line Windows Script
Host. If you start your scripts with WSCRIPT.EXE, the line of text will be displayed in a message box:
WScript.Echo "This is a dialog box."

Another method of displaying dialog boxes is using WshShell's PopUp:
Set SHELL = CreateObject("WScript.Shell")
SHELL.PopUp "Window Text", 0, "Window Title", 0

Note PopUp is very similar to KiXtart's MessageBox. See the WSH documentation for all the included features.

Accepting User Input with Shell Scripting
Shell scripting does not include any method to accept user input, aside from creating temporary files and then parsing the files.
Included in the resource kit is a utility called CHOICE.EXE that allows you to accept user choices (one key press) from the
command line:

CHOICE /C:ABC
IF ERRORLEVEL 1 ECHO You pressed A
IF ERRORLEVEL 2 ECHO You pressed B
IF ERRORLEVEL 3 ECHO You pressed C

Here, the /C switch states which keys are allowed for input (for example, /C:ABC). You can determine which key has been
pressed by checking the appropriate errorlevel. The first key allowed, in this example A, is associated with the first errorlevel
(errorlevel 1), and so on.

Accepting User Input with KiXtart
The KiXtart command GETS allows you to store a line of user input to a variable. To accept user input using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
GETS $variable FLUSHKB

Here, variable is the variable to store the user input. The FLUSHKB command clears the keyboard buffer.

Tip You can use the KiXtart command Get to accept a single key of input.

Accepting User Input with Windows Script Host
The Windows Script Host command InputBox allows you to store a line of user input to a variable. To accept user input using
Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Name = InputBox("Please type enter your name:",
"YOUR NAME REQUIRED", "JOHN BREYAN")
Wscript.Echo "Hello " + Name

Note The highlighted code above must be placed on one line.

Changing the Desktop Wallpaper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

KiXtart includes a command called SETWALLPAPER to change the desktop wallpaper for the current user. To change the
desktop wallpaper using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
SETWALLPAPER("wallpaper")

Here, wallpaper is the complete path and file name of the bitmap to use.

Working with Shortcuts

Shortcuts are merely pointers to the files and folders you use most often. Shortcuts are easily identified by their .lnk extension and
are the building blocks of the Start menu. Most users live and breathe shortcuts, and would be lost without them. Through shell
scripting and Windows Script Host, you can easily modify or create shortcuts anywhere on a system.

Creating Shortcuts Using Shell Scripting
SHORTCUT.EXE is a freeware utility you can use to create shortcuts from the command line. To create a shortcut using
SHORTCUT.EXE, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download shortcut.exe from http://www.jsiinc.com to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
SHORTCUT /F:"name" /A:Create /T:"target" /W:"directory" /D:"description"

Note Here, name is the full path and name of the shortcut; target is the full path and name of the item to create a shortcut to;
directory is the full directory path to start the target in; and description is the comment for the shortcut.

Tip SHORTCUT.EXE supports many command-line parameters. Type "shortcut.exe /?" for more information.

Creating Shortcuts Using KiXtart
KiXtart does not have the ability to create shortcuts, other than within the Start menu. If you want to create a shortcut somewhere
else, you can create a Start menu shortcut, copy the shortcut to the desired location, and then delete the original shortcut. To
create a shortcut using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$SName = "name"
$STarget = "target"
$SDir = "directory"
$SDest = "destination"
$RCODE = AddProgramItem($STarget,$SName,"",0,$SDir,0,0)
Copy "SMPDIR\$SName.lnk" $SDest
$RCODE = DelProgramItem($SName)

Here, name is the name of the shortcut without the extension or path; target is the full path and name of the item to create a
shortcut to; directory is the full directory path to start the target in; smpdir is the full path of the Start Menu\Programs directory;
and destination is where to store the shortcut.

Tip If you just want to create a shortcut in the Start menu, simply use the AddProgramItem command.

Creating Shortcuts Using Windows Script Host
To create a shortcut using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set Shell = CreateObject("WScript.Shell")
sNAME = "name"
sTARGET = "target"
sDIR = "directory"
sICON = "icon"
sHKEY = "hotkey"

Set Scut = Shell.CreateShortcut(sNAME)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Scut = Shell.CreateShortcut(sNAME)
Scut.TargetPath = Shell.ExpandEnvironmentStrings(sTARGET)
Scut.WorkingDirectory = Shell.ExpandEnvironmentStrings(sDIR)
Scut.WindowStyle = 4
Scut.IconLocation = Shell.ExpandEnvironmentStrings(sICON)
Scut.HotKey = sHKEY
Scut.Save

Here, name is the complete path and name of the shortcut; target is the item to place a shortcut to; directory is the item's
working directory; icon is the shortcut icon to use; and hotkey is the quick key combination to activate the shortcut (for example,
ALT+SHIFT+Q).

Deleting Broken Shortcuts
Shortcuts are merely pointers to a file or folder on your system, and when those target items get moved or deleted, those
shortcuts are useless. To delete a broken shortcut using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set Shell = CreateObject("Wscript.Shell")
sDIR = directory

Set objDIR = GetFolder(sDIR)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 If LCase(fEXT) = LCase("lnk") Then
 Set Shortcut = Shell.CreateShortcut(efile)
 If NOT FSO.FileExists(Shortcut.TargetPath) Then
 If NOT FSO.FolderExists(Shortcut.TargetPath) Then
 DelFile efile
 End If
 End If
 End If
 Next
End Sub

Here, directory is the location to start searching for broken shortcuts.

Note You need to append the GoSubFolders, DelFile, and GetFolder routines, listed in Chapter 4, to this script in order for
it to run.

Tip You can use the resource kit utility CHKLNKS.EXE to perform the same task manually.

Controlling the Start Menu

The Start menu is the central point for organizing application and system shortcuts. For every new application installed, more than
likely an associated shortcut or two is installed in the Start menu. Users can spend a good portion of their day navigating through
this menu to get to the application or data they want, so it is important to organize this data effectively.

Adding a Program Group with KiXtart
As you learned in the previous section, you can create Start menu shortcuts using the commandAddProgramItem. KiXtart also
includes a function calledAddProgramGroup to create folders in the Start menu:
AddProgramGroup("Folder", Location)

Here, folder is the name of the group to create, and location specifies whether to place the group in the common or user Start
menu. A value of 0 specifies the user Start menu, whereas a value of 1 specifies the common Start menu.

Moving All Uninstall Shortcuts to a Central Directory
When an application installer places its shortcuts in the Start menu, an uninstall icon is normally included to uninstall this product
quickly and easily. Unfortunately, a user quickly browsing through the Start menu might click on an uninstall icon and accidentally
remove or damage application or system files. To move the uninstall shortcuts from the Start menu to a central directory, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set FSO = CreateObject("Scripting.FileSystemObject")
Set Shell = CreateObject("Wscript.Shell")
sMENU = Shell.SpecialFolders("Programs")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sMENU = Shell.SpecialFolders("Programs")
sDIR = "C:\UNINSTALL"
 If Not FSO.FolderExists(sDIR) Then
 FSO.CreateFolder sDIR
 End If

Set objDIR = GetFolder(sMENU)
GoSubFolders objDIR

Sub MainSub (objDIR)
 For Each efile in objDIR.Files
 fEXT = FSO.GetExtensionName(efile.Path)
 fNAME = LCase(FSO.GetBaseName(efile.Path))
 Folder = FSO.GetBaseName(objDIR)
 If LCase(fEXT) = LCase("lnk") Then
 If InStr(fNAME, "uninstall") <> 0 Then
 If fNAME = "uninstall" Then
 efile.Name = fNAME & " " & Folder & "." & fEXT
 End If
 MoveFile efile, sDIR
 End If
 End If
 Next
End Sub

Note You need to append the GoSubFolders, MoveFile, and GetFolder routines, listed in Chapter 3, to this script in order
for it to run.

Deleting Old User Profiles
Whenever a new user logs on, a user profile is created. User profiles consist of the user's own personal Start menu, shortcuts,
and user registry. As time progresses, profiles can take up a good portion of hard drive space. DELPROF.EXE is a Windows 2000
resource kit utility that allows you to delete old profiles that haven't been used for a while. To delete old user profiles, proceed as
follows:
DELPROF /Q /I /D:days

Here, /Q disables prompting during profile deletion; /I instructs DELPROF to ignore errors and continue deletion; and /D indicates
to delete profiles inactive more than the specified number of days.

Note If a specific user profile cannot be deleted by DELPROF, it might be in use. This includes the current user profile and
profiles belonging to accounts associated with running services. You will need administrative privileges to delete other
user's profiles.

Managing Services from the Command Line

Services are processes that run in the background, independent of a user logon. Normally, these services are managed manually
through the Control Panel|Services applet, but in this section you will learn how to manage services from the command line.

Installing a Service
INSTSRV.EXE is a resource kit utility to install a service from the command line. To install a service, start a command prompt and
enter the following:
INSTSRV name exe − a account − p password

Here, name is the name to give the service; exe is the path and name of the executable to run; account is the name of the
account to run the service under; and password is the password of the account.

Note After you install a service with INSTRV.EXE, the service is not automatically started. See the following section on
starting services from the command line.

Uninstalling a Service
To uninstall a service, start a command prompt and enter the following:
INSTSRV name Remove

Here, name is the name of the service to uninstall. The keyword remove instructs INSTSRV to uninstall the service.

Related solution: Found on page:

Deleting a Service 189

Starting a Service
You can use the NET command to control services from the command line. To start a service from the command line, start a
command prompt and enter the following:
NET START "service"

Here, service is the name of the service to start.

Related solution: Found on page:

Starting Services 186

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pausing a Service
To pause a started service from the command line, start a command prompt and enter the following:
NET PAUSE "service"

Here, service is the name of the started service to pause.

Related solution: Found on page:

Pausing Services 188

Resuming a Service
To resume a paused service from the command line, start a command prompt and enter the following:
NET CONTINUE "service"

Here, service is the name of the paused service to resume.

Related solution: Found on page:

Resuming Services 189

Stopping a Service
To stop a started service from the command line, start a command prompt and enter the following:
NET STOP "service"

Here, service is the name of the started service to stop.

Related solution: Found on page:

Stopping Services 187

Managing NTFS from the Command Line

In Chapter 4, you learned how to modify file and folder properties. NTFS adds additional properties that you can modify through
scripting.

Modifying NTFS Permissions
The Windows 2000 resource kit utility XCACLS.EXE allows you to change NTFS permissions from the command line. Most
administrators use this utility in a batch file to lock down their desktops and servers. To secure the %WINDIR%\Repair directory
access to just administrators, start a command prompt and enter the following:
XCACLS C:\%WINDIR%\REPAIR*.* /G administrators:F

Tip XCACLS contains many command-line parameters. Enter "XCACLS /?" for more information.

Changing a File Owner
The resource kit utility SUBINACL.EXE allows you to view or modify file, registry, and service security properties. You can use this
utility to change the NTFS owner of a file. To set a new owner using SUBINACL.EXE, start a command prompt and enter the
following:
SUBINACL /FILE/filename/SETOWNER=ownername

Here, filename is the full path and name of the file whose ownership is to be changed.

Managing NTFS Encryption

Although NTFS permissions allow you to secure your files and folders from other users, several methods are available to bypass
this security (for example, NTFSDOS). Windows 2000/XP/2003 uses an encrypting file system (EFS) to secure your files.

Tip The Microsoft Knowledge Base article Q255742 explains several methods to recover data from encrypted files, even if
the private key is lost.

Encrypting Files from the Command Line
CIPHER.EXE is a utility that allows you to encrypt/decrypt your files from the command line. This utility supports the following
parameters:

/A-Specifies to act on files and folders

/D-Decrypts files and folders

/E-Encrypts files and folders

/F-Forces encryption, even on files already encrypted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/H-Includes system and hidden files

/I-Ignores errors

/K-Creates a new encryption key for the current user

/Q-Runs in silent mode

/S-Performs action on the current folder and all subfolders

Warning Encrypted files cannot be read during the boot process. Encrypting files that the system needs to access while
booting will cause your system not to boot.

To silently encrypt all the files and folders within a directory, start a command prompt and enter the following:
CIPHER /E /A /S /F /Q /H "directory"

Here, directory is the folder to encrypt.

Decrypting Files from the Command Line
To decrypt all the files within a directory, start a command prompt and enter the following:
CIPHER /D /A /S /Q "directory"

Here, directory is the folder to encrypt.

Managing Shares from the Command Line

Shares allow users to access resources from one common source on the network. As more and more systems and devices are
added and shared on your network, managing shares can become an intensive chore.

Listing Shares
You can list shares from the command line using the built-in NET command. To list all shares from the command line, start a
command prompt and enter the following:
NET SHARE

Adding Shares
Sharing a resource makes that object available on the network. To share a resource from the command line, start a command
prompt and enter the following:
NET SHARE name=path /USERS:maxnum /REMARK:"comment"

Here, name is the name of the share; path is the path to create the share to; maxnum is the maximum number of users allowed
to simultaneously access the share; and comment is the comment to give the share.

Tip If you want to allow an unlimited number of users to access the share simultaneously, replace the /users:maxnum
switch with the /unlimited switch.

Related solution: Found on page:

Creating a Share 180

Removing Shares
To delete a share from the command line, start a command prompt and enter the following:
NET name /DELETE

Here, name is the name of the share.

Tip /D is the abbreviated form of the /DELETE switch. When you delete a share, you are only disabling sharing for that
resource, not deleting that resource.

Related solution: Found on page:

Deleting a Share 181

Copying Share Permissions
Currently, there is no Microsoft method to set share permissions from the command line. However, you can use the resource kit
utility PERMCOPY.EXE to copy permissions from one share to another. To use PERMCOPY.EXE to copy permissions from one
share to another, start a command prompt and enter the following:
PERMCOPY \\source sname \\destination dname

Here, source is the computer containing the share (sname) with proper permissions; and destination is the computer containing
the share (dname) to copy permissions to.

Tip Supplying both the source and destination with the local computer name will copy permissions from one local share to
another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Warning Do not use PERMCOPY.EXE to copy permissions on administrative shares (for example, C$). This will cause
SERVICES.EXE to crash.

Creating Shares with Permissions
Currently, there is no Microsoft method to create shares with permissions from the command line. RMTSHARE.EXE is a Windows
2000 resource kit utility to create shares with permissions on remote stations. You can provide this utility with the local computer
name to create shares with permissions on the local station. To use RMTSHARE.EXE to create shares with permissions, start a
command prompt and enter the following:
RMTSHARE \\computer\name=path /GRANT guser:permission
/REMOVE ruser

Note The code above must be placed on one line. Here, computer is the computer name to create the share on; name is
the name of the share; path is the path to create the share to; guser is the username to grant permissions to; and
ruser is the username to deny share access to.

Tip RMTSHARE.EXE also supports the same switches as the NET SHARE command.

Calling System Events

In Chapter 5, you learned how to call system events (for example, shutdown, restart) using DLL calls. In this section, you will learn
how to call these events without using DLL calls.

Shutting Down/Restarting the Computer in Windows 2000
The resource kit utility SHUTDOWN.EXE allows you to shut down or restart Windows. The basic syntax of the SHUTDOWN
command is:
SHUTDOWN parameters

The available parameters for SHUTDOWN.EXE are as follows:

"message" -Displays a message prior to shutdown

/A-Used to abort a shutdown performed with the /T switch

/C-Force-closes all running applications

/L-Specifies to work with the local computer

/R-Restarts the computer after shutdown

/T:seconds-Performs a shutdown after the number of seconds specified

/Y-Answers YES to any dialog box prompts

Warning Using the /C switch will close all applications without saving and might result in losing data. Use this switch only
when you are certain that the local machine does not have any open unsaved files.

Related solution: Found on page:

Shutting Down a System 191

Logging Off a User
The resource kit utility LOGOFF.EXE allows you to log off a user from a current Windows session. The basic syntax of the
LOGOFF command is:
LOGOFF /F /N

Here, /F force-closes all running applications and /N removes any user prompts.

Warning Using the /F switch will close all applications without saving and may result in losing data. Use this switch only
when you are certain that the local machine does not have any open unsaved files.

Shutting Down/Restarting the Computer in Windows XP/2003
Windows XP/2003 includes the SHUTDOWN command, which you can use to shut down or restart Windows. The basic syntax of
the SHUTDOWN command is:
SHUTDOWN parameters

The available parameters for SHUTDOWN.EXE are as follows:

-A-Used to abort a shutdown

-C-Used to display a message prior to shutdown

-D code-Reason code for the shutdown

-F-Force-closes all running applications

-I-Displays a GUI Interface

-L-Logs off the current user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-M \\computername-Specifies the remote computer name

-R-Restarts the computer after shutdown

-T:seconds-Performs a shutdown after the number of seconds specified

Warning Using the -F switch will close all applications without saving and might result in losing data. Use this switch only
when you are certain that the local machine does not have any open unsaved files.

Related solution: Found on page:

Shutting Down a System 161

Logging Off a User in Windows XP/2003
To log off the current user session using the SHUTDOWN command, start a command prompt and enter the following:
SHUTDOWN -L

Windows XP/2003 also provides the LOGOFF command to log off a user from a Windows session. To log off the current user
session using the LOGOFF command, start a command prompt and enter the following:
LOGOFF

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8: Remote System Management

In Brief
Remote management is essential to becoming a good administrator. When you're working at a site with 300 or more systems,
visiting and updating every single system becomes an impossible task. In this chapter, you will learn how to manage remote
systems from the command line and through Windows Management Instrumentation.

Administrative Shares

By default, Windows 2000/XP/2003 creates special shares so that administrators can perform various tasks remotely. These
special shares are called administrative shares and are automatically created when you install the operating system and whenever
you add a nonremovable drive or partition. Administrative shares are hidden shares that only administrators can access. The
permissions, names, and settings for these shares cannot be modified, and these shares can only be removed by making special
registry entries. The most common administrative shares are:

ADMIN$-Shares the directory Windows was installed in (for example, C:\WINNT)

DRIVE$-Shares all available drives, where drive is the specific drive letter

IPC$-Share that represents the named pipes communication mechanism

PRINT$-Share for shared printer drivers

REPL$-Shares replication directory on a server

Attaching to Shares
Many remote administrative tasks can be performed through network share access. Once you attach to a share, you can perform
tasks on these shares as if they were local resources. The process of attaching to a network share and assigning that connection
a drive letter is called mapping. Mapping a drive requires that you specify the complete Universal Naming Convention (UNC) path
of the share and the available drive letter to which you want to map it.

Once you map a drive to a share, you will be able to perform many of the tasks you perform on your drives locally. To map a drive
from within Windows, right-click Network Neighborhood and select Map Drive. The Map Network Drive dialog box will appear (see
Figure 8.1).

Figure 8.1: Mapping a network drive.

To map a drive from the command line, start a command prompt and enter the following:
NET USE DRIVE: \\COMPUTER\SHARE

Here, DRIVE is the drive letter you want to map the SHARE name to, and COMPUTER is the system holding the shared resource.

You can also map a drive as a different user:
NET USE DRIVE: \\COMPUTER\SHARE /USER:DOMAIN\USERNAME PASSWORD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NET USE DRIVE: \\COMPUTER\SHARE /USER:DOMAIN\USERNAME PASSWORD

Performing Tasks through a Share
Once a remote share has been mapped, you can perform commandline tasks on it as if it were a local drive. Here is an example
to delete all the files within a directory on a remote system:
NET USE DRIVE: \\COMPUTER\SHARE
DEL DRIVE:*.*

Once a drive is successfully mapped, you can utilize any of the file management methods that were detailed in Chapter 4.

Disconnecting Mapped Shares
When you no longer need to access the resources of a mapped share, you can disconnect it to free up available drives. To
disconnect a mapped drive from within Windows, right-click Network Neighborhood and select Disconnect Drive. When the
Disconnect Network Drive dialog box appears (see Figure 8.2), select the drive and click OK.

Figure 8.2: Disconnecting a mapped drive.

To disconnect a mapped share from the command line, start a command prompt and enter the following:
NET USE DRIVE: /DELETE

Here, DRIVE is the drive letter mapped to the share that you want to disconnect.

Tip sol;D is the abbreviated form of the /DELETE switch.

Windows Management Instrumentation

As enterprises grow larger, they become more difficult to manage. WebBased Enterprise Management (WBEM) is an initiative to
provide an environment-independent solution to manage data and devices. WBEM was developed by the Desktop Management
Task Force (DMTF), a collective organization consisting of Microsoft, Compaq, and other large corporations. Windows
Management Instrumentation (WMI) is Microsoft's Windows implementation of the WBEM initiative.

What Is WMI?
WMI, formerly called WBEM, provides scripters and developers with a standardized method to monitor and manage local and
remote resources. It comes included in Windows 98 and Windows 2000/XP/ 2003, and is available as a download for Windows 95
and Windows NT (Service Pack 5 or higher). WMI provides a standard, scriptable interface to various resources. The devices and
applications controlled by WMI are known as managed objects. Managed objects can be anything from hardware, such as a hub
or motherboard, to software, such as the operating system or an application.

The WMI Process
The executable that provides all the functionality of WMI is called WINMGMT.EXE. WINMGMT.EXE runs as a standard
executable on Windows 9x (because Windows 9x does not support services) and as a service on Windows NT/2000/XP/2003
systems. When a script or application (known as a consumer) issues calls to the WMI namespace, the executable awakes and
passes these calls to the CIM Object Manager (CIMOM). The CIMOM is the entrance to the WMI infrastructure. It allows for the
initial object creation and provides a uniform method to access managed objects. When CIMOM receives a request to control a
managed object, it first checks the CIMOM object repository.

The CIMOM object repository is a storage area for the Common Information Model (CIM). The CIM contains the WMI object
models and a description of all the available managed objects, called the management schema. This repository is full of all the
different access methods and properties of manageable objects, known as static management data. If the information requested
cannot be found in the repository, the repository passes the request down to the object provider.

A provider is the interface between the device to be managed and the CIMOM. The provider collects the information from a device
and makes it available to the CIMOM. This information is known as dynamic management data. Developers create providers
when the CIM does not contain methods to access a managed resource. Several providers come packaged with WMI:

Active Directory provider

Event Log provider

Performance Counter provider

Registry provider

SNMP provider

View provider

WDM provider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 provider

Windows Installer provider

Once the provider has completed processing the request, it sends all results back to the originating script or application.

Scripting WMI
In Chapter 1, you learned how to connect to a WSH object. The process of connecting to the WMI object model is similar to
connecting to the WSH object model. To gain access to an object, you use the GetObject function and set it to a variable. This is
called instantiating an object, as in the following example:
Set variable = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\namespace").ExecQuery
(WQL)

Note The code above must be placed on one line.

Here, variable is the variable used throughout your script to access all the properties and methods within the object. The
winmgmts namespace specifies a call to the WMI service.

Impersonation

{Impersonationlevel=impersonate}! instructs WMI to execute the script with the credentials of the caller (person who executed
the script) and not the credentials of the currently logged-on user of the targeted system. This instruction is extremely useful when
administrators are running remote scripts on systems and the logged on user does not have sufficient privileges to perform all the
specified requests.

Tip {Impersonationlevel=impersonate}! is the default impersonation level on Windows 2000/ XP/2003, and therefore can be
omitted from your scripts if you are running Windows 2000. It is included in the scripts in this book only for Windows NT
compatibility. Impersonations are not supported by Windows 9x because the operating system does not support user
privileges.

Namespaces

Computer is the name of the target system to run the script on, and \ROOT\namespace specifies which namespace to connect
to within the CIMOM object repository. Namespaces are organized containers of information within a schema. Namespace
hierarchy runs from left to right and is separated with backslashes. ROOT is the parent namespace for WMI and contains all the
child namespaces. WMI includes three child namespaces:

Cimv2-Stores Win32 system classes

Default-Stores system classes

Security-Stores WMI security classes

Most of your WMI scripting will include the Cimv2 namespace, because it holds many classes and instances for a Win32 system.

WMI Query Language

WMI uses a rich query language called the WMI Query Language (WQL). This language, similar to SQL (Structured Query
Language), allows you to query WMI information. The basic syntax for a WQL statement is as follows:
.ExecQuery("select propmeth from class")

Tip In addition to the select and from statements above, you can use many statements and keywords based on SQL.

ExecQuery runs the WQL statement, which is stored in quotes and surrounded by parentheses. Propmeth specifies the property
or method to retrieve from the specified class. Classes are organized containers for properties and methods of a manageable
device. For example, the Win32_TapeDrive class contains all the properties and methods to manage tape drives.

In addition to the ExecQuery, you can also use the ExecNotification-Query to perform WQL queries. The
ExecNotificationQuery method is used to detect when instances of a class are modified. In plain English, this method allows you
to poll for events. Combined with WQL, you can use this method to monitor the event log, CPU, memory, and more based on a
specified interval.

The WMI SDK: Worth Its Weight in Gold
Microsoft creates software developer kits (SDKs) to assist third-party application developers in creating Windows applications.
The WMI SDK includes the core WMI installation, documentation, utilities, and examples. You can obtain the WMI SDK free from
msdn.microsoft.com.

WMI Object Browser

The WMI Object Browser (see Figure 8.3) is a Web application to explore WMI namespaces. Through it, you can view and
manipulate all the classes and their properties and methods. The application runs within a Web browser and allows you to
connect to any namespace on a local or remote system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.3: The WMI Object Browser.

Note The WMI Object Browser is an intensive Web application. If it seems to be frozen when navigating through the various
classes, it may actually be loading the properties, methods, and subclasses into memory.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Working with the MMC

Microsoft Management Console (MMC) is a multi-document interface (MDI) shell that hosts applications called snapins. Windows
2000/XP/2003 comes with many snapins, from Device Management to User Management. While by default most snapins connect
to the local system, you can use the command line to connect a snapin to a remote system.

Opening the "Computer Management" MMC Snapin
To open the computer management MMC snapin for a remote system, start a command prompt and enter the following:
mmc %windir%\system32\compmgmt.msc -s /computer:\\computer

Here, computer is the name of the remote system.

Opening the "Event Viewer" MMC Snapin
To open the event viewer MMC snapin for a remote system, start a command prompt and enter the following:
mmc %windir%\system32\eventvwr.msc /computer=\\computer

Here, computer is the name of the remote system.

Tip The Local Users and Computers (lusrmgr.msc) and Services (services.msc) snapins also support the /computer= option.

Remote Management from the Command Line

Most local system management is performed through the MMC or the Control Panel on Windows 2000/XP/2003 systems.
Although most of these tools include remote management capability, you can also use command-line utilities to create scripts for
remote management.

Installing the Remote Console
Remote Console is a Windows 2000 resource kit utility that allows you to run a client/server command-prompt session between
two systems, similar to a telnet session. To install the Remote Console, start a command prompt and enter the following:
RSETUP \\computer

Installing the Remote Command
Remote Command is a resource kit utility that allows you to run a program and a command prompt session on a remote computer
from your local station. In essence, you call up a command prompt window on your machine that will run commands on the
remote machine. To install the remote command service, start a command prompt and enter the following:
RCMDSVC -INSTALL
NET START "Remote Command Service"

Executing Commands on a Remote System
You can start commands on a remote system using either the remote command (RCMD) or Remote Console utilities. The remote
command utility allows you to start either a batch file or a program on a remote system. To start a command on a remote system
using the remote command, start a command prompt and enter the following:
RCMD \\computer program

The Remote Console utility allows you to start a batch file on a remote system. To start a batch file on a remote system using
Remote Console, start a command prompt and enter the following:
RCLIENT \\computer /RUNBATCH program

Here, computer is the remote system to run the program on.

Listing Shares and Permissions
SRVCHECK.EXE is a resource kit utility to list shares and permissions on a remote system. To view the shares and permission on
a remote system, start a command prompt and enter the following:
SRVCHECK \\computer

Here, computer is the name of the remote system.

Related solution: Found on page:

Listing Shares 213

Creating Shares with Permissions
RMTSHARE.EXE is a resource kit utility to create shares with permissions on remote stations. To use RMTSHARE.EXE to create
shares with permissions, start a command prompt and enter the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RMTSHARE \\computer\name=path/GRANT
guser:permission/REMOVE ruser

Note The code above must be placed on one line.

Here, computer is the computer name to create the share on; name is the name of the share; path is the path to create the share
to; guser is the username to grant permissions to; and ruser is the username to deny share access to.

Tip RMTSHARE.EXE also supports the same switches as the NET SHARE command.

Related solution: Found on page:

Creating Shares with Permissions 176

Listing Processes
PULIST.EXE is a Windows 2000 resource kit utility that allows you to list running processes and their associated IDs on a remote
system. To display remote processes, start a command prompt and enter the following:

PULIST \\COMPUTER

Terminating Processes
The Windows 2000 resource kit provides a service called RKILLSRV.EXE that allows you to view and terminate processes on a
remote PC. Unfortunately, not all of us are lucky enough to have the time or authority to install any services we like. PSKILL.EXE
is a free utility from Sysinternals (http://www.sysinternals.com) that allows you to terminate a process or a remote station without
having to add any additional services or configuration. To terminate a process on a remote system, start a command prompt and
enter the following:
PSKILL \\computer -U username -P password process

Here, computer is the name of the remote system, username and password are the administrative credentials for the remote
system, and process is the name or process ID to terminate. Here is a quick example to terminate a user running Notepad:
PSKILL \\computer -U username -P password notepad

Listing Services
SCLIST.EXE is a Windows 2000 resource kit utility that allows you to list running services on a remote system. To display remote
services, start a command prompt and enter the following:
SCLIST \\computer parameters

Here, computer is the name of the remote system to display services. The available parameters for SCLIST are as follows:

/M-Displays all services

/R-Displays running services

/S-Displays stopped services

Alternatively, you can use the resource kit utility NETSVC to list services:
NETSVC /LIST

Managing Services
NETSVC is a Windows 2000 resource kit utility that allows you to manage services on remote systems. The basic syntax for
NETSVC is:

NETSVC parameter service \\computer

Here, parameter is the action to perform; service is the specific service to work with; and computer is the remote system to
manage. Here is a list of available NETSVC parameters:

/CONTINUE-Restarts a service

/LIST-Lists services, do not specify a service name

/PAUSE-Pauses a service

/QUERY-Displays the status of a service

/START-Starts a service

/STOP-Stops a service

Related solution: Found on page:

Managing Services from the Command Line 155

Connecting to a Remote System through "Remote Desktop"
Remote Desktop allows you to access and control a remote Windows 2000 Server/XP Professional/2003 system. To connect to a
remote system through remote desktop, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. For Windows 2000 only, download and install the latest version of Remote Desktop Connection Software from
http://www.microsoft.com.

2. Start a command prompt and enter the following:
%windir%\system32\mstsc.exe /F /V:computer

Here, the /F option specifies fullscreen mode and the /V option is used to connect to a remote system, computer.

Note You must enable remote control functionality on the remote system before connecting with remote desktop. See the
Microsoft Knowledge Base article Q306624 for Windows 2000/ 2003 server and Q315328 for Windows XP
Professional.

Connecting to a Remote System through VNC
VNC (Virtual Network Computing) is a free, remote control software, similar to pcAnywhere. To connect to a remote system
through VNC, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest version of VNC from http://www.realvnc.com, to the new directory.

3. Install and configure VNC on the local and remote system.

4. Start a command prompt and enter the following:
installdir\vncviewer.exe -FULLSCREEN computer

Here, installdir is the full path where VNC was installed on the local system. The FULLSCREEN option specifies fullscreen mode
and computer is the name of the remote system.

Remote Management through WMI

WMI provides a standard scriptable interface to your local and network resources. Using WMI, you can monitor and manipulate
many settings on any resource on your network.

Listing Shares
The Win32_Share class manages all shared resources on a system. These devices include directories, drives, printers,
removable media, or any other shareable resource. To list all shares on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"List Shares", "localhost")

Set Shares = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Share")
For each Share in Shares
 SList = SList & Share.Caption & " = " & Share.Path & VBlf
Next

WScript.Echo "Shares:" & VBlf & VBlf & SList

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Listing Shares 213

Creating a Share
The Create method for Win32_Share allows you to share a resource. To create a share using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the code shown on the next page.
On Error Resume Next
Computer = InputBox("Enter the computer name", "Create Share",
"localhost")

SName = InputBox("Enter the name of the share", "Share Name",
"Temp")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"Temp")

SPath = InputBox("Enter the path of the share", "Share Path",
"C:\Temp")

TypeMenu = "Choose a share type:" & VBlf & VBlf & _
 "0 - Disk Drive" & VBlf & _
 "1 - Print Queue" & VBlf & _
 "2 - Device" & VBlf & _
 "3 - IPC" & VBlf & _
 "2147483648 - Disk Drive Admin" & VBlf & _
 "2147483649 - Print Queue Admin" & VBlf & _
 "2147483650 - Device Admin" & VBlf & _
 "2147483651 - IPC Admin"
SType = InputBox(TypeMenu, "Share Type", 0)
SMax = InputBox("Enter the maximum number of users",
"Maximum Users", 10)

SDescribe = InputBox("Enter the description of the share",
"Share Description", "Temp Share")

SPass = InputBox("Enter the password to access the share",
"Share Password", "Temp Password")

Set Security = GetObject("winmgmts:{impersonationLevel=
impersonate,(Security)}!\\" & Computer & "\root\cimv2")

Set Share = Security.Get("Win32_Share")
Set Methods = Share.Methods_("Create").
InParameters.SpawnInstance_()
 Methods.Properties_.Item("Description") = SDescribe
 Methods.Properties_.Item("MaximumAllowed") = SMax
 Methods.Properties_.Item("Name") = SName
 Methods.Properties_.Item("Password") = SPass
 Methods.Properties_.Item("Path") = SPath
 Methods.Properties_.Item("Type") = SType
Set Complete = Share.ExecMethod_("Create", Methods)

Note The highlighted code above must be placed on one line. The (Security) statement is necessary because this script
modifies share access.

Related solution: Found on page:

Adding Shares 159

Deleting a Share
The Delete method for Win32_Share allows you to delete a share from a manageable system. To delete a share using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Delete Share", "localhost")

SName = InputBox("Enter the name of the share",
"Delete Share")

Set Shares = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Share where Name = ‘" & SName & "‘")

For each Share in Shares
 Share.Delete()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Removing Shares 159

Listing Processes
The Win32_Process class manages all running processes on a system. These processes include all running applications,
background tasks, and hidden system processes. To list all running processes using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"List Processes", "localhost")
Set Processes = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Process")

For each Process in Processes
 PList = PList & Process.Description & VBlf
Next

WScript.Echo "Processes:" & VBlf & VBlf & UCase(PList)

Note The highlighted code above must be placed on one line.

Creating a Process
The Create method for Win32_Process allows you to create a new process. The key benefit of this method is the ability to launch
an application, such as a virus scanner or an application update, on a remote system. To create a process using WMI, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Start Process", "localhost")

AName = InputBox("Enter the executable to run",
"Start Process", "explorer")

Set Process = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2:Win32_Process")

Process.Create AName,null,null,null

Note The highlighted code above must be placed on one line.

Terminating a Process
The Terminate method for Win32_Process allows you to end a process and all its threads. The key benefit of this method is the
ability to forcibly close a running application, such as an unauthorized port scanner or a corrupted program, on a remote system.
To terminate a process using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Terminate Process", "localhost")

PName = InputBox("Enter the name of the process",
"Terminate Process")

Set Processes = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Process where Name = '" & PName & "'")

For each Process in Processes
 Process.Terminate
Next

Note The highlighted code above must be placed on one line.

Changing Process Priority
The SetPriority method for Win32_Process allows you to change the execution priority of a running process. Table 8.1 lists the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SetPriority method for Win32_Process allows you to change the execution priority of a running process. Table 8.1 lists the
available priorities and their corresponding values.

Table 8.1: Process priority values.

Value Name

256 Realtime

128 High

32768 Above Normal

32 Normal

16384 Below Normal

64 Low/Idle

To change the priority of a process using WMI, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Process Priority", "localhost")

PName = InputBox("Enter the name of the process",
"Process Priority")

Set Processes = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Process where Name = '" & PName & "'")

For each Process in Processes
 Process.SetPriority(PriorityValue)
Next

Here, priorityvalue is the value from Table 8.1 to assign to the process Pname.

Note The highlighted code above must be placed on one line.

Listing Services
The Win32_Service class manages all services installed on a system. This class does not apply to Windows 9x, because
Windows 9x does not support services. To list all installed services using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"List Services", "localhost")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service")

For each Service in Services
 If Service.State = "Paused" Then
 PList = PList & Service.Description & VBlf
 End If
 If Service.State = "Running" Then
 RList = RList & Service.Description & VBlf
 End If
 If Service.State = "Stopped" Then
 SList = SList & Service.Description & VBlf
 End If
Next

WScript.Echo "Paused Services: " & VBlf & VBlf & PList
WScript.Echo "Running Services: " & VBlf & VBlf & RList
WScript.Echo "Stopped Services: " & VBlf & VBlf & SList

Note The highlighted code above must be placed on one line.

Starting Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The StartService method for Win32_Service allows you to start a stopped service. This method applies only to stopped services;
paused services have their own method for resumption. To start a stopped service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Start Service", "localhost")

SName = InputBox("Enter the name of the service",
"Start Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.StartService()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Starting a Service 156

Stopping Services
The StopService method for Win32_Service allows you to stop a service. Through this method, you can stop a running or
paused service. To stop a service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Computer = InputBox("Enter the computer name",
"Stop Service", "localhost")

SName = InputBox("Enter the name of the service",
"Stop Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.StopService()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Stopping a Service 156

Pausing Services
The PauseService method for Win32_Service allows you to pause a running service. This method will not place a stopped
service into paused mode. To pause a running service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Pause Service", "localhost")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"Pause Service", "localhost")

SName = InputBox("Enter the name of the service",
"Pause Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.PauseService()
Next

Note The highlighted code above must be placed on one line.

Resuming Services
The ResumeService method for Win32_Service allows you to resume a paused service. This method will not start a stopped
service. To create a process using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Resume Service", "localhost")

SName = InputBox("Enter the name of the service",
"Resume Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
Service.ResumeService()
Next

Note The highlighted code above must be placed on one line.

Deleting a Service
The Delete method for Win32_Services allows you to remove a service from your system. This method will happen immediately,
regardless of whether a service is running. To delete a service using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Delete Service", "localhost")

SName = InputBox("Enter the name of the service",
"Delete Service")

Set Services = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Service where Name = '" & SName & "'")

For each Service in Services
 Service.Delete()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Uninstalling a Service 155

Rebooting a System
The Win32_OperatingSystem class manages many aspects of the Windows operating system, from the serial number to the
service pack. The Reboot method for Win32_OperatingSystem allows you to shut down and restart a manageable system. To
reboot a system using WMI, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Reboot System", "localhost")

Set OS = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_ OperatingSystem where Primary=true")

For each System in OS
 System.Reboot()
Next

Here, Primary=True is a check to ensure that Windows is the primary operating system currently running.

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Shutting Down/Restarting the Computer 191

Shutting Down a System
The ShutDown method for Win32_OperatingSystem allows you to shut down a computer to the prompt "It is now safe to turn off
your computer." To shut down a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Reboot System", "localhost")

Set OS = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").ExecQuery
("select * from Win32_ OperatingSystem where Primary=true")
For each System in OS
 System.Shutdown()
Next

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Shutting Down/Restarting the Computer 161

Monitoring CPU Utilization
To monitor CPU utilization using the WMI ExecNotificationQuery method, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"CPU Monitor", "localhost")

CPULoad = InputBox("Enter the CPU overload threshold",
"CPU Threshold", "75")

Poll = InputBox("Enter the polling interval",
"Poll Interval", "5")
If Computer = "" Then Computer = "Localhost"
If CPULoad = "" Then CPULoad = 75
If Poll = "" Then Poll = 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If Poll = "" Then Poll = 5
Set ProLoad = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").
ExecNotificationQuery("SELECT * FROM __
InstanceModificationEvent WITHIN " & Poll & " WHERE
TargetInstance ISA 'Win32_Processor' and
TargetInstance .LoadPercentage > " & CPULoad)
If Err.Number <> 0 then
 WScript.Echo Err.Description, Err.Number, Err.Source
End If

Do
 SetILoad = ProLoad.nextevent
 If Err.Number <> 0 then
 WScript.Echo Err.Number, Err.Description, Err.Source
 Exit Do
 Else
 AMessage = ILoad.TargetInstance.DeviceID & _
 " is overloaded at " & _
 & ILoad.TargetInstance.LoadPercentage & "%!"
 Wscript.Echo "Event Alert: " & AMessage
 End If
Loop

Note The highlighted code above must be placed on one line.

Here, computer is the name of the system to monitor; CPULoad is the CPU utilization threshold to monitor for (1-100); and poll is
the amount of seconds to check for events.

Related solution: Found on page:

Scripting Microsoft Agent Using Windows Script Host 366

Assigning a Static IP Address
To assign a static IP address to a remote system's network cards using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer =
InputBox("Enter the computer name", "Assign Static", "localhost")
IPAddress=InputBox("Enter the IP Address","IP Address", "192.168.1.50")
SubnetMask=InputBox("Enter the Subnet Mask","Subnet Mask", "255.255.255.0")
Gateway=InputBox("Enter the Gateway","Gateway", "192.168.1.1")
DNS1=InputBox("Enter the Primary DNS Server","Primary DNS", "192.168.1.2")
DNS2=InputBox("Enter the Secondary DNS","Secondary DNS", "192.168.1.3")

Set Adapters=GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &__
 Computer & "\root\cimv2").ExecQuery("select * from
Win32_NetworkAdapterConfiguration where IPEnabled=true")

IPArray = Array(IPAddress)
MaskArray = Array(SubnetMask)
GatewayArray = Array(Gateway)
GatewayMetric = Array(1)
DNSArray = Array (DNS1,DNS2)

For each NIC in Adapters
 NIC.EnableStatic IPArray, MaskArray
 NIC.SetGateways GatewayArray, Gatewaymetric
 NIC.SetDNSServerSearchOrder DNSArray
Next

Note The highlighted code above must be placed on one line.

Switching to DHCP
To change a remote system's network cards from a Static IP to DHCP using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Computer = InputBox("Enter the computer name",
"Enable DHCP", "localhost")
Set Adapters = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_NetworkAdapterConfiguration where IPEnabled=true")

For each NIC in Adapters
 NIC.EnableDHCP()
Next

Note The highlighted code above must be placed on one line.

Renewing DHCP Leases
To renew the DHCP leases of a remote system's network cards using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Renew DHCP", "localhost")

Set Adapters = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_NetworkAdapterConfiguration where IPEnabled=true")

For each NIC in Adapters
 NIC.RenewDHCPLease()
Next

Note The highlighted code above must be placed on one line.

Installing Software
The Install method for Win32_Product allows you to install a Windows Installer package. To install a Windows Installer package
using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Install Software", "localhost")

InstallPath = InputBox("Enter the complete software path",
"Install Software", "")

Set Products = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2 ")

Set Software = Products.Get("Win32_Product")
Software.Install InstallPath, ,True

Note The highlighted code above must be placed on one line.

Uninstalling Software
To uninstall a Windows Installer package using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name",
"Uninstall Software", "localhost")

sName=InputBox ("Enter the name of the software", "uninstall
software", "")
Set Products = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" & Computer & "\root\cimv2").ExecQuery
("select * from Win32_Product where Name = '" & SName & "'")
For each Software in Products

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For each Software in Products
 Software.Uninstall()
Next

Note The highlighted code above must be placed on one line.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9: Enterprise Management

In Brief
Corporations spend millions of dollars a year on packaged applications and manpower to keep their computing environments
running like finely tuned engines. Although most third-party solutions provide the tools to assist in enterprise management, they
often come overloaded with fancy reporting features and are limited in actual functionality. And when you finally find a package
that is really helpful in your administrative tasks, you'd be lucky to get the budget approval passed in this lifetime.

In this chapter, you will learn about all the important aspects of managing an enterprise environment, and how to maintain it
without expensive third-party solutions. You will also learn how to accomplish most of your administrative tasks with simple scripts.

Understanding Windows 2000 Networks

The biggest advantage of a Windows 2000/2003 network as opposed to Windows NT is its restructuring and use of directory
services. Windows 2000/2003 gives you several new ways to organize and centrally manage your network.

Trees and Forests
Windows 2000/2003 allows you to organize your domains into hierarchical groups called trees. Trees share a common schema,
global catalog, replication information, and DNS namespace (for example, http://www.jesseweb.com). Once trees are established,
you can organize your trees into hierarchical groups called forests. Forests also share a common schema, global catalog, and
replication information, but do not share a common DNS namespace. This allows you to combine the resources of two completely
separate Internet domains (for example, http://www.mydomain.com and http://www.yourdomain.com). Through trees and forests,
Windows 2000 automatically establishes two-way trusts between all domains.

Objects
Windows 2000/2003 treats all resources as objects. These objects can consist of any of the various resources on a network, such
as users, computers, printers, and shares. Each object contains its own set of attributes, functions, and properties as set by the
schema. Whenever you access a resource, the schema sets which properties and features are presentable. For example, a user
account has a lockout property but a share does not, as instructed by the schema.

Organizational Units
Windows 2000/2003 allows you to organize network objects into logical containers called Organizational Units (OUs). OUs can
contain any network resource, such as accounts, groups, queues, shares, and even other OUs. Through OUs, you can delegate
administration and assign permissions to the OU or the individual objects within. The most common use of organizational units is
to organize company resources by department.

Global Catalog
Windows 2000/2003 stores information about the objects in a tree or forest in a common database, called a global catalog. Global
catalog servers reduce network searches and object query time by processing these requests directly. The first domain controller
within a forest stores the global catalog, and is called a global catalog server. You can assign additional global catalog servers to
help network queries.

Warning Global catalog servers synchronize their information through replication. A large quantity of catalog servers can
cripple a network with replication traffic.

ADSI
Active Directory Services Interfaces (ADSI), previously OLE Directory Services, is Microsoft's implementation of a directory service
that organizes an enterprise into a tree-like structure. A directory service provides a standard, consistent method to manage and
locate network resources. Directory services are actually databases that store information about all the resources on your network.
Whenever a request for a network resource is made, the directory service interprets and processes the request. ADSI comes
packaged with Windows 2000/ XP/2003 and is available as a free, separate download from Microsoft for Windows 9x/NT.

The ADSI Process

When a script or application issues a call to ADSI, the call is first sent to the ADSI client, as shown in Figure 9.1. The ADSI client
is included in all versions of Windows 2000/XP/2003 and is available as a download for Windows 9x/NT systems. Do not confuse
the ADSI client with the Active Directory Services Interface. The client is used to access a directory service, whereas the Active
Directory Services Interface is the directory service itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.1: The ADSI process.

Note Windows 2000/2003 Server contains both the Active Directory Services Interfaces and the ADSI client.

Once the client receives the call, it passes it to the object model, called a router. The router interprets the request and passes it to
the appropriate provider. The provider is then responsible to take the appropriate action based on the request.

Providers

ADSI provides a common interface to manage the network, regardless of directory service type. ADSI uses components called
providers to communicate with other directory services. These providers are stored in DLL files and are loaded when ADSI is
installed. The various providers included with ADSI are as follows:

IIS (Adsiis.dll)-Provider for Internet Information Server

LDAP (Adsldp.dll, Adsldpc.dll, and Adsmext.dll)-Provider for Windows 2000/2003 Server and other LDAP-compliant
applications

NWCompat (Adsnw.dll)-Provider to Netware Bindery servers

NDS (Adsnds.dll)-Provider for Novell NDS servers

WinNT (Adsnt.dll)-Provider for Windows NT domains and Windows 2000/2003 local resources

Note The provider names, specified in parentheses above, are case-sensitive.

The next section will give you a brief overview of the two main Windows providers: LDAP and WinNT.

The LDAP Provider

Lightweight Directory Access Protocol (LDAP) was developed in 1990 as a simple alternative to the complex X.500 directory
standard. The LDAP provider is used to manage Windows 2000/2003 Active Directory servers, Exchange 5.5 or higher servers,
Lotus Notes servers, Netscape directory servers, and other LDAP-compliant applications or servers. The basic syntax to bind to
the LDAP provider is:
Set variable = GetObject("LDAP:OU=orgunit, DC=Domain")

Here, variable is an arbitrary variable that you can use to access the LDAP provider; orgunit is the name of the organizational
unit; and domain is the name of the domain you want to connect to.

Windows 2000/2003 uses Internet domain names, such as marketing. jesseweb.com. Each of the domain levels must be
separated by commas and in descending hierarchy, as follows:
Set variable = GetObject("LDAP:OU=orgunit, DC=marketing,
DC=jesseweb, DC=com")

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With LDAP, you can avoid specifying domain names by binding to the directory tree directly:

Set variable = GetObject("LDAP://rootDSE")

The WinNT Provider

The WinNT provider is used to manage Windows NT domain resources and Windows 2000/2003 local resources. This provider is
provided for backward compatibility with Windows NT domains and cannot access Windows 2000/2003 Internet domain names.
The basic syntax to bind to the WinNT provider is:
Set variable = GetObject("WinNT://Domain/Computer/
Object,Class")

Note The highlighted code above must be placed on one line.

Here, variable is an arbitrary variable that you can use to access the WinNT provider; domain is the name of the domain you
want to connect to; computer is the name of the system to connect to; object is the object that you want to connect to; and class
is the class type you want to connect to (for example, user, group, computer). Any parameters specified after the provider name,
in this case WinNT:, are optional.

If you are working outside your domain or need to use a different account to access the domain, you must use the
OpenDSObject function:
Set NTObj = GetObject("WinNT:")
Set variable = NTObj.OpenDSObject("WinNT://Domain/Server/
Object, username, password, ADS_SECURE_CREDENTIALS")

Note The highlighted code above must be placed on one line.

Here, password is the password of the username to connect with.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Managing Computer Accounts from the Command Line

Computer accounts, like user accounts, allow the system to be part of the domain and access its resources. When a computer
joins a domain, a computer account is created establishing a one-way trust and allowing the computer to access the domain.
Although computer account management is usually done through the administrative tools of the operating system, computer
account management can be scripted from the command line.

Managing Computer Accounts with the NET Command
The built-in NET.EXE command allows you to manage computer accounts from the command line on any domain controller. The
basic syntax of the NET command to add computer accounts is:
NET COMPUTER \\compname/commands

Here, compname is the computer account to manage, and the available commands are:

/ADD-Adds a computer account to the domain

/DELETE-Removes a computer account from the domain

Tip You can use one of the remote management methods discussed in Chapter 8 to run this command on a remote domain
controller.

Managing Computer Accounts with the NETDOM Utility
NETDOM is a Windows 2000 Resource Kit Utility/Windows XP Support Tool used to manage computer accounts from the
command line. The basic syntax of NETDOM is:
NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /commands

Note The highlighted code on the previous page must be placed on one line.

Here, computer is the computer account to manage; password is the password of the domain\user account with privileges to
manage computer accounts on the specified domain; and the available commands are as follows:

/ADD-Adds a computer account to the domain

/DELETE-Removes a computer account from the domain

/JOINDOMAIN-Joins the computer to the domain

/QUERY-Retrieves information on an existing computer account

To connect to the domain and add a computer account, you would enter:
NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /JOINDOMAIN

NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /ADD

Note The highlighted code above must be placed on one line.

To connect to the domain and remove a computer account, you would enter:
NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /JOINDOMAIN

NETDOM MEMBER \\computer /D:domain /U:domain\user
/P:password /DELETE

Note The highlighted code above must be placed on one line.

Managing User Accounts from the Command Line

User accounts allow users to access domain and local system resources with a valid username and password. Although user
management is mostly done through the administrative tools of the operating system, scripting user account management from
the command line is significantly faster when dealing with remote systems and multiple modifications.

Managing Computer Accounts with the NET Command
One of the most unused command-line utilities to manage user accounts is the NET command. The basic syntax of the NET
command to manage user accounts is:
NET USER USERNAME PASSWORD /commands

Here, username is the user account to manage; password is either the password of the account or an asterisk (*) to be prompted
for a password; and the available commands are as follows:

/ACTIVE:X-Controls the activation of an account where X is YES or NO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/ADD-Adds a user account.

/DELETE-Removes a user account.

/DOMAIN-Creates the account in the currently active domain.

/COMMENT: "X" -Sets the account description where X is the comment.

/COUNTRYCODE:X-Sets the account's country code.

/USERCOMMENT: "X"-Sets the user comment where X is the comment.

/EXPIRES:X-Sets the expiration date of the account where X is either NEVER or a date in the format of MM/DD/YY.
This format may differ depending on your country code.

/FULLNAME: "X"-Sets the full account name where X is the name.

/HOMEDIR:X-Sets the home directory where X is the path.

/PASSWORDCHG:X-Controls the user's ability to change the password where X is YES or NO.

/PASSWORDREQ:X-Sets whether a password is required where X is YES or NO.

/PROFILEPATH:X-Sets the profile directory where X is the path.

/SCRIPTPATH:X-Sets the logon script directory where X is the path.

/TIMES:X-Sets the hours a user may log on where X is either ALL or days and times separated by commas.

Here is an example showing how to add an account using the NET command:
NET USER "Tyler" TEMPPASSWORD /ADD /COMMENT:"Project Account"
/ACTIVE:NO /EXPIRES:12/31/03 /FULLNAME:"Tyler Durden"
/HOMEDIR:C:\ /PASSWORDCHG:NO /PASSWORDREQ:YES
/PROFILEPATH:C:\PROFILES\TD /USERCOMMENT:"Corporate Sponsor"
/WORKSTATIONS:STATION1 /SCRIPTPATH:SOMEWHERE\OUTTHERE
/TIMES:MONDAY-THURSDAY,8AM-5PM

Note The highlighted code above must be placed on one line.

Managing Computer Accounts with the ADDUSERS Utility
ADDUSERS.EXE is a Windows 2000 resource kit utility to manage user accounts from the command line. This utility reads
command-delimited text files and can create or delete user accounts. The basic syntax of ADDUSERS to manage user accounts
is:
ADDUSERS \\computer commands file

Here, computer is the computer account to manage; file is the name of the comma-delimited text file to use; and the available
commands are as follows:

/C-Creates user accounts or groups specified in the file

/D-Dumps the user account or group information to the file

/E-Deletes user account specified in the file

/P:X-If combined with /C, specifies the creating parameters where X is:

C-User cannot change password

D-Account disabled

E-Password never expires

L-Do not change password at next logon

Tip To add a user account to the local computer, omit the computer name from the command line.

The basic syntax of the comma-delimited file is:
[User]
UserName,FullName,Password,Comment,Home,Profile,Script,

Here, Comment is the account description; Home is the path to the user home directory; Profile is the path to the user's profile;
Script is the name of the logon script to use; and UserNames are the user names (separated by commas) to add to the groups.

The following example adds a user called JFROST to the computer BOB:
ADDUSERS \\BOB/C file

Here, file is the full path and file name of a text file that contains the following:
[User]
JFROST,Jack E. Frost,Password,Project Manager,\\SERVER\HOME\
JFROST,\\SERVER\PROFILE\JFROST,LOGON.KIX,

Note The highlighted code above must be placed on one line.

Managing User Accounts with the CURSMGR Utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURSMGR.EXE is a Windows 2000 resource kit utility to modify current account or group properties. This utility supports many
switches, all of which are case-sensitive. The basic syntax of CURSMGR is:
CURSMGR -u username -m \\computer commands

Here, username is the user account to manage; computer is the computer name on which to perform management; and the
available commands are as follows:

-C-Sets user comment

-D-Deletes a user account

-F-Sets user full name

-h-Sets the path to the user's home directory

-H-Sets the drive letter to map the user's home directory

-n-Sets the path to the logon script's directory

-p-Sets a random password

-P-Sets the password to Password

+-S-Use the +S or -S to set or reset the following properties

AccountLockout-Locks/unlocks a user account

MustChangePassword-Sets/resets the User Must Change Password At Next Logon option

CanNotChangePassword-Sets/resets the User Cannot Change Password option

PasswordNeverExpires -Sets/resets the Password Never Expires option

AccountDisabled-Disables/enables an account

RASUser-Enables/disables remote access dial-in

-U-Sets the path to the user's profile directory

Here is an example of how to modify a user account:
CUSRMGR -u
name -m \\computer -h \\server\homeshare -f
"fullname" -c "description" -H Q

Note The highlighted code above must be placed on one line.

Here, name is the user name; computer is the system that holds the account; \\server\homeshare is where the user's home
directory resides; fullname is the user's fullname; and description is the account description.

Managing Groups from the Command Line

Groups allow administrators a method of organizing and assigning user account privileges. Groups are also helpful when
attempting to identify a collection of users with a common trait (for example, temporary employees). You can script group
management from the command line to automate your daily tasks.

Managing Groups with the NET Command
The built-in NET.EXE command allows you to manage local and global groups from the command line. The basic syntax of the
NET command to manage global groups is:
NET type name commands

Here, type is the keyword GROUP for global or LOCALGROUP for local group management; name is the group to manage, and
the available commands are as follows:

/ADD-Adds user accounts to the specified group where multiple user accounts are separated by spaces

/COMMENT: "X"-Sets the group comment

/DELETE-Deletes a group or removes the user account from the specified group

/DOMAIN-Performs the operation on the primary domain controller

username-Specifies a user account to add or remove from the group

Managing Groups with the ADDUSERS Utility
Earlier in this chapter, you learned how to use the resource kit utility ADDUSERS.EXE to manage user accounts from the
command line. This utility can also be used to add groups and group members from the command line. The basic syntax of
ADDUSERS to add groups is:
ADDUSERS \\computer /C file

Here, computer is the computer account to manage, and file is the name of the comma-delimited text file to use. The basic
syntax of the comma-delimited file is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Global]
Name,Comment,UserNames,
[Local]
Name,Comment,UserNames,

Here, the [GLOBAL] sections add global groups; name is the name of the group to add; comment is the group description; and
usernames are the users, separated by commas, to add to the group.

Managing Groups with the USRTOGRP Utility
USRTOGRP.EXE is an NT resource kit utility to add user accounts to groups from the command line. The basic syntax of the
USRTOGRP utility is:
USRTOGRP file

Here, file is a text file with the following format:
DOMAIN: computer grouptype: group users

Here, computer is the name of the system or domain that contains the specified group; grouptype specifies the group type as
either LOCALGROUP or GLOBALGROUP; group is the name of the group; and users are the usernames, separated by spaces,
to add to the group.

Here is a quick example to add two users to the Domain Admins group in the PROJECT domain:
USRTOGRP file

Here, file is the full path and file name of a text file that contains the following:
DOMAIN: PROJECT GLOBALGROUP: Domain Admins JACK TYLER

Managing the Enterprise with ADSI

Prior to ADSI, your only alternatives to manage network resources were command-line utilities and administrative tools. Through
ADSI, you can create simple scripts to control all the resources of your network.

Listing Shares
To list shares using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/lanmanserver,
FileService")

For each Share in DomObj
 List = List & Share.Name & VBlF
Next
Wscript.echo List

Note The highlighted code above must be placed on one line.

Here, domain is the name of the domain, and computer is the computer name containing the shares to list.

Related solution: Found on page:

Listing Shares 179

Creating a Share
To create a share using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/
lanmanserver")
Set Share = DomObj.Create("fileshare", "ShareName")
Share.Path = "SharePath"
Share.Description = "ShareDescribe"
Share.MaxUserCount = maxnum
Share.SetInfo

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, domain is the name of the domain; computer is the computer name on which you want to create shares; sharename is the
name of the share to create; sharepath is the path to the new share; sharedescribe is the share comment; and maxnum is the
maximum number of simultaneous connections to the share.

Related solution: Found on page:

Listing Shares 179

Deleting a Share
To delete a share using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/lanmanserver")
DomObj.Delete "fileshare", "ShareName"

Here, domain is the name of the domain; computer is the computer name on which you want to create shares; and sharename
is the name of the share to delete.

Related solution: Found on page:

Removing Shares 159

Listing Computer Accounts
To list computer accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain)
DomObj.Filter = Array("computer")

For Each Computer In DomObj
 wscript.echo Computer.name
Next

Here, domain is the name of the domain to query.

Creating a Computer Account
To create a computer account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
Set Computer = DomObj.Create("Computer", "name")
Computer.SetInfo

Here, domain is the name of the domain, and name is the computer name to assign to the computer account.

Deleting a Computer Account
To delete a computer account, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
DomObj.Delete "Computer", "name"

Here, domain is the name of the domain, and name is the name of the computer account to delete.

Setting a User's Domain Password
To set a user's domain password using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Name,user")
DomObj.SetPassword "pswd"

Here, domain is the name of the domain; name is the user account to modify; and pswd is the new password to assign.

Changing the Local Administrator Password
A common administrative task is to change the local administrator password on a system. To change the local administrator
password using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain/Computer/
Administrator,user")
DomObj.SetPassword "pswd"

Note The highlighted code above must be placed on one line.

Here, domain is the name of the domain; computer is the computer containing the local administrator account; Administrator is
the name of the local administrator account; and pswd is the new password to assign.

Listing User Accounts
To list user accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain)
DomObj.Filter = Array("user")

For Each User In DomObj
 wscript.echo User.name
Next

Here, domain is the name of the domain to query.

Creating a User Account
To create a user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
Set User = DomObj.Create("User", "Name")
User.SetPassword("pswd")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User.SetPassword("pswd")
User.FullName = "fullname"
User.HomeDirectory = "homedir"
User.Profile = "profiledir"
User.LoginScript = "script"
User.Description = "describe"
User.SetInfo

Here, domain is the name of the domain; name is the name of the user account to create; pswd is the password to assign to the
new account; fullname is the user's full name; homedir is the path of the user's home directory; profiledir is the path of the
user's profile; script is the name of the logon script; and describe is the user description.

Tip You can create new users with initial blank passwords by omitting the highlighted line in the script above.

Deleting a User Account
To delete a user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
DomObj.Delete "User", "name"

Here, domain is the name of the domain, and name is the name of the user account to delete.

Unlocking a User Account
To unlock a user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set User = GetObject("WinNT://Domain/Name,User")
User.Put "UserFlags", User.Get("UserFlags") - 16
User.SetInfo

Here, domain is the name of the domain, and name is the name of the user account to unlock.

Note Although ADSI can unlock a user account, it cannot lock an account.

Disabling a User Account
To disable an active user account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set User = GetObject("WinNT://Domain/Name,User")
If User.AccountDisabled = "False" Then
 User.Put "UserFlags", User.Get("UserFlags") + 2
 User.SetInfo
End If

Here, domain is the name of the domain, and name is the name of the user account to unlock.

Tip To enable a disabled account, change the False to True and the + 2 to -2 in the above script.

Listing a User's Groups
To list the groups a user belongs to using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next
Set User = GetObject("WinNT://" & Domain & "/" & Name & ",user")
For Each Group in User.Groups
 wscript.echo Group.Name
Next

Here, domain is the name of the domain, and name is the name of the user account.

Listing Groups
To list user accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain)
DomObj.Filter = Array("group")

For Each User In DomObj
 wscript.echo User.name
Next

Here, domain is the name of the domain to query.

Creating Groups
To create a global group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
Set Group = DomObj.Create("group", "name")
Group.GroupType = 4
Group.Description = "describe"
Group.SetInfo

Here, domain is the name of the domain; name is the name of the group to create; and describe is the group description.

Tip To create a local group, omit the highlighted line in the script above.

Deleting Groups
To delete a group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://Domain")
DomObj.Delete "group", "name"

Here, domain is the name of the domain, and name is the name of the group to delete.

Adding a User Account to a Group
To add a user account to a group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Group = GetObject("WinNT://Gdomain/groupname,group")
Group.Add "WinNT://UDomain/useraccount,User"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Group.Add "WinNT://UDomain/useraccount,User"

Here, gdomain is the name of the domain containing the specified groupname, and udomain is the domain containing the
useraccount to add to the specified group.

Removing a User Account from a Group
To remove a user account from a group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Group = GetObject("WinNT://gdomain/groupname,group")
Group.Remove "WinNT://udomain/useraccount,User"

Here, gdomain is the name of the domain containing the specified groupname, and udomain is the domain containing the
useraccount to remove from the specified group.

Listing Groups Members
To list the user accounts that belong to a particular group using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set DomObj = GetObject("WinNT://" & Domain & "/" & Group)
For Each User In DomObj.Members
 wscript.echo User.name
Next

Here, domain is the name of the domain and group is the name of the group.

Managing Windows 2000/2003 through LDAP
Most of the previous ADSI examples merely need the binding statement changed in order to convert a WinNT provider script to an
LDAP provider script. This section will illustrate a few of the changes you need to make to use these scripts in a Windows
2000/2003 domain.

Note Remember, you can still use the WinNT provider to manage a Windows 2000/2003 domain.

Creating OUs under Windows 2000/2003

To create an organizational unit under Windows 2000/2003, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get ("defaultNamingContext"))
Set OU = DomObj.Create("organizationalUnit", "OU=name")
OU.Description = "describe"
OU.SetInfo

Note The highlighted code above must be placed on one line.

Here, name is the name of the organizational unit to create, and describe is the OU description.

Deleting OUs under Windows 2000/2003

To delete an organizational unit under Windows 2000/2003, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" &
Root.Get("defaultNamingContext"))
DomObj.Delete "organizationalUnit", "OU=name"

Note The highlighted code above must be placed on one line.

Here, name is the name of the organizational unit to delete.

Listing Computer Accounts under Windows 2000/2003

To list computer accounts using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

Set objCMD = CreateObject("ADODB.Command")
objCMD.ActiveConnection = objConn
objCMD.CommandText = "<LDAP://" &
DomObj & ">;(objectCategory=computer);name;subtree"
objCMD.Properties("Page Size") = 1000
objCMD.Properties("Timeout") = 30
objCMD.Properties("Cache Results") = False

Set objRS = objCMD.Execute
objRS.MoveFirst
While Not objRS.EOF
 wscript.echo objRS.Fields("name")
 objRS.MoveNext
Wend

Creating Computer Accounts under Windows 2000/2003

To create a computer account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get
("defaultNamingContext"))
Set Computer = DomObj.Create("computer", "CN=name")
Computer.samAccountName = "name"
Computer.SetInfo

Here, name is the name of the computer account to create.

Note The highlighted code above must be placed on one line.

Deleting Computer Accounts under Windows 2000/2003

To delete a computer account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from"http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get
("defaultNamingContext"))
Set Computer = DomObj.Create("computer", "CN=name")
Computer.samAccountName = "name"
Computer.SetInfo

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, name is the name of the computer account to delete.

Listing User Accounts under Windows 2000/2003

To list computer accounts using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

Set objCMD = CreateObject("ADODB.Command")
objCMD.ActiveConnection = objConn
objCMD.CommandText = "<LDAP://" &
DomObj & ">;
(&(objectClass=user)(objectCategory=person));name;subtree"
objCMD.Properties("Page Size") = 1000
objCMD.Properties("Timeout") = 30
objCMD.Properties("Cache Results") = False

Set objRS = objCMD.Execute
objRS.MoveFirst
While Not objRS.EOF
 wscript.echo objRS.Fields("name")
 objRS.MoveNext
Wend

Note The highlighted code above must be placed on one line.

Note The LDAP ObjectClass contains both user and computer accounts. To query for only user accounts, we must use "(&
(objectClass=user)(objectCategory=person))" as in the example above.

Creating User Accounts under Windows 2000/2003

To create a user account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get ("defaultNamingContext"))
Set User = DomObj.Create("user", "CN=fullname")
User.samAccountName = "name"
User.SetInfo

Here, name is the name of the user account to create, and fullname is the user's full name.

Deleting User Accounts under Windows 2000/2003

To delete a user account using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
Set DomObj = GetObject("LDAP://" & Root.Get ("defaultNamingContext"))
DomObj.Delete "user", "CN=name"

Note The highlighted code above must be placed on one line.

Here, name is the name of the user account to delete.

Listing Groups under Windows 2000/2003

To list computer accounts using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objConn = CreateObject("ADODB.Connection")
objConn.Provider = "ADsDSOObject"
objConn.Open "Active Directory Provider"

Set objCMD = CreateObject("ADODB.Command")
objCMD.ActiveConnection = objConn
objCMD.CommandText = "<LDAP://" &
DomObj & ">;(objectCategory=group);name;subtree"
objCMD.Properties("Page Size") = 1000
objCMD.Properties("Timeout") = 30
objCMD.Properties("Cache Results") = False

Set objRS = objCMD.Execute
objRS.MoveFirst
While Not objRS.EOF
 wscript.echo objRS.Fields("name")
 objRS.MoveNext
Wend

Note The highlighted code above must be placed on one line.

Listing Group Members under Windows 2000/2003

To list the user accounts that belong to a particular group using LDAP, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Root = GetObject("LDAP://RootDSE")
DomObj = Root.Get("DefaultNamingContext")

Set objGroup = GetObject("LDAP://CN=Domain Admins,CN=Users," & _
DomObj)
For each objMember in objGroup.Members
 Wscript.Echo Replace(objMember.Name,"CN=","")
Next

The example above lists the members of the Domain Admins group.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10: Managing Inventory

In Brief
Managing inventory in an enterprise is an extremely involved task. Although several expensive inventory management packages
are available, many companies cannot afford to purchase these systems and train employees to implement them. In this chapter,
you will learn how to inventory your enterprise with simple, customizable scripts. In the previous chapters, you learned how to
collect information about various items such as files, folders, shares, and services. In this chapter, you will learn how to collect
information from various system and device components, such as a battery, mouse, monitor, sound card, printer, and more.

Windows System Tools

Microsoft Windows contains many tools you can use to view and modify system resource information. Each tool provides a central
location to easily identify resources and conflicts, and modify device settings and drivers.

Microsoft System Information
Windows 98 included a utility called Microsoft System Information (MSI). MSI was first introduced with Microsoft Office 97 and can
be started by clicking Start|Run and entering MSINFO32. This utility included quick links to other diagnostic tools (Dr. Watson and
ScanDisk) under the Tools menu. One of the most valuable features of this tool was the History page. Under this page you would
find a history of system changes that you could use to diagnose system malfunctions.

Windows 2000/XP/2003 follows Windows 98 and uses an updated version of Microsoft System Information. MSI is an invaluable
system tool that uses WMI to provide an easy method to locate drivers, resources, components, and sources of system errors, to
print reports, and more. Some advanced features include remote system connectivity and report generation. You can start this
utility by clicking Start|Run and entering MSINFO32 or by entering WINMSD. MSI is actually a Microsoft Management Console
(MMC) snap-in, stored as C:\Program Files\Common Files\Microsoft Shared\MSInfo\MSInfo32.msc.

Within the same directory is a file called MSINFO32.EXE, used to run MSI from the command line. You can use MSINFO32 to
connect to a remote computer or store system information to an NFO (Information) file. The basic syntax of the MSINFO32
command is:
MSINFO32 /commands

Here, the available commands are:

/CATEGORIES +/- name-Displays (+) or does not display (-) the category name specified. Supplying the name ALL
will display all categories.

/CATEGORY name-Specifies the category to open at launch.

/COMPUTER name-Connects to the specified computer name.

/MSINFO_FILE=file-Opens an NFO or CAB file.

/NFO file-Sends output to an NFO file.

/REPORT file-Generates a report to the specified file.

Warning MSInfo32 is a memory-intensive application and might use up valuable system resources.

Device Manager
Windows 2000/XP/2003 include a graphical utility called Device Manager (see Figure 10.1) to manipulate the various devices on
your system. From within this utility, you can view or modify system settings, device properties, device drivers, and more. Device
Manager displays its items in a tree-like structure, allowing you to easily view dependencies. This utility is most commonly used
among administrators to determine resource conflicts (noted by yellow exclamation points) and update device drivers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.1: The Windows 2000 Device Manager.

Microsoft Systems Management Server

Microsoft Systems Management Server (SMS) is a complete enterprise inventory and management package. Some of the
advanced features include remote control, software licensing, and electronic software distribution (ESD). Although this product is
extremely helpful, many companies cannot afford to pay for the training or licensing of SMS (about $1800 for 25 users). As related
to this chapter, SMS performs system inventory using Windows Management Instrumentation. In this chapter, you will learn how
to perform similar WMI queries to gather the system information you need-for free.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Gathering Information with Shell Scripting

Shell scripting is very limited when it comes to gathering system resource information. Most new devices are designed specifically
to work with Windows, not DOS, and most resource configuration tools are GUI-controlled and not command-line controllable.
However, there are still several tools and methods you can utilize to collect and report resource information through shell scripting.

Collecting Information Using SRVINFO
SRVINFO is a resource kit utility to display various system information from the command line. The basic syntax of the SRVINFO
command is:
SRVINFO /commands \\computer

Here, computer is the name of the computer to collect information from, and the available commands are:

-D-Displays service drivers

-NS-Does not display service information

-S-Displays shares

-V-Displays Exchange and SQL version information

Here is an example to display all the information SRVINFO can report:
SRVINFO -S -V -D

Collecting BIOS Information
To collect BIOS (Basic Input/Output System) information from the command line, you can use REG.EXE to extract the appropriate
information. To display processor information using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain REG.EXE from the Windows 2000 Resource Kit and copy it to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
Reg Query HKLM\HARDWARE\DESCRIPTION\System\
SystemBiosVersion > BIOS.TXT
Set Count=3
:Count
For /f "tokens=%Count%" %%I in ('TYPE BIOS.TXT'
) Do Set Version=%Version% %%I
Set /A Count+=1
If %Count% LSS 10 Goto Count
Echo BIOS Version: %Version%

Reg Query HKLM\HARDWARE\DESCRIPTION\System\
SystemBiosDate > BIOS.TXT

For /f "tokens=3" %%I in ('TYPE BIOS.TXT'
) Do Echo BIOS Date: %%I
Del BIOS.txt > Nul
Set Count=
Set Version=

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Modifying the Registry with Shell Scripting 124

Collecting Memory Information
PSTAT is a Windows 2000 resource kit utility used to display running threads from the command line. You can use this tool to
display memory information. To display memory information using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Obtain PSTAT.EXE from the Resource Kit and copy it to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
PSTAT | Find " Memory: " > MEM.TXT
For /F "tokens=2" %%M In ('Type MEM.txt') Do Echo Memory: %%M

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For /F "tokens=2" %%M In ('Type MEM.txt') Do Echo Memory: %%M
Del MEM.txt > Nul

Collecting Processor Information
To collect processor information from the command line, you can use REG.EXE to extract the appropriate information. To display
processor information using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. For Windows 2000 only, obtain REG.EXE from the Windows 2000 Resource Kit and copy it to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
for /f "Tokens=4,5" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v Identifier') do set_
family=%%j

for /f "Tokens=6,7" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v Identifier') do set_
model=%%j

for /f "Tokens=8,9" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v Identifier') do set_
step=%%j

for /f "Tokens=2*" %%i in ('reg QUERY "HKLM\HARDWARE_
DESCRIPTION\System\CentralProcessor\0" /v ~MHZ') do set _
speed=%%j
SET /a speed=%speed%

SET PType=Unknown

IF %family% EQU 5 (
 IF %model% LSS 4 SET PType=Pentium
 IF %model% GEQ 4 SET PType=Pentium MMX
)
IF %family% EQU 6 (
 IF %model% LSS 3 SET PType=Pentium Pro
 IF %model% GEQ 3 (
 IF %model% LSS 5 (
 SET PType=Pentium II
)
 IF %model% EQU 5 (
 If %Step% EQU 0 Set PTYPE=Pentium II or Celeron
 If %Step% EQU 1 Set PTYPE=Pentium II or Celeron
 If %Step% EQU 2 Set PTYPE=Pentium II or Pentium II Xeon
 If %Step% EQU 3 Set PTYPE=Pentium II or Pentium II Xeon
)
 IF %model% EQU 6 SET PType=Celeron
 IF %model% GTR 6 SET PType=Pentium III or Pentium III Xeon
 IF %model% EQU A SET PType=Pentium III Xeon
)
)
IF %family% EQU 15 (
 IF %model% GEQ 0 SET PType=Pentium 4
)

ECHO Processor Type: %PType%
ECHO Processor Speed: %SPEED% MHZ

Note The highlighted code on the previous page must be placed on one line. The routine to determine the processor type
was derived from various Intel processor spec sheets.

Gathering Information with KiXtart

KiXtart provides many macros to retrieve user information, but only a few of these macros can be used to retrieve resource
information. By combining KiXtart macros and registry commands, you can collect and report various resource information through
simple scripts.

Collecting BIOS Information
KiXtart does not provide any direct method to collect BIOS information. Alternatively, you can query the registry and extract the
BIOS information you want using KiXtart. To collect printer information using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
; Get the system BIOS type
$SBiosType = READVALUE("HKEY_LOCAL_MACHINE\HARDWARE\
DESCRIPTION\System","SystemBiosVersion")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESCRIPTION\System","SystemBiosVersion")

; Get the system BIOS date
$SBiosDate = READVALUE("HKEY_LOCAL_MACHINE\HARDWARE\
DESCRIPTION\System","SystemBiosDate")

? "BIOS Type: $SBiosType"
? "BIOS Date: $SBiosDate"
SLEEP 10

Note The highlighted code above must be placed on one line.

Related solution: Found on page:

Modifying the Registry with KiXtart 129

Collecting Drive Information
Although KiXtart provides no built-in method to determine all system drives and their total size, you can perform checks for
available drives and free disk space. An available drive is considered to be any drive with media present. For example, a drive
without a floppy or CD-ROM is an unavailable drive. To collect information on available drives using KiXtart, proceed as follows.

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$DLetter = 67
While $DLetter < 91
 $Drive = CHR($DLetter) + ":"
If Exist ($Drive)
 $DiskSpace = GETDISKSPACE($Drive)
 SELECT
 CASE $DiskSpace = 0
 $DiskSpace = "0 Bytes"
 CASE $DiskSpace < 1024
 $DiskSpace = $DiskSpace * 100
 $DiskSpace = "$DiskSpace KB"
 CASE $DiskSpace => 1024 and $DiskSpace < 1048576
 $DiskSpace = ($DiskSpace * 100) / 1024
 $DiskSpace = "$DiskSpace MB"
 CASE $DiskSpace => 1048576
 $DiskSpace = $DiskSpace / 10486
 $DiskSpace = "$DiskSpace GB"
 ENDSELECT
 $DiskSpace = SUBSTR($DiskSpace, 1, LEN($DiskSpace) - 5)
 + "." + SUBSTR($DiskSpace,LEN($DiskSpace)-4, 5)
 ?"Drive $Drive Free Space: $DiskSpace"
 EndIf
 $DLetter = $DLetter + 1
Loop
Sleep 5

Note The highlighted code above must be placed on one line.

Notice that the drive letter count ($Dletter) starts at 67 and runs until 91. These numbers represent ASCII characters C to Z. If you
start $Dletter with 65 (A), your script might pause and you might be prompted for a floppy disk if none is present.

Collecting Operating System Information
To collect OS information using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
; Initialize variables
$SUITE = ""
SELECT ; Product Suite?
 CASE @PRODUCTSUITE = 1
 $SUITE = "Small Business"
 CASE @PRODUCTSUITE = 2
 $SUITE = "Enterprise"
 CASE @PRODUCTSUITE = 4
 $SUITE = "BackOffice"
 CASE @PRODUCTSUITE = 8
 $SUITE = "CommunicationServer"
 CASE @PRODUCTSUITE = 16
 $SUITE = "Terminal Server"
 CASE @PRODUCTSUITE = 32
 $SUITE = "Small Business (Restricted)"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $SUITE = "Small Business (Restricted)"
 CASE @PRODUCTSUITE = 64
 $SUITE = "EmbeddedNT"
 CASE @PRODUCTSUITE = 128
 $SUITE = "DataCenter"
 CASE @PRODUCTSUITE = "256"
 $SUITE = "Single user Terminal Server"
 CASE @PRODUCTSUITE = 512
 $SUITE = "Home Edition"
 CASE @PRODUCTSUITE = 1024
 $SUITE = "Blade Server"
 CASE 1
 $SUITE = "UNDETERMINED"
ENDSELECT

? "Operating System: @PRODUCTTYPE" ; Display OS type
? "Build: @BUILD" ; Display the build number
? "Suite: " + $SUITE ; Display the product suite
? "Service Pack: @CSD" ; Display the service pack
SLEEP 10

Collecting Printer Information
KiXtart does not provide any direct method to collect information about all the printers installed on a system. Alternatively, you can
query the registry and extract the printer information you want using KiXtart. To collect printer information using KiXtart, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Printers="HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Print\Printers\"
$Index=0

:GatherInfo
$Printer=enumkey("$Printers",$Index)
If @Error=0
 $Desc = Readvalue("$Printers\$Printer","Description")
 $Loc = Readvalue("$Printers\$Printer","Location")
 $Port = Readvalue("$Printers\$Printer","Port")
 $Share = Readvalue("$Printers\$Printer","Share Name")
 ? "Printer: $Printer"
 ? "Description: $Desc"
 ? "Location: $Loc"
 ? "Port: $Port"
 ? "Share: $Share"
 ?
 ?$Index = $Index + 1
 Goto GatherInfo
EndIf
Sleep 10

Note The highlighted code above must be placed on one line.

Collecting Processor Information
KiXtart includes the @CPU and @MHZ macros to provide the name and speed of the primary processor installed on a system.
Additionally, you can query the registry and extract the processor count using KiXtart. To collect processor information using
KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
; Get the number of processors
$ProCount = 0
$Count = 0
WHILE $Count < 65
 $ProTemp = EXISTKEY("HKEY_LOCAL_MACHINE\HARDWARE\
 DESCRIPTION\System\CentralProcessor\$ProCount")
 IF $ProTemp = 0
 $ProCount = $ProCount + 1
 ENDIF
 $Count = $Count + 1
LOOP

; The code below is to simply display the final results
? "Processor Count: $ProCount"
? "Processor Name: " + TRIM(@CPU)
? "Processor Speed: @MHZ MHZ"
SLEEP 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SLEEP 10

Note The highlighted code above must be placed on one line.

Gathering Information with WMI

Windows Management Instrumentation provides centralized management system for almost all the resources on your system.
Through various WMI classes and Windows Script Host, you can collect and report various resource information through simple
scripts.

Tip The examples in the following sections illustrate only a few of the classes and class properties that WMI has to offer.
Consult the WMI SDK documentation for a complete list of classes and their properties.

Collecting Battery Information
The Win32_Battery class allows you to query laptop battery and Uninterruptible Power Supply (UPS) information through WMI.
To collect battery information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set BatterySet = GetObject("winmgmts:").InstancesOf
("Win32_Battery")
For each Battery in BatterySet
 Select Case Battery.Chemistry
 Case 1
 BType = "Other"
 Case 2
 BType = "Unknown"
 Case 3
 BType = "Lead Acid"
 Case 4
 BType = "Nickel Cadmium"
 Case 5
 BType = "Nickel Metal Hydride"
 Case 6
 BType = "Lithium-ion"
 Case 7
 BType = "Zinc air"
 Case 8
 BType = "Lithium Polymer"
 End Select
 Select Case Battery.BatteryStatus
 Case 1
 BStatus = "Other"
 Case 2
 BStatus = "Unknown"
 Case 3
 BStatus = "Fully Charged"
 Case 4
 BStatus = "Low"
 Case 5
 BStatus = "Critical"
 Case 6
 BStatus = "Charging"
 Case 7
 BStatus = "Charging and High"
 Case 8
 BStatus = "Charging and Low"
 Case 9
 BStatus = "Charging and Critical"
 Case 10
 BStatus = "Undefined"
 Case 11
 BStatus = "Partially Charged"
 End Select
WScript.Echo "Name: " & Battery.Description & VBlf & _
 "Type: " & BType & VBlf & _
 "% Left: " & Battery.EstimatedChargeRemaining & VBlf & _
 "Minutes Left: " & Battery.ExpectedLife & VBlf & _
 "Status: " & BStatus
Next

Note The highlighted code above must be placed on one line.

Collecting BIOS Information
The Win32_BIOS class allows you to query BIOS information through WMI. To collect BIOS information on a system using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set BIOSSet = GetObject("winmgmts:").InstancesOf
("Win32_BIOS")
For each BIOS in BIOSSet
 BDate = Left(BIOS.ReleaseDate,8)
 BDate = Mid(BDate,5,2) & "/" & Mid(BDate,7,2) & "/" & _
 Mid(BDate,1,4)
 WScript.Echo "Name: " & BIOS.Name & VBlf & _
 "Manufacturer: " & BIOS.Manufacturer & VBlf & _
 "Date: " & BDate & VBlf & _
 "Version: " & BIOS.Version & VBlf & _
 "Status: " & BIOS.Status
Next

Note The highlighted code above must be placed on one line.

Collecting CD-ROM Information
The Win32_CDROMDrive class allows you to query CD-ROM information through WMI. To collect CD-ROM information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set CDSet = GetObject("winmgmts:").InstancesOf
("Win32_CDROMDrive")

For each CD in CDSet
 WScript.Echo "Name: " & CD.Name & VBlf & _
 "Drive: " & CD.Drive & VBlf & _
 "Status: " & CD.Status
Next

Note The highlighted code above must be placed on one line.

Collecting Chassis Information
The Win32_SystemEnclosure class allows you to query system enclosure information through WMI. To collect system enclosure
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set SystemSet = GetObject("winmgmts:").InstancesOf
("Win32_SystemEnclosure")
For each
Chassis in SystemSet
 For Each ChassisType in Chassis.ChassisTypes
 Select Case ChassisType
 Case 1
 Wscript.Echo "Other"
 Case 2
 Wscript.Echo "Unknown"
 Case 3
 Wscript.Echo "Desktop"
 Case 4
 Wscript.Echo "Low Profile Desktop"
 Case 5
 Wscript.Echo "Pizza Box"
 Case 6
 Wscript.Echo "Mini Tower"
 Case 7
 Wscript.Echo "Tower"
 Case 8
 Wscript.Echo "Portable"
 Case 9
 Wscript.Echo "Laptop"
 Case 10
 Wscript.Echo "Notebook"
 Case 11
 Wscript.Echo "Hand Held"
 Case 12

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 12
 Wscript.Echo "Docking Station"
 Case 13
 Wscript.Echo "All in One"
 Case 14
 Wscript.Echo "Sub Notebook"
 Case 15
 Wscript.Echo "Space-Saving"
 Case 16
 Wscript.Echo "Lunch Box"
 Case 17
 Wscript.Echo "Main System Chassis"
 Case 18
 Wscript.Echo "Expansion Chassis"
 Case 19
 Wscript.Echo "SubChassis"
 Case 20
 Wscript.Echo "Bus Expansion Chassis"
 Case 21
 Wscript.Echo "Peripheral Chassis"
 Case 22
 Wscript.Echo "Storage Chassis"
 Case 23
 Wscript.Echo "Rack Mount Chassis"
 Case 24
 Wscript.Echo "Sealed-Case PC"
 End Select
 Next
Next

Note The highlighted code above must be placed on one line.

Collecting Drive Information
The Win32_LogicalDisk class allows you to query disk information through WMI. To inventory disks on a system using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set DiskSet = GetObject("winmgmts:").InstancesOf
("Win32_LogicalDisk")
For each Disk in DiskSet
 Select Case Disk.DriveType
 Case 0
 DType = "Unknown"
 Case 1
 DType = "No Root Directory"
 Case 2
 DType = "Removable Disk"
 Case 3
 DType = "Local Disk"
 Case 4
 DType = "Network Drive"
 Case 5
 DType = "Compact Disc"
 Case 6
 DType = "RAM Disk"
 End Select
 WScript.Echo "Drive: " & Disk.DeviceID & VBlf & _
 "Name: " & Disk.Description & VBlf & _
 "Type: " & DType & VBlf & _
 "File System: " & Disk.FileSystem & VBlf & _
 "Size: " & Disk.Size & VBlf & _
 "Free Space: " & Disk.FreeSpace & VBlf & _
 "Compressed: " & Disk.Compressed
Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Memory Information
The Win32_LogicalMemoryConfiguration class allows you to query memory information through WMI. To collect memory
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set MemorySet = GetObject("winmgmts:").InstancesOf.
("Win32_LogicalMemoryConfiguration")

For each Memory in MemorySet
 WScript.Echo "Total: " & _
 Memory.TotalPhysicalMemory/1024 & VBlf & _
 "Virtual: " & Memory.TotalVirtualMemory/1024 & VBlf & _
 "Page: " & Memory.TotalPageFileSpace/1024
Next

Note The highlighted code above must be placed on one line.

Collecting Modem Information
The Win32_POTSModem class allows you to query modem information through WMI. To collect modem information on a system
using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set ModemSet = GetObject("winmgmts:").InstancesOf
("Win32_POTSModem")

For each Modem in ModemSet
 WScript.Echo "Name: " & Modem.Name & VBlf & _
 "Port: " & Modem.AttachedTo & VBlf & _
 "Type: " & Modem.DeviceType & VBlf & _
 "Status: " & Modem.Status
Next

Note The highlighted code above must be placed on one line.

Collecting Monitor Information
The Win32_DesktopMonitor class allows you to query information on computer monitors through WMI. To collect monitor
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set MonitorSet = GetObject("winmgmts:").InstancesOf
("Win32_DesktopMonitor")

For each Monitor in MonitorSet
 WScript.Echo "Name: " & Monitor.Name & VBlf & _
 "Height: " & Monitor.ScreenHeight & VBlf & _
 "Width: " & Monitor.ScreenWidth & VBlf & _
 "Status: " & Monitor.Status
Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Mouse Information
The Win32_PointingDevice class allows you to query mouse, trackball, touch screen, touch pad, and other pointing device
information through WMI. To collect pointing device information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set MouseSet = GetObject("winmgmts:").InstancesOf
("Win32_PointingDevice")

For each Mouse in MouseSet
 WScript.Echo "Name: " & Mouse.Name & VBlf & _
 "Manufacturer: " & Mouse.Manufacturer & VBlf & _
 "Type: " & Mouse.HardwareType & VBlf & _
 "Buttons: " & Mouse.NumberofButtons & VBlf & _
 "Status: " & Mouse.Status
Next

Note The highlighted code above must be placed on one line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collecting Network Adapter Information
The Win32_NetworkAdapter class allows you to query information on network adapters through WMI. To collect Network
Interface Card (NIC) information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set NICSet = GetObject("winmgmts:").InstancesOf
("Win32_NetworkAdapter")

For each NIC in NICSet
 WScript.Echo "Name: " & NIC.Name & VBlf & _
 "Type: " & NIC.AdapterType & VBlf & _
 "Speed: " & NIC.Speed & VBlf & _
 "MAC: " & NIC.MACAddress & VBlf & _
 "Addresses: " & NIC.NetworkAddresses
Next

Note The highlighted code above must be placed on one line.

Collecting Operating System Information
The Win32_OperatingSystem class allows you to query various operating system information through WMI. To collect CD-ROM
information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set OSSet = GetObject("winmgmts:").InstancesOf
("Win32_OperatingSystem")

For each OS in OSSet
 WScript.Echo "OS: " & OS.Caption & VBlf & _
 "Build: " & OS.BuildNumber & VBlf & _
 "Version: " & OS.Version & VBlf & _
 "Service Pack: " & OS.CSDVersion & VBlf & _
 "ProdID: " & OS.SerialNumber & VBlf & _
 "Install Date: " & OS.InstallDate & VBlf & _
 "Last Bootup: " & OS.LastBootUpTime
Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Printer Information
The Win32_Printer class allows you to query printer information through WMI. To collect printer information on a system using
WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set PrinterSet = GetObject("winmgmts:").InstancesOf
("Win32_Printer")

For each Printer in PrinterSet
 WScript.Echo "Name: " & Printer.Name & VBlf & _
 "Location: " & Printer.Location & VBlf & _
 "Share: " & Printer.ShareName & VBlf & _
 "Status: " & Printer.Status
Next

Note The highlighted code above must be placed on one line.

Collecting Processor Information
The Win32_Processor class allows you to query processor information through WMI. To collect processor information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set ProSet = GetObject("winmgmts:").InstancesOf
("Win32_Processor")

For each Pro in ProSet
 WScript.Echo "Name: " & Pro.Name & VBlf & _
 "Speed: " & Pro.MaxClockSpeed & VBlf & _
 "Cache: " & Pro.L2CacheSize & " Cache" & VBlf & _
 "Processor ID: " & Pro.ProcessorId
Next

Note The highlighted code above must be placed on one line.

Collecting Sound Card Information
The Win32_SoundDevice class allows you to query sound card information through WMI. To collect sound card information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set SoundSet = GetObject("winmgmts:").InstancesOf
("Win32_SoundDevice")

For each Sound in SoundSet
 WScript.Echo "Card: " & Sound.ProductName & VBlf & _
 "Manufacturer: " & Sound.Manufacturer
Next

Note The highlighted code above must be placed on one line.

Collecting Tape Drive Information
The Win32_TapeDrive class allows you to query tape drive information through WMI. To collect tape drive information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set TapeSet = GetObject("winmgmts:").InstancesOf
("Win32_TapeDrive")

For each Tape in TapeSet
 WScript.Echo "Name: " & Tape.Name & VBlf & _
 "Hardware Compression: " & Tape.Compression & VBlf & _
 "Needs Cleaning: " & Tape.NeedsCleaning & VBlf & _
 "Status: " & Tape.Status
Next

Note The highlighted code above must be placed on one line.

Collecting USB Information
The Win32_PnPEntity class allows you to query USB device information through WMI. To collect USB device information on a
system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set USBSet = GetObject("winmgmts:").InstancesOf
("Win32_PnPEntity")

For each USB in USBSet
 WScript.Echo "Name: " & USB.Name & VBlf & _
 "Manufacturer: " & USB.Manufacturer
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next

Note The highlighted code on the previous page must be placed on one line.

Collecting Video Card Information
The Win32_VideoController class allows you to query video card information through WMI. To collect video card information on
a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set VideoSet = GetObject("winmgmts:").InstancesOf
("Win32_VideoController")

For each Video in VideoSet
 WScript.Echo "Card: " & Video.Description & VBlf & _
 "Current: " & Video.VideoModeDescription
Next

Note The highlighted code above must be placed on one line.

Listing Installed Software
The Win32_Product class allows you to query installed software information through WMI. This class can only retrieve
information on products installed with the Windows installer. To collect Installed software information on a system using WMI,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set Software= GetObject("winmgmts:").InstancesOf
("Win32_Product")
For each Application in Software
 Wscript.Echo "Name: " & Application.Name & VBCRLF & _
 "Vendor: " & Application.Vendor & VBCRLF & _
 "Install Date: " & Mid(Application.InstallDate2, 5, 2) & "/" & _
 Mid(Application.InstallDate2, 7, 2) & "/" & _
 Mid(Application.InstallDate2, 1, 4)
Next

Note The highlighted code on the previous page must be placed on one line.

Listing Hotfixes
The Win32_QuickFixEngineering class allows you to query installed hotfix and update information through WMI. To collect
installed software information on a system using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set HotFixes= GetObject("winmgmts:").InstancesOf
("Win32_QuickFixEngineering")
For each HotFix in HotFixes
 Wscript.Echo "ID: " & HotFix.HotFixID & VBCRLF & _
 "Description: " & HotFix.Description
Next

Note The highlighted code above must be placed on one line.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 11: Security

In Brief
As sad as I am to admit this, the attitude of most administrators is "security through obscurity." This expression means that the
best way of dealing with security holes is ignoring them, hoping no one will find them, and praying they will go away. Unfortunately,
this attitude never works. It seems nowadays there is a new virus or security hole being publicized daily. The days of merely
running FDISK /MBR or deleting PWL files are over. Viruses and intruders are more sophisticated than ever. In this chapter, you
will learn about the Windows security architecture and how to decrease the chances of unauthorized entry.

Hackers and Crackers

If you can think of system security as a war, then hackers and crackers are your opponents. Before you go into battle, it's always
good to know a little about your opponents. Here is the truth about a common myth: Hackers never intentionally damage data.
Hackers are knowledgeable computer users whose pure goal is to solve problems and continually learn about the inner workings
of operating systems, applications, and transmission methods. Although their methods of obtaining information may be
questionable, they tend to create tools to identify or improve upon system weaknesses. Hackers like to document and publicly
share their information with all who are willing to learn. Hackers usually receive bad press because people don't understand the
difference between the terms "hackers" and "crackers."

Crackers are knowledgeable computer users whose goal is to break into systems and damage or steal data. They tend to reverse-
engineer programs and illegally use them for even more illicit purposes. Cracking techniques usually do not involve skillful or
complicated methods, but rather crude methods such as stealing files from trash bins or tricking other users into handing them
information. Examples of crackers are users who sniff the network for passwords, pirate software, write Trojan horse programs or
viruses, or crash the network with broadcasts or email bombs.

Tip For more information about hackers and crackers, visit http://www.hackers.com.

Security Configuration and Analysis Tool

The Microsoft Security Configuration and Analysis tool (MSSCE) provides a centralized method to analyze or modify a system's
security settings. Figure 11.1 shows this tool. MSSCE is a Microsoft Management Console (MMC) snap-in that allows you to
create or use security templates to apply to your environment. These security settings are stored in configuration files and can be
applied to all the machines in your environment.

Figure 11.1: The Security Configuration and Analysis tool.

Predefined Security Templates
The MSSCE includes several predefined templates in the %WINDIR%\Security\Templates directory. The security templates
included with the MSSCE are:

Basicdc.inf-Default domain controller

Basicsv.inf-Default server

Basicwk.inf-Default workstation

These three basic security templates contain the standard security settings for each system.

Compatws.inf-Compatible workstation or server

The compatibility template contains lower security settings to allow regular users maximum control of installed applications.
Applying the compatibility template will remove all users from the power users group.

Dedicadc.inf-Dedicated domain controller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dedicated template contains security settings for domain controllers that will not be running server-based applications.

Hisecdc.inf-Highly secure domain controller

Hisecws.inf-Highly secure workstation or server

The high security templates provide the maximum security settings for the system. Applying this template on a Windows 2000
system will prevent that system from communicating with other Windows NT systems.

Securedc.inf-Secure domain controller

Securews.inf-Secure workstation or server

The secure templates are the recommended security settings.

Important Security Practices

Here is a list of several security practices to help protect your environment:

Administrators should always lock their system when not in use. This should be a top priority for administrators. It
takes only a few seconds of distraction for an intruder to go to work under your logged-on account.

Do not allow other accounts to access or log on to an administrator's system. If another user can access your
system (even if you are not logged on), he or she can potentially extract passwords, grab your files, and more.

Always use the latest security patches and service pack. It seems Microsoft is always releasing security patches
and service packs to combat system exploits. These patches don't do any good unless they are actually loaded
onto your system.

Increase the minimum password length. To slow down bruteforce password utilities, you can force users to use
longer passwords by increasing the minimum password length.

Passwords should be a mix of upper- and lowercase, letters, and numbers. The more complex your passwords are,
the longer it takes for a password-cracking program to guess a password.

Do not use dictionary-based passwords (for example, MyKids). Dictionary-based passwords are the easiest and
usually the first passwords determined through password-guessing utilities.

Use the New Technology File System (NTFS). In addition to increased reliability, NTFS provides dramatically
increased security compared to the other Windows file systems.

Set your system BIOS to boot from the hard drive only. Even if you use NTFS, a hacker can access all your
protected files by booting from removable media.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Setting the Boot Timeout

Allowing users to choose other operating systems (OS) at bootup is a security risk because the other operating systems can be
used to bypass or defeat Windows security.

Setting the Boot Timeout Using Bootcfg
To set the boot timeout using Bootcfg from a Windows XP/2003 system, start a command prompt and enter the following:
Bootcfg /timeout 0

Related solution: Found on page:

Displaying the Boot.ini using Bootcfg 28

Setting the Boot Timeout Using KiXtart
To set the boot timeout using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$File = "C:\boot.ini"

$RCode = SetFileAttr($File,128)
WriteProfileString($File, "boot loader", "timeout", "0")
$RCode = SetFileAttr($File,1)

This script first clears any file attributes on BOOT.INI, modifies the boot timeout, and then marks the file as read-only.

Related solution: Found on page:

Setting File or Folder Attributes 60

Setting the Boot Timeout Using WMI
To set the boot timeout to zero using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Computer = InputBox("Enter the computer name", "Boot Timeout" ,
"localhost")

Set Boot = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\" &
Computer & "\root\cimv2").
ExecQuery("select * from Win32_ComputerSystem")

For each Item in Boot
 Item.SystemStartupDelay = 0
 Item.Put_()
Next

Note The highlighted code above must be placed on one line.

Removing POSIX and OS/2 Subsystems

By default, Windows 2000 includes three environment subsystems: OS/2, POSIX, and Win32 subsystems. Originally developed
by Microsoft, OS/2 is IBM's operating system for the personal computer. POSIX stands for Portable Operating System Interface
for Unix and is a set of interface standards used by developers to design applications and operating systems.

Win32 is the main subsystem used by Windows, whereas the others are merely present for compatibility with other operating
systems and applications. To remove the POSIX and OS/2 subsystems from the command line, proceed as follows:

1. Create a new directory to store all files included in this example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
RMDIR /Q /S "%WINDIR%\System32\OS2"
DEL /F /Q "%WINDIR%\SYSTEM32\PSXDLL.DLL"
DEL /F /Q "%WINDIR%\SYSTEM32\PSXSS.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\POSIX.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\PSXSS.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\OS2.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\OS2SRV.EXE"
DEL /F /Q "%WINDIR%\SYSTEM32\OS2SS.EXE"

ECHO REGEDIT4 > C:\OS2.REG
ECHO [-HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
OS/2 Subsystem for NT] >>
C:\OS2.REG
REGEDIT /S C:\OS2.REG
DEL /F /Q C:\OS2.REG

Note The highlighted code above must be placed on one line.

Removing Administrative Shares

Administrative shares are hidden shares created by the system to allow administrators to access files remotely. Although these
shares are hidden, they are no secret to the savvy user and should be removed for maximum security. To remove administrative
shares, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
Set Drives = FSO.Drives

For Each Drive in Drives
 SHELL.Run "NET SHARE " & Drive & "\ /D", 0, False
 SHELL.Run "NET SHARE " & Drive & "\WINNT /D", 0, False
Next

Warning Certain programs use administrative shares and might not work if they are removed.

Related solution: Found on page:

Removing Shares 159

Locking Down Administrative Tools

Administrative tools, such as User Manager and REGEDT32, should be locked down for administrative access only. To lock down
various administrative tools, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Copy XCACLS.EXE from the Windows 2000 resource kit to the new directory.

3. Start a command prompt and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
@ECHO OFF
XCACLS "%WINDIR%\POLEDIT.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\REGEDIT.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\CACLS.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\CLIPBRD.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\NCADMIN.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\NTBACKUP.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\REGEDT32.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\RASADMIN.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\RDISK.EXE" /G
Administrators:F;F /Y

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\SYSKEY.EXE" /G Administrators:F;F /Y
XCACLS "%WINDIR%\SYSTEM32\USRMGR.EXE" /G
Administrators:F;F /Y

XCACLS "%WINDIR%\SYSTEM32\WINDISK.EXE" /G
Administrators:F;F /Y

Note The highlighted code above must be placed on one line. Although this script prevents an ordinary user from accessing
these tools, they could always bring them in and run them from an alternate source, such as a floppy disk.

Related solution: Found on page:

Modifying NTFS Permissions 157

Running Commands under Different Security Contexts

Every time someone logs on to the network with an administrator account, it creates a big security risk. Malicious ActiveX
components from the Web, Trojan horses, or even a hidden batch file can wipe out an entire server, database, and more when
run under administrative privileges. If you think about it, you don't really need administrative privileges when you are checking your
mail or surfing the Net. A common solution to this security problem is to log on with a regular user account and use a utility to run
trusted applications under the security context of an administrative account.

A security context specifies all the rights and privileges granted to a user. For administrators, this security context allows them to
manage users, groups, trusts, and domains. The process of switching to the security context of another user is known as
impersonation. Impersonation is mostly used by system services.

Using the RunAs Command
Windows 2000/XP/2003 includes the utility RUNAS.EXE, which allows users to run applications under the security context of a
different user. This utility is integrated into the Windows shell, which allows you to set up shortcuts to utilize the RUNAS utility. The
basic syntax of the RUNAS utility is:
RUNAS /commands program

Here, program is the shortcut, Control Panel applet, MMC console, or application to run. The available commands are:

/ENV-Keep the current environment

/NETONLY-Specifies for remote access only

/PROFILE-Loads the specified user's profile

/USER:username-Specifies the username to run application as. Valid name formats are domain\user or
user@domain

Note Once you have entered the command, you will be prompted for the password associated with the account.

To start an instance of User Manager using an administrator account called ADMIN@MYDOMAIN.COM, enter the following:
RUNAS /USERNAME:ADMIN@MYDOMAIN.COM USRMGR

Using the SECEDIT Utility

The SECEDIT.EXE utility is the command-line version of the Microsoft security configuration editor that allows you to run security
configuration and analysis from the command line.

Running a Security Analysis
The basic syntax to run an analysis using SECEDIT is as follows:
secedit /analyze /commands

Here, the available commands are:

/DB filename-Required, specifies the database to compare against

/CFG filename-Valid with /DB, specifies the security template to be imported

/LOG logpath-Specifies the log file to use

/VERBOSE-Specifies to include more detail to the log or output

/QUIET-Runs the analysis with no screen or log output

Here is an example to run a system analysis against the high security template for a domain controller:
Secedit /analyze /DB "%WINDIR%\Security\Database\hisecdc.sdb"
/CFG "%WINDIR%\Security\Templates\hisecdc.inf"
/LOG "%WINDIR%\Security\Logs\hisecdc.log" /VERBOSE

Note The code above must be placed on one line.

Reapplying a Group Policy
To reapply a local or user policy, start a command prompt and enter the following:
SECEDIT /REFRESHPOLICY policy/ENFORCE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SECEDIT /REFRESHPOLICY policy/ENFORCE

Here, /ENFORCE forces the policy to be reapplied, even if no security changes were found.

Note For Windows XP/2003, the GPUpdate command is the preferred method to reapply a group policy.

Applying a Security Template
The basic syntax to apply a security template using SECEDIT is as follows:
secedit /configure /commands

Here, the available commands are:

/AREAS name-Specifies the specific security areas to apply, where name is:

FILESTORE-Local file security

GROUP_MGMT-Group settings

REGKEYS-Local registry security

SECURITYPOLICY-Local or domain policy

SERVICES-Local services security

USER_RIGHTS-User's rights and privileges

/CFG filename-Valid with /DB; specifies the security template to be imported

/DB filename-Required; specifies the database containing the template to be applied

/OVERWRITE-Valid with /CFG; specifies to overwrite templates in the database

/LOG logpath-Specifies the log file to use

/VERBOSE-Specifies to include more detail to the log or output

/QUIET-Runs the analysis with no screen or log output

Fixing Security on a Windows NT to Windows 2000 Upgrade
When you upgrade from Windows NT to Windows 2000, the security settings on the system are not modified. This means none of
the intended Windows 2000 security settings are implemented. To apply the Windows 2000 basic security settings, start a
command prompt and enter the following:
Secedit /configure
/db "%WINDIR%\Security\Database\basicwk.sdb"
/cfg "%WINDIR%\Security\Templates\basicwk.inf"
/log "%WINDIR%\Security\Logs\basicwk.log"
/verbose

Note The code above must be placed on one line.

Exporting Security Settings
The basic syntax to export security settings using SECEDIT is as follows:

secedit /export /commands

Here, the available commands are:

/AREAS name-Specifies the specific security areas to export, where name is:

FILESTORE-Local file security

GROUP_MGMT-Group settings

REGKEYS-Local registry security

SECURITYPOLICY-Local or domain policy

SERVICES-Local services security

USER_RIGHTS-User's rights and privileges

/DB filename-Required; specifies the database containing the template to be exported

/CFG filename-Valid with /DB; specifies the security template to export to

/MERGEDPOLICY-Valid with /CFG; specifies to overwrite templates in the database

/LOG logpath-Specifies the log file to use

/VERBOSE-Specifies to include more detail to the log or output

/QUIET-Runs the analysis with no screen or log output

Here is an example of how to export the local registry security area to the registry template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Secedit /export /mergedpolicy
/db "%WINDIR%\Security\Database\security.sdb"
/cfg "%WINDIR%\Security\Templates\registry.inf"
/log "%WINDIR%\Security\Logs\registry.log"
/verbose

Using the NET ACCOUNTS Command

The built-in NET command has an ACCOUNTS parameter to modify the password and logon requirements for the local computer
or a specified domain. The basic syntax of the NET ACCOUNTS utility is:
NET ACCOUNTS /commands

Here, the available commands are:

/DOMAIN-If used, performs the specified operations on the primary domain controller of the current domain;
otherwise, performs the operations on the local computer.

/FORCELOGOFF:min-Sets the number of minutes before a user session is terminated where min is either the
number of minutes or NO to specify no forced logoff.

/MAXPWAGE:days-Specifies the maximum duration a password is valid where days is either the number of days
(1 through 49,710) or UNLIMITED to set no maximum time.

/MINPWAGE:days-Specifies the minimum duration before a user can change his or her password, where days is
either the number of days (1 through 49,710) or UNLIMITED to set no time limit. This value must be less than the
MAXPWAGE.

/MINPWLEN:length-Specifies the minimum password length.

/SYNC-Forces backup domain controllers to synchronize their password and logon requirements with those set on
the primary domain controller.

/UNIQUEPW:changes-Specifies that users cannot repeat the same password for the specified amount of
password changes (0 through 24).

For example, to modify the logon and password requirements using the NET ACCOUNTS command, you would enter the
following command:
NET ACCOUNTS /DOMAIN /MAXPWAGE:30 /MINPWAGE:UNLIMITED
/MINPWLEN:14

Note The highlighted code above must be placed on one line.

Tip When the administrator has specified a forced logoff, the user receives a warning that a domain controller will force a
logoff shortly.

Managing Security through ADSI

Active Directory Services Interfaces provides another medium to control security. In Chapter 9, you learned how to manage
shares, groups, and user accounts through ADSI. In the following section, you will learn how to manage security through ADSI.

Setting the Minimum Password Length
For maximum security, you should set your domain password minimum length to the maximum value, 14. To set the minimum
password length for the domain using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "MinPasswordLength", max
objDomain.SetInfo

Here, domain is the name of the domain, and max is the maximum password length to set. Again, you should set max equal to
14 for maximum security.

Setting the Password Age
For maximum security, you should implement a policy to force users to change their password regularly. To set the password age
for the domain using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next

Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "MinPasswordAge", Min * (60*60*24)
objDomain.Put "MaxPasswordAge", Max * (60*60*24)
objDomain.SetInfo

Here, domain is the name of the domain; min is the minimum duration in days before a user can change his or her password;
and max is the maximum duration in days a password is valid. The formula 60 x 60 x 24 is the calculation from seconds to days
(60 seconds x 60 minutes x 24 hours).

Setting Unique Password Changes
For maximum security, you should implement a policy to force users to select passwords different from their previous passwords.
To set the unique password duration for the domain using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "PasswordHistoryLength", min
objDomain.SetInfo

Here, domain is the name of the domain, and min is the minimum number of passwords used before a user can repeat that
previous password. The formula 60 x 60 x 24 is the calculation from seconds to days (60 seconds x 60 minutes x 24 hours).

Setting the Account Lockout Policy
For maximum security, you should implement a policy to lock out accounts after a certain number of bad attempts. To implement
an account lockout policy using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next

Set objDomain = GetObject("WinNT://Domain")
objDomain.Put "MaxBadPasswordAllowed", Max
objDomain.SetInfo

Here, domain is the name of the domain. The formula 60 x 60 x 24 is the calculation from seconds to days (60 seconds x 60
minutes x 24 hours).

Searching for Locked-Out Accounts
It's good practice to regularly search the domain for locked-out accounts. To search for locked-out accounts using ADSI, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set objDomain = GetObject("WinNT://Domain")

For Each Item in objDomain
 If Item.Class = "User" Then
 If Item.IsAccountLocked = "True" Then
 Wscript.Echo "Name: " & Item.Name & VBlf & _
 "Bad Password Attempts: " & _
 Item.BadPasswordAttempts & VBlf & _
 "Last Login: " & Item.LastLogin
 End If
 End If
Next

Here, domain is the name of the domain.

Related solution: Found on page:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlocking a User Account 219

Renaming the Administrator Account
Windows creates a default administrative account called "Administrator" to be the master account for that system. This account
cannot be deleted, but should be renamed to foil hackers attempting to gain access through this account. To rename the
administrator account using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next

Set objDomain = GetObject("WinNT://Computer")
Set objUser = ObjDomain.GetObject("User", "Administrator")
objDomain.MoveHere objUser.AdsPath, Name

Here, computer is the name of the computer holding the account, and name is the new name to give the account.

Tip You can use this script to rename any account simply by replacing the word ADMINISTRATOR with the user account
name desired.

Searching for Unused Accounts
It's good practice to regularly search the domain for accounts that have either been logged on for a long duration of time or have
not logged on in a long time. To search for unused accounts using ADSI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of ADSI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Days = amount
Set objDomain = GetObject("WinNT://Domain")

For Each Item in objDomain
 If Item.Class="User" Then
 DUR = DateDiff("D", Item.LastLogin, Date)
 If DUR > Days Then
 Wscript.Echo "Name: " & Item.Name & VBlf & _
 "Account Disabled: " & Item.AccountDisabled & VBlf & _
 "Last Login: " & Item.LastLogin & VBlf & _
 "Amount of days: " & DUR
 End If
 End If
Next

Here, domain is the name of the domain to search, and amount is the least number of days since the last logon.

Using the Microsoft Script Encoder

The Microsoft Script Encoder allows you to protect your scripts using a simple encoding scheme. This encoding scheme is not
intended to prevent advanced cracking techniques, but to merely make your scripts unreadable to the average user. The default
supported file types are asa, asp, cdx, htm, html, js, sct, and vbs. The basic syntax of the script encoder is as follows:
SCRENC inputfile outputfile

Here, inputfile is the file to encode and outputfile is the encoded result. Microsoft Script Encoder supports many command-line
parameters, as shown in Table 11.1.

Table 11.1: Microsoft Script Encoder parameters.

Parameter Description

/E extension Specifies a known extension for unrecognized input file types

/F Specifies to overwrite the input file with the encoded version

/L language Specifies to use the scripting language Jscript or VBScript

/S Specifies to work in silent mode

/X1 Specifies not to include to @language directive to ASP files

Warning Always back up your scripts before encoding them. Once a script is overwritten with an encoded version,
there is no way to return it to its original state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Security Scripts

Some of the scripts included in previous chapters can increase your system security. These scripts are shown in Table 11.2.

Table 11.2: Security scripts.

Chapter Script

Chapter 6 Disabling 8.3 File Naming

Chapter 6 Disabling the Lock Workstation Button

Chapter 6 Disabling the Change Password Button

Chapter 6 Disabling the Logoff Button

Chapter 6 Modifying the Registry with REGINI.EXE

Chapter 7 Managing NTFS Encryption

Chapter 7 Modifying NTFS Permissions

Chapter 9 Changing the Local Administrator Password

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 12: Logging and Alerting

In Brief
The purpose of logging is to record the status of an operation generated by the system or an application. Along with many scripts
and applications, Windows 2000/XP/2003 has a built-in method to log events and errors. Managing event logs across an
enterprise can become an involved process. Third-party utilities such as Dorian Software's Event Archiver allow you to read, write,
modify, and archive event logs and entries. Although these utilities are available at a modest price, this chapter will show you how
to access and control the event log through simple scripts, for free.

Logs provide a good method of recording events, but they are only as good as the time and frequency with which you check them.
Alerting is the method of notifying a user when an event occurs. In this chapter, you will learn the various methods to create alerts
to keep you informed of the many events that occur in your environment.

Inside The Event Log

Windows 2000/XP/2003 includes a built-in event-logging system known as the event log. Before an interaction with the event log
is performed, a request is sent to the Service Control Manager (SCM). SCM is controlled by
%WINDIR%\System32\SERVICES.EXE. When the system first boots up, the event log service is started and the event log files
are opened. Once the service receives the request, it processes it by storing or modifying an event in the proper event log.

Types of Logs
The event log is divided into three categories:

Application Log (AppEvent.Evt)-Stores application and system events, such as application errors

Security Log (SecEvent.Evt)-Stores audited security events, such as clearing the event log

System Log (SysEvent.Evt)-Stores operating-system-related events, such as creating a new user

These logs are stored in a proprietary binary format and reside in the %WINDIR%\System32\Config directory. Although all users
can view the application and system logs, only administrators can view and clear the security event log.

Note The event log files cannot merely be copied and opened on another system. When the system opens the event logs, it
modifies the file headers and doesn't reset the header until the file is closed. To copy the event log, use the Save Log
As option from the File menu of the Event Viewer.

The Event Viewer
The Event Viewer is a built-in Windows 2000/XP/2003 tool to easily view the three separate event log files (see Figure 12.1). The
Event Viewer executable (EVENTVWR.EXE) resides in the %WINDIR%\System32 directory. To start the Event Viewer, open
Administrative Tools and run the Event Viewer. From within the Event Viewer, you can view, delete, archive, or import an entire
event log or entry. The most common use of the event log is to troubleshoot system errors, such as service failures.

Figure 12.1: The Windows 2000 Event viewer.

Note The executable called EVENTVWR.EXE is actually just a pointer to the MMC snap-in EVENTVWR.MSC.

Event Log Entries
Event log entries consist of an event ID that categorizes the type of event, and an event description that is the actual error or
event text. The event type specifies the following classification of recorded events:

Error-Indicates critical errors and corruption of data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Failure Audit-Combined with auditing, indicates a failed security event, such as a bad password

Information-Indicates a successful operation, such as a successful driver load

Success Audit-Combined with auditing, indicates a successful security event, such as a successful logon

Warning-Indicates a non-critical warning, such as a failed attempt to obtain a browse list

Other items logged with each event are:

Computer-The name of the target computer

Date-Date the event was written

Source Type-The source of the event

Time-Time the event was written

User Name-The currently logged-on user

Event Log Etiquette
The event log is a logging system that stores critical and important system and application events. The original intent of this log
system was only for the system and applications to write events. Some systems might be set up to overwrite events or to crash
the system when the event log is full. Storing routine messages like "Logon script completed successfully" might overwrite critical
events or cause a system to crash because the event log is full.

Understanding NetBIOS

Logging provides a method to record events, and alerting provides a method to send event messages to users. A common
method of sending messages over a network is to use Network Basic Input Output System (NetBIOS). NetBIOS is a non-routable
interface that allows various types of computers to communicate over the local area network (LAN). NetBIOS was created by IBM
and Sytek during the mid-1980s and has since become an industry standard for network communication. Microsoft Windows
currently implements NetBIOS on the following protocols: NetBIOS Enhanced User Interface (NetBEUI), Internetwork Packet
Exchange/Sequenced Packet Exchange (IPX/SPX), and Transmission Control Protocol/Internet Protocol (TCP/IP).

Note A common use of NetBIOS is the Network Neighborhood.

NetBIOS Communication Modes
NetBIOS contains two modes of communication: session or datagram. Session mode establishes a reliable channel between two
systems, and uses error checking to ensure proper data transfer. Datagram mode is a one-way communication method that
transmits small messages without error checking. This type of communication is commonly referred to as connectionless
communication. A datagram is a container used to transmit data across a network.

Note The term datagram is interchangeable with the term packet.

Windows includes the ability to send command-line messages to other users or computers through NetBIOS using a utility called
NET.EXE. These messages are sent in datagrams to other NetBIOS computer or user names. NetBIOS messages have a
restricted size of 128 characters, whereas NetBIOS names are restricted to 15 characters (with a 16th hidden character used by
the operating system).

Tip Windows 2000/XP/2003 monitors these messages through the Messenger Service. If the system experiences errors
while transmitting or receiving NetBIOS messages, you should first check the Messenger Service.

Understanding MAPI

MAPI (Messaging Application Program Interface) is an interface that provides a standard method for applications to send email.
MAPI includes a standard set of functions, such as logging on, creating new messages, and reading messages, that developers
can call directly in their applications using C or C++. MAPI is a built-in part of Windows 2000/XP/2003. Simple MAPI is a slimmed-
down version of MAPI that can be accessed using C, C++, Visual Basic, or Visual Basic for Applications (VBA).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Using Logs with Shell Scripting

Currently, shell scripting contains no built-in methods to access the event log. Fortunately, you can create your own text logs or
use resource kit utilities to access the event log.

Writing to Text Logs
The simplest way to log events in shell scripting is to append text to a text log. The basic syntax to append text to a text log is as
follows:
Command >> textlog

Here, command is either an echoed statement or the output of a command, and textlog is the complete path and file name of the
log file. Here is a quick example to send a message to a log file called log.txt:
@Echo Off
Echo This is a test to log an event. >> log.txt

Tip To clear the log, simply delete the file (DEL textlog).

Related solution: Found on page:

Appending Text Files 57

Writing to Text Logs with the Date and Time
Recording the date and time within a log is essential to determine the exact moment of a particular event. To place the date and
time into an environment variable using shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
For /F "Delims= Tokens=1" %%I in ('Date /T')
Do Set Dtime=%%I

For /F "Delims= Tokens=1" %%I in ('Time /T')
Do Set Dtime=%Dtime%%%I

Note The highlighted code above must be placed on one line.

To log an event using the date and time, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Copy the date time script above to a file called SETDTIME.BAT.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
Call setdtime.bat
Echo %Dtime% message >> textlog

Here, message is the alert message to log, and textlog is the complete path and file name of the log file.

Tip To clear the date and time variable (dtime), add the following line at the end of your entire script: SET %Dtime%=.

Using LOGEVENT to Write to the Event Log
LOGEVENT.EXE is a Windows 2000 resource kit utility to write events to the event log from the command line. The basic syntax
of LOGEVENT.EXE is as follows:
logevent -m \\computer -s
type -c category -r source -e id -t time "message"

Note The highlighted code above must be placed on one line.

Here, computer is the name of a remote system to connect to; source specifies the origin of the event; id indicates the entry ID
number (0-65535); category is the number for the desired category; message is the text to include in the entry; time is the
amount of seconds the system waits before an exit; and type specifies one of the following event types:

E-Error

F-Failure

I-Information

S-Success

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

W-Warning

Tip LogEvent will accept either the full name or the first letter of the event type. Example, you can specify -S ERROR or -S
E.

Here is an example of how to write an event to the event log:
logevent -S ERROR -C 3 -E 10 -R ShellScript "Some Event Text"

Using EVENTCREATE to Write to the Event Log
EVENTCREATE.EXE is a built-in Windows XP/2003 utility to write events to the event log from the command line. The basic
syntax of EVENTCREATE.EXE is as follows:
eventcreate /s computer /u domain\username /p password /t type /l
logname /so source /Id eventid /d "message"

Note The highlighted code above must be placed on one line.

Here, computer is the name of a remote system to connect to; domain\username and password specifies the credentials to use
when writing the event; source specifies the origin of the event; eventid indicates the entry ID number (0-65535); logname is the
name of the event log to write to; message is the text to include in the entry; and type specifies one of the following event types:

Error

Information

Warning

Here is an example of how to write an event to the event log:
eventcreate /t ERROR /l application /so SHELLSCRIPT /Id 10 /d
 "Some Event Text"

Using Dumpel to Back Up the Event Log
Dumpel is a Windows 2000 resource kit utility that allows you to back up an event log in text format from the command line. The
basic syntax for using Dumpel is as follows:
Dumpel -F textfile -L logtype commands

Here, textfile is the complete path and file name to back up the event log to; logtype is the type of log to back up (Application,
System, or Security); and commands are any of the following optional commands:

-D days-Displays only the last number of days specified where days must be larger than zero

-E ID-Displays only the specified event IDs where ID may be up to ten various event IDs

-M name-Displays only the events with the name specified

-R-Specifies to filter by sources of records

-S computer-Specifies the computer to connect to

-T-Separates values using tabs as opposed to spaces

To back up security log events from the past ten days using Dumpel, start a command prompt and enter the following:
Dumpel -F "C:\DUMP.TXT" -L "Security" -D 10

Using Logs with KiXtart

KiXtart provides several methods to write text logs and to access the event log. Through KiXtart, you can write to, back up, and
clear the event logs.

Writing to Text Logs
Text logs allow all users, regardless of operating system, to write, modify, and read logged events. To log an event to a text log
using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = Open(1, "textlog", 5)
$RCODE = WriteLine(1, @Date + " " + @Time
+ "message" + Chr(13) + Chr(10))
$RCODE = Close(1)

Note The highlighted code above must be placed on one line.

Here, message is the alert message to log, and textlog is the complete path and file name of the log file. Notice that the first line
opens and sets the text log to file number 1, the next line writes to file number 1, and then the final line closes file number 1. All
three steps are necessary to write to a text file. Failure to include the close statement will result in wasted memory space.

Tip To clear the log, simply delete the file (DEL textlog).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Related solution: Found on page:

Appending Text Files 57

Writing an Event to the Event Log
LogEvent is a KiXtart command that allows you to write entries to the event log. The basic syntax for using the LogEvent
command is as follows:
LOGEVENT (type, ID, event, computer, source)

Note All events are stored in the application log and cannot be redirected to the system or security logs.

Here, ID is the entry ID number to assign; event is the text event entry; computer is an optional parameter specifying the name of
a remote system to write events to; source specifies the event source; and type specifies one of the following event types:

0-SUCCESS

1-ERROR

2-WARNING

4-INFORMATION

8-AUDIT_SUCCESS

16-AUDIT_FAILURE

To write an event to the event log using KiXtart, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = LogEvent(0, 10, "This stuff is easy!",
"", "New Event")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error writing event"
EndIf

Note The highlighted code above must be placed on one line.

Backing Up the Event Log
BackUpEventLog is a KiXtart command that allows you to back up the event log in the standard event log binary format. The
basic syntax for using the BackUpEventLog command is as follows:
BackUpEventLog ("logtype", "textfile")

Here, logtype is the type of log to back up (Application, System, or Security), and textfile is the complete path and file name to
back up the event log to. To back up the security log to a file called Backup.evt using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = BackUpEventLog ("Security", "C:\BACKUP.EVT")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error backing up log"
EndIf

Clearing the Event Log
ClearEventLog is a KiXtart command that allows you to clear the contents of an event log. The basic syntax for using the
ClearEventLog command is as follows:
ClearEventLog ("logtype")

Tip You can clear the event log of a remote computer by including the UNC path before the log type, for example:
ClearEventLog ("\\computer\Security").

Here, logtype is the type of log to clear (Application, System, or Security). To clear the event log using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$RCODE = ClearEventLog ("Security")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error clearing the event log"
EndIf

Using Logs with Windows Script Host

Windows Script Host allows you to write events to a text log and the event log using simple script files. This allows you to store
critical events in the event log, while storing less severe events to a text log.

Note Windows Script Host does not contain any methods to read or modify events in the event log.

Writing to Text Logs
Text logs provide an easy way to record events and share the file with others, regardless of operating system. To log an event to a
text log using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")
txtlog = "textlog"

If FSO.FileExists(txtlog) Then
 Set LogFile = FSO.OpenTextFile(txtlog, 8)
Else
 Set LogFile = FSO.CreateTextFile(txtlog, True)
End If

LogFile.WriteLine Date & " " & Time & " message"
LogFile.Close

Here, message is the alert message to log, and textlog is the complete path and file name of the log file.

Related solution: Found on page:

Appending Text Files 57

Writing an Event to the Event Log
You can use Wscript.Shell's LogEvent method to write events to the event log. The basic syntax for using the LogEvent method
is as follows:
LogEvent(type,event,computer)

Note All events are stored in the application log, and cannot be redirected to the system or security logs.

Here, event is the text event entry; computer is an optional parameter specifying the name of a remote system to write events to;
and type specifies one of the following event types:

SUCCESS (0)

ERROR (1)

WARNING (2)

INFORMATION (4)

AUDIT_SUCCESS (8)

AUDIT_FAILURE (16)

Tip You can use the corresponding numbers, as opposed to key words, to specify event types.

When you use LogEvent to create an event log entry, the following is recorded:

Category-Logged as None

Computer-The name of the target computer

Date-Date the event was written

Event-Logged as 0

Source Type-Logged as WSH

Time-Time the event was written

Type-Type of event entry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User Name-Logged as N/A

Here is a subroutine to write an event:
Sub WriteLog(Ltype, Ldesc)
 On Error Resume Next
 Set SHELL = CreateObject("WScript.Shell")

LEvent = SHELL.LogEvent(Ltype, Ldesc)
 If Err.Number <> 0 Or LEvent = False Then
 Wscript.Echo "Error writing event"
 End If
End Sub

Note Because Windows 9x does not contain an event log, all written events will be stored in %WINDIR%\wsh.log.

Here, ltype is the type of event, and ldesc is the event text to write. Using the following command combined with the subroutine
above will write a success event to the event log:
WriteLog 0, "This stuff is cool!"

Accessing the Event Log Using WMI

The Win32_NTLogEvent class manages the event logs on Windows 2000/XP/2003 systems. Through this class, you can view,
write, modify, delete, and back up the event log through simple scripts.

Backing Up an Event Log in Binary Mode
The BackupEventLog method allows you to back up an event log to a file in standard event log binary format. To create a
backup of the event log in standard event log binary format using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")
LogType = InputBox("Enter the log to backup", "Log Type" ,
"application")

BFile = InputBox("Enter file to backup to", "Backup File" ,
"C:\BACKUP.LOG")
 If FSO.FileExists(BFile) Then
 FSO.DeleteFile BFile
 End If
Set EventLog = GetObject("winmgmts:{impersonationLevel=
impersonate,(Backup)}").ExecQuery("select * from
Win32_NTEventLogFile where LogfileName='" & LogType & "'")
For each Entry in EventLog
 Entry.BackupEventLog BFile
Next
Wscript.Echo "Done"

Note The highlighted code above must be placed on one line. The (Backup) privilege is explicitly included in the example
above to allow you to use the BackUpEventLog method.

Here, LogType is the event log to back up (application, security, or system), and Bfile is the complete path and filename to back
up to.

Backing Up the Entire Event Log in Text Mode
In the previous sections, you learned that the BackUpEventLog method and the Dumpel utility back up the event log to a text file
in binary format. Although this format conforms to the standard event log storage format, it does not allow you to easily view the
contents of the backup. To create a backup of the event log in plain-text, tabdelimited format using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set EventLog = GetObject("winmgmts:{impersonationLevel=
impersonate}").ExecQuery("select * from Win32_NTLogEvent")

Set FSO = CreateObject("Scripting.FileSystemObject")
Set txt = FSO.CreateTextFile("textfile", True)
For each Entry in EventLog
 If Len(Entry.Message) > 0 Then
 For x = 1 to Len(Entry.Message)
 Char = Mid(Entry.Message,x,1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Char = Mid(Entry.Message,x,1)
 If Asc(Char) = 10 Then
 MSG = MSG & " "
 ElseIf Asc(Char) <> 13 Then
 MSG = MSG & Char
 End If
 Next
 EDate = Mid(Entry.TimeGenerated,5,2) & "/" & _
 Mid(Entry.TimeGenerated,7,2) & "/" & _
 Mid(Entry.TimeGenerated,1,4)
 ETime = Mid(Entry.TimeGenerated,9,2) & ":" & _
 Mid(Entry.TimeGenerated,11,2) & ":" & _
 Mid(Entry.TimeGenerated,13,2)
 ETime = FormatDateTime(ETime,3)

 IfIsNull(Entry.User) Then
 User = "N/A"
 Else
 User = Entry.User
 End If

 IfIsNull(Entry.CategoryString) Then
 Category = "none"
 Else
 Category =Entry.CategoryString
 End If

 EVT = Entry.LogFile & VBtab & _
 Entry.Type & VBtab & _
 EDate & VBtab & _
 ETime & VBtab & _
 Entry.SourceName & VBtab & _
 Category & VBtab & _
 Entry.EventCode & VBtab & _
 User & VBtab & _
 Entry.ComputerName & VBtab & _
 MSG
 txt.writeline EVT

 EVT = Null
 Char = Null
 MSG = Null
 End If
Next
txt.close
Wscript.echo "Done"

Note The highlighted code above must be placed on one line.

Here, textfile is the complete path and file name to back up the event log to.

Clearing an Event Log
The ClearEventLog method allows you to clear individual event log entries. To clear the entire contents of an event log using
WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
LogType = InputBox("Enter the log to clear", "Clear Log"
, "application")

Set EventLog = GetObject("winmgmts:{impersonationLevel=
impersonate}").ExecQuery("select * from
Win32_NTEventLogFile where LogfileName='" & LogType & "'")
For each Entry in EventLog
 Entry.ClearEventlog()
Next
Wscript.Echo "Done"

Note The highlighted code above must be placed on one line.

Here, LogType is the event log to clear (Application, Security, or System).

Sending Alerts Using Shell Scripting

Shell scripting does not include a method to send alerts from the command line. Microsoft Windows includes the NET.EXE utility
to allow you to send messages to users or computers over the network.

Sending Alerts to a Single User or Computer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To send a message over the network, start a command prompt and enter the following:

NET SEND name message

Note NetBIOS messages have a maximum limit of 128 characters.

Here, message is the message to send, and name is the NetBIOS name of a computer or user ID.

Sending Alerts to Multiple Users and Computers
You can also use the asterisk symbol (*) to send messages to all computers on the local network:
Net Send * message

Here, message is the message to send. As opposed to specifying a name or asterisk, you can use one of the following
commands to send messages to multiple users or computers:

/DOMAIN-Sends a message to the local domain

/DOMAIN:name-Sends a message to a specified domain

/USERS-Sends messages to users connected to the server

Here is an example to send a message to the JESSEWEB domain:
Net Send /DOMAIN:JESSEWEB message

Note Sending messages to the entire network or domain will not only utilize a good portion of your network's bandwidth but it
is also annoying to all the other users.

Sending Alerts to Specific Multiple Users and Computers
Although the Net Send command contains methods to send messages to multiple users, it does not contain a method to send
messages to specific user and computer names. To send an alert to an exact list of user or computer names using shell scripting,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

@Echo Off
For /F %%N in (textfile) Do (Echo Sending Message to
%%N... & Net Send %%N Message)

Note The highlighted code above must be placed on one line.

Here, textfile is the name of a text file with each line containing a user or computer name, and message is the message to send.

Sending Alerts Using KiXtart

KiXtart includes a command called SendMessage that allows you to send NetBIOS messages to users or computers over the
network. This command transports messages in a similar fashion to the Microsoft NET.EXE utility.

Sending Alerts to a Single User or Computer
To send an alert to a single user using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$RCODE = SENDMESSAGE ("name", "message")
If @ERROR <> 0 or $RCODE <> 0
 ? "Error sending message"
EndIf

Here, name is the user or computer name to send a message to.

Sending Alerts to Multiple Users or Computers
To send an alert to multiple users using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$COUNT = 4 ; User Array Count
DIM $NAME[$COUNT] ; User Array
$NAME[0] = "name1"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$NAME[0] = "name1"
$NAME[1] = "computer1"
$NAME[2] = "computer2"
$NAME[3] = "name2"

$NETMESSAGE = "This is a test message."

$Index = 0
WHILE $Index <> $COUNT
 $RCODE = SENDMESSAGE ($NAME[$Index], $NETMESSAGE)
 If @ERROR <> 0 or $RCODE <> 0
 ? "Error sending message"
 EndIf
 $Index = $Index + 1
LOOP

Here, $count is the size of the array. This is the number of users you want to send messages to. This number must exactly match
the number of users that you send messages to, or an error will result. $name is the array that holds the user or computer names
to send messages to, and $netmessage is the message to send.

Note The array size is limited to the amount of memory the system has. Remember, the contents of an array start at 0, not
at 1. Using versions older than KiXtart 3.62 will cause a script error when attempting to create an array.

Sending Alerts Using Windows Script Host

Windows Script Host does not include any methods to send messages to users or computers. Through Windows Script Host, you
can call upon the NET.EXE utility or use automation to send messages.

Sending an Alert to a Single User or Computer
To send an alert to a single user or computer using WSH, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Shell = CreateObject("Wscript.Shell")

RCV = "name"
MSG = "message"

SHELL.Run "Net Send " & Name & " " & MSG, 0, False

Here, RCV is the user or computer name to send a message to, and MSG is the message to send.

Sending Alerts to Multiple Users or Computers
To send an alert to multiple user or computer names using WSH, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Shell = CreateObject("Wscript.Shell")

Dim Name(2)
Name(0) = "name1"
Name(1) = "name2"

MSG = "message"

For X = 0 to UBound(Name)
 SHELL.Run "Net Send " & Name(X) & " " & MSG, 0, False
Next

Here, Name is the array that holds the user or computer names to send messages to. The size of this array should be equal to the
number of users or computers you want to send messages to. MSG is the message to send.

Sending an Email Using Outlook Automation
To send an email using Outlook automation, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"
SUB = "subject"
MSG = "message"

Set Outlook = CreateObject("Outlook.Application")
Set MAPI = Outlook.GetNameSpace("MAPI")
Set NewMail = Outlook.CreateItem(0)
NewMail.Subject = SUB
NewMail.Body = MSG
NewMail.Recipients.Add RCP

MAPI.Logon "profile", "password"
NewMail.Send
MAPI.Logoff

Here, RCP stores the email address to email; SUB is the email subject; MSG is the message to send; and profile and
password are the logon credentials to send the email.

Tip You can omit the highlighted lines above if you do not need to log on to a mail server or if your information is cached.

Sending an Email with Attachments Using Outlook Automation
To send an email to multiple users with attachments using Outlook, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"

Dim File(2)
File(0) = "file1"
File(1) = "file2"

SUB = "subject"
MSG = "message"

Set Outlook = CreateObject("Outlook.Application")
Set MAPI = Outlook.GetNameSpace("MAPI")
Set NewMail = Outlook.CreateItem(0)
NewMail.Subject = SUB
NewMail.Body = MSG
NewMail.Recipients.Add RCP

For X = 0 to (UBound(File)-1)
 NewMail.Attachments.Add(file(X))
Next

MAPI.Logon "profile", "password"
NewMail.Send
MAPI.Logoff

Here, file is the array that holds the file names to attach to the message; RCP stores the email address to email; SUB is the
email subject; MSG is the message to send; and profile and password are the logon credentials to send the email.

Tip You can omit the highlighted lines above if you do not need to log on to a mail server or if your information is cached.

Sending Emails and Attachments to Multiple Recipients Using Outlook Automation
To send an email to multiple users with attachments using Outlook, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Dim Name(2)
Name(0) = "emailaddress1"
Name(1) = "emailaddress2"

Dim File(2)
File(0) = "file1"
File(1) = "file2"

SUB = "subject"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SUB = "subject"
MSG = "message"

Set Outlook = CreateObject("Outlook.Application")
Set MAPI = Outlook.GetNameSpace("MAPI")
Set NewMail = Outlook.CreateItem(0)
NewMail.Subject = SUB
NewMail.Body = MSG

For X = 0 to (UBound(Name)-1)
 NewMail.Recipients.Add Name(X)
Next

For X = 0 to (UBound(File)-1)
 NewMail.Attachments.Add(file(X))
Next

MAPI.Logon "profile", "password"
NewMail.Send
MAPI.Logoff

Here, name is the array that holds the email addresses to email; file is the array that holds the file names to attach to the
message;

SUB is the email subject; MSG is the message to send; and profile and password are the logon credentials to send the email.

Tip You can omit the highlighted lines above if you do not need to log on to a mail server or if your information is cached.

Sending an Email Using CDOSYS
Collaboration Data Objects for Windows (CDOSYS) is a built-in messaging object library (CDOSYS.dll) which allows developers
and scripters to send email on Windows 2000/XP/2003 without having Outlook or any other email client installed. To send an
email using CDOSYS, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"
FROM = "myemailaddress"
SUB = "subject"
MSG= "message"

Set NewMail = CreateObject("CDO.Message")
NewMail.Subject = SUB
NewMail.Sender = FROM
NewMail.To = RCP
NewMail.TextBody = MSG

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusing") = 2

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/smtpserver") =
"mailserver"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/authenticate") = 1
NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusername") =
"username"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendpassword") =
"password"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration
smtpconnectiontimeout") = 60

NewMail.Configuration.Fields.Update

NewMail.Send

Note The highlighted code above must be placed on one line.

Here, FROM stores the email address of the sender; RCP stores the email address to email; SUB is the email subject; MSG is
the message to send; mailserver is the name or IP address of your email server; and username and password are the logon
credentials to send the email.

Sending an Email with Attachment Using CDOSYS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To send an email with attachment using CDOSYS, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
RCP = "emailaddress"
FROM = "myemailaddress"
SUB = "subject"
MSG= "message"
ATCH="attachmentfilepath"

Set NewMail = CreateObject("CDO.Message")
NewMail.Subject = SUB
NewMail.Sender = FROM
NewMail.To = RCP

NewMail.TextBody = MSG
NewMail.AddAttachment = ATCH

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusing") = 2

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/smtpserver") =
"mailserver"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/authenticate") = 1

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendusername") =
"username"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration/sendpassword") =
"password"

NewMail.Configuration.Fields.Item _
("http://schemas.microsoft.com/cdo/configuration
smtpconnectiontimeout") = 60
NewMail.Configuration.Fields.Update

NewMail.Send

Note The highlighted code above must be placed on one line.

Here, FROM stores the email address of the sender; RCP stores the email address to email; SUB is the email subject; MSG is
the message to send; ATCH stores the file path of the attachment to send; mailserver is the name or IP address of your email
server; and username and password are the logon credentials to send the email.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 13: Logon Scripts

In Brief
A logon script is a script that runs automatically each time a user logs on to the network. This script can contain various
commands or programs that process on the local station, such as mapping printers or updating the local system time. In this
chapter, you will learn how to create logon scripts to easily standardize and update your environment automatically.

Tip Although this chapter discusses tasks specifically geared toward logon scripts, you can use any of the scripts within this
book in a logon script.

Common Logon Script Tasks

The difference between a regular script and a logon script is that a logon script performs its functions when the user logs on.
Logon scripts are not limited in functionality, but actually contain the same functionality as any other script. Although logon scripts
can perform many different tasks, several tasks are commonly performed in logon scripts:

Synchronize the local time

Manage network printers and drives

Update drivers or settings

Access or modify the registry

Perform hardware or software inventory

Set or modify environment variables

Update antivirus files

Synchronizing the Local Time
Time synchronization is essential when planning to perform enterprise-wide tasks simultaneously, such as remote updates.
Windows 2000/XP/2003 uses a service called time synchronization to update the local system time with that of a network time
source. A time source is any object providing the time to another object.

Time Source Hierarchy

Time synchronization is performed in a hierarchal format (see Figure 13.1). At the top of the hierarchy is the top-level time source
that contains the accurate, universal time, such as the Atomic Clock. Primary time sources, usually a domain controller,
synchronize their local time with the top-level time source. Below the primary time sources aresecondary time sources and clients.
Secondary time sources are basically backup primary time sources that obtain their time from a primary time source. Secondary
time sources are typically resource domain controllers that obtain their time from the master domain. Underneath the time sources
are the clients that synchronize their local time with a secondary or primary time source

Figure 13.1: The time synchronization hierarchy.

Environment Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Environment variables are basically keyword shortcuts that the system and users use to easily access files, directories, and
values. You can use these variables in your logon scripts to easily identify the operating system, computer name, domain name,
and more. Generally there are two types of environment variables: user and system. User environment variables are set per user,
whereas system environment variables are set to the system level and affect all users who log on to the system. These variables
are called static variables and are actually stored as registry entries: HKEY_CURRENT_USER\ Environment for user variables
and HKEY_LOCAL_MACHINE\ System\CurrentControlSet\Control\Session Manager\Environment for system variables. Dynamic
variables, created by the SET command, are stored in memory and are applicable for the current command prompt session. Table
13.1 is a list of common environment variables.

Table 13.1: Registry data types.

Variable Name Description

ComputerName Specifies the name of the local system

HomeDrive Specifies the drive letter to map the user's home directory

HomePath Specifies the local path to the user's home directory

HomeShare Specifies the share path to the user's home directory

OS Specifies the operating system

UserDomain Specifies the name of the domain the user is currently logged on to

UserName Specifies the user ID of the currently logged on user

WinDir Specifies the directory where the operating system is installed

Tip To see the current environment variables from the command prompt, enter SET

Norton Antivirus
Although most antivirus products include auto-updating features, updating antivirus files through a logon script provides a backup
mechanism to ensure your clients are always up to date. Norton Antivirus is an advanced antivirus utility from Symantec
(http://www.symantec.com), designed for both home and corporate use. This utility's antivirus signature files can be easily updated
with an executable called Intelligent Updater. This executable supports the following command-line switches:

/EXTRACT location-Extracts files from the executable to the location specified

/Q-Undocumented switch, specifies to install the update silently

/TEMP=path-Specifies the temporary directory to use

McAfee VirusScan
McAfee VirusScan is a popular antivirus utility from NAI (http://www.nai.com), for both home and corporate use. NAI releases
updates to their antivirus engine and signature files (.DAT extension) in a self-extracting executable (for example, sdat9999.exe)
called SuperDAT. They also release a version of the SuperDAT without the engine update (for example, 9999xdat.exe) to reduce
the size of the update file and to supply updated signature files simply. These files provide an easy way to update antivirus
software because they first stop running antivirus services, update the antivirus files, and then restart the antivirus services.

The two executables just described support the following command line switches:

/E location-Extracts files from the executable to the specified location

/F-Forces an updating of existing files

/LOGFILE textfile-Logs the status to a text file

/PROMPT-Displays a prompt dialog before reboot

/REBOOT-Reboots if necessary

/SILENT-Runs the executable in silent mode, with no prompting

/V-Displays information about the executable

The Windows 2000/2003 Logon Process

The logon sequence is initiated on a Windows 2000/2003 machine when the user enters the secure command sequence (SCS),
better known as Ctrl+Alt+Del. After the user enters the username and password, the Kerberos client encrypts the password
through a one-way function (OWF) using the DES-CBC-MD5 algorithm (Data Encryption Standard Cipher Block Channel Message
Digest 5). The client then converts the password to an encryption key.

The Kerberos client then sends the encryption key, username, a time stamp, and the authentication request to the Key
Distribution Center (KDC), which is a service running on the authenticating server. The user name is then checked for a valid
name stored in the active directory database, the password is verified, and the time stamp is checked to ensure the request is not
old or falsified.

Once the user account has been validated, the KDC then sends back a Kerberos authentication response. This response is called
a ticket granting number (TGT) and includes an encrypted copy of the KDC's encryption key. The client finally stores this ticket
into memory and is allowed into the domain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Replication

Replication helps to easily distribute logon scripts to all your servers based on a regular schedule. The purpose of replication is to
synchronize the contents of one file location with the contents of another. Replication is a service that performs one-way transfers,
ensuring that all child locations are synchronized with the parent location. This synchronization includes file additions,
modifications, and deletions.

Note The master replication server replicates files to itself, from the export to the import directory.

File Replication Service
Windows 2000 uses the file replication service (FRS) to perform file replication. FRS is a replication service that is used to
replicate system policies and logon scripts to the System Volume directory (SYSVOL). FRS can be used to replicate files in
addition to policies and logon scripts. The FRS synchronizes immediately within sites and synchronizes on a schedule between
sites. File replication service is a robust replication service that works well for all types of data files.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Creating Logon Scripts with Shell Scripting

Shell scripting is the original source of logon scripting for Windows. Although it may lack some of the more complex features of
other scripting languages, its main advantage is compatibility. Unlike KiXtart or Windows Script Host, shell scripting does not
require any installed client files to run (other than the operating system). Shell scripting provides a simple, logon script solution for
quick and easy deployment.

Setting the Window Title
Windows 2000/XP/2003 supports the title command to change the title of a shell prompt window. The basic syntax of the title
command is as follows:
Title name

Here, name is the name to give the current command-prompt window. Here is an example to change the shell prompt title to
"Logon Script":
If "%OS%"=="Windows_NT" Title Logon Script

Here, %OS% is an environment variable that indicates the operating system type.

Changing the Background and Foreground Colors
Windows 2000/XP/2003 supports the color command to change the background and foreground in a shell prompt. The basic
syntax of the color command is as follows:
COLOR BF

Here, B is the background color value and F is the foreground color value. The color command supports the following color
values:

0-Black

1-Blue

2-Green

3-Aqua

4-Red

5-Purple

6-Yellow

7-White

8-Gray

9-Light Blue

A-Light Green

B-Light Aqua

C-Light Red

D-Light Purple

E-Light Yellow

F-Bright White

Here is an example to change the shell prompt colors to bright white text on a blue background:
IF "%OS%"= ="Windows_NT" COLOR 1F

Here, %OS% is an environment variable that indicates the operating system type.

Synchronizing the Local System Time
Synchronizing the local system to a central time source allows you to perform enterprise-wide tasks simultaneously. The basic
syntax to synchronize the local clock with a specified time source is as follows:
Net Time \\server/commands

Here, \\server is the name of the time source server to sync with. This parameter is only necessary when syncing with a specific
server. If this parameter is omitted (Net Time), the system will search the local domain for a time source server. /commands are
any of the following parameters:

/SET-Sets the local time to the time source server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/Y-Forces to sync the time with the server specified, regardless of whether the server is a time source server or not

/DOMAIN:domainname-Searches the specified domain for a time source server

The following script attempts to sync the local system time with the server named servername. If this fails, the domain will be
searched for a time source to sync with. To execute this script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS ; Clears the screen
Set TServer=ServerName

Echo Syncing the time with %TServer%...
Net Time \\%TServer% /set /yes
If %errorlevel% NEQ 0 CLS && Goto Domain
CLS && Echo Sync Successful
Goto End

:Domain
Echo Searching the local domain for a time-server...
Net Time /set /yes
If %errorlevel% EQU 0 CLS && Echo Sync Successful && Goto End
CLS && Echo Time Sync Error

:End

Here, tserver is a variable containing the name of the time source server; NEQ is the "not equal to" operator; and && allows you
to run a second command after the first has completed.

Mapping Universal Drives
Mapping common drives for all users allows you to present a central resource location for applications or data. In Chapter 8, you
learned how to map network drives from within Windows and the command prompt. To map a network drive and display the
status from the command prompt, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS ; Clears the screen
Set Drive=DriveLetter
Set Share=\\server\sharename

Echo Mapping drive %Drive% to %Share%
Net Use %Drive%: /Delete && CLS
Net Use %Drive%: %Share%
If %errorlevel% EQU 0 CLS && Echo Map Successful && Goto End
CLS && Echo Error mapping drive %Drive% to %Share%

:End

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Mapping Drives by Group
Mapping drives by group membership allows you to control which drives and resources will be available to which users. The
resource kit utility IfMember allows you to determine a user's group membership from the command line. The basic syntax of the
IfMember utility is as follows:
IfMember /Commands Groups

Here, Groups are any group, separated by spaces, whose membership you want to check. An errorlevel of 1 indicates the user is
a member of the specified group. The available commands are as follows:

/List-Lists all groups the user belongs to

/Verbose-Displays all group matches

To map a network drive according to group membership and display the status from the command prompt, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS ; Clears the screen
Fullpath\IfMember GroupName > Nul

If Not %errorlevel% EQU 1 Goto End
Set Drive=DriveLetter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Drive=DriveLetter
Set Share=\\server\sharename

Echo Mapping drive %Drive% to %Share%
Net Use %Drive%: /Delete && CLS
Net Use %Drive%: %Share%
If %errorlevel% EQU 0 CLS && Echo Map Successful && Goto End
CLS && Echo Error mapping drive %Drive% to %Share%

:End

Here, fullpath is the full path where the IfMember utility is located; GroupName is the name of the group to check membership;
driveletter is the drive letter to map a share to; NEQ is the "not equal to" operator; EQU is the "equal to" operator; server
contains the sharename you want to map to; and && allows you to run a second command after the first has completed.

Mapping Printers Using Con2PRT
Mapping printers through a logon script provides an easy method to remotely update printer connections. Con2PRT (Connect To
Port) is a Windows 2000 Resource Kit utility used to control printer connections from the command line. The basic syntax of the
con2PRT utility is as follows:
Con2prt /commands \\server\printer

Here, server is the name of the printer server containing the shared printer to map. The available commands are:

/F-Removes all printer connections

/C-Connects to the printer specified

/CD-Connects to the printer specified and marks it as the default printer

To remove all current printer connections and map a default printer using con2PRT, proceed as follows:
1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Set Pserver=server
Set DPrinter=Printer
fullpath\con2prt /F
fullpath\con2prt /CD \\%server%\%printer%

Here, pserver is the variable holding the printer server name; dprinter is the variable holding the name of the printer share; and
fullpath is the full path where con2prt is located.

Adding Printers Using the PrintUI DLL
Windows 2000/XP/2003 includes the PrintUI.dll to add and remove printers from the command line. To use the PrintUI.dll, you
must call the PrintUIEntry function through the rundll32 command. To add a default printer using the PrintUI DLL, start a
command prompt and enter the following:
rundll32 printui.dll,PrintUIEntry /in /y /n \\pserver\dprinter

Here, pserver is the name of the print server and dprinter is name of the printer share.

Checking for Remote Access
Determining whether a client is logging in through the network or remote access helps you specify which parts of the script to run.
CheckRAS is a command-line, SMS resource kit utility to determine whether a user is using remote access. To determine whether
the current user is using remote access during a logon script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:

@Echo Off
CLS ; Clears the screen
Set RAS=NO
fullpath\CheckRAS > Nul
If %errorlevel% EQU 1 Set RAS=YES

Here, fullpath is the full path where the CheckRAS utility is located, and RAS indicates whether the current user is using remote
access or not.

Displaying Time-Based Greetings
Although it's not essential, many administrators like to display a greeting to the user depending on the time of day. To display a
time-based greeting from the command line, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@Echo Off
CLS
For /F "Delims=: Tokens=1" %%I in ('Time /T') Do Set Hour=%%I
For /F "Delims=: Tokens=2" %%I in ('Time /T') Do Set Min=%%I
For /F "Delims=0,1,2,3,4,5,6,7,8,9 Tokens=2" %%I in
('Set Min') Do Set AP=%%I

If %AP% EQU p Goto PM
Set Greet=Good Morning
Goto End

:PM
If %Hour% EQU 12 Set Hour=0
If %Hour% LSS 12 Set Greet=Good Evening
If %Hour% LSS 6 Set Greet=Good Afternoon

:End
Echo %Greet%
Set Hour=
Set Min=
Set AP=

Note The highlighted code above should be placed on one line.

Here, the Time /T command indicates the local system time.

Updating McAfee Antivirus Files
To update your McAfee antivirus engine and/or signature files with shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
CLS
Set SDAT="superdat"
Set DAT="datfile"
Set NAILOG="textlog"
Set DDAY="DOTW"

For /F "Tokens=1" %%I in ('Date /T') Do Set Day=%%I

If %DAY% EQU %DDAY% Goto UENGINE
%DAT% /F /PROMPT /REBOOT /SILENT /LOGFILE
%NAILOG%
GOTO END

:UENGINE
%SDAT% /F /PROMPT /REBOOT /SILENT /LOGFILE %NAILOG%
GOTO END

:END
Set SDAT=
Set DAT=
Set NAILOG=
Set DAY=

Here, SDAT is a variable containing the complete path and file name of the SuperDAT executable; DAT is a variable containing
the complete path and file name of the DAT executable; NAILOG is a variable containing the complete path and file name of the
status log text file; and DDAY is the day of the week (Mon, Tue, Wed, Thu, Fri, Sat, Sun) to run the SuperDAT as opposed to the
daily DAT file.

Updating Norton Antivirus Files
To update your Norton antivirus files with shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest Intelligent Updater file from http://www.symantec.com to the new directory.

3. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Set IUPDATER=iufile

%IUPDATER% /Q > Nul

Here, IUPDATER is a variable containing the complete path and file name of the Intelligent Updater executable.

Creating Logon Scripts with KiXtart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

KiXtart is a powerful scripting tool primarily focused and used for logon scripts. KiXtart contains many built-in methods and macros
to retrieve quick information; other scripting languages would require external tools or extensive scripting to retrieve the same
information.

Setting Up the Environment
When creating a logon script, it is important to make sure the script looks and feels as it was intended. KiXtart includes several
commands to customize the logon script environment. To set up a customized logon script environment using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
CLS ; Clear screen
BREAK OFF ; Logoff user when attempt to close logon box
$RCODE= SETCONSOLE("ALWAYSONTOP") ; Set box on top
$RCODE = SETASCII("ON") ; Turn on ASCII characters

This script first clears the screen (CLS) and sets the logon script box to log off the current user if he/she attempts to close the box.
The logon script box is then set to be on top of all other windows. The final command turns on ASCII characters. This is a new
feature included with KiXtart 3.62 and higher that allows you to change the look of text by turning ASCII on or off.

Changing the Background and Foreground Colors
KiXtart supports the color command to change the background and foreground in a shell prompt. The basic syntax of the color
command is as follows:
COLOR Fx/By

Here, F is the foreground color value, x is an optional indicator to increase the color intensity if a plus sign (+) is specified, B is the
background color value, and y is an optional indicator that causes the background to blink if a plus sign (+) is specified. The color
command supports the following color values:

N-Black

B-Blue

G-Green

C-Cyan

R-Red

M-Magenta

Y-Yellow/Brown

W-White

Here is an example to change the shell prompt colors to bright white text on a blue background:
COLOR W+/B

Synchronizing the Local System Time
Synchronizing the local system to a central time source allows you to perform enterprise-wide tasks simultaneously. KiXtart
includes the SetTime command to synchronize the local system time to a time source. The basic syntax of the SetTime command
is as follows:
SetTime source

Here, source is any one of the following types:

\\Server-Specifies the name of a time source server

DomainName-Searches the specified domain for a time source

"*"-Specifies to search the local domain for a time source

The following script attempts to sync the local system time with the logon server. If this fails, the domain will be searched for a
time source to sync with. To execute this script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

? "Syncing the time with @LSERVER..."
SETTIME "@LSERVER"
If @ERROR <> 0
 ? "Searching the local domain for a time-server..."
 SETTIME "*"
 If @ERROR <> 0
 ? "Time Sync Error"
 Else
 ? "Sync Successful"
 EndIf
EndIf

Mapping Universal Drives
Mapping common drives for all users allows you to present a central resource location for applications or data. In Chapter 8, you
learned how to map network drives from within Windows and the command prompt. KiXtart includes the use command, similar to
the Net Use command, to attach a drive letter to a network share. To map a network drive and display the status using KiXtart,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Drive="DriveLetter"
$Share="\\server\sharename"

? " Mapping drive $Drive to $Share"
Use " $Drive: " /Delete
Use " $Drive: " $Share
If @Error = 0
 ? " Map Successful"
Else
 ? " Error mapping drive $Drive to $Share"
EndIf

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Mapping Drives by Group
Mapping drives by group membership allows you to control which drives and resources will be available to which users. KiXtart
includes the InGroup command, similar to the IfMember resource kit utility, to determine group membership. To map a network
drive according to group membership and display the status using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Drive="DriveLetter"
$Share="\\server\sharename"

If InGroup("GroupName")
 ? "Mapping drive $Drive to $Share"
 Use "$Drive: "/Delete
 Use "$Drive: "$Share
 If @Error = 0
 ? "Map Successful"
 Else
 ? "Error mapping drive $Drive to $Share"
 EndIf
EndIf

Here, GroupName is the name of the group to check membership; driveletter is the drive letter to map a share to; and server
contains the sharename you want to map to.

Mapping Printers
Mapping printers through a logon script provides an easy method to remotely update printer connections. KiXtart contains several
commands to add, remove, and set default printers. To map a printer using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Pserver="Server"
$DPrinter="Printer"

If AddPrinterConnection("\\$PServer\$DPrinter") = 0
 ? "Added printer $DPrinter"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ? "Added printer $DPrinter"
Else
 ? "Error adding $DPrinter"
EndIf

Here, pserver is the variable holding the printer server name, and dprinter is the variable holding the name of the printer share.

Checking for Remote Access
Determining whether a client is logging in through the network or remote access helps you specify which parts of the script to run.
KiXtart includes the @RAS macro to the number of remote access connections. To determine whether a user is logging on
through remote access using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
If @RAS = 0
 ? " You are logging in through the local network. "
Else
 ? "You are logging on through remote access"
EndIf

Displaying Time-Based Greetings
Although it's not essential, many administrators like to display a greeting to the user depending on the time of day. To display a
time-based greeting using KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
SELECT
 CASE ((@TIME > "00:00:00") AND (@TIME < "12:00:00"))
 ? "Good Morning @FULLNAME"
 CASE ((@TIME > "12:00:00") AND (@TIME < "18:00:00"))
 ? "Good Afternoon @FULLNAME"
 CASE 1
 ? "Good Evening @FULLNAME"
ENDSELECT

Here, the @TIME macro indicates the current time, and @FULLNAME indicates the full name of the current user.

Updating McAfee Antivirus Files
To update your McAfee antivirus engine and/or signature files with KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$SDAT="superdat"
$DAT="datfile"
$NAILOG="textlog"
$DDAY="DOTW"

If @DAY = $DDAY
 SHELL "%COMSPEC% /C $SDAT /F /PROMPT /REBOOT /SILENT
 /LOGFILE $NAILOG"
Else
 SHELL "%COMSPEC% /C $DAT /F /PROMPT /REBOOT /SILENT
 /LOGFILE $NAILOG"
EndIf

Here, SDAT is a variable containing the complete path and file name of the SuperDAT executable; DAT is a variable containing
the complete path and file name of the DAT executable; NAILOG is a variable containing the complete path and file name of the
status log text file; and DDAY is the day of the week (Monday-Sunday) to run the SuperDAT as opposed to the daily DAT file.

Updating Norton Antivirus Files
To update your Norton antivirus files with KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest Intelligent Updater file from http://www.symantec.com to the new directory.

3. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

4. Select Start|Run and enter "kix32 scriptfile."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$IUPDATER = "iufile"
SHELL "%COMSPEC% /C $IUPDATER /Q"

Here, IUPDATER is a variable containing the complete path and file name of the Intelligent Updater executable.

Creating Logon Scripts with Windows Script Host

Windows Script Host is a relatively new scripting language and is rather limited with logon scripts. Although you can call external
functions or custom COM objects to perform specific logon script tasks, WSH does not contain many of the standard logon script
functions other scripting languages may have, such as a time synchronization command.

Synchronizing the Local System Time
Windows Script Host does not have a time synchronization command to sync the local system time with a network time source.
You can use the shell run command to call external commands, such as the Net Time command, and use a return variable to
indicate whether the command was successful. The following script attempts to sync the local system time with the server named
servername using the Net Time command. If this synchronization fails, the domain will be searched for a time source to sync
with. To execute this script, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
TServer="ServerName"

Wscript.Echo "Syncing the time with " & TServer & "..."
ELevel = Shell.Run("Net Time \\" & TServer &
" /Set /Yes",0,True)

If (ELevel <> 0) Then
 Wscript.Echo "Searching the local domain for a " & _
 "time-server..."
 ELevel = Shell.Run("Net Time / Set /Yes",0,True)
If (ELevel = 0) Then
 Wscript.Echo "Sync Successful"
Else
 Wscript.Echo "Time Sync Error"
 End If
Else
 Wscript.Echo "Sync Successful"
End If

Note The highlighted code above must be placed on one line.

Mapping Universal Drives
Mapping common drives for all users allows you to present a central resource location for applications or data. In Chapter 8, you
learned how to map network drives from within Windows and the command prompt. You can use the Windows Script Host
network object to attach a drive letter to a network share. To map a network drive and display the status using Windows Script
Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Network = CreateObject("WScript.Network")
Drive = "DriveLetter:"
Share = "\\server\sharename"

Wscript.Echo "Mapping drive " & Drive & " to " & Share
Network.MapNetworkDrive Drive, Share
If Err.Number = 0 Then
 Wscript.Echo "Map Successful"
Else
 Wscript.Echo "Error mapping drive " & Drive & " to " & _
 Share
End If

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Mapping Drives by Group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapping drives by group membership allows you to control which drives and resources will be available to which users. Windows
Script Host does contain a method to determine group membership. Although you can use the ADSI IfMember method, this
method can be slow on larger networks. Alternatively, you can use the WSH shell run command to call external commands, such
as the IfMember resource kit utility, and use a return variable to indicate whether the command was successful. To map a network
drive according to group membership and display the status using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")
Set Network = CreateObject("WScript.Network")
Drive = "DriveLetter:"
Share = "\\server\sharename"
DGroup = "groupname"

ELevel = Shell.Run("fullpath\IfMember " & DGroup,0,True)
If (ELevel = 1) Then
 Wscript.Echo "Mapping drive " & Drive & " to " & Share
 Network.MapNetworkDrive Drive, Share
 If Err.Number = 0 Then
 Wscript.Echo "Map Successful"
 Else
 Wscript.Echo "Error mapping drive " & Drive & " to " & _
 Share
 End If
End If

Here, fullpath is the full path where the IfMember utility is located; GroupName is the name of the group to check membership;
driveletter is the drive letter to map a share to; and server contains the sharename you want to map to.

Mapping Printers
Mapping printers through a logon script provides an easy method to remotely update printer connections. Starting with version 2,
Windows Script Host provides several commands to add, remove, and set default printers. To map a printer using Windows Script
Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
PServer = "Server"
DPrinter = "Printer"
Port = "LPT1"
Set Network = CreateObject("Wscript.Network")

Network.AddPrinterConnection Port, "\\" & PServer & "\" &
Printer
If Err.Number <> 0 Then
 Wscript.Echo "Added printer " & Printer
Else
 Wscript.Echo "Error adding printer " & Printer
End If

Note The highlighted code above must be placed on one line.

Here, pserver is the variable holding the printer server name, and dprinter is the variable holding the name of the printer share.

Tip You can use the AddWindowsPrinterConnection method to add printers to Windows NT/2000 systems without having
to supply a port.

Checking for Remote Access
Determining whether a client is logging in through the network or remote access helps you specify which parts of the script to run.
Windows Script Host does not contain a method to detect remote access connections. CheckRAS is a command-line, SMS
resource kit utility to determine whether a user is using remote access. To determine whether the current user is using remote
access during a logon script using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")

ELevel = Shell.Run("fullpath\CheckRAS",0,True)
If (ELevel = 0) Then
 RAS = "YES"
Else
 RAS = "NO"
End If

Here, fullpath is the full path where the CheckRAS utility is located, and RAS indicates whether the current user is using remote
access or not.

Displaying Time-Based Greetings
Although it's not essential, many administrators like to display a greeting to the user depending on the time of day. To display a
time-based greeting using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
If Hour(Now) < 12 Then
 Wscript.Echo "Good Morning"
ElseIf Hour(Now) < 18 Then
 Wscript.Echo "Good Afternoon"
Else
 Wscript.Echo "Good Evening"
End If

Updating McAfee Antivirus Files
To update your McAfee antivirus engine and/or signature files with shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host from http://www.microsoft.com to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL = CreateObject("WScript.Shell")

SDAT="superdat"
DAT="datfile"
NAILOG="textlog"
DDAY="DOTW"

If WeekDayName(WeekDay(Date)) = DDAY
 Shell.Run CHR(34) & SDAT & CHR(34) & " /F /PROMPT /REBOOT
 /SILENT /LOGFILE NAILOG",1,True
Else
 Shell.Run CHR(34) & DAT & CHR(34) & " /F /PROMPT /REBOOT
 /SILENT /LOGFILE NAILOG",1,True
EndIf

Note The highlighted code above must be placed on one line. Chr(34) translates the ASCII code character 34 into a
quotation mark ("). This is necessary when using the Shell.Run command with long file names.

Here, SDAT is a variable containing the complete path and file name of the SuperDAT executable; DAT is a variable containing
the complete path and file name of the DAT executable; NAILOG is a variable containing the complete path and file name of the
status log text file; and DDAY is the day of the week (Monday-Sunday) to run the SuperDAT as opposed to the daily DAT file.

Updating Norton Antivirus Files
To update your Norton antivirus files with Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download the latest Intelligent Updater file from http://www.symantec.com to the new directory.

3. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next Set
SHELL = CreateObject("WScript.Shell")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHELL = CreateObject("WScript.Shell")

IUPDATER = "iufile"
Shell.Run CHR(34) & IUPDATER & CHR(34) & " /Q",1,True

Note Chr(34) translates the ASCII code character 34 into a quotation ("). This is necessary when using the Shell.Run
command with long file names.

Here, IUPDATER is a variable containing the complete path and file name of the Intelligent Updater executable.

Using Microsoft Internet Explorer as a Logon Script Box
Through Automation, you can use Internet Explorer to display logon script status to the user. To use Internet Explorer as a logon
script box using the previous WSH logon scripts, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set Network = CreateObject("WScript.Network")
Set MSIE = CreateObject("InternetExplorer.Application")
sTITLE = "Processing Logon Script, please wait..."
Drive = "DriveLetter:"
Share = "\\server\sharename"

SetupMSIE
MSIE.Document.Write "<HTML><TITLE>" & sTitle & _
 "</TITLE><BODY bgcolor=#C0C0C0>"

IfHour(Now) < 12 Then
 MSIE.Document.Write "Good Morning " & _
 Network.UserName & "

"
ElseIf Hour(Now) < 18 Then
 MSIE.Document.Write "Good Afternoon " & _
 Network.UserName & "

"
Else
 MSIE.Document.Write "Good Evening " & _
 Network.UserName & "

"
End If

MSIE.Document.Write "Mapping drive " & Drive & " to " & _
 Share & "...
"

Network.MapNetworkDrive Drive, Share
If Err.Number = 0 Then
 MSIE.Document.Write " Mapping Successful
"
Else
 MSIE.Document.Write " Error mapping drive " & Drive & _
 " to " & Share & "
"
End If

MSIE.Document.Write "
Closing in 3 seconds
"
Wscript.Sleep 3000
MSIE.Quit

Sub SetupMSIE
 MSIE.Navigate "About:Blank"
 MSIE.ToolBar = False
 MSIE.StatusBar = False
 MSIE.Resizable = False
 Do
 Loop While MSIE.Busy
 SWidth = MSIE.Document.ParentWindow.Screen.AvailWidth
 SHeight = MSIE.Document.ParentWindow.Screen.AvailHeight
 MSIE.Width = SWidth/2
 MSIE.Height = SHeight/2
 MSIE.Left = (SWidth - MSIE.Width)/2
 MSIE.Top = (SHeight - MSIE.Height)/2
 MSIE.Visible = True
End Sub

Here, driveletter is the drive letter to map a share to, and server contains the sharename you want to map to.

Related solution: Found on page:

Using Microsoft Internet Explorer as a Display Tool 100

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 14: Backups and Scheduling

In Brief
Most companies and people couldn't continue to be in business or do their work if all their data were lost. Backups provide an
easy method to restore a system or a set of files after some corruption, deletion, or hardware failure has taken place. Backups are
an extremely important part of your task as an administrator-something that no one likes to do, but everyone appreciates when
needed. Although many third-party backup tools are available, a limited budget or compatibility issues might prevent you from
using them.

In previous chapters, you learned how to back up files and the registry using simple scripts. In this chapter, you will learn how to
automate backups and ERDs (Emergency Repair Disks). You will also learn how to schedule your backups and scripts to run
automatically.

Backups under Windows 2000/XP/2003

NTBackup (New Technology Backup) is a utility that allows you to back up your registry and data files. These backups are stored
using the Microsoft Tape Format (MTF). NTBackup can read and restore any backup stored in this format. This includes many of
today's third-party backup programs that comply to this format, such as Veritas Backup Exec. Before performing any backup, you
should decide which type of backup you would like to perform. NTBackup supports the following backup types:

Full-Also called a normal backup, backs up all the files specified. The archive bit is cleared for all files backed up.
This provides the most complete backup but also takes the most time and occupies the greatest amount of storage
space on the backup media. This backup type provides the quickest restore method.

Incremental-Only backs up files that have changed since the last full and incremental backup. The archive bit is
cleared for all files backed up. This backup type requires marginal time and backup space but provides the longest
restore method because the full backup and all other incremental backups must be restored sequentially.

Differential-Only backs up files that have changed since the last full backup. The archive bit is not cleared for any
files. This is the most common backup method used and provides an average restore time because the full backup
must be restored before a differential backup can be restored.

Daily-Only backs up files modified on the day the backup is performed. The archive bit is not modified.

Custom-Allows you to specify which files to back up. This method is most commonly used on an on-demand basis
when a small number of files are to be backed up.

Copy-Copies files to the backup media. The archive bit is not cleared because you are merely copying files. This
method is best used when you want to perform backups in combination with other backup utilities, and do not want
the archive bit to be modified.

Note An archive bit is a file attribute that is cleared when a file is modified. This is a signal to all backup programs that this
file needs to be backed up.

New and Improved
Starting with Windows 2000, NTBackup supports many new features, such as scheduling and UNC support. In addition to tape
devices, NTBackup can now back up data to removable media, such as a Jaz or Zip drive, using Remote Storage Management
(RSM). You can back up to any removable media that RSM supports and that does not require special formatting at the time of
backup. RSM cannot back up to CD-R (Compact Disc Recordable), CD-RW (Compact Disc ReWritable), or DVD-RAM (Digital
Versatile Disc Random Access Memory) because it sees these devices as read-only. As with both versions of NTBackup, a major
drawback to this backup utility is that you can only back up folders, not files.

Note You cannot restore files from the command line using NTBackup.

Best Backup Practices
The following list describes the best backup practices to help protect your data:

Secure your backups. Many companies protect their servers and yet leave their backup tapes in an open cabinet. If
an intruder can access your backup tapes, he or she can access your data.

Perform backup verifies. Verify compares the contents of the backup media with the targeted files backed up, and
reports any corruption or differences.

Test your backups and hardware regularly. Although your backup software may state that your backups are
successfully running, there is no real indication of this until you perform a restore.

Rotate your backups offsite. If something happens to your office building or location where you store your backups,
you'll be glad you stored more tapes in another location.

Store your backups in a fire/water-proof container. Tapes are very sensitive to corruption, especially heat. Storing
your tapes in fire/water-proof containers helps protect your backups from damage.

Remember that backups can be subpoenaed. Only back up files you wouldn't mind discussing in court.

Establish a written backup policy and stick to it. This helps ensure that all the backup practices mentioned here, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Establish a written backup policy and stick to it. This helps ensure that all the backup practices mentioned here, and
many others, are clearly understood and followed daily.

Scheduling Windows NT/2000 Tasks

The AT command is a command line utility that allows you to schedule applications to run based on a predetermined schedule.
You can use this command to automatically launch your backups, scripts, or any other tasks you can think of. The AT command
works with the schedule service to monitor the system time, start tasks, and run the programs under the security context of the
specified account.

The Evolution of the AT Command
Originally, the AT command worked with a service called schedule (ATSVC.EXE) that, by default, was configured as a system
service. You could later configure this service to run under a specific administrative domain account, allowing your tasks to run for
all users regardless of user privilege.

The New and Improved Task Scheduler

If you have at least Windows 2000 or Microsoft Internet Explorer 4, the schedule service is replaced with the Task Scheduler
service (MSTASK.EXE). This service does not need to be configured with a specific account because you can now specify these
credentials with each new task you create. For backward compatibility with tasks created by the AT command, you can still set the
Task Scheduler service to run under a specified account.

The new task scheduler also adds a control panel applet called Scheduled Tasks, that provides a graphical interface to create,
view, and modify scheduled tasks created by the AT command or task scheduler. These tasks are stored in the %WINDIR%\tasks
directory. Although you can view and modify tasks under the Scheduled Tasks applet, the AT command does not recognize tasks
created by the new task scheduler. This is because tasks created by the task scheduler can use additional features and require a
specific user account to run. Any task created by the AT command will be converted to a task created by the task scheduler if a
specific user account is specified or if any of the task scheduler's additional features are used, such as power management.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Managing NTBackup

The NTBackup utility supports multiple switches for performing backups from the command line. Here is a list of the available
switches:

/A-Appends backups

/D "label"-Specifies a backup set label

/DS "server"-Backs up the Microsoft Exchange directory service for the specified server name

/F "name"-Specifies full path and file name of the backup file

/G "tapeID"-Specifies to overwrite or append to the tape based on the specified tape id

/HC:x-Controls hardware compression where x is ON or OFF

/IS "server"-Backs up the Microsoft Exchange information store for the specified server name

/J "job"-Specifies a descriptive job name to record in the log file

/L:x-specifies the type of log file where x is:

F-Complete logging

S-Summary logging

N-No logging

/M:x-Specifies the backup type where x is:

copy-Back up files and do not clear their archive flag

daily-Back up today's changed files and do not clear their archive flag

differential-Back up changed files and do not clear their archive flag

incremental-Back up changed files then clear their archive flag

normal-Back up files then clear their archive flag

/N "name"-Specifies a new name to give the tape

/P "name"-Specifies the name of the media pool to use

/R:x-Restricts tape access to the tape owner or administrators, where x is YES or NO

/RS x-Specifies to back up the removable storage database, where x is YES or NO

/T "tapename"-Specifies to overwrite or append to the tape based on the specified tape name

/UM-Specifies to find and format the find media available

/V:x-Performs backup verification, where x is YES or NO

Running NTBackup with Shell Scripting
To automate a full backup using NTBackup and shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
Set BList=folders
Set BFile=backupfile
Set BComment=BackupComment

fullpath\NTBACKUP.EXE Backup %BList% /d "%BComment%" /l:F
/F "%BFile%" /V:YES

Set BList=
Set BFile=
Set BComment=

Note The highlighted code above must be placed on one line.

Here, folders are the folders to back up; backupfile is the complete path and file name of the backup file to create (typically
stored with a BKS extension); BackupComment is the comment to give the backup; and fullpath is the complete path to the
NTBackup utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running NTBackup with KiXtart
To automate a full backup using NTBackup and KiXtart, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$BList = "folders"
$BFile = "backupfile"
$BComment = "BackupComment"

$BCommand = "fullpath\NTBACKUP.EXE Backup $BList /d " +
 chr(34) + "$BComment" + chr(34) + " /l:F /F " +
 chr(34) + "$BFile" + chr(34) + " /V:YES"
Run $Bcommand

Note The highlighted code above must be placed on one line. Chr(34) translates the ASCII code character 34 into a
quotation mark ("). This is necessary when you are using the Run command with long file names.

Here, folders are the folders to back up; backupfile is the complete path and file name of the backup file to create (typically
stored with a BKS extension); BackupComment is the comment to give the backup; and fullpath is the complete path to the
NTBackup utility.

Running NTBackup with Windows Script Host
To automate a full backup using NTBackup and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

On Error Resume Next
Set Shell = CreateObject("Wscript.Shell")

BList = "folders"
BFile = "backupfile "
BComment = "BackupComment"

BCommand = "fullpath\NTBACKUP.EXE Backup " & _

BList & " /d " & chr(34) & BComment & chr(34) & _

 " /l:F /F " & chr(34) & BFile & chr(34) & " /V:YES"

Shell.Run BCommand, 0, TRUE

Note You cannot completely hide the NTBackup process with Windows Script Host.

Here, folders are the folders to back up; backupfile is the complete path and file name of the backup file to create (typically
stored with a BKS extension); BackupComment is the comment to give the backup; and fullpath is the complete path to the
NTBackup utility.

Backing Up the IIS Metabase Using Windows Script Host
The Internet Information Server Metabase is a database like structure used to store IIS configuration settings. To automate a
backup of the IIS metabase using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
NextVersion = &HFFFFFFFF
BackupFlags = 0

Set objComputer = GetObject("IIS://" & ComputerName)
objComputer.Backup backupfile, NextVersion, BackupFlags

Here, computername is the name of the IIS server and backupfile is the name of the backup file to create.

Restoring the IIS Metabase Using Windows Script Host
To restore the most recent backup of the IIS metabase using Windows Script Host, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
HighestVersion = &HFFFFFFFE
BackupFlags = 0

Set objComputer = GetObject("IIS://" & ComputerName)
objComputer.Restore backuplocation, HighestVersion, BackupFlags

Here, computername is the name of the IIS server and backuplocation is the complete path where the IIS metabase backup is
stored.

Controlling Backup Exec from the Command Line

Backup Exec is a complete backup solution from Veritas (http://www.veritas.com) that includes advanced backup functionality,
such as virus scanning. The BackupExec executable (BKUPEXEC.EXE) allows you to run a scheduled job from the command
line. The basic syntax of BKUPEXEC is as follows:
BkupExec /J:"jobname"

Here, /J indicates to run BackupExec in command-line mode, and jobname is the name of the scheduled backup job.

Note If the BackupExec program is running or the jobname does not exist, the BkupExec command will not work.

Consolidating BackUp Exec Logs

Whenever BackUp Exec performs a task, it records the progress in an individual log file stored in the program's data directory.
Call me lazy, but I hate having to go to the server room, log onto multiple servers, and then check the job status. To remotely
consolidate these log files to a central Excel spreadsheet (right from your desk), proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")
Set objXL = CreateObject("Excel.Application")

BEPath = "logpath"
Server = "servername"
SDays = InputBox("Please enter the number of days to report")
SDays = Int(SDays) - 1

Column = 1
Row = 1
SetupXL 'Setup Excel Sheet

BEFolder = "\\" & Server & "\" & BEPath
ChkBkUp BEFolder
Wscript.Echo "Complete."
Wscript.Quit

Sub SetupXL 'Setup and format Excel Sheet
 objXL.Workbooks.Add
 objXL.Columns(1).ColumnWidth = 20
 objXL.Columns(2).ColumnWidth = 10
 objXL.Columns(3).ColumnWidth = 15
 objXL.Columns(4).ColumnWidth = 10
 objXL.Columns(5).ColumnWidth = 15
 objXL.Columns(6).ColumnWidth = 10

 objXL.Cells(1,Column).Value = "Server"
 objXL.Cells(1,Column+1).Value = "Job"
 objXL.Cells(1,Column+2).Value = "Type"
 objXL.Cells(1,Column+3).Value = "Start Date"
 objXL.Cells(1,Column+4).Value = "Start Time"
 objXL.Cells(1,Column+5).Value = "Status"
 objXL.Cells(1,Column+6).Value = "Size"
 objXL.Range("A1:K1").Select
 objXL.Selection.Font.Bold = True 'Bold top row
 objXL.Selection.Interior.ColorIndex = 1
 objXL.Selection.Interior.Pattern = 1
 objXL.Selection.Font.ColorIndex = 2
End Sub

Sub ChkBkUp(BEFolder) 'Check if log folder exists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub ChkBkUp(BEFolder) 'Check if log folder exists
 If FSO.FolderExists(BEFolder) Then
 Set objDirectory = FSO.GetFolder(BEFolder)
 Set DirFiles = objDirectory.Files
 ExcelSheet(DirFiles)
 Else
 Wscript.echo "Could not access folder: " & BEFolder
 End If
End Sub

Sub ExcelSheet(DirFiles) 'Enter info to Excel sheet
 For Each objFile in DirFiles
 objXL.Visible = True
 FEXT = FSO.GetExtensionName(objFile.Path)
 fDate = DateDiff("d", objFile.DateCreated, Date)
 'Check if log date is within the search days specified
 If (LCase(FEXT) = "txt") AND ((fDate <= SDays) AND _
 (fDate > 0)) Then
 Verify = 0
 strSize = 0
 'Open log and transfer data to Excel sheet
 Set ts = FSO.OpenTextFile(objFile, 1)
 Do while ts.AtEndOfStream <> true
 s =ts.ReadLine
 If InStr(s, "Job server: ") <> 0 Then
 Row = Row + 1
 objXL.Cells(Row,Column).Value = Mid(s, 13)
 ElseIf InStr(s, "Job type: ") <> 0 Then
 objXL.Cells(Row,Column+1).Value = Mid(s, 11)
 ElseIf InStr(s, "Job name: ") <> 0 Then
 objXL.Cells(Row,Column+2).Value = Mid(s, 11)
 ElseIf InStr(s, "Job started: ") <> 0 Then
 dTemp = InStr(s, ", ")
 tTemp = InStr(s, " at ")
 dTemp = dTemp + 2
 dEnd = tTemp - dTemp
 objXL.Cells(Row,Column+3).Value = Mid(s, dTemp,dEnd)
 tTemp = tTemp + 4
 objXL.Cells(Row,Column+4).Value = Mid(s, tTemp)
 ElseIfS = "Job Operation - Verify" Then
 Verify = 1
 ElseIf (Verify = 1) AND _
 InStr(s, "Processed ") <> 0 Then
 myarray = Split(s)
 If IsNumeric(myarray(1)) Then
 strSize = strSize + _
 (LEFT((myarray(1)/1073741824),6))/1
 End If
 ElseIf InStr(s, "Job completion status: ") <> 0
 Verify = 0
 objXL.Cells(Row,Column+6).Value = strSize
 objXL.Cells(Row,Column+5).Value = Mid(s, 24)
 'If backup failed, bold and highlight red
 If LCase(Mid(s, 24)) = LCase("Failed") Then
 tRange = "A" & Row & ":G" & Row
 objXL.Range(tRange).Select
 objXL.Selection.Font.Bold = True
 objXL.Selection.Font.ColorIndex = 3
 'If backup not successful, bold
 ElseIf LCase(Mid(s, 24)) <> LCase("Successful") Then
 tRange = "A" & Row & ":G" & Row
 objXL.Range(tRange).Select
 objXL.Selection.Font.Bold = True
 End If
 End If
 Loop
 ts.Close 'Close log file
 End If
 Next
 End Sub

Here, servername is the name of the server to connect to, and logpath is the administrative share and complete path where the
logs are stored (typically c$\Program Files\Veritas\Backup Exec\NT\Data).

Related solution: Found on page:

Creating Detailed Spreadsheets in Microsoft Excel 103

Controlling ARCserve 2000 from the Command Line

ARCserve 2000 is an advanced backup utility from Computer Associates (http://www.cai.com). ARCbatch, included with
ARCserve, is a command-line utility that runs backup script files or templates. The basic syntax of the ARCbatch command is as
follows:
ARCbatch /H=server /S=script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here, server is the name of the server to run the specified script. Script is the full name and path to the ARCbatch script or
template file. ARCbatch scripts have an ASX extension and are created with the ARCserve manager. ARCbatch templates are INI
files you can create to perform or schedule backups and restores. To immediately run a full backup using ARCbatch, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Start a command prompt and enter "fullpath\ARCbatch H=server/S=template."

Here, fullpath is the full path to the ARCbatch utility; server is the name of the server to run the specified script; and template is
the full path and file name of a template file that contains the following:
[GENERAL]
HOST=*
JOBTYPE=BACKUP
JOBDESCRIPTION=description

[SOURCE_BACKUP]
NODE_NUM=1
BKMETHOD=1
VERIFICATION=2

[NODE_1]
DOMAINNAME=*
NODENAME=$HOST$
NODETYPE=NTAGENT

[DESTINATION_BACKUP]
TAPENAME=tape
GROUPNAME=group

[MEDIA_OPTIONS]
FIRSTTAPEOPTIONS=2

Here, description is the comment to add to the job; tape is the name of the tape; and group is the name of the device group.

Tip ARCbatch templates support numerous entries. Visit http://www.cai.com for more information.

Scheduling Tasks with the AT Command

The AT command allows you to schedule tasks from the command line. The basic syntax of the AT command is as follows:
AT \\remote ID /COMMANDS "fullpath"

Tip To display a list of schedule tasks from the command line, start a command prompt and enter "AT."

Here, remote is an optional name of a remote system of which tasks to control; ID specifies a task ID to modify; fullpath is the
complete path and file name of the item to schedule; and the available commands are as follows:

/DELETE-Removes a scheduled job.

/YES-Combined with /DELETE, suppresses all jobs cancellation prompt.

/INTERACTIVE-Sets the job to interact with the desktop. This switch must be set if you want the user to have any
interactivity with the scheduled task.

/EVERY:x-Recurrently runs the command on the specified day (x).

/NEXT:x-Runs the command on the next specified date (x).

To schedule a script file to run at a specified time every work day, start a command prompt and enter the following:
AT \\remote time /interactive /every:M,T,W,TH,F scriptfile

Here, remote is the name of the system to store the scheduled task; time is the time to run the task; and scriptfile is the full path
and name of the script to run.

Tip You can use the Windows 2000 Resource Kit Utility WINAT to graphically control and view scheduled tasks.

Creating Tasks Using SCHTASKS

SCHTASKS is a Windows XP/2003 command line utility that allows you to create, delete, or view scheduled tasks. To create a
scheduled daily task using SCHTASKS, start a command prompt and enter the following:
schtasks /create /tn "taskname" /tr fullpath /sc daily /st miltime

Here, taskname is the name of the task to create; fullpath is the full path and file name of the program to execute; and miltime is
the time to schedule a task to run (in military format).

Listing Tasks Using SCHTASKS

To list tasks on a remote system using SCHTASKS, start a command prompt and enter the following:
schtasks /query /s computer

Here, computer is the name of the computer to query.

Deleting Tasks Using SCHTASKS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To delete a scheduled task on a remote system using SCHTASKS, start a command prompt and enter the following:
schtasks /delete /tn "taskname" /s computer

Here, taskname is the name of the task to delete and computer is the name of the remote system.

Tip You can use the /tn * parameter to delete all scheduled tasks.

Creating Tasks with WMI

The Win32_ScheduledJob class allows you to create, delete, or view scheduled tasks. This class is extremely limited in
functionality, incorrectly documented, and difficult to work with. There is no method to modify an existing task and there are only a
few available parameters when creating a task. This class also only recognizes and can create tasks compatible with the AT
command. For whatever reason, to create a scheduled task using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
DTime = MilTime

Set TZone = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2").ExecQuery
("select * from Win32_TimeZone")

For each Zone in TZone
 TBias = Zone.bias + 60 'Compensates for daylight savings
Next

STime = "********" & DTime & "00.000000" & TBias

Set ScheduledJob = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2:Win32_ScheduledJob")
 Set method = ScheduledJob.Methods_("Create")
 SetinParam = method.inParameters.SpawnInstance_()
 inParam.Command = "fullpath"
 inParam.StartTime = STime
 inParam.RunRepeatedly = rp
 inParam.DaysOfWeek = dow
 Set outParam = ScheduledJob.ExecMethod_("Create", inParam)

Note The highlighted code above must be placed on one line.

Here, miltime is the time to schedule a task to run (in military format); fullpath is the full path and file name of the program to
execute; rp is a binary entry (0 or 1) that specifies whether to create a reoccurring task; and dow are the days of the week to run
the task. Dow does not accept abbreviated day names (M,T,W,…), but must be entered in binary format where the days of the
week are as follows:

Monday-1

Tuesday-2

Wednesday-4

Thursday-8

Friday-16

Saturday-32

Sunday-64

To schedule a task to run on a specific day, simply add up the day values and enter the total. For example, to run a task on
Tuesday, Friday, and Saturday, you would enter 50 (2+16+32).

Listing Tasks in Internet Explorer Using WMI

The Win32_ScheduledJob class can retrieve and display information on any task previously created using the
Win32_ScheduledJob class or AT command. To list these scheduled tasks within a formatted Internet Explorer window, proceed
as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of WMI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO = CreateObject("Scripting.FileSystemObject")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set FSO = CreateObject("Scripting.FileSystemObject")
Set MSIE = CreateObject("InternetExplorer.Application")
Set ScheduledJob = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2").ExecQuery("select *
from Win32_ScheduledJob")

SetupMSIE
MSIE.Document.Write "<HTML><TITLE>Scheduled Jobs" & _
 "</TITLE><BODY bgcolor=#ffffff>"
MSIE.Document.Write "Displaying tasks created " & _
 "with WMI or the AT command:

" & _
 "<table border=0 width=100% cellspacing=0 " & _
 "cellpadding=0>"
 For each ejob in ScheduledJob
 IEWrite "Caption", EJob.Caption
 IEWrite "Command", EJob.Command
 IEWrite "Days Of Month", EJob.DaysOfMonth
 IEWrite "Days Of Week", EJob.DaysOfWeek
 IEWrite "Description", EJob.Description
 IEWrite "Install Date" ,EJob.InstallDate
 IEWrite "Interact With Desktop", EJob.InteractWithDesktop
 IEWrite "Job ID", EJob.JobID
 IEWrite "Job Status", EJob.JobStatus
 IEWrite "Name", EJob.Name
 IEWrite "Notify", EJob.Notify
 IEWrite "Owner", EJob.Owner
 IEWrite "Priority", EJob.Priority
 IEWrite "Run Repeatedly", EJob.RunRepeatedly
 IEWrite "Start Time", EJob.StartTime
 IEWrite "Status", EJob.Status
 IEWrite "Time Submitted", EJob.TimeSubmitted
 IEWrite "Until Time", EJob.UntilTime
 IEWrite " ", " "
 Next

 MSIE.Document.Write "</table>
End of List" & _
 "</BODY>"

 Sub SetupMSIE
 MSIE.Navigate "About:Blank"
 MSIE.ToolBar = False
 MSIE.StatusBar = False
 MSIE.Resizable = False

 Do
 Loop While MSIE.Busy

 SWidth = MSIE.Document.ParentWindow.Screen.AvailWidth
 SHeight = MSIE.Document.ParentWindow.Screen.AvailHeight
 MSIE.Width = SWidth/2
 MSIE.Height = SHeight/2
 MSIE.Left = (SWidth - MSIE.Width)/2
 MSIE.Top = (SHeight - MSIE.Height)/2

 MSIE.Visible = True
 End Sub
 Sub IEWrite(Caption,Prop)
 MSIE.Document.Write "<tr><td>" & Caption & "</td>" & _
 "<td> </td><td align=right>" & Prop & _
 "</td></tr>"
 End Sub

Note The highlighted code above must be placed on one line.

Here, computer is the name of the computer containing the tasks to list.

Related solution: Found on page:

Using Microsoft Internet Explorer as a Display Tool 100

Deleting Tasks Using WMI

The Win32_ScheduledJob class can delete any task previously created with the Win32_ScheduledJob class or AT command.
To delete all of these scheduled tasks using WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of WMI and Windows Script Host, from http://www.microsoft.com, to the
new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set ScheduledJob = GetObject("winmgmts:{impersonationLevel=
impersonate}!\\computer\root\cimv2").ExecQuery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

impersonate}!\\computer\root\cimv2").ExecQuery
("select * from Win32_ScheduledJob")

For each ejob in ScheduledJob
 ejob.Delete()
Next

Note The highlighted code above must be placed on one line.

Here, computer is the name of the computer containing the tasks to delete.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 15: Fun with Multimedia

In Brief
If you're not having complete and utter fun yet, this chapter is for you. In this chapter, you will learn how to use simple scripts to
play and control multimedia files. You will also learn how to script the Office Assistant and Microsoft Agent characters to interact
with your users.

The Dreaded Office Assistant

Office assistants are animated characters designed to help and entertain users of Microsoft Office. These characters provide tips,
accept natural language queries (such as "How do I hide the Office Assistant?"), and perform animations based on the actions of
the user. In theory, these assistants sound like a good idea. However, soon after the release of these assistants with Office 97, a
flood of complaints followed denouncing them. The main problem was the over-interaction of these assistants.

To turn on the Office Assistant, choose Help/Show the Office Assistant. Once the assistant is visible, right-click on it and choose
Options. Under the Options tab, you can disable the Office Assistant by unchecking Use the Office Assistant. Under the Gallery
tab, you can choose which assistant you want to use. The default assistant is called Clippit, a hyperactive paper clip that doesn't
know when to be quiet.

The Office Assistant Object Model
The Office Assistant object model is a limited one. At the top of the model is the assistant object. An instance of the Office
Assistant object model is created whenever an instance of an office application is created. Once the instance is created, you can
make the assistant visible by setting the Visible property to True:
officeapp. Assistant. Visible - True

Once the assistant is visible, you can move, resize, or animate the assistant:
officeapp.Assistant.Left - 500
officeapp.Assistant.Top - 500

Office assistants display messages to users through the Balloon object. You can use the NewBalloon property to create an
instance of the Balloon object:
Set Balloon - officeapp.Assistant.NewBalloon

Once an instance of the Balloon object has been created, you can create text messages and check boxes, and then show these
messages using the Show property:
Balloon.Heading - "Some Text Heading"
Balloon. Text - "Some Body Text"
Balloon.CheckBoxes(1). Text - "An example check box"
Balloon.Show

Tip If you have Microsoft Office 2000 with the VBA help files installed, the complete Office Assistant object model can be
found in the file VBA0FF9.CHM.

Under Office 97, office assistants are stored in actor files, with an ACT (Actor) extension (typically located in C:/Program
Files/Microsoft Office/Office). Office 2000 uses the Microsoft Agent ActiveX technology and stores its assistants in ACS (Agent
Character) files, allowing for more animations and interaction with the user.

Microsoft Agent

Microsoft Agent, originally called Microsoft Interactive Agent, is an ActiveX technology that allows you to display and animate
characters to interact with the computer user. Agent characters are cartoon-like animations stored in agent character (ACS) files.
Each character contains its own set of animations and voice patterns. You can use Microsoft Agent within Microsoft Office, script
files, Web pages, and applications.

The Microsoft Agent Support Files
In order to run Microsoft Agent, you need to download and install the following items:

Microsoft Agent core components-These are the core components that allow you to access and control a Microsoft
Agent character.

Microsoft Agent character files-These are the agent characters you can use to interact with the computer user.

Text-to-speech engines-These engines allow the Microsoft Agent characters to translate text to speech, giving
these characters the ability to "speak."

You can obtain these components from the Microsoft Agent Web site, http://msdn.microsoft.com/workshop/imedia/agent/.

The Microsoft Agent Process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All agent character commands and requests are exposed through the agent object model, MSAgent.ocx. After you create an
instance of the object model, the character can be loaded and is ready to receive requests. When a request for a character
animation is made, the data provider (AgentDPV.dll) decompresses the graphic and audio files, and passes them to the
automation server (AgentSvr.exe). The automation server renders the files to use transparent backgrounds and borders, giving
them the appearance of hovering on top of the screen.

Scripting the Microsoft Agent Using Windows Script Host
The first step to accessing the Microsoft Agent character methods is to create an instance of the Microsoft Agent Control:
Set ACTL - CreateObject ("Agent.Control.2")

Once a connection has been established, you can load one of the preinstalled Microsoft Agent characters and set a reference to
it:
ACTL. Characters.Load charactername. "charactername.acs"
Set CREF - ACTL. Characters(charactername)

Here, charactername is the name of the Microsoft Agent character, such as Merlin or Peedy. After the character has been
loaded, you can make the character visible using the Show method:
CREF.Show

Once the character is visible, you can call on any of the character's methods to perform an animation or to speak. Each agent
contains a set of unique animations. To make a character use a specific animation, you use the Play method:
CREF.Play "animation"

Note For a complete list of animations, consult the character's animation reference file.

Here, animation is the type of animation to perform, such as greet or sad. You can use the Speak method to make the character
say a specific phrase:
CREF.Speak "text"

Finally, you can cause the character to move to a specific location using the MoveTo method:
CREF.MoveTo x.y

Here, x is the horizontal pixel location, and y is the vertical pixel location.

Tip Specifying 0,0 will move the characters to the upper left corner of the screen.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Playing an Audio File Using KiXtart

KiXtart has the built-in ability to play a WAV or SPK file using the Play command. To play an audio file using KiXtart, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and extract the latest version of KiXtart, from http://www.kixtart.org, to the new directory.

3. Select Start|Run and enter "kix32 scriptfile."

Here, scriptfile is the full path of the new directory from step 1 and file name of a script file that contains the following:
$Aud - "filename"
Play File $Aud

Here, filename is the full path and file name of the WAV or SPK file to play.

Scripting the Microsoft Media Player

Windows 2000/XP/2003 includes a free application called Media Player, designed to play audio and video files. Mplay32.exe is
the 32-bit version of the standard Media Player, and this utility can play audio, video, and DirectShow files. This utility supports a
limited amount of command-line switches.

Microsoft Media Player 9 is a Windows add-on that provides extremely enhanced functionality when compared to the older
Windows multimedia players. Some of these features include media rights, MP3 (Motion Pictures Expert Group Layer 3 Audio)
support, video streaming, radio tuners, and play list support. This player is intended to be the core Windows multimedia player
and manager while replacing the older, built-in multimedia players, such as CDPlayer.exe and Mplay32.exe. This utility has limited
support for Windows Script Host.

Playing a Media File from the Command Line
To play and then close a media file using Mplay32.exe and shell scripting, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Select Start|Run and enter "scriptfile.bat."

Here, scriptfile is the full path and file name of a script file that contains the following:
@Echo Off
MPLAY32 /PLAY /CLOSE "filename"

Here, filename is the full path and file name to play.

Playing a Media File Using Windows Script Host
To play and then close a media file using Mplay32.exe and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")

SHELL.Run "MPLAY32 /PLAY /CLOSE filename". 0

Here, filename is the full path and file name to play. The value 0 within the Run command causes the media player to be hidden.

Playing Multiple Media Files Using a Play List
Many new audio players (for example, winamp) utilize play lists to play one audio file after another. To play multiple media files
using a play list, Mplay32.exe, and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
PlayList ("playlist")

SUB PlayList (TXTfile)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SUB PlayList (TXTfile)
 Set SHELL - CreateObject ("wscript.shell")
 Set FSO - CreateObject ("Scripting.FileSystemObject")
 Set readfile - FSO.OpenTextFile(TXTfile, 1, false)

Do while readfile.AtEndOfStream <> true
 contents - Trim(readfile.Readline)
 If contents <> "" Then
 SHELL.RUN "MPLAY32 /PLAY /CLOSE " & contents,3, True
 End If
 Loop
End Sub

Here, playlist is the full path and file name of a playlist file. Each line of this file contains the full path and file name of an audio file
to play.

Tip The value 3 within the SHELL.RUN command specifies to maximize the player. You can change this value to 0 if you
would like the player hidden.

Ejecting a CD Using Windows Script Host
Microsoft Media Player 9 does not currently support access through Windows Script Host. You can, however, use the Media
Player 9 object model to display information and control the CD player. To eject a CD using the Media Player 9 object model and
Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install Microsoft Media Player 9 and the latest version of Windows Script Host, from
http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set MPlayer - CreateObject("WMPlayer.OCX")

MPlayer.cdromCollection.item(x).eject()

Here, x is the number of the CD-ROM drive (starting at 0).

Ejecting All CDs Using Windows Script Host
To eject all CDs using the Media Player 9 object model and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install Microsoft Media Player 9 and the latest version of Windows Script Host, from
http://www.microsoft.com, to the new directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set MPlayer - CreateObject("WMPlayer.OCX")
Set FSO - CreateObject("Scripting.FileSystemObject")
Count- 1

For Each Drive in FSO.Drives
 If Drive.DriveType - 4 Then
 Count-Count+1
 End If
Next

If Count > -1 Then
 For x - 0 to Count
 MPlayer.cdromCollection.item(x).eject()
 Next
End If

Here, a DriveType value of 4 indicates a CD-ROM player.

Scripting RealOne

RealOne is an advanced multimedia player from RealNetworks (http://www.real.com). Although this player is commonly used to
play streaming media on the Internet, you can use these same ActiveX control calls to script RealPlayer using Windows Script
Host.

Playing an Audio File
To play an audio file using the RealPlayer ActiveX control and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Download and install the latest version of RealOne, from http://www.real.com, to the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set RPlayer - CreateObject ("rmocx.RealPlayer G2 Control.1")

RPlayer.SetSource "file:filename"
RPlayer.DoPlay

Wscript.Echo "Press OK to end."

Here, filename is the full path and file name to play.

Playing an Audio File with Windows Script Host Controls
To play an audio file with basic controls using the RealPlayer ActiveX control and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Download and install the latest version of RealOne, from http://www.real.com, to the new directory.

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set RPlayer - CreateObject("rmocx.RealPlayer G2 Control.1")

CMD - 2

Do While CMD <> 10
 Select Case CMD
 Case 0
 RPlayer.DoPlay
 Case 1
 RPlayer.DoPause
 Case 2
If AUD - "" Then AUD - "filename"
AUD - InputBox("Please enter the name of the audio file
to play", "Audio File", AUD)
RPlayer.SetSource "file:" & AUD
 Case 3
 WScript.Quit
 End Select
 Message - "Choose a command:" & vblf & vblf & _
 "0: Play file" & vblf & _
 "1: Pause file" & vblf & _
 "2: Choose file" & vblf & _
 "3: Quit" & vblf
 CMD - InputBox(Message, "RealPlayer Commands", "0")
Loop

Note The highlighted code above must be entered as one paragraph.

Here, filename is the full path and file name to play.

Playing Multiple Audio Files Using a Play List
Many new audio players (for example, winamp) utilize play lists to play one audio file after another. To play multiple media files
using a play list, the RealPlayer ActiveX control, and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Download and install the latest version of RealOne, from http://www.real.com, to the new directory.

4. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set RPlayer - CreateObject("rmocx.RealPlayer G2 Control.1")
Set FSO - CreateObject("Scripting.FileSystemObject")
Set readfile - FSO.OpenTextFile(TXTfile, 1, false)

PlayList ("playlist")
Wscript.Echo "Press OK to end."

SUB PlayList(TXTfile)
 Do while readfile.AtEndOfStream <> true
 filename - Trim(readfile.Readline)
 If filename <> "" Then
 RPlayer.SetSource "file:filename"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RPlayer.SetSource "file:filename"
 RPlayer.DoPlay
 End If
 Loop
End Sub

Here, filename is the full path and file name to play.

Scripting the Office Assistant

The Office Assistant is an interactive animated character used to help and entertain users of Microsoft Office. You can only
access the assistant object model through an Office application object model. This means that you must have an Office
application installed in order to automate an office assistant. To script the Office Assistant in Excel using Windows Script Host,
proceed as follows:

1. Create a new directory to store all files included in this example.

2. Install the latest version of Microsoft Excel.

3. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

4. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set FSO - CreateObject("Scripting.FileSystemObject")
Set objXL - CreateObject("Excel.Application")

objXL.Workbooks.Add
objXL.Visible - False
objXL.Assistant.Visible - True

With objXL.Assistant
 .Reduced - True
 .Left - 300
 .Top - 300
 .MoveWhenInTheWay - True
End With

Set Balloon -
objXL.Assistant.NewBalloon

Balloon.Heading - "Multiple Selections"
Balloon.Text - "Please make a selection"
Balloon.CheckBoxes(1).Text - "Selection 1"
Balloon.CheckBoxes(2).Text - "Selection 2"
Balloon.Show

If Balloon.CheckBoxes(1).Checked Then
 Wscript.Echo "You selected check box 1."
End If
If Balloon.CheckBoxes(2).Checked Then
 Wscript.Echo "You selected check box 2."
End If

objXL.quit

Related solution: Found on page:

Automating Applications through an Application Object 100

Scripting Microsoft Agent Using Windows Script Host

Microsoft Agent is an ActiveX technology that allows you to use animated characters to present information to your users. This
technology can be used in presentations, logon scripts, new user setups, and any other situation where an interaction is needed.

Scripting a Character to Speak
Many developers use Microsoft Agent to entertain, educate, or guide their users through a process. To script a Microsoft Agent
character to speak using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your "& _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters.Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
CREF.Speak "Hello there!"

WScript.Echo "Press OK to close"

Here, charname is the name of the agent character to use.

Scripting a Character to Speak a WAV File
Microsoft Agent has the ability to accept a WAV (WAVeform Audio) file and appear to speak it based on the gaps of silence
detected. This allows you to use a real voice, as opposed to a synthesized voice, to speak to your users. To use Microsoft Agent
to speak a WAV file, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system" & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
CREF.Speak "", "WAVFile"

WScript.Echo "Press OK to close"

Here, charname is the name of the agent character to use, and WAVFile is the full path and file name of the WAV file to use.

Scripting a Character to Sing
You can make the Microsoft Agent appear to sing by modifying the pitch and speed of the agent's voice. To make a Microsoft
Agent character sing the Imperial March from Star Wars, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")

ACTL.Connected - True
 If Not IsObject(ACTL) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
CREF.Speak "\Chr-""Monotone""\\Map-""\Pit-98\\Spd-50\DUN DUN
\Spd-134\DUN \Spd-50\DUN \Pit-78\DUN \Pit-117\\Spd-200\DUN
\Pit-98\\Spd-50\DUN \Pit-78\DUN \Pit-117\\Spd-150\DUN
\Pit-98\\Spd-50\DUN" "-" "" "\"

CREF.Speak "\Chr-""Monotone""\\Map-""\Pit-147\\Spd-50\DUN
DUN DUN \Pit-156\\Spd-67\DUN \Pit-117\\Spd-134\DUN
\Pit-92\\Spd-67\DUN \Pit-78\\Spd-80\DUN \Pit-117
\\Spd-77\DUN \Pit-98\\Spd-67\DUN""-""""\"

Wscript.Echo "Press OK to end the show"

Note The highlighted code above must be placed on one line.

Here, charname is the name of the agent character to use.

Scripting a Character to Read
You can make the Microsoft Agent speak any text that you can interpret in Windows Script Host. To make a Microsoft Agent
character read a text file using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, a Microsoft Agent character,
and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "charname"

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Set CREF - ACTL.Characters(aCHAR)
CREF.Show
ReadTXT ("textfile")

WScript.Echo "Press OK to close"

SUB ReadTXT(TXTfile)
 Set FSO - CreateObject("Scripting.FileSystemObject")
 Set readfile - FSO.OpenTextFile(TXTfile, 1, false)
 Do while readfile.AtEndOfStream <> true
 contents - readfile.Readline
 If contents <> "" THEN
 CREF.Speak contents
 End IF
 Loop

 contents - NULL
 readfile.close
End Sub

Here, charname is the name of the agent character to use, and textfile is the full path and file name of the text file to read.

Scripting a Character to Check for Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Chapter 8, you learned how to check for events using Windows Management Instrumentation. To make a Microsoft Agent
character notify you of events using WMI and Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Microsoft Agent, a text-to-speech engine, the Merlin Microsoft Agent
character, and Windows Script Host, from http://www.microsoft.com, to the new directory.

3. Select Start/Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
On Error Resume Next
Set SHELL - CreateObject("wscript.shell")
Set FSO - CreateObject("Scripting.FileSystemObject")
aCHAR - "Merlin"

Set ACTL - CreateObject("Agent.Control.2")
 ACTL.Connected - True
 If Not IsObject(ACTL) Then
 Wscript.Echo "Microsoft Agent was not found on your" & _
 "system." & vblf & "Please install and try again."
 Wscript.Quit
 End If
ACTL.Connected - True

ACTL.Characters. Load aCHAR, aCHAR & ".acs"
If Err.Number <> 0 Then
 Wscript.Echo "Could not locate the Agent called" & aCHAR
 Wscript.Quit
End If

Wscript.Echo "Press CTRL+C to end this script."

Set CREF - ACTL.Characters(aCHAR)
CREF.MoveTo 200,200
CREF.Show
CREF.Play "Wave"
CREF.Play "Restpose"
CREF.Speak "Hello, my name is Merlin!"
CREF.Play "Greet"
CREF.Play "Restpose"
CREF.Speak "I am your personal CPU monitoring assistant!"
CREF.Play "Announce"
CREF.Play "Restpose"
CREF.MoveTo 0.0
CREF.Speak "I will now monitor your CPU usage and notify" & _
 "you when an overload occurs."
CREF.Play "StartListening"

Computer - InputBox("Enter the computer name",
"CPU Monitor", "localhost")

CPULoad - InputBox("Enter the CPU overload threshhold",
"CPU threshhold", "75")

Poll - InputBox("Enter the polling interval",
"Poll Interval", "5")
If Computer - "" Then Computer - "Localhost"
If CPULoad - "" Then CPULoad - 75
If Poll - "" Then Poll - 5

Set ProLoad - GetObject("winmgmts:{impersonationLevel-
impersonate}!\\" &
Computer & "\root\cimv2")
.ExecNotificationQuery("SELECT * FROM
___InstanceModificationEvent WITHIN " & Poll & " WHERE
TargetInstance ISA `Win32_Processor' and
TargetInstance .LoadPercentage > " &
CPULoad)
If Err.Number <> 0 then
 WScript.Echo Err.Description, Err.Number, Err.Source
End If

Do
 Set ILoad - ProLoad.nextevent
 If Err.Number <> 0 then
 WScript.Echo Err.Number, Err.Description, Err.Source
 Exit Do
Else
 AMessage - ILoad.TargetInstance.DeviceID & _
 " is overloaded at " & _
 ILoad.TargetInstance.LoadPercentage & "%!"
 CREF.Stop
 CREF.Show
 CREF.Play "GetAttention"
 CREF.Play "GetAttentionContinued"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREF.Play "GetAttentionContinued"
 CREF.Play "GetAttentionReturn"
 CREF.Speak AMessage
 RandomAction
 End If
Loop

Sub RandomAction()
 ulimit - 5.0
 llimit - 1.0

 Randomize
 X - Int((ulimit - llimit)*Rnd() + llimit)
 Select Case X
 Case 1
 CREF.Play "Acknowledge"
 Case 2
 CREF.Play "Alert"
 Case 3
 CREF.Play "Explain"
 Case 4
 CREF.Play "Sad"
 Case 5
 CREF.Play "Uncertain"
 End Select
End Sub

Note The highlighted code above must be placed on one line.

Here, computer is the name of the system to monitor; CPULoad is the CPU utilization threshold to monitor for (1-100); and poll is
the number of seconds to set as the polling interval to check for events. The subprocedure RandomAction creates a random
number and then specifies an animation based on that number.

Warning If you run this script with WSCRIPT, you will only be able to terminate the script by ending the WSCRIPT.EXE
process through the Task Manager.

Related solution: Found on page:

Monitoring CPU Utilization 192

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 16: Special Scripting for Windows XP and 2003

In Brief
It seems a new operating system comes out almost every year. While the constant upgrading, bugs, and change makes support
more difficult, the new and improved features can help ease some of your pain. This final chapter will show you scripting
techniques and examples designed specifically for the new features of Windows XP and 2003. And who said having the "latest
and greatest" doesn't have its benefits?

Product Activation

Software piracy continues to be a huge problem for software vendors. Product activation is a technology designed to reduce the
piracy of Microsoft applications and operating systems. Through product activation, Microsoft is ensured that their end users have
legally obtained the software, and their end users are ensured that they have obtained an official, supported product from
Microsoft. Microsoft has included this protection mechanism in their products since Windows XP.

How Product Activation Works
Before using a protected product, the product first needs to be "activated." Without activation, a product will stop working after a
certain time frame or usage amount (grace period) and may prevent you from using the entire product or advanced features. The
activation process generates a "hardware code" which is unique to the hardware installed in your computer. This code is
transmitted to Microsoft over the Internet. (It can also be transmitted by phone.) Once transmitted, it is verified by Microsoft
servers and a confirmation ID is returned when successful. Once the ID is returned, the product has been activated.

The Activation Blues
While activation may help Microsoft reduce piracy for its products, it also causes aggravation for its users. With every rebuild of
your system, you will have to reactivate your protected product. Since the "hardware code" is based on the hardware configuration
in your computer, you may also be forced to reactivate after adding or removing a few hardware components. Finally, users
without Internet access will be forced to call Microsoft every time they need to activate.

System Restore

Windows XP and 2003 include a feature called System Restore designed to quickly resolve problems to the operating system.
Originally introduced in Windows ME, System Restore provides a method to revert a system back to a previously known working
state in the event a serious issue occurs.

Restore Points
A restore point is a compressed snapshot of your system's key files and registry entries. System restore creates restore points
daily, on demand, and when certain events occur. These events include application installs that use the windows installer, updates
applied by Windows Update (http://windowsupdate.microsoft.com), and when System Restore rolls back to a restore point.

MMC 2.0

Windows XP and 2003 contain the latest version of the Microsoft Management Console (MMC), version 2.0. MMC 2.0 includes
many new features such as automatic saving of settings, smaller console file sizes, view extensions, enhanced drag and drop
support, and the much needed Automation Object Model.

Automation Object Model
The MMC 2.0 Automation object allows you interface with the MMC through scripting. This is the first time Microsoft has exposed
the MMC to scripting. The object model allows you to modify console files, snapins, documents, views, and more.

As you learned in Chapter 1, in order to gain access to an object, you must first use the CreateObject method and set it to a
variable:
Set variable = CreateObject("MMC20.Application")

While the application object is not the only object in the MMC 2.0 Automation object model, for administrators it is the most
important as it allows us to initiate, control, and terminate MMC sessions. For more information about the MMC 2.0 Automation
object model, please visit the following site:

http://msdn.microsoft.com/library/default.asp?url=/library/enus/mmc/mmc/document_object.asp

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Immediate Solutions
Working with Windows Product Activation

While working with Windows XP/2003 Windows Product Activation (WPA), you will definitely run into your share of "activation"
support calls. Luckily, Microsoft has had the foresight to include the ability to script common activation tasks.

Determining Windows Product Activation Status
To determine the activation status using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:{impersonationLevel=impersonate}!\\"
 & computer & "\root\cimv2")
Set objWPA = objWMI.ExecQuery("Select * from
 Win32_WindowsProductActivation")

For Each PA in objWPA
 If PA.ActivationRequired = 0 Then
 Wscript.Echo "Product Already Activated"
 Else
 Wscript.Echo "Product Not Activated" & vbcrlf & _
 "Remaining Evaluation Period: " & PA.RemainingEvaluationPeriod & _
 vbcrlf & _
 "Remaining Grace Period: " & PA.RemainingGracePeriod
 End If
Next

Note The highlighted code above must be placed on one line.

Here, computer is the computer name to query.

Disabling Windows Product Activation Notices
To prevent Windows Product Activation notices reminding you to activate using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:{impersonationLevel=
 impersonate}!\\" & computer & "\root\cimv2")
Set objWPA = objWMI.ExecQuery("Select * from
 Win32_WindowsProductActivation")

For Each PA in objWPA
 PA.SetNotification(0)
Next

Here, computer is the computer name to disable notices.

Note The highlighted code above must be placed on one line. Disabling activation notices does not prevent the need to
activate; it only prevents the reminder notices.

Activating Windows
To activate Windows XP/2003 using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:

Set objWMI = GetObject("winmgmts:{impersonationLevel= _
 impersonate}!\\" & computer & "\root\cimv2")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 impersonate}!\\" & computer & "\root\cimv2")
Set objWPA = objWMI.ExecQuery("Select * from _
 Win32_WindowsProductActivation")
For Each PA in objWPA
 PA.ActivateOnline()
Next

Here, computer is the computer name to activate.

Scripting the System Restore

While system restores are normally performed through the System Restore Utility, you can also script restores through WMI. The
WMI system restore class (SystemRestore) provides methods to enable/ disable the system restore feature, create restore points,
list restore points, and roll back to a restore point.

Enabling/Disabling System Restore
To enable system restore on all drives through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:\\" & computer & "\root\default")
Set objSR = objWMI.Get("SystemRestore")
objSR.Enable("")

Here, computer is the name of the remote computer.

To disable system restore on all drives, change the method name "Enable" to "Disable."

Creating a System Restore Point
To create a restore point through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:\\" & computer & _
 "\root\default:SystemRestore")
objWMI.CreateRestorePoint "Scripted Restore Point", 0, 100

Here, computer is the name of the remote computer.

Listing All System Restore Points
To list all system restore points through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objSR = GetObject("winmgmts:\\" & computer & _
 "\root\default").InstancesOf("SystemRestore")
If objSR.Count = 0 Then
 WScript.Echo "No restore points found."
Else
 Set objWMIDate = CreateObject("WbemScripting.SWbemDateTime")
 For Each RP in objSR
 Select Case RP.RestorePointType
 Case 0
 RPT = "Application install"
 Case 1
 RPT = "Application Uninstall"
 Case 2
 RPT = "Desktop Settings"
 Case 3
 RPT = "Accessibility Settings"
 Case 4
 RPT = "Outlook Express Settings"
 Case 5
 RPT = "Application Run"
 Case 6
 RPT = "Restore"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RPT = "Restore"
 Case 7
 RPT = "Checkpoint"
 Case 8
 RPT = "Windows Shutdown"
 Case 9
 RPT = "Windows Boot"
 Case 10
 RPT = "Device Drive install"
 Case 11
 RPT = "First Run"
 Case 12
 RPT = "Modify Settings"
 Case 13
 RPT = "Cancelled Operation"
 Case 14
 RPT = "Backup Recovery"
 Case Else
 RPT = "Unknown"
 End Select

 objWMIDate.Value = RP.CreationTime

 Wscript.Echo "Date: " & objWMIDate.GetVarDate & vbcrlf & _
 "Number: " & RP.SequenceNumber & vbcrlf & _
 "Description: " & RP.Description & vbcrlf & _
 "Type: " & RPT
 Next
End If

Here, computer is the name of the remote computer.

Rollback to a Restore Point
To roll back to an existing restore point through WMI, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objWMI = GetObject("winmgmts:\\" & computer & _
 "\root\default:SystemRestore")
objWMI.Restore RestoreNumber

Set OS = GetObject("winmgmts:{impersonationLevel=impersonate}!\\"
 & computer & "\root\cimv2").ExecQuery
("select * from Win32_ OperatingSystem where Primary=true")
For each System in OS
 System.Reboot()
Next

Here, computer is the name of the remote computer and RestoreNumber is the restore point sequence number. The actual
restore occurs during the reboot process.

Note The highlighted code on the previous page must be placed on one line.

Related solution: Found on page:

Rebooting a System 190

Scripting the MMC Using Windows Script Host

In Chapter 8 you learned how to script the MMC from the command line. This section will show you how to script the MMC using
the MMC 2.0 Automation object and Window Script Host.

Loading a Console File
To load a console file using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objMMC = CreateObject("MMC20.Application")
objMMC.Load("ConsoleFile")
objMMC.Show
objMMC.UserControl = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

objMMC.UserControl = 1

Here, ConsoleFile is the location of the console file to load.

Saving a Console File
To save a console file using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objMMC = CreateObject("MMC20.Application")
Set objDOC = objMMC.Document

objDOC.SaveAs("ConsoleFile")
objDOC .Close(true)

Here, ConsoleFile is the location of the console file to save.

Adding a Snapin
To add a snapin to an MMC using Windows Script Host, proceed as follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objMMC = CreateObject("MMC20.Application")
Set objDOC = objMMC.Document

objDOC.SnapIns.Add "snapinname"
objMMC.show
objMMC.UserControl = 1

Here, snapinname is the name of the snapin to add (i.e. "Event Viewer", "Local Users and Groups").

WMI Improvements

Starting with Windows XP/2003, Microsoft has included a few new classes and objects to WMI. While the sections below explore
a few additions, you can visit the following site for a complete list:

http://msdn.microsoft.com/library/default.asp?url=/library/enus/wmisdk/wmi/what_s_new_in_wmi.asp

Converting WMI Dates
WMI uses the Common Information Model (CIM) DateTime format for date and time values which displays dates and times as
yyyymmddHHMMSS.mmmmmmsUUU or yyyy-mm-dd HH:MM:SS:mmm. You can use the sWbemDateTime object to translate
CIM formatted dates and time. To translate a WMI CIM formatted date and time using the sWbemDateTime object, proceed as
follows:

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
Set objDT = CreateObject("WbemScripting.SWbemDateTime")
Set objWMI = GetObject("winmgmts:\\" & Computer & "\root\cimv2")
Set objOS = objWMI.ExecQuery("Select LocalDateTime from
 Win32_OperatingSystem")

For Each OS in objOS
 objDT.Value = OS.LocalDateTime
 WScript.Echo "Original: " & OS.LocalDateTime & vbcrlf & _
 "Formatted: " & objDT.GetVarDate
Next

Note The highlighted code above must be placed on one line.

Here, computer is the name of the remote system. The example above retrieves the current time of the remote computer and
displays both the original CIM formatted date/time and the translated date/time.

Pinging a Network Device
You can use the WMI Win32_PingStatus class to ping a network device and retrieve the returned results through scripting. To
ping a network device and display the results using WMI, proceed as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Create a new directory to store all files included in this example.

2. Download and install the latest version of Windows Script Host, from http://www.microsoft.com, to the new
directory.

3. Select Start|Run and enter "cscript scriptfile.vbs."

Here, scriptfile is the full path and file name of a script file that contains the following:
set objPING = GetObject("winmgmts:{impersonationLevel=impersonate}")._
 ExecQuery ("select * from Win32_PingStatus where address ='"_
 & NetworkDevice & "'")

For Each PING In objPing
 Select Case PING.StatusCode
 Case 0
 Wscript.Echo "Reply from " & PING.ProtocolAddress & _
 ": bytes=" & PING.BufferSize & " " & _
 "time=" & PING.ResponseTime & " " & _
 "TTL=" & PING.ResponseTimeToLive
 Case 11001
 wscript.echo "Buffer Too Small"
 Case 11002
 wscript.echo "Destination Net Unreachable"
 Case 11003
 wscript.echo "Destination Host Unreachable"
 Case 11004
 wscript.echo "Destination Protocol Unreachable"
 Case 11005
 wscript.echo "Destination Port Unreachable"
 Case 11006
 wscript.echo "No Resources"
 Case 11007
 wscript.echo "Bad Option"
 Case 11008
 wscript.echo "Hardware Error"
 Case 11009
 wscript.echo "Packet Too Big"
 Case 11010
 wscript.echo "Request Timed Out"
 Case 11011
 wscript.echo "Bad Request"
 Case 11012
 wscript.echo "Bad Route"
 Case 11013
 wscript.echo "TimeToLive Expired Transit"
 Case 11014
 wscript.echo "TimeToLive Expired Reassembly"
 Case 11015
 wscript.echo "Parameter Problem"
 Case 11016
 wscript.echo "Source Quench"
 Case 11017
 wscript.echo "Option Too Big"
 Case 11018
 wscript.echo "Bad Destination"
 Case 11032
 wscript.echo "Negotiating IPSEC"
 Case 11050
 wscript.echo "General Failure"
 End Select
Next

Here, networkdevice is the name or IP address of the device to ping.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Resources
This appendix lists various web sites and newsgroups where you can gather more information or download some of the tools used
in this book.

ADSI
The following sites provide information on Active Directory Services Interface (ADSI):

http://www.msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28000413

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/adsilinks.asp

Newsgroups

http://www.microsoft.public.adsi.general

http://www.microsoft.public.platformsdk.adsi

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Antivirus
The following sites provide information on antivirus:

http://www.networkassociates.com/us/security/vil.htm

http://www.symantec.com/avcenter/

Newsgroups

http://www.alt.comp.virus

http://www.alt.comp.virus.source.code

http://www.microsoft.public.scripting.virus.discussion

http://www.symantec.support.winnt.nortonantivirus.general

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

KiXtart
The sites on the following page provide information on KiXtart.

KiXtart.org

KiXtart.org, formerly kixtart.to, is the premiere Web site for KiXtart scripting. The heart of this site is its bulletin board where you
can find hundreds of KiXtart tips, tricks, facts, and scripts.

Site: http://www.KiXtart.org

Visual KiXtart Editor

Visual KiXtart Editor, by Version Zero Software, is a compact script editor designed just for KiXtart scripting. Although it lacks
some of the advanced features of other editors, this program provides for fast editing and little overhead at a reasonable price.

Site: http://www.versionzero.romanweb.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft Agent
The following sites provide information on Microsoft Agent.

The Agentry

The Agentry is the Web's core location for everything that is Microsoft Agent. Here you will find the Net's largest collection of
Microsoft Agent characters, along with tools, book links, newsgroups, applications, and more.

Site: http://www.agentry.net

MASH (Microsoft Agent Scripting Helper)

MASH, by BellCraft Technologies, is the easiest and quickest way to script Microsoft Agent. This advanced tool allows you to
browse through character animations and create complex script files with absolutely no prior scripting or programming experience.

Site: http://www.bellcraft.com

Microsoft Agent Web Ring

The Microsoft Agent Web Ring is the one place on the Web that tries to bring all Microsoft Agent Web sites together. This site is
full of examples, applications, characters, and links to other Microsoft Agent Web sites.

Site: http://www.msagentring.org

Microsoft Agent in the MSDN Library

This is the official site for Microsoft Agent. Here you will find the latest news and downloads regarding Microsoft Agent.

Site: http://www.microsoft.com/msagent/default.asp

Newsgroups

http://www.microsoft.public.msagent

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Other
The following sites provide information on other helpful sites.

ActiveWin.com

This site is truly an Internet resource center for the Windows platform. Here you will find all sorts of information, drivers, articles,
tools, tips, and tricks for the Windows operating system of your choice.

Site: http://www.activewin.com

JesseWeb

This is my own personal Web site. Here you will find updates and support material for the book, scripts, tricks, tips, security
documents, music, and more. If you visit any site on this page, this should be the place to start.

Site: http://www.jesseweb.com

JSIInc

Glad to see that this site is still alive and well. JSIInc contains an extensive amount of registry tips, tricks, and hacks. The site also
contains administrative utilities, tips, and tricks for almost anything you can think of. A definite bookmark.

Site: http://www.jsiinc.com/reghack.htm

Sysinternals

The site for the true Windows administrator. From the guys that brought you NTFSDOS, ERD Commander, and FAT32 for
Windows NT (http://www.wininternals.com), this site contains many free and invaluable utilities that you may find yourself using on
a daily basis.

Site: http://www.sysinternals.com

FAQ for Windows

Formerly Windows 2000 FAQ, this site contains the answers to hundreds of Windows 2000/XP/2003 questions on just about
every topic. A good site for quick questions and answers.

Site: http://www.winnetmag.com/windowsnt20002003faq/

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Shell Scripting
The following sites provide information on shell scripting.

BatFiles

It's amazing that with the growth of all the other scripting languages, a site like this could still exist. BatFiles is a Web site purely
devoted to the DOS shell scripter. Here you will find tons of examples, tricks, FAQs, links, and downloads.

Site: http://www.bigfoot.com/~batfiles/

DOS Batch Programming

A simple site full of tips, tricks, and techniques. There's even a section purely devoted to NT shell scripting.

Site: http://www.calweb.com/~webspace/batch/

The DOS Command Index

This site contains a comprehensive list of shell scripting commands and their usage.

Site: http://www.easydos.com/dosindex.html

Newsgroups

http://www.alt.msdos.batch

http://www.alt.msdos.batch.nt

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Scripting: General
The following sites provide information on scripting in general.

AutoIt

AutoIt is a free automation tool to send key presses, manipulate the mouse, modify files and the registry, control dialog boxes and
more.

Site: http://www.hiddensoft.com/AutoIt/

Brainbuzz

Dubbed "The Mother of All Tech Sites", the Brainbuzz site truly lives up to its name. Filled with IT news, products, tools, jobs,
links, and more, this site has a section purely devoted to scripting.

Site: http://www.brainbuzz.com

DevGuru

DevGuru is an Internet learning center providing downloads, tutorials, and references for scripters and ASP developers.

Site: http://www.devguru.com

Microsoft Windows Script Technologies

This Web site is Microsoft's central location to obtain scripting downloads, documentation, news, and support. Here you can
download the latest versions of Windows Script Host, Microsoft Script Encoder, and the complete VBScript documentation.

Site: http://www.msdn.microsoft.com/scripting/

PrimalSCRIPT

PrimalSCRIPT, by Sapien Technologies, is by far the leader of script editors. Packed with advanced features and providing
support for more than 30 scripting languages, PrimalSCRIPT is the tool of choice for scripting professionals.

Site: http://www.sapien.com

UltraEdit-32

UltraEdit-32, by IDM Computer Solutions, Inc., is an award-winning script editor that provides for quick and painless editing. This
compact editing tool contains many of the advanced features of other editors, at a fraction of the cost. With features like project
management, macros, keyboard mapping, automatic backup, and unlimited file sizes, this little tool packs a big punch.

Site: http://www.ultraedit.com

Win32 Scripting

Win32 Scripting is the Web center for the serious scripter. Packed with code and custom tools for all types of scripting languages,
this site proves that nothing is unscriptable.

Site: http://www.cwashington.netreach.net

Windows Scripting Solutions

Windows and .NET Magazine's Windows Scripting Solutions is a 15-page monthly publication focused on task automation for the
Windows administrator. The site is generally restricted to its publication subscribers, but is full of scripting articles and examples.

Site: http://www.winnetmag.com/WindowsScripting/

Newsgroups

http://www.microsoft.public.scripting.vbscript

http://www.microsoft.public.scripting.jscript

http://www.microsoft.public.scripting.remote

http://www.microsoft.public.scripting.scriptlets

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Management Instrumentation
The following sites provide information on Windows Management Instrumentation (WMI):

http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_start_page.asp

http://www.microsoft.com/whdc/hwdev/driver/wmi/default.mspx

Newsgroups

http://www.microsoft.public.wbem

http://www.microsoft.public.dotnet.framework.wmi

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Script Host
The following sites provide information on Windows Script Host.

Windows Script Host Bazaar

Gunter Born's Windows Script Host Bazaar is packed with samples, ActiveX controls, book reviews, newsletters, tools, links, and
more.

Site: http://www.borncity.de/WSHBazaar/

Windows Script Host FAQ

This site is an excellent resource for anyone interested in Windows Script Host. This site is loaded with information, tutorials,
FAQs, links, reviews, and more. A definite starting point for the new WSH scripter.

Site: http://www.groups.msn.com/windowsscript

WinScripter

Although most of the scripts at this site are written in Jscript (and the scripts in this book were written in VBScript), this site is an
excellent resource for articles, tutorials, and examples.

Site: http://www.winscripter.com

Newsgroups

http://www.Microsoft.Public.Scripting.wsh

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Security
The following sites provide information on security issues.

Microsoft Security

Microsoft's official security site providing the latest security news, fixes, and links.

Site: http://www.microsoft.com/security/

SANS (System Administration, Networking, and Security)

SANS is a research community, composed of over 156,000 security personnel and system administrators. Here you'll find the
latest security news, events, resources, and more.

Site: http://www.sans.org

Windows IT Security

Windows 2000 Magazine's central site for IT security news, FAQS, files, articles, and more.

Site: http://www.winnetmag.com/WindowsSecurity/

Newsgroups

http://www.microsoft.public.security

http://www.microsoft.public.win2000.security

http://www.microsoft.public.windowsxp.security_admin

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

VBA
The following sites provide information on Visual Basic for Applications (VBA).

http://www.directory.google.com/Top/Computers/Programming/Languages/VBA/outlookvba.com

Newsgroups

http://www.microsoft.public.word.vba.beginners

http://www.microsoft.public.word.vba.customization

http://www.microsoft.public.word.vba.general

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

Symbols and Numbers
-CLONE switch, understanding, 19
8.3 File Naming, disabling with Windows Script Host, 135-136
/REVEAL, detecting windows and text with, 36-37

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

A
Active Directory Services Interface (ADSI)

with Microsoft Windows, 202-203
process, 203
providers, 203-205
silent installation, scripting, 42
understanding, 202-205

ADDUSERS utility, managing groups with, 212
Administrative shares

attaching to, 167-168
common, 167
defining, 167
disconnecting mapped, 169
performing tasks through, 168
removing, 265-266

Administrative Tools, locking down, 266-267
ADSI. See Active Directory Services Interface (ADSI).
Alerts

sending to multiple users/computers with KiXtart, 299-300
sending to multiple users/computers with shell scripting, 298-299
sending to multiple users/computers with Windows Script Host, 301-302
sending to single user/computer with KiXtart, 299
sending to single user/computer with shell scripting, 297-298
sending to single user/computer with Windows Script Host, 300-301
sending with KiXtart, 299-300
sending with shell scripting, 297-299
sending with Windows Script Host, 300-307

API, 8
Application logs, understanding, 281-282
Application objects

accessing, 91
closing, 92
visibility of, 92

Application Programming Interface (API), defining, 8
Applications

automating from command line, 93-99
automating objects through, 100-112
automating send-keys through, 112-115

ARCserve 2000, controlling from command line, 354-355
At command

evolution of, 344-345
scheduling from command line, 356

Attributes, setting all files within folders, 86-87
Audio files

in play list, playing, 373-374
playing using RealPlayer, 372
playing using Windows Script Host controls, 372-373
playing with KiXtart, 368

Auto-sized partitions, creating, 23
AutoIt

ActiveX Control, scripting, 37
[ADLIB] section, 36-37
versus KiXtart, 36-37
script files, converting standalone executables to, 37
understanding, 35-37
Web site, 35
versus Windows Script Host, 36-37

Automation
evolution of, 90
identifiers, 91-92

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

B
Backup Exec

consolidating logs, 351-354
controlling from command line, 350

Backups
best types of, 343-344
performing, 344
rotating, 344
securing, 343
storing, 344
subpoenaing, 344
testing, 344
written policies for, 344

Batch file, defining, 2
Batteries, collecting information on with Windows Management Instrumentation, 241-243
BIOS

collecting information on with
KiXtart, 236-237
collecting information on with shell scripting, 233-234
collecting information on with
Windows Management Instrumentation, 243-244

Boot Disks, creating, 26-27
Boot Timeout

setting from Windows 2003
system, 263
setting from Windows XP system, 263
setting with Bootcfg, 263
setting with KiXtart, 263-264
setting with Windows Management
Instrumentation, 264

Bootcfg
adding with safe mode entries, 29
deleting entries with, 29
displaying with Boot.ini, 28
scanning and rebuilding with Boot.ini, 28-29
setting with Boot Timeout, 263

Boot.ini
backing up, 27
displaying, 28
displaying with bootfcg, 28
scanning and rebuilding with bootcfg, 28-29
working with, 27-29

buttons
Change Password, 135
Lock Workstation, 134
Logoff, 135

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

C
CD-ROMs

collecting information on with Windows Management Instrumentation, 244
ejecting with Windows Script Host, 370-371

CDOSYS, 305-307
Central directory, moving uninstall shortcuts, 153-154
Change Password button, disabling with Windows Script Host, 135
Chassis, collecting information on with Windows Management Instrumentation, 244-246
CIPHER.EXE, list of supported parameters, 158
CMD.exe

defining, 2-3
running, 3-4

Collaboration Data Objects for Windows (CDOSYS), sending email, 305-307
Colors

background and foreground, changing with KiXtart, 325
background and foreground, changing with shell scripting, 316-317

COM. See Component Object Model (COM) Objects.
Command line

decrypting and encrypting files from, 158
NTFS permissions, managing from, 157
services, managing from, 155-157
shares, managing from, 159-160

Command shells
defining, 2
types of, 2-3
using, 2-3

COMMAND.com, defining, 2-3
Commands, running under security contexts, 267-268
Component Object Model (COM) Objects

accessing, 9
types of, 9-10
working with, 9-10

Computer accounts
creating in Microsoft Windows 2000 and 2003, 225
creating with Active Directory Services Interface, 215-216
deleting in Microsoft Windows 2000 and 2003, 225-226
deleting with Active Directory Services Interface, 216
listing in Microsoft Windows 2000 and 2003, 224-225
listing with Active Directory Services Interface, 215
managing from command line, 206-207
NET command, managing with, 206
NETDOM utility, managing with, 206-207

"Computer Management" MMC Snapin, opening, 174
Computers, suspending with shell automation, 109
Console files

loading using Windows Script Host, 393
saving using Windows Script Host, 393-394

Context menu, accessing with shell automation, 111-112
Control Panel Applets

running with shell automation, 108
scripting, 98-99

Copy backup, 343
CPUs

monitoring utilization with converting, 192-193
rebooting with converting, 190-191
shutting down with Windows Management Instrumentation, 191-192

Crackers, defining, 259
CSCRIPT command-line host utility, defining, 8
Custom backup, 343

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

D
Daily backup, 343
data, list of storage paths, 141
Date and Time

accessing properties page with shell automation, 109
writing to text logs with shell scripting, 285-286

"Defrag" Context menu, adding with Windows Script Host, 137
Device Manager

understanding, 231
Windows, using in, 231

DHCP. See Dynamic Host Configuration Protocol (DHCP).
Dial-Up Networking icon, removing with KiXtart, 132
Dialog boxes, scripting, 99-100
Differential backup, 343
Directories, replicating, 56-58
Directory listing, generating, 66
Disk formats

faster, 25
floppy, 25
hard, 24-25
options, 25
scripting, 24-25

Domain passwords, setting with Active Directory Services Interface, 216
Drive copy, performing in Symantec's Norton Ghost, 31
Drives

collecting information on Windows Management Instrumentation, 246-247
collecting information on with KiXtart, 237-238
by group, mapping with KiXtart, 327-328
by group, mapping with Windows Script Host, 333-334
universal, mapping by group with shell scripting, 318-319
universal, mapping with KiXtart, 326-327
universal, mapping with Windows Script Host, 332-333

DST parameters, 20
Dynamic Host Configuration Protocol (DHCP)

reviewing leases with, 195
switching with Windows Management Instrumentation, 194-195

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

E
Email

Collaboration Objects for Windows, sending with, 305-307
Microsoft automation, sending with Windows Script Host, 302-305

"Email Attachment" Context menu item, adding with Windows Script Host, 137-138
Enterprise, managing with Active Directory Services Interface, 213-228
Environment variables

list of, 312-313
system, 312
user, 312

Errors, logging in Symantec's Norton Ghost, 32
Event logs

backing up with KiXtart, 290-291
binary mode, backing up with Windows Management Instrumentation, 294-295
clearing with KiXtart, 291
clearing with Windows Management Instrumentation, 297
DUMPEL, backing up with shell scripting, 288
entries, 282-283
etiquette, 283
Event Viewer with, 282
EVENTCREATE, writing to with shell scripting, 287-288
LOGEVENT, writing to with shell scripting, 286-287
in Microsoft Windows, 281
text mode, backing up with Windows Management Instrumentation, 295-297
types of, 281-282
understanding, 281-283
writing to shell scripting, 286-288
writing to using Windows Script Host, 292-294
writing to with KiXtart, 289-290

Event Viewer
Microsoft Windows, 282
opening MMC Snapin, 174
understanding, 282

EVENTCREATE
event logs, writing to with shell scripting, 287-288
event logs, writing with, 287-288

Extended partitions, creating, 22
External commands, running, 58

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

F
Faster disk formats, scripting, 25
FAT, versus NT File System, 143
FAT32, versus NT File System, 143
File extensions, 81-82
File systems

manipulating, 64-87
manipulating with KiXtart, 58-63
manipulating with shell scripting, 55-58
manipulating with Windows Script Host, 64-87
working with, 55

File Transfer Protocol (FTP)
command line switches, list of, 94
commands, list of, 94-95
download of McAfee Antivirus Update files, scripting, 97-98
download of Norton Antivirus Update files, scripting, 96-97
downloads, scripting, 96
scripting, 94-95
uploads, scripting, 95-96

Files
attributes, displaying, 57, 59-60, 83-85
attributes, removing, 57
attributes, renaming, 57
attributes, setting, 57, 60, 85-86
compressing, 58
connecting, 64-65
copying, 77-78
copying with shell automation, 110
defining, 53
deleting, 67-72
deleting by date, 69-70
deleting by extensions, 55, 71-72
deleting by name, 70-71
deleting by size, 68-69
deleting within folders, 67-68
details, obtaining with shell automation, 110
moving, 78-80
moving with extensions, 79-80
moving with shell automation, 110
names, randomly generating, 65
renaming, 59, 80-81
renaming with short file names, 82
replicating, 56-58
versions, determining, 56

FileSystem object, understanding, 10
FileSystemObject object, accessing, 64
Find Files properties page, accessing with shell automation, 109
Floppy Disk Formats, scripting, 25
Folder Name Space, connecting to with shell automation, 109-110
Folders

attributes, displaying, 57, 59-60
attributes, removing, 57
attributes, renaming, 57
attributes, setting, 57, 60-61
browsing, with shell automation, 106-107
compressing, 58
connecting, 65
constants, list of, 106-107
copying, 78
copying with shell automation, 110-111
deleting, 56, 72-77
deleting by date, 75-76
deleting by name, 77
deleting by size, 73-75
details, obtaining with shell automation, 110
exploring with shell automation, 107-108
moving, 80
moving with shell automation, 110-111
opening with shell automation, 108

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

renaming, 59
Forests, understanding, 201
Free FDISK

enhanced functionality of, 17
versus Microsoft FDISK, 17
Web site, 15, 17
working with, 23-24

FTP. See File Transfer Protocol (FTP).
Full backup, 342
Functions

defining, 5, 11
structure of, 11

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

G
Global catalog

Windows 2000, working with, 202
Windows 2003, working with, 202

Groups
adding user accounts with Active
Directory Services Interface, 221-222
creating with Active Directory Services Interface, 221
deleting with Active Directory Services Interface, 221
listing in Microsoft Windows 2000 and 2003, 227-228
listing members in Microsoft Windows 2000 and 2003, 228
listing members with Active Directory Services Interface, 222-223
listing users with Active Directory Services Interface, 220
listing with Active Directory Services Interface, 220
managing from command line, 211-213
managing with ADDUSERS utility, 212
managing with NET command, 211-212
removing user accounts with Active Directory Services Interface, 222
USRTOGRP utility, managing with, 212-213

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

H
Hackers, defining, 259
Hard disks formats, scripting, 24-25
Hard Drive Setup Boot Disk, creating, 26-27
Hard drives

formatting, 17
imaging, 18-20
partitioning, 15-17
setting up, 15-17

HKCC, 120
HKCR, 119
HKCU, 120
HKEY_CLASSES_ROOT (HKCR), understanding, 119
HKEY_CURRENT_CONFIG (HKCC), understanding, 120
HKEY_CURRENT_USER (HKCU), understanding, 120
HKEY_LOCAL_MACHINE (HKLM), understanding, 119
HKEY_USERS (HKU), understanding, 119
HKLM, 119
HKU, 119
Hotfixes, listing with Windows Management Instrumentation, 255

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

I-J
Icons

Dial-Up Networking, removing with KiXtart, 132
My Computer, removing with KiXtart, 131-132
Network Neighborhood, hiding with KiXtart, 133
Scheduled Task, removing with KiXtart, 132-133
Windows 2000 icons, hiding with KiXtart, 133-134

IE. See Microsoft Internet Explorer (IE).
IIS Metabase

backing up with Windows Script Host, 349
restoring with Windows Script Host, 350
Images creating in PowerQuest Drive Image Pro, 29-30
creating in Symantec's Norton Ghost, 31
restoring in PowerQuest Drive Image Pro, 30
restoring in Symantec's Norton Ghost, 31

Imaging
hard drives, 18-20
process of, 18
tools, 18-20
understanding, 18-20

Impersonation level, understanding, 171
Incremental backup, 342
Information

collecting on with KiXtart, 236-241
collecting on with shell scripting, 233-236
collecting on with Windows Management Instrumentation, 241-255

ini files
evolution of, 118
searching and replacing within, 63

Internet, browsing, 113-114
Interpreted programs. See Scripts.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

K
KiXtart

advanced features of, 5
alerts, sending, 299-300
audio files, playing with, 368
versus AutoIt, 36-37
BIOS, collecting information on with, 236-237
Boot Timeout, setting with, 263-264
collecting information on, 236-241
commands, 5
defining, 5
dialog boxes, using with, 147
drives, collecting information on with, 237-238
event logs, writing to, 289-291
external commands, running, 58
file or folder attributes, displaying, 59-60
file or folder attributes, setting, 60-61
file system, manipulating, 58-63
files or folders, renaming, 59
functions, 5-6
icons, working with, 131-134
ini files, searching and replacing within, 63
limitations of, 7
lines with files, searching and replacing, 62-63
logon scripts, creating, 324-331
logs, using, 288-291
macros, defining, 6
macros, types of, 6
macros, using, 6
NTBackup, running with, 348
operating systems, collecting information on with, 238-239
printers, collecting information on with, 239-240
processors, collecting information on with, 240-241
Program groups, adding, 153
registry, modifying, 129-134
registry functions, list of, 129-130
registry key, backing up, 130
registry key, restoring, 130-131
shortcuts, creating, 150-151
text files, appending, 61-62
text logs, writing to, 288-289
understanding, 5-7
user input, accepting, 148
variables, 5-6
wallpaper, changing, 149
Web site, 5
Welcome screen, disabling, 131
when to use, 7

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

L
Last Access Time Stamp, disabling with Windows Script Host, 136
LDAP. See Lightweight Directory Access Protocol (LDAP).
Lightweight Directory Access Protocol (LDAP)

computer accounts, creating in Microsoft Windows 2000 and 2003, 225
computer accounts, deleting in Microsoft Windows 2000 and 2003, 225-226
computer accounts, listing in Microsoft Windows 2000 and 2003, 224-225
by groups, listing in Microsoft Windows 2000 and 2003, 227-228
listing group members in Microsoft Windows 2000 and 2003, 228
managing Windows 2000 and 2003 through, 223-228
providers, understanding, 204-205
user accounts, creating in Microsoft Windows 2000 and 2003, 226-227
user accounts, deleting in Microsoft Windows 2000 and 2003, 227
user accounts, listing in Microsoft Windows 2000 and 2003, 226

Lines with files, searching and replacing, 62-63
LiveUpdate, scripting silent installation, 43
Local system time

synchronizing with KiXtart, 326
synchronizing with shell scripting, 317-318
synchronizing with Windows Script Host, 331-332

Lock Workstation button, disabling with Windows Script Host, 134
LOGEVENT, writing to event log using, 286-287
Logical partitions, creating, 22
Logoff button, disabling with Windows Script Host, 135
Logon script environment, setting up in KiXtart, 324-325
logon scripts

creating with KiXtart, 324-331
creating with shell scripting, 316-324
creating with Windows Script Host, 331-339
tasks of, 311-314

Logon scripts, versus scripts, 311
Logs, writing to with shell scripting, 286-287

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

M
MAPI, 284
mapped shares

disconnecting, 169
working with, 167-169

mapping, defining, 167
Master Boot Record, rewriting, 23
McAfee Antivirus

updating files with KiXtart, 329-330
updating files with shell scripting, 323
VirusScan feature of, 313-314

McAfee Antivirus Update files, scripting File Transfer Protocol download, 97-98
McAfee Antivirus, updating files with Windows Script Host, 336-337
MDACs, 40-41
Media files

playing from command line with Windows Script Host, 369
playing from the command line with shell scripting, 369
playing play lists using, 369-370

Memory
collecting information on with shell scripting, 234-235
collecting information on with Windows Management Instrumentation, 247

Message Application Programming Interface (MAPI), understanding, 284
Mice

collecting information on with Windows Management Instrumentation, 249
properties, modifying, 99

Microsoft Agent
entertaining with, 376-383
process of, 366
running, 365-366
scripting with Windows Script Host, 366-367, 376-383

Microsoft Command Line Switches, list of, 34-35
Microsoft Data Access Components (MDACs), scripting silent installation, 40-41
Microsoft Excel, creating spreadsheets, 103-105
Microsoft FDISK

versus Free FDISK, 17
options of, undocumented, 23
partitions using, creating, 21-23
scripting limitations of, 17
understanding, 16-17

Microsoft Internet Explorer (IE)
cache, clearing, 114-115
Default start page, changing, 113
display tool, using as, 100-102
download, scripting, 42
logon script box, using with Windows
Script Host, 337-339
silent installation, scripting, 43

Microsoft Management Console (MMC) 2.0
defining, 174
remote management from the command line, 175-179
scripting using Windows Script Host, 393-394
snapins, adding to, 394
snapins, opening, 174
understanding, 387
working with, 174

Microsoft Media Player, scripting, 368-371
Microsoft Office, older versions, 46-47
Microsoft Office 2000

advertising, 48
reinstallation, scripting, 48
repair, scripting, 47
scripting, 46-48
silent installation, scripting, 47
uninstall, scripting, 47

Microsoft Office XP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

advertising, 48
reinstallation, scripting, 48
repair, scripting, 47
scripting, 46-48
silent installation, scripting, 47
uninstall, scripting, 47

Microsoft Outlook Automations, sending email, 302-305
Microsoft Script Encoder

parameters, list of, 277-278
using, 277-278

Microsoft Security Configuration and Analysis (MSSCE)
security templates, list of, 260-261
understanding, 260

Microsoft Windows
system information, 230-231
tools, 230-231

Microsoft Windows 2000
Active Directory Services Interface, understanding, 202-205, Seen also Active Directory Services Interface (ADSI)
administrative shares in, 167
backing up, 123-124
computer accounts, creating and deleting with Lightweight Directory Access Protocol, 225-226
computer accounts, listing with Lightweight Directory Access Protocol, 224-225
data storage paths, list of, 141
data types, list of, 120
Device Manager, 231
Drive Defrag, scripting, 112
encrypting files, 157-158
event logs, 281-283
Event Viewer, 282
forests, understanding, 201
global catalog, understanding, 201
groups, listing with Lightweight Directory Access Protocol, 227-228
listing group members with Lightweight Directory Access Protocol, 228
logging off users, 161-162
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
networks, understanding, 201-205
objects, understanding, 201
Organizational Units, creating and deleting, 223-224
Organizational Units, understanding, 201
REGEDIT versus REGEDT32, 120-122
registry backup misconceptions, understanding, 123
registry editing, 122
registry files, 118-119
registry hierarchy, 119-120
remote management from the command line, 175-179
restarting computers, 161
restoring, 123-124
RunAs command, using, 268
security, fixing with SECEDIT, 270
shutting down computers, 161
system information utility, 230-231
trees, understanding, 201
user accounts, creating and deleting with Lightweight Directory Access Protocol, 226-227
user accounts, listing with Lightweight Directory Access Protocol, 226

Microsoft Windows 2003
activating using Windows Script Host, 389
Active Directory Services Interface, understanding, 202-205
administrative shares in, 167
backing up, 123-124
computer accounts, creating and deleting with Lightweight Directory Access Protocol, 225-226
computer accounts, listing with Lightweight Directory Access Protocol, 224-225
data storage paths, list of, 141
data types, list of, 120
Defrag, command line options, 93
Device Manager, 231
encrypting files, 157-158
event logs, 281-283
Event Viewer, 282
global catalog, understanding, 201
group members, listing with Lightweight Directory Access Protocol, 228
groups, listing with Lightweight Directory Access Protocol, 227-228
logging off users, 162-163
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
networks, understanding, 201-205
objects, understanding, 201
Organizational Units, creating and deleting, 223-224

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Organizational Units, understanding, 201
product activation, 386, 389
REGEDIT versus REGEDT32, 120-122
registry, editing, 122
registry backup misconceptions, understanding, 123
registry files, 118-119
registry hierarchy, 119-120
remote management from the command line, 175-179
restarting computers, 162
restoring, 123-124
RunAs command, using, 268
shutting down computers, 162
supported parameters, 162
system information utility, 230-231
System Restore, 387
trees and forests, understanding, 201
user accounts, creating and deleting with Lightweight Directory Access Protocol, 226-227
user accounts, listing with Lightweight Directory Access Protocol, 226
Windows Product Activation notices, disabling using Windows Script Host, 389
Windows Product Activation status, determining using Windows Script Host, 388

Microsoft Windows Installer
Clean Up utility, installing, 48-50
features of, 38-39
installation, scripting, 46
Rollbacks, disabling, 48
Rollbacks, features of, 38-39
Self-Repair, features of, 38
switches, list of, 39
understanding, 38-39
working with, 45-50

Microsoft Windows NT
Active Directory Services Interface, understanding, 202-205
security, fixing with SECEDIT, 270

Microsoft Windows 9x, understanding Active Directory Services Interface, 202-203
Microsoft Windows XP

activating using Windows Script Host, 389
Active Directory Services Interface, understanding, 202-203
administrative shares in, 167
backing up, 123-124
Boot Timeout, setting in, 263
data storage paths, list of, 141
data types, list of, 120
Defrag, command line options, 93
Defrag, scripting, 93
Device Manager, 231
encrypting files, 157-158
event logs, 281-283
Event Viewer, 282
logging off users, 162-163
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
product activation, 386, 389
REGEDIT versus REGEDT32, 120-122
registry backup misconceptions, understanding, 123
registry editing, 122
registry files, 118-119
registry hierarchy, 119-120
remote management from the command line, 175-179
restarting computers, 162
restoring, 123-124
RunAs command, using, 268
shutting down computers, 162
supported parameters, 162
system information utility, 230-231
System Restore, 387
Windows Product Activation notices, disabling using Windows Script Host, 389
Windows Product Activation status, determining using Windows Script Host, 388

Microsoft Windows XP Service Pack, scripting silent installation, 41
Microsoft Word, creating reports, 102-103
MMC. See Microsoft Management Console (MMC) 2.0.
MODE parameters, 19-20
Modems, collecting information on with Windows Management Instrumentation, 248
Monitors, collecting information on with Windows Management Instrumentation, 248-249
MSSCE. See Microsoft Security Configuration and Analysis (MSSCE).
My Computer icon, removing with KiXtart, 131-132

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

N
Namespaces, list of, 171-172
NET ACCOUNTS command, using, 271
NET command

computer accounts, managing with, 206
Groups, managing with, 211-212

.NET framework, scripting silent installation, 40
NetBIOS. See Network Basic Input Output System.
NETDOM utility, managing computer accounts with, 206-207
Network adapters, collecting information on with Windows Management Instrumentation, 249-250
Network Basic Input Output System (NetBIOS)

communication modes of, 284
understanding, 283-284

Network drives, mapping, 167-169
Network Neighborhood icon, hiding with KiXtart, 133
Norton Antivirus

command line switches, list of, 94-95
File Transfer Protocol download, scripting, 96-97
Intelligent Updater feature of, 313
scripting, 93-94
silent installation, scripting, 45
updating files with KiXtart, 330-331
updating files with shell scripting, 324
updating files with Windows Script Host, 337

NT File System (NTFS)
converting to, 143-144
encryption, managing, 157-158
versus FAT and FAT32, 143
file owners, changing from the command line, 157
files and folders, copying and moving, 53-54
improvements, list of, 143
permissions, modifying from the command line, 157
security, 144

NTBackup
backups, supported types of, 342-343
defining, 342
features of, 343
managing, 346-350
running with KiXtart, 348
running with shell scripting, 347
running with Windows Script Host, 348
supported switches, 346-347

NTFS. See NT File System (NTFS).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

O
Objects

defining, 9
instantiating, 9
Windows 2000, working with, 202
Windows 2003, working with, 202

Office Assistant
object model of, 364-365
scripting, 374-375
understanding, 364-365

"Open with Notepad" context menu item, adding with Windows Script Host, 138
Operating systems

collecting information on with KiXtart, 238-239
collecting information on with Windows Management Instrumentation, 250-251

Organizational Units (OUs)
Windows 2000, working with, 202
Windows 2003, working with, 202

OS/2 Subsystems, removing, 264-265
OUs. See Organizational Units.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

P-Q
Partitions

auto-sized, 23
copy, performing in Symantec's Norton Ghost, 31
defining, 15
deleting, 24
extended, 16, 22
hard drives, 15-17
hierarchy of, 16
logical, 16, 22
primary, 16, 21
types of, 16, 21-23
understanding, 15-17

Passwords
account lockout policy, setting, 274-275
administrator account, renaming, 276
age, setting, 273-274
domain, setting with Active Directory
Services Interface, 216
length of, setting, 273
local administrator, changing with Active Directory Services Interface, 216-217
locked-out accounts, setting, 275
unique changes, setting, 274
unused accounts, searching for, 276-277

pcANYWHERE 11.0, scripting silent installation, 45
PCs, ejecting with shell automation, 109
Permissions, listing on a remote system, 176
Portable Operating System Interface for UNIX (POSIX), removing, 264-265
POSIX, S264-265
PowerQuest Drive Image Pro

commands, 18-19
scripting, 29-31
understanding, 18-19
Web site, 15, 18

Primary partitions, creating, 21
Printers

collecting information on with KiXtart, 239-240
collecting information on with Windows Management Instrumentation, 251
Con2 PRT, mapping with shell scripting, 320-321
mapping with KiXtart, 328
mapping with Windows Script Host, 334
Print UI DLL, mapping with shell scripting, 321

Processes
creating with Windows Management Instrumentation, 183
listing on a remote system, 176-177
listing with Windows Management Instrumentation, 182-183
priority, changing with Windows Management Instrumentation, 184-185
priority values, list of, 184-185
terminating on a remote system, 176
terminating with Windows Management Instrumentation, 184

Processors
collecting information on with KiXtart, 240-241
collecting information on with shell scripting, 235-236
collecting information on with Windows Management Instrumentation, 251-252

Program files, updating, 56, 82-83
Program groups, adding with KiXtart, 153
Programs, versus scripts, 1-2

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

R
RealOne, scripting, 372-374
RealPlayer, playing audio files, 372
REGEDIT

versus REGEDT32, 120-122
using, 121

REGEDT32
versus REGEDIT, 120-122
using, 121

REG.EXE, list of supported parameters, 124-125
Registry

backing up, 123-124
backup misconceptions, understanding, 123
data types, list of, 120
editing, 122
files, 118-119
hierarchy of, 119-120
modifying with KiXtart, 129-134
modifying with shell scripting, 124-129
modifying with Windows Script Host, 134-138
REGEDIT versus REGEDT32, 120-122
restoring, 123-124
understanding, 118

Remote access
checking with KiXtart, 328-329
checking with shell scripting, 321-322
checking with Windows Script Host, 335

Remote Command, executing on remote systems, 175-176
Remote Console

commands, executing in, 175-176
installing, 175

Remote Desktop, connecting using Remote system, 178
Remote Management

commands, executing from the command line, 175-176
connecting through Windows Management Instrumentation, 179-197
processes, listing from the command line, 176-177
processes, terminating from the command line, 177
Remote Command, installing from the command line, 175
Remote Console, installing from the command line, 175
Remote Desktop, connecting to, 178
services, listing, 177
services, managing, 177-178
shares and permissions, listing and creating, 176
Virtual Network Computing, connecting through, 178-179

RunAs command, using with Windows XP, 268
RUNDLL32 calls, list of, 99-100

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

S
Scheduled Task icon, removing with KiXtart, 132-133
SCHTASKS, creating, listing, and deleting tasks with, 357
Scripting methods, understanding, 34-35
Scripts

creating, 1-2
defining, 1
limitations of, 2
versus logon scripts, 311
versus programs, 1-2
running in PowerQuest Drive Image Pro, 30-31
understanding, 1-2
using in Symantec's Norton Ghost, 32
when to use, 2

SDKs, 172-173
SECEDIT utility

fixing Windows 2000 upgrade security with, 269-270
fixing Windows NT security with, 269-270
group policy, reapplying with, 269
security analysis, using with, 269
security settings, explaining, 270-271
Security Template, applying with, 269-270
using, 268-271

Security
logs, understanding, 281-282
managing through Active Directory Services Interface, 272-277
Microsoft Windows 2000, fixing upgrade with SECEDIT on, 270
password length, setting, 273
priorities, list of, 261-262
scripts, list of, 278
templates in Microsoft Security Configuration and Analysis, types of, 260-261
Windows NT, fixing with SECEDIT on, 270

Services
deleting with Windows Management Instrumentation, 189-190
installing from the command line, 155
listing on a remote system, 177
listing with Windows Management Instrumentation, 185-186
managing on a remote system, 177-178
parameters for listing, 177
parameters for managing, 178
pausing from the command line, 156
pausing with Windows Management Instrumentation, 188-189
resuming from the command line, 156
resuming with Windows Management Instrumentation, 189
starting from the command line, 156
starting with Windows Management Instrumentation, 186-187
stopping from the command line, 156-157
stopping with Windows Management Instrumentation, 187-188
uninstalling from the command line, 155

Shares
adding from the command line, 159
copying permissions from the command line, 160
creating with Active Directory Services Interface, 214
creating with permissions from the command line, 160
creating with permissions on a remote system, 176
creating with Windows Management Instrumentation, 180-181
deleting with Active Directory Services Interface, 214-215
deleting with Windows Management Instrumentation, 181-182
listing from the command line, 159
listing on a remote system, 176
listing with Active Directory Services Interface, 213-214
listing with Windows Management Instrumentation, 179-180
removing from the command line, 159

Shell automation
computers, suspending, 109
Context menu, accessing, 111-112
control panel applets, running, 108
Date and Time properties page, accessing, 109
file details, obtaining, 110
files, copying and moving, 110

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Find Files properties page, accessing, 109
folder details, obtaining, 110
Folder Name Space, connecting to, 109-110
folders, browsing, 105-106
folders, copying, 110-111
folders, exploring, 107-108
folders, moving, 110-111
folders, opening, 108
PCs, ejecting, 109
Start menu, refreshing, 109
Start menu properties page, accessing, 109
system dialog boxes, calling, 108
system windows, controlling, 105-106
Taskbar properties page, accessing, 109

Shell scripting
alerts, sending, 297-299
BIOS, collecting information on with, 233-234
collecting information on with, 233-236
commands, list of, 145-146
defining, 2
dialog boxes, using with, 145-146
event logs, writing to, 286-288
example, 3-4
file and folder attributes, displaying, setting, or renaming, 57
file system, manipulating, 55-58
file versions, determining, 56
files and directories, replicating, 57-58
files and folders, compressing, 58
files depending on extensions, deleting, 55
folders and subfolders, deleting, 56
limitations of, 4
logon scripts, creating, 316-324
logs, using, 285-288
media files, playing from the command line, 369
memory, collecting information about, 234-235
NTBackup, running with, 347
output, suppressing, 25
processors, collecting information about, 235-263
program files, updating, 56
registry, modifying, 124-129
registry, modifying with REGINI.EXE, 128-129
registry, querying, 125-126
registry, searching, 126
registry keys, backing up, 125
registry keys, deleting with REGEDIT, 127-128
registry keys, restoring, 125
shortcuts, creating, 149-150
SRVINFO utility, collecting information with, 233
text files, appending, 57
text logs, writing to, 285
understanding, 2-4
user input, accepting, 147-148
when to use, 4
Windows 2000, customizing, 126-127
Windows 2003, customizing, 126-127
Windows XP, customizing, 126-127

Shortcuts
broken, deleting, 152-153
creating with KiXtart, 150-151
creating with shell scripting, 149-150
creating with Windows Script Host, 151-152
uninstall, moving to Central Directory, 153-154
working with, 149-153

SHUTDOWN.EXE, list of supported parameters, 161
Silent installations

of Active Directory Services Interface, 42
of Internet Explorer, 43
of LiveUpdate, 43
of Microsoft Data Access Components, 40-41
of Microsoft Office 2000/XP, 47
of .NET framework, 40
of Norton Antivirus 2003, 45
of pcANYWHERE 11.0, 45
of Windows 2000 Resource Kit, 45-46
of Windows 2000 Service Pack, 41
of Windows 2000 XP Service Pack, 41
of Windows Management Instrumentations, 41-42
of Windows XP Service Pack, 41
of WinZip 8.1 SR-1, 43-45

SMS, 231

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Software
installed, listing with Windows Management Instrumentation, 254-255
installing with Windows Management Instrumentation, 195-196
uninstalling with Windows Management Instrumentation, 196-197

Software developer's kits (SDKs), Windows Management Instrumentation and, 172-173
Sound cards, collecting information on with Windows Management Instrumentation, 252
SpecialFolder property, list of available folders, 141-142
SRC parameters, 20
SRVINFO, collecting information on with shell scripting, 233
Start menu

controlling, 153-155
properties page, accessing with shell automation, 109
refreshing with shell automation, 109

Static IP addresses, assigning with Windows Management Instrumentation, 193-194
Sub procedures

structure of, 10-11
understanding, 10-11

Subfolders
accessing, 64
deleting, 56, 73

Subroutines
defining, 10
types of, 10-11
understanding, 10-11

Switches
combining, 22-23
using in Symantec's Norton Ghost, 32

Symantec's Norton Antivirus. See Norton Antivirus.
Symantec's Norton Ghost

DST parameters, 20
image files, creating and storing, 19
MODE parameters, 19-20
scripting, 31-32
SRC parameters, 20
understanding, 19
Web site, 15, 19

System dialog boxes, calling with shell automation, 108
System events, calling, 161-163
System information utility, understanding, 230-231
System information utility, using in Windows, 230-231
System logs, understanding, 281-282
System Manager Server (SMS), understanding, 231
System Restore

enabling/disabling through Windows Management Improvements, 390
points, creating through Windows Management Improvements, 390
points, listing through Windows Management Improvements, 391-392
scripting through Windows Management Improvements, 390-393
understanding, 387

System Restore Points
creating through Windows Management Improvements, 390
listing all through Windows Management Improvements, 391-392
rolling back through Windows Management Improvements, 392-393

System Windows, controlling with shell automation, 105-106

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

T
Tape drives, collecting information on with Windows Management Instrumentation, 253
Task scheduler, understanding, 344-345
Taskbar, accessing the properties page with shell automation, 109
Tasks

creating, listing, and deleting with SCHTASKS, 357
creating with Windows Management Instrumentation, 357-359
deleting with Windows Management Instrumentation, 361
listing in Internet Explorer with Windows Management Instrumentation, 359-361

Text files
appending, 57, 61-62
applying, 87

Text logs
Date and Time, writing to with shell scripting, 285-286
using with shell scripting, 285-286
using with Windows Script Host, 292
writing to KiXtart, 288-289
writing to shell scripting, 285-286

Time
hierarchy of, 311-312
synchronization, understanding, 311-312

Time-based greetings
displaying with KiXtart, 329
displaying with shell scripting, 322-323
displaying with Windows Script Host, 335-336

Trees, understanding, 201

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

U
USBs, collecting information on Windows Management Instrumentation, 253-254
User accounts

ADDUSERS utility, managing with, 209-210
creating in Microsoft Windows 2000 and 2003, 226-227
creating with Active Directory Services Interface, 217-218
CURSMGR utility, managing with, 210-211
deleting in Microsoft Windows 2000 and 2003, 227
deleting with Active Directory Services Interface, 218
disabling with Active Directory Services Interface, 219-220
listing in Microsoft Windows 2000 and 2003, 226
listing with Active Directory Services Interface, 217
managing from command line, 207-211
NET command, managing with, 208-209
unlocking with Active Directory Services Interface, 219

User profiles, deleting, 154-155
Users, interacting with when scripting, 145-149
USRTOGRP utility, managing groups with, 212-213

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

V
VBA, 90-91
Video cards, collecting information on with Windows Management Instrumentation, 254
Virtual Network Computing (VNC)

Remote Management (from the command line), connecting through, 178-179
Remote system, connecting to through, 178-179

Visual Basic for Applications (VBA), understanding, 90-91
VNC. See Virtual Network Computing (VNC).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

W-Z
Wallpaper, changing in KiXtart, 149
Window titles, setting with shell scripting, 316
Windows

navigating through, 35-37
NT File System overview, 143-144
sharing resources, 142-143

Windows 2000
backing up, 342-344
logon processes of, 314-315
Microsoft Media Player, scripting, 368-371
replication, purpose of, 314-315
time synchronization, 311-312
window titles, setting with shell scripting, 316

Windows 2003
backing up, 342-344
Boot Timeout, setting, 263
Microsoft Management Console 2.0, using, 387
Microsoft Media Player, scripting, 368-371
time synchronization, 311-312
window titles, setting with shell scripting, 316
Windows Management Improvements, working with, 394-397

Windows 2000 Resource Kit, scripting silent installation, 45-46
Windows 2000 Service Pack, scripting silent installation, 41
Windows Management Instrumentation (WMI)

batteries, collecting information on, 241-243
BIOS, collecting information on, 243-244
Boot Timeout, setting with, 264
CD-ROMs, collecting information on, 244
chassis, collecting information on, 244-246
CPUs, working with, 190-193
creating tasks with, 357-359
dates, converting, 395
defining, 169-170
deleting tasks with, 361
drives, collecting information on, 246-247
event logs, accessing with, 294-297
Hotfixes, listing, 255
impersonation level, 171
improvements to, 394-397
information, collecting, 241-245
Internet Explorer, listing tasks with, 359-361
memory, collecting information on, 247
mice, collecting information on, 249
modems, collecting information on, 248
monitors, collecting information on, 248-249
namespaces, list of, 171-172
network adapters, collecting information on, 249-250
object browser, 173
operating systems, collecting information on, 250-251
pinging network devices in, 395-397
printers, collecting information on, 251
processes, working with, 182-185
processes of, 170-171
processors, collecting information on, 251-252
Query Language, 172

See also Windows Management Instrumentation Query Language.
See also Windows Management Instrumentation Query Language.

remote management through, 179-197
scripting, 171-172
services, working with, 185-190
shares, working with, 179-182
silent installation, scripting, 41-42
software developer's kits and, 172-173
software installed, listing, 254-255
sound cards, collecting information on, 252
tape drives, collecting information on, 253
understanding, 169-173
USBs, collecting information on, 253-254
video cards, collecting information on, 254

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows NT
At command, scheduling tasks with, 344-345
NTBackup features, 343
providers, understanding, 205
scheduling tasks, 344-345

Windows Product Activation (WPA)
determining status using Windows Script Host, 388
disabling notices using Windows Script Host, 389
understanding, 386
working with, 388-389

Windows Script Host (WSH)
alerts, sending, 300-307
API and, 8-10
attributes, setting, 86-87
audio files, playing, 372-373
versus AutoIt, 36-37
CDs, ejecting, 370-371
context menu, modifying, 136-138
defining, 7
dialog boxes, using with, 147
directory listing, generating, 66
event logs, writing to, 292-293
example, 11-12
file attributes, displaying, 83-85
file attributes, setting, 85-86
file extensions, renaming, 81-82
file system, manipulating, 64-87
files, connecting to, 64-65
files, copying, 77-78
files, deleting, 67-72
files, deleting depending on date, 69-70
files, deleting depending on extension, 71-72
files, deleting depending on name, 70-71
files, deleting depending on size, 68-69
files, deleting within folders, 67-68
files, moving, 78-80
files, moving with extensions, 79-80
files, renaming, 80-81
files, renaming with short file names, 82
FileSystemObject object, accessing, 64
folders, connecting to, 65
folders, copying, 78
folders, deleting, 72-77
folders, deleting depending on date, 75-76
folders, deleting depending on name, 77
folders, deleting depending on size, 73-75
folders, moving, 80
languages of, 8
limitations of, 12
logon scripts, creating, 331-339
logs, using, 291-294
media files, playing from the command line, 369
Microsoft Agent, scripting with, 366- 367, 376-383
NTBackup, running with, 348-349
NTFS properties, modifying, 135-136
object model, 9
parameters of, 8
program files, updating versions of, 82-83
purpose of, 7
random file names, generating, 65
registry, modifying, 134-138
shortcuts, creating, 151-152
SpecialFolders, accessing, 141-142
subfolders, accessing through, 64
subfolders, deleting, 73
subroutines of, 10-11
text files, applying, 87
text logs, writing to, 292
understanding, 7-12
user input, accepting, 148-149
when to use, 12
Windows Security menu options, disabling, 134-135

Windows shell, scripting, 105-112
Windows XP

backing up, 342-344
Microsoft Management Console 2.0, using, 387
Microsoft Media Player, scripting, 368-371
time synchronization, 311-312
window titles, setting with shell scripting, 316
Windows Management Improvements, working with, 394-397

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WinZip 8.1 SR-1, scripting silent installation, 43-45
Wizards

navigating through, 35-37
scripting, 99-100

WMI. See Windows Management Instrumentation; Windows Management Instrumentation (WMI).
WMI Query language (WQL), Windows Management Instrumentation and, 172.
WPA. See Windows Product Activation (WPA).
WSCRIPT command-line host utility, defining, 8
WScript object

registry methods, list of, 134
understanding, 9-10

WSH. See Windows Script Host (WSH).
WshNetwork object, understanding, 10
WshShell object, understanding, 10

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Admin Scripting Little Black Book Quick Reference

Administrative Shares
By default, Windows 2000/XP/2003 creates hidden administrative shares so that administrators can perform various tasks
remotely. Table 1 lists the most common administrative shares.

Table 1: Administrative shares.

Share Description

ADMIN$ Shares the directory Windows was installed to (for example, C:\WINNT)

DRIVE$ Shares all available drives

IPC$ Share that represents the named pipes communication mechanism

PRINT$ Share for shared printer drivers

REPL$ Shares replication directory on a server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The AT Command
The AT command allows you to schedule tasks from the command line. The basic syntax of the AT command is as follows:
AT \\remote ID /PARAMETERS "fullpath"

Here, remote is an optional name of a remote system on which to control tasks; ID specifies a task ID to modify; and fullpath is
the complete path and file name of the item to schedule. Table 2 lists the available parameters.

Table 2: The AT command parameters.

Parameter Description

/DELETE Removes a scheduled job.

/EVERY:x Recurrently runs the command on the specified day (x).

/INTERACTIVE Sets the job to interact with the desktop. This switch must be set if you want the user to have any
interactivity with the scheduled task.

/NEXT:x Runs the command on the next specified date (x).

/YES Combined with /DELETE, suppresses all jobs cancellation prompt.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The Cipher Utility
Cipher is a utility that allows you to encrypt/decrypt your files from the command line. This utility supports various command-line
parameters, as shown in Table 3.

Table 3: Cipher parameters.

Parameter Description

/A Acts on files and folders

/D Decrypts files and folders

/E Encrypts files and folders

/F Forces encryption, even on files already encrypted

/H Includes system and hidden files

/I Ignores errors

/K Creates a new encryption key for the current user

/Q Runs in silent mode

/S Performs action on the current folder and all subfolders

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Common Locations
Microsoft uses a common organized structure to store user data. By knowing the locations of these directories and the quickest
way to access them, you can easily modify their contents within your scripts. Tables 4 lists the most common locations.

Table 4: Windows paths.

Name Location

All Users %ALLUSERSPROFILE%\Profiles\All Users\Desktop

Desktop

All Users %ALLUSERSPROFILE%\ Profiles\All Users\

Start Menu Start Menu

Desktop %USERPROFILE%\Desktop

Favorites %USERPROFILE%\Favorites

NetHood %USERPROFILE%\NetHood

PrintHood %USERPROFILE%\PrintHood

Quick Launch %USERPROFILE%\Application Data\Microsoft\Internet Explorer\Quick Launch

SendTo %USERPROFILE%\SendTo

Start Menu %USERPROFILE%\Start Menu

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft FDISK
Microsoft FDISK (Fixed DISK) is a program that allows you to create, delete, or view entries in the partition table. Microsoft FDISK
supports many command-line parameters, as shown in Table 5.

Table 5: Microsoft FDISK parameters.

Parameter Description

/ACTOK Skips drive integrity check

/EXT:size disk Creates an extended partition

/FPRMT Skips the large drive support startup screen and sets up all partitions set up as FAT32

/LOG: size Combined with /EXT, creates a logical partition of the specified size

/MBR Creates a new Master Boot Record

/PARTN Saves partition information to PARTSAV.FIL

/PRI:size disk Creates a primary partition

/STATUS Displays current partition information

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft Script Encoder
The Microsoft Script Encoder allows you to protect your scripts using a simple encoding scheme. The default supported file types
are ASA, ASP, CDX, HTM, HTML, JS, SCT, and VBS. The basic syntax of the script encoder is as follows:
SCRENC
inputfile outputfile

Here, inputfile is the file to encode and outputfile is the encoded result. Microsoft Script Encoder supports many command-line
parameters, as shown in Table 6.

Table 6: Microsoft Script Encoder parameters.

Parameter Description

/E extension Specifies a known

extension for unrecognized input file types

/F Specifies to overwrite the input file with the encoded version

/Llanguage Specifies to use the scripting language Jscript or VBScript

/S Specifies to work in silent mode

/X1 Specifies not to include the @language directive in ASP files

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Microsoft Windows Installer
The Windows Installer is an installation and configuration service for 32-bit Windows platforms that standardizes the way
programs install and uninstall. The Windows Installer supports various command-line parameters, as shown in Table 7.

Table 7: Microsoft Windows Installer parameters.

Parameter Description

/I Installs the program

/F Repairs an installation

/X Uninstalls the program

/L*V logfile Logs all information to a logfile

/QN Displays no user interface

/QB Displays basic user interface

/QF Displays full user interface

/? or /H Displays some switches and copyright information

/X Uninstalls the program

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

SCHTasks
SCHTASKS is a Windows XP/2003 command line utility that allows you to create, delete, or view scheduled tasks.

SCHTasks supports various command-line parameters, as shown in Table 8.

Table 8: SCHTasks parameters.

Parameter Description

/CREATE Creates a scheduled task

/DELETE Deletes a scheduled task

/QUERY Displays information about all scheduled tasks

/CHANGE Modifies a scheduled task

/RUN Runs a scheduled task

/END Stops a running scheduled task

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Scripting FTP
FTP (File Transfer Protocol) is a common method for transferring files between two locations. The FTP client supports many
command-line switches, as listed in Table 9, to control how it starts.

Table 9: Common FTP switches.

Parameter Description

-i Interactive mode, turns off interactive prompting during multiple file transfers

-n Prevents automatic logon

-s Specifies an FTP script to run

-v Verbose mode, turns on transfer data statistics and responses

Once the FTP client is active, you can enter various commands to list, delete, put, and retrieve files.

Table 10 lists the most common FTP commands.

Table 10: Common FTP commands.

Parameter Description

ascii Selected by default, sets the file transfer site to use ASCII format (shar, uu)

binary Sets the file transfer site to use binary format (Z, ARC, TAR, ZIP)

bye Terminates the current FTP session and exits the FTP program

cd directory Changes the directory on the remote system

close Terminates the current FTP session

delete file Deletes a remote file

get file Retrieves a single file from the remote system

lcd directory Changes the directory on the local system

mdelete files Deletes remote files

mget files Retrieves multiple files from the remote system

mput files Uploads local files to a remote system

open host Establishes a connection to the host name specified

password Specifies the password for the account name

password specified

prompt Toggles interactive prompting

put file Uploads a local file to a remote system

user name Specifies the account name to connect to the remote system

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows NTBackup
Windows NTBackup is a utility that allows you to back up your registry and data files. The NTBackup utility supports multiple
command-line parameters for performing backups, as listed in Table 11.

Table 11: Windows NTBackup parameters.

Parameter Description

/A Appends backups

/Dlabel Specifies a backup set label

/DS server Backs up the Microsoft Exchange directory service for the specified server name

/F name Specifies full path and file name of the backup file

/G tapeID Specifies to overwrite or append to the tape based on the specified tapeID

/HC:x Controls hardware compression where x is ON or OFF

/IS server Backs up the Microsoft Exchange information store for the specified server name

/J job Specifies a descriptive job name to record in the log file

/L:F Specifies to perform complete logging

/L:S Specifies to perform summary logging

/L:N Specifies to not perform logging

/M copy Backs up files and does not clear their archive flag

/M daily Backs up today's changed files and does not clear their archive flag

/M differential Backs up changed files and does not clear their archive flag

/M incremental Backs up changed files and then clears their archive flag

/M normal Backs up files and then clears their archive flag

/N name Specifies a new name to give the tape

/P name Specifies the name of the media pool to use

/R:x Restricts tape access to the tape owner or administrators, where x is YES or NO

/RS x Specifies to back up the removable storage database, where x is YES or NO

/T tapename Specifies to overwrite or append to the tape based on the specified tapename

/UM Specifies to find and format the media available

/V:x Performs backup verification, where x is YES or NO

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Script Host
Windows Script Host is a language-independent scripting host for 32-bit Windows operating systems. The Windows Script Host
CSCRIPT command-line utility and the WSCRIPT graphical utility support many command-line parameters, as shown in Table 12.

Table 12: Windows Script Host parameters.

Parameter Description

//B Disables command prompt user input

//D Enables active debugging

//E:engine Uses the specified engine at script execution

//H:CSCRIPT Sets CSCRIPT as the default execution host

//H:WSCRIPT Sets WSCRIPT as the default execution host

//I By default, enables command prompt user input

//JOB Executes a WSC job

//LOGO By default, displays logo at script execution

//NOLOGO Suppresses logo at script execution.

//U For CSCRIPT only, specifies to use Unicode for I/O operations

//S Saves options on a per-user basis

//T:seconds Specifies the maximum time, in seconds, a script is allowed to run

//X Executes the current script within the debugger

//? Displays help context

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

For More Information
You can visit http://www.jesseweb.com to view the latest information, scripts, and changes concerning this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

List of Figures

Chapter 1: The Essentials of Scripting
Figure 1.1: The CMD.exe command prompt window.

Figure 1.2: The Windows Script Host object model.

Chapter 2: Scripting Workstation Setups
Figure 2.1: PowerQuest's Drive Image Pro.

Chapter 3: Scripting Installations and Updates
Figure 3.1: The Add New Hardware Wizard window.

Figure 3.2: Detecting window title and text with /REVEAL.

Chapter 5: Automating Windows and Applications
Figure 5.1: Editing a recorded Office macro.

Figure 5.2: The GetDetailsOf file and folder output.

Figure 5.3: Windows file operating dialog box.

Figure 5.4: Windows context menu.

Chapter 6: Inside the Registry
Figure 6.1: The Windows REGEDIT screen.

Figure 6.2: The Windows REGEDT32 screen.

Chapter 7: Local System Management
Figure 7.1: Editing NTFS general permissions.

Figure 7.2: Editing NTFS special access permissions.

Chapter 8: Remote System Management
Figure 8.1: Mapping a network drive.

Figure 8.2: Disconnecting a mapped drive.

Figure 8.3: The WMI Object Browser.

Chapter 9: Enterprise Management
Figure 9.1: The ADSI process.

Chapter 10: Managing Inventory
Figure 10.1: The Windows 2000 Device Manager.

Chapter 11: Security
Figure 11.1: The Security Configuration and Analysis tool.

Chapter 12: Logging and Alerting
Figure 12.1: The Windows 2000 Event viewer.

Chapter 13: Logon Scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.1: The time synchronization hierarchy.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

List of Tables

Chapter 1: The Essentials of Scripting
Table 1.1: Commonly used KiXtart macros.

Table 1.2: Windows Script Host parameters.

Chapter 5: Automating Windows and Applications
Table 5.1: Wizards and dialog boxes.

Table 5.2: Special folder constants.

Chapter 6: Inside the Registry
Table 6.1: Registry data types.

Table 6.2: Regular mode versus kernel mode.

Chapter 7: Local System Management
Table 7.1: Common data storage paths in Windows 2000/XP/2003.

Chapter 8: Remote System Management
Table 8.1: Process priority values.

Chapter 11: Security
Table 11.1: Microsoft Script Encoder parameters.

Table 11.2: Security scripts.

Chapter 13: Logon Scripts
Table 13.1: Registry data types.

Windows Admin Scripting Little Black Book Quick Reference
Table 1: Administrative shares.

Table 2: The AT command parameters.

Table 3: Cipher parameters.

Table 4: Windows paths.

Table 5: Microsoft FDISK parameters.

Table 6: Microsoft Script Encoder parameters.

Table 7: Microsoft Windows Installer parameters.

Table 8: SCHTasks parameters.

Table 9: Common FTP switches.

Table 10: Common FTP commands.

Table 11: Windows NTBackup parameters.

Table 12: Windows Script Host parameters.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Windows Admin Scripting Little Black Book, Second
Edition
by Jesse M. Torres ISBN:1932111875

Paraglyph Press © 2004 (460 pages)

This book shows Windows XP and 2003 users and
administrators how to perform Windows management and
administrative tasks using powerful scripts for just about
every important task imaginable.

Table of Contents

Windows Admin Scripting Little Black Book, Second Edition
Introduction
Chapter 1 - The Essentials of Scripting
Chapter 2 - Scripting Workstation Setups
Chapter 3 - Scripting Installations and Updates
Chapter 4 - File Management
Chapter 5 - Automating Windows and Applications
Chapter 6 - Inside the Registry
Chapter 7 - Local System Management
Chapter 8 - Remote System Management
Chapter 9 - Enterprise Management
Chapter 10 - Managing Inventory
Chapter 11 - Security
Chapter 12 - Logging and Alerting
Chapter 13 - Logon Scripts
Chapter 14 - Backups and Scheduling
Chapter 15 - Fun with Multimedia
Chapter 16 - Special Scripting for Windows XP and 2003
Resources
Index
Windows Admin Scripting Little Black Book Quick Reference
List of Figures
List of Tables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

